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ABSTRACT 

It is crucial to obtain a better understanding of fluid-fluid and solid-fluid interactions with several 

applications in science and engineering disciplines. Associating fluids such as water, alcohols, 

asphaltene might exist in many processes. Modeling associating fluids to explore phase 

equilibrium behaviors is required for proper design, operation, and optimization of various 

chemical and energy processes. Pseudopotential lattice Boltzmann method (LBM) can be a 

promising and capable mesoscopic approach to study phase transition and thermodynamic 

behaviors of complex fluid systems. Results of integrating the cubic equations of state (EOSs) with 

LBM showed a considerable deviation from experimental data for associating fluids. Cubic-plus-

association (CPA) EOS is utilized in the LBM to increase the accuracy of modeling associating 

fluids. A global optimization approach is applied to determine the optimum association parameters 

of CPA EOS for water and primary alcohols in the lattice units. Maxwell equal area construction 

is used to verify the thermodynamic consistency. By increasing the isotropy order of gradient 

operator, the spurious velocities are decreased, and an extended form of CPA EOS is introduced 

to find proper initial densities, which increase the stabilities at low reduced temperatures.  

Simulating fluid flow at high Reynolds number is another aspect of an LBM study that needs 

further improvement. In fluid flow in porous media, specifically at tight gas reservoirs, a high flow 

rate might happen at pore throat. Therefore, to increase the stability of the model at high Reynolds 

number, the central moments collision operator is implemented in the LBM. The advantages of 

central moments collision operator are shown by comparing with multi relaxation time (MRT) 

collision operator in the double shear layers test. It is found that using a higher order of isotropy 

in the gradient operator can lead to a 34% reduction in spurious velocities. From the 

thermodynamic consistency point of view, it is concluded that collision operators can also have an 
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impact on the consistency of the model. Furthermore, the model validation is performed by 

observing a straight line in the Laplace law test. 

Surface wettability is known as an important concept to achieve a better understanding of fluid 

flow and distribution in both porous and non-porous systems. Improving the solid-fluid interaction 

can help to have a better understanding of thermodynamics of curved interfaces. The contact angle 

is an important parameter to study the multiphase fluid flow in various systems such as porous 

media and membranes.  It helps to design better production, separation, treatment, and reaction 

processes in different applications. In order to increase the accuracy and reliability of the model 

for simulation of the surface wettability and absorption, a new solid-fluid interaction in the 

pseudopotential approach is introduced. Usually, the surface wettability is reported by the contact 

angle, which is measured by fitting a circle on the drop. Because the circle is a constant curvature 

shape, it is not suitable to consider the disjoining pressure. A new strategy is presented based on 

the Smoothing Splines to measure the contact angle without considering a constant curvature 

shape of the interface profile. The new solid-fluid interaction exhibits the capability of simulating 

extreme non-wetting surfaces without detaching the drop. The probability histogram of the density 

domain appears to be a reliable tool to measure the phase density in the presence of a surface.  

The results of the current research have a wide range of applications in energy and environment, 

such as simulation of fluid flow in porous systems (e.g., shale reservoirs and membranes). Pores 

and fractures are large in conventional permeable media and pressure-drive convective flow is 

applicable in the framework of continuum flow. Shale reservoir have fine grains and pores in the 

range on nanometer where fluid molecular distribution is inhomogeneous and surface adsorption 

may be significant. Coupling the introduced method with nucleation theory provide a powerful 

tool to simulate asphaltene precipitation in the porous media.  The presence of water component 
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as an associating fluid in some biological processes such as blood coagulation makes the presented 

model an effective tool to simulate those processes.   
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The lattice gas automaton (LGA) can be considered as the roots of the Lattice Boltzmann method 

(LBM) [1-4]. Simple cellular automata method was systematically studied by Wolfram; this led  

the first application in fluid cases [5]. This study resulted to the first technical paper that proposed 

a lattice gas cellular automaton (LGCA) for the N–S equations [6]. This method has been employed 

as an effective alternative to simulate fluid flow behavior and numerically solve nonlinear 

equations.  LBM has been used in a wide range of engineering applications such as single-phase 

flow [7-9], multiphase flow [10-13], the turbulent regime in various transport phenomena [14-18], 

phase-change heat transfer [12, 19], and solving nonlinear partial differential equations (NPDEs) 

including convection-diffusion equations [20-26]. LBM is a powerful tool in the modeling of 

interface phenomena because of its kinetic basis [27-29]. In spite of the molecular dynamic kinetic 

origins of LBM, which is more fundamental compared to the continuum approaches, LBM is 

efficient in recovering the traditional macroscopic scale continuity and Navier–Stokes (N–S) 

equations. LBM does not require mesh movement and capable of being computed parallel and 

locally. Furthermore, handling different boundary conditions is possible with LBM.  

However, two-phase/multiphase LBM classifications can be different based on different aspects 

such as methodology, structure, limitations and capabilities, and application [12]; however, it can 

be generally categorized in four groups: color-gradient [30, 31], pseudopotential [32, 33], free-

energy [34, 35], and mean-field [36]. The pseudopotential LBM approach, also known as Shan-

Chen (SC) approach, has received significant attention among researchers working on multiphase 

LBM models due to its simplicity in implementing and acceptable performance in the computation 

[30-35, 37]. The pseudopotential approach does not require other numerical methods to track and 

capture the phase segregation interfaces because of its particle interaction considerations. 

However, high spurious velocities and thermodynamic inconsistency are still the main challenges 
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in employing the pseudopotential approach. Attaining high-density ratios, decreasing spurious 

velocity, increasing thermodynamic consistency, and increasing the Reynolds number/decreasing 

viscosity should be handled simultaneously in the pseudopotential approach. Thermodynamic 

inconsistency is tackled by introducing an effective forcing scheme [38] and new pseudopotential 

forms [39]. The multi-range pseudopotential, which is a combination of nearest and next-nearest 

neighbor interactions, was proposed by Sbragaglia et al. [40]. The double attractive 

pseudopotential was introduced by Falcucci et al. [41]. Higher anisotropy order of the gradient 

operator is implemented to overcome high spurious velocities.  

To evaluate fluid-fluid interaction, Yuan and Schaefer employed different cubic and non-cubic 

equations of state (EOSs) in the pseudopotential approach. They assessed LBM's thermodynamic 

consistency by comparing the simulation results of a stationary droplet with Maxwell equal-area. 

Furthermore, they studied the effects of different EOSs on the maximum spurious velocity [42]. 

Finally, they compared the LBM results with experimental data of water; a considerable deviation 

in the liquid phase was noticed. Cubic EOSs such as Soave-Redlich-Kwong (SRK) [43] and Peng-

Robinson (PR) [44] have been broadly applied to study the thermodynamic behaviors of 

hydrocarbon and non-hydrocarbon fluids due to their accuracy and simplicity. Polar components 

may form a stronger bonding in comparison with the physical interactions. Some unusual 

thermodynamic behaviors such as reverse density trend during solidification, high liquid density, 

and high boiling point are observed in the presence of fluids with hydrogen bonding; these 

phenomena may not be fully explored (and justified) by cubic EOSs [45]. Water as an associating 

component may exist in different fluid mixtures such as petroleum reservoir fluids in various forms 

such as injection fluids and connate water. As another example, asphaltene that might contain a 

group of complex components may form aggregates due to the association forces. To consider the 
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association forces in associating fluids, the cubic plus association (CPA) EOS was introduced by 

Kontogeorgis et al. [46]. Both physical and association parts are included in the CPA EOS. In the 

absence of associating components, CPA turns to the cubic EOS. The CPA EOS has been widely 

used to study the thermodynamic conditions of complex reservoir fluids. For instance, Li and 

Firoozabadi presented a generalized approach based on CPA EOS to evaluate the amount of 

asphaltene precipitation [47-49]. For further details on CPA EOS, a general review of the CPA 

EOS is presented by Kontogeorgis et al. [45, 50].     

 Collision and streaming are the major steps of LBM simulation. Single relaxation time, also 

known as Bhatnagar Gross and Krook (BGK), is a common collision operator. This operator 

applies all the populations to relax to an equilibrium state at the same rate [51]. The BGK collision 

operator is unstable at high-velocity gradient cases because of non-hydrodynamic ghost modes. 

For decomposing the collision operator as well as raw moments, the multiple-relaxation-time 

(MRT) collision operator is introduced to extend the range of stable Reynolds number. These 

moments are mapped to different hydrodynamic parameters and their fluxes which can relax at 

different time scales. In the BGK collision operator, the Prandtl number is fixed by non-

hydrodynamic damping modes [52] and acoustic waves [53]. One can achieve a model to adjust 

the Prandtl number, improve the numerical stability, and handle the modeling of complex fluids 

such as viscoelastic fluids in the MRT collision operator [54]. The Galilean invariance is trimmed 

because the MRT operator represents the collision in a frame at rest.  

Recently, a novel collision kernel through shifting the lattice directions by the local fluid velocity 

was proposed by Geier et al. [55]. By developing the central moments (CMs) concept, a pyramidal 

hierarchical structure is introduced where the post-collision state of a certain moment at a given 

order depends on lower-order ones. Therefore, this collision operator is also known as “cascaded 
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operator”. Initially, an orthogonal basis of central moments was considered for the cascaded LBM. 

In spite of practical implementation specifically in three-dimensional cases [56] and overwhelming 

analytical formulation, this collision operator leads to a significant stability enhancement in many 

cases such as high Reynolds number flow, fixed and moving immersed boundaries, and convective 

heat transfer enhancement in jet impingement [55, 57-74]. More recently, De Rosis introduced a 

new LBM structure based on the central moments, which is different from the cascaded scheme in 

two aspects. First, the relaxation to the discrete second order shortens the equilibrium population, 

and second, a non-orthogonal basis is adopted. The non-pyramidal structure exhibits interesting 

features in terms of convergence, stability, and accuracy [75, 76].  

In order to evaluate solid-fluid interactions, Martys and Chen initially introduced a solid-fluid (SF) 

interaction force for interaction description [77]. To adjust the contact angle, a factor is needed to 

represent the high-density strength of the SF interaction. At first, this factor was considered to be 

density; it was then supposed to be pseudopotential [27, 78, 79]. To adjust the contact angle, Benzi 

et al. suggested 𝜓(𝑝!) [80]. Li et al. found that the 𝜓-based method is proper for high density ratio 

cases; they introduced a modified version of the pseudopotential-based SF interaction method to 

simulate high contact angle ranges [81]. Based on a geometric method, Hu et al. [82] also proposed 

an approach to predetermine the contact angle [83]. It should be mentioned that their strategy did 

not take into account the adsorbed layer near the solid surface [84]. Furthermore, Colosqui et al. 

used an SF interaction form, which includes repulsive core and attraction tails, to mimic disjoining 

pressure [85]. Additionally, Huang et al. [86] and Bao and Schaefer [87] applied the 

pseudopotential multi-component method to approximate the contact angle.  

Curve fitting techniques are used in most of the aforementioned studies where a circle is fitted on 

the droplet to obtain the contact angle. This method is valid for droplets with a constant curvature; 
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however, the disjoining pressure can change the curvature of the droplet [88]. Wang [89] explained 

the importance of a non-constant curvature profile on the wetting dynamic. The disjoining pressure 

plays an essential role in many processes/phenomena, such as enhanced oil recovery (EOR) 

operations and membrane separation systems [90]. 

As the first phase in this research work, the fluid-fluid interactions are studied in the LBM. The 

CPA EOS is utilized in the LBM system to increase the accuracy of modeling results for 

association fluids. The method is validated by comparing the real data and simulation results with 

the Maxwell equal area construction. The Li et al.’s forcing scheme is used to improve the 

thermodynamic consistency. The fluid dynamic behavior of the model is enhanced by 

implementing the central moments as the collision operator.  

In this research study, the second phase is to investigate the solid-fluid interactions in the LBM. A 

multi-range interaction scheme is introduced to simulate the surface wettability. To increase 

accuracy, a new contact angle measurement is proposed. 

In terms of the applicability of the current study in real-world problems, associating fluids such as 

water can be present in hydrocarbon reservoirs as connate water, injection fluid, and injection 

fluids. Additionally, alcohol and asphaltene are considered as associating fluids. Considering 

associating forces in LBM is essential to study associating fluid flow in porous systems. Using the 

current model and implementing the nucleation theory, one can study the asphaltene precipitation 

in porous media. Furthermore, associating fluid like water can be considered as the main 

component in many biological processes.  

By increasing the model's fluid dynamic stability through the implementation of central moments 

collision operator, the current research becomes more suitable to study fluid flow at high Reynolds 
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number cases. This high potential is more highlighted in many practical cases such as high gas 

flow rate in tight and shale gas reservoirs, particularly at pore throat.  

Improving the surface wettability modeling helps to better understand curved interface 

thermodynamics, which is needed for more accurate estimation of the gas in place, oil in place, 

and gas condensate at low permeable reservoirs. Further highlighting the LBM capability to handle 

complex boundaries, accurate and reliable simulation of the contact angle hysteresis gives a 

promising tool to study multiphase flow in porous media. Capillary pressure plays an essential role 

in multiphase flow in porous systems, which is required to design more efficient corresponding 

processes.  

The main contributions of this research project are given below: 

- A better thermodynamic consistency is achieved by implementing the CPA EOS. 

- Based on the global search optimization method, a new approach is presented to determine 

the association parameters in the lattice units for water and primary alcohols (e.g., methanol 

and 1-butanol). 

- Better agreement between CPA/LBM and experimental data is noticed compared to 

PR/LBM approach. 

- The Li et al.’s forcing scheme is implemented to maintain the computations stable at low 

temperatures (high-density ratio) by improving the thermodynamic consistency. 

- An extended version of CPA EOS is introduced for determination of initial density 

distribution.   
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-  Central moments collision operator is implemented to increase the stability of the model 

and achieve more stable results at high Reynolds number conditions. The results are 

compared to the MRT collision operator while conducting the double sheer layer test.  

- A new SF interaction is proposed to handle both wettability and surface adsorption, leading 

to a more reliable and accurate technique for contact angle determination.   

- A new contact angle measurement is introduced to consider the disjoining pressure as well 

as the non-constant curvature drop shape.  

- The probability histogram is proposed as a tool to determine the phase density in the 

presence of surface absorption. 

- Extreme non-wetting cases can be simulated by the new solid-fluid interaction approach.  

This thesis consists of three manuscripts (either published or under review for publication), as 

listed below: 

The second chapter has been published in the Physical Review E. The impacts of increasing 

isotropy order of gradient operator in fluid-fluid interactions on the stability of the model and 

reduction of the spurious velocity are described in this manuscript. The CPA EOS is implemented 

in the pseudopotential approach of LBM in order to improve the thermodynamic consistency. The 

third chapter has been published in the Journal of Physical Chemistry B. Central moments collision 

operator is used to increase the stability of the model at high Raynolds numbers. The double sheer 

layers test is used to show greater performance of the central moment collision operator compared 

to MRT collision operator. The fourth chapter includes a manuscript that is under review process. 

A new solid-fluid interaction scheme is introduced to mimic both wettability and absorption 

behaviour. The new method can simulate high non-wetting cases. The last chapter covers the 

summary, conclusions, and recommendations for future work. 
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ABSTRACT  

It is crucial to properly describe the associating fluids in terms of phase equilibrium behaviours, 

which are needed for design, operation, and optimization of various chemical and energy 

processes. Pseudopotential lattice Boltzmann method (LBM) appears to be a reliable and efficient 

approach to study thermodynamic behaviours and phase transition of complex fluid systems. 

However, when conventional/cubic equations of state (EOSs) are incorporated into single-

component multiphase LBM, simulation results are not well matched with experimental data. This 

study presents the utilization of cubic-plus-association (CPA) EOS in the LBM structure to obtain 

more accurate modeling results for associating fluids. A new approach based on the global search 

optimization algorithm is introduced to find the optimal association parameters of CPA EOS for 

water and primary alcohols in the lattice units. The thermodynamic consistency is verified by the 

Maxwell construction and is also improved by the Li et al. forcing scheme [1,2]. The spurious 

velocity is reduced with increasing isotropy in the gradient operator. Furthermore, an extended 

version of CPA EOS is introduced, which increases the system stability at low reduced 

temperatures. There is a very good match between the LBM results and experimental data, 

confirming the reliability of the model developed in the present study. The introduced approach 

has potential to be employed for simulating transport phenomena and interfacial characteristics of 

associating fluids in porous systems.  

  

Keywords: Pseudopotential Lattice Boltzmann; Cubic-Plus-Association; Maxwell Construction; 

Global Search Optimization; Spurious Velocity 
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2.1  INTRODUCTION   

Cubic equations of state (EOSs) such as Peng-Robinson (PR) [3] and Soave-Redlich-Kwong 

(SRK) [4] have been extensively used to model thermodynamic behaviours of hydrocarbon and 

non-hydrocarbon fluids, due to their simplicity and accuracy. Unusual thermodynamic behaviors 

are generally experienced for fluids with hydrogen bonds while employing cubic EOSs [5]. Water 

is an associating component, which commonly exists in various mixtures such as petroleum 

reservoir fluids as a connate water and injection fluid. Taking another example, asphaltene 

molecules as a group of complex components may form aggregates due to the association forces. 

The bonding among polar components is stronger than physical interactions. Therefore, the 

associating fluids may not be fully described by cubic EOSs [6]. The cubic plus association (CPA) 

EOS was introduced by Kontogeorgis et al. [7] to consider the association effects in associating 

fluids. The CPA EOS has both physical and association parts so that it turns to the cubic EOS in 

the absence of associating components. In fact, the additional term in the CPA EOS exhibits the 

association impacts, which is originated from the Wertheim’s theory.  This is the same association 

expression that is utilized in the statistical association fluid theory (SAFT) EOS. The CPA EOS 

has been broadly employed to study the thermodynamic conditions of complex reservoir fluids. 

For example, Li and Firoozabadi introduced a generalized strategy based on the CPA EOS to 

determine the amount of asphaltene precipitation [8-10]. A general review on the CPA EOS can 

be found in the works conducted by Kontogeorgis et al. [5, 11].     

On the basis of the Reynolds-averaged Navier–Stokes (RANS) equations, the computational fluid 

dynamics (CFD) has been successfully implemented in several mechanical and chemical 

engineering cases. The applications of large eddy simulation (LES) and direct numerical 

simulation (DNS) approaches have been considerably increased due to the strong computational 
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capability of supercomputers. However, these methods are based on the continuum assumption. 

Hence, they might not be able to capture the micro/mesoscale physics of targeted 

processes/phenomena. On the other hand, some basic modeling particle-based techniques have 

been introduced to provide better physical insights of multiphase flow systems.  For instance, 

quantum molecular simulation (QMS), molecular dynamic simulation (MD), direct simulation 

Monte Carlo (DSMC), and dissipative particle dynamic (DPD) appear to be efficient strategies to 

explore the molecular interactions and forces as well as detailed mechanisms of phenomena 

occurring at micro/mesoscales.  However, these tools dictate high computational costs, which may 

make them unfeasible/uneconomical in practical scenarios.  

Figure 2-1 provides some information such as computational costs, scale, and physical insights 

corresponding to the experimental and modeling techniques with focus on flow in porous media. 

The flow regime is also categorized based on the Knudsen number. As mentioned before, the 

modeling technique are divided into the continuum based and particle-dynamic based modeling 

approaches. Additionally, the experimental techniques and their scale are demonstrated. According 

to Figure 2-1, as the capability of modeling techniques is increased, the computational costs will 

increase.  

The lattice Boltzmann method (LBM) as a mesoscale technique was introduced in the 1980’s [12, 

13]. The LBM is recognized as a strategy based on a particle picture to obtain the macroscopic 

properties of fluids and processes [14]. Over the past three decades, LBM has been used in a variety 

of engineering and science  problems such as single phase flow [15-17], multiphase flow [1, 18-

20], phase-change heat transfer [1, 21], and turbulent regime in various transport phenomena [22-

26].  This method can be also utilized as a tool to solve non-linear partial differential equations 

(PDEs) [27-32].  
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Multiphase/multicomponent interfaces play a crucial role in several soft matters and complex 

fluids. Interfaces are deformable and not known a priori.  Therefore, different techniques have 

been proposed to study the dynamics of interfaces [31]. The methodologies fall into two main 

categories [33]. First, the interface-tracking methods such the front tracking approach [34], which 
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Figure 2-1 Experimental and modeling approaches to investigate transport phenomena in porous media, modified 
after [1, 2]. [QMS is the quantum molecular simulation;  MD is the molecular dynamic simulation;  DSMC refers 

to the direct simulation Monte Carlo; DPD is the dissipative particle dynamic; LBM refers to the lattice Boltzmann 
method; DNS is the direct numerical simulation; LES represents the large eddy simulation;  RANS refers to the 

Reynolds-averaged Navier –Stokes; TEM is the transmission electron microscopy; and SEM denotes the scanning 
electron microscope] (The scale of methods is shown approximately and there are overlaps between different 

methods.). 
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track the interface by marking a cluster of points. The second class is the interface-capturing 

techniques including the level set method [35], volume of fluid method (VOF) [36], and phase 

filled approach [37] that capture the interface by evaluating an order parameter. 

Several multiphase LBM approaches have been developed during the past three decades.  The 

color-gradient method [38, 39], free energy model [40], interface tracking model (also known as 

HCZ technique) [41], and pseudopotential [42] are the most common multiphase LBMs. More 

details about various LBM approaches are provided in the literature [14, 19, 20, 43-47]. Among 

the LBM techniques, the pseudopotential approach (also known as Shan-Chen) has been widely 

used in some research studies due to its mesoscopic feature and computational simplicity [43-48]. 

In this approach, the interactions between molecules are represented by a pseudopotential, which 

is density dependent.  Microscopic molecular short-range interactions between different phases 

are taken into account in this method. Therefore, the interface-capturing or explicit interface-

tracking is not required anymore, which leads to different/unique features for the pseudopotential 

model, compared to most of other multiphase models [19]. The pseudopotential LBM has some 

drawbacks. For instance, it suffers from high spurious velocity as the density ratio of two phases 

is increased near a curved interface. Shan showed that increasing the order of isotropic gradient 

operator can lower the spurious velocity [49]. The mid-range potential can be an alternative to 

enlarge the interface thickness and to decrease the spurious velocity by considering the nearest and 

next nearest-neighbor interactions [50]. Sbragaglia and Shan proposed a consistent form of the 

pseudopotential and compared it with the common form of the pseudopotential function available 

in the literature when a simulation was performed using the 8th order of  isotropy [51]. Khajepor 

et al. introduced a multi-pseudopotential interaction (MPI) scheme to meet the thermodynamic 

consistency by determining the interaction strength pseudopotential constants through a trial and 
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error procedure [52]. Later on, Khajepor and Chen mapped the cubic EOS (e.g., SRK and PR) to 

MPI when the Gou et al.’s forcing scheme was employed [53]. Li et al. introduced a new forcing 

scheme to meet the thermodynamic consistency when the Carnahan-Starling (C-S) EOS was 

utilized in the pseudopotential function [54]. The implemented forcing scheme represents the exact 

Navier-Stokes equations.  

Yuan and Schaefer suggested a method of integrating LBM with different EOSs [55]. They 

evaluated the performance of cubic and non-cubic EOSs and determined the maximum density 

ratio. The coexistence curves of static bubbles, which were simulated by LBM, were compared 

with the coexistence curves obtained from the Maxwell construction.  Kupershtokh et al. obtained 

a higher density ratio by introducing the exact difference method (EDM) force scheme [56]. In the 

Yuan and Schaefer's method, different densities in some specific ranges might give the same 

effective mass, where the physical basis of the original Shan-Chen pseudopotential LBM may be 

lost [55]. Zhang and Tian proposed an extra parameter to avoid this problem. However, it leads to 

a high spurious current and low-density ratio and it does not meet the Galilean invariance [57]. 

Yuan and Schaefer compared the LBM results of different EOSs with the experimental saturated 

density data of water [55]. An appreciable difference between the LBM results and real data was 

reported in the liquid phase region. In this study, we aim to increase the LBM accuracy and 

reliability (or lower the difference between the LBM outputs and experimental data) for associating 

fluids by filling the knowledge gap described above. For this purpose, CPA EOS is incorporated 

into the LBM strategy. It should be noted that the computational cost is lower while using the CPA 

EOS, compared to other EOSs such as perturbed-chain statistical associating fluid theory (PC-

SAFT) that take into account the associating forces.  Further highlighting the main contribution of 

the current study, the parameters of CPA EOS are redefined in the lattice units with the aid of an 
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effective global optimization search method. We also introduce a new perturbation, which 

guarantees the thermodynamic consistency and/or stability of the model within a broad range of 

thermodynamic conditions, particularly at low temperatures. 

The remaining of this chapter is organized as follows. First, a review on CPA EOS, LBM, 

framework of their combination, and the numerical modeling set up are presented in the THEORY 

AND METHODOLOGY section. Then, the model limitations/drawbacks are given in the 

LIMITATIONS section.   The modeling validation, results of numerical runs, and interpretation 

of the results trends are reported in the RESULTS AND DISCUSSION section. In fact, the method 

is validated through comparing the simulation results with the Maxwell equal area construction 

and real data. The thermodynamic consistency is improved by using the Li et al.’s forcing scheme. 

The reliability of the introduced CPA EOS/LBM is also examined where the experimental data of 

water and simulation results are compared. By increasing the order of isotropic gradient operator, 

the method stability at low reduced temperatures is also discussed in this section. Lastly, the main 

outcomes of the current study are listed in the CONCLUSIONS section.  

 

2.2  THEORY AND METHODOLOGY  

First, the structure and theory of LBM and CPA EOS are briefly presented in this section.  We will 

then describe the integration of LBM and CPA EOS as well as the setup and required steps in the 

numerical modeling approach. 

 

Fundamentals of LBM. The Boltzmann equation with the collisional term is expressed as follows 

[58]:  
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where 𝑓(𝐱, 𝐯, 𝑡) denotes the particle distribution function; x refers to the spatial coordination; v is 

the particle velocity; t symbolizes the time; 𝜌 represents the fluid density; and 𝐹 stands for the 

force. The parameter Ω in the right-hand side of Equation (2-1) represents the collision term, which 

describes the particle distribution function due to the particle collisions. The velocity space is 

discretized into a finite set of vectors, {𝑒"}, along with the lattice structure in the space. Thus, the 

destruction density function is discretized {𝑓(𝐱, 𝐯)} in the LBM. The lattice Boltzmann equation 

(LBE) is a nonlinear differential integral equation, which is targeted to be approximated by the 

LBM from the particle point of view [58]. A common way to simplify the collisional integral term 

is using a single relaxation time towards a suitable local equilibrium, which is known as 

Bhatnagar−Gross−Krook (BGK). The LBE can be written in the lattice based on the BKG 

approximation, as given below [58]: 

 ƒ!(𝑥 + 𝒆!𝛿" , 𝑡 + 𝛿") − ƒ!(𝑥, 𝑡) =
𝛿"
t
Mƒ!
#$(𝑥, 𝑡) − ƒ!(𝑥, 𝑡)N + 𝑆! 			𝑖 = 0,1,2, … (2-2) 

in which, 𝑆" introduces the forcing source and 𝑒" symbolizes the discrete velocities. The left hand 

side of Equation (2-2) represents the molecular free-streaming, and the right-hand side of Equation 

(2) signifies the time relaxation (due to collisions) towards the local Maxwellian equilibrium ƒ"
#$ 

on a time scale 𝜏 [14, 43, 47, 59]. The Maxwellian equilibrium function is truncated at the second 

order to recover the correct hydrodynamic balance in the isothermal regime as follows:   

 ƒ%
#$ = w!r! R1 +

𝒖𝒂𝒆𝒊𝒂
𝑐()

+
𝒖𝒂𝒖𝒃: (𝒆𝒊𝒂𝒆𝒊𝒃 − 𝑐+)𝛿,-)

2𝑐(.
V (2-3) 

In Equation (2-3), 𝑐% = 𝑐/√3 denotes the speed of sound where 𝑐 = 𝛿&/𝛿'. 	𝛿' and 𝛿& represent 

the lattice time step and spacing, respectively;	𝛿()	is the Kronecker delta where 𝑎 and 𝑏 designate 
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the Cartesian components; 𝑢	is the velocity; the w"’s symbolize a set of weights, which impose the 

isotropy of the hydrodynamic equations [14, 43, 47].  

Figure 2-2 demonstrates up to 16th order of the isotropy and associated weights in a two- 

dimensional (2D) domain. Grid points indicate a set of velocity fields and the size and color of 

points represent the magnitude of weights. The method of calculating the extent of weights for 

higher orders of isotropy are explained with details  in the references [60] and [50]. One can 

calculate the fluid density 𝜌 and velocity 𝑢 from the first and the second momentum of density 

distribution function as given below: 

 ρ =X ƒ%
!

 (2-4) 

 ρ𝐮 =X ƒ%𝑒!
!	

 (2-5) 

 

Figure 2-2: Different orders of isotropy in 2D domain. The value of weights is determined by size and 

color of grids. 
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Pseudopotential interactions in LBM. In the pseudopotential LBM, a mean-field intraction force 

is employed to mimic the molecular intractions that cause the phase sepration.  Based on the local 

fluid density, an intraction potential (𝜓) is defined and the intraction force is calculated from the 

intractions that lead to phase separation. In the single-component multiphase (SCMP) LBM, the 

interparticle force is given as the summation of the pairwise intractions among a particle at a 

specified lattice site and those at neghboring sites. The interparticle force (Fint) can be defined by 

the following equation: 

 𝑭!0"(𝑥, 𝑡) = −𝐺𝜓(𝑥, 𝑡)X𝜔!𝜓(𝑥 + 𝒆𝒊, 𝑡)𝑒!

$

!12

 (2-6) 

where G is a controlling parameter of the interparticle strength. The intraction force can be 

expanded through the Taylor series as follows [54]: 

 𝑭!0" = −Gc)[𝜓∇𝜓 +
1
2
𝑐)𝜓∇(∇)𝜓) +⋯] (2-7) 

To evaluate the mechanical balance at the interface, the pressure tensor should be determined. The 

following general rule of the force balance is used to obtain the pressure tensor [61]:  

 Σ𝑃. 𝐴 = Σ3𝐹 (2-8) 

For the one-dimensional interface, the analytical expression of the normal pressure tensor (up to 

the second-order derivative) is given below [61]: 

 𝑃0 = 𝑐+)𝜌 +
1
2
𝐺𝑐)𝜓)(𝜌) +

𝐺𝑐.

12
R𝛼 i

𝑑𝜓
𝑑𝑛k

)

+ 𝛽𝜓
𝑑)𝜓
𝑑𝑛)

V (2-9) 

 

In Equation (2-9), 𝛼 = 1 − 3𝑒* and 𝛽 = 1 + 6𝑒*. 𝑒* refers to the fourth-order tensor associated 

with the weights, as defined below [51]: 

 𝑒. =
𝜔4
2
+ 2𝜔) + 8𝜔. + 25𝜔5 + 32𝜔6 +⋯ (2-10) 
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The first two diagonal terms of the pressure tensor for the bulk homogenous phase transition (Pb) 

are obtained by the non-ideal equation of state as follows [55, 62]: 

 𝑃- = 𝑐+)𝜌 +
1
2
𝐺𝑐)𝜓)(𝜌) (2-11) 

Therefore, when the density is known, one can calculate the pressure 𝑃) using the CPA EOS. In 

this method, the association forces will be considered. The magnitude of G for the SCMP case is 

not important as it will be canceled out if the bulk pressure definition is used to determine the 

pseudopotential function (see Equations (2-6) and (2-11)). 𝑃+ should be equal to a constant static 

bulk pressure at the equilibrium, which leads to the following mechanical stability condition [61]: 

 o p𝑝2 − 𝜌𝑐+) −
𝐺𝑐)

2
𝜓)q

𝜓7

𝜓489
𝑑𝑝 = 0	

:"

:#
 (2-12) 

where 𝜖 = −2𝛼/𝛽 ; and 𝜌,  and 𝜌-  stand for the liquid and gas density, respectively. Li et al. 

proposed the following general forcing scheme [54]: 

 𝑆! = 𝜔!𝛿"[
𝐵,𝒆𝒊𝒂
𝑐+)

+
𝐶,-: (𝒆𝒊𝒂𝒆𝒊𝒃 − 𝑐+)𝛿,-)

2𝑐(.
] (2-13) 

where  

  𝐵, = 𝐵#𝐹, ,					𝐶,- = 𝐶#(𝒗𝒃𝐹, + 𝒗𝒂𝐹-) (2-14) 

𝐵# and 𝐶# are the constants, which are determined based on the forcing scheme. Li et al. introduced 

a modified velocity 𝑣., which is defined as 𝑣. = 𝑣 + 𝜎′𝐹/(𝛎𝜓/).   𝛎 = (t− 0.5) stands for the 

kinematic viscosity and 𝜎′ is a constant. In the case of 𝜎′ = 0, the forcing scheme will reduce to 

the Guo et al.’s forcing structure [63]. Hence, implementing Li et al.’s forcing approach improves 

the thermodynamic consistency by adding an extra term to the Navier-Stokes equations, which is 

not dependent on a local quantity.   

Cubic plus association equation of state.  The CPA EOS was introduced by Kontogeorgis et 

al. [7]. This EOS is a combination of a cubic EOS and an association term taken from the Wertheim 
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theory. Originally, the Soave-Redlich-Kwong (SRK) EOS was utilized to describe the physical 

part of the CPA EOS. Firoozabadi used Peng-Robinson (PR) EOS, which is more suitable for 

thermodynamic modeling of hydrocarbon reservoir fluids [6]. The association term considers the 

specific site-site interactions due to hydrogen bonding, which appears in two categories; namely, 

self-association (between the same species) and cross-association (between different species). The 

association term is based on the Wertheim’s first-order thermodynamic perturbation theory (TPT-

1) [64].  The system pressure is represented by the CPA EOS as follows [6]: 

 
P =

RT
v − b

−
𝑎

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)
−
1
2
𝑅𝑇
𝑣 i1 − 𝑣

𝜕𝑙𝑛𝑔
𝜕𝑣 k Σ!𝑥!Σ;!(1 − 𝑋;!),			𝑖

= 1,2, … , 𝑛< 

(2-15) 

where P refers to the pressure; R is the universal gas constant; 𝑇  introduces the absolute 

temperature; 𝑣 is the molar volume; 𝑥 denotes the mole fraction; a and b are the attraction and 

repulsion parameters, respectively; 𝑛0 is the number of components; and 𝐴" stands for the active 

association site. 𝑔 signifies the hard sphere radial distribution function (RDF) and	𝑋1" represents 

the fraction of site A on component 𝑖 that does not form association with other sites, as defined 

below: 

 g»
2 − 𝜂

2(1 − 𝜂)=
				where		𝜂 =

𝑏
4𝑣

 (2-16) 

 X>% =
1

1 + Σ?14
0$ ∑ 𝜌𝑥?𝑋@?Δ;!

@?
@1;,B,…

 (2-17) 

 

in which, 𝜌 = 1/𝑣 refers to the density and Δ1"
23 denotes the self-association strength between sites 

𝐴 and 𝐵, as expressed below: 

 Δ;!
@? = 𝑔 Rexp p

𝜖;%D%
𝑅𝑇

q − 1V 𝑏!?𝛽;%D% (2-18) 
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b%E =

𝑏!+𝑏?
2

 
(2-19) 

 

in which, 𝜖1!4! and 𝛽1!4! introduce the self-association energy and bonding volume parameters, 

respectively.  The association term in Equation (2-15) is derived by Michelsen and Hendriks [65] 

and Hendriks et al. [66] to accelerate the computational process. In this study, we use the four-site 

model (4C) (see panel a of Figure 2-3), which can generate reliable results for highly hydrogen 

bonded substances such as water and glycol [6]. Two A sites are for two oxygen lone pairs and 

two B sites belong to two hydrogen atoms.  According to Huang and Radosz, alcohols can be 

modeled by two-site scheme (2B): one site for both oxygen lone pairs and one for the hydrogen 

atom, as depicted in Figure 2-3 b [67]. 

 

Figure 2-3: Simple sketch of (a) A four- site model (4C) of water molecules and (b) A two-site model 

(2B) of alcohols. 

 

Based on the literature, the attraction, repulsion parameters, and universal gas constant of CPA 

EOS are generally kept at	𝑎 = 2/49, 𝑏 = 2/21, and 𝑅 = 1, respectively, in the lattice units [52, 

55]. However, the reduced properties should be the same, while the units are used based on the 
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law of corresponding states. Therefore, the critical properties of the fluid should be updated based 

on the parameters selected for CPA EOS in the lattice units. For a single component system, the 

critical condition is defined as follows [6]: 

 
𝑑𝑃
𝑑𝑣

|F1F$ = 0 (2-20) 

and 

 𝑑)𝑃
𝑑𝑣)

|F1F$ = 0 (2-21) 

where 𝑇0 represents the critical temperature. The explicit form of the first and second derivations 

of pressure is obtained by the MAPLE software [68]. The nonlinear system of equations (e.g., 

Equations (2-20) and (2-21)) is solved by a MATLAB intrinsic solver (e.g., fzero). Initial guesses 

are selected based on the roots of the PR EOS [69]. When the critical properties are calculated, the 

reduced properties can be determined in the lattice units. Thus, it is possible to make a comparison 

between the experimental data and results of CPA EOA in the lattice units. To determine the 

association parameters, the experimental data of coexistence densities and saturation pressures are 

used (see Figure 2-5). Coexistence densities are calculated based on the Maxwell construction (see 

Appendix A). The objective function is defined as follows:  

 𝐹 = 𝑅+$G,H#I M𝑃H+,"
#3J, 𝑃H+,"

<,KN + 𝑅+$G,H#I(𝜌H+,"
#3J, 𝜌H+,"

<,K) (2-22) 

 

in which, superscripts	𝑠𝑎𝑡, 𝑒𝑥𝑝, and 𝑐𝑎𝑙 denote the saturation condition, experimental data, and 

calculated results, respectively. A global search optimization is performed to determine the self-

association energy (𝜖) and bonding volume (	𝛽)	parameters. 
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The global search optimization method is selected to avoid being stuck in probable local optimum 

points. More details about the global search optimization are provided by Ugray et al. [70]. 

 

Customized CPA EOS. Generally, the highest numerical errors happen within the sharp reigns of 

the interfaces, which fall in the unstable branch of the EOS where ]78
79
^
:
> 0	(e.g., between the 

spinodal points). The unstable branch can be modified as it is experimentally unapproachable. As 

Colosqui et al. reported, increasing the slope of the unstable branch increases the internal forces 

towards the liquid side of spinodal and decreases the internal forces towards the vapor zone [71]. 

Input parameters of 
CPA EOS:	𝑎,	𝑏,	&	𝜔   

Use Equations (2-15) and 
(16): Critical properties    

Maxwell construction: 
Saturated densities and 

pressures 

Employ objective 
function: 𝐹 

Experimental 
saturated densities 
and pressure data  

Obtain optimum 𝜖 
and 𝛽 

Global search 
optimization  

Figure 2-4: Workflow for association parameters optimization. 
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However, their proposed piecewise linear EOS had a discontinuity in the first derivative, which is 

a serious flaw in the numerical discretization [71]. In this study, we propose a new perturbation in 

the unstable branch, which meets the continuity of the first derivative and increases the slope at 

the same time, as expressed below: 

 𝑃𝑪𝒖𝒔𝒕𝒐𝒎𝒊𝒛𝒆𝒅 = 𝑃UV; + 𝛿𝑃 (2-23) 

where 𝛿𝑃 is a first derivative continuous function as follows: 

 

 𝛿𝑃 =

⎩
⎪⎪
⎨

⎪⎪
⎧

0																																																																																																		𝑖𝑓	𝑣 < 𝑣K

𝜅 psin p
𝜋(𝑣 − 𝑣K)

𝐿4
+
3𝜋
2 q

+ 1q 																																																	𝑖𝑓	𝑣K < 𝑣 < 𝑣W

𝜅 psin p
𝜋(𝑣 − 𝑣K)

𝐿)
+
𝜋
2q + 1q 																																																						𝑖𝑓	𝑣W < 𝑣 < 𝑣X

0																																																																																																𝑖𝑓	𝑣X < 𝑣

 (2-24) 

 

In Equation (2-24), 𝑣; = 𝑣- − 𝛼(𝑣- − 𝑣,). 𝑣, and 𝑣- stand for the spinodal molar volumes on the 

liquid and gas sides, respectively. The perturbation is determined by a pair of (𝛼, 𝜅) uniquely.     

  

Numerical modeling setup. In this part, the numerical setup is explained, and a new convergence 

condition is introduced. A 100×100 lattice and periodical boundary conditions are used in the 

numerical bubble tests to study the single component multiphase (SCMP) LBM. First, a droplet 

with a radius of 𝑅"+" = 30 is placed at the center of the domain. Inside the droplet is the liquid 

phase and the vapor phase is placed outside the droplet. The initial densities are selected based on 

the Maxwell construction results (see Appendix A). The initial density distribution is defined by 

the following function: 



 33 

 𝜌(𝑥, 𝑦) =
𝜌K!$G!I + 𝜌X,+

2
−
𝜌K!$G!I − 𝜌X,+

2
�tanh�

2�(𝑥 − 𝑥4)) − (𝑦 − 𝑦4)) − 𝑅2		
𝑤

��	 (2-25) 

 

In Equation (2-25), w introduces the initial interface thickness and 𝑅< refers to the initial radius. 

Each test is continued until the steady state condition is established. The maximum magnitude of 

spurious velocity, |𝑢=|;(&, is selected as the convergence condition to ensure that the steady state 

condition is reached. As shown in Figure 2-5, the spurious current exhibits high fluctuations. The 

simulation is performed at 𝑇> = 0.8, where the calculated gas and liquid densities by Maxwell 

construction are𝜌-(= = 0.2327 and 𝜌,"$?"@ = 7.3347, respectively. Yuan and Scheafer performed 

all runs up to 30000 time steps when the relative difference of spurious velocity at the time step 𝑡 

and  𝑡 − 1000 is less than 106A [55].  Huang et al. proposed a convergence criterion by evaluating 

the relative difference of the entire domain velocity between 2000 time steps [72]. In this study, 

the relative difference of |𝑢;(&= |  is calculated every 100 time steps to avoid unnecessary 

computational process/calculations and local extremums (due to the highly fluctuation behaviours 

at the maximum magnitude of the spurious velocity).  When the maximum spurious velocity 

becomes on the order of 106A for more than 10 times constantly, the system is assumed to be at 

the equilibrium state. The animations of density and pressure variations during different time steps 

can visualize and identify this specific condition.  
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Figure 2-5: Fluctuations of the maximum spurious velocity at different time steps. 

 

2.3 LIMITATIONS  

The proposed single-relaxation time collision (BGK) is appropriate for low Reynolds number 

(particularly stationary) cases. To extend the model to high Reynolds number conditions, the multi-

relaxation time (MRT) collision scheme is proposed [73, 74].    

In the CPA EOS, it is assumed that the activity of each bonding site is independent of other bonding 

sites in the molecule, implying negligence of the steric hindrance and cooperativity effects. The 

polarity and quadrupolar interactions are also disregarded in the proposed model [75, 76].  
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2.4  RESULTS AND DISCUSSION  

In this section, the consistency of the CPA EOS case is examined. Simulation outputs of the CPA 

and PR EOSs are presented and then a comparison between the modeling results and real saturation 

data is made.  The Li et al.’s forcing scheme is employed to achieve an improvement in 

thermodynamic consistency and spurious velocity distribution. The discrete gradient operator with 

a higher isotropic order is used to lower the spurious velocity, while the modified CPA EOS is 

implemented to determine the initial density.  

The effectiveness/reliability of the proposed model is assessed by comparison of the LBM 

simulation results with the outputs of the Maxwell construction approach. Figure 2-6 illustrates 

the coexistence density/reduced temperature curves attained from the Maxwell construction and 

the LBM simulations when utilizing the CPA EOS.  As it is clear from Figure 2-6, an acceptable 

match is achieved for the liquid branch, however the difference between the LBM and Maxwell 

construction results is noticeable for the gas phase.  
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Figure 2-6: Comparison of coexistence curves based on LBM simulations and Maxwell construction. 

 

To explain this considerable deviation, the gas branch is simulated based on both CPA and PR 

EOSs as shown in Figure 2-7 in the semi log-scale where the LBM and Maxwell construction 

strategies are employed. According to Figure 2-7, the difference between the PR/LBM and 

CPA/LBM cases will increase as the temperature decreases. As expected, such a deviation is not 

observed for the PR and CPA EOSs while using the Maxwell construction.  The relative errors 

(|𝜌BCD − 𝜌D0|/𝜌D0), where 𝜌BCD and 𝜌D0 are the gas density calculated from the LBM simulation 

and Maxwell construction, are 3.3612% and 4.4223% at 𝑇> = 0.65		for the gas phase modeled by 

CPA and PR EOSs, respectively. The difference between the mechanical stable results (e.g., LBM 

results) and thermodynamically stable results (e.g., Maxwell results) for the gas phase is due to the 

curved interface of the droplet and/or additional term which is introduced into the macroscopic 
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equations when the velocity shift (or Shan-Chen) forcing scheme is used. Li et al. showed that ϵ 

in Equation (2-12) should be between ϵ=1 and ϵ=2 to obtain a better agreement with the Maxwell 

construction [1]. 

Thus, the thermodynamic inconsistency is tackled through different approaches such as multi-

pseudopotential interaction (MPI) [52, 53] and improved force scheme in multi-relaxation time 

(MRT) LBM to enhance the model reliability [73, 77]. The self tuning EOS is also employed to 

achieve more stable results [71, 78].  

 

Figure 2-7: Comparison between the reduced densities of the gas phase of the coexistence phases 

determined from the LBM simulation and Maxwell construction when PR and CPA EOSs are employed. 

 

Through implementation of the Li et al. forcing scheme, it is expected to improve the 

thermodynamic consistency.  Figure 2-8 illustrates the thermodynamic consistency of the LBM 
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method when CPA EOS is utilized with 𝜎′ = 0.2885 (see Equation (2-13)). As seen in Figure 2-8, 

there is a very good match between the LBM and Maxwell construction outputs. In addition, the 

thermodynamic consistency in the gas phase is improved considerably. However, a small deviation 

in the liquid  phase is noticed. The association parameters of CPA EOS (e.g., 𝜖1!4! and 𝛽1!4!) are 

selected to attain a good match with the experimental data while employing the velocity shifting 

forcing scheme. Therefore, the thermodynamic consistency in liquid phase might decrease slightly 

when the magnitude of 𝜎.is increased to improve the thermodynamic consistency in the gas phase. 

Hence, the parameter 𝜎′ is used in the Li et al. forcing scheme to modify the intraction properties. 

Li et al. proved that the model will be unstable when σ'= 0 (e.g., the Guo et al.’s forcing scheme), 

due to the high thermodynamic inconsistency.  

 

Figure 2-8: Reduced density of both liquid and gas phases versus reduced temperature based on LBM 

simulations and Maxwell construction when the Li et al.’s forcing scheme is employed (comparing to 

Figure 2-6, only forcing scheme is changed). 
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The numerical stability of the integrated CPA / LBM model can be evaluated based on the 

maximum magnitude of the spurious velocity,	|𝑢=|;(&.  Figure 2-9 compares the |𝑢=|;(& trends 

for both CPA/LBM and PR/LBM cases at different reduced temperatures (panel a of Figure 2-9) 

and density ratios (panel b of Figure 2-9). According to Figure 2-9, the value of the spurious 

velocity is increased with decreasing the reduced temperature for both CPA and PR EOSs. The 

lower density ratio does not reveal the lower capability of the CPA/LBM approach that might be 

due to the higher density in the gas phase (see Figure 2-7). The maximum magnitude of spurious 

velocity is not changed considerably when the implemented EOS is switched from PR to CPA, 

since the extent of spurious velocity is mainly affected by the order of isotopy in the gradient 

operator and the forcing scheme.   

 

 

Figure 2-9: Variation of the maximum magnitude of spurious velocity with: (a) reduced temperature and 

(b) density ratio for the CPA and PR EOSs. 
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It should be noted that the results shown in Figure 2-9 are based on the SC forcing scheme (known 

as the velocity shift method). To elaborate the impact of the forcing scheme, the contour map and 

velocity field of a static droplet are depicted in Figure 2-10 for both Li et al. and SC forcing 

schemes when 𝑇/𝑇0 = 0.9 and 𝜏 = 1 . 

 

 

Figure 2-10: Velocity field and contour for a static droplet on the basis of a) Li et al. and b) SC forcing 

schemes. 

 

As shown in Figure 2-10, the Li et al.’s forcing scheme exhibits lower spurious velocities. Based 

on the velosity contour profile, the velocity distribution patterns are also different for these two 

different forcing schemes, implying that the Li et al.’s forcing scheme is able to better demonstrate 

the flow behaviours obtained from the Navier-Stokes equations, compared to the SC forcing 

scheme. Hence, it appears to be a better representation of the isotopy in the LBM discrete gradient 

operator.  

To examine the capability of the CPA /LBM strategy to model the real data, a comparison between 

the experimental data of water and simulation results is made. Figure 2-11 presents the results of 
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the CPA/ LBM simulations for estimation of the liquid phase density, where the SC forcing scheme 

is employed.  As illustrated in Figure 2-11, the CPA EOS offers a greater precision for both phases, 

compared to the PR EOS case. Table 2-1 presents a comparison of the results obtained from both 

CPA and PR EOSs.  According to Table 2-1, CPA has a lower error percentage (e.g., minimum 

error, maximum error, and mean squared error), compared to PR.  As the parameters for the 

association part of the CPA EOS (e.g., 𝜖 and 𝛽) approach zero, the results of the CPA EOS become 

closer to the PR EOS simulation outputs. Therefore, it is vital to determine the associating 

parameters in the lattice units with a high accuracy to attain reliable trends/outcome. As explained 

in the methodology section, the association parameters for water in the lattice units are 𝜖 = 0.1636 

and 	𝛽 = 0.0973 . Table 2-2 summarizes the self-association energy and bonding volume 

parameters for five associating fluids including water, methanol, ethanol, 1-propanol, and 1-

butanol. It is worth noting that the global search optimization is chosen to avoid the local optima, 

though the initial guesses might still affect the final optimal points.  

 

Table 2-1: Error comparison of CPA and PR results of LBM simulation. 

EOS Max error (%)   Min error (%)   Mean squared error 

CPA  76.0435 0.0169 0.0030 

PR  87.8518 0.0546 0.0355 
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Table 2-2: Associating parameters in the lattice units suggested for water and normal alcohols (from 

methanol to 1- butanol) while implementing the global search optimization [a=2/49, b=2/21, and R=1]. 

Compound 𝝎 𝝐𝑨𝑩 𝜷 𝑹𝒔𝒒𝒖𝒂𝒓𝒆𝒅 

Water  0.344 0.1636 0.09730 0.9992 

Methanol  0.565 0.5638 0.0733 0.9984 

Ethanol 0.643 0.6086 0.0727 0.9979 

1-Propanol 0.620 0.5324 0.0877 0.9984 

1-Butanol 0.588 0.5994 0.0828 0.9988 

 

Li et al. concluded that a lower value for the attraction parameter in EOS (𝑎) results in a greater 

stability at lower reduced temperatures [73]. Therefore, the CPA EOS association parameters are 

listed in Table 2-3 for lower values of the attraction parameter. As mentioned earlier, the 4C and 

2B bonding schemes are employed for water and alcohols, respectively.  

 

Figure 2-11: Comparison of the values of saturated water density obtained from experiments and LBM 

strategy based on CPA and PR EOSs. 
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Table 2-3:  Associating parameters in the lattice units for pure compounds such as water and normal 

alcohols (from methanol to 1- butanol) using the global search optimization when b=2/21 and R=1. 

Compound 
𝒂 = 𝟏/𝟒𝟗 𝒂 = 𝟏/𝟗𝟖 

𝝐𝑨𝑩 𝜷 𝑹𝒔𝒒𝒖𝒂𝒓𝒆𝒅 𝝐𝑨𝑩 𝜷 𝑹𝒔𝒒𝒖𝒂𝒓𝒆𝒅 

Water  0.0819 0.0972 0.9992 0.0433 0.0854 0.9992 

Methanol  0.3795 0.0505 0.9983 0.2526 0.0372 0.9983 

Ethanol 0.3730 0.0569 0.9979 0.2561 0.0401 0.9979 

1-Propanol 0.3966 0.0538 0.9983 0.2498 0.0419 0.9983 

1-Butanol 0.4247 0.0537 0.9987 0.2522 0.0451 0.9987 

 

 

Up to now, all LBM results have been obtained based on the 4th order isotropy of the discrete 

gradient operator. As it is known, increasing the isotropy leads to a decrease in the spurious 

velocity [49, 50]. Our plan is to investigate the impact of isotropic order of the discrete gradient 

operator up to 8th order on the simulation outputs. It was found that the system becomes unstable 

due to low interfacial tention at low reduced temperature and/or high density ratio conditions. 

Therefore, an extended version of the CPA EOS is used to determine the initial density distribution.  

Figure 2-12 presents the LBM results using 8th order of isotropy. To obtain the initial density 

distribution funcrion,  (80,0.5) is selected as the pair of input parameters of the extended CPA 

EOS. The Li et al.’s forcing scheme is applied to improve the thermodynamic consistency. 

Considering the same input parameter of the extended model for the entire temperature interval 

can cause high computational costs. Additionally, assuming the same 𝜎′ as an input parameter for 

the Li et al.’s forcing scheme within a broad interval of the reduced temperature leads to an 

appreciable departure from the Maxwell equal area construction (see Figure 2-12). Hence, a smart 
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method can be utilized to choose a suitable pair input parameter for the extended CPA 

EOS,(𝛼, 𝜅),	and the input parameter of Li et al.’s forcing scheme at each tempereture. Such a 

strategy can decrease the computational costs and improve the thermodynamic consistency. 

 

 

Figure 2-12: Coexistence curves results of the LBM simulation and Maxwell equal area construction 

with 8th order of isotropy in the discrete gradient operator. 

 

To study the capillary effect, the simulation runs need to be conducted at different droplet radii. 

The slope of differential pressure between the gas and liquid phases (e.g., capillary pressure) versus 

the inverse of the radius is then related to the interfacial tension (see Equation (A-6)). Figure 2-13 

illustrates the variations of the capillary pressure with the inverse of the droplet radius for water at 

𝑇> = 0.7929. The interfacial tension can be tuned by including the multi-range potential in the 

improved forcing term of MRT LBM [79, 80].  The influence of droplet size can be minimized by 
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the use of self-tuning equation of state [71]. Li and Luo concluded that the droplet size impact on 

the gas phase density can be reduced by increasing the slope of EOS in the vapor phase [78].  

 

Figure 2-13: The pressure difference (Δp) against 1/r for water at 𝑇H = 0.7929. 

 

The same procedure is followed at different reduced temperatures to figure out the 

trend/behaviours of the interfacial tension, 𝜎, with temperature.  The interfacial tension of water 

versus reduced temperature is shown in Figure 2-14.  As it is clear, the interfacial tension results 

attained from LBM simulations follow the same trend/behaviours as the measured values (real 

data). Due to the implemented single range pseudo-potential approach in the current study, the 

interfacial tension cannot be tuned. To address this limitation, multi-range pseudo-potential is 

introduced [81-83].  
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Figure 2-14: Interfacial tension trend versus the reduced temperature in the lattice units for water. 

 

Associating fluids play a crucial rule in different processes/phenomena such as biological 

processes [84], oil production/recovery from hydrocarbon reservoirs [20], energy systems, and 

chemical production. Therefore, development of a reliable LBM approach to simulate the 

thermodynamic characteristics of associating fluids seems vital to better design and operate the 

corresponding processes. The methodology proposed in this research work is appropriate for static 

problems by using the BGK collision scheme.  MRT collision scheme can be an appropriate 

alternative to extend this approach to the cases at high Reynolds number conditions. Also, the 

cascaded model can be used to improve the ability of the LBM for fluid flow and thermal transport 

modeling. The cascaded, which is also known as the central-moment-based lattice Boltzmann 

method (CLBM), is proposed to tackle the numerical instability in the zero-viscosity limit.  This 
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generally happens by an insufficient degree of  Galilean invariance of the relaxation-type lattice 

Boltzmann collision operation [85].     

 

2.5  CONCLUSIONS 

Some fluids associate due to the hydrogen bonding.  This association results in unusual 

thermodynamic behaviors.  In this research work, the CPA EOS is included in the LBM to model 

the thermodynamic behaviors of this type of fluids. The method accuracy is verified with the 

Maxwell construction approach and experimental data. The main conclusions drawn based on the 

study results are listed below: 

• A more reliable stability condition is proposed to decrease the computational costs. 

Furthermore, a better thermodynamic consistency in the gas phase is attained by 

implementing the CPA EOS in the LBM.  

• A new approach based on the global search optimization method is developed to 

determine the association parameters in the lattice units for water and primary alcohols 

(e.g., methanol and 1-butanol). 

• There is a very good agreement between the CPA/LBM results and experimental data, 

while the PR/LBM case is not able to simulate the real thermodynamic behaviours with 

an acceptable accuracy.  

• The thermodynamic consistency is enhanced by employing the Li et al.’s forcing 

scheme. It is also possible to maintain the stability and thermodynamic consistency at 

low reduced temperatures through using higher order of isotropy in the gradient 

operator.   
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• An extended version of CPA EOS is introduced to determine the initial density 

distribution, making the computation faster and more reliable.   

• The interfacial tension of water as a function of the reduced temperature is acceptably 

simulated with the CPA/LBM approach. 
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APPENDIX A2: MAXWELL CONSTRUCTION AND COMPUTATION 

ALGORITHM  

The equality of the Gibbs free energy at the saturation point for a droplet is expressed as follows: 

 𝐺K = 𝐺X (A2-1) 

 𝐴K + 𝑃K𝑣K = 𝐴X + 𝑃X𝑣X (A2-2) 

where 𝐺 and 𝐴 represent the Gibbs and Helmholtz free energies, respectively. For flat interfaces, 

both pressures in the liquid and gas phase are equal to the saturation pressure, as shown below: 

 𝑃K = 𝑃X = 𝑃+," (A2-3) 

Since dT=0 (isotherm condition) at the equilibrium, we can write the following equation: 

 𝐴X − 𝐴K = −∫ 𝑃𝑑𝑣 (A2-4) 

Using Equations (A-2) to (A-4), the saturation coexistence densities can be calculated through 

using the following equation: 
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−o 𝑃𝑑𝑣

]X

]"
= −𝑃+,"(𝑣K − 𝑣X) (A2-5) 

 

To calculate the coexistence volumes/densities, first an initial saturation pressure is guessed. Based 

on the initial guess, the liquid and gas volumes/densities are calculated using an EOS. If the left-

hand side (LHS) is more than the right-hand side (RHS), the pressure for the next loop should be 

increased to obtain the correct value; otherwise, it should be decreased.  This loop will be repeated 

until the relative differences between two loops are very small (10-10).   

The guessed initial pressure should be between the spinodal points where @E
@9
= 0.  Due to the 

nonlinearity of the CPA EOS, the first spinodal point (e.g., with a lower volume) is determined by 

finding the global minimum of CPA EOS. Searching the global minimum is started from the 

repulsion parameter (e.g., b in Equation (2-14)). The second spinodal point, which has a higher 

volume than the first spinodal point, is then determined through finding the global maximum point. 

Searching the global maximum is also commenced from the first spinodal point. The fminsearch 

and fminbnd MATLAB functions are utilized to determine the minimum and maximum spinodal 

points, respectively.  To obtain the roots of CPA EOS, a MATLAB intrinsic solver (e.g., fsolve) is 

employed [69]. The initial guesses for the CPA EOS roots are chosen based on the roots of the PR 

EOS. The procedure on the Maxwell construction is demonstrated in Figure A2-1. 
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𝑅𝐸 < 10!"# 

Eq A-3: 𝐿𝐻𝑆	 > 𝑅𝐻𝑆 

CPA EOS input 
parameters  

fminsearch: The first spinodal 
point with a lower volume, 𝑃F 

 

fminbnd: The second spinodal 
point with a higher volume, 𝑃/ 

 

𝑃 =
(𝑃F + 𝑃/)

2  

CPA EOS roots 

𝑃F = 𝑃 𝑃/ = 𝑃 

Eq A-3: 𝐿𝐻𝑆 < 𝑅𝐻𝑆 

RE= | 𝑳𝑯𝑺𝐀%𝟑)	𝑹𝑯𝑺𝑨%𝟑
𝑳𝑯𝑺𝐀%𝟑

| 

 𝑅𝐸 > 10!"# 

END 

Figure A2-1: Work flow Maxwell construction while utilizing CPA EOS [RE stands for the 

relative error]. 
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When the interface between two phases are curved, the Young-Laplace equation of capillarity 

provides the mechanical equilibrium for a droplet, as given below [86]: 

 𝑃K − 𝑃X = 𝑃< =
2𝜎
𝑟

 (A2-6) 

in which, Pc is the capillary pressure; Pl is the liquid pressure; Pg introduces the gas pressure; 𝜎 

refers to the interfacial tension; and 𝑟 stands for the radius of the droplet.   

 

 

 

NOMENCLATURES  

Acronyms 

BGK = Bhatnagar−Gross−Krook 

CFD = Computational Fluid Dynamic 

CPA = Cubic-Plus-Association 

DNS = Direct Numerical Simulation 

DPD = Dissipative Particle Dynamic 

DSMC = Direct Simulation Monte Carlo 

EDM = Exact Difference Method 

EOS = Equation of State 

LBE = Lattice Boltzmann Equation 

LBM = Lattice Boltzmann Method 

LES = Large Eddy Simulation 

LHS = Left-Hand Side 

MD = Molecular Dynamic 

MRT = Multi-Relaxation Time 
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PC-SAFT = Perturbed-Chain Statistical Associating Fluid Theory 

PDE = Partial Differential Equation 

PR = Peng-Robinson 

QMS = Quantum Molecular Simulation 

RANS = Reynolds-Averaged Naiver-Stokes 

RDF = Radial Distribution Function 

RHS = Right-Hand Side 

SCMP = Single Component Multiphase 

SRK = Soave-Redlich-Kwong 

 

Variables 

𝑎 = Attraction parameter of EOS 

𝛽;%D% = Bonding volume 

𝑇< = Critical temperature 

𝑭 = Force 

ƒ!() = Density distribution function 

𝜏 = Dimensionless relaxation time 

𝑓!
#$ = Equilibrium distribution function 

𝑆! = Forcing source 

𝑋;! = Fraction of site A on the component of 𝑖 which did not form associate with other sites 

𝐺 = Gibbs free energy 

𝑔 = Hard sphere radial distribution function 

𝐴 = Helmholtz free energy 

𝑭!0" = Interparticle forces 
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𝑣 = Molar volume 

𝛎 = Kinematic viscosity 

𝐯 = Particle velocity 

𝑥 = Mole fraction 

𝐱 = Spatial coordination 

𝑛< = Number of components 

𝑒! = Particle discretized velocity vector 

𝑃 = Pressure  

𝑃-  = Bulk pressure 

𝑟 = Radius of droplet 

𝑏 = Repulsion parameter of EOS 

𝐶+ = Speed of sound 

𝑒. = Fourth-order tensor associated with weights 

𝑇 = Temperature  

t = Time 

𝑅 = Universal gas constant 

𝑅2 = Initial radius 

G = Interparticle strength 

 

Greek symbols/variables 

	𝛽 = Bonding volume 

𝜑 = Effective mass 

𝜎 = Interfacial tension 

𝜗 = Kinematic viscosity 
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𝛿3 = Lattice spacing 

𝛿" = Lattice time step 

𝜌 = Molar density 

𝜖;%D% = Self-association energy 

Δ;!
@? = Self-association strength between site 𝐴 and 𝐵 

w! 	 = Weight factors 

Ω = Collision term 

𝜓 = Interaction potential 

 

Superscripts 

𝑒𝑞 = Equilibrium 

𝑠 = Spurious 

 

Subscripts 

𝐴!  = Active association site 

𝑖𝑛𝑡 = Interparticle 
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3.  CHAPTER THREE 

 

Central-Moments-Based Lattice Boltzmann for Associating Fluids: A New Integrated 

Approach  
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ABSTRACT  

Dynamic and thermodynamic behavior of associating fluids play a crucial role in a variety of 

engineering and science disciplines. Cubic plus association equation of state (CPA EOS) is 

implemented in a central-moments-based lattice Boltzmann method (LBM) in order to mimic the 

thermodynamic behavior of associating fluids. The pseudopotential approach is selected to model 

the multiphase thermodynamic characteristics such as reduced density of associating fluids. The 

priority of central moments-based approach over multiple-relaxation-time collision operator is 

shown by performing double shear layers. The integration of central-moments-based LBM and 

CPA EOS is useful to simulate associating fluids at high flow rate conditions, which is extended 

to high-density ratio scenarios by increasing the anisotropy order of gradient operator. In order to 

increase the stability of the model, a higher anisotropy order of the gradient operator is 

implemented; about 34 present reduction in spurious velocities is noticed in some cases. The type 

of gradient operator considerably affects the model thermodynamic consistency. Finally, the model 

is validated by observing a straight line in the Laplace law test. Prediction of thermodynamic 

behaviours of associating fluids is of significance in biological processes as well as fluid flow in 

porous media.  

 

Keywords: Associating fluid; Cubic plus association equation of state; central-moments-based 

lattice Boltzmann method; gradient operator; Laplace law 
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3.1  INTRODUCTION 

Lattice Boltzmann method (LBM) has roots in the lattice gas automaton (LGA) [1-4]. This method 

has been developed as an option to simulate fluid flow behaviours and numerically solve nonlinear 

equations. Basically, fluid dynamics can involve the motion of distributions/populations of 

fabricated particles which can stream and colloid along a Cartesian lattice. LBM has been 

employed in a broad range of engineering applications such as single-phase flow [5-7], multiphase 

flow [8-11], phase-change heat transfer [10, 12], turbulent regime in various transport phenomena 

[13-17], and solving nonlinear partial differential equations (NPDEs) including convection-

diffusion equations [18-24]. The kinetic basis of LBM makes it a powerful tool in the modeling of 

interfacial phenomena in the multiphase flow systems [25-27]. Although the origin of LBM is 

molecular dynamic kinetic which is more fundamental compared to the continuum approaches, it 

is capable of recovering the traditional macroscopic scale continuity and Navier–Stokes (N–S) 

equations. In the absence of required meshes movement, it can be parallelized due to locality of 

most of the computations. In the LBM, different boundary conditions can be handled easily.  

As a common collision operator, Bhatnagar Gross and Krook (BGK), which is known as a single 

relaxation time collision operator, enforces all the populations to relax to an equilibrium state with 

the same rate [28]. Due to non-hydrodynamic ghost modes, the single relaxation time is instable 

in the high-velocity gradient cases, when the single relaxation time of BGK collision operator is 

implemented. Huang et al. [29] demonstrated an inverse relationship between the highest 

achievable density (by aforementioned techniques) and the viscosity of fluid. In order to address 

this concern and achieve high Reynolds numbers, multiple-relaxation-time (MRT) collision 

operator is presented based on decomposing the collision operator as well as raw moments. These 

moments correspond to different hydrodynamic parameters and their fluxes which are able to relax 
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at different time scales. The Prandtl number is fixed in BGK collision operator; by damping non-

hydrodynamic modes [30] and acoustic waves [31] in MRT collision operator, one can achieve a 

model to adjust Prandtl number, improve the numerical stability, and handle the modeling of 

complex fluids such as viscoelastic fluids [32]. Since the MRT operator represents the collision in 

a frame at rest, the Galilean invariance is also trimmed. Yu and Fan utilized the MRT collision 

operator in the pseudopotential LBM [33]. Later on, this approach was modified through 

implementing an improved force scheme by Li et al. [34].   

Recently, Geier et al. [35] introduced a novel collision kernel through shifting the lattice directions 

by the local fluid velocity. They presented a pyramidal hierarchical structure by developing the 

central moments (CMs) concept. In this structure, the post-collision state of a certain moment at a 

given order depends on lower-order ones. Thus, this collision operator is also known as “cascaded 

operator”.  Originally, an orthogonal basis of central moments, which relaxes to the equilibrium 

state of the continuous Maxwellian distribution is assumed for the cascaded LBM. In spite of 

overwhelming analytical formulation and practical implementation specifically in three-

dimensional cases [36], this method leads to a considerable stability enhancement in many cases 

[35, 37-54]. Recently, De Rosis developed a new LBM framework based on the central moments, 

which is different from the cascaded scheme in two aspects. First, a non-orthogonal basis is 

adopted and second, the relaxation to the discrete second-order shortened the equilibrium 

population. The non-pyramidal structure demonstrates notable characteristics in terms of stability, 

convergence, and accuracy [55, 56].   

Generally, two-phase/multiphase LBMs can be categorized in four groups: color-gradient [57, 58],  

pseudopotential [59, 60], free-energy [61, 62], and mean-field [63]. However, the LBM 

classification can be changed based on different aspects such as methodology, structure, 
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limitations and capabilities, and application [10]. Due to the simplicity in the implementation and 

good efficiency in the computation, the pseudopotential LBM approach has received significant 

attention among several multiphase LBM models [57-62, 64]. The particle interactions in the 

pseudopotential approach help the phase segregation so that this technique does not require other 

numerical methods to track and capture the interfaces. Besides the important features of the 

pseudopotential LBM, its shortcomings include thermodynamic inconsistency and high spurious 

velocities. Implementing the pseudopotential approach for reaching high Reynolds number/ low 

viscosity cases is still challenging as multiple issues (reaching high-density ratio, increasing 

thermodynamic consistency, decreasing spurious velocity, and increasing the Reynolds 

number/decreasing viscosity) should be handled simultaneously. Thermodynamic inconsistency is 

addressed by introducing new pseudopotential forms [65] and effective forcing scheme [66]. 

Sbragaglia et al. introduced multi-range pseudopotential through combination of nearest and next-

nearest neighbor interactions [67]. Falcucci et al. presented a double attractive pseudopotential to 

reach high-density ratios [68].  To overcome high spurious velocities, using higher anisotropy 

order of gradient operator is proposed [69].  

Yuan and Schaefer evaluated the thermodynamic consistency of LBM by comparing the 

simulation results of an stationry droplet with Maxwell equal-area construction when different 

cubic and non-cubic equations of state (EOSs) are used. Also, they investigated the impacts of 

different EOSs on the maximum sperious velocity [70]. They compared the LBM results with 

experimental data of water. In the liquid phase branch, a notable difference between the 

experimental data and LBM results was observed. Cubic EOSs such as Peng-Robinson (PR) [71] 

and Soave-Redlich-Kwong (SRK) [72] have been widely used to study the thermodynamic 

behaviors of hydrocarbon and non-hydrocarbon fluids due to their simplicity and accuracy. 
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Compared to the physical interactions, polar components may form a stronger bonding. In the 

presence of fluids with hydrogen bonding, some unusual thermodynamic behaviors such as high 

liquid density, reverse density trend during solidification, and high boiling point are observed, 

which may not be fully explored (and justified) by cubic EOSs [73]. Water is an associating 

component which can exist in different fluid mixtures such as petroleum reservoir fluids in various 

forms such as connate water and injection fluids. Taking another example of associating fluids, 

asphaltene that might contain a group of complex components may form aggregates due to the 

association forces. Asadi and Zendehboudi [74] introduced a new approach to decrease the 

differences between LBM results and experimental data of associating fluids. The cubic plus 

association (CPA) EOS was incorporated in LBM while the CPA EOS association parameters are 

recalculated to be used in LBM. Originally, CPA EOS was introduced by Kontogeorgis et al. [75] 

to consider both physical and associating interactions. In general, CPA EOS consists of two terms 

to take into account both interactions. CPA EOS can turn to a cubic EOS in the absence of 

associating interactions. Although there are other EOSs such as perturbed-chain statistical 

associating fluid theory (PC-SAFT) with the capability of considering association bonds, CPA 

EOS has a lower computational cost.  

Most of the available studies use the BGK collision operator to investigate the thermodynamic 

behaviors of fluids. As mentioned earlier, the single relaxation time collision operator can lead to 

valid/reasonable results within a specific range of dynamic viscosity. On the other hand, the MRT 

collision operator effectively works within limited intervals of Reynolds and Mach numbers.  

In this chapter, we aim to fill the above knowledge gap by implementing the CPA EOS in the 

central moments-based LBM, in order to improve the thermodynamical behaviors of fluids and 

decrease the numerical instability by increasing the isotropy order of gradient operator. The central 
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moments-based collision operatore is employed to increase the stability of model at high Reynolds 

and Mach number conditions. CPA EOS is incorporated in the LBM to mimc the thermodynamical 

behaviours of associatiog fluids.  

The remaining of the chapter is organized as follows. First, a review on pseudopotential LBM with 

different collision operators and incorporation of CPA EOS in the LBM are presented in the 

THEORY AND METHODOLOGY section. Then, the necessity of more accurate EOSs is 

presented by showing the flexibility of some common pseudopotentials to predict the 

thermodynamic properties. After that, the introduced approach is evaluated by comparing the two-

phase density results of central-moments-based LBM with Maxwell equal-area construction where 

different anisotropy orders of gradient operator are employed. The sperious velocity at different 

viscosity is examined, and the method is validated by Laplace law. Finally, the main outcomes of 

the current study are presented in the CONCLUSIONS section.  

 

3.2  THEORY AND METHODOLOGY 

In this section, first, the pseudopotential LBM, classical BGK collision operator, multi-relaxation 

time (MRT), and central-moments-based LBM are briefly explained. Then, the combination 

procedure of consistent pseudopotential interactions proposed by Shan and Chen (SC), Sbragaglia 

and Shan (SS), and cubic/CPA EOSs are presented.  

Pseudopotential LBM, classical BGK, MRT, and central-moments based LBM. The discrete LB 

equation describes the evolution of the particle distribution function (PDF) 𝑓" in time 𝑡 and space 

𝑥 = [𝑥, 𝑦] which moves on a lattice structure along a direction 𝑖 with velocity 𝑐" = [𝑐&" , 𝑐G"] during 

the time step, Δ𝑡 = 1. The corresponding equation is presented as follows: 
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 𝑓"(𝒙 + Δ𝑡𝒄𝒊, 𝑡 + Δ𝑡) = 𝑓"(𝒙, 𝑡) + Ω"(𝒙, 𝑡) + 𝑆" (3-1) 

In Equation (3-1), 𝑆" stands for the forcing term in the discrete LB equation. 

Equation (3-1) is solved through the following steps: 

Collision : 𝑓"∗(𝒙, 𝑡) = 𝑓"(𝒙, 𝑡) + Ω"(𝒙, 𝑡) (3-2) 

Streaming : 𝑓"(𝒙 + Δ𝑡𝒄𝒊, 𝑡 + Δ𝑡) = 𝑓"∗(𝒙, 𝑡)  (3-3) 

where Ω"(𝑥, 𝑡) symbolizes the collision operator and superscript ∗ refers to the post-collision 

quantities. The fluid density, 𝜌, and velocity vector field, 𝑢 = n𝑢& , 𝑢Go, are calculated by zeroth 

and first-order momentums of the population as expressed below: 

 𝜌 =p 𝑓"
"
; 			𝜌𝑢 =p 𝑓"

"
𝒄𝒊 (3-4) 

The mean-field interaction force applies to simulate the molecular interactions, which lead to the 

phase separation. The pseudopotential (also known as effective mass) 𝜓 = 𝜓(𝜌), is defined by the 

local density (𝜌). The summation of the pairwise interactions between particles at a given site 𝑥 

and neghboring sites 𝑥′ is considered as the interparticle force in the single-component multiphase 

(SCMP) LBM. Shan and Chen defined the lattice version of the interaction potential to introduce 

the long-range intermolecular interaction, as follows: 

 𝑉(𝑥, 𝑥.) = 𝐺(𝑥, 𝑥.)𝜓(𝑥)𝜓(𝑥.) (3-5) 
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where 𝐺(𝑥, 𝑥.) = 𝐺(𝑥 − 𝑥.) is a Green’s function. Based on the interaction potential, the 

interparticle forces ( 𝑭"+') can be written as: 

 𝑭"+'(𝑥, 𝑡) = −𝐺|𝒆(|𝜓(𝑥, 𝑡)p𝜓(𝑥 + 𝒆𝒂, 𝑡)𝒆(

$

"K<

 (3-6) 

where 𝑞 symbolizes the number of the neighboring sites. The right-hand side of Equation (3-6) 

represents the finite difference form of −𝜓Δ(𝜓) and an unspecified relative interaction strength at 

different distances. The relative interaction strength is determined based on the finite difference 

gradient operator, which imposes the sufficient anisotropy to lower the spurious current velocity 

at a curved interface of multiphase. Following the standard analysis procedure of finite difference, 

the Taylor series of an arbitrary multi-dimensional function 𝑓 at lattice site 𝑥 and [: 𝑎 = 1,… , 𝑑] 

as a set of vector starting from 𝑥 to its 𝑑 neighbors is given below: 

 𝑓(𝑥 + 𝑒) = ΣLK<M 1
𝑛! n∇

(+)𝑓(𝑥)o ∙ 𝑒𝑒 ∙∙∙ 𝑒 (3-7) 

where 𝑥 is a lattice site and the product of the right-hand side is a complete contraction between 

two rank-n tensor contractions. Based on the standard notation of Wolfram [76], one can write: 

 𝐸"""#…"$
(+) = Σ"𝑤(|𝒆(|/)	(𝒆()"" ∙∙∙ (𝒆()"$ (3-8) 

in which, 𝑤(|𝑐"|/) are the weights. Considering the finite difference approximation to the gradient 

of 𝑓 in Equation (3-7) results in: 
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Σ"𝑤(|𝒆(|/)	𝑓(𝑥 + 𝒆()𝒆( = (∇𝑓) ∙ 𝐸(/) + F

Q!
�∇(Q)𝑓� ∙ 𝐸(*) + F

S!
�∇(S)𝑓� ∙

𝐸(A) +⋯. 
(3-9) 

Shan [69] followed the above procedure and calculated weights, which leads to unit 𝐸(/)and 

isotropic 𝐸(+) (see Table 3-1). 

 

Table 3-1: Calculated weights based on the unit 𝐸())and isotropic 𝐸(0) tensors in two and three dimensions. 

 Tensor 𝑤(1) 𝑤(2) 𝑤(3) 𝑤(4) 𝑤(5) 𝑤(6) 𝑤(8) 

 𝐸(.) 1/3 1/12      

2D 𝐸(i) 4/15 1/10  1/120    

 𝐸(6) 4/21 4/45  1/60 2/315  1/5040 

 𝐸(.) 1/6 1/12      

3D 𝐸(i) 2/15 1/15 1/60 1/120    

 𝐸(6) 4/45 1/21 2/105 5/504 1/315 1/630 1/5040 

 

 By expanding the interaction forces (see Equation (3-6)) through the Taylor series, one can have 

the following expression [66]: 

 𝑭"+'(𝑥, 𝑡) = −𝐺𝑐/[𝜓𝛻𝜓 +
1
2 𝑐

/𝜓𝛻(𝛻/𝜓) +⋯ ] (3-10) 
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The pressure tensor should be obtained to analyse the mechanical balance at the interface. As a 

general rule, the pressure tensor is given as follows [77]: 

 Σ𝑃. 𝐴 = Σ&𝐹 (3-11) 

in which, 𝑃 introduces the pressure and 𝐴 is the area. The analytical expression of the normal 

pressure tensor in the one-dimensional case is expressed as: 

 𝑃𝑛 = 𝑐𝑠2𝜌 +
1
2𝐺𝑐

2𝜓2(𝜌)+
𝐺𝑐4
12 �𝛼p

𝑑𝜓
𝑑𝑛q

2

+ 𝛽𝜓
𝑑2𝜓
𝑑𝑛2 � 

(3-12) 

in which,  𝛼 = 1 − 3𝑒*, 𝛽 = 1 + 6𝑒* where 𝑒* is the fourth-order tensor as given below [77]: 

 𝑒. =
𝜔1
2 + 2𝜔2 + 8𝜔4 + 25𝜔5 + 32𝜔8 +⋯ (3-13) 

The bulk pressure (𝑝)) is equal to the first two diagonal terms of the pressure tensor in Equation 

(3-12). The pseudopotential can be defined based on the bulk pressure as [70, 78]: 

 𝜓(𝜌) = �2(𝑃) − 𝑐=
/𝜌)

𝐺𝑐/  (3-14) 

Different EOSs can be incorporated in the LBM through Equation (3-14).  

Based on the BGK assumptions, the collision operator (Ω") is defined by a single relaxation of 

population with the same rate to a local equilibrium. The BGK collision operator is given below: 

 Ω" =
�𝑓"

#$ − 𝑓"�
𝜏  (3-15) 

where 𝜏 denotes the single relaxation time scale, which is related to the kinematic viscosity of the 

fluid according to the following equation: 
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 𝜈 = �𝜏 −
1
2� 𝑐=

/Δ𝑡 (3-16) 

In Equation (3-15),  𝑓"
#$ is the equilibrium PDF, as defined below: 

 𝑓"
#$ = 𝑤"𝜌 �1 + 3𝒄𝒊 ∙ 𝒖 +

9
2
(𝒄𝒊 ∙ 𝒖)/ −

3
2𝒖 ∙ 𝒖� 

(3-17) 

where 𝑤"𝑠 are a set of weights, which are determined based on the LB model.  

In general, the collision process includes multiple physical quantities that may relax on the 

different time scales. To consider the information of the time scales, a full constant matrix (Λ) is 

employed instead of a single time scale, 𝜏. Therefore, the collision operator can be rewritten as 

follows: 

 Ω" = Σ3Λ"3�𝑓3
#$ − 𝑓3� (3-18) 

Following the derivation presented by Premnath and Abraham [79], by applying the 

transformation, 𝑓"̅ = 𝑓" − 1/2Δ𝑡, Equation (3-1) can be rewritten as follows: 

 

𝑓"̅(𝒙 + Δ𝑡𝒄𝒊, 𝑡 + Δ𝑡)

= 𝑓"̅(𝒙, 𝑡) + Σ3Λ"3�𝑓3
#$ − 𝑓3̅�|(&,') + Σ3 �𝐼"3 −

1
2Λ"3� 𝑆"

|(&,')Δ𝑡 
(3-19) 

where 𝐼"3 is the components of the identity matrix. Solving Equation (3-19) requires a complex 

matrix manipulation. A linear transformation can be used to diagonalize the collision matrix. The 

transformation matrix 𝐓 transform the distribution functions from velocity space (𝑓"̅) into the 

moment space (𝑓�"), which are related to the macroscopic physical quantities such as density, 

momentum, energy, and their flux. The transformation matrix form is related to the lattice 

structure. The explicit form of D2Q9 is presented below [80]: 
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 𝐓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
−4
4
0
0
0
0
0
0

		

1
−1
−2
1
−2
0
0
1
0

		

1
−1
−2
0
0
1
−2
−1
0

		

1
−1
−2
−1
2
0
0
1
0

		

1
−1
−2
0
0
−1
2
−1
0

		

1
2
1
1
1
1
1
0
1

		

1
2
1
−1
−1
1
1
0
−1

		

1
2
1
−1
−1
−1
−1
0
1

		

1
2
1
1
1
−1
−1
0
−1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3-20) 

The transformed form of Equation (3-19) into moment space can be calculated by multiplying the 

transformation matrix 𝐓, as given below: 

 

𝑓�"(𝒙 + Δ𝑡𝒄𝒊, 𝑡 + Δ𝑡)

= 𝑓�"(𝒙, 𝑡) + Σ\Λ�"\ ]𝑓�\
#$ − 𝑓�\^ |(&,') + Σ\ �𝐼"\ −

1
2Λ
�"\� 𝑆�"|(&,')Δ𝑡 

(3-21) 

The transformed collision matrix Λ%%& = TΛT−1	is become diagonal (for the D2Q9 lattice), as 

follows: 

 Λ� = 𝑑𝑖𝑎𝑔[𝑠F, 𝑠/, 𝑠Q, 𝑠*, 𝑠S, 𝑠A, 𝑠^, 𝑠_, 𝑠`] (3-22) 

The diagonal elements of Λ%, 𝑠F through 𝑠`, are the new relaxation parameters in associating with 

elements of 𝑓�".  

According to Malaspinas [81] and Coreixas [82, 83], the complete expression of the equilibrium 

distributions is 
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𝑓"
#$ = 𝑤" 	𝜌	[1 +	

𝒄𝒊 ⋅ 𝒖
𝑐=/

	+
1
2	𝑐=*

	ℋ"
(/) 	

∶ 	𝒖𝒖	 +
1
2𝑐=A

]	ℋ"&&G
(Q) 	𝑢&/	𝑢G 	+ ℋ"&GG

(Q) 	𝑢&	𝑢G/^ 	

+
1
4𝑐=_

	ℋ"&&GG
(*) 𝑢&/	𝑢G/ 	] 

(3-23) 

with w< = 4/9, wF…	* 				= 	1/9,  wS…_ = 1/36, cb = 1/√3 is the lattice sound speed and ℋ(j) 

denotes the Hermite polynomial of order n. Notice that Equation (3-23) degrades into the classical 

second-order truncated formula if ℋ(Q) and ℋ(*) are neglected. 

In order to create a CMs-based collision operator, one should adopt lattice directions shifted by 

the local fluid velocity (see Geier et al.[35]),  𝒄�" = [|𝒄�&"⟩, |𝒄�G"⟩]		, where 

 
|𝒄�&"⟩ = |𝒄&" − 𝑢&⟩ 

|𝒄�G"⟩ = |𝒄G" − 𝑢G⟩ 
(3-24) 

Then, we transform distributions into moments (and vice versa) by applying the matrix 𝒯� =

[𝑇�<, … , 𝑇�" , … , 𝑇�_] (see for example De Rosis and Luo 86) where 

 

|𝑇�<⟩ = |1, … , 1⟩ 

|𝑇�F⟩ = |𝑐&̅"⟩	

|𝑇�/⟩ = |𝑐G̅"⟩ 

|𝑇�Q⟩ = |𝑐&̅"/ + 𝑐G̅"/ ⟩ 

|𝑇�*⟩ = |𝑐&̅"/ − 𝑐G̅"/ ⟩ 

(3-25) 
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|𝑇�S⟩ = |𝑐&̅"𝑐G̅"⟩ 

|𝑇�A⟩ = |𝑐&̅"/ 𝑐G̅"⟩ 

|𝑇�^⟩ = |𝑐&̅"𝑐G̅"/ ⟩ 

|𝑇�_⟩ = |𝑐&̅"/ 𝑐G̅"/ ⟩ 

We can evaluate pre-collision and equilibrium CMs as 

 

|𝑘"⟩ = 𝒯�:|𝑓"⟩ 

|𝑘"
#$⟩ = 𝒯�: 𝑓"

#$¡	
(3-27) 

respectively, where  

 

|𝑘"⟩ = [𝑘<, … , 𝑘" , … , 𝑘_]c 

|𝑘"
#$⟩ = n𝑘<

#$ , … , 𝑘"
#$ , … , 𝑘_

#$oc 

(3-26) 

and |𝑓%
'(⟩ = )𝑓0

𝑒𝑞,… , 𝑓𝑖
𝑒𝑞,… , 𝑓8

𝑒𝑞*
). We obtain that only three equilibrium central moments are 

different from zero: 

 

𝑘<
#$ = 𝜌 

𝑘Q
#$ = 2𝜌𝑐=/ 

𝑘_
#$ = 𝜌𝑐=*	

(3-28) 

and 𝑘F,/,*,S,A,^
#$ = 0. Indeed, as stated in De Rosis and Luo [84], the discrete equilibrium CMs are 

equal to those of the continuous Maxwellian distribution when the full set of Hermite polynomials 
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is considered. Let us denote the 9 ∗ 9 unit tensor as 𝐈 and the 9 ∗ 9 relaxation matrix as Λ =

diag[1,1,1,1, ω,ω, 1,1,1]. Following De Rosis et al.56, the post-collision state in terms of central 

moments is 

 |	𝑘"⋆	⟩ 	= 		 (𝐈 − Λ)	𝒯�c|𝑓"⟩ + Λ𝒯�c|	𝑓"
#$⟩ +	(𝐈 −

Λ
2)𝒯
�c|	ℱ"⟩		 (3-29) 

The last ingredient to be defined is the forcing term ℱ%. Similarly to the approach adopted for the 

equilibrium distribution (see Eq.( 3-23)), Huang et al. [85] suggested to expand the forcing term 

as 

 ℱ" =	𝑤" 	¤
𝐹
𝑐=
.ℋ(F) +

[𝐹𝑢]
2𝑐=/

.ℋ(/) +
[𝐹𝑢𝑢]
6𝑐=Q

.ℋ[&GG],[&&G]
(Q) +

[𝐹𝑢𝑢𝑢]
24𝑐=*

.ℋ[&&GG]
(*) ¥	 (3-30) 

where the square bracket in Hermite coefficient denotes permutations. The popular formula by 

Guo et al. [86] is then recovered when	ℋ(+) and ℋ(-) are disregarded. The central moments of the 

discrete force term are56 

 |𝑅"⟩ = 𝒯�:|ℱ"⟩ (3-31) 

where 

 

|𝑅F⟩ = 𝐹& 

|𝑅/⟩ = 𝐹G 

|𝑅A⟩ = 𝐹G𝑐=/ 

|𝑅^⟩ = 𝐹&𝑐=/ 

(3-32) 
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and 𝑅<,Q,*,S,_ = 0. These compact expressions are different from those by Huang et al.84 due to the 

choice of a different basis. Moreover, one can notice that Equations (3-32) can also be obtained 

when the velocity terms in Equations (3-15) of  De Rosis [44] are neglected. Indeed, we remark 

the concept stated by De Rosis et al.56, where it has been demonstrated that the adoption of the 

Hermite polynomials of the maximum admissible order (n=4 in the D2Q9 space according to 

Malaspinas81) leads to Galilean-invariant (or, in other words, velocity-independent) equilibrium 

and forcing central moments. 

This concise scheme leads to post-collision central moments that are (see De Rosis et al.56): 

 

𝑘<⋆ = 𝜌		

𝑘F⋆ =
𝐹&
2 		

𝑘/⋆ =
𝐹G
2 		

𝑘Q⋆ = 2𝜌𝑐=/		

𝑘*⋆ = (1 − 𝜔)𝑘*		

𝑘S⋆ = (1 − 𝜔)𝑘S		

𝑘A⋆ =
𝐹G
6 		

𝑘^⋆ = 𝜌𝑐=*	

(3-33) 

Then, we can reconstruct post-collision populations |𝑓%⋆⟩ = )𝑓0
⋆ ,… , 𝑓𝑖

⋆,… , 𝑓8
⋆ *
)by applying the back-

transformation (see De Rosis55) 
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 |𝑓"⋆⟩ = (𝒯�:)6F|𝑘"⋆⟩ (3-34) 

Incorporating equations of state. In this part, Peng-Robinson (PR) EOS, as one of most successive 

EOSs in both academic and industrial sectors [87], and cubic plus association (CPA) EOS [73], as 

an accurate and computational cost effective EOS in simulating associating fluids, Shen and Chen 

EOS (SC EOS), an original EOS which implemented in pseudopotential LBM, and Sbragaglia and 

Shan EOS (SS EOS), a thermodynamic consistence EOS, are briefly reviewed.  

PR as a cubic EOS was developed due to the low accuracy of Soave-Redlich-Kwong (SRK) EOS 

[72] in predicting the liquid density of heavy hydrocarbons. The liquid density calculated by SRK 

is usually higher than the experimental measured values [88]. Peng and Robinson EOS followed 

the same strategy as SRK model in thermodynamic modeling, except the van der Waals attractive 

term was modified as given below: 

 𝑃 =
𝑅𝑇
𝑣 − 𝑏 −

𝑎
𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏) (35) 

in which  

 𝑎 = 𝑎0𝛼(𝑇) 
(3-36) 

 

 𝛼 = n1 + (0.37464 + 1.54226𝜔 − 0.26992𝜔/)�1 − ¦𝑇>�o
/
 (3-37) 

 

 

𝑎0 = 0.45724 k
#:/#

E/
,	𝑏 = 0.07780 k:/

E/
	

(3-38) 
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where 𝑃 stands for the pressure; 𝑅 denotes the universal gas constant; 𝑣 introduces the molar 

volume; 𝑎 and 𝑏 are the attraction and repulsion terms, respectively; 𝛼 represents the temperature 

dependence function in the attraction term; and the subscript 𝑐 refers to the critical properties.  

Second term in Equation (3-35) is the attraction term. Peng and Robinson added 𝑏(𝑣 − 𝑏) to the 

attraction term, which improves the attractive pressure force impact.  

CPA EOS was proposed based on a cubic EOS and the statistical associating fluid theory (SAFT) 

for modeling of physical interactions and associating forces, respectively. The CPA EOS reduces 

to a cubic EOS in the absence of associating force (e.g., hydrogen bonding compounds). Beside 

the simplicity and accuracy, the numerical implementation of the association term guarantees the 

computational time effectiveness of the CPA EOS.  SRK EOS was used to describe the physical 

part in the original form introduced by Kontogeorgis et al. [75]. Firoozabadi proposed to use PR 

EOS as the physical part of CPA EOS to be suitable for thermodynamic modeling of hydrocarbon 

reservoir fluids [89]. The association term consists of the specific site-site interactions due to 

hydrogen bonding. The association interactions are listed in two categories, namely; self-

association and cross-association for the same and different species, respectively. The bulk 

pressure of the system represented by CPA EOS is as follows: 

 
𝑃 =

𝑅𝑇
𝑣 − 𝑏 −

𝑎
𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏) −

1
2
𝑅𝑇
𝑣 �1 − 𝑣

𝜕𝑙𝑛𝑔
𝜕𝑣 � Σ"𝑥"Σ1!(1 − 𝑋1"),			𝑖

= 1,2, … , 𝑛0 

(3-39) 

in which, 𝑥 symbolizes the mole fraction; 𝑔 introduces the hard sphere radial distribution function 

(RDF); 𝐴" refers to the active association site; and 𝑋1" stands for the fraction of site A on 

component 𝑖 that does not form association with other sites, as presented below: 
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 g =
2 − 𝜂

2(1 − 𝜂)Q 				where		𝜂 =
𝑏
4𝑣 (3-40) 

 XAi =
1

1 + Σ𝑗=1
𝑛𝑐 ∑ 𝜌𝑥𝑗𝑋𝑘𝑗Δ𝐴𝑖

𝑘𝑗
𝑘=𝐴,𝐵,…

 (3-41) 

where 𝜌 = 1/𝑣 is the density and Δ1"
23 introduces the self-association strength between sites 𝐴 and 

𝐵, as defined below: 

 𝛥𝐴𝑖
𝑘𝑗 = 𝑔 ­𝑒𝑥𝑝 i𝜖

𝐴𝑖𝐾𝑖

𝑅𝑇 k− 1®𝑏𝑖𝑗𝛽
𝐴𝑖𝐾𝑖  (3-42) 

 bij =
𝑏𝑖+𝑏𝑗
2  (3-43) 

in which, 𝜖1!4! and 𝛽1!4! refer to the self-association energy and bonding volume parameters, 

respectively. Like the study conducted by Asadi and Zendehboudi [74], we use four-site scheme 

(4C) and two site model (2B) for water [89] and alcohols [90], respectively. To keep consistency 

with the literature, the attraction, repulsion parameters, and universal gas constant of CPA EOS 

are supposed to be 𝑎 = 2/49, 𝑏 = 2/21, and 𝑅 = 1, respectively, in the lattice units [70, 91].  

The original EOS proposed by Shan and Chen is determined by defining the effective mass as 

follows: 

 𝜓(𝜌) = 𝜌< �1 − 𝑒
− 𝜌
𝜌0� (3-44) 

where 𝜌< is a constant. Based on Equation 3-14, the SC EOS can be obtained as: 

 𝑃 =
𝜌
3 +

𝑐<
2 𝐺𝜌<

/ �1 − 𝑒6
x
x4�

/

 (3-45) 



 84 

According to the critical characteristic condition of single component fluids (i.e., ]7E
79
^
:
=

]7
#E
79#
^
:
= 0), the critical properties of SC EOS are calculated as follows: 

 𝜌𝑐 = 𝜌0 ln 2, (3-46-a) 

 𝐺𝑐 = −
4
3𝜌𝑜

,	 (3-46-b) 

 𝑇𝑐 = −
1
𝑔𝑐
=
3
4𝜌0, (3-46-c) 

 	𝑃0 = 𝜌< �ln 2 −
1
6� (3-46-d) 

Therefore, two-phase separation of the system is guaranteed when 𝐺 < 𝐺0 and 𝜌9 < 𝜌̅ < 𝜌, where 

𝜌9,	𝜌̅, and 𝜌, are the gas phase, average, and liquid densities, respectively. When 𝐺 < 𝐺0, the 

temperature of the system is lower than critical temperature which means two phases might exist 

and when the average pressure of the system is between two phase density means that two phases 

should be exists. 

Sbragaglia and Shan introduced a new consistence pseudo-potential as follows [65]: 

 𝜓(𝜌) = �
𝜌

𝜖 + 𝜌
�
1/𝜖

 (3-47) 

where 𝜖 = −2𝛼/𝛽. The critical properties of SS EOS are obtained by the following equations:  
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𝜌𝑐 = −
𝜖 − 2
2 	, 𝐺𝑐 =

1
12 ¯𝜖

2 − 4° i
2 − 𝜖
2 − 𝜖k

−2𝜖
	 ,𝑇𝑐 = −

1
𝑔𝑐

=
12

(4 − 𝜖2) i2 − 𝜖2 − 𝜖k
−2𝜖
, 𝑃𝑐 =

(𝜖 − 2)2
24  

(3-48) 

Customized EOS. The numerical instability happens within the narrow regions of the interface, 

which fall in the unstable part of the EOS with ]78
79
^
:
> 0.  Due to unphysical meaning of the 

unstable branch, it can be modified. By increasing the slope of the unstable branch, the internal 

forces are increased toward the liquid side of spinodal point while the internal forces are lowered 

toward the vapor region [92]. Colosqui et al. proposed a piecewise linear EOS in the unstable 

branch which is discontinuous in its first derivation [92].  Asadi and Zendehboudi introduced a 

new perturbation in the unstable branch that increases the slope and is continuous in its first 

derivation at the same time as given below [74]: 

 𝑃𝐶𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑒𝑑 = 𝑃𝐶𝑃𝐴 + 𝛿𝑃 (3-49) 

where, 

 𝛿𝑃 =

⎩
⎪⎪
⎨

⎪⎪
⎧

0																																																																																											𝑖𝑓	𝑣 < 𝑣,

𝜅 ¤sin ¤
𝜋(𝑣 − 𝑣,)

𝐿F
+
3𝜋
2
¥ + 1¥ 																																								𝑖𝑓	𝑣, < 𝑣 < 𝑣D

𝜅 ¤sin ¤
𝜋(𝑣 − 𝑣,)

𝐿/
+
𝜋
2¥ + 1¥ 																																												𝑖𝑓	𝑣D < 𝑣 < 𝑣-

0																																																																																														𝑖𝑓	𝑣- < 𝑣

 (3-50) 

 

in which, 𝑣; = 𝑣- − 𝛼(𝑣- − 𝑣,).  𝑣- and 𝑣, stand for the spinodal molar volumes on the gas and 

liquid sides, respectively. The perturbation is determined by a pair of (𝛼, 𝜅), individually.    
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3.3  RESULTS AND DISCUSSION  

In the current research work, the central-based collision operator is implemented in the 

pseudopotential LBM. The flexibility of common pseudopotentials to predict the thermodynamic 

properties of a fluid is evaluated. The capability of implemented collision operator is determined 

by comparing the stability of central-moments-based LBM and MRT collision operator in the 

double layer shear test. A static drop test is selected to show the impact of isotropy order of gradient 

operator on the stability of the approach. The spurious velocity of static drop case is also studied. 

The thermodynamic consistency is examined by comparing the two-phase densities simulated by 

the proposed approach and calculated by Maxwell equal area construction. Finally, the Laplace 

law test is performed by determining the pressure difference of two phases at the different radius 

of the droplet.  

Thermodynamically behavior of EOSs. Before providing further details of the central-based 

LBM, we briefly compare the thermodynamic behaviors simulated by different EOSs. Although 

SC and SS are mainly used in LBM studies, EOSs such as PR and CPA are more suitable to 

determine the fluid properties. Figure 3-1 shows the algebraic form of cubic equations, 

schematically.   There is no physical meaning for branches with 𝑣 < 𝑏.  For cases with 𝑝 < 𝑝F, 

there are three roots −�√2 + 1�𝑏 < 𝑣 < 0	, 0 < 𝑣 < �√2 − 1�𝑏, and 𝑣 > 𝑏. The root with 𝑣 > 𝑏 

is physically acceptable and considered as the liquid phase density. For  𝑝/ < 𝑝 < 𝑝F, there is only 

one root, which belongs to the liquid phase density. When	𝑝Q < 𝑝 < 𝑝/, three roots are found. The 

highest belongs to gas phase, the lowest one corresponds to liquid phase, and the intermediate one 

has no physical meaning. In some cases, the negative pressure determines the liquid phase density 

(see panel b of Figure 3-1) [89, 93]. CPA EOS exhibits a behavior similar to cubic EOSs at the 

acceptable branches.  
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Figure 3-2 illustrates the algebraic form of LBM based EOS (e.g., SS and SC EOSs) for 𝑇 < 𝑇0. 

Both EOSs have a vertical asymptote at 𝑣 = 0, implying that the volume of particles is neglected. 

Both EOSs are not considerably affected upon changing their parameters, keeping their low 

flexibility/potential in predicting thermodynamic properties of fluids.  Additionally, the negative 

pressure is not calculated by LBM based EOS. 

 

𝑃 

𝑣 

𝑃F 
𝑃/ 

𝑃Q 

(√2 − 1)𝑏 

𝑏 

−(√2 + 1)𝑏 

𝑃 

𝑣 

𝑃F 

𝑃/ 

𝑃Q 
(√2 − 1)𝑏 𝑏 

−(√2 + 1)𝑏 

(a) (b) 

Acceptable branch  
Unphysical branches 

Acceptable branch  
Unphysical branches 

Figure 3-1: Algebraic behavior and various branches of cubic and CPA EOSs: a) without negative pressure possibility, and b) 

with negative pressure. 
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More importantly, the LBM based EOS has only one parameter that can be used to fit the 

experimental data. Figure 3-3 presents the calculated phases density at the equilibrium condition 

based on the Maxwell equal area construction. According to Figure 3-3, the SS EOS proposed by 

Sbragaglia and Shan has a low thermodynamic consistency with the experimental data and 𝜖 

parameter has a low influence on the reduced properties; however, a good consistency with LBM 

simulation results is reported. Beside the inconsistency issue of SC EOS, it leads to the same 

reduced properties at different magnitudes of 𝑣< (see Equation (3-12)). In the rest of this study, the 

SS and SC EOSs are not discussed for evaluation purpose.  

𝑣 

𝑃 

𝑣 

𝑃 

(a) (b) 

Acceptable branch  
Unphysical branches 

Acceptable branch  
Unphysical branches 

Figure 3-2: Various branches of a) SS and b) SC EOSs. 
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Figure 3-3: Comparison between calculated reduced density of two phases at equilibrium by EOS and 

experimental date (experimental data adopted from Ref [70]. 

 

Double shear layer test. To better demonstrate the dynamic properties of introduced CMs LBM, 

the results calculated by MRT and CMs collision operators were compared in the double shear 

layer test [94], which is known as an excellent candidate to examine the numerical scheme’s 

stability [82, 95, 96]. A fully periodic 2D boundary condition with (𝑥, 𝑦) ∈ [0, 𝐿]/ is considered. 

The initial flow filed consists of two longitudinal shear layers and transvers perturbation, as 

superimposed below: 

 𝑢𝑥 =

⎩
⎪
⎨

⎪
⎧𝑢0 tanh�𝜅p

𝑦
𝐿 −

1
4q� ,					

𝑦
𝐿 ≤

1
2

𝑢0 tanh�𝜅p
3
4 −

𝑦
𝐿q� ,				

𝑦
𝐿 >

1
2	
	 (3-51) 

and  
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 𝑢𝑦 = 𝑢0𝛿 sin�2𝜋p
𝑥
𝐿 +

1
4q�	 (3-52) 

where 𝜅 = 80 and 𝛿 = 0.05.  Fluid dynamics predicts the sheer layers and the generation of two 

controlling vortices based on the Kelvin-Helmotz instability mechanism. The Reynolds number is 

𝑅𝑒 = 𝑢<𝐿/𝑣 = 3 × 10* and Mach number is assumed to be  𝑀𝑎 = 𝑢</𝑐= = 0.57.  The simulation 

is performed when 𝐿 = 256 and sixth-order Hermite polynomial is implemented for central 

moments based LBM. Figure 3-4 duplicates the mean kinetic energy (normalized by 𝑢<) versus 

time for both central moments-based LBM and MRT. In the sixth-order Hermit polynomial case 

of central moments-based LBM, its performance is stable while it becomes unstable at early stages 

in the MRT case.  

 

Figure 3-4: Double shear layer: comparison of time evolution of the normalized mean energy at 𝑀𝑎 =

0.57 when the central moments-based LBM (solid line) and MRT (dash line) are implemented. 
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Spurious velocity. To investigate spurious velocity, a static single-component bubble is placed in 

a 2D computational domain. A 100 × 100 lattice computational domain with a periodic boundary 

condition in all directions are considered in all tests. Initially, a droplet with a radius of 𝑅< = 30 

is placed in the center of the domain with the vapor (liquid) phase outside (inside) the droplet. The 

initial phases density is selected based on the equilibrium phase density calculated by Maxwell 

construction and its initial distribution, as determined below: 

 

 

𝜌(𝑥, 𝑦) =
𝜌,"$?"@ + 𝜌-(=

2

−
𝜌,"$?"@ − 𝜌-(=

2 Àtanh Á
2¦(𝑥 − 𝑥0)/ − (𝑦 − 𝑦0)/ − 𝑅<		

𝑤 ÂÃ	 

(3-53) 

where 𝑤 refers to the initial interface thickness; 𝑥0 and 𝑦0 are the droplet center position; and 𝑅< 

is the initial droplet radius. Following the approach by Asadi and Zendehboudi [74], a new stability 

condition is applied.  PR and CPA EOSs’ parameters are selected as 𝑅 = 1, 𝑎 = 2/49, 𝑏 = 2/21, 

𝜔 = 0.344, 𝜖1C = 0.1636, and 𝛽 = 0.0973. 

The spurious velocity, also known as parasite current, is referred to the unphysical circular 

velocities near multiphase interface, which appears in the numerical simulations such as Level-set, 

Volume of fluid (VOF), and LBM [97]. The spurious velocity reduces the accuracy of the 

simulation and cannot be distinguished from the actual velocity, leading to instability problems in 

severe cases. The spurious velocity and surface tension are related to each other. High spurious 

velocity is one of the major drawbacks of the pseudopotential LBM, compared to the other LBM 

approaches such as free-energy LBM method. In general, higher spurious velocities are observed 
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at high density ratios (lower temperature for single-component simulation cases) and low 

viscosities [33, 70].  

In spite of MRT, central-moment-based LBM does not involve freely adjustable relaxation times; 

therefore there is no need to tune the free parameters. Figure 3-5 shows the spurious velocity at 

the steady-state condition calculated by the central-moment-based LBM. A dramatic decrease in 

the maximum spurious velocity is notable (up to 34 percent) by increasing the anisotropy order of 

the gradient operator, which indicates the enhancement in the stability method. In the higher 

anisotropy of gradient operators such as 8th order of gradient operator, more neighbour lattice 

nodes are considered in the simulation. Hence, a wider interfacial thickness (e.g., lower interfacial 

tension) may cause some instabilities, particularly in low kinematic viscosities. To increase the 

interfacial tension, the attraction parameter (𝑎) is increased. Following the procedure introduced 

by Asadi and Zendehboudi [74], the association parameters are updated for the new case, which 

are 𝜔 = 0.344, 𝜖1C = 0.3410, and 𝛽 = 0.0887 as the acentric factor and new association 

parameters in the CPA EOS for water. The reduced temperature is kept constant for all simulation 

runs.  



 93 

 

Figure 3-5: Maximum spurious velocity |𝑈+|s,3at the steady state condition versus kinematic viscosity 

of fluid (ν). For 4th and 6th order of gradient operator, the maximum spurious velocity is calculated at 𝑎 =

2/49, 𝑏 = 2/21, 𝑅 = 1, and 𝑇H = 0.9.  For 8th case, the attractive term in the EOS is changed to 𝑎 =

4/49. 

 

Figure 3-6: Velocity field and contour for a static droplet on the basis of different anisotropy orders of 

gradient operator: a) 4th, b) 6th , and c) 8th.  CPA EOS is implemented in the central-moments-based LBM 

when 𝑎 = 4/49, 𝑏 = 2/21, 𝑅 = 1, 𝑇H = 0.9, and 𝜗 = 1/6. 
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Figure 3-6 duplicates the velocity field for central-moment-based Lattice Boltzmann at different 

anisotropy orders of gradient operators. For all cases, the thermodynamic parameters are the same 

and calculated at the equal reduce temperature and kinematic viscosity (𝜗 = 1/6). A decrease in 

the magnitude of spurious velocity occurs with increasing the anisotropy order of gradient 

operator. In addition, the spurious velocity contours are changed, implying alteration in the 

interfacial thickness; the size of the droplet is also altered. For all three cases, the initial density is 

same and selected based on the Maxwell constriction; however, the thermodynamic consistency 

of the LBM results will change by changing the anisotropy order of gradient operator. Therefore, 

the size of droplet will be changed to maintain equilibrium condition. The thermodynamic 

consistency will be further discussed in this section.     

 

 

Figure 3-7: Impact of anisotropy order of gradient operator on the maximum spurious velocity at the 

steady state condition. 



 95 

Figure 3-7 presents the influence of the anisotropy order of gradient operator on the maximum 

magnitude of spurious velocity at different reduced temperatures. As a general trend for all these 

three cases, the spurious velocity will increase as the reduced temperature is decreased. A decline 

in the reduced temperature leads to an increase in the density ratio (even by considering the 

thermodynamic inconsistency of the model) and consequently an increase in the spurious velocity. 

 Thermodynamic consistency. Sbragaglia and Shan [65] showed that the consistency of the 

pseudopotential LBM is related to 𝜖.  Shan [77] also concluded that 𝜖 is a function of anisotropy 

order of gradient operator (see Equation (3-13)); therefore, the anisotropy order of gradient 

operator affects the thermodynamic consistency. Figure 3-8 illustrates the thermodynamic 

consistency at various density ratio conditions while using different orders of gradient operator. 

The thermodynamic input parameters for the EOS are kept the same as the case utilized in Figure 

3-5. As it is shown in Figure 3-6, there is a smaller liquid drop for the case with 8th order of gradient 

operator while all initial parameters were same for all cases; therefore, the density of the liquid 

phase is decreased, while the gas density is increased. In addition, the equilibrium gas density in 

the 8th order of gradient operator is higher than that calculated by Maxwell equal area construction. 

It has also a lower density for the liquid phase. To approach the equilibrium condition, the liquid 

phase density should be then lowered and the gas phase density should be increased when the 

initial densities of both phases are selected based on the Maxwell equal-area construction. This 

eventually causes a decrease in the droplet radius (see Figure 3-6). It should be mentioned that the 

liquid phase pressure in some cases will become negative that has a physical meaning (see Figure 

3-1  and Refs. [89, 93]) when the attraction parameter is fixed at 𝑎 = 4/49.  The thermodynamic 

inconsistency is notable; however, Li et al. suggested a method to improve the thermodynamic 

consistency by improving the forcing scheme [66].  
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Figure 3-8: Thermodynamic consistency of the central-moments-based LBM at different anisotropy 

orders of gradient operator. 

 

A higher anisotropy order of gradient operator makes possible simulation of a multiphase fluid 

with a higher density ratio (lower reduced temperatures for single component multiphase cases), 

while employing the pseudopotential central-moments-based LBM.  As the reduced temperature 

is decreased, the interfacial tension will be increased. Hence, there is no need to increase the 

interfacial tension by increasing the attraction term in the CPA EOS. Despite the mid-range 

approach, there is no direct parameter to tune the interfacial tension/thickness [68, 98, 99], while 
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tuning the EOS input parameters is a strategy to tune the interfacial tension/thickness.  However, 

changing the EOS input parameters may affect the thermodynamic consistency.          

Laplace law test. Laplace law test is performed by placing a static droplet in the fully periodic 

domain. The initial densities are selected based on the Maxwell equal-area construction. After 

reaching the defined steady-state condition, the pressure can be calculated by EOS. Figure 

3-9duplicates a scaled image of density at the steady-state condition. As stated by Mukherjee et 

al., the exact location of droplet edge is uncertain [100]. Therefore, a subpixel edge location based 

on partial area effect that is an image processing technique is implemented to increase the accuracy 

of droplet radius determination [101]. The droplet edge is determined by the red circles in Figure 

3-9. The inner plot shows the pressure trend along the cross section (red line). The horizontal parts 

determine the pressure of bulk phases. The difference between two phases pressure is related to 

Laplace pressure. The pressure trend between two phases is because of the unstable part of the 

EOS with ]��
��
^
�
> 0. The pressure difference versus the inverse of droplet radius is presented in 

Figure 3-10. According to Figure 3-10, the pressure difference increases with lowering the radius. 

All cases are simulated when 𝑎 = 2/49, 𝑏 = 2/21, and 𝑇> = 0.9. A linear relationship between 

the pressure difference Δ𝑝 and inverse of droplet radius is observed as given by Laplace law below: 

 Δ𝑝 =
𝜎
𝑅	 (3-54) 
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Figure 3-9: Density image and pressure variation along a cross line. Red circles are the droplet edge. 

Inset plot depicts the pressure distribution along the red line. 

 

 

 

Figure 3-10: The pressure difference 𝛥𝑝 versus inverse radius of droplet	1/𝑅.    
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Water is an important associating fluid in various biological, energy, and environment 

processes/systems. Accurate simulation of thermodynamic and physical properties of associating 

fluids including water can assist to better model, design, operate, and optimize the corresponding 

processes in terms of theoretical and practical prospects.    

 

3.4  SUMMERY AND CONCLUSIONS  

We introduce a pseudopotential central moments-based lattice Boltzmann method (LBM). Cubic 

plus association equation of state (CPA EOS) is implemented in the model to take into account the 

association forces in fluids with hydrogen bounds. The following main conclusions can be made 

based on the results of the current study: 

• Shan and Chen (SC) Sbragaglia and Shan (SS) EOSs do not have sufficient flexibility to 

predict the fluid phase behaviors. By changing their parameters their behaviour of 

predicting two phase densities do not change considerably (see Figure 3-3). 

• Double shear layer test shows that central moments-based LBM with a high-order Hermite 

polynomial are more stable than multiple-relaxation-time (MRT) collision operator-based 

LBM at turbulent cases. Thus, the central moments-based LBM is more suitable to be used 

for simulating high Reynolds and Mach number cases.  

• Increasing the order of gradient operator will increase the stability of model in two-phase 

cases in terms of reduction of the spurious velocity.  

• The gradient operator may lead to variations in the calculated interfacial tensions (capillary 

pressures) which can be manipulated by EOSs parameters.  
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• The type of the gradient operator may influence the thermodynamic consistency of the 

model.  

• Observing a straight line in the capillary test can be considered as a proper approach for 

verifying the model.  

The capability/potential of the current model to handle high-velocity cases and model the surface 

adsorption occurrence is an asset to effectively simulate transport phenomena in low permeable 

porous media.  Further studies are recommended to investigate vital aspects such as computational 

costs, stability, and applicability ranges of various categories of LBM that can make easier 

implications of LBM in energy, environment, and health systems.  
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4. CHAPTER FOUR 

Advances in Surface Wettability simulation: Implementation of Multi-Range 

Pseudopotential Lattice Boltzmann Method, Central Moments Collision Operator, and 

New Contact Angle Measuring Technique 

 

Preface 

A version of this manuscript is in the review process. Asadi, M.B. is the primary author of this 

paper. Along with the co-authors (De Rosis, A., and Zendehboudi, S.), Asadi developed the 

conceptual Lattice Boltzmann model and designed the manuscript’s structure.  Most of the 

literature review, data collection, and the performance comparison of different methods were done 

by Asadi, M.B., as the first author. The first draft and revised version of the manuscript were 

prepared by the first author based on the co-authors’ feedback and comments received from journal 

reviewers. De Rosis, A. provided the central moments part and helped in explaining the results. 

The co-author, Zendehboudi, S., had the supervision role and edited the manuscript. 
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ABSTRACT  

Surface wettability is an important characteristic that considerably affects fluid flow and 

distribution in both porous and non-porous systems. Lattice Boltzmann Method (LBM) is known 

as a promising mesoscale approach to simulate multiphase systems. Considering vital mechanisms 

of surface wettability, such as disjoining pressure and surface adsorption, will help to better design 

and operate multiphase systems.  In this paper, the wettability and adsorption behaviors of a solid 

surface are studied by the LBM. Multi-range solid-fluid (SF) interaction in pseudopotential LBM 

is implemented to simulate surface wettability condition and adsorption behavior, independently. 

A new strategy based on the Smoothing Splines technique is employed to determine the contact 

angle through the non-constant curvature of the interface profile. The proposed method is based 

on the non-constant curvature shape of interface; therefore, it can capture the effects of disjoining 

pressure. Furthermore, the introduced SF interaction is able to simulate highly non-wetting cases 

at high-density ratios. The absorption layer may cause an error in the phase density detection. The 

importance of density probability to obtain phase density is also shown. A limited range of 

dynamic viscosity is one of the significant limitations of the single relaxation-time collision 

operator; this drawback is addressed in this research by implementing multi relaxation time (MRT) 

and central momentums collision operators and comparing the results. The surface wettability 

modeling approach introduced in this study is useful to attain more accurate and reliable results 

while simulating multiphase flow in the porous media and thermodynamic behavior of fluids in 

shale reserves.   

Keywords: Wettability; Lattice Boltzmann Method (LBM); Solid-Fluid (SF) Interaction; Disjoining 

Pressure; Contact Angle. 
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4.1  INTRODUCTION   

Spreading of a liquid on a solid surface plays an essential role in various processes/phenomena 

such as lubrication and corrosion [1, 2], surface decontamination [3], enhanced oil recovery (EOR) 

[4-6], bubble detachment from the boiling systems [7, 8], and carbon capture and storage (CCS) 

[9, 10]. The wetting behavior is determined by the balance between the cohesive and adhesive 

forces.  The cohesive force is the reason for the droplet detaching and ball up, while the adhesive 

force helps to spread the droplet on the surface. The contact angle quantifies the surface wettability 

of a solid by a liquid droplet. A large contact angle (𝜃 > 90) shows the low wettability of the solid 

surface, and a small contact angle (𝜃 < 90) indicates the high wettability of the surface [11-13].  

In most cases, when a complex boundary condition is presented, it appears necessary to rely on 

numerical simulation approaches to obtain quantitative results. To date, there are three common 

numerical techniques in this field. The hydrodynamical description is the first approach [14-16], 

which enables evaluating the spatial and frequency up to the common hydrodynamical scale (e.g., 

macroscale problems, pipelines, and ships). The difficulty in the definition of different solid 

properties, with intricate surface roughness and physical-chemical properties, is the main 

disadvantage of this method. An atomic description might be a good option to solve this issue. In 

the molecular dynamics (MD) simulation technique, interactions between a set of molecules are 

evaluated by integrating Newton’s law [17, 18]. Because of the high computational cost, this 

method is limited to the nanometer and the femtosecond scale, which leads to a fundamental scale 

separation with the practical continuum phenomena [19]. This is not in the engineering interest 

scale.  In this study, we address this problem through the third approach with a focus on the liquid-

solid interaction based on the kinetic theory at the mesoscale.  
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The lattice Boltzmann method (LBM) represents a discretized solution of the Boltzmann equation, 

which can behave like a solver for the Navier-Stokes equation at the bulk scale. At the same time, 

it considers the microscopic interactions [20]. The LBM can be calculated in a parallel form easily 

due to the locality of most parts of the equations [21]. Multiple multiphase LBM models have been 

developed during the past two decades. The color gradient method is based on the two-component 

lattice-gas model [22] proposed by Gunstensen [23]. The free energy LBM model was developed 

to represent the phase effect by introducing a generalized equilibrium distribution function, which 

has a non-ideal pressure tensor term [24]. The pseudopotential model (also called as inter-particle 

potential [21] and Shan-Chen [20] model) was introduced by Shan and Chen to consider the 

nonlocal interaction between particles [25-28]. He et al. proposed an interface tracking model [29]. 

To the best of our knowledge, the pseudopotential model is the most widely used type of LBM 

(based on Google Scholar citations [30] of the first pseudopotential model paper [25]). The 

fundamental idea of the pseudopotential LBM model is to consider the microscopic molecular 

interactions at the mesoscopic scale utilizing pseudopotential, known as effective mass. The phase 

interface is not a mathematical boundary in the pseudopotential model due to the atomic phase 

separation;  there is no need to apply any interface-capturing or interface tracking technique. The 

pseudopotential LBM model is capable of capturing the non-ideal fluid behaviors through 

implementing non-ideal equations of state (EOSs). The general review of the LBM can be found 

in the literature [20, 21, 29, 31-34]. Several studies are available to explain the interactions between 

substrate and fluid.  

First, Martys and Chen described the solid-fluid (SF) interaction by introducing an SF interaction 

force [35]. The strength of the SF interaction was represented by a factor, which was used to adjust 

the contact angle in their study. This factor is considered as a density while it was assumed later 
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to be pseudopotential [36-38]. Benzi et al. introduced 𝜓(𝑝!) to adjust the contact angle [39]. Li et 

al. showed that the 𝜓-based method is suitable for high-density ratio cases; they introduced a 

modified pseudopotential-based SF interaction method to simulate high contact angle ranges [40]. 

Hu et al. [41] also presented an approach to predetermine the contact angle based on a geometric 

method [42]. Their strategy vanished the adsorbed layer near the solid surface [43]. Colosqui et al. 

used an SF interaction form, which contains repulsive core and attraction tails that leads to 

disjoining pressure [44]. Furthermore, Huang et al. [45] and Bao and Schaefer[46] used the 

pseudopotential multi-component method to approximate the contact angle.  

Most of the aforementioned studies used curve fitting techniques to fit a circle to the droplet. This 

method is acceptable for droplets with a constant curvature, while the disjoining pressure will 

change the curvature of the droplet [47]. Form the experimental prospect, Samoila and Sirghi 

found that the presence of disjoining pressure causes an inflection point in the interface profile, 

implying that the curvature of the drop profile is not always a constant value [48]. The importance 

of a non-constant curvature profile on the wetting dynamic is discussed in a research work 

conducted by Wang[49]. The role of disjoining pressure is of great importance in many 

processes/phenomena such as membrane separation systems and enhanced oil recovery (EOR) 

operations [50]. When the curvature of the drop interface is not constant in the presence of 

disjoining pressure, developing a method to determine the contact angle is crucial. The 

axisymmetric drop shape analysis (ADSA) was introduced based on the classical Young-Laplace 

equation [51], which is not applicable in some cases such as non-axisymmetric drops, liquid lens 

systems, and electrical fields. Bateni et al. developed a polynomial fitting technique to obtain the 

contact angle [52]. Their approach exhibits an acceptable computational cost while its accuracy 

depends on the type of polynomial order and number of pixels.  
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Bhatnagar Gross and Krook (BGK) is the most common collision operator Which is implemented 

in pseudopotential LBM. It is also known as single relaxation time. With this collision operator, 

all populations are required to relaxed to an equilibrium state with the same rate [53]. When the 

single relaxation time collision operator is implemented, the simulation stability is limited at high-

velocity gradient cased due to non-hydrodynamic ghost modes. Huang et al. [54] Showed that 

there is an inverse relationship between the highest achievable density and the viscosity of fluid 

when BGK collision operator is used. To simulate high Reynolds numbers cases, Multi Relaxation 

Time (MRT) collision operator is introduced. This collision operator is putted forward based on 

decomposing the collision operator as well as raw moments. Each moment is corresponded to a 

different hydrodynamic parameter and their fluxes which can relax at different time scales. Non-

hydrodynamic modes [55] and acoustic waves [56] are damped by BGK collision operator; 

therefore, The Prandtl number is fixed. In MRT collision operator, one can achieve a model with 

adjustable Prandtl number, improved numerical stability, and able handle the modeling of complex 

fluids such as viscoelastic fluids [57]. In the MRT operator the Galilean invariance is also trimmed 

because the collision in a frame at rest. Yu and Fan applied the MRT collision operator in the 

pseudopotential LBM [58]. Later on, Li et al. modified this approach by utilizing an improved 

force scheme [59].   

Recently, through shifting the lattice directions by the local fluid velocity, a novel collision kernel 

is proposed by Geier et al. [60]. They introduced a pyramidal hierarchical structure by developing 

the central moments (CMs) concept. In this operator which is known as “cascaded operator”, the 

post-collision state of a certain moment at a given order depends on lower-order ones.  The 

orthogonal basis relaxes to the equilibrium state of the continuous Maxwellian distribution. 

Originally, an orthogonal basis of central moments is considered for the cascaded LBM. However 
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the cascaded operator leads to overwhelming analytical formulation and practical implementation 

specifically in three-dimensional cases [61], this method showed a considerable stability 

enhancement in many cases [30, 60, 62-78]. Recently, De Rosis developed a new LBM framework 

based on the central moments. This method has differences compared to the cascaded scheme in 

two main point of views. First, a non-orthogonal basis is assumed and second, the equilibrium 

population is shortened by the relaxation to the discrete second-order. The non-pyramidal structure 

shows distinguished features in terms of stability, convergence, and accuracy [79, 80].   

In this research, the Knowledge gap is covered by mainly to a strategy. First, the pseudopotential 

LBM is enhanced by implementing a new form of SF interaction which helps to simulate high 

contact angle range cases. Beside the BGK collision operator, MRT collision operator and MRT 

collision operator is employment. Second, a new robust approach is introduced to determine the 

contact angle based on a non-constant curvature shape off drop interface. This new method of 

contact angle measurement helps to see/capture effects of disjoining pressure. It is worth to 

mention that the current approach does not introduced a new parameter to implement disjoining 

pressure in the LBM.  

The remainder of this paper is organized as follows: after the introduction, we provide a overview 

of LBM, and then a general description of the disjoining pressure is presented. This is followed by 

numerical simulation results and discussions. Lastly, the key outcomes of the current study are 

listed in the conclusions section.   
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4.2 THEORY AND METHODOLOGY  

First, the LBM structure is reviewed. Three different collision operator, single relaxation time 

(BGK), Multi Relaxation Time (MRT), and central momentum, are reviewed, and a new SF 

interaction is proposed. Second, the disjoining pressure concept is overviewed. Then, a new 

contact angle measuring procedure is explained. Finally, the methodology to calculate the 

probability histogram for densities is explained.     

4.2.1 Lattice Boltzmann Method (LBM) 

To describe the evolution of the particle distribution function (PDF) 𝑓" in time 𝑡 and space 𝑥 =

[𝑥, 𝑦] which moves on a lattice structure along a direction 𝑖 with velocity 𝑐" = [𝑐&" , 𝑐G"] during the 

time step, Δ𝑡 = 1, the discrete LB can be used: 

 𝑓"(𝒙 + Δ𝑡𝒄𝒊, 𝑡 + Δ𝑡) = 𝑓"(𝒙, 𝑡) + Ω"(𝒙, 𝑡) + 𝑆" (4-1) 

where 𝑆" is the forcing term. The solution of discrete LB can be categorized into two steps: 

Collision: 𝑓"∗(𝒙, 𝑡) = 𝑓"(𝒙, 𝑡) + Ω"(𝒙, 𝑡) (4-2) 

Streaming: 𝑓"(𝒙 + Δ𝑡𝒄𝒊, 𝑡 + Δ𝑡) = 𝑓"∗(𝒙, 𝑡)  (4-3) 

in which Ω"(𝑥, 𝑡) refers to the collision operator and superscript ∗ stands for the post-collision 

quantities. The velocity vector field, 𝑢 = n𝑢& , 𝑢Go, and fluid density, 𝜌, are computed by zeroth 

and first-order momentums of the population as expressed below: 

 

 𝜌 =p 𝑓"
"
; 			𝜌𝑢 =p 𝑓"

"
𝒄𝒊 (4-4) 

Single relaxation time LBM (BGK). Based on the BGK model, a single relaxation of population 

with the same rate to a local equilibrium is considered in the collision operator (Ω"). The BGK 

collision operator is given below: 
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 Ω" =
�𝑓"

#$ − 𝑓"�
𝜏  (4-5) 

where 𝜏 symbolizes the single relaxation time scale. The single relaxation time scale is related to 

the kinematic viscosity, 𝜈, of the fluid as: 

 

 𝜈 = �𝜏 −
1
2� 𝑐=

/Δ𝑡 (4-6) 

where cb = 1/√3 is the lattice sound speed. In Equation (4-5) 𝑓"
#$ is the equilibrium PDF and is 

given as below: 

 𝑓"
#$ = 𝑤"𝜌 �1 + 3𝒄𝒊 ∙ 𝒖 +

9
2
(𝒄𝒊 ∙ 𝒖)/ −

3
2𝒖 ∙ 𝒖� 

(4-7) 

in which 𝑤"𝑠 are a set of weights and are calculated based on the LB model.  

Multi Relaxation time (MRT). Generally, the collision process contains multiple physical 

quantities that may relax on the different time scales. To include the information of different time 

scales, a full constant matrix (Λ) is considered instead of a single time scale, 𝜏. Therefore, one can 

rewritten the collision operator as follows:  

 Ω" = Σ3Λ"3�𝑓3
#$ − 𝑓3� (4-8) 

Based on the Premnath and Abraham [81] derivation and by applying the transformation, 𝑓"̅ = 𝑓" −

1/2Δ𝑡, Equation (4-1) can be rewritten as following format: 

 

𝑓"̅(𝒙 + Δ𝑡𝒄𝒊, 𝑡 + Δ𝑡)

= 𝑓"̅(𝒙, 𝑡) + Σ3Λ"3�𝑓3
#$ − 𝑓3̅�|(&,') + Σ3 �𝐼"3 −

1
2Λ"3� 𝑆"

|(&,')Δ𝑡 
(4-9) 

where 𝐼"3 refers to the components of the identity matrix. A complex matrix manipulation is 

required to solve Equation (4-9); therefore, a linear transformation is implemented to diagonalize 

the collision matrix. The transformation matrix 𝐓 transforms the distribution functions from 



 121 

velocity space (𝑓"̅) into the moment space (𝑓�"). It is related to the macroscopic physical quantities 

such as density, momentum, energy, and their flux. The transformation matrix form depends on 

the lattice structure. The explicit form of D2Q9 is given as follows [82]: 

 

 𝐓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
−4
4
0
0
0
0
0
0

		

1
−1
−2
1
−2
0
0
1
0

		

1
−1
−2
0
0
1
−2
−1
0

		

1
−1
−2
−1
2
0
0
1
0

		

1
−1
−2
0
0
−1
2
−1
0

		

1
2
1
1
1
1
1
0
1

		

1
2
1
−1
−1
1
1
0
−1

		

1
2
1
−1
−1
−1
−1
0
1

		

1
2
1
1
1
−1
−1
0
−1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4-10) 

 

By multiplying the transformation matrix 𝐓, the transformed form of Equation (4-9) into moment 

space can be written as below: 

 

𝑓�"(𝒙 + Δ𝑡𝒄𝒊, 𝑡 + Δ𝑡)

= 𝑓�"(𝒙, 𝑡) + Σ\Λ�"\ ]𝑓�\
#$ − 𝑓�\^ |(&,') + Σ\ �𝐼"\ −

1
2Λ
�"\� 𝑆�"|(&,')Δ𝑡 

(4-11) 

Now, the transformed collision matrix Λ�"\ = TΛT6Fis diagonal as follows (for the D2Q9 lattice): 

 Λ� = 𝑑𝑖𝑎𝑔[𝑠F, 𝑠/, 𝑠Q, 𝑠*, 𝑠S, 𝑠A, 𝑠^, 𝑠_, 𝑠`] (4-12) 

The diagonal components of Λ�, 𝑠F through 𝑠`, are the new relaxation parameters which are in 

associating with elements of 𝑓�".  

Central Moments. The complete expression of the equilibrium distributions can be written as [83] 

[84, 85]: 
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𝑓"
#$ = 𝑤" 	𝜌	[1 +	

𝒄𝒊 ⋅ 𝒖
𝑐=/

	+
1
2	𝑐=*

	ℋ"
(/) 	

∶ 	𝒖𝒖	 +
1
2𝑐=A

]	ℋ"&&G
(Q) 	𝑢&/	𝑢G 	+ ℋ"&GG

(Q) 	𝑢&	𝑢G/^ 	

+
1
4𝑐=_

	ℋ"&&GG
(*) 𝑢&/	𝑢G/ 	] 

(4-13) 

 

with ℋ(L) refers to the Hermite polynomial of order n. Notice that Eq.(4-13) degrades into the 

classical second-order truncated formula if ℋ(Q) and ℋ(*) are neglected. 

One can assume lattice directions shifted by the local fluid velocity (see Geier et al.[60]),  𝒄�" =

[|𝒄�&"⟩, |𝒄�G"⟩]		in order to create a CMs-based collision operator, where 

 
|𝒄�&"⟩ = |𝒄&" − 𝑢&⟩ 

|𝒄�G"⟩ = |𝒄G" − 𝑢G⟩ 
(4-14) 

To transform distributions into moments (and vice versa) the matrix 𝒯� = [𝑇�<, … , 𝑇�" , … , 𝑇�_] is 

applied (see for example De Rosis and Luo 86) as below: 

 

 

|𝑇�<⟩ = |1, … , 1⟩ 

|𝑇�F⟩ = |𝑐&̅"⟩ 

|𝑇�/⟩ = |𝑐G̅"⟩ 

|𝑇�Q⟩ = |𝑐&̅"/ + 𝑐G̅"/ ⟩ 

|𝑇�*⟩ = |𝑐&̅"/ − 𝑐G̅"/ ⟩ 

|𝑇�S⟩ = |𝑐&̅"𝑐G̅"⟩ 

|𝑇�A⟩ = |𝑐&̅"/ 𝑐G̅"⟩ 

(4-15) 
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|𝑇�^⟩ = |𝑐&̅"𝑐G̅"/ ⟩ 

|𝑇�_⟩ = |𝑐&̅"/ 𝑐G̅"/ ⟩ 

Then pre-collision and equilibrium CMs is evaluated as 

 
|𝑘"⟩ = 𝒯�:|𝑓"⟩ 

|𝑘"
#$⟩ = 𝒯�: 𝑓"

#$¡ 
(4-16) 

respectively, where  

 
|𝑘"⟩ = [𝑘<, … , 𝑘" , … , 𝑘_]c 

|𝑘"
#$⟩ = n𝑘<

#$ , … , 𝑘"
#$ , … , 𝑘_

#$oc 
(4-17) 

and |𝑓"
#$⟩ = n𝑓<

#$ , … , 𝑓"
#$ , … , 𝑓_

#$ocand only three equilibrium central moments are not zero: 

 

𝑘<
#$ = 𝜌 

𝑘Q
#$ = 2𝜌𝑐=/ 

𝑘_
#$ = 𝜌𝑐=* 

(4-18) 

and 𝑘F,/,*,S,A,^
#$ = 0. Indeed, based on De Rosis and Luo [86], when the full set of Hermite 

polynomials is considered, the discrete equilibrium CMs and those of the continuous Maxwellian 

distribution are equal. By considering the 9 ∗ 9 relaxation matrix as Λ =

diag[1,1,1,1, ω,ω, 1,1,1]and the 9 ∗ 9 unit tensor as 𝐈, the post-collision state in terms of central 

moments is56 

 |	𝑘"⋆	⟩ 	= 		 (𝐈 − Λ)	𝒯�c|𝑓"⟩ + Λ𝒯�c|	𝑓"
#$⟩ +	(𝐈 −

Λ
2)𝒯
�c|	ℱ"⟩	 (4-19) 

The last component which needs to be defined is the forcing term ℱ". Same as the approach which 

is used in the equilibrium distribution (see Eq.(4-13)), Huang et al. [87] suggested to expand the 

forcing term as 
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 ℱ" =	𝑤" 	¤
𝐹
𝑐=
.ℋ(F) +

[𝐹𝑢]
2𝑐=/

.ℋ(/) +
[𝐹𝑢𝑢]
6𝑐=Q

.ℋ[&GG],[&&G]
(Q) +

[𝐹𝑢𝑢𝑢]
24𝑐=*

.ℋ[&&GG]
(*) ¥ (4-20) 

 

where the square bracket in Hermite coefficient refers permutations. The popular formula by Guo 

et al. [88] is then recovered when	ℋ(Q) and ℋ(*) are disregarded. The central moments of the 

discrete force term are56 

 |𝑅"⟩ = 𝒯�:|ℱ"⟩ (4-21) 

where 

 

|𝑅F⟩ = 𝐹& 

|𝑅/⟩ = 𝐹G 

|𝑅A⟩ = 𝐹G𝑐=/ 

|𝑅^⟩ = 𝐹&𝑐=/ 

(4-22) 

and 𝑅<,Q,*,S,_ = 0. Because of a different basis, the above compact expressions are different from 

those by Huang et al.84. It is worth to mention that Eq.(4-22) can also be obtained when the velocity 

terms in Eq(4-15) of  De Rosis[69] are neglected. Truly, the concept stated by De Rosis et al.56 is 

remarked, where it has been demonstrated that the adoption of the Hermite polynomials of the 

maximum admissible order (n=4 in the D2Q9 space according to Malaspinas81) leads to Galilean-

invariant (or, in other words, velocity-independent) equilibrium and forcing central moments. 

This concise scheme leads to post-collision central moments that are (see De Rosis et al.56): 

 

𝑘<⋆ = 𝜌	 

𝑘F⋆ =
𝐹&
2 	 

𝑘/⋆ =
𝐹G
2 	 

(4-23) 
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𝑘Q⋆ = 2𝜌𝑐=/	 

𝑘*⋆ = (1 − 𝜔)𝑘*	 

𝑘S⋆ = (1 − 𝜔)𝑘S	 

𝑘A⋆ =
𝐹G
6 	 

𝑘^⋆ = 𝜌𝑐=* 

Then, the post-collision populations |𝑓"⋆⟩ = [𝑓<⋆, … , 𝑓"⋆, … , 𝑓_⋆]care reconstructed by applying the 

back-transformation (see De Rosis55) 

 |𝑓"⋆⟩ = (𝒯�:)6F|𝑘"⋆⟩ (4-24) 

Li et al. provides a comprehensive study for a better understanding of different forcing schemes 

[89].  

Fluid-fluid (FF) and solid-fluid (SF) interactions.  Interactions between FF and SF are simulated 

by the pseudopotential LBM, which was proposed by Shan and Chen [25]. The intermolecular 

interaction forces that lead to the phase segregation mimic the intermolecular interactions. The 

interaction forces are defined by the pseudopotential 𝜓 (or effective mass) based on the local 

density. The interaction forces contain two FF and SF parts. The FF interaction forces for a single 

component multiphase case is determined as follows [90]: 

  

 F�� = −𝐺�𝜓(𝑥)Σ"𝜔"𝜓(𝑥 + 𝑐")𝑐" (4-25) 

 

where 𝐺� symbolizes the FF interaction strength.  Based on the simple interaction force defined in 

Equation (4-25), the pseudopotential (ψ) can be defined with an EOS as follows [91]: 
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 𝜓 = �
2(𝑝��% − 𝜌𝑐=/)

𝐺�𝑐=
	 (4-26) 

 

Li et al. introduced a new forcing scheme to improve the thermodynamic consistency at a higher 

density ratio [89]. Also, a new approach was presented to tune the surface tension in a single range 

multi relaxation time (MRT) method [92]. In this study, Carnahan-Starling (C-S) EOS is used.  

The cohesive forces are represented by Equation (4-25). To simulate the adhesive forces, the forces 

between the solid and fluid phases should be calculated. Martys and Chen suggested the following 

SF interaction [35]: 

 F�� = −𝐺!𝜌(𝑥)Σ"𝜔"𝑠(𝑥 + 𝑐")𝑐" (4-27) 

 

where 𝐺! stands for the SF strength; and 𝑠(𝑥 + 𝑒") symbolises a switch function which is equal to 

0 and 1 for fluid and solid phases, respectively. The density factor introduced by Equation (4-27) 

is replaced by a pseudopotential, as given below [36]: 

 

 F�� = −𝐺!𝜓(𝑥)Σ"𝜔"𝑠(𝑥 + 𝑐")𝑐" (4-28) 

Benzi et al. introduced the wall density parameter (𝜌!) to adjust the surface wettability and to 

include its effect by considering the pseudopotential form, 𝜓(𝜌!), in the SF interaction [39], as 

expressed below: 

 

 F�� = −𝐺𝜓(𝑥)Σ"𝜔"𝜓(𝜌!)𝑠(𝑥 + 𝑐")𝑐" (4-29) 
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Li et al. updated the switch function, 𝑠(𝑥 + 𝑒�), to a new switch function 𝑆(𝑥 + 𝑒") = 𝜙(𝑥)	𝑠(𝑥 +

𝑐") and by choosing 𝜙(𝑥) = 𝜓(𝑥) introduced a new SF interaction [40] as follows: 

 

 F�� = −𝐺!𝜓(𝑥)Σ"𝜔"𝑆(𝑥 + 𝑐")𝑐" (4-30) 

 

They showed that the Benzi et al. approach can cover a smaller range of contact angle, and for 

high contact angle cases, the droplet will be detached from the surface; therefore, the Benzi et al. 

method is unable to mimic the static contact angle. Their modified SF interaction is able to simulate 

a wide range of static contact angles. Later on, Hu et al. [41] implemented a geometrical method 

proposed by Ding and Spelt [42]. They customized the density of the ghost cells to predetermine 

the contact angle.  Although their technique is suitable to predetermine the contact angle, it leads 

to eliminate the adsorbed layer that has a physical meaning [43].  

To overcome the above drawbacks, we recall the multirange potential proposed by Sbragaglia et 

al. [93] for SF interaction in a more general form, as shown below: 

  

 F�� = −𝜓(𝑥)Σ"Σ3 	𝐺3𝜔"𝑆(𝑥 + 𝑗𝑐")𝑐" (4-31) 

 

By choosing appropriate interaction strength constants (𝐺3), the attraction tail and repulsion core 

of SF interaction can be regenerated. To reproduce the adsorbed layer, 𝑆(𝑥 + 𝑗 ∗ 𝑒")	is chosen 

as	𝑆(𝑥 + 𝑗𝑒") = 𝜓(𝜌!)𝑠(𝑥 + 𝑗𝑒"). By changing the wall density and strength parameters, the 

adsorption property of the solid surface can be tuned. The multirange potential implementation for 

SF interaction provides the opportunity to simulate high contact angle cases. Furthermore, 



 128 

disjoining pressure impacts can be mimicked. In the next subsection, the main equations of 

disjoining pressure will be provided.   

4.2.2 Disjoining pressure 

In this section, the concept of disjoining pressure is overviewed, and its important parameters are 

mentioned.  The disjoining pressure concept is developed to explain the impact of surface forces 

on a nanoscale liquid film [94]. The different surface forces contribute to the disjoining pressure 

formation [94-97]. The components of disjoining pressure are listed as follows: 

1- Electrical double layers and their overlap cause the electrostatic element (Π�) of the disjoining 

pressure as given below:  

 Π� = RTc<(exp(𝜑) + exp(−𝜑)) − 2𝑅𝑇𝑐< −
(𝑅𝑇)/𝜖𝜖<
2𝐹/ �

𝜕𝜑
𝜕𝑦�

/

 (4-32) 

 

where 𝜖<, 𝜖, 𝐹, 𝑇, 𝑅, and	𝑐<	represent the dielectric constant of vacuum, dielectric constant of 

water, Faraday’s constant, temperature in 𝐾, universal gas constant, and electrolyte concentration,  

respectively; 𝜑	and	𝑦	refer to the dimensionless electric potential in 𝐹/𝑅𝑇 unit, and coordinate 

normal to the liquid-gas, respectively. 

2- The energy which is required to form an organized structure in the thin molecular compared to 

the unorganized structure in the bulk liquid of the disjoining pressure (Π�), as expressed below 

[98, 99]: 

 

 Π� = 𝛽F exp(−𝑧/𝛼F	) + 𝛽/ exp(−𝑧/𝛼/	) (4-33) 
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in which,	𝛼� (𝛼F	and		𝛼/)	and 𝛽F (𝛽F	and	𝛽/) are the constants related to the characteristic length 

and the magnitudes of the structural forces. The indices 1 and 2 indicate the short-range and long-

range structural interactions; and z indicates the local thickness of the film. 

3- van der Waals or molecular component of disjoining pressure is defined as follows [100]: 

 

 Π� = −𝐴F/Q(4 − 3𝑧&/ − 3𝑧&&𝑧)/24𝜋𝑧Q (4-34) 

 

where 𝐴F/Q refers to the Hamaker constant for the interaction of media 1 (gas) and 3 (solid) through 

medium 2 (absorbed liquid film). The total disjoining pressure (Π(z)) can be thus described by the 

following expression:  

 Π(z) = Π�(z) + Π�(z) + Π�(z) (4-35) 

 

The augmented Laplace equation is implemented to describe the shape of the liquid-gas interface 

as follows: 

 𝑝/ − 𝑝F = 𝜎F/𝜅 − Π(z) (4-36) 

 

where 𝑝F and 𝑝/ are the pressure of the gas and liquid phases, respectively. 𝜎F/ introduces the 

superficial tension of the gas-liquid phase, and 𝜅 stands for the local curvature of gas-liquid 

interface. By neglecting the interconnection of 𝜎F/(𝑧) and Π(𝑧) [48, 101] and considering the 

constant macroscopic value of 𝜎F/, Equation (4-25) can be rewritten as follows: 

 

 𝜅 =
p� + Π(z)

σF/
 (4-37) 

 



 130 

where  p� = 𝑝/ − 𝑝F is the excess pressure.  

 

4.2.3 Contact Angle Measurement 

The local curvature of the liquid-gas interface can be expressed by the local thickness of the gas-

liquid interface as follows: 

  

 
𝜅 =

𝑑2ℎ(𝑥)
𝑑𝑥2

�¤1 + �𝑑ℎ(𝑥)𝑑𝑥 �
2
¥
3

 
(4-38) 

 

where ℎ(𝑥) represents the gas-liquid profile in the z-x plain (see Error! Reference source not f

ound.). The solid-liquid contact angle can be defined as the extremum tilting angle that happens 

at the inflection point, as given below: 

 

 𝜃;(& = tan6F Á
𝑑ℎ(𝑥)
𝑑𝑥

|
@𝑑

2ℎ(𝑥)
𝑑𝑥2 =0

Â (4-39) 

 



 131 

In Equation (4-39), 𝜃;(& is the maximum tilting angle.  

To calculate the contact angle, a function for a gas-liquid interface needs to be considered. In this 

regard, the remainder of this subsection will introduce our procedure for obtaining a function for 

a gas-liquid interface.   

 

Due to the discretizational nature of LBM, a continues function is needed to obtain the curvature 

of the droplet and to determine the contact angle. Initially, the interface of two phases should be 

defined. Colosqui et al. defined a cut-off density as the mean density of both liquid and gas  phases 

[102]. They assumed a constant curvature of droplet shape; therefore, they fitted a circle of radius 

𝑅 by least squares. In this method, the equilibrium contact angle will be 𝜃�0 = acos	(1 − 𝑙/𝑅) 

where 𝑙 is the droplet height. Figure 4-1 shows that this measured contact angle is only accurate 

when the curvature is constant. Furthermore, the contact angle measurement for a dynamic case 
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Figure 4-1: Schematic of a droplet on the solid surface. 
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needs two fitted circles. The interface can be defined as a region with a finite width [103]. Thus, a 

single lattice layer would not be chosen to represent the interfacial between liquid and gas phases. 

The gas-liquid interface is represented by a band of lattices. It is found that the interface thickness 

is around 4-5 lattices [59, 104, 105]. A range of density should be selected to determine the 

interfacial region. When the interface of two phases is determined, data points need to be smoothed 

to avoid numerical noises. In this study, a robust local regression method is applied. It should be 

mentioned that the calculated contact angle in the current research is the apparent contact angle 

[49].  There are three steps to the local regression smoothing process. First, the regression weights 

for each data point in the span (e.g., the interval of date which is considered in the smoothing 

process) should be determined as follows: 

 𝑤" = ¤1 − Ö
𝑥 − 𝑥"
𝑑(𝑥) Ö

Q
¥
Q

	 (4-40) 

 

In Equation (4-40), 	𝑥 is the predictor value linked with the response value to be smoothed;	𝑥" are 

the closest neighbors to	𝑥 through the defined span;	𝑑(𝑥) denotes the distance from	𝑥 along the 

abscissa to the most distant in predictor value in the span. Using this type of weighing, the 

smoothing data point has the highest weight and points outside of the span have a zero weight. 

Then, a weighed linear least-squares regression is implemented using a second-degree polynomial. 

Finally, the smoothed value is calculated based on the weighed regression at the predictor value of 

interest. Data points may have outliers. Therefore, it is necessary to use a robust approach to obtain 

the bulk behavior of data. To achieve a robust method, the smoothing procedure is performed as 

explained above.  The weights in Equation (4-40) are then updated as follows: 
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where 𝑟" indicates the residual of 𝑖'� smoothed point and MDA refers to the median absolute 

deviation of residuals. When the weights are updated, the local regression is run again to calculate 

residuals. Previous steps are applied five times. Figure 4-2 summarizes the robust local regression 

procedure. 
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Figure 4-2: Smoothing Splines flow chart. 
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This regression method of smoothing data is implemented by MATLAB smooth function. When 

the data is smoothed, a function should be defined to calculate the inflection point. In this study, 

we employ the Curve Fitting Toolbox of MATLAB to fit the data by the Smoothing Splines 

method. 

4.2.4 Density Probability Histogram 

In order to determine density of both phases, a probability histogram of calculated densities is 

obtained. The number of bins can affect the results. The number of bins (𝑘) for data points (𝑥) can 

be suggested directly or calculated based on assigned bin width (ℎ) as given below: 

 𝑘 = ³
𝑥s,3 − 𝑥s!0

ℎ
´ (4-42) 

where the braces are the ceiling function. The bins width (h) is calculated through using the  Scott's 

normal reference rule as: 

 ℎ =
3.49𝜎µ
√𝑛.  (4-43) 

in which, 𝜎Ú and 𝑛 denote the standard deviation and number of data, respectively. 

 

4.3 LIMITATIONS  

The spurious velocity in the FF interface is related to the anisotropy order of the gradient operator. 

As the anisotropy is increased, the spurious velocity will decrease. The anisotropy order is constant 

in the current study. The density of both phases can be tuned through the Li et al. forcing scheme 

[89].  
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4.4 RESULTS AND DISCUSSION  

In this section, the current study of surface wettability by LBM is divided to two main group. First, 

the surface wettability is studied at a static condition. Top and bottom sides of computation domain 

are assumed at no leak condition (solid wall) and periodic boundary condition is assumed for both 

left and right sides. In the second group of results same condition is applied except left and right 

boundaries of the computational domain. On these boundaries, constant velocity condition is 

applied in order to study the contact angle hysteresis.  

 

4.4.1 Static drop study 

 In this section, the numerical setup will be first explained briefly. The fluctuation behavior of 

maximum spurious velocity in the presence of solid surface is shown.  The new contact angle 

measurement is applied in a partially wetting case and its sensitivity to the limits of the selected 

interfacial density interval is studied. The importance of probability histogram in the phases’ 

density is highlighted. Finally, the capability of the introduced model to simulate an extreme non-

wetting condition without detaching the droplet is assessed.     

For a static droplet case, a surface in a 500×100 lattice domain with periodical boundaries is 

considered. The same critical properties of the fluid reported in Yuan and Schaefer [91] are used. 

A droplet, which is considered as a semicircle with a radius of 𝑟"+' = 70, is placed on a smooth 

surface. To simulate a homogenous wettability behavior, the wall density (𝜌!) is considered 

uniformly.  For the chemically patterned surface cases, the wall density and SF interactions 

strength parameters (𝐺3) should be chosen based on the chemical properties.  In the single 

component case, initial densities are determined by the Maxwell construction.  Each test is run 

until the maximum relative spurious velocity (𝑈k%,;(&) meets the stability condition for the 
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required times in a row. Spurious velocity is a proper criterion to evaluate the accuracy of LBM 

models in equilibrium cases. These non-physical velocities are present at equilibrium and, it seems 

that there is no mass exchange with them [36].  Figure 4-3 shows the magnitude of spurious 

velocity in the computational domain when the droplet is stabilized. Due to the periodic boundary 

condition, the wall is placed at the left and right sides of the domain . All points whose spurious 

velocities are greater than	0.95 × 𝑈k%,;(&, are indicated by red points. All these points are at the 

gas-liquid interface. According to Figure 4-3, the spurious velocities are higher at the solid-liquid 

interface, compared to the solid-gas interface. The SF momentum exchange can be considered to 

determine the hydrodynamic boundary condition at the solid surface (e.g., slip and/or non-slip) 

[44].   
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Figure 4-3: Spurious velocity in the computational domain. Red points represent the spurious velocities 

higher than 0.95|𝑈+/01|. 

 

Due to the fluctuation behavior, defining one point with a maximum relative spurious velocity less 

than the critical value (as the stabilized point) may not be safe, as depicted in Figure 4-4 [91].  

Hence, the stability condition should meet for the required times in a row.  Wagner shows that 

spurious velocities appear due to non-compatible discretization of driving forces for the order-

parameter and momentum equations [106]. To decrease the spurious velocity in the 

pseudopotential LBM, several techniques including integration of different EOSs with LBM [91, 

107], utilization of higher isotropy order of the interaction force [93, 108], interaction forces 
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scheme modification [54, 109, 110], and use of MRT collision operator [58, 59] are introduced. 

The Carnahan-Starling EOS is used in this study. The  universal gas constant 𝑅, attraction 𝑎, and 

repulsion parameters 𝑏are selected as 1, 0.5, 4 (all in lattice units), respectively.  

 

 

 

Figure 4-4: Maximum relative spurious velocities at different time steps. 

As mentioned before, fitting a circle is a common method to determine the contact angle. This 

approach is limited to axisymmetric cases. A new method is introduced for non-axisymmetric 

cases in this work. As it is demonstrated in Figure 4-5, a line is fitted over the interface points, 

while the adsorption layer is also considered. The fluid density at the FF interface is decreased 
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gradually, and the interface points are selected based on the pre-defined criteria of the interface 

density. The strength values, 𝐺3 , assigned for this case follow a pattern as 𝐺F = 1, and 𝐺3 =

−0.01 ∗ 𝑒6/(36/), where	𝑗 = 2,… ,7.  It should be noted that  𝐺3s are free parameters used to tune 

various surface properties. As it is shown in Figure 4-5, the span parameter of the smoothing 

function should be selected in the way to give the most preferable interface line. The generated 

line should be horizontal at the adsorption layer (e.g., zero curvature). Therefore, the span 

parameter is increased upon considering more interfacial points in the smoothing procedure, until 

it leads to a non-horizontal line in the adsorption layer. The red line is the fitted circle to the 

interface.  For the smaller droplet cases with a higher surface absorption, the difference between 

contact angles obtained by the circle fitting and Smoothing Splines techniques will increase. 

Furthermore, Smoothing Splines technique is suitable for contact angle determination in both 

axisymmetric and non- axisymmetric cases.  By comparing the new fitting approach based on 

smoothing splines and circle fitting, several differences are observed. For instance, the curvature 

of Smoothing Splines method is not constant which is because of possible disjoining pressure (see 

Equation (4-37)).  van der Waals seems to be the most probable effective component (see Equation 

(4-34)). A deterministic method to observe the impact of the strength values, 𝐺3, on observed 

disjoining pressure is highly recommended. Additionally, there is no need to assume constant 𝐺3 

at all time steps. The strength values might change during time steps in some processes like non 

isothermal processes.  
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Figure 4-5: Interface selection: Smoothing Splines fitted function to define the interface. 

 

The contact angle versus percentage of liquid density is illustrated in Figure 4-6 for the lower limit 

of the interfacial density interval, while Figure 4-7 presents the variation of contact angle with 

percentage of liquid density at the upper limit of interfacial density interval.  It should be noted 

that both limits of the interfacial density interval are defined based on the percentage of the liquid 

phase density at the equilibrium.  As the lower limit is increased, the magnitude of contact angle 

does not change considerably until the thickness of the adsorption layer lowers. The same trend 

happens for the upper limit sensitivity scenario (see Figure 4-6). Generally, one can conclude that 
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the limit selection of the interfacial density interval does not change the measured contact angle 

appreciably when the new introduced contact angle measurement approach is implemented.  

 

 

Figure 4-6: Effect of lower limit of interfacial density interval on measured contact angle. 
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Figure 4-7:  Measured contact angle sensitivity: the impact of upper limit of interfacial density interval. 

 

The density is gradually changed at the interface; the density might also be different than Maxwell 

construction due to thermodynamic inconsistency in pseudopotential LBM and disjoining pressure 

(e.g., the augmented Young−Laplace equation). Therefore, the liquid and gas phase densities are 

calculated based on the density probability histogram of the domain. Figure 4-8 illustrates the 

probability histogram of the drop, shown in Figure 4-9, which is a bimodal distribution of the 

probability of the density. A high probability with a high density is considered as the liquid phase 

density, while a high probability with a low-density value is selected as the gas phase density. The 

selected densities might be altered by changing the number of bins (e.g., changing the intervals of 
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densities in the histogram may affect the selected densities). It is worth noting that the highest and 

lowest densities are not always the selected densities.   

 

Figure 4-8: Histogram of probability of the fluid density. 

 

Another limitation, which is tackled by the current approach, is the simulating of non-wetting 

conditions. Usually, the droplet will be detached from the surface when the LBM is used to 

simulate high contact angle cases. Li et al. was able to simulate extreme non-wetting conditions 

utilizing a new SF interaction approach [40]. Figure 4-11 exhibits the capability of the current SF 

interaction model. The extreme non-wetting case is simulated at different reduced temperatures 

(e.g., different density ratio). The surface adsorption and wettability behavior can be treated 
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independently. For the case presented in Figure 4-12, the surface has a high adsorption potential; 

however, the adsorption is decreased for the case described in Figure 4-9. Figure 4-10 depicts the 

density histogram of different cases presented in Figure 4-15. For the high reduced temperature 

cases, the gas phase density is higher than the lowest density in the computational domain. On the 

other hand, the liquid phase density is lower than the highest density in the computational domain 

for the high reduced temperature cases.  

The adsorption impacts on the fluid flow in porous media are simulated by LBM for single phase 

cases. To the best of the authors’ knowledge, the adsorption phenomenon in multiphase flow 

through the porous media has not been evaluated by LBM, yet.  

 

Figure 4-9: Contact angle of extreme non-wet cases obtained by the new SF interaction. 
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Figure 4-10: Density histogram of different cases in Figure 4-16. 

 

4.4.2 Contact angle hysteresis (dynamic drop study)    

As mentioned before, a computational domain with no leak (solid wall) on top and bottom side of 

domain is considered to mimic a channel. The constant velocity on both left and right side of the 

domain is assumed. Same as static drop case study, the domain size is considered as 200 × 200 

and drop size is 𝑅 = 40. The domain reduced temperature is constant at 0.875. The strength values 

are kept as 𝐺F = 1, and 𝐺3 = −0.01 ∗ 𝑒6/(36/), where	𝑗 = 2,… ,7. The flow system is controlled 

by dimensionless numbers such as a Reynolds number 𝑅𝑒, Mach number, 𝑀𝑎. Thermodynamic 
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parameters of EOS are kept as the static drop case. The velocity field is applied when the drop 

reache to a stable case then the density and vertex field is saved every five times step. In Figure 4-

11Mach and Reynolds number are 𝑀𝑎 = 0.8, 𝑅𝑒 = 55.42, and dynamic viscosity is 𝜂 = 1/6.  

The flow direction is from left side toward right side. Figure 4-11 duplicated the contact angle 

changes during different time step. The central moments collision operator is implemented in this 

case study. The drop motion behaviour is shown in the Supplementary material section.  

 

Figure 4-11: contact angle hysteresis: dynamic case study by central moment collision operator. 

 

Capillary pressure introduces the surface wettability impact into the multiphase fluid flow 

behavior, particularly in the porous media. Capillary forces (pressure) play an important role in 
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various applications such petroleum production/recovery, membrane separation, drug delivery, 

and shale gas thermodynamic behaviours [111, 112].  

 

4.5 CONCLUSIONS 

In this research, the pseudopotential LBM is systematically investigated to simulate the wettability 

phenomena and to more accurately mimic mechanisms such as disjoining pressure and surface 

adsorption. The main conclusions of this study are listed as follows:  

• A new SF interaction is introduced to handle both surface adsorption and wettability, 

leading to a more reliable and accurate technique for contact angle determination.   

• The role of maximum relative spurious velocities to simulate the steady state contact 

angle is further highlighted. The maximum relative spurious velocities have a 

fluctuational behavior.   

• A new interfacial detection by Smoothing Splines is introduced. Smoothing Splines 

helps to determine the contact angle without imposing a specific function to the 

interface profile. Thus, the contact angle is calculated based on the disjoining pressure 

concept (e.g., the curvature of the interface profile is not assumed to be constant).  

• The sensitivity of contact angle to the upper and lower limits of interfacial density 

interval is evaluated. The impact of the cutting edge selection of interface density on 

the measured contact angle is not considerable.   

• The density of both phases should be selected based on the probability histogram of 

the domain density. Absorption may lead to deviations in the density probability 

histogram.    
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• New introduced SF interaction approach is able to simulate extreme non-wetting cases 

without detaching the droplet.  

• Central moments collision operator is implemented to simulate high Mach number 

dynamic case study of surface wettability. 

The 𝐺3𝑠 are free parameters used to tune different surface properties; they are assigned arbitrary. 

Finding a systematic approach to calculate these parameters can be useful. The solid surface in the 

current study is smooth and chemically homogeneous. Studying the wettability behavior of more 

complex surfaces such as chemically patterned surfaces and impacts of surface roughness and 

wettability on the fluid flow in the porous media appears to be promising.   
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NOMENCLATURES  

Acronyms 

LBM = Lattice Boltzmann Method 

SF = solid-fluid 

CCS = Carbon Capture and Storage 

EOR = Enhanced Oil Recovery 

MD = Molecular Dynamics 

EOS = Equation of State 
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ADSA = Axisymmetric Drop Shape Analysis 

BGK = Bhatnagar−Gross−Krook 

FF = Fluid-fluid 

MRT = Multi Relaxation Time 

C-S = Carnahan-Starling 

MDA = median absolute deviation of residuals 

 

Variables 

𝐴F/Q = Hamaker constant 

𝑐< = electrolyte concentration 

𝑐= = speed of sound 

𝑒" = discrete velocity vector 

ƒ"() = Density distribution function 

𝐺� = FF interaction strength 

𝐺! = SF strength strength 

𝑆" = forcing source 

𝐹 = Faraday’s constant 

ℎ(𝑥) = gas-liquid profile 

p = Pressure 

𝑅 = gas universal gas constant 

𝑠() = Wall switch function 

𝑇 = temperature 

𝑢 = velocity 
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Greek symbols/variables 

w"  = Weight factors 

𝜖<  = dielectric constant of vacuum 

𝜎F/  = superficial tension 

𝜖 = dielectric constant of water 

𝜃 = Contact angle 

𝜗 = kinematic viscosity 

𝜌 = density 

𝜏 = dimensionless relaxation time 

𝜑 = dimensionless electric potential 

𝜓 = Pseudopotential (effective mass) 

 

Subscripts 

𝐸 = Electrostatic element 

𝑓 = fluid 

m = molecular element 

𝑚𝑎𝑥 = Maximum 

𝑅𝑆 = Relative spurious velocity   

S = Structural element 

𝑤 = Wall 

 

Superscripts 
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𝑒𝑞 = equilibrium 
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This research work focuses on improving LBM to simulate fluid-fluid and solid-fluid interactions. 

Thermodynamic consistency is improved by integrating the CPA EOS  with LBM and decreasing 

the spurious velocity by using higher-order isotropic gradient operator. Central moments collision 

operator is implemented to increase the model stability at high Reynolds number conditions. A 

new solid-fluid interaction scheme is introduced to improve the simulation of surface wettability. 

This thesis includes three main sections:  incorporating CPA EOS in the LBM (Chapter 2), 

implementing central moments in the LBM (Chapter 3), and improving surface wettability 

simulation (Chapter 4). 

5.1  Fluid-Fluid interactions  

Some fluids associate due to hydrogen bonding. To simulate unusual thermodynamic behaviours, 

CPA EOS is integrated with LBM. The thermodynamic consistency of LBM results is verified by 

Maxwell equal area construction. The modeling results are then compared with the experimental 

data of water to show the reliability of outputs. To increase the stability of the model, the central 

moments collision operator is applied in the pseudopotential approach of LBM. The main 

findings/conclusions of the first phase are as follows:  

- Sbragaglia and Shan (SS) and Shan and Chen (SC) EOSs, which are commonly used in 

LBM simulations, do not have sufficient flexibility to predict the fluid phase behaviors. 

The approach introduced in this thesis fills this knowledge gap. 

- Better thermodynamic consistency in LBM results is achieved in both the liquid and gas 

phases when CPA EOS is utilized for associating fluids.  

- The global optimization approach is implemented to determine the CPA EOS constants in 

the lattice units.  
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- There is better agreement between LBM results and experimental data when CPA EOS is 

incorporated in the model in comparison with PR EOS.  

- Li et al.’s forcing scheme is applied when CPA EOS is used; not only thermodynamic 

consistency is improved, but also the model stability is increased at lower reduced 

temperatures. 

- To increase the stability at lower temperature, an extended form of CPA EOS is proposed 

to determine the initial densities.    

- CPA/LBM approach shows a reliable behaviour of the interfacial tension of water as a 

function of the reduced temperature. 

- In comparison with MRT collision operator, central moments-based LBM with a high-

order Hermite polynomial is more stable in double sheer layer test at high Reynolds 

number.  

5.2  Solid-Fluid interactions  

In this research phase, the pseudopotential LBM approach is examined to simulate the wettability 

phenomena; vital mechanisms such as disjoining pressure and surface adsorption are mimicked 

accurately. The main outcomes of this phase are as follows: 

- New solid-fluid interaction is proposed to handle both surface absorption and surface 

wettability. 

- A new contact angle measurement is introduced based on Smoothing Splines technique. In 

spite of the circle where the curvature is constant, it is not constant in this method. Thus, 

the effect of disjoining pressure should be taken into account in the contact angle 

measurements. 
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- The probability histogram is presented as a tool to measure the phase density in the 

presence of a surface. 

- New solid-fluid interaction is able to simulate high non-wetting case without detaching the 

drop. 

5.3  Recommendations for Future Work 

Simulating fluid-fluid and solid-fluid interactions by LBM, the following recommendations for 

future work are summarized: 

- In the fluid-fluid interaction, a single range approach is implemented mostly. The 

interfacial tension can be handled by a multirange pseudopotential approach. 

- Implementing central moments collision operator increases the stability of the model at 

high Reynolds number, which can be an asset for simulating fluid flow in low permeable 

porous media. 

- The surfaces used in the current research are smooth and chemically homogenous. Thus, 

heterogeneous and rough surfaces can be considered to better simulate real cases. 

- In the current study, cases are assumed at the isothermal condition. Adding an energy 

balance equation to the current model can be a significant improvement while studying 

phase change phenomena.   

- Considering the nucleation in the current model can be helpful for various 

processes/phenomena such as asphaltene precipitation and hydrate formation.   

- Increasing the number of phases and components to simulate processes that involve 

multiphase flow and chemical reactions. 
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- Implementing more robust non-cubic equations of state such as PC-SAFT and comparing 

the results with the outputs of CPA and common cubic equations of state in terms of the 

equilibrium stability, accuracy, and computational costs.  

- Examining different force schemes such as exact difference method (EDM) and method of 

explicit derivative (MED) in simulation of multiphase systems at various process and 

thermodynamic conditions and comparing results in terms of stability, accuracy, and 

computational time. 

- Further investigation of multiphase flow using the entropic multiple-relaxation-time 

multirange pseudopotential lattice Boltzmann model (EMRT-MP LBM) to simulate 

complex fluid-fluid and fluid-solid interfacial phenomena for a broad range of Weber 

numbers and Reynolds numbers at high density ratios. The performance of EMRT-MP 

strategy can be then compared with central moments collision operator approach. 

 


