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Abstract

Mathematical models provide powerful tools to explain and predict population dy-

namics. A central problem is to study the long-term behavior of modeling systems.

The patch models and reaction-diffusion models are widely applied to describe spatial

heterogeneity and habitat connectivity.

Basic reproduction number R0 plays an important role in mathematical biology.

In epidemiology, R0 stands for the expected number of secondary cases produced in

a completely susceptible population by a typical infective individual. The value of

R0 can determines the persistence or extinction of population. Nowadays, character-

izing the basic reproduction number due to the effects of parameters becomes very

significant for predicting and controlling disease transmission.

This thesis consists of three chapters. In Chapter 1, we investigate the effect

of spatial heterogeneity on the basic reproduction number for an SIS epidemic patch

model, and compute R0 numerically to show the influence of the spatial heterogeneity

and movement. Chapter 2 is devoted to the study of the global dynamics of a reaction-

diffusion model arising from the dynamics of a kind of mosquitos named A. aegypti in

Brazil. We first prove the global existence and boundedness of the solutions. Secondly,

we establish the threshold type dynamics in terms of the basic reproduction ratio R0.

In Chapter 3, we briefly summarize the main results and present some future works.
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Lay summary

The emergence of the infectious diseases of humans or animals has resulted in serious

consequences for public health, and is receiving more and more attention in mathe-

matical epidemiology. This thesis is focused on the global dynamics of two types of

population models with spatial structure.

To understand the effects of the spatial heterogeneity, we first consider an ODE

SIS patch model and use the variational formula of the basic infection number R0

to study its monotonicity with respect to some parameters. It turns out that some

measures should be taken to make R0 < 1 so that the disease transmission is un-

der control. Then we investigate the global dynamics of a reaction-diffusion mosquito

population model. Our analytical result indicates that the basic reproduction number

R0 is a threshold value to determine whether the population goes extinct or persists

uniformly.
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Chapter 1

An SIS epidemic patch model

1.1 Introduction

In mathmatical biology, the reproduction number (ratio) R0 is a very important

factor that stands for the expected number of secondary cases produced, in a com-

pletely susceptible population, by a typical infective individual. There are many

research on characteristicing the basic reproduction ratio R0. Diekmann, Heester-

beek and Metz [9] introduced the next generation operators approach to R0 for

models of infectious diseases in heterogeneous populations. And van den Driessche

and Watmough [31] developed the theory of R0 for autonomous ordinary differen-

tial equations (ODE) models with compartmental structure. In recent years, there

are numerous works about the basic reproduction ratio for various autonomous, peri-

odic, and almost periodic evolution equation models with or without time-delay (see,

e.g., [3, 17,18,25,30,31,33,35,36,38]).

In this chapter, we are interested in the following SIS patch model: dSi

dt
= dS

∑n
j=1(lijSj)− βiSiIi

Si+Ii
+ γiIi, i = 1, · · · , n, t ≥ 0,

dIi
dt

= dI
∑n

j=1(lijIj) + βiSiIi
Si+Ii

− γiIi, i = 1, · · · , n, t ≥ 0,
(1.1)

where n ≥ 2 is the number of patches; Si(t) and Ii(t) denote the number of susceptible

and infected individuals in patch i at time t ≥ 0; dS > 0 and dI > 0 are the dispersal

coefficients for the susceptible and infected subpopulations, respectively; lij represents

the degree of movement from patch j into patch i and −ljj =
∑n

i=1,i 6=j lij is the degree
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of movement from patch j to all other patches; βj > 0 and γj > 0 are the constants

that express the rate of disease transmission and recovery in patch j, respectively.

Without loss of generality, throughout the whole chapter, we assume that dI = 1.

The following assumptions on the initial condition and the connectivity matrix

L = (lij)n×n are made:

(A1) Si(0) ≥ 0 and Ii(0) ≥ 0 for i = 1, · · · , n and
∑n

i=1[Si(0) + Ii(0)] = N > 0;

(A2) L is symmetric, cooperative and irreducible.

It is easy to see that L is column zero matrix, that is
∑n

j=1 ljk = 0 for all k = 1, · · · , n.

According to [4, Theorem 6.4.16], L has rank n − 1, and hence, the system of linear

equations 
∑n

j=1 lijS
0
j = 0, i = 1, · · · , n,∑n

i=1 S
0
i = N,

has a unique positive solution, denoted by S0 = (S0
1 , · · · , S0

n). Then the model (1.1)

admits a unique disease-free equilibrium (DFE) E0 = (S0,0). Linearizing the model

system (1.1) at the DFE gives the new infection and transition matrices

F̃ = diag{β1, · · · , βn} and Ṽ = diag{γ1, · · · , γn} − L,

respectively. Let

F = diag{β1, · · · , βn} and V = diag{γ1, · · · , γn}.

Following the recipe of van den Driessche and Watmough [31], the basic reproduction

ratio for model (1.1) is defined by

R0 = r(Ṽ −1F̃ ) = r(−(L− V )−1F ). (1.2)

For this patch model, there are many research works about the effect of dispersal

coefficients. Allen, Bolker, Lou and Nevai [2] showed that the basic reproduction

number R0 is strictly decreasing and convex in the dispersal coefficients and studied

the asymptotic behavior of R0 as the dispersal coefficient goes to zero and infinity

when the connectivity matrix L is symmetric. Without assuming the symmetry of L,
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Gao and Dong [12, 13] and Chen, Shi, Shuai and Wu [5, 6] extended such results to

the case where the connectivity matrix L is asymmetric.

There are also some related research for reaction-diffusion equations. Allen,

Bolker, Lou and Nevai [1] introduced the basic reproduction number R0 for a scalar

reaction-diffusion equation model by a variational formula. Wang and Zhao [36] es-

tablished the theory of R0 for compartmental epidemic models of reaction-diffusion

equation and characterized R0 in terms of the principal eigenvalue of an elliptic eigen-

value problem. Recently, Yang, Qarariyah and Yang [37] investigated the influence of

spatial-dependent variables on the basic reproduction ratio (R0) for a scalar reaction-

diffusion equation model using the tools established in [1, 36]. It is natural to ask

how the spatial heterogeneity affects the basic reproduction ratio for a patch model.

For this patch model, we prove that R0 could be first non-increasing and then non-

decreasing with the increasing spatial heterogeneity.

The remaining of this chapter is organized as follows. In the next section, we

discuss the relation between the basic reproduction ratio and coefficients representing

spatial heterogeneity. In section 1.3, we compute R0 numerically to investigate the

these influences.

1.2 Theoretical analysis

In this section, we first present basic results on the global dynamics of system (1.1),

then we study the effect of spatial heterogeneity on the basic reproduction ratio for a

patch model theoretically.

Let

X := {(S1, · · · , Sn, I1, · · · , In) ∈ R2n
+ :

n∑
i=1

(Si + Ii) = N},

and

X0 := {(S1, · · · , Sn, I1, · · · , In) ∈ X : Ii > 0, ∀i = 1, 2, · · · , n}.

Then we have the following result.

Theorem 1.2.1. If R0 < 1, the disease-free equilibrium E0 is globally asymptotically

stable in X, and if R0 > 1, there exists a unique endemic equilibrium and system

(1.1) is uniformly persistent in X0.
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Proof. The global stability of the disease-free equilibrium and the existence and

uniqueness of the endemic equilibrium follow from [2, Lemmas 2.3 and 3.6]. It re-

mains to show that system (1.1) is uniformly persistent. Let ∂X0 := X\X0. It is easy

to see that both X and X0 are positively invariant. Set

M∂ := {(S(0), I(0)) : (S(t), I(t)) satisfies (1.1) and (S(t),I(t)) ∈ ∂X0, ∀t ≥ 0}.

We claim that

M∂ = {(S, 0) : S ≥ 0}.

Clearly, {(S, 0) : S ≥ 0} ⊂ M∂. It suffices to show that M∂ ⊂ {(S, 0) : S ≥ 0}.
Let (S(0), I(0)) ∈ M∂ be given. Now we prove that I(t) = 0, ∀t ≥ 0. Suppose not.

Then there exist an i0, 1 ≥ i0 ≥ n, and a t0 ≥ 0 such that Ii0(t0) > 0. We define

two sets Q1 and Q2 of integers such that Q1 ∩ Q2 = ∅, Q1 ∪ Q2 = {1, 2, · · · , n},
Ii(t0) = 0, ∀i ∈ Q1, and Ii(t0) > 0, ∀i ∈ Q2. It then follows that Q1 is non-empty

due to the definition of M∂, and Q2 is non-empty since Ii0(t0) > 0. For any j ∈ Q1,

we have I ′j(t0) ≥ lji0Ii0(t0) > 0. Thus, there is an ε0 > 0 such that Ij(t) > 0 for all

t0 < t < t0 + ε0 and all j ∈ Q1. Since

I ′i(t) ≥ liiIi(t)− γiIi(t) = (lii − γi)Ii(t), ∀t ≥ 0, 1 ≤ i ≤ n,

we easily see that Ii(t) > 0 for all t ≥ t0 and all i ∈ Q2. It then follows that

(S(t), I(t)) /∈ ∂X0 for all t0 < t < t0 + ε0, which contradicts the assumption that

(S(0), I(0)) ∈ M∂. Thus, I(t) = 0, ∀t ≥ 0, and hence, (S(0), I(0) ∈ {(S, 0) : S ≥ 0}.
This implies that M∂ ⊂ {(S, 0) : S ≥ 0}.

Now it is easy to see that E0 is globally asymptotically stable for system (1.1)

in M∂. By the arguments similar to those in [34, Theorem 2.3], we can further show

that E0 is an isolated invariant set in X and W S(E0)∩X0 = ∅. By [29, Theorem 4.6],

we conclude that system (1.1) is uniformly persistent in X0.

For a square matrix A, we define s(A) := max{Reλ : λ is an eigenvalue of A}
and r(A) := max{|λ| : λ is an eigenvalue of A}.

Proposition 1.2.1. If R0 > 0, then λ = R0 is the unique solution of s(L−V + 1
λ
F ) =

0.

Proof. This can be derived by [35]. For reader’s convenience, we provide a simple
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proof. Define

R̂0(λ) := r

(
−(L− V )−1F

λ

)
, ∀λ > 0.

Clearly, R̂0(λ) = 1
λ
R0, ∀λ > 0. It follows from [31, Theorem 2] that s

(
L− V + F

λ

)
has the same sign as R̂0(λ)− 1 =

1

λ
(R0 − λ). This yields the desired conclusion.

Let 0 = (0, · · · , 0)T be an n-dimensional vector. By the Perron-Frobenius theo-

rem (see, e.g., [27, Theorem 4.3.1]), there is a unique column vector φ = (φ∗1, · · · , φ∗n)T �
0 with φ∗Tφ∗ = 1 such that

−(L− V )−1Fφ∗ = r(−(L− V )−1F )φ∗ = R0φ
∗,

which implies

(L− V +
F

R0

)φ∗ = 0. (1.3)

Moreover, we have the following observation.

Lemma 1.2.1. The following variational formula holds true:

R0 = sup
φ6=0

∑n
i=1 βiφ

2
i

1
2

∑
1≤i,j≤n lij(φi − φj)2 +

∑n
i=1 γiφ

2
i

= sup
φ 6=0

φTFφ

−φTLφ+ φTV φ

=

∑n
i=1 βi(φ

∗
i )

2

1
2

∑
1≤i,j≤n lij(φ

∗
i − φ∗j)2 +

∑n
i=1 γi(φ

∗
i )

2
=

(φ∗)TFφ∗

−(φ∗)TLφ∗ + (φ∗)TV φ∗
.

(1.4)

Proof. We first verify the first and the second euality. The third and forth equality

of (1.4) can be derived by the simple computation. Thus, it suffices to show the first

and the second equality. Let D = diag{β−
1
2

1 , · · · , β−
1
2

n }, L̃ = DLD = (l̃ij)n×n and

Ṽ = DVD = diag{ṽ1, · · · , ṽn}. It is easy to see that l̃ij = β
− 1

2
i β

− 1
2

j lij and ṽi = γiβ
−1
i ,

∀i, j = 1, · · · , n. Clearly, L̃ is still a symmetric, cooperative and irreducible matrix.

Letting ϕ∗ = D−1φ∗, we have

D(L− V +
F

R0

)Dϕ∗ = 0,

that is,

(−L̃+ Ṽ )ϕ∗ =
1

R0

ϕ∗. (1.5)

Let λ̃1 be the smallest eigenvalue of −L̃ + Ṽ . In view of [2, Appendix A], we
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obtain

λ̃1 = inf
ϕ6=0

−ϕT L̃ϕ+ ϕT Ṽ ϕ

ϕTϕ
.

By the Perron-Frobenius theorem, together with F = D−1D−1 and (1.5), we then

obtain

R0 = λ̃−1
1 = sup

ϕ6=0

ϕTϕ

−ϕT L̃ϕ+ϕT Ṽϕ

= sup
ϕ6=0

ϕTϕ

−ϕTDLDϕ+ϕTDVDϕ

= sup
φ 6=0

φTFφ

−φTLφ+ φTV φ

= sup
φ 6=0

∑n
i=1 βiφ

2
i

1
2

∑n
i,j=1 lij(φi − φj)2 +

∑n
i=1 γiφi

,

which is the desired conclusion.

Lemma 1.2.2. R0 ≥
∑n

i=1 βi∑n
i=1 γi

, and the equality holds if and only if φ∗i = φ∗j for all

1 ≤ i, j ≤ n.

Proof. Since L is irreducible, φ∗i > 0 for all i = 1, · · · , n. We divide the i-th equation

by φ∗i to obtain
n∑
j=1

lij
φ∗j
φ∗i
− γi = − βi

R0

, ∀i = 1, · · · , n.

Summing all above equations together, we have

n∑
i=1

n∑
j=1

lij
φ∗j
φ∗i

=
n∑
i=1

γi −
n∑
i=1

βi
R0

. (1.6)

Since L is symmetric, so for any i, j = 1, · · · , n with i 6= j, we have

lij
φ∗j
φ∗i

+ lji
φ∗i
φ∗j

= lij

(
φ∗j
φ∗i

+
φ∗i
φ∗j

)
≥ 2lij

√
φ∗j
φ∗i

φ∗i
φ∗j

= 2lij.

The equality holds if and only if φ∗i = φ∗j for 1 ≤ i, j ≤ n. Notice that L is column

sum zero and symmetric, it is easy to see that

n∑
i,j=1

lij
φ∗i
φ∗j
≥ 2

∑
1≤i<j≤n

lij +
n∑
i=1

lii =
n∑

i,j=1

lij = 0.
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In view of (1.6), we obtain
n∑
i=1

γi −
n∑
i=1

βi
R0

≥ 0,

and hence,

R0 ≥
∑n

i=1 βi∑n
i=1 γi

,

which leads to the desired conclusion.

To study the effect of the spatial heterogeneity on R0, we let

F (a) := F̄ + aF̂ , and V (b) := V̄ + bV̂ . (1.7)

Here F̄ = diag{β̄1, · · · , β̄n}, V̄ = diag{γ̄1, · · · , γ̄n} with β̄i = β̄ and γ̄i = γ̄, ∀i =

1, · · · , n, for some β̄ > 0 and γ̄ > 0, and non-vanishing matrix F̂ = diag{β̂1, · · · , β̂n}
and non-vanishing matrix V̂ = diag{γ̂1, · · · , γ̂n} with

∑n
i=1 β̂i = 0 and

∑n
i=1 γ̂i = 0.

Define

â := sup{a > 0 : β̄ + aβ̂i > 0, ∀i = 1, · · · , n},

and

b̂ := sup{b > 0 : γ̄ + bγ̂i > 0, ∀i = 1, · · · , n}.

For each (a, b) ∈ [0, â)× [0, b̂), define R0(a, b) by (1.2) with F and V replaced by

F (a) = F + aF̂ and V (b) = V + bV̂ , respectively. In the case of a = 0 and b = 0,

F (0) = F̄ and V (0) = V̄ , which corresponds to the spatial homogeneity. Thus, F (a)

and V (b) be regarded as the heterogeneous perturbation of F̄ and V̄ . For convenience,

we write

βi(a) := β̄ + aβ̂i, ∀i = 1, · · · , n, a ∈ (0, â),

and

γi(b) := γ̄ + bγ̂i, ∀i = 1, · · · , n, b ∈ (0, b̂).

Theorem 1.2.2. Let a0 ∈ [0, â) and b0 ∈ [0, b̂) be two given numbers. If R0(a, b0) ≥
R0(a0, b0), ∀a ∈ [a0, â), then R0(a, b0) is convex and non-decreasing with respect to

a ∈ [a0, â). If, in addition, R0(a, b0) > R0(a0, b0) for any a ∈ (a0, â), then R0(a, b0)

is increasing with respect to a ∈ [a0, â).

Proof. We first show that R0(a, b0) is non-decreasing with respect to a ∈ [a0, â). For

any given a1 > a2 > a0, there exists τ ∈ (0, 1) such that a2 = τa1 +(1−τ)a0. It is easy
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to see that βi(a2) = τβi(a1) + (1− τ)βi(a0), ∀i = 1, · · · , n. Let φ̂∗ = (φ̂∗1, · · · , φ̂∗n) be

the unique positive eigenvector of (1.3) with F and V replaced by F (a2) and V (b0),

which corresponds the eigenvalue R0(a2, b0). By Lemma 1.2.1, we have

R0(a2, b0) =

∑n
i=1 βi(a2)(φ̂∗i )

2

1
2

∑n
i,j=1 lij(φ̂

∗
i − φ̂∗j)2 +

∑n
i=1 γi(b0)(φ̂∗i )

2

=

∑n
i=1[τβi(a1) + (1− τ)βi(a0)](φ̂∗i )

2

1
2

∑n
i,j=1 lij(φ̂

∗
i − φ̂∗j)2 +

∑n
i=1 γi(b0)(φ̂∗i )

2

=
τ
∑n

i=1 βi(a1)(φ̂∗i )
2

1
2

∑n
i,j=1 lij(φ̂

∗
i − φ̂∗j)2 +

∑n
i=1 γi(b0)(φ̂∗i )

2

+
(1− τ)

∑n
i=1 βi(a0)(φ̂∗i )

2

1
2

∑n
i,j=1 lij(φ̂

∗
i − φ̂∗j)2 +

∑n
i=1 γi(b0)(φ̂∗i )

2

≤τ sup
φ 6=0

∑n
i=1 βi(a1)φ2

i
1
2

∑n
i,j=1 lij(φi − φj)2 +

∑n
i=1 γi(b0)φ2

+ (1− τ) sup
φ 6=0

∑n
i=1 βi(a0)φ2

i
1
2

∑n
i,j=1 lij(φi − φj)2 +

∑n
i=1 γi(b0)φ2

i

=τR0(a1, b0) + (1− τ)R0(a0, b0).

Since R0(a, b0) ≥ R0(a0, b0)(R0(a, b0) > R0(a0, b0)), ∀a ∈ [a0, â), it follows that

R0(a2, b0) ≤ R0(a1, b0)(R0(a2, b0) < R0(a1, b0)) for any a ∈ [a0, â). The convexity can

be derived by repeating the above arguments.

Remark 1.2.1. Let a0 ∈ [0, â) and b0 ∈ [0, b̂) be two given numbers. If R0(a, b0) ≥
R0(a0, b0), ∀a ∈ [0, a0], then R0(a, b0) is convex and non-increasing with respect to

a ∈ [0, a0]. If, in addition, R0(a, b0) > R0(a0, b0) for any a ∈ [0, a0], then R0(a, b0) is

decreasing with respect to a ∈ [0, a0].

Theorem 1.2.3. Let a0 ∈ [0, â) and b0 ∈ [0, b̂) be two given numbers. If R0(a0, b) ≥
R0(a0, b0), ∀b ∈ [b0, b̂), then R0(a0, b) is non-decreasing with respect to b ∈ [b0, b̂).

Proof. For any given b1 > b2 > b0, there exists τ ∈ (0, 1) such that b2 = τb1. It’s easy

to see that V (b2) = τV (b1)+(1−τ)V (b0). Let φ̂∗ = (φ̂∗1, · · · , φ̂∗n) be the unique positive

eigenvector of (1.3) with F and V replaced by F (a0) and V (b2), which corresponds
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to the eigenvalue R0(a0, b2). By Lemma 1.2.1, we have

R0(a0, b2)

=
(φ∗)TF (a0)φ∗

−(φ∗)TLφ∗ + (φ∗)TV (b2)φ∗

=
(φ∗)TF (a0)φ∗

−(φ∗)TLφ∗ + (φ∗)T [τV (b1) + (1− τ)V (b0)]φ∗

=
(φ∗)TF (a0)φ∗

τ [−(φ∗)TLφ∗ + (φ∗)TV (b1)φ∗] + (1− τ)[−(φ∗)TLφ∗ + (φ∗)TV (b0)φ∗]

≤ max

{
(φ∗)TF (a0)φ∗

−(φ∗)TLφ∗ + (φ∗)TV (b1)φ∗
,

(φ∗)TF (a0)φ∗

−(φ∗)TLφ∗ + (φ∗)TV (b0)φ∗

}
≤ max

{
sup
φ6=0

φTF (a0)φ

−φTLφ+ φTV (b1)φ
, sup
φ6=0

φTF (a0)φ

−φTLφ+ φTV (b0)φ

}
≤ max{R0(a0, b1),R0(a0, b0)}.

In view of R0(a0, b1) ≥ R0(a0, b0), ∀b ∈ [b0, b̂), we get R0(a0, b2) ≤ R0(a0, b1).

Remark 1.2.2. Let a0 ∈ [0, â) and b0 ∈ [0, b̂) be two given numbers. If R0(a0, b) ≥
R0(a0, b0), ∀b ∈ [0, b0], then R0(a0, b) is non-increasing with respect to b ∈ [0, b0].

Lemma 1.2.3. Let b0 ∈ [0, b̂) be a given number and G = diag{g1, · · · , gn} be a given

diagonal matrix with
∑n

i=1 gi = 0. If F̂ = V̂ = G, then R0(b0β̄γ̄
−1, b0) = β̄γ̄−1.

Proof. Let a0 = b0β̄γ̄
−1 and 1 = (1, · · · , 1)T be an n-dimensional vector. Since

F (a0) = F̄ +a0G = F̄ + b0β̄γ̄
−1G = β̄γ̄−1(V̄ + b0G), it is easy to see that β̄+a0ĝi > 0,

∀i = 1, · · · , n. By Lemma 1.2.2, it suffices to show that φ = 1 is an eigenvector of

(1.3) corresponding to the eigenvalue β̄γ̄−1. Notice that L is symmetric and column

sum zero, we have L1 = 0. Then we have

(L− V +
F

β̄γ̄−1
)1 = (−V +

F

β̄γ̄−1
)1.

For each i = 1, · · · , n, an easy computation yields that

−γi +
βi

β̄γ̄−1
=− (γ̄ + b0gi) + (

β̄ + b0β̄γ̄
−1gi

β̄γ̄−1
)

=− (γ̄ + b0gi) + (γ̄ + b0gi)

=0.
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We obtain that

(L− V +
F

β̄γ̄−1
)1 = 0,

which implies the desired conclusion.

As a consequence of Theorem 1.2.2, Remark 1.2.1 and Lemma 1.2.3, we have the

following theorem.

Theorem 1.2.4. Let b0 ∈ [0, b̂) be a given number and G = diag{g1, · · · , gn} be a

given non-zero matrix with
∑n

i=1 gi = 0. If F̂ = V̂ = G, then R0(a, b0) is decreasing

with respect to a ∈ [0, b0β̄γ̄
−1] and increasing with respect to a ∈ [b0β̄γ̄

−1, â).

The following result follows from Theorem 1.2.3, Remark 1.2.2 and Lemma 1.2.3.

Theorem 1.2.5. Let a0 ∈ [0, â) be a given number and G = diag{g1, · · · , gn} be a

given non-zero matrix with
∑n

i=1 gi = 0. If F̂ = V̂ = G, then R0(a0, b) is decreasing

with respect to b ∈ [0, a0β̄
−1γ̄] and increasing with respect to b ∈ [a0β̄

−1γ̄, b̂).

1.3 Numerical simulations

In this section, we investigate the effect of spatial heterogeneity on the basic re-

production ratio numerically. We choose n = 3, F̄ = diag{1.1, 1.1, 1.1}, V̄ =

diag{0.9, 0.9, 0.9} and F̂ = V̂ = diag{1,−2, 1}. We first consider the effect of a

and b on R0(a, b).

Example 1.3.1. Let

L =

−1 1 0

1 −2 1

0 1 −1

 .

We show R0(a, b) versus the parameters a and b in Figure 1.1. (a) and (b) indicate

that R0(a, b) can be increasing or non-monotone with respect to a when b = 0 and

b = 1, respectively. In (c) and (d), R0(a, b) can also be increasing or non-monotone

with respect to b when a = 0 and a = 1, respectively.

In the previous section, we assume that L is symmetric. It is natural to ask

whether the similar results hold for the asymmetric connectivity matrix L. The fol-

lowing example gives a confirmative answer numerically.
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Figure 1.1: Relationship between R0(a, b) and the coefficient a and b under four
different scenarios: (a) b = 0; (b) b = 1; (c) a = 0; (d) a = 1.
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Example 1.3.2. Choose L having the following form

L1 =

−1 1 0

1 −2 1

0 1 −1

 , L2 =

−1 0 1

1 −1 0

0 1 −1

 , and L3 =

−2 0 1

2 −1 0

0 1 −1

 .

Figure 1.2(a)(b) and (c) suggest that the influence of changes in coefficients a and b

could be determined no matter whether L is symmetric or not. Figure 1.2(d) shows

that L1 and L2 share the same minimum R0 at the same a.

Example 1.3.3. Using the formula (1.2), we compute the basic reproduction R0

numerically under the assumption that

L =

−1 0 1

1 −1 0

0 1 −1

 , F = diag{0.4, 0.5, 0.6}, V = diag{1, 1.5, 2},

we obtain R0 = 0.3364 < 1. In this case, the disease will die out eventually(see

Figure1.3(a)(b)). If we choose F = diag{1.5, 1.5, 1.6}, V = diag{0.3, 0.4, 0.5}, then

R0 = 3.8581 > 1. The long-term behaviors of the suspicious and the infectious

populations are shown in Figure1.3(c)(d), which implies that the disease will persist

eventually. These simulations are consistent with our theoretical results.
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Figure 1.2: The contour plot of the reproduction number R0 under three different
scenarios: (a) L = L1; (b) L = L2; (c) L = L3. The figure (d) shows, for a given
b0 = 0.2, the relation between R0 and a under three different L which is either
symmetric or asymmetric.
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Figure 1.3: Long term behaviors of the suspicious and the infectious populations in
system (1.1) when R0 = 0.3364 and R0 = 3.8581.



Chapter 2

A reation-diffusion population

model

2.1 Introduction

Dengue is a mosquito-borne disease which is transmitted by arthropods of the species

Aedes aegypti, a mosquito found in the places where a hot and humid climate is

predominant [32]. The mosquito A. aegypti inhabits mainly human houses and bites at

any time during the day, which makes it a very efficient vector. Infectious individuals,

either humans or mosquitoes, can start a dengue epidemic in human populations

very quickly when placed in a previously A. aegypti infested region. Dengue is a

particularly serious public health problem in Brazil due to favourable climate and

environmental conditions for A. aegypti population expansion. A. aegypti was first

detected in Brazil in 1923. Since then, the disease subsequently spread into many

states in Brazil (see e.g. [7, 10]).

To describe the biological vital dynamics of the A. aegypti, we consider two sub-

populations: the winged form (mature female mosquitoes) and an aquatic population,

which includes eggs, larvae and pupae. Winged female A. aegypti in search of human

blood or places for oviposition are the main reason for local population dispersal and

the slow advance of a mosquito infestation. On the other hand, wind currents may

also result in an advection movement of large masses of mosquitoes and consequently

cause a quick advance of infestation.
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The spatial density of the winged A. aegypti at point x and time t is denoted by

M(x, t). The aquatic form is denoted likewise by A(x, t). The mathematical model

that describes the spatial dynamics of the A. aegypti is then governed by the following

reaction-diffusion system: ∂
∂t
M = ∂2

∂x2
M − v ∂

∂x
M + γ(x)

k(x)
A(1−M)− µ1(x)M, x ∈ (0, L), t > 0,

∂
∂t
A = k(x)(1− A)M − (µ2(x) + γ(x))A, x ∈ (0, L), t > 0,

(2.1)

subject to the boundary conditions:

∂

∂x
M(0, t) =

∂

∂x
M(L, t) = 0, t > 0,

and the initial conditions:

M(x, 0) = M0(x) ≥ 0, A(x, 0) = A0(x) ≥ 0, x ∈ [0, L],

where v is the wind advection rate, µ1(x) and µ2(x) are mortality rates of the

winged and aquatic population, respectively, γ(x) denotes the rate of maturation

of the aquatic form into winged form, k(x) is the rate of oviposition by the winged

mosquitoes. We assume all parameters are positive and continous with respect to x.

And the aquatic form is in a sessile state, that is, no diffusion term for the aquatic

form. This model was established in [28] and the propagation dynamics was also

studied there.

The purpose of this chapter is to study the threshold type dynamics in terms

of the basic reproduction ratio R0. The main difficulty is the lack of compactness

of solution maps of the system (2.1) due to the loss of diffusion term in the second

eqution of (2.1). To handle this problem, we first prove that the solution map associ-

ated with a linearized system around the trivial solution is κ-contraction, where κ is

the Kuratowski measure of noncompactness (see, e.g., [8]). Moreover, we also prove

that the solution map of system (2.1) is asymptotically compact on any bounded set

by using the ideas in [14, 15]. Thus, in the case where R0 ≤ 1, the trivial solution is

stable due to comparison arguments; in the case where when R0 > 1, by a generalized

Krein-Rutman Theorem, the principal eigenvalue of the associated eigenvalue prob-

lems exists, and hence, the global dynamics can be derived by the theory of monotone

dynamical systems developed in [27,39].
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The rest of this chapter is organized as follows. In the next section, we address

the well-posedness of the model. In section 2.3, we establish the threshold dynamics

of the system in terms of R0.

2.2 The well-posedness

In this section, we study the well-posedness of the initial-boundary-value problem

(2.1). Let X = C([0, L],R2) be the Banach space with the norm

‖ψ‖ = max
1≤i≤2

max
x∈[0,L]

ψi(x), ∀ψ = (ψ1, ψ2)T ∈ X,

and X+ = C([0, L],R2
+). It is easy to see that (X,X+) is an ordered Banach space.

Let Λ = [0, 1]× [0, 1] and

XΛ := {(ψ1, ψ2)T ∈ X : 0 ≤ ψ1(x) ≤ 1, 0 ≤ ψ2(x) ≤ 1, x ∈ [0, L]}.

Definition 2.2.1. A family of bounded linear operators {S(t)}t≥0 on a Banach space

X is called a C0-semigroup provided that

(i) S(0) = I.

(ii) S(t+ s) = S(t)S(s), ∀t, s > 0.

(iii) For each x ∈ X , S(t)x is continuous in t > 0.

Lemma 2.2.1. For any ψ ∈ XΛ, system (2.1) has a unique global solution u(·, t, ψ)

on [0,+∞) with u(·, 0, ψ) = ψ. Moreover, u(·, t, ψ) ∈ XΛ for all t ≥ 0.

Proof. Let T1(t) be the C0 semigroup (see, e.g., [24, Chapters 1 and 7]) on C([0, L],R)

of
∂

∂t
ψ1 =

∂2

∂x2
ψ1 − v

∂

∂x
ψ1 − µ1(·)ψ1,

subject to the Neumann boundary condition. Let T2(t) be a family of bounded lin-

ear operators on C([0, L],R) defined by T2(t)ψ2 = e−(µ2(·)+γ(·))tψ2, ∀t ≥ 0, ψ2 ∈
C([0, L],R). It is easy to see T2(t) is a semigroup on C([0, L],R). Define J : X → X
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by

[Jψ](x) :=

(
γ(x)
k(x)

ψ2(x)[1− ψ1(x)]

k(x)ψ1(x)[1− ψ2(x)]

)
, ∀x ∈ [0, L], ψ = (ψ1, ψ2)T ∈ X.

Then system (2.1) can be written as the following integral equation:

u(·, t, ψ) = T (t)ψ +

∫ t

0

T (t− s)J(u(·, s, ψ))ds.

where T (t) = diag(T1(t), T2(t)), u(x, t, ψ) = (M(x, t), A(x, t))T and ψ = (M0(x), A0(x))T .

For any given x ∈ [0, L], h ≥ 0 and ψ ∈ XΛ, we have

ψ(x) + hJ(ψ)(x) =

(
ψ1(x) + γ(x)

k(x)
hψ2(x)[1− ψ1(x)]

ψ2(x) + k(x)h[1− ψ2(x)]ψ1(x)

)
.

In view of 0 ≤ ψ1(x), ψ2(x) ≤ 1, it is easy to see that

0 ≤ ψ1(x) +
γ(x)h

k(x)
ψ2(x)(1− ψ1(x)) ≤ 1,

and

0 ≤ ψ2(x) + k(x)h(1− ψ2(x))ψ1(x) ≤ 1.

In the case where ψ1(x) = 1,

ψ1(x) +
γ(x)h

k(x)
ψ2(x)(1− ψ1(x)) = 1.

In the case where 0 ≤ ψ1(x) < 1, there is a small number ĥ1 = ĥ1(ψ) > 0 such that

0 ≤ ψ1(x) +
γ(x)h

k(x)
ψ2(x)(1− ψ1(x)) ≤ 1, ∀h ∈ [0, ĥ1].

In the case where ψ2(x) = 1,

ψ2(x) + k(x)h(1− ψ2(x))ψ1(x) = 1.
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In the case where 0 ≤ ψ2(x) < 1, there is a small number ĥ2 = ĥ2(ψ) > 0 such that

0 ≤ ψ2(x) + k(x)h(1− ψ2(x))ψ1(x) ≤ 1, ∀h ∈ [0, ĥ2].

Thus, ψ(x) + hJ(ψ)(x) ∈ Λ for sufficiently small h > 0. It then follows that

lim
h→0+

1

h
dist(ψ(x) + hJ(ψ)(x),Λ) = 0, ∀ψ ∈ XΛ and x ∈ [0, L].

By [21, Corollary 4] with τ = 0, system (2.1) has a unique global solution u(·, t, ψ) on

[0,+∞) with u(·, 0, ψ) = ψ, and u(·, t, ψ) ∈ XΛ, ∀t ≥ 0.

Lemma 2.2.2. For any ψ ∈ X+, system (2.1) has a unique solution u(·, t, ψ) on

[0,∞) with u(·, 0, ψ) = ψ, and there exists some T0 > 0 such that u(·, t, ψ) ∈ XΛ for

all t ≥ T0.

Proof. According to [21, Corollary 4] with τ = 0, system (2.1) admits a unique non-

continuable solution u(·, t, ψ) on [0, tψ) for some 0 < tψ ≤ ∞ with u(·, 0, ψ) = ψ, and

u(·, t, ψ) ∈ X+, ∀t ∈ [0, tψ). Define

µ
1

:= min
x∈[0,L]

µ1(x), µ
2

:= min
x∈[0,L]

µ2(x), γ := min
x∈[0,L]

γ(x), k := min
x∈[0,L]

k(x),

k := max
x∈[0,L]

k(x), and γ := max
x∈[0,L]

γ(x),

Let

f1(M,A) =


γ
k
A(1−M), M ≤ 1,

0, M > 1,

and

f2(M,A) =

 k(1− A)M, A ≤ 1,

0, A > 1.

Let u(x, t, ψ) be the solution of the following cooperative system: ∂
∂t
M = ∂2

∂x2
M − v ∂

∂x
M + f1(M,A)− µM, x ∈ (0, L), t > 0,

∂
∂t
A = f2(M,A)− (µ

2
+ γ)A, x ∈ (0, L), t > 0,

(2.2)

subject to the Neumann boundary condition ∂
∂x
M(0, t) = ∂

∂x
M(L, t) = 0, t > 0

with initial data ψ. Denote ψ = (ψ1, ψ2)T with ψ1 = maxx∈[0,L] ψ1(x) and ψ2 =
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maxx∈[0,L] ψ2(x). Clearly, u(x, t, ψ) is the solution of the following ODE system d
dt
M = f1(M,A)− µ

1
M, t > 0,

d
dt
A = f2(M,A)− (µ

2
+ γ)A, t > 0.

(2.3)

We first prove that there exists T0 such that M̄(t) ≤ 1, ∀ t > T0. If M̄0 > 1,then

d

dt
M̄ = −µ1M̄, ∀M̄ > 1.

It is easy to see that M̄(t) = M̄0e
−µ1t, ∀M̄ > 1, and hence, there exists t0 > 0 such

that M̄(t0) ≤ 1. It suffices to proof that if M̄(t1) ≤ 1, then M̄(t) ≤ 1, ∀ t > t1.

Assume by contradiction, there exists a t2 > t1 such that M̄(t2) > 1. Since M̄ is

continous with respect to t, there exists a t3 < t2 such that M̄(t3) = 1 and M̄(t) ≥ 1,

∀t ∈ [t3, t2]. By the Lagrange mean value formula, we have

−µ1M̄(ξ) = M̄ ′(ξ) =
M̄(t2)− M̄(t3)

t2 − t3
> 0,

where ξ ∈ [t3, t2] and µ1 > 0. This leads to a contradiction. Similarly, there exists T1

such that Ā(t) ≤ 1, ∀ t > T1.

In conclusion, there exists T2 = max{T0, T1} > 0 such that u(·, t, ψ) ∈ XΛ for all

t ≥ T2. Notice that u(x, t, ψ) is the subsolution of (2.2), by the comparison principle,

we obtain

u(x, t, ψ) ≥ u(x, t, ψ) ≥ u(x, t, ψ), ∀x ∈ [0, L], t ≥ 0.

This shows that u(·, t, ψ) ∈ XΛ for all t ≥ T0.

2.3 The threshold dynamics

In this section, we study the global dynamics of system (2.1). We start with some

basic concepts.

Definition 2.3.1. A closed operator B in X is called resolvent-positive if the resolvent

set of B, ρ(B), contains a ray (ω,∞) and (λ−B)−1 is a positive operator for all λ > ω.

Definition 2.3.2. Let σ(L) denote the spectrum of L, i.e., for a bounded linear

operator the set of eigenvalues of L. The spectral radius r(L) of a bounded linear
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operator L is defined as the supremum of the magnitudes of elements in the spectrum:

r(L) = sup{|λ| : λ ∈ σ(L)}.

The spectral bound s(L) of a bounded linear operator L is defined as the supremum

real part of magnitudes of elements:

s(L) = sup{Rλ : λ ∈ σ(L)}.

Definition 2.3.3. Let X be a Banach space, K ⊂ X be a cone with K 6= {0}, and B
be a resolvent-positive and closed operator. s(B) is called the principal eigenvalue if

there exists some x ∈ K such that Bx = s(B)x.

Since the second equation of system (2.1) has no diffusion term, the solution maps

of that lose the compactness. To overcome this difficulty, we introduce the Kuratowski

measure of noncompactness κ on X:

κ(D) := inf{r : D has a finite cover of diameter r}

for any bounded subset D of X. We set κ(D) = +∞ whenever D is unbounded. It is

easy to see that D is precompact if and only if κ(D) = 0.

Linearizing system (2.1) at E0 = (0, 0), we get the following linear system:
∂
∂t
M = ∂2

∂x2
M − v ∂

∂x
M + γ(x)

k(x)
A− µ1(x)M, x ∈ (0, L), t > 0,

∂
∂t
A = k(x)M − (µ2(x) + γ(x))A, x ∈ (0, L), t > 0,

∂
∂x
M(0, t) = ∂

∂x
M(L, t) = 0, t > 0.

(2.4)

We substitute M(x, t) = eλtφ1(x) and A(x, t) = eλtφ2(x) into (2.4) to obtain the

following eigenvalue problem:
λφ1(x) = φ′′1(x)− vφ′1(x) + γ(x)

k(x)
φ2(x)− µ1(x)φ1(x), x ∈ (0, L),

λφ2(x) = k(x)φ1(x)− (µ2(x) + γ(x))φ2(x), x ∈ (0, L),

∂
∂x
φ1(0) = ∂

∂x
φ1(L) = ∂

∂x
φ2(0) = ∂

∂x
φ2(L) = 0.

(2.5)
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Let Φ(t) be a C0 semigroup on X of (2.4), and its generator B can be written as

Bψ :=

(
∂2

∂x2
ψ1 − v(·) ∂

∂x
ψ1 − µ1(·)ψ1 + γ(·)

k(·)ψ2,

k(·)ψ1 − [µ2(·) + γ(·)]ψ2

)
, ∀ψ = (ψ1, ψ2)T ∈ X.

It then follows that B is a closed and resolvent-positive operator (see [30, Theorem

3.12]). Let s(B) be the spectral bound of B and r(Φ(t)) be spectral radius of the

linear operator Φ(t). Then we have the following two results.

Lemma 2.3.1. r(Φ(t)) = es(B)t for any t ≥ 0.

Proof. The proof is essentially the same as that of [23, Lemma 3.1]. For complete-

ness, here we provide the details. Let ω(Φ) be the exponential growth bound of the

semigroup Φ(t). It follows from [30, Formula (3.4)] that ω(Φ) = lnr(Φ(t0))
t0

for any

t0 > 0. Moreover, [30, Theorem 3.14(iv)] implies that ω(Φ) = s(B). Thus, we have

r(Φ(t0)) = es(B)t0 for any t0 > 0.

Lemma 2.3.2. If s(B) ≥ 0, then λ∗:=s(B) is the principal eigenvalue of system (2.5)

with a positive eigenfunction.

Proof. Let T̃1(t) be the analytic semigroup on C([0, L],R) generated by

∂

∂t
M =

∂2

∂x2
M − v ∂

∂x
M − µ1(x)M, x ∈ (0, L), t > 0,

subject to the Neumann boundary condition ∂
∂x
M(0, t) = ∂

∂x
M(L, t) = 0, t > 0,.

Let T̃2(t) be a family of bounded linear operators on C([0, L],R) define by T̃2(t)ϕ2 =

e−(µ2(·)+γ(·))tϕ2. For any given t ≥ 0, define a linear operator P (t) and a linear Q(t)

on X by

P (t)ϕ := (0, T̃2(t)ϕ2)T , ∀ϕ = (ϕ1, ϕ2)T ∈ X,

and

Q(t)ϕ :=

(
M(·, t, ϕ), k(·)

∫ t

0

e−(µ2(·)+γ)(t−s)M(·, s, ϕ) ds

)T
, ∀ϕ = (ϕ1, ϕ2)T ∈ X,

where

M(·, t, ϕ) = T̃1(t)ϕ1 +

∫ t

0

T̃1(t− s)
[
γ(·)
k(·)

A(·, s, ϕ)

]
ds.
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It is easy to see that

Φ(t)ϕ = P (t)ϕ+Q(t)ϕ, ∀ϕ ∈ X, t ≥ 0.

Since

‖P (t)ϕ‖ ≤
∥∥∥T̃2(t)ϕ2

∥∥∥ ≤ e−(µ2(·)+γ(·))tϕ2 ≤ e−(µ2(·)+γ(·))tϕ,

we have ‖P (t)‖ ≤ e−(µ2(·)+γ(·))t. By the boundedness of Φ(t) and the compactness of

T̃1(t) for t > 0, it follows that Q(t) : X → X is compact for each t > 0. For any

bounded set B0 in X, there holds κ(Q(t)B0) = 0 since Q(t)B0 is precompact, and

consequently,

κ(Φ(t)B0) ≤ κ(P (t)B0) + κ(Q(t)B0) ≤ ‖P (t)‖κ(B0) ≤ e−(µ2(·)+γ(·))tκ(B0), ∀t > 0.

That is, Φ(t) is κ-contraction on X for each t > 0. Note that

re(Φ(t)) ≤ e−(µ2(·)+γ(·))t < 1 ≤ es(B)t = r(Φ(t)), ∀t > 0,

where re(Φ(t)) and r(Φ(t)) represent the essential spectral radius and the spectral

radius of the operator Φ(t), respectively. This inequality shows that the essential

spectral radius is strictly less than the spectral radius. By a generalized Krein-Rutman

theorem (see, e.g., [22, Corollary 2.2] or [16, Appendix A]), s(B) is the principal

eigenvalue of system (2.5).

In the following, we adopt the idea of next geneation operators to define the basic

reproduction ratio. Let S(t) : X → X be the C0 semigroup generated by the following

system:  ∂
∂t
M = ∂2

∂x2
M − v ∂

∂x
M − µ1(x)M, x ∈ (0, L), t > 0,

∂
∂t
A = −(µ2(x) + γ(x))A, x ∈ (0, L), t > 0,

(2.6)

subject to the Neumann boundary condition ∂
∂x
M(0, t) = ∂

∂x
M(L, t) = 0,∀t > 0.

Define F (x) =

 0
γ(x)

k(x)

k(x) 0

 and S(t)ϕ is the distribution of population under the

influence of mobility and mortality.
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Let L := X → X be defined by

L(ϕ)(x) =

∫ +∞

0

F (x)[S(t)ϕ](x) dt.

It then follows that L(ϕ)(x) represents the distribution of new total population gen-

erated by initial Aedes aegypti. Following [36], we define the spectral radius of L as

the basic reproduction ratio for system (2.1), that is,

R0 := r(L).

By [36, Theorem 3.1], we have the following observation.

Lemma 2.3.3. R0 − 1 has the same sign as λ∗.

Define the solution semiflow Ψ(t) : X → X, t ≥ 0 by:

Ψ(t)ψ = u(·, t, ψ), ∀t ≥ 0,

where u(·, t, ψ) is the unique solution of system (2.1) with u(·, 0, ψ) = ψ ∈ X. By

Lemma 2.2.1, we can easily see that XΛ is a positively invariant set for Ψ(t), that is,

for any ψ ∈ XΛ, there holds Ψ(t)ψ ∈ XΛ, ∀t ≥ 0.

Lemma 2.3.4. The solution semiflow Ψ(t) is κ-contracting in the sense that

lim
t→∞

κ(Ψ(t)D) = 0

for any bounded set D ⊂ XΛ.

Proof. Let g = (g1, g2) be defined as g1(x,A,M) = γ(x)
k(x)

A(1−M)− µ1(x)M, ∀x ∈ [0, L]

g2(x,A,M) = k(x)(1− A)M − (µ2(x) + γ(x))A, ∀x ∈ [0, L].
(2.7)

It is easy to see that there exists a constant r̂ = min(µ2(x) + γ(x)) > 0, x ∈ [0, L]

such that

∂g2(x,A,M)

∂A
= −k(x)M−(µ2(x)+γ(x)) ≤ −(µ2(x)+γ(x)) ≤ −r̂, ∀x ∈ [0, L]. (2.8)
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By [14, Lemma 4.1], it follows that Ψ(t) is asymptotically compact on D in the sense

that for any sequences ϕn ∈ D and tn →∞, there exist subsequences ϕni
and tni

→∞
such that Ψ(tni

)ϕni
converges in X as i→∞. By [26, Lemma 23.1(2)], it follows that

the omega-limit set ω(D) of D is nonempty, compact and invariant in XΛ, and ω(D)

attracts D. In view of [20, Lemma 2.1(b)], we have

κ(Ψ(t)D) ≤ κ(ω(D)) + δ(Ψ(t)D, ω(D))→ 0 as t→∞,

where

δ(Ψ(t)D, ω(D)) := sup
y∈Ψ(t)(D)

d(y, ω(D)), and d(y, ω(D)) := inf
z∈ω(D)

d(y, z).

This completes the proof.

Recall that a square matrix is said to be cooperative if its off-diagonal elements

are nonnegative, and irreducible if it is not similar, via a permutation, to a block

upper triangular matrix.

Now we are in a position to prove the main result of this chapter.

Theorem 2.3.1. The following statements are valid:

(i) If R0 ≤ 1, then E0 := (0, 0) is globally asymptotically stable for system (2.1) in

X+.

(ii) If R0 > 1, then system (2.1) has a unique positive steady state E∗ := (M∗, A∗)

and E∗ is globally asymptotically stable for system (2.1) in X+\{0}.

Proof. Without loss of generality, we assume that ψ ∈ XΛ due to Lemma 2.2.2. Let

g = (g1, g2) be defined as in (2.7), and let

X̃Λ := {(ψ1, ψ2)T ∈ X : 0 < ψ1(x) < 1, 0 < ψ2(x) < 1,∀x ∈ [0, L]}.

Then the Jacobi matrix of g(x, ψ1, ψ2) with respect to (ψ1, ψ2) is cooperative and

irreducible at any point in X̃Λ. Define an operator G on XΛ by

[G(ψ)](x) := g(x, ψ1(x), ψ2(x)), ∀x ∈ [0, L], ψ = (ψ1, ψ2)T ∈ XΛ.
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It follows that G is strictly subhomogeneous on XΛ in the sense that G(sψ) > sG(ψ)

for any 0 < s < 1 and ψ ∈ XΛ with ψ � 0. By the arguments similiar to those in the

proof of [27, Theorem 7.4.1] and [11, Theorem 2.2] respectively, we see that solution

map Ψ(t) is strongly monotone and strictly subhomogenous on XΛ for each t > 0.

In the case where R0 < 1, Lemma 2.3.3 implies that s(B) < 0. By [30, Theorem

3.14], we have ω(Φ) = s(B) < 0. In view of the definition of ω(Φ), it follows that

limt→∞ ‖Φ(t)‖ = 0. By the comparison principle, we have

Ψ(t)ψ ≤ Φ(t)ψ, ∀t ≥ 0, ψ ∈ XΛ.

This implies that E0 is globally attractive in X+. By the continous-time version

of [39, Lemma 2.2.1], E0 is Liapunov stable, and hence, E0 is globally asymptotically

stable for system (2.1) in X+.

In the case where R0 ≥ 1, Lemma 2.3.3 implies that s(B) ≥ 0. For any given

t0 > 0, Ψ(t0) is strongly monotone and strictly subhomogenous on XΛ, Ψ(t0)E0 = E0

and the Fréchet derivative D[Ψ(t0)](E0) = Φ(t0). In view of Lemma 2.3.2, we easily

see that r(Φ(t0)) is a positive eigenvalue of Φ(t0) and r(Φ(t0)) = es(B)t0 ≥ 1.

If R0 = 1, then r(Φ(t0)) = 1, and hence, [39, Theorem 2.3.4(a) and Remark 2.1.4]

imply that every forward orbit for the map Ψ(t0) in XΛ converges to E0.

If R0 > 1, then r(Φ(t0)) > 1. By [39, Theorem 2.3.4(b) and Remark 2.1.4],

it follows that there exists a unique fixed point E∗ � 0 of Ψ(t0) in XΛ such that

every forward orbit for the map Ψ(t0) in XΛ\{0} converges to E∗. For any t ≥ 0,

Ψ(t)E∗ = Ψ(t)Ψ(t0)E∗ = Ψ(t0)Ψ(t)E∗, and hence, Ψ(t)E∗ is also a fixed point of

Ψ(t0). By the uniqueness of the positive fixed point for Ψ(t0), we have Ψ(t)E∗ = E∗

for all t ≥ 0. Thus, E∗ is a steady state of system (2.1) in XΛ and

lim
t→∞
‖Ψ(t)ψ − E∗‖ = lim

t→∞
‖Ψ(t)ψ −Ψ(t)E∗‖ = 0, ∀ψ ∈ XΛ\{0}.

Again by the continous-time version of [39, Lemma 2.2.1], we see that E∗ is globally

asymptotically stable for system (2.1) in X+\{0}.



27

2.4 Numerical simulations

In this section, we study the relation between the basic reproduction number ratio

R0 and the coefficient of the diffusion term d via numerical simulations.

Example 2.4.1. Let L = 1, we numerically approximate R0 for (2.4). Most param-

eters are taken from [28]: ν=0.08164, γ=0.25, k=0.00666, µ2=0.000333. We first

consider µ1 = 0.00133[1 − cos(πx)] where x ∈ [0, 1] and µ2 = 0.000333. Then we

choose µ1 = 0.00133 and µ2 = 0.000333(1 − cos(πx)). Different trends of R0 in 2D

are observed in Figure 2.1. It shows that R0 is a decreasing function with respect to

d.
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Figure 2.1: Relationship between R0(a, b) and the coefficient d under 2 different
scenarios: (a) µ1 = 0.00133[1 − cos(πx)] where x ∈ [0, 1] and µ2 = 0.000333; (b)
µ1 = 0.00133 and µ2 = 0.000333(1− cos(πx)).

Example 2.4.2. In this example, we present long-term behavior numerical analyses

based on the parameter values from [28]. Firstly, let us choose the following parameter

values and the others stay the same as above: ν = 0.08164, γ = 0.25, k = 0.00666,

µ1 = 0.00133, µ2 = 0.000333. We numerically compute the basic reproduction ratios

and obtain R0 = 27.4022 > 1. Setting the initial values as A0(x) = M0(x) = 1.

The long-term behaviors of M and A are shown in Figure 2.2(a)(b). Then we choose

µ1 = 0.133, µ2 = 0.0333 and other parameters are the same as above, we obtain
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R0 = 0.5678 < 1. The long-term behaviors of M and A are shown in Figure2.2(c)(d),

which is coincident with Theorem 2.3.

(a) (b)

(c) (d)

Figure 2.2: Long term behaviors of of two sub-populations in system (2.1) when
R0 = 0.3364 and R0 = 3.8581



Chapter 3

Summary and future works

In this chapter, we first briefly summarize the main results in the thesis, and then

present some possible future works.

3.1 Summary

In this thesis, we have studied the R0 properties and the global dynamics for two

population models. In Chapter 1, we discussed the relationship between the basic

reproduction ratio and the coefficients representing spatial heterogeneity. We used the

variational formula ofR0 to explore the effect of the spatial heterogeneity onR0. From

Theorems 1.2.4 and 1.2.5, we see that R0 can be monotone or non-monotone with

the increasing spatial heterogeneity. We also computed R0 numerically to investigate

these influences. The long term behavior of solutions are simulated for two cases

R0 < 1 and R0 > 1, respectively. Biologically, we should take some measures to make

R0 < 1 so that the disease transmission can be controlled.

In Chapter 2, we established the threshold type result on the global stability

for system (2.1) in terms of R0. To analyse the long term behavior of two sub-

populations, we adopted the idea of next generation operators to define the basic

reproduction ratio. Although the solution maps are not compact, we are able to

prove that the solution semiflow is asymptotically compact. From Theorem 2.3.1,

we see that if R0 ≤ 1, E0 := (0, 0) is globally asymptotically stable; while R0 > 1,

system (2.1) has an unique positive steady state E∗ := (M∗, A∗) and E∗ is globally
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asymptotically stable for system (2.1). This indicates that R0 is a threshold value to

determine whether the population goes extinct or persists uniformly.

3.2 Future works

Related to the projects in this thesis, there are some interesting but challenging prob-

lems for future investigation.

In Chapter 1, we assumed that L is symmetric. However, it seems that the

same result still holds true when L is asymmetric (see Figure 1.2). This motivates us

to further prove it analytically. We may also consider the global dynamics and the

monotonicity of R0 for the model system in an environment with seasonality. In such

a case, the coefficients in system (1.1) depend on both x and t and are ω-periodic in

t for some real number ω > 0. This gives rise to a time-periodic version of system

(1.1).

We may study travelling waves and spreading properties of solutions for system

(2.1) in the case where the spatial variable x changes in the real line R by appealing to

the theory developed in [19]. In addition, a possible extension of this spatial model is

to replace the Laplacian term with a non-local dispersal one. As such, we should first

study an associated principal eigenvalue problem with nonlocal dispersal and then

discuss the global dynamics in terms of R0.
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