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Abstract

Computational methods have been developed to predict the structures and energetics

of protein-ligands complexes. However these methods are limited by the accuracy

and transferability of the molecular mechanical (MM) models used to calculate the

potential energy. Neural network potentials (NNPs) eliminate the need for parame-

terization and avoid many of the limiting assumptions of MM models. We evaluated

the accuracy of ANI-type NNP models for predicting the potential energy surface of

biaryl torsions. The ANI-2X and ANI-1ccX NNPs were found to be more accurate

and reliable than popular molecular mechanical models. We then developed a new

method where the NNP is used to describe the intramolecular terms of a ligand while

a conventional MM model is used to describe the environment. This method was

found to be effective for predicting the binding pose of ligands bound to proteins and

could be used to calculate the conformational component of the binding energy. We

also show that these methods can be used to refine low-resolution cryo-EM structures

of protein-ligand complexes.
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Lay summary

Most drugs work by binding to a protein in our bodies. This binding blocks or

activates a protein, which results in the desired effect of the drug. A drug molecule

must have a very specific shape and interactions to bind to a specific protein. In

order to develop more effective or new drugs, we need to understand which shapes

and interactions result in the strongest binding. Drugs that bind strongly have a lower,

more negative binding energy. If we can minimize this energy we can maximize the

effect of the drug; however, experimentally observing the structure of a drug bound

in a protein and its binding energy is not always possible and requires sophisticated

instruments. It is often more advantageous to model the protein–ligand complex

using computer simulations. This is commonly done using a method called molecular

dynamics (MD), which mimics the natural movement of the system by calculating

the forces on the atoms of the drugs at every moment in time. The calculation of

these forces have generally used molecular mechanical models. These methods can be

effective, but can lack transferability: if optimal parameters have not been defined,

the methods may not describe a given drug molecule accurately. Neural Network

Potentials (NNP) are a new method that can calculate forces accurately while also

having good transferability. NNP’s have been trained to calculate forces on a new

molecule based on the energies of similar molecules. The “machine learning” approach

is based on the same type of method that Netflix uses to suggests new movies for you

to watch based on what you have already seen. In this thesis, I have developed a

new method to simulate the binding of drug molecules to proteins using the Accurate

NeurAl engINe for Molecular Energies (ANAKIN-ME, or ANI for short) NNP. First I

test their accuracy in calculating rotational energies of drug fragments against popular

molecular mechanical models. Then I test their accuracy for predicting the bound

conformations of drug molecules in comparison to the pose measured experimentally

using X-ray crystallography. Lastly I use the ANI NNP to help better refine results
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in cryo-electron microscopy (cryo-EM), a technique that flash freezes proteins and

blasts them with a beam of electrons to capture an image of the protein structure.

Cryo-EM is used to determine structures of proteins that could not be determined

using X-ray crystallography, but the structures determined with this method are often

lower resolution.

For each of these tests, the NNP consistently performed as well or better than

conventional molecular mechanical models. Perhaps more importantly, they eliminate

the need for parameterization for specific molecules, which makes computational drug

discovery workflows simpler. Because of these advantages, NNP’s could be the new

way forward for protein–drug modelling.
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Chapter 1

Introduction

1.1 The Study of Protein–Ligand Binding

Proteins are an important class of macromolecules that are involved in cellular pro-

cesses, including structural, chemical, mechanical, and cell signaling roles. They con-

trol these processes by forming intermolecular complexes with other cellular compo-

nents, such as other proteins, nucleic acids, lipids, carbohydrates, or molecular species.

Many proteins will bind to a specific chemical species (a.k.a., the ligand), which is

often an organic molecule. This includes protein enzymes that catalyze the chemical

transformation of a molecular substrate and protein receptors that can isomerize be-

tween two functional states when a molecule is bound to them. Many drug molecules

act by binding to the protein targets in similar ways to their native substrates, where

they block the activity of an enzyme on its substrate or bind to a receptor in a way

that modulates its conformational state.

The identification of small molecules that affect the activity of a targeted protein

by binding to them is a popular strategy to identify new drugs for the treatment of

diseases. Drugs typically bind to a pocket in the protein where its natural substrate

binds. The amino acids that form this binding pocket define the shape that a drug

molecule must hold to fit in the pocket and the types of intermolecular interactions

that can be formed between the protein and the drug [1]. Protein–ligand binding

must also be strong enough to compensate for the interactions between the ligand

and the surrounding solution that are lost when the ligand binds. Small-molecule
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ligands of biological molecules can hold a range of geometries, both in solution and

in their bound state. The strain and reduced flexibility of bound drugs can partially

counter the intermolecular interactions that drive protein–ligand binding. All of these

competing factors make it hard to predict whether or not a molecule or drug would

be a good drug target for a protein.

The protein–ligand binding will only occur if the transfer of the ligand from solu-

tion into the binding site is spontaneous. In other words, if the intermolecular driving

forces of binding outweigh all the other forces that oppose binding then protein-ligand

binding will occur. The spontaneity of a reaction is measured by Gibbs energy (∆G).

Gibbs energy is the sum of the enthalpy (∆H) minus the entropy (∆S) at a given

temperature (T).

∆G = ∆G− T∆S (1.1)

In order to test whether or not a drug is effectively binding to a protein, a range

of experimental and computational methods have been developed. For the purposes

of this thesis only X-ray crystallography and cryo-EM experimental techniques for

studying protein–drug interactions are described, although there are many more tech-

niques that are used such as Nuclear Magnetic Resonance Imaging (NMR), Laue

X-ray diffraction, small angle X-ray scattering, binding assays and isothermal titra-

tion calorimetry. An extensive review of these techniques was done by Xing et al.

[1]

1.1.1 X-ray Crystallography and Cryo-EM

X-ray crystallography is one of the most popular methods for determining the struc-

ture of a protein and has been in wide use for several decades. The first instance of

X-ray diffraction of protein crystals was reported in the early 1930s [2]. Thirty years

later the structure of myoglobin was captured by Kendrew et al.[3] marking the first

crystal structure of a protein captured by X-ray crystallography. The procedure for

determining a crystal structure of a protein is complex. A protein sample is purified,

crystallized and then exposed to an X-ray beam to yield a three-dimensional structure.

The X-ray beam is diffracted by the crystal in very specific directions. By measuring

the angle, intensity and pattern of the diffracted beams, a three-dimensional electron
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density map can be generated [2]. For example, the intensity of the spots is used to

determine structure factors, and the pattern of the diffraction spots are examined to

give information about the crystal packing symmetry and size of the unit cell that lead

to an electron density map. Various methods are then applied to improve the quality

of the map so that a molecular structure can be built using the protein sequence. The

resulting structure is then refined to fit the map more accurately and represent the

thermodynamically favored conformation [4].

X-ray crystallographic determination of protein structure has significant limita-

tions. This technique relies on the growth of the protein into a crystal. A reliable

source of protein must be available, and a purification/concentration protocol that will

yield high quality, homogeneous, soluble material is needed [5]. There are also many

solution conditions, such as pH, buffer, protein concentration, temperature, possible

inclusion of additives, and choice of precipitant that all have to be optimized correctly

in order for the protein to crystallize in a form suitable for X-ray crystallography [4].

A protein may also crystallize into a non-biological structure which is not of interest.

A minimum crystal size of 0.1 mm is needed for analysis as well [4]. The quality

of an XRD structure depends on factors like the intensity of the incident beam of

X-rays, the degree of disorder in the crystal cell, and the degree to which the crystal

diffracts the X-rays. The resolution of the protein structure is defined in terms of the

shortest distance between points on the diffraction pattern, with a resolution of 1–2

Å corresponding to atomistic structures, while structures derived from patterns with

a lower resolution (e.g., > 2 Å) may only be reliable for the coarser features of the

secondary and tertiary structure of a protein.

Cryogenic electron microscopy (cryo-EM) is a rapidly emerging method for protein

structure determination. Cryo-EM has been used since the 1980’s when Dubochet et

al.[6] used this technique to study the structure of viruses. The advantage to cryo-

EM is that it does not need the proteins to be crystallized. Instead, the proteins are

placed on a sample grid and flash frozen by plunging the sample in liquid ethane and

trapped between a thin film of amorphous ice. Two dimensional images of the sample

are generated by bombarding it with beams of electrons. These 2D structures are then

combined computationally to give a 3D structure. Because this technique avoids the

crystal packing effects and solution conditions required to grow protein crystals, cryo-

EM structures can be more accurate representations of a protein’s native or biological

state. Proteins can be observed in multiple conformations in their native environment,
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providing a better insight to the behaviour of these molecules [1].

A drawback to cryo-EM is that the inherent signal to noise ratio that accompa-

nied the low-power electron beam made resolutions of early cryo-EM structures poor,

typically equivalent to an XRD structure with a resolution of 10 Å. In recent years,

this technique has been improved to the point that structures routinely have a solu-

tion equivalent to a 3–4 Å resolution XRD structure, with more and more structures

emerging with resolutions in the 2–3 Å range. Kato et al. [7] set a record with their

structure of apoferritin at 1.54 Å resolution, and in 2020, Yip et al.[8] were able to

capture the structure of a stable iron-storing protein called ferritin at a resolution

of approximately 1.2 Å. These studies proved that cryo-EM techniques are able to

achieve X-ray crystallographic levels of resolution of protein structures.

Cryo-electron microscopy has allowed the determination of many protein struc-

tures that could not be determined by methods like X-ray crystallography; however,

it has seen more limited use in the determination of protein–ligand structures. Even

with the recent improvements in the resolution of cryo-EM techniques, the structural

resolution of bound ligands in cryo-EM structures is often too low to provide a defini-

tive pose of the bound molecule or its intermolecular interactions. Molecular modeling

of the ligand, with or without reference to experimental XRD or cryo-EM density of

the protein, offers a concrete solution to resolving the structures of drug–protein com-

plexes beyond what can be achieved using cryo-EM and X-ray crystallography alone.

1.2 Conventional Force Fields and Molecular Dy-

namics

Experimental methods for studying protein–ligand complexes can be time-consuming,

expensive, and laborious. Modern drug design usually involves a study of hundreds

to thousands of molecules to find the best molecule which is not realistic to approach

with low-throughput XRD and cryo-EM experiments. Computer modeling has huge

potential to predict the structures of protein–ligand complexes and to calculate the

affinity of a drug to a protein. Computer modeling can also be used to predict the

affinity of a drug to the protein, which cryo-EM and XRD cannot.

Molecular dynamics (MD) is one of the most popular methods for simulating
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protein–ligand complexes. MD mimics the natural movement and interactions of the

atoms of a biomolecular system. In these simulations, atoms are represented as single

point masses and their trajectories are simulated according to Newton’s equations of

motion. MD can be used to sample equilibrium ensembles of configurations, which

can then be analyzed to determine thermodynamic properties like the binding affinity.

MD simulations of protein–ligand binding require accurate methods to calculate

the intramolecular interactions of these ligands to predict the relative stability of

these conformations. Although high-level ab initio methods (e.g., MP2 or CCSD)

provide accurate predictions of the stability of molecular geometry, simulations of

protein–ligand binding commonly require the evaluation of millions or billions of con-

figurations, making these methods impractical to be used directly. Instead, empirical

molecular mechanical (MM) models are used to provide a simplified model for the

potential energy and forces of the system.

In MM, a set of simple mathematical functions are used to approximate the in-

termolecular and intramolecular interactions of the system [9]. The potential energy

(V) is divided into two components: bonded and nonbonded terms.

Vtotal(r) = Vbonded(r) + Vnon-bonded(r) (1.2)

The bonded term describes interactions of atoms linked by covalent bonds,

Vbonded(r) =
∑
bonds

1

2
kbond (r − req)2 +

∑
angles

1

2
kangle (θ − θeq)2

+
∑

torsions

∑
i

ktorsion cos (ni (φi − δ)) ,
(1.3)

where kbond is the spring constant for the bond stretch, req is the equilibrium bond

length, kangle is the spring constant for the angle bend, θeq is the equilibrium bond

angle, ‖torsion is the barrier for torsional rotation, ni is the rotational multiplicity, and

δ is the phase shift.

The non-bonded term describes Pauli repulsive, van der Waals, and electrostatic

interactions for pairs of atoms that are not bonded with each other. The Pauli and van

der Waals terms are combined into the Lennard-Jones potential while the electrostatic
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interactions are calculated as the sum of Coulombic interactions. The total non-

bonded interaction potential is,

Vnon-bonded(r) = (r) =
∑
i

∑
j

qiqj
4πεrij

+ 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(1.4)

where q is the partial charge of an atom, σ is the Lennard-Jones radius, and ε is the

Lennard-Jones well-depth.

Assigning appropriate parameters for all the bonded and nonbonded terms is one

of the primary challenges in developing and applying MM models. Partial atomic

charges are assigned to each atom using empirical or quantum-mechanically derived

methods which calculates the distribution of charges within a molecule [10], but the

other parameters are typically assigned based on their homology to molecules with

similar chemical structures. Each atom is assigned an “atom type” based on its

element and chemical environment [11]. Appropriate bond stretch, angle bend, and

dihedral rotation parameters must then be defined for all permutations of atom types

present in a molecule.

The definition of optimal parameters for molecular mechanical models of protein–

ligand binding remains a major challenge in computational chemistry. The electro-

static [12, 13], repulsive, and dispersion[14, 15] interaction terms have been developed

actively; however, accurate representation of intramolecular potential energy of the

ligand is particularly challenging and no complete, general solution has been devel-

oped. Force fields for drug-like compounds are particularly difficult to develop because

of the enormous variety of chemical motifs, which often feature complex chemical ef-

fects like conjugation, hyperconjugation, and aromaticity. This is compounded by

the enormous variety of chemical motifs that are possible in the chemical drug space,

where each could require a distinct set of parameters.

1.3 Neural Networks and the ANI Neural Network

Potential

Neural networks (NN) developed through machine learning (ML) are an emerging and

powerful tool that could serve as an alternative to MM models. ML uses computer
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Figure 1.1: A general NN architecture with input coordinates G, weights a, nodes y,
biasing weights b, and atomic energy E (This figure was reproduced from Behler et
al., “Generalized neural-network representation of high-dimensional potential-energy
surfaces”[17]. Published by Physical Review Letters with permission).

algorithms to generate a model based on sample data to make predictions without be-

ing explicitly programmed to do so [16]. In this instance, the ML algorithm is trained

to predict the potential energy of a molecular configuration using its coordinates as

the input, which is known as a Neural Network Potential (NNP).

The NNs used in these models are highly flexible, non-linear functions with opti-

mizable parameters called weights. The NN contains multiple hidden layers consisting

of nodes that relate the input layer to the output layer through the weights that are

adjusted to the desired level of theory [17]. The NN’s can also contain a biasing weight

that is used to offset the activation function, which is a function used to predict output

based on input.

The weights are initially chosen randomly, but are adjusted to minimize a cost

function. In this instance, the cost function is the deviation between the potential

energy of a set of molecular configurations predicted by the NN and those calculated

using a QM method. The weights are updated through the computation of analytic

derivatives of a cost function until the weights that result in the lowest deviation are

obtained. The data set used to optimize the weights of a NN is called a training set.
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Figure 1.2: Higher dimensional atomic NN for water (This figure was reproduced
from Behler et al., “Generalized neural-network representation of high-dimensional
potential-energy surfaces”[17]. Published by Physical Review Letters with permis-
sion).

For a given set of coordinates, the output of the NN is given by

Ei = f 2
a

[
w2

01 +
2∑
j=1

w2
jf

1
a

(
w1

0j +
2∑

u=1

w1
ujG

u
i

)]
(1.5)

where wkij is the weight parameter connecting node j in layer k with node i in layer

k − 1, wk0j is a bias weight that is used as an adjustable offset for the activation

functions fka , and Gu
i is a set of symmetry function values [17].

A naive implementation of an NNP would take the Cartesian coordinates of the

atoms as the inputs of the NNP directly and output a total energy, as seen in Fig-

ure 1.1. There are several disadvantages to this type of NN. Since all the weights

are different, the order in which the atoms are entered into the NN matters. For

example, in a water molecule, the two hydrogens are chemically equivalent but would

have different NN’s for this method. Interchanging the same type of atoms will lead

to a different total energy. Also, the size of the network is fixed so the NN will only

work for systems of the same size. To overcome these issues, Behler and Parrinello

developed a new type of NN, seen in Figure 1.2, where the output of the network is

the total energy evaluated based the sum of atomic energies [17].

This type of NN takes Cartesian coordinates of atoms, R, and transforms them into

symmetry functions, G. Symmetry functions describe the energetically-relevant local

environment of each atom. These symmetry functions resolve the interchangeability
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and consistency issues, which make them more suitable as the inputs of the NN [17].

Each atom then has its own standard NN that has the same weights for equivalent

atoms. The atomic energies for each atomic NN is then summed to calculate the total

energy Es. This type of NNP can be trained and used on a variety of systems of

varying size.

There are three key steps to training a neural network. First, a data set is selected.

The accuracy of empirical potential is dependent on the amount, quality, and types

of interactions included in the data used to train the model. The intended use of the

NNP also factors into the choice of a dataset (i.e., protein–ligand binding and protein

folding). Once a dataset is chosen, single-point energies for various molecular con-

formations either at equilibrium and/or non-equilibrium are calculated by the chosen

ab initio theory (i.e., DFT or CCSD(T)). Time and practicality must be considered

when choosing the theory. Using a higher level of theory to generate the training data

could theoretically yield a more accurate NNP, but this has to be weighted against the

decrease in extent of the training data if the computational cost to generate results

from a higher level method are significantly larger [18].

The Accurate NeurAl networK engINe for Molecular Energies (ANAKIN-ME, or

ANI for short) were the first effective general-purpose NNPs for organic molecules

built using the NNP architecture developed by Behler and Parrinello [16, 19, 20].

To ensure the NNPs could be used to simulate arbitrary energies of drug molecules,

it was trained on an exhaustive set of molecules. The GDB-11 data set includes all

molecules composed of elements C, N, O, F, and H with up to 11 non-hydrogen atoms.

These compounds are filtered by rules to exclude unstable molecules and those are

not accessible synthetically [21]. This data set was used as the basis for the training

set used to develop the ANI-1X NNP [16].

Although the GDB-11 data set includes a comprehensive set of molecules, they

are exclusively at minimum-energy geometries. To generate a comprehensive set of

molecular coordinates to serve as a training set, the developers of the ANI-1 NNP

used Normal Mode Sampling (NMS) to generate non-equilibrium structures. The

vibrational frequencies of each molecule in the GDB-11 data set that contained up

to eight non-hydrogen atoms with elements C, N, O, and H were calculated and

linear combinations of Cartesian displacements of these vibrational modes were used

to generate structures displaced from the potential energy minimum. Generating the
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Figure 1.3: Normal mode sampling (This figure was reproduced from Smith et al.,
“ANI-1: an extensible neural network potential with DFT accuracy at force field
computational cost”[16]. Published by The Royal Society of Chemistry under the
CC-BY).

training set using NMS ensures that the NNP will be able to describe accurately the

configurations that could emerge spontaneously in a molecular dynamics simulation

[22].

The first step to NMS is to compute a set of normal coordinates, Nf . Normal coor-

dinates (cN) are a linear combination of the Cartesian coordinates, ci, that describes

the coupled motion of all the atoms that comprise a molecule.

cN =

Nf∑
i

ci (1.6)

Next, force constants are obtained by computing the quantum mechanical Hes-

sian at the minimum energy geometry. Then, a set of pseudo-random numbers are

obtained, and a displacement for each normal mode coordinate is calculated by as-

suming a harmonic potential.

Ri = ±
√

3ciNakbT

Ki

(1.7)

where Na is the number of atoms in an energy minimized molecule, kb is Boltzmann’s

constant, T is temperature, and Ki is a pseudo-random number. This displacement

is used to scale each normal mode coordinate and then scaled potential energy is

calculated using the displaced coordinates. Figure 1.3 is a visual representation of the

steps described above.

Once the potential energy surfaces have been calculated, a neural network is

trained to reproduce the calculated results. This is done by optimizing the NN using
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a cost derivative. The cost derivative depends on the network architecture and the

symmetry parameters (i.e., radial and angular shifting parameters, cutoff distances).

The program randomly samples structures from the training set in a mini-batch of

1024 molecules, calculating the cost derivative with respect to each weight. The pa-

rameters and weights are adjusted such that the cost derivative is as small as possible

and the output of the NN is as accurate as possible to the QM level of theory used to

generate the training data [22].

Using the higher dimensional NN’s and NMS the ANI-1X dataset was created to

train and validate the ANI-1X NNP. ANI was created by Smith et al. specifically

for use in modelling drug molecules and protein ligands [16]. For each structure in

the ANI-1X data set, the energy of the structure was calculated using density func-

tional theory (DFT) at the ωB97X/6-31G* level. In total, ANI-1X dataset contains

molecules up to eight non-hydrogen atoms that include only the elements C, H, N

and O. In total, this training set includes 20 million conformations for approximately

60 thousand molecules.

The ANI-1ccX NNP was developed next using transfer learning (Figure 1.4), where

the inner layers of the ANI-1x model were transferred while the input and output layers

were trained to CCSD(T)*/CBS data calculated for a subset of the ANI-1X dataset

[22]. Transfer learning allows a NN to be trained using a far more limited set of data

because only the weights of the input and output layers need to be optimized, and

the more extensive ANI-1X dataset provides the data needed to train the inner layers

of the NN.

The ANI-2X potential is the most recent ANI NNP. This NNP was trained to

reproduce density functional theory (DFT) calculated energies (ωB97X/6-31G*) of 5

million molecular geometries for compounds containing elements C, N, O, H, F, S,

and Cl, which overcame the limitation of the ANI-1X and ANI-1ccX NNPs that were

limited to the elements C, N, O, and H [20].

These models have shown remarkable transferability; they provide accurate pre-

dictions of molecules that are not present in their training sets. Further, they avoid

the standard force field approximations where intramolecular interactions are cast into

harmonic, cosine, Coulombic, and Lennard-Jones potentials. Replacing MM models

with NNP models, specifically ANI NNP’s, in simulations of protein-ligand interac-

tions could provide ab initio accuracy at a similar computational cost to molecular
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Figure 1.4: Training of ANI-1ccx using transfer learning from ANI-1x NNP (This
figure was reproduced from Smith et al., “Approaching coupled cluster accuracy with
a general-purpose neural network potential through transfer learning” [22], published
by Nature Communications under the CC-BY.)

mechanical models while avoiding the parameterization of individual ligands.

1.3.1 Multiscale Models

Although NNPs could theoretically describe every component of a biochemical sys-

tem, the current ANI family of NNPs were only trained for neutral, organic molecular

structures. Full biochemical systems include water, ions, and proteins, and the in-

termolecular interactions of these components are essential parts of this description,

although ANI NNPs were not developed for modeling intermolecular interactions.

Multiscale methods are an established approach in computational modeling for

describing one component of the system using one method, while the rest of the system

is described using another method [23]. In chemistry, the most widely used multiscale

method is Quantum Mechanical / Molecular Mechanical (QM/MM) models, where

a small but important part of the system is described using a QM model, while the

balance of the system is described using an MM model [24, 25, 26, 27, 28].

QM/MM methods have been used to describe protein–ligand complexes, where

the ligand is described using a QM method while the rest of the system is described

with a conventional MM model. This avoids the issue of defining parameters for the

intramolecular terms of the ligand, but the high computational cost of an accurate QM
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method makes it difficult to perform MD simulations of protein–ligand with sufficient

time scales to calculate statistically-meaningful quantities.

In this thesis, I develop a new multiscale computational method, termed NNP/MM.

In these models, a component of the system is described using an NNP, while the rest

of the system is described using MM. As the NNP provides comparable accuracy at

a much lower computational cost than a QM method, this model could provide a

systematic way to perform MD simulations of protein–ligand complexes without the

need for an MM force field for the intramolecular terms of the ligand.

In this framework, the total potential energy of the system (V) is defined as a sum

of the the potential energy of the MM region (VMM), the potential energy of the NNP

region (VNNP ) and the interaction between these two regions (VNNP/MM ):

V(r) = VMM (rMM) + VNNP (rNNP ) + VNNP/MM (r) (1.8)

The interactions between the atoms represented using the NNP and atoms rep-

resented using MM are calculated using Lennard-Jones and Coulombic potentials

(Eqn. 1.9).

VNNP/MM (r) =
MM∑
i

NNP∑
j

qiqj
4πεrij

+ 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(1.9)

where q is the molecular mechanical partial charge of an atom, σ is the Lennard-Jones

radius, and ε is the Lennard-Jones well-depth.

1.3.2 Molecular Dynamics Flexible Fitting

Another application of NNP/MM used in this thesis is to describe protein–ligand

complexes in Molecular Dynamics Flexible Fitting (MDFF) refinement of cryo-EM

structures. MDFF works by supplementing an MD force field (Vforce−field) with an

electrostatic-like potential derived from the cryo-EM density (VEM). The Vforce−field
can be split into three terms describing the potential energies of the protein (Vprotein),

the ligand (Vligand) and the protein-ligand interactions (Vprotein−ligand). VEM biases

MD simulations towards structures that are consistent with the cryo-EM electron

density maps. Structural models are refined against the EM density by determining
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atomic positions that minimize the weighted sum of Vforce−field and VEM .

MM models are commonly used as the potential energy functions for Vligand and

Vprotein−ligand. This complicates the workflow because the parameters for the MM

potential of the ligand must be defined by the user and can introduce an additional

source of error into the MDFF simulation if the parameters are not optimal. A

truly general strategy for resolving the structures of cryo-EM protein-ligand complexes

requires an accurate method for calculating Vligand for all possible ligands.

This QM/MM model for a protein–ligand complex can be also combined with the

Molecular Dynamics Flexible Fitting (MDFF) method to refine cryo-EM structures

of protein–ligands complexes. Although QM/MM-MDFF can provide well-resolved

cryo-EM structures with accuracy, their computational cost is much greater and it is

difficult to perform extended MDFF MD simulations with these methods.

Neural network potential (NNP)/MM has already served as a more effective ligand

model in molecular dynamics flexible fitting (MDFF) refinement of cryo-EM structures

[29]. This method is similar to QM/MM, where the ligand is defined by an NNP

and the rest of the system is defined using conventional MM. In MDFF simulations

of protein-ligand complexes, NNPs can be used to represent the ligand embedded

within a MM model for the protein. The protein-ligand interactions are calculated

by pairwise additive Lennard-Jones and electrostatic potentials, as in a mechanically-

embedded QM/MM model. The use of neural networks to define ligands in complex

systems could provide the answer to finding a model that is flexible, transferable and

can be applied to a large variety of systems without the need for parameterization.

1.4 Thesis Outline

In Chapter 2 of this thesis, I explore whether NNPs are effective for calculating chal-

lenging potential energy surfaces of drug-like molecules. A testing set of 88 biaryl drug

fragments was used to compare the accuracy of ANI-1ccX and ANI-2X NNP’s to four

conventional force fields. The results of each method is compared with high-level ab

initio data for validation. We present the first application of NNP/MM, where I use

the NNP to simulate the intramolecular terms of the ligand inside a aqueous solvent

described using a MM method, which were then used to the potential of mean force

and calculate isomerization rates using enhanced-sampling MD methods.
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In Chapter 3, I take the NNP’s a step further by using the ANI-1ccX NNP to

represent the intramolecular terms of protein-bound ligands when embedded into an

MM model for the protein and solvent [30]. This NNP/MM model is investigated to

determine if it is a competitive model to the conventional CHARMM General Force

Field (CGenFF) MM model. Electron density (ED) maps from X-ray crystallography

data are used as a measure of accuracy, wherein the ANI-1ccX NNP ligand pose and

the CGenFF ligand pose is superimposed onto the ED map. We also compare the con-

formational Gibbs energy of binding for these ligands, calculated using conventional

MM and NNP/MM.

In the final chapter of this thesis, Chapter 4, an NNP/MM-MDFF is employed

on several protein-ligand systems that have low resolution cryo-EM structures in the

hopes to get a better refinement of the structure and ligand positions. The ANI-2X

NNP is used to represent the intramolecular terms of the ligand, as in Chapter 3, and

MDFF is used to bias the simulation to match the cryo-EM data. We demonstrate

this method on a set of published cryo-EM protein–ligand structures.



Chapter 2

Using Neural Network Potentials

to Model Torsional Potential

Energy Surfaces of Biaryl Drug

Fragments

The content of this chapter has been published in the Journal of Chemical Information

and Modelling : Lahey, S., Phuc, T-N., Rowley, C.N. Benchmarking Force Field and

the ANI Neural Network Potentials for the Torsional Potential Energy Surface of

Biaryl Drug Fragments. Published December 2020.

2.1 Introduction

Many natural products and drug molecules contain biaryl motifs and rotation around

the bonds connecting them that introduces a torsional degree of freedom in these

molecules. The potential energy surface for the rotation around these bonds varies

due to conjugation, steric interactions, intramolecular hydrogen bonding, and elec-

tron repulsion. These effects determine the equilibrium conformations held by the

molecules and the rates of conformational isomerization. Accurate computational

models for these torsional potential energy surfaces is essential for modeling con-

formational dynamics and protein–ligand binding. Typically conventional MD force
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fields are used to model these energy surfaces.

Torsional potentials are generally defined as a sum of cosine functions with a

variety of periods, offsets, and amplitudes,

Vtorsion (θ) =
∑
i

ki (1 + cos (niθ + φi)) (2.1)

Additionally, intramolecular non-bonded interactions can significantly affect tor-

sional potential energy surfaces. The treatment of these interactions varies with the

force field used and the simulation options must be carefully chosen to match the

selected force field. Intramolecular interactions between atoms separated by three

bonds (i.e., 1,4 nonbonded interactions) can have a large effect on the torsional po-

tential energy surface. Some force fields are designed to be used with the 1,4 Coulom-

bic and Lennard-Jones interactions between the atoms reduced. There is significant

variety in how these interactions are calculated: in the Generalized AMBER Force

Field (GAFF), 1,4 electrostatic interactions are scaled by a factor of 0.833, while 1,4

Lennard-Jones interactions are scaled by a factor of 0.5 [31]. The OpenFF standard

allows these factors to be specified for given atomic pairs, but default to the same value

as GAFF [32]. 1,4 scaling factors are not used at all with CGenFF [33, 34]. The OPLS

force field employs a scaling factor of 0.5 on both the Coulombic and Lennard-Jones

1,4 interactions but also uses the geometric combination rule for Lennard-Jones radii

parameters while the other force fields use the arithmetic mean [35]. Intramolecular

non-bonded interactions between atoms beyond the 1,4 interactions also significantly

affect torsional potential energy surfaces due to steric or electrostatic interactions [36].

Innovations have been introduced to simplify this process. New methods have been

developed to determine parameters for the possible permutations of atom types auto-

matically. Where a force field lacks a specific term, this parameter can be fit to an ab

initio potential energy surface. The SMIRKS Native Open Force Field (SMIRNOFF)

format assigns force field parameters by searching for chemical substructures with

SMIRKS format.[37] These methods still require the definition of extensive sets of

parameters and follow most of the standard approximations inherent to conventional

force fields.

NNPs could provide a solution to this problem. They can provide the same ac-

curacy of QM calculations but at a fraction of the computational cost. Although
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Devereux et al. reported that the ANI-2X NNP was effective for some torsional pro-

files, it is not clear if they will be as effective as the standard MM models for the

type of torsional profiles present in drug-like molecules (esp. biaryl torsions). Jor-

gensen and coworkers published a test set of biaryls present in drug molecules and

drug candidates, which provides an extensive, diverse, and relevant test set for assess-

ing the accuracy of computational methods for predicting biaryl torsional potential

energy surfaces [38]. This will help establish whether ANI potentials are viable as

replacement for MM models.

In this chapter, we compare the performance of four MM models (GAFF, CGenFF,

OPLS, and OpenFF) and two NNPs (ANI-2X and ANI-1ccX) for the prediction of

biaryl torsional potential energy surfaces calculated using high-level ab initio method

(CCSD(T1*)/CBS).

2.2 Computational Methods

2.2.1 Test Set

The test set of biaryls used here is largely the same as the biaryl torsional test set

developed by Dahlgren et al.[38] This test set was generated by extracting biaryl frag-

ments from drug and drug-like molecules. Because some of the methods used here

are not designed for use with charged compounds (e.g., the NNPs and the CGenFF

parameterization server), all compounds were modeled in their neutral protonation

state and the one charged compound in this test set (1-phenylpyridazin-1-ium) was

excluded in our study. Also, 5-phenyl-1,2,4-oxadiazole, a fragment of the drug ozan-

imod, was added to our test set. The structures of the molecules in the test set and

their associated numbering are illustrated in Figure 2.1. The structures, topology,

and parameter files of this test set are available on our GitHub repository [39].

2.2.2 Molecular Mechanical Parameterization and Calcula-

tions

The CGenFF, GAFF, and OPLS potential energy surfaces were calculated using re-

laxed scans with CHARMM (i.e., the torsional degree of freedom was restrained and
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Figure 2.1: Test set of biaryl fragments.
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the remaining degrees of freedom were energy-minimized). These calculations were

performed using CHARMM 41b2 [40].

CGenFF calculations employed the CGenFF force field version 2.2.0 [33]. The

charge, topology, and parameters were assigned using the CGenFF parameterization

server. 1,4 non-bonded interactions calculated using the CGenFF force field were not

scaled [12].

The GAFF parameters were assigned using AmberTools [31]. Atomic charges in

the GAFF model were calculated using the Restrained Electrostatic Potential method

(RESP) using Hartree–Fock (HF) with the 6-31G* basis set as the target quantum

mechanical (QM) electrostatic potential [41]. 1,4 nonbonded interactions in the GAFF

force field calculations were scaled by a factor of 0.833.

The OPLS [42] topology and parameters were generated using the LigParGen

server [43]. The CM1A-LBCC charge model was used [44]. 1,4 nonbonded interactions

in the OPLS force field were scaled by a factor of 0.5. The geometric combination

rule was used for the σ Lennard-Jones parameters.

The OpenFF charges and parameters were generated using the SMIRNOFF Open

Force Field version 1.1.1 with the code name “Parsley” [32]. The relaxed potential

scans were performed in OpenMM package version 7.4.1 [45] with external harmonic

restraint on the interest dihedral angle. The harmonic strength was set to ensure the

torsional angle variance was less than 0.02◦.

2.2.3 ANI Potential Energy Surfaces

The potential energy surfaces for the ANI-2X [20] and ANI-1ccX [22] NNPs were

calculated using TorchANI [46] interfaced with the External feature of Gaussian 09[47]

through a python script. This script is available for download from our GitHub

repository [48]. Each surface was calculated from complete scans in the forward and

reverse directions for rotation around this torsion, where the minimum of the energies

from each scan was used to construct the PES.
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2.2.4 QM Potential Energy Surfaces

The QM potential energy surfaces were calculated using a relaxed scan of the biaryl

torsional degree of freedom using the RIMP2/def2-TZVP level of theory [49, 50, 51].

ORCA 4.2.1[52] was used to calculate the single point potential energy of these config-

urations using the composite CCSD(T)*/CBS method described by Smith et al.[22]

The iterative triples method, DLNPO-CCSD(T1) [53], was used because the DLNPO-

CCSD(T) torsional potential energy surfaces of some molecules were discontinuous due

to differences in the conventional triples correction energy.

2.2.5 NNP/MM MD Simulations

An NNP/MM simulation was performed of ozanimod (5-[3-[(1S)-1-(2-hydroxyethylamino)-

2,3-dihydro-1H-inden-4-yl]-1,2,4-oxadiazol-5-yl]-2-propan-2-yloxybenzonitrile) in an ex-

plicit aqueous solvent. In this method, the intramolecular potential energy of the

ligand (VNNP (rNNP )) is calculated using the ANI-1ccX NNP, while the potential

energy of the solvent is represented using a conventional MM model (VMM (rMM)).

The potential energy of the system is the sum of these two components and an addi-

tional term corresponding to the interaction of the NNP and MM atoms (VNNP/MM )

(Eqn. 2.2).

V(r) = VMM (rMM) + VNNP (rNNP ) + VNNP/MM (r) (2.2)

The interactions between the atoms represented using the NNP and atoms rep-

resented using MM are calculated using Lennard-Jones and Coulombic potentials

(Eqn. 1.8).

In these simulations, the solvent–solute Lennard-Jones parameters (σ and ε)[31]

were generated using the Lorentz–Berthelot combination rules using the GAFF pa-

rameters for the solute and the TIP3P-FB parameters for the water molecules. The

partial atomic charges (q) of the solute were calculated using the RESP method [41].

The simulations were performed using NAMD 2.13 [54] interfaced with TorchANI

[46] using the NAMD-ANI interface script [48]. The total number of water molecules

was 2158. The dimensions of the periodic simulation cell were 48.7 Å× 38.5Å× 34.8 Å.

The ozanimod molecule was represented using the ANI-1ccX NNP and the solvent
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was represented using the TIP3P-FB water model [55]. The GAFF Lennard-Jones

parameters were used for the solute–solvent non-bonded interactions [31]. Intermolec-

ular electrostatic interactions were calculated based on RESP charges assigned to the

atoms of the ozanimod [41]. In the NNP/MM framework, the intramolecular inter-

actions of the ligand are calculated using only the NNP [30]. A 2 fs timestep was

used. Bonds containing hydrogen atoms were constrained using the SHAKE algo-

rithm. In these simulations, the temperature was coupled to a 298.15 K bath using a

Lowe–Anderson thermostat [56].

Calculation of the potential of mean force (PMF) for the rotation of the N-C-C-

C biaryl torsion was performed using the adaptive biasing force (ABF) [57, 58] and

umbrella sampling [59, 60]. Umbrella sampling simulations were performed on the N-

C-C-C biaryl torsional coordinate with a harmonic bias potential with a force constant

of 0.25 kcal/mol/degree2 with windows at 5◦ spacings. Each window was simulated

for 2 ns with a 200 ps equilibration. The PMF was constructed from the umbrella

sampling time series using the Weighted Histogram Analysis Method (WHAM) [61,

62, 63]. In these simulations, temperature was regulated using a Langevin thermostat

with a bath temperature of 298.15 K and a damping coefficient of 1 ps−1.

2.3 Results and Discussion

2.3.1 Overall Performance

Only general trends and some notable examples are discussed here, although the plots

of potential energy surfaces of all 88 torsional rotations are included in the supporting

information of Lahey et al.[64] We define two metrics for the overall performance of

each method. The root-mean-squared-deviation (RMSD) of a method for a given

torsion is calculated as the root-mean-square of the potential energy calculated using a

given method (Vi,method) relative to the CCSD(T1)*/CBS//MP2/def2-TZVP reference

value (Vi,CCSD), calculated at 5◦ increments between 0◦ and 360◦,

RMSD =

√√√√ 1

n

n∑
j

1

Nbins

∑
i

(Vi,method − Vi,CCSD)2 (2.3)
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Figure 2.2: A: RMSD of the PES (Eq. 2.3) for each method. B: Mean absolute devi-
ation of the rotational barrier height of each method. The CCSD(T1*)/CBS profiles
are used as the reference. Distributions are calculated using bootstrap analysis. NNP
methods (ANI-2X and ANI-1ccX) are shaded.
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where Nbins is the number of points calculated on the potential energy surface (Nbins =

72) and n is the number of PESs in the test set (n = 88).

Our second metric is the mean absolute deviation of the torsion rotational barrier

height (MADB) for each method, relative to the CCSD(T1)*/CBS//MP2/def2-TZVP

barrier height (Eqn. 2.4).

MADB =
1

n

n∑
j

|∆V‡CCSD −∆V‡| (2.4)

where ∆V‡ is the barrier height of torsional rotation, defined as the difference between

the minimum and maximum energy point on the PES.

This analysis is sensitive to the composition of the test set. The arbitrary inclusion

of some of the potential energy surfaces that a given method performs poorly for could

shift the results significantly. To estimate the uncertainty of these rankings due to the

composition of the test set, we have used bootstrap error analysis, where an alternative

set of 88 compounds were chosen randomly-with-replacement from the total set. This

process was repeated 10,000 times and these sets were used to calculate a distribution

for each metric.

The bootstrap analysis of the averages of these metrics for the test set are presented

in Figure 2.2. Only profiles that were available for all methods were included in this

analysis, so the sulfur-containing compounds (4, 6, 14, 16, 24, 26, 55, 56, and 71)

were not included because the ANI-1ccX NNP is not defined for this element. The

results for the sets including sulfur-containing compounds generally follow the same

trends, with ANI-2X performing as well or better than the best force-field methods.

These results are included in Supporting Information. The difference of means for

each pair of methods was calculated to quantify the difference in performance and

are presented in Table 2.1. The standard error of these differences were uniformly

< 0.01 kcal/mol.

For both metrics, the ANI-2X and ANI-1ccX methods outperform all four force

fields. The ANI-2X and ANI-1ccX NNPs have a similar level of performance on this

test set, although the ANI-1ccX barrier heights are more accurate than the ANI-2X

by 0.2 kcal/mol on average. Notably, the ANI-1ccX MADB is only 0.7 kcal/mol,

indicating that the goal of “sub-kcal” accuracy has already been achieved for these
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Table 2.1: Difference of means for the RMSD (top) and MADB (bottom) of the test
set (excluding sulfur-containing compounds). Positive values indicate that the first
method (column) agrees more closely with the CCSD(T1*) reference values than the
second method (row). Standard errors are omitted because they are all negligible (
< 0.01 kcal/mol).

GAFF OpenFF OPLS ANI-2X ANI-1ccX
CGenFF -0.44 0.07 -1.21 0.31 0.32
GAFF 0.50 -0.78 0.75 0.76

OpenFF -1.28 0.25 0.26
OPLS 1.52 1.53

ANI-2X 0.01

GAFF OpenFF OPLS ANI-2X ANI-1ccX
CGenFF 1.33 0.00 -2.29 0.31 0.51
GAFF 1.34 -0.96 1.64 1.84

OpenFF -2.29 0.31 0.50
OPLS 2.60 2.80

ANI-2X 0.20

PESs.

Of the force field methods, CGenFF and OpenFF have similar levels of accuracy

and are both significantly more accurate than the others. The mean signed error

(MSE) in the barrier height is positive for all the models except CGenFF, which

tends to underestimate barriers by 0.2 kcal/mol. Notably, GAFF has an MSE of

1.2 kcal/mol and OPLS has an MSE of 2.5 kcal/mol, indicating a significant tendency

to overestimate torsional barriers. The distributions generated by bootstrap error

analysis are narrow for ANI-2X, ANI-1ccX, CGenFF, and OpenFF indicating a fairly

consistent level of performance across the test set. The distributions for OPLS and

GAFF are much broader, indicating the performance on some compounds is more

varied.

The relative accuracy of these methods can also be quantified by ranking which

method provides the PES with the lowest RMSD or the most accurate barrier. These

rankings are presented in Figure 2.3 (top). By these measures, the ANI-1ccX NNP is

most accurate. It should be noted that the ANI-2X method predicts barrier heights
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Figure 2.3: Top left: Number of torsional PESs where a given method has the lowest
RMSD. Top right: Number of torsional PESs where a given method has the lowest
barrier height deviation. Light blue color indicates methods is a NNP and dark
blue indicates method is a conventional force field model. Bottom left: Number of
torsions where a method gives a high RMSD (i.e., on average, more than 1 kcal/mol
in error at each point on the PES). Bottom right: Number of torsional PESs where a
method predicts the barrier height inaccurately (i.e., more than 2 kcal/mol in error).
To allow comparison of the ANI-1ccX method, S-containing compounds were not
included (n = 79).
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with similar results to ANI-1ccX, so it has nearly the same accuracy. Although ANI-

1ccX is ranked higher because it is generally incrementally more accurate than ANI-

2X.

Finally, we can also assess the methods according to the number of torsional

PESs where a method performs poorly. These rankings are presented in Figure 2.3

(bottom). For the RMSD criteria, this is defined as a mean squared deviation (MSD)

per point on the surface that is greater than 1 kcal/mol and for the barrier height

a poorly performing is defined as one where the predicted barrier height is in error

by 2 kcal/mol or more. Based on these metrics for poor performance, the ANI-2X

and ANI-1ccX NNP models are also superior compared to the force field models,

with the ANI-1ccX methods demonstrating poor performance for only 10 PESs and

10 barriers lower than the best force field (CGenFF). Among the force fields, the

CGenFF performs poorly for the fewest torsions, followed by GAFF, OpenFF, and

OPLS.

This highlights a major advantage of the NNP methods - the number of cases

where they perform poorly is small. The strategy of training these potentials to

reproduce molecular energies in general rather than specific interactions results in

methods that are robust for PESs outside their training sets. It should be noted

that none of the biaryl compounds in this test set were part of the ANI-2X or ANI-

1ccX training sets, so the success of these methods show that they are remarkably

robust and provide accurate predictions for molecules and bonding motifs that they

were not explicitly trained to describe. This success for molecules outside of their

training set is a significant advantage for high-throughput screening of protein–ligand

binding, where the validation and possible reparameterization of a force field is too

time-consuming.

2.3.2 CGenFF

Overall, CGenFF performs as well or better than the other force fields; however,

there are some instances where the barriers are predicted to be much lower than

the CCSD(T1)*. These examples are shown in Figure 2.4. This is apparent in N-rich

heterocyclics, like 20 and 39, suggesting that the parameters for C-CA-CA-NA and N-

CA-NA-CA dihedrals have a maximum barrier height that is too small. For example,

the OPLS force field predicts a torsional barrier of 20 more accurately (9 kcal/mol),
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Figure 2.4: The torsional potential energy surfaces of 20 and 39 are examples where
the CGenFF force field is an inaccurate model.

in part because it uses a C-N-C-N dihedral potential with a maximum of 3.6 kcal/mol

instead of the barrier maximum of 1.8 kcal/mol used by CGenFF. Adjustment of a

handful of biaryl dihedral terms would improve the accuracy of CGenFF even further.

2.3.3 OpenFF

OpenFF is the “newest” of the force fields evaluated here and is designed to avoid

duplicate or unnecessary parameters. As a result, there are far fewer parameters in

the current version of OpenFF compared to the other force fields (i.e., 342 parameters

in OpenFF vs more than 6000 parameters for CGenFF). Nevertheless, based on the

RMSD and barrier height metrics, it generally performs better than GAFF and OPLS

for this test set and performs as well or better than CGenFF. Because relatively few

“specific” torsional parameters are currently defined, much of its success is derived

from the general biaryl potentials, 1,4 Lennard-Jones and electrostatic parameters.

This strategy is less successful for torsions containing aromatic nitrogen atoms in the

ortho or ipso positions, such as 10 and 12. The torsional PESs of these N-containing
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Figure 2.5: The torsional potential energy surfaces of 10, 12, and 29 are examples
where the OpenFF force field is an inaccurate model.

aromatics are influenced by complex hyper conjugative and electron-repulsive inter-

actions, which require explicit parameterization for the force field to describe quan-

titatively. These examples are shown in Figure 2.5. The OpenFF model defines a

systemic process for improving its description of torsional interactions through fitting

to QM surfaces, so subsequent revisions are likely to show even better performance

for these surfaces.

2.3.4 GAFF

An instance where the GAFF force field significantly deviates from the reference PES

is where the aryl linkage is through the nitrogen of a pyrrole group. Repulsion be-

tween the pyrrole non-bonded pair and the π system of the benzene ring destabilizes

planar conformations, but lone-pair–CH repulsion occurs when the rings are perpen-

dicular, so the minimum energy conformations occur at 30◦ deviations from planarity.
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Figure 2.6: The torsional potential energy surfaces of 10 and 23 are examples where
the GAFF force field is an inaccurate model.

In contrast to this, the GAFF force field predicts a broad minimum corresponding

to conformations where the rings are non-planar. The CA–CA–NA–CA torsional pa-

rameter is the immediate cause of this issue. Examples of GAFF’s poor performance

are seen in Figure 2.6.

The GAFF force field significantly overestimates the barrier for rotations where

there is an amide NH group in the ortho position of one of the rings. For example,

in 23, GAFF predicts a barrier of 22 kcal/mol, while it is only 2 kcal/mol with

CCSD(T1)*. This issue is present in 24, 25, 26, 27, 28, and 29.

2.3.5 OPLS

The OPLS model performs relatively poorly on this test set. In many cases, this is

due to a significant overestimation of the rotational barrier. Examples are shown in

Figure 2.7. The mean signed error for the OPLS barrier is 2.5 kcal/mol, indicating

that the tendency to overestimate torsional barriers is systematic in this force field.

This is evident in the PES for 7 and 12, where the barrier is overestimated by a factor

of 2 and 6, respectively. In other cases, the topology file generated by the LigParGen

server includes torsions that result in asymmetric potential energy surfaces on torsions
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that should be symmetric. The PES of 9 is an example of this effect. Dahlgren et

al. showed that new parameters could improve the performance of the OPLS force

field specifically for biaryl torsions [38], so including these parameters in the models

generated by LigParGen could immediately improve the accuracy of this model.

2.3.6 ANI

The ANI-2X and ANI-1ccX NNPs generally outperform the MM models and rarely

fail to provide a reasonably accurate surface. The ANI-1ccX NNP gives incrementally

greater accuracy than ANI-2X, although it only supports a smaller set of ligands

because only the C, N, O, and H elements are defined for it. Examples of where

ANI-1ccx performed poorly are shown in Figure 2.8 The relative stability of the cis

and trans conformations of 25 is overestimated by the ANI-1ccX potential and the

barrier to rotation is significantly overestimated. The PES of 76 is generally irregular
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Figure 2.9: Test set structures where the MP2 barrier height differs by 1 kcal/mol or
higher from the CCSD(T1)* surface.

and the barrier is significantly underestimated. The lack of explicit electrostatic terms

limits the accuracy of these NNPs when the relative stability of two conformations

depends on a long-range polar interaction.

2.3.7 MP2 Failures

Torsional potentials of force fields are often parameterized to reproduce MP2 potential

energy surfaces because MP2 is a computationally tractable ab initio method with ana-

lytical gradients. Having calculated the energies at both the CCSD(T*)/CBS//MP2/def2-

TZVP and MP2/def2-TZVP levels, we can test if these levels of theory provide the

same level of accuracy for these torsional profiles. The MP2/def2-TZVP PESs are

generally in very good agreement with the CCSD(T1)*/CBS PESs, with a RMSD of

0.1 kcal/mol and a MADB of 0.3 kcal/mol.

Although the agreement between MP2 and CCSD(T1)* is generally close, of the

88 torsions in the test set, the MP2 and CCSD(T1)* barrier heights differed by more

than 1 kcal/mol in six instances, as seen in Figure 2.9. In four instances (83,80,84,

and 85), one of the aryls in the rotation was bicyclic, so the transition state occurs

when the structure is planar and a steric interaction arises between the ortho hydrogen

of the phenyl ring and an atom in the ortho position of the other ring. The CCSD

barrier is lower than the MP2 barrier in 3 out of 4 of these examples, suggesting that

MP2 overestimates the strength of this type of steric repulsion. The other examples

are nitrogen-containing heteroaromatics (19, 67). The MP2 barrier is lower than the

CCSD(T1)* barrier in one of these examples, suggesting that there is a small tendency

for MP2 to underestimate the electronic repulsion associated with π lone pairs. The
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origin of the deviation in 19 and 67 is less evident, although both are N-containing

heteroaromatics.

This raises questions about the common practice of using MP2 potential energy

surfaces as the target data for fitting force field torsional potential energy surfaces. Al-

though MP2 is in good agreement with CCSD(T1)* surfaces for most of the molecules,

the MP2 and CCSD(T1)* barrier heights differed by 1 kcal/mol or higher for 6 of the

torsions. This suggests that parameterizing a force field to reproduce the torsional

surfaces of an NNP trained for CCSD(T) data could be advantageous because it is

not necessary to calculate CCSD(T1)* potential energy surfaces for each torsion in

the ligand.

The ANI-1ccX NNP is incrementally more accurate than the ANI-2X NNP. The

ANI-1ccX NNP was developed through a transfer learning approach, where input and

output layers of the ANI-1X NNP were retrained using a subset of CCSD*(T1)/CBS

data, while the ANI-2X potential was trained to DFT (ωB97X/6-31G*) data exclu-

sively.

2.3.8 Molecular Dynamics of Torsional Rotations

The large barriers to torsional rotations present in some biaryl compounds can result in

large activation energies for conformation isomerization. Consequently, in molecular

dynamics simulations of drug compounds containing biaryls, the timescales associated

with rotation around the biaryl bond can be much longer than other, more facile, types

of conformational isomerization. The atomic forces of the ANI NNP can be calculated

analytically using the auto-differentiation (autograd) feature of the Torch library, so

geometry optimizations and MD simulations can performed simply and efficiently by

calling this differentiation routine in the TorchANI library [46].

To demonstrate that these methods are practical for use in molecular dynamics

simulations for real drug molecules, we have performed simulations of ozanimod in an

explicit aqueous solution. Ozanimod is a drug for the treatment of multiple sclerosis

that binds the sphingosine 1-phosphate receptor [65]. The rotation around the bond

connecting the isopropyl benzonitrile and the diazafuran has a significant barrier

height because of the conjugation between the rings and low steric repulsion in planar

conformations. The time series of this angle over the course of a 10 ns simulation
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shows that this molecule undergoes conformational isomerization through rotation

around this torsional degree of freedom on the multi-nanosecond timescale. This can

be seen in Figure 2.10. These simulations are tractable using conventional Graphical

Processing Unit hardware; these NNP/MM MD simulations required 0.34 days/ns on

an Intel(R) Core(TM) i7-8700 with an NVIDIA Titan Xp GPU. This performance will

likely improve when NNPs are implemented directly into simulation codes and when

GPU-accelerated implementations of symmetry function calculations are completed.

To investigate this isomerization further, the potential of mean force (PMF) of

this degree of freedom was calculated using umbrella sampling and adaptive biasing

force[57, 58] molecular dynamics simulations. Both methods provide similar PMFs

(Figure 2.10) and can be used with the TorchANI NNP/MM interface with NAMD

without modification.

Using the umbrella sampling PMF, the rate constant of isomerization (kKS) was

calculated using Kramers–Smoluchowski transition state theory [66, 67].

kKS = DTS

√
|W ′′(qminimum) ·W ′′(qTS)|

2πkBT
e−∆W ‡/kBT (2.5)

where DTS is the diffusion coefficient at the transition state, W ′′ is the second deriva-

tive of the PMF, qTS is the position on the reaction coordinate where the maximum

of the PMF occurs, qminimum is the position on the reaction coordinate where the

minimum of the PMF occurs, and ∆W ‡ is the barrier height of the PMF.

In these simulations, the TIP3P-FB water model was used, which predicts a viscos-

ity close to the experimental value [55], allowing more accurate predictions of diffusion

rates in aqueous solutions[10] and more accurate predictions of the solvent friction on

the reaction coordinate.

DTS was calculated using the generalized Langevin approach [68, 69, 70], where a

strong harmonic potential was used to restrain the simulation to the transition state

and the diffusion coefficient was determined by the rate of relaxation of the position

autocorrelation function of the time series of the reaction coordinate (q).

DTS =
var(q)2∫∞

0
〈q(0) · q(τ)〉dτ

(2.6)
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Table 2.2: Rate theory prediction of isomerization of ozanimod

ANI-1ccX CGenFF
DTS (rad2/ns) 67.5 102.4

∆W ‡ (kcal/mol) 3.2 4.7
rate (ns−1) 4.3× 10−1 6.4× 10−2

This theory predicted a rate of isomerization of 4.30×10−1 ns−1, which is generally

consistent with the slow rates of isomerization observed in the NNP/MM MD simu-

lation (Table 2.2). These simulations demonstrate that the ANI NNPs can be used

immediately to describe the dynamics of slow degrees of freedom of arbitrary drug-

like organic molecules using existing simulation methods. In comparison, the rate

predicted by the most reliable MM model, CGenFF, is roughly 7 times slower. This

is predominantly due to the larger activation energy (3.2 kcal/mol for ANI-1ccX/MM

vs 4.7 kcal/mol for CGenFF), although the diffusion coefficient of the system along

the reaction coordinate at the transition state also differs.

2.4 Conclusions

Force field and NNP methods were evaluated for their ability to predict the potential

energy surfaces of biaryl torsions found in drug and drug-like molecules (n = 88).

As these torsions are important features for the structure and dynamics of these

molecules, efficient but accurate computational models of these terms are essential

for accurate protein–ligand binding simulations. In comparison to high-level ab initio

reference data, the ANI-1ccX NNP was the most accurate method and generally

predicted barrier heights within 1 kcal/mol, although this method only supports the

elements C, N, O, and H. The ANI-2X NNP had a comparable level of accuracy and

can be used with element C, N, O, H, S, F, and Cl. Significantly, these NNPs provided

accurate models in most of the cases and provided poor descriptions in relatively few

cases. The robustness and reliability of these NNPs without specific parameterization

is particularly useful for simplifying modeling workflows, although the NNPs examined

here currently are not appropriate for simulations of charged compounds, which limits

their applicability somewhat.
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The force field methods were less accurate, although there were significant differ-

ences in the accuracy of the force fields. The CGenFF was most accurate, followed by

the OpenFF, GAFF, and OPLS. The OpenFF model is notable because it performed

relatively well despite having been parameterized with relatively little data and includ-

ing relatively few parameters. Although MP2 potential energy surfaces were generally

in good agreement with the CCSD(T1)* reference values, there were significant dif-

ferences in 6 instances, suggesting force fields and NNPs should be parameterized to

reproduce CCSD(T1)* data for optimal and comprehensive accuracy.

The NNP/MM method was used to simulate the conformational isomerization of

the biaryl-containing drug molecule ozanimod. Multi-nanosecond molecular dynam-

ics simulations in an explicit aqueous solvent were performed, as well as umbrella

sampling and adaptive biasing force enhanced sampling techniques. These free en-

ergy methods can be used in NNP/MM simulations through the NAMD–TorchANI

interface, which makes a diverse set of simulation methods available without modifica-

tion and allows for facile construction. This provides a method for computationally-

efficient but highly-accurate models for the intramolecular potential energy surfaces

of ligands within biomolecular simulations without relying on a parameterized force

field.



Chapter 3

Simulating Protein–Ligand Binding

with Neural Network Potentials

The content of this chapter has been published in Chemical Science: Lahey, S., Rowley,

C.N., Simulating Protein–Ligand Binding with Neural Network Potentials. Published

Jan 2020.

3.1 Introduction

Molecular simulation of the binding of small molecules to proteins has provided com-

putational prediction and rationalization of the affinity and selectivity of drugs with

their targets. These simulations rely on molecular mechanical (MM) force fields to

describe the intra and intermolecular interactions of the solvent, protein, and lig-

and. These “force fields” are constructed from simple mathematical functions that

approximate the potential energy surface of the protein–ligand complex. A force field

requires the definition of a large set of parameters, which are typically chosen to yield

the closest agreement with empirical or quantum chemical data.

As shown in Chapter 2, NNPs perform remarkably well at modelling torsional

potentials of drug like molecules versus conventional MM models. Taking it one step

further, here, we present a strategy to simulate protein–ligand complexes using a

machine-learned NNP to represent the intramolecular interactions of the ligand. This

model is embedded inside a conventional MM force field for the protein and solvent,
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so established models for these components can be used without modification. We call

this method NNP/MM, as it functions the same as Quantum Mechanical / Molec-

ular Mechanical (QM/MM) models do, but with the NNP used in place of the QM

method. This method is tested for its ability to predict the poses of protein-bound

drugs in comparison to electron density distributions determined by X-ray crystallog-

raphy. The Gibbs energies for restraining the ligands to their bound conformations

are calculated using NNP/MM and compared to the CGenFF force field.

The drug erlotinib is used as a standout example for the differences between ANI

and CGenFF. Erlotinib is an inhibitor of the epidermal growth factor receptor (EGFR)

tyrosine kinase, and is used in the treatment of non small cell lung cancer, pancreatic

cancer, and several other types of cancer [71]. The PMF for erlotinib is calculated

using ANI and CGenFF and compared to CCSD(T) data.

3.2 Computational Methods

3.2.1 Theory

In this method, the potential energy of the whole system is defined as the sum of the

potential energy of the subsystem described by the NNP (i.e., the intramolecular inter-

actions of the ligand) (VNNP ), the potential energy of the environment around the lig-

and (VMM), and the interactions between the ligand and its environment (VNNP/MM ).

(Eqn. 3.1).

V(r) = VMM (rMM) + VNNP (rNNP ) + VNNP/MM (r) (3.1)

The MM region is represented using a conventional MM force field, so VMM is

calculated in the normal fashion for an additive force field. For non-covalent protein–

ligand binding, the V(NNP/MM) term is the conventional MM non-bonded interactions

between the protein and the ligand, which is simply the sum of Lennard-Jones and

pairwise Coulombic interactions between the NNP atoms and MM atoms (Eqn. 3.2).

VNNP/MM (r) =
MM∑
i

NNP∑
j

qiqj
4πεrij

+ 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(3.2)
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This functions similarly to mechanically-embedded QM/MM models [72], where

the NNP serves as the “QM” model embedded within the MM system. This method

can be employed in many established simulation codes without modification because

they can be implemented using existing QM/MM features, which allows the energy

and forces of a critical subsection of the system to be calculated using an external

method.

The immediate advantage of this method is that highly-accurate intramolecular

forces can be calculated for ligands without parameterization and without modifica-

tions to current molecular simulation codes. A limitation of this approach is that

the protein–ligand interactions are still calculated by the CGenFF/CHARMM elec-

trostatic and Lennard-Jones terms. The development of efficient NNPs that are ca-

pable of describing the entire system could provide more accurate and non-empirical

protein-ligand binding energies.

There have been several reports where QM/MM simulations were used to model

protein–ligand complexes [73, 74, 75]. The drawbacks of these QM methods is that

typically they use semi-empirical quantum mechanics in order to calculate the en-

ergy and forces of the ligand sufficiently quickly to perform sufficiently long MD

simulations. These methods generally are less accurate than the ANI NNPs for the

calculations of the relative conformational stability of ligand conformations and the

computational cost is generally greater. One advantage of QM/MM methods over the

NNP/MM method used here is that the electron density of the ligand can be polarized

by the protein and solvent (i.e., through electrostatic-embedding QM/MM[72]). This

is not possible for the NNPs used here because these methods do make any calculation

of the electron density of the ligand, so they are effectively mechanically embedded.

3.2.2 Technical Details

All molecular dynamics (MD) simulations were performed using NAMD 2.13 [76].

The ligand intramolecular energies and forces were calculated using the ANI-1ccX

[22] NNP implemented in the TorchANI package [46]. The programs were interfaced

through the general-purpose external-force functionality of the NAMD QM/MM code

[77]. The CHARMM36m force field[78] was used to represent the protein and the

mTIP3P model [79, 80] was used to represent the water molecules. Sample input files

and our scripts can be downloaded from our online repository [48] and will be included
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in future distributions of NAMD. The CGenFF [12] Lennard-Jones and electrostatic

parameters were used to calculate the non-bonded ligand–protein interactions (i.e.,

V(NNP/MM)). Non-bonded interactions were calculated using a 12 Å cutoff, although

lattice-summation methods are also available in the QM/MM NAMD interface.

The calculation of the erlotinib potential energy surface was performed using

ORCA 4.2.1 [52]. Optimizations with constraints on the amine torsional angle were

performed using the resolution of identity 2nd-order Møller–Plesset theory (RI-MP2)

with the def2-TZVP basis set [51]. Single point energy evaluations were performed

at these optimized structures using Domain-based Local Pair Natural Orbital - Cou-

pled Cluster Singles and Doubles with perturbative triples[81] with the def2-TZVP

basis set (DLPNO-CCSD(T)/def2-TZVP//RI-MP2/def2-TZVP) to generate the QM

potential energy surface.

3.2.3 Test Set

To evaluate the ability of the ANI-1ccX potential to predict the pose of a bound lig-

and, we developed a test set of protein–ligand complexes. We selected a structurally-

diverse set of complexes where a high-resolution crystallographic structure of the

protein–ligand complex was available, including several where the ligand is in a

conformationally-strained pose. The ANI-1ccX NNP is only defined for carbon, nitro-

gen, hydrogen, and oxygen, so only ligands composed of these elements were selected.

The full details of the structures are available in Appendix A.

3.2.4 Simulations of Ligand Binding Poses

The NNP/MM ligand binding poses were generated by MD simulations of the protein–

ligand complexes. The crystallographic structure (including crystallographic water

molecules) was placed in a periodic unit cell of liquid water. The protonation states

of the protein and ligand were assigned using H++ 3.2 [82] and by examining the

intermolecular interactions of titratable residues in the crystallographic structure. A

5 ns equilibration MD simulation using the CGenFF force field for the ligand was

performed where all non-hydrogen atoms of the ligand and protein were restrained to

their crystallographic positions. The equilibrated structures were used as the initial

structures of 2 ns NNP/MM MD simulations of the complexes. In these simulations,
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the Cα atom of the protein backbone were restrained to their crystallographic po-

sitions using harmonic potentials (kc = 10 kcal/mol Å−2). These simulations were

performed with a thermostat temperature set to correspond to the temperature the

crystallographic structure was collected for (e.g., 100 K). The ligand electron den-

sity was obtained from the crystallographic electron density map, selecting all points

within 2 Å of the ligand atoms in the PDB structure. An isosurface value of 0.5 was

used in the renderings.

3.2.5 Calculation of Conformational Gibbs Energy

Confine-and-release alchemical free energy perturbation is a popular technique for

calculating absolute protein–binding energies [83, 84, 85, 86]. In these methods, the

total binding energy is divided into a set of Gibbs energies for each step in a path

where the ligand is constrained to its bound conformation and is then decoupled from

its environment. The component corresponding to the reversible work required to

constrain the ligand to its bound conformation is defined as ∆Gcons. Physically, this

energy corresponds to the reduction of conformational freedom and isomerization to a

higher energy conformation that occurs when a ligand binds to a protein. In confine-

and-release absolute binding energy calculation schemes, this is the only term where

the intramolecular interactions of the ligand are significant. Accordingly, it is only

necessary to use the NNP/MM method when calculating this term; the remaining

terms can be calculated using conventional force fields. Notably, this step does not

include any alchemical transformation, so performing the calculation with NNP/MM

does not present any special challenges.

This term can be calculated by defining the root-mean-square deviation (RMSD)

of the ligand relative to its bound conformation (ζ) and then calculating the Gibbs

energy required to impose a harmonic restraint on the RMSD ( 1
2
kcζ

2) so that the

ligand is restricted to hold its bound conformation. This procedure is performed

for the ligand in solution and in the site to obtain Gibbs energies for restricting the

conformation of the ligand in each of these states. The difference of these energies

provides the conformational or “strain” component of the absolute binding energy,

(∆Gcons).

Using umbrella sampling, the potential of mean force (PMF) can be calculated as

a function of the RMSD. Integration of this PMF biased by the harmonic restraining
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function provides the ∆Gcons,site/solvent (Eqn. 3.3).

e−∆Gcons,site/solvent/kBT =

∫
e−[w(ζ,site/solvent)+ 1

2
kcζ2]/kBTdζ∫

e−w(ζ,site/solvent)/kBTdζ
(3.3)

where kc is a harmonic potential to restrain the conformation of the ligand at the

reference structure. In this work, a value of kc = 10 kcal/mol Å−2 was used.

These PMFs are calculated from an umbrella sampling simulation where the win-

dows were separated by 0.5 Å and a harmonic biasing potential with a spring constant

of 50 kcal/mol Å −2 was used. Each window was sampled by performing a 1 ns equili-

bration simulation followed by a 4 ns sampling simulation. The PMF was constructed

from the umbrella sampling simulations using Weighted Histogram Analysis Method

(WHAM) with statistical uncertainties of the profiles estimated by bootstrap analysis

[61, 62, 63].

These calculations are performed for the ligand bound to the protein and in solu-

tion to yield (∆Gcons,site) and ∆Gcons,solvent, respectively. The difference of these two

energies provides ∆Gcons (Eqn. 3.4).

∆Gcons = ∆Gcons,site −∆Gcons,solvent (3.4)

3.3 Results and Discussion

3.3.1 Prediction of Ligand Poses

Figure 3.1 shows the ligand poses generated from the ANI/MD simulations over-

laid with the crystallographic electron density maps of the ligand. Generally, the

NNP/MM ligand pose overlaps well with the crystallographic density. The positions

of the ligand phenyl rings in the thrombin complex (3DA9) and the biotin carboxylase

complex (2W6N) are the most significant deviation. The NNP/MM model still relies

on conventional MM parameters for the protein–ligand and water–ligand interactions,

so these deviations may not be related to the NNP component of the model.

One notable success of the NNP/MM potential is in predicting the binding pose

of erlotinib to the epidermal growth factor receptor (EGFR). The core scaffold of this



45

H
N

N

N

O

O

O

O

1XOZ
phosphodiesterase 5A

tadalafil

N
N

N
HN

HN
O

N NH+

2HYY
Abl kinase
imatinib

2W6N
biotin carboxylase 

DB08315

N

O

NO

NH2

3EYG
JAK1

tofacitinib

NN

NHN
N

O
N

3EIG
dihydrofolate reductase

methotrexate

N

N N

N

H2N

NH2 N

O

N
H

O

O

OO

4HJO
EGFR

erlotinib

N

N

HN

O

O N

O

O

4NCT
human DYRK1A 

midostaurin

3ETA
insulin receptor kinase

Pubchem: 25920884

N

HN

NH3
+

H
N

O

H
N

O

N

N

HN

O

O
O

O

Figure 3.1: Calculated poses of ligands (red) in protein binding sites. The crystallo-
graphic electron density of the ligands are shown in blue. The PDB ID, protein name,
and ligand name are included beneath the image.
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drug is composed of amine-linked ethynyl-phenyl and quinazoline rings. Crystallo-

graphic structures of the protein-bound complex show the quinazoline ring bound in

the adenosine-binding site while the ethynyl-phenyl group binds in a pocket formed

by the T702, T830, and K721 residues. The binding pose predicted by CGenFF is in-

consistent with the XRD data, in which the two rings form a more acute angle relative

to each other (φ1 = 63± 1◦, φ2 = 4± 1◦). The simulation using the NNP/MM model

is more consistent with the crystallographic data, whereby (φ1 = 44±1◦, φ2 = 4±1◦).

Surprisingly, the poses predicted for the ligands that contain charged functional

groups (2HYY, 3ETA, and 3EIG) are reasonable even though the ANI-1ccX potential

was not designed to describe charged species and none of the molecules this NNP was

trained for were charged.

3.3.2 Conformational Free Energies

The conformational strain of the ligand that occurs in protein–ligand binding arises

from the need for the ligand to adopt the conformation it holds in its bound form.

The bound conformation may be more strained than the lowest energy conformation

it can hold in solution. Further, some ligands can adopt multiple conformations in

solution, so limiting the conformational space of the ligand to the bound conformation

is endergonic. For example, Roux and coworkers’ calculations of the binding affinity

of imatinib to Abl kinase predicted that while the net interaction energy of binding

was −27.7 kcal/mol, the conformational energy countered this by 11.3 kcal/mol [87].

The conformational energies for the test set of ligands were estimated by calculating

the PMF (w(z)) for the deviation from the bound pose using umbrella-sampling MD

simulations with both the CGenFF and NNP/MM models. ∆Gcons was calculated

from these PMFs using Eqn. 3.3. These energies are collected in Table 3.1. The PMFs

for all complexes are presented in Appendix A.

Amongst the neutral ligands, the NNP/MM conformational energies are generally

similar in magnitude to the CGenFF strain energies. This indicates that the ANI-

1ccX model can achieve similar results to the CGenFF model despite the lack of any

explicit parameterization for these molecules. The conformational energies of 4HJO

(erlotinib bound to EGFR) show the largest difference, with the NNP/MM strain

energy being 4.7 kcal/mol smaller than the CGenFF strain energy. The high strain

predicted by the CGenFF model is due to the amine functional group of erlotinib
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Table 3.1: Conformational Gibbs energy of binding for protein–ligand complexes cal-
culated using the MM(CGenFF) and NNP/MM methods. All energies are in kcal/mol.

PDB ID ∆Gcons,CGENFF ∆Gcons,NNP/MM charge

1XOZ 0.4± 0.0 0.5± 0.0 0
2W6N 4.7± 0.1 5.2± 0.1 0
3EYG 1.9± 0.1 1.0± 0.2 0
4HJO 13.0± 0.1 8.3± 0.1 0
4NCT 3.4± 0.1 2.3± 0.1 0
2HYY 8.1± 0.1 326.9± 0.1 1
3EIG 11.1± 0.0 37.7± 0.0 -2
3ETA 5.6± 0.1 15.2± 0.2 1

holding a pyramidal geometry in the solution simulations, creating a large energetic

penalty to force the drug into its bound conformation. In the NNP/MM simulation

of erlotinib in solution, the amine group remains close to a co-planar geometry with

respect to the quinazoline ring, with a moderate skew in the dihedral angle between

the phenyl group and the amine.

The ligands that contain charged functional groups (2HYY, 3ETA, and 3EIG)

have anomalously high conformational energies. This issue originates from the use of

the ANI-1ccX NNP, which was only trained on neutral molecules. This NNP predicts

reasonable geometries of the ammonium and carboxylate groups in these molecules,

but these ionic functional groups form spurious intramolecular contacts in the solution

NNP/MM MD simulations. For example, the ligand of 3EIG adopts a conformation

where the carboxylates groups are in close contact, rather than repelling each other

like they should (see Appendix A). This results in the stabilization of regions of

the PMF corresponding to large structural deviations from the bound pose. As the

NNP(ANI-1ccX) model was not designed for the description of charged molecules like

this, it is unsuitable for calculating their conformational energies.

Extensive MD simulations are needed to calculate ∆Gcons by calculating the PMF

of the RMSD, but these simulations were completed at a modest computational cost

because of efficient implementations of the ANI model for execution on graphical

processing units. For example, the NNP/MM MD simulations of imatinib (69 atoms)

executed at a rate of 3.4 ns/day on a single Titan Xp NVIDIA GPU. Even faster

performance is anticipated after the planned integration of NNPs directly into NAMD

and other molecular simulation codes.
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Empirical force fields are parameterized in an internally consistent manner, so it

is possible that the MM parameters used to describe the non-bonded interactions

between the ligand and its surroundings will not be optimal for the NN/MM term. In

particular, the balance between the MM ligand–water, ligand–protein, and the NNP

ligand intramolecular dispersion interactions will not necessarily be consistent [14, 15].

This issue has been addressed in some QM/MM models by defining new parameters

for the QM–MM Lennard-Jones terms [88, 89]. Nevertheless, the common practice

has been to parameterize the intramolecular terms of ligands to gas phase potential

energy surfaces, so the ANI-1ccX should be a suitable replacement for these terms.

This effect should also lead to a systematic difference in the conformational energies

of the ligands, but the CGenFF and NNP/MM conformational energies are close in

magnitude for 1XOZ, 2W6N, 3EYG, and 4NCT.

3.3.3 Torsional Potential Energy Surface of Erlotinib

The large difference in the ANI-1ccX and CGenFF conformational energies of 4HJO

(erlotinib bound to EGFR) originate from the ligand adopting conformations in so-

lution that are drastically different than the bound conformation when the CGenFF

model is used, while the NNP/MM model predicts similar conformations in both the

binding site and solution. This is evident in the CGenFF PMF of the ligand’s confor-

mation relative to its bound pose in Figure 3.2, which is considerably broader than

the NNP/MM PMF and is higher energy in the crystallographic pose (RMSD=0 Å).

The geometry of the erlotinib amine linker and its aromatic substituents deviates

sharply from the bound pose in the CGenFF solution structure (Figure 3.3 (b)); the

amine is partially pyramidalized and the aromatic substituents are skew to each other.

In contrast, in the NNP/MM simulation, the amine predominantly remains in a planar

geometry, conjugated with the quinazoline and phenyl rings.

The potential energy surface corresponding to rotations around the amine tor-

sion angles of erlotinib is presented in Figure 3.3 (c). The minima on the CGenFF

surface corresponds to structures where the amine is significantly pyramidal and the

substituent phenyl and quinazoline rings adopt angles that reduce steric repulsion be-

tween them. The ANI-1ccX surface is consistent with the DLPNO-CCSD(T) surface,

where there is a broad global minimum centered around (φ1 = 0◦, φ2 = 0◦) and the

amine nitrogen holds a planar arrangement with the aromatic groups.
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The failure of the CGenFF force field stems from the lack of a distinct atom type

for amines conjugated with aromatic rings. While it would be possible to adjust the

parameters of the CGenFF force field to improve its description of the arylamine

potential energy surfaces, this introduces a new fitting stage and requires computa-

tionally demanding QM calculations to provide the target data. Generally, it is not

immediately apparent where a general-purpose force field will fail. By using NNPs to

calculate these interactions, these issues are avoided entirely because energy surfaces

with near-CCSD(T) accuracy can be generated efficiently and without the need to

parameterize the intramolecular potential energy surface explicitly.

3.4 Conclusions

NNPs provide accurate representations of the intramolecular interactions of drug

molecules in molecular simulations of protein–ligand binding. These simulations take

advantage of established MM models of the protein and solution, while eliminating the

need to develop a force field for the intramolecular interactions of each ligand. By em-

ploying a NNP that has already been trained on a broad set of molecular species, the

fundamental intramolecular interactions that give rise to the molecular energy surface

are captured without the need to parameterize a force field. This representation is

also free of the harmonic/torsional/improper scheme used in conventional force fields.

This allows the simulations to be deployed immediately, without the development of

parameters for each new chemical moiety.

These methods can be incorporated directly into existing confine-and-release meth-

ods to calculate the absolute binding energy because these methods include a step

where the ligand’s conformation is constrained to its bound pose. In several cases,

the conformational energies calculated using the NNP(ANI-1ccX)/MM model were

similar to those predicted by the popular general-purpose CGenFF force field, al-

though chemically-significant differences (i.e., > 1 kcal/mol) were found in several

instances.



Chapter 4

The Refinement of Cryo-EM

structures using Neural Network

Potentials

4.1 Introduction

The three-dimensional structure of ligands bound to their protein targets allows the

molecular effect of ligand binding to be understood structurally and for drug-protein

interactions to be tuned. X-ray crystallography has been used to determine protein

structures beginning with Kendrew et al.’s determination of the structure of myoglobin

in 1960 [3]. Between this first structure and the year 2021, over 178,229 crystallo-

graphic structures have been deposited into the protein data bank archive of protein

structures. X-ray crystallography has some limitations however, such as the need for

proteins to crystallize, and the complicated nature of the method.

Cryo-EM is an emerging technique of interest competing with XRD because of its

lack of need for crystallization. This provides access to structures that are unable to be

studied by XRD. However, cryo-EM is still a limited method due to its low resolution

imaging, which is often unable to provide a definitive pose of a bound molecule or its

intermolecular interactions.

Molecular modeling of the ligand, guided by the density of the protein, offers a
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concrete solution to resolving the drug-protein problems in cryo-EM. Notably, Molec-

ular Dynamics Flexible Fitting (MDFF) provides a straightforward strategy where

an all-atom molecular mechanics-based model is generated of the protein-ligand com-

plex. An external biasing potential is imposed that favours structures where the

atoms lie on top of regions where the cryo-EM-derived electron density is highest.

As a consequence, over the course of a molecular dynamics simulation, the atoms of

the protein-ligand complex will dynamically move to structures consistent with the

cryo-EM data. The potential energy of the force field and ligand ensures that these

structures will also be chemically reasonable in terms of bond lengths, torsional angles,

intermolecular interactions, etc.

MDFF was first used successfully to refine the cryo-EM structure of the ribosome,

after its development by Trabuco et al. [90]. The developer group has since went on to

solve structural models of photosynthetic proteins [91, 92], myosin [93], chaperonins

[94], bacterial chemosensory array [95], and virus capsids [96, 97], including the first

all-atom structure of the HIV capsid [97]. Other groups have also found success using

MDFF to model structures such as the actin-myosin interface [98] and the HIV-1 virus

[99, 100].

Although this strategy has proven effective for modeling proteins, representing the

intramolecular terms of the ligand remains an issue. This process can require a tedious

parameterization of the ligand force field based on experimental or quantum chemical

data. Several force field construction protocols have been developed to capture the

ligand interactions [29]. The quantum mechanical (QM)/MM interface of NAMD

allows partitioning of a system into quantum mechanical and molecular mechanical

levels of description. The ligand is described quantum chemically, while the protein

and the solvent are probed classically. The energies from the protein are computed

using an MM model, such as CHARMM. The ligand energies can be calculated with

an external QM software. QM/MM can be combined with MDFF to resolve cryo-EM

structures of protein-ligand complexes, preventing the ligand geometry from deviating

towards unphysical structures. Although QM/MM-MDFF can provide well-resolved

cryo-EM structures, QM/MM prohibitively time-consuming the nanosecond length

MD simulations needed for standard MDFF fitting. A truly general strategy for

resolving the structures of cryo-EM protein–ligand complexes requires an accurate

method for calculating the potential energy for all possible ligands at computational

cost that allows routine nanosecond length MD simulations.
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Neural network potentials (NNPs) have recently emerged as an alternative that

has the parameter-free accuracy of QM models, but the efficiency of MM models.

These methods have recently been employed to model the intramolecular terms of

ligands that are in solution or protein-ligand complexes. This would allow protein–

ligand complexes to be refined using MDFF with a highly accurate representation of

the intramolecular ligand terms, without requiring parameterization.

In this chapter, we test MDFF using a NNP/MM representation of six published

cryo-EM structures of protein–ligand complexes. NNP/MM and conventional MM

are compared to the published structures.

4.2 Methods

4.2.1 Selection of the Test Set

Structures were identified where the ligand contains only the elements supported by

the ANI-2X potential (C, N, O, H, S, F, and Cl) and do not contain charged functional

groups. Proteins with large unmodeled regions were also excluded. These structures

identified are summarized in Table 4.1. The reported resolution of these structures

ranges between 1.9 to 3.84 Å.

4.2.2 Computational Methods

MDFF Simulations were performed using NAMD 2.14 interfaced to TorchANI using

our NNP/MM interfacing scripts. Protein segments less than 50 amino acids in length

that were missing from the protein were completed using SWISS-MODEL homology

modeling [101]. Larger unresolved regions were not included in the model.

All proteins were represented using the CHARMM36m force field. The intermolec-

ular interactions between the protein and the ligand in the NNP simulations use the

CGenFF atomic charges and Lennard-Jones parameters. The parameter for strength

of the MDFF coupling between the MDFF and the ligand was set to 1.0 (GSCALE

= 1.0). The simulations were performed for 0.5 ns where the timestep was 2 fs. A

Langevin thermostat with a friction coefficient of 5 ps−1 was applied. Restraints were

imposed to preserve the secondary structure, chirality, and peptide-bond cis/trans
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geometry.

4.3 Results and Discussion

The structures generated using MDFF are overlaid with the structures reported in

the PDB in Figure 4.1.The molecular structure of the ligands calculated using the

MDFF/CGenFF simulations, the MDFF/NNP simulations, and structure deposited

in the PDB are presented in Figure 4.2. These simulations were broadly successful in

refining structural models of cryo-EM of protein-ligand complexes. In all cases, the

protein secondary and tertiary structures were the same for the published cryo-EM

derived structure and the MDFF refined structures. In most cases, the structure of

the ligand calculated using MDFF was similar to the PDB model, although in some

cases, there were significant differences.

For the structures with PDB IDs 6OT0,7L1V and 6X3X, the MDFF ligand struc-

tures aligned with the PDB structures with minimal differences. These minimal dif-

ferences can arise from slight differences in bond angles and lengths between the three

methods. All three ligand structures fit within the cryo-EM density, so there is no

indication that one method is superior to the others in these cases. These examples

show that MDFF/NNP can perform just as accurately as traditional MDFF/CGenFF,

while avoiding the need for parameterizing the intramolecular terms of a molecular

mechanical force field.

In the structures of (4-oxo-5-phenyl-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)methyl-

3-(3-oxo-2,3-dihydro-4H-1,4-benzoxazin-4-yl)propanoate bound to TRPV5 (PDBID:

6PBE), the MDFF/NNP and the PDB structures are in good agreement, with the

exception of the conformation of the ester. Figure 4.3 shows the structure of (4-

oxo-5-phenyl-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)methyl 3-(3-oxo-2,3-dihydro-4H-

1,4-benzoxazin-4-yl)propanoate. In the MDFF-NNP/MM structure, the ester confor-

mation is trans, whereas in the PDB the conformation is cis. Both conformations still

fit within the cryo-EM density and it is uncertain if one conformation is preferred

over the other because the rest of the structure does not appear to be affected by this

difference. The experimental cryo-EM electron density in this region is low, so it is

not immediately apparent which conformation is observed experimentally. It is worth

noting that MDFF/CGenFF also preferred a cis conformation. If the actual ligand
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Figure 4.1: Structures of the protein-ligand complex generated with MDFF/NNP
overlaid with the PDB structure and cryo-EM density. MDFF/NNP protein is in
purple, and MDFF/NNP ligand is in green. PDB protein structure is in yellow, and
PDB ligand structure is in red. Cryo-EM density is in blue.
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Figure 4.2: Comparison of MDFF protein–ligand complex structures, PDB structure,
and cryo-EM density. Left figure shows the MDFF-NNP/MM structure of the ligand
overlaid with the PDB and MDFF-CGenFF structures and cryo-EM density. Right
figure shows only the MDFF-NNP/MM structure of the ligand overlaid with the
PDB and cryo-EM density. The MDFF-NNP/MM protein is in purple, and MDFF-
NNP/MM ligand is in green. PDB protein is in yellow, and PDB ligand is in red.
MDFF-CGenFF ligand is in blue. Cryo-EM density is in blue.
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Figure 4.3: Structure of (4-oxo-5-phenyl-3,4-dihydrothieno[2,3-d]pyrimidin-2-
yl)methyl 3-(3-oxo-2,3-dihydro-4H-1,4-benzoxazin-4-yl)propanoate.

conformation is trans, this would give the MDFF/NNP method an advantage over

MDFF/CGenFF because it would predict a more accurate structure.

The ligand of β-galactosidase bound to 2-phenylethyl 1-thio-β-D-galactopyranoside

(PETG) (PDB ID: 6CVM) has a methyl alcohol group attached to an oxane ring, as

seen in Figure 4.4. In the MDFF/NNP derived structure, this functional group is

below the plane, but it is above the plane in the PDB structure. The methyl alcohol

group being below the plane causes the alcohol to slightly stick out of the density

region. MDFF/CGenFF also has the methyl alcohol group below the plane causing

it to stick out of the density slightly. Again, because the resolution is low in cryo-EM

it is difficult to tell which conformation is correct, however in this case it seems as

though the PDB structure is a more accurate representation of the real structure as

the ligand is entirely within the density region. In this case, differences in bond angles

could be the cause of this deviation in the MDFF/NNP structure.

Resiniferatoxin bound to TRPV2/RTx (PDB ID: 6OO3) shows one of the largest

differences between MDFF-refined structures and the PDB structure (Figure 4.5. The

PDB structure has several unusual bond lengths in the tetracyclic cage-like orthoester
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Figure 4.4: Structure of 2-phenylethyl 1-thio-β-D-galactopyranoside.

motif, with elongated C–O bonds. In both the CGenFF and NNP derived structures,

these bond lengths are reduced to more normal values near 1.3 Å. In the MDFF

models, the benzyl group of the ligand rotates to occupy an unassigned concentration

of electron density in a hydrophobic pocket near Val633. This binding mode is shown

in Figure 4.6.

4.4 Conclusion

The MDFF protocol was shown to be effective in refining published cryo-EM struc-

tures of protein–ligand complexes. This method can be used when a molecular me-

chanical force field is used to represent both the ligand and the protein, which we

demonstrated with the structures generated using CGenFF/CHARMM36m model.

We have also shown that an NNP can be used to represent the intramolecular terms

of the ligand, which we demonstrated with the structures generated using the ANI-

2X/CHARMM36m model.

This type of NNP/MM model has several advantages in MDFF refinement of



60

Figure 4.5: Close up view of Resiniferatoxin. MDFF/NNP is in green, PDB is
in red and MDFF/CGenFF is in blue. A) is at the start of the simulation with
MDFF/NNP, PDB and MDFF/CGenFF. B) is at the start of the simulation with no
MDFF/CGenFF. C) is halfway through the simulation with MDFF/NNP, PDB, and
MDFF/CGenFF. D) is halfway through the simulation with no MDFF/CGenFF.



61

Figure 4.6: Resiniferatoxin bound to the TRPV2/RTx channel from the MDFF
NNP/MM structures (red) and the PDB structure (magenta) with the cryo-EM elec-
tron density map of the ligand in black wireframe. In the NNP structure, the benzyl
group in the uppermost section of the ligand occupies a region with a significant unas-
signed concentration of electron density, forming an hydrophobic contact with Val633
(blue).
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cryo-EM data because it provides a more accurate potential energy function for the

intramolecular terms of the ligand that avoids the need to parameterize a molecular

mechanical force field for each ligand. These models were found to be effective for a

broad range of chemical motifs, including complex natural product compounds and

drug molecules. There were a couple examples where MDFF/NNP had a different

conformation for a particular molecule or group of molecules than the PDB. It was

unclear due to low resolution of cryo-EM data which conformation is accurate to

the actual ligand structure, as well as if these conformation differences had an effect

on binding. The MDFF structures of resiniferatoxin bound to TRPV2 showed the

most significant deviations from the PDB structure. As the simulation progressed,

both MDFF-NNP and MDFF-CGenFF deviated away from the cryo-EM density. We

suspect this is because of major differences in bond lengths between the above methods

and the PDB. The MDFF also showed that the benzyl group in resiniferatoxin rotates

to occupy an unassigned concentration of electron density in a hydrophobic pocket

near a valine residue. More tests and data is needed to better understand these types

of examples and to conclusively demonstrate if MDFF-NNP/MM is generally superior

to conventional MDFF-NNP/MM simulations, although the calculations presented in

Chapters 2 and 3 suggest that ANI-NNPs are generally more accurate and reliable

for simulating ligand structure and dynamics than standard MM models.
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EMD PDB ID Protein Ligand Resolution
(Å)

20190 6OT0 G-protein coupled
receptor

Oxysterol 3.84

20291 6PBE Transient receptor
potential
vanilloid 5
(TRPV5)

(4-oxo-5-phenyl-
3,4-dihydrothieno
[2,3-d]pyrimidin-2-
yl)methyl
3-(3-oxo-2,3-
dihydro-4H-1,
4-benzoxazin-4-
yl)propanoate

3.78

7770 6CVM β-galactosidase 2-phenylethyl 1-
thio-
β-D-
galactopyranoside

1.90

23119 7L1V Orexin Receptor 2 4’-methoxy-N,N-
dimethyl-
3’-[3-(2-[2-(2H-
1,2,3-triazol-2-yl)
benzene-1-
carbonyl]aminoethyl)phenyl]
[1,1’-biphenyl]-3-
carboxamide

3.00

20143 6OO3 Transient receptor
potential
vanilloid 2
(TRPV2) chan-
nel

resiniferatoxin 2.90

22036 6X3X Human γ-
aminobutyric
acid (GABAA)
receptor

diazepam 2.92

Table 4.1: Information on the protein-ligand complexes used in the test set, including
EMD and PDB IDs, protein and ligand names, and cryo-EM resolution in Å.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

Understanding the structure and thermodynamics of protein-ligand binding is an im-

portant part of drug development. Experimental techniques for determining the struc-

ture of protein-ligand complexes, such as X-ray crystallography and cryo-EM, can be

costly and unreliable. Molecular simulation can provide computational models that

enhance or even replace these experimental structures, but these methods require

accurate computational methods to predict the potential energy of a molecule con-

figuration. Simple molecular mechanical models are commonly used for this purpose,

but their accuracy is inconsistent and they require extensive parameterization. Neural

Network Potentials are an attractive alternative to these MM models because they

have comparable computational cost to MM but could have greater transferability

and accuracy.

In this thesis, the ANI family of NNPs were used to represent the intramolecular

terms of small-molecule drugs. In each chapter, the accuracy and transferability

of these NNPs was tested in comparison to other common methods used to model

protein-ligand binding.



65

5.1.1 Conclusions from Using Neural Network Potentials to

Model Torsional Potential Energy Surfaces of Biaryl

Drug Fragments

In Chapter 2, torsional energies of 88 biaryl drug fragments are calculated using ANI-

1ccx, ANI-2X, CGenFF, OPLS, OpenFF, and GAFF and compared to CCSD(T).

The tests of accuracy performed on these molecules showed that ANI NNP’s could

perform as well or better than conventional force fields in predicting energies of drug

fragments. The strategy of training these NNP’s to reproduce molecular energies in

general rather than specific interactions results in methods that are robust for PES’s

outside their training sets. It should be noted that none of these biaryl compounds in

this test set were part of the ANI-2x or ANI-1ccx training sets, so the success of these

methods show that they are remarkably robust and provide accurate predictions for

molecules and bonding motifs that they were not explicitly trained to describe.

As a practical example of using NNP’s to calculate torsional energies in real sys-

tems, we performed simulations of the drug ozanimod in an explicit aqueous solution.

Multi-nanosecond molecular dynamics simulations in an explicit aqueous solvent were

performed, as well as umbrella sampling and adaptive biasing force enhanced sampling

techniques. These free energy methods can be used in NNP/MM simulations through

the NAMD–TorchANI interface, which makes a diverse set of simulation methods

available without modification and allows for facile construction. This provides a

method for computationally-efficient but highly-accurate models for the intramolecu-

lar potential energy surfaces of ligands within biomolecular simulations without rely-

ing on a parameterized force field.

This chapter demonstrated that NNP’s provide a model for the intramolecular

interactions of drug-molecule fragments that are as accurate or more accurate than

conventional molecular mechanical models. The next logical step was to test their

accuracy in full protein–ligand simulations.
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5.1.2 Conclusions from Simulating Protein–Ligand Binding

with Neural Network Potentials

In Chapter 3, eight protein-ligand complexes were simulated using NNP/MM to test

the accuracy of NNP’s compared to the conventional CHARMM Generational Force

Field (CGenFF) in predicting ligand binding poses. High resolution X-ray crystallo-

graphic electron density maps had been published for all these structures, which were

used as reference to assess the accuracy of the predicted binding pose. The ANI ligand

pose, and CGenFF ligand pose were overlaid with the electron density map taken from

X-ray crystallography. The Gibbs energy of conformational change upon binding was

also calculated for each ligand. Amongst the neutral ligands, the NNP/MM confor-

mational energies are generally similar in magnitude to the CGenFF strain energies.

This indicates that the ANI-1ccX model can achieve similar results to the CGenFF

model despite the lack of any explicit parameterization for these molecules. The lig-

ands that contain charged functional groups have anomalously high conformational

energies. This issue originates from the use of the ANI-1ccX NNP, which was only

trained on neutral molecules. Overall, the NNP/MM method worked as well or better

than CGenFF and matched crystallography data accurately.

The large difference between the conformational energy of the anti-cancer drug

erlotinib calculated using the CGenFF model and the NNP/MM model resulted from

a large change in conformation in solution in comparison to the bound state predicted

by the CGenFF model. This was largely due to a pyramidalization of the aryl amine

group. We found that this was a spurious effect in the CGenFF force field because it

does not have a distinct atom type for planar aryl amines and thereby predicts that

pyramidal configurations would be most stable. Calculation of the 2D potential energy

surface for rotation around the aryl amine bonds showed that CGenFF predicts this

surface incorrectly, while the ANI-1ccX model is in good agreement with the high-

level ab initio surface (CCSD(T)). This highlights that NNPs can be more reliable

than molecular mechanical force fields, which can provide inconsistent results for

compounds outside the set used to parameterize them.

The torsional potential energy of erlotinib was calculated both in solution and in

the binding site. ANI showed that the conformation did not deviate largely from the

binding pose when in solution, whereas CGenFF showed a drastic deviation. The

deviation came from the amine linker and its aromatic substituents. The potential
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of mean forces were calculated and compared to CCSD(T) theory for the torsional

energy of the amine linker. CGenFF predicted a non-planar conformation, whereas

ANI and CCSD(T) predicted a planar conformation. This error arises from CGenFF

not having an atom type for an amine linked to two aromatic rings. Therefore CGenFF

gets the conformational energy wrong.

The work in this chapter has shown again that the ANI NNPs can predict accurate

energies for molecules outside of its test set. These NNP’s can be used in large scale

simulations and retain the accuracy and efficiency of conventional MM models, while

increasing transferability. Also, because NNP’s do not need to be parameterized,

errors in atom types and parameterization of force fields, like in the case of erlotinib,

are not present. This is significant as it is not always known that a force field will fail

until the simulation is complete. Using NNP’s eliminates this problem and therefore

saves time.

We proved that NNP’s could be used accurately in large scale simulations. Lastly,

in this work, we used ANI to help refine cryo-EM protein-ligand structures, specifically

the ligand binding pose in these structures.

5.1.3 Conclusions from The Refinement of Cryo-EM struc-

tures using Neural Network Potentials

In Chapter 4, six protein–ligand complexes are used to test ANI-NNP’s ability to

work with molecular fitting methods to better refine cryo-EM structures. Overall, this

testset was a success with the majority of structures aligning well with structures from

PDB data and the cryo-EM density. There were some cases in which MDFF/NNP held

a different conformation for some groups in the ligand structure than the PDB. This

did not seem to affect the fitting of the ligands into the cryo-EM density and because

cryo-EM data resolution is low it is impossible to tell in this study which conformation

is accurate. This conformational difference could be important in binding, and more

calculations and tests are needed.

The example of resiniferatoxin bound to TRPV2/RTx was the most interesting.

In the MDFF simulations, the ligand benzyl group adopted a different conformation

in comparison to the PDB structure, forming a hydrophobic constant with a valine

residue. Although this structure is consistent with the cryo-EM electron density, this
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binding mode was not identified in the structure reported in the PDB. Also, the

structure in the PDB had abnormal bond lengths for several C–O bonds whereas

MDFF/NNP and MDFF/CGenFF refined those bond lengths to normal values.

All structural examples in the test set with the exception of resiniferatoxin showed

that NNP’s are useful in refining cryo-EM structures as they are just as accurate as

MDFF/CGenFF methods and match PDB data well. There may be an advantage

to using NNP’s in the cases where there are multiple possible binding poses because

NNP’s have been demonstrated to describe ligand structures more accurately and re-

liably than force fields in some instances. The resiniferatoxin provides a clear example

of where structures determined using conventional cryo-EM structure fitting software

can be inaccurate.

This chapter is a continuation of the first two chapters in which it is proven once

again that the ANI NNP’s can be used in the place of conventional MM models,

and can be used on a broad range of protein–ligand systems. Another theme that is

apparent is that using ANI NNP’s can help identify flaws in original methods that

otherwise might have gone unnoticed.

5.2 Future Work

General purpose NNPs that are capable of describing protein-ligand systems are in

the early stages of their development. The first ANI-type general-purpose NNP, ANI-

1, was published by Smith et at [16] in 2017. As a result, there are some limitations

in these models that must be resolved before they can be applied more widely.

Currently, the ANI-type NNPs published to date can only describe a limited num-

ber of elements. The most extensive ANI potential is ANI-2X, which can describe

molecules containing the elements C, N, O, F, Cl, S and H. Drug molecules that

contain elements such as P, Br, and B cannot be described using these models. The

development of NNPs that are capable of describing a broader set of elements will

allow a fuller set of drug molecules to be modeled.

Another significant issue is the description of long-range interactions with ANI
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NNPs. The ANI-2X NNP has no interatomic interactions beyond 5 Å, so intramolec-

ular dispersion and Coulombic interactions outside this range are not described cor-

rectly. NNPs that support charge–charge interactions have been proposed and these

methods may eventually resolve these limitations [102].

A related limitation of our NNP/MM embedding scheme is that the NNP region

does not experience induced polarization by the MM region. Induced polarization

has been found to be significant in some chemical systems [103, 104, 105, 106, 107,

108, 109], so neglecting these effects could limit the accuracy of the model. Gastegger

et al. have proposed a strategy for describing induced polarization within an NNP,

which could eventually resolve this limitation [110].

Another major issue with these ANI-type NNPs is that they cannot be used to

describe charged molecules or even molecules with charged functional groups. ANI

also does not contain any charged molecules in its training set and therefore cannot

be used with charged molecules. This was evident in Chapter 3, where the confor-

mational energies of drugs containing charged functional groups were not physically

realistic. The development of NNPs trained to describe charged functional groups and

incorporation of effects for long-range electrostatic interactions would allow a broader

set of ligands to be described.

Lastly, the NNP/MM models we use rely on conventional Lennard-Jones potentials

to describe the dispersion and Pauli repulsion interactions between the NNP and MM

regions. These require the definition of pairwise Lennard-Jones well-depth and atomic

radii parameters. We have used standard force field combination rules with tabulated

parameters, although QM analysis has shown that these parameters may overesti-

mate the strength of C6 dispersion interactions [15, 14]. More complex non-bonded

interactions have been proposed, which use a more realistic exponential function to

describe Pauli repulsive interactions and include C8 dispersion [111]. The use of these

improved potentials may further improve the accuracy of NNP/MM simulations.

One of the major reasons for applying NNPs to protein–ligand interactions is

that they are as efficient and easy to use as the conventional MM models. With

regards to computational cost, the ANI NNP’s scale linearly and have performance

that is comparable to MM force fields, so formally, NNP/MM simulations could have

similar performance to pure MM simulations. For practical reasons, our NNP/MM

code integrated into NAMD through its QM/MM interface, which is used to call



70

the TorchANI python-based ANI-NNP code. In turn, TorchANI calls the PyTorch

library to calculate the NN’s. If ANI NNP’s were directly implemented into NAMD,

the computational efficiency would likely improve considerably and it would make

NNP/MM more accessible for other researchers who may be familiar with conventional

molecular mechanical models but not NNP’s.

Our NNP/MM method was also promising for the refinement of cryo-EM struc-

tures when combined with MDFF. Although we showed this method could refine a

structure where there was already an atomistic model available, this method would

be more widely applicable if it could be used to determine the ligand pose without

an existing atomistic model. It would also be necessary to prove that the accuracy

of high resolution structures can be achieved using low-resolution data. This work is

underway by using high resolution XRD maps that are artificially coarsened to the res-

olution typical of cryo-EM experiments, then used as the inputs of NNP/MM MMDF

simulation to see if the original structures determined using the high resolution XRD

data can be recovered.

Throughout this thesis, ANI-type NNPs were shown to be effective models for pre-

dicting the structures, conformational energies, and dynamics of drug-like molecules.

The modest computational cost of these models in comparison to QM methods allows

for them to be used in molecular dynamics simulations. Although these methods are

not yet mature enough to perform a realistic simulation of a complete protein-ligand

complex, we have found our NNP/MM method is an effective way to take advantage

of ANI-NNP’s accurate description of intramolecular interactions of small organic

molecules, while the solvent, ions, and protein can be described using the mature

MM force fields for these components (e.g., CHARMM). These simulations can be

extended further by using enhanced sampling methods, like umbrella sampling, ABF,

and MDFF.

The main theme of this thesis is that NNP’s provide a powerful new way to model

protein–ligand complexes. They are generally more accurate and reliable than popular

MM models, without the need for parameterization, which makes them very transfer-

able from system to system. Although they are more computationally intensive than

MM models, this cost is tractable on modern computing facilities. Expanding the

role of computer modeling in drug development will require methods that are more

accurate but are also computationally efficient. Uniquely, NNP’s have an efficiency
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comparable to MM models but have similar accuracy to the QM models they are

trained to reproduce. They provide a promising path forward in the evolution of

molecular simulation methods.



Appendix A

Supporting Information for

Chapter 3

Table A.1: Table of crystallographic data. Ligands that did not have a common drug
name are listed by their Drugbank ID or their compound ID number(CID).

PDB ID Protein EC Ligand Resolution (Å) Temp (K)

1XOZ [112] phosphodi-esterase 5A 3.1.4.17 tadalafil 1.37 93
3EYG [113] JAK1 2.7.10.2 tofacitinib 1.9 100
2W6N [114] biotin carboxylase 6.3.4.14 DB08315 1.87 100
4HJO [115] EGFR 2.7.10.1 erlotinib 2.21 110
4NCT [116] Human DYRK1A 2.7.12.1 midostaurin 2.6 100
2HYY [117] Abl kinase 2.7.10.2 imatinib 2.4 100
3EIG [118] dihydrofolate reductase 1.5.1.3 methotrexate 1.7 93
3ETA [119] IGF-1R 2.7.10.1 CID 45272927 2.6 93
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Table A.2: Table of RMSD of the calculated structures of the ligands relative to the
PDB structure.

PDB ID
RMSD (Å)

CGenFF NNP/MM
1XOZ 0.19 0.13
3EYG 0.24 0.50
2W6N 0.54 0.57
4HJO 0.79 0.59
4NCT 1.1 0.60
2HYY 0.39 0.42
3EIG 0.37 0.28
3ETA 0.26 0.35

Figure A.1: Trajectory of the RMSD of the calculated structure of 4HJO vs the PDB
structure vs time.
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Figure A.3: The potential of mean force for the deviation of the structure of a ligand
from its bound conformation when it is bound to its protein target.

Figure A.4: The representative structures of the ionic ligands from the lowest energy
of the PMF for the NNP/MM simulations of the ligands in explicit water (the solvent
is not shown for clarity). The charged functional groups of the ligands form spurious
intramolecular contacts
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A.0.1 NNP Technical Details

The ANI-1ccX model was used in all instances where NNP calculations. The Tor-

chANI implementation was used [46]. No additional intramolecular force terms for

the ligand were included. In this NNP, there are 16 radial elements and the radial

cutoff is 5.2 Å. The complete details at described in the Supplementary Materials of

Smith et al. [22]

The parameters of the NNP used here are defined in the TorchANI parameter file:

TM = 1

Rcr = 5.2000e+00

Rca = 3.5000e+00

EtaR = [1.6000000e+01]

ShfR = [9.0000000e-01,1.1687500e+00,1.4375000e+00,1.7062500e+00,

1.9750000e+00,2.2437500e+00,2.5125000e+00,2.7812500e+00,

3.0500000e+00,3.3187500e+00,3.5875000e+00,3.8562500e+00,

4.1250000e+00,4.3937500e+00,4.6625000e+00,4.9312500e+00]

Zeta = [3.2000000e+01]

ShfZ = [1.9634954e-01,5.8904862e-01,9.8174770e-01,1.3744468e+00,

1.7671459e+00,2.1598449e+00,2.5525440e+00,2.9452431e+00]

EtaA = [8.0000000e+00]

ShfA = [9.0000000e-01,1.5500000e+00,2.2000000e+00,2.8500000e+00]

Atyp = [H,C,N,O]

A.0.2 NAMD Input File Section for NNP/MM Simulation

qmforces on

qmParamPDB qmmm.pdb

qmSoftware custom

qmexecpath client.py

qmBaseDir /dev/shm/

QMColumn occ

qmChargeMode none

qmElecEmbed off
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A.0.3 Sample ORCA RI-MP2 Input File

! RI-MP2 RIJCOSX def2-TZVP def2-TZVP/C def2/J TIGHTSCF Opt PAL8

% maxcore 15000

* xyzfile 0 1 pes.xyz

%geom

Constraints

{D 2 3 4 5 0.0 C }

{D 3 4 5 6 0.0 C }

end

end

A.0.4 Sample ORCA DLPNO-CCSD(T) Input File

! DLPNO-CCSD(T) def2-TZVP def2-TZVP/C TIGHTSCF

% pal nprocs 8 end

% maxcore 15000

* xyzfile 0 1 pes.xyz

end

end
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