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Abstract— This paper presents the distributed velocity-based
control laws of n ∈ N individuals considered rigid bodies, which
gives rise to swarm clusters in a partially known environment.
The motion of the individuals is based on Reynold’s rules of
separation, alignment, and cohesion. If two individuals are in
the detection range of each other, there is an attraction between
the two for alignment. There is a short-range repulsion to
avoid the inter-individual collision. A total potential function
is developed using attractive and repulsive potential functions,
representing general anisotropic swarms. The decentralized
velocity-based controllers of the individuals, which gives rise to
a gradient system, are derived from the total potential function.
The effectiveness of the decentralized velocity-based controllers
is validated through computer simulations carried out using the
Mathematica software.

I. INTRODUCTION

In robotics, the problem of controlling multiple au-

tonomous robots such that they behave cooperatively in

a cohesive manner is of current importance [1], [2], [3],

[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],

[16], [17], [18], [19]. The principle of swarming (see, for

example, [4], [5], [15], [16], [20], [14]) is increasingly

used to solve this problem because swarming induces self-

organization and emergent patterns which allow members

of the swarm to work or move about cooperatively and

cohesively [21], [22], [23]. There are many opportunities

for integrating the swarming principles into the industry

as swarm formations frequently play an influential role

in several disciplines such as robotics, computer science,

surveillance, military, economics, biology, and industrial au-

tomation [24], [9], [10], [14]. Some applications or possible

applications of the swarming principle are: the possible use

of swarm robots for carrying out deep mining operations in

hazardous environments [25], the use of swarm unmanned

aerial vehicles (UAVs) in the monitoring of; air pollution

caused by the gases released due to industries [26], large

farms for precision agriculture [27], and exclusive economic

zone (EEZ) [19], and using swarms of robots for cooperative

transportation and geological surveys [28]. Swarms of robots

can also be utilized to monitor defects in civil infrastructure

by the construction industry. In the energy production indus-

try, swarms of UAVs or unmanned ground vehicles (UGVs)

are also used for monitoring power lines, oil and gas pipes,

as it may be dangerous for a human to conduct an inspection.

Over the last twenty years, the attempts of the researchers

to comprehend swarming can be categorized into two differ-
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ent modeling approaches: the Eulerian and the Lagrangian
approaches [29], [30], [31], [32], [33], [14]. In the Eulerian

approach, the swarm is considered a continuum described

by its density in one-, two- or three-dimensional space. In

the Lagrangian approach, the state (position, instantaneous

velocity, and instantaneous acceleration) of each individual

and its relationship with other individuals in the swarm

is studied; it is an individual-based approach, in which

the velocity and acceleration can be influenced by spatial

coordinates of the individual. Comprehensive reviews of

these approaches and their advantages and disadvantages can

also be found in [34] and [35].

A fundamental problem in swarm robotics is to develop

distributed local control laws of swarm individuals such that

the individuals have a continuous path, and the individuals

motion is only influenced by motion of the individuals in

their neighborhood. In this paper, we want to develop the

distributed velocity-based control laws of n ∈ N individuals

in a partially known environment, which gives rise to swarm

clusters. The development of swarm clusters or multiple

sub swarms is of great importance for completing different

tasks. For instance, exploring and exploiting different areas

to decrease search time in search and rescue operations. We

begin by developing a system representing multiple rigid

bodies and describe its configuration in planar space. The

motion of the rigid bodies is based on Reynold’s rules

[36], which are (1) collision avoidance with neighbors, (2)

matching velocity of the neighbors, and (3) staying close

to the neighbors. An individual will be stagnant if there

is no other individual in its sensing range; that is, there

is no interaction between that individual and any other

individual in a given workplace. Since this current research

involves the state (position and instantaneous velocity) space

of each individual and its relationship with other individuals,

a Lagrangian swarm model is developed for the rigid bodies.

The swarm model is based on the hypothesis that swarming is

an interplay between long-range attraction and short-range
repulsion between the individuals which are in the sensing

zone of its neighbours.

For individuals in the sensing range of the other in-

dividuals, attractive and repulsive potential functions that

are part of a total potential function are formed using the

artificial potential field technique. The decentralized velocity-

based control laws are then derived from the total potential

function, which gives rise to a gradient system.

The remainder of the paper is organized as follows:

Section II gives a brief description of a two-dimensional

swarm model. In Section III, the decentralized velocity-based
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controllers are derived for n ∈ N individuals from a total

potential function, which is developed using attractive and

repulsive potential functions. In Section IV, the simulation

studies are presented, and the research is concluded with a

brief on future undertakings in sections V.

II. A TWO-DIMENSIONAL SWARM MODEL

Lets consider n ∈ N individuals as rigid bodies in a

workspace. Let the position of the ith individual at time

t ≥ 0 be (xi(t), yi(t)), for all i ∈ {1, 2, 3, . . . , n} with

(xi(t0), yi(t0)) = (xi0, yi0) as the initial conditions.
Thus, xi := (xi, yi) ∈ R

2 is the configuration vector

for the ith individual and x := (x1,x2,x3, ...,xn) ∈
R

2n becomes the configuration vector for n individu-

als with the initial conditions vector denoted by x0 :=
(x1(0),x2(0),x3(0), ...,xn(0)) ∈ R

2n.
Definition 2.1: The ith individual is a point mass residing

in a disk with center (xi, yi) and radius ri > 0. It is described

as the set

Bi := {(z1, z2) ∈ R
2 : (z1 − xi)

2 + (z2 − yi)
2 ≤ r2i }. (1)

The ith individual has an omni-directional detecting sensor

situated at (xi, yi) with detection range of rd as shown

in Figure 1.

z2

z1

yi

xi

rd

ri

Sensing
Region

Fig. 1. The ith individual with an omni-directional detecting sensor
situated at (xi, yi) with detection range of rd.

There will be communication between the ith individual

and jth if and only if they are in the detection range

of each other. This means that the behaviour of the ith

individual is influenced by its neighbours only. There is no

communication between those individuals, which are not in

the detection range of each other. Thus, the motion of those

individuals will not be influenced by each other. At t ≥ 0, let

(vi(t), wi(t)) := (x′
i(t), y

′
i(t)) be the instantaneous velocities

of the ith individual. Using the above notations, we have thus

a system of first-order ODEs for the ith individual, assuming

the initial condition at t = t0 ≥ 0:

x′
i(t) = vi(t), y

′
i(t) = wi(t), xi0 := xi(t0), yi0 := yi(t0).

(2)

Suppressing t, we let xi := (xi, yi) ∈ R
2 be our state vec-

tors. Also let x0 = x(t0) = (x10, y10, x20, y20, ..., xn0, yn0)︸ ︷︷ ︸
2n terms

.

If the instantaneous velocity (vi, wi) has a state feedback

law of the form, for i ∈ {1, 2, 3, . . . , n},

(vi(t), wi(t)) = (−μifi(x(t)),−ϕigi(x(t))),

for some scalars μi, ϕi > 0 and some functions fi(x(t))
and gi(x(t)), to be constructed appropriately later, and if we

define gi(x) := (−μifi(x),−ϕigi(x)) ∈ R
2 and G(x) :=

(g1(x), ...,gn(x)) ∈ R
2n, then the swarm or sub-swarms of

m ≤ n individuals is

ẋ = G(x), x(t0) = x0. (3)

III. DISTRIBUTED VELOCITY CONTROLLERS OF THE

INDIVIDUALS

A. Components the Total Potential Function

In the total potential function to be proposed, the following

potential functions will be included.
1) Long Range Attraction: To ensure there that the ith,

and jth individuals which are neighbours and are in the

detection range of each other converge to the centroid of

the ith, and jth individuals, j �= i, i, j ∈ {1, 2, 3, ...n}, a

radically unbounded attraction potential function for the ith

individual is designed as follows

Ui,jatt
(x) :=

1

8
αi,jq

2, (4)

where αi,j ≥ 0 is the strength of communication between the

ith and jth individuals and could be regarded as convergence

parameters, and q = ‖xi − xj‖ is the distance between the

ith, and jth individual at any arbitrary time. To ensure that

the is an element of decentralised control, αi,j is defined as

αi,j =

{
λi,j(r

2
d − d2i,j)

2, if di,j ≤ rd
0, otherwise

(5)

in which λi,j > 0 and di,j = q. The above particular form of

αi,j indicates that the ith, and jth individual are navigating

in a partially known environment and the it will ensure that

the velocity-based controllers to be proposed are continuous.

Note that α̇i,j = 0.
2) Short Range Repulsion: To ensure that there is inter-

agent collision avoidance between the ith and the jth indi-

vidual which are neighbours and are in the detection range

of each other, j �= i, i, j ∈ {1, 2, 3, ...n}, we consider the

function

Qi,j(x) =
1

2

[
q2 − (2ri)

2
]
. (6)

Thus, the repulsive potential field due to jth individual on

the ith individual for j �= i, i, j ∈ {1, 2, 3, ...n} is given by

Ui,jrep(x) =
βi,j

Qi,j(x)
(7)

where βi,j gives the strength of communication between the

ith and jth individuals to avoid collision and is defined as

βi,j =

{
γi,j(r

2
d − d2i,j)

2, if di,j ≤ rd
0, otherwise

(8)
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in which γi,j > 0. The above particular form of βi,j

indicates that the ith, and jth individual are navigating in

a partially known environment and the it will ensure that

the velocity-based controllers to be proposed are continuous.

Note that β̇i,j = 0. An illustration of the total repulsive

potentials for three randomly generated individuals for the

function (7) is shown in Figure 2(a), while Figure 2(b) shows

the corresponding contour plot generated over a workspace

20 < z1 < 80 and 10 < z2 < 70.

(a) 3D visualization

Individual 1

Individual 2

Individual 3

20 30 40 50 60 70 80
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70

z1

z
2

(b) Contour Plot

Fig. 2. The repulsive potential fields and the corresponding contour plot
generated using the repulsive potential function governed by equation (7).
For the parameters, γi,j were randomized between 30 and 70.

B. A Total Potential Function

Using the attractive and repulsive potential together, a

total potential function for the ith individual for i, j ∈

{1, 2, 3, . . . , n} is

Li(x) =

n∑
j=1,
j �=i

(
Ui,jatt

(x) + Ui,jrep(x)
)

Consider a total potential function for the system (3),

L(x) =

n∑
i=1

Li(x) (9)

In the Lyapunov-like function to be proposed, the following

potential functions will be included.

Remark 3.1: Isotropic and Anisotropic Swarm Systems
The total potential function (9) is that of an isotropic system

if there is no restriction on the detection range and there

is identical inter-individual communication strength that is

αi,j = βi,j = 1. An isotropic system was studied in [37].

However, if αi,j = βi,j ≥ 0 then (9) is the total potential of

an anisotropic system. An anisotropic system was studied in

[38].

Remark 3.2: Reciprocal and Nonreciprocal Swarms
The total potential function (9) is that of a reciprocal swarm

if there is no restriction on the detection range and the

inter-individual communication strength between any two

individuals are the same, that is, αi,j = αj,i and βi,j =
βj,i for all i, j. A reciprocal swarm was analyzed in [37].

However, if there is no restriction on the detection range and

the inter-individual communication strength between any two

individuals are different, that is, αi,j �= αj,i and βi,j �= βj,i

for all i, j, then (9) is the total potential of an nonreciprocal

swarm. A nonreciprocal swarm was analyzed in [37].

C. Velocity Controllers

Along a trajectory of system (3),

L̇(x) = ∇L(x) = f(x)ẋ+ g(x)ẏ. (10)

Let there be scalars μi > 0 and ϕi > 0. Then the velocity

controllers of system (3) are

�i = −μifi(x) and ωi = −ϕigi(x) (11)

where

fi(x) =

n∑
j=1,
j �=i

(
αi,j

2
− 2Ui,jrep(x)

Qi,j

)
(xi − xj) , (12)

and

gi(x) =

n∑
j=1,
j �=i

(
αi,j

2
− 2Ui,jrep(x)

Qi,j

)
(yi − yj) . (13)

IV. SIMULATION RESULTS

Simulations were generated using Wolfram Mathematica

11.3 software. To achieve the desired results a number

of sequential Mathematica commands were executed. We

numerically simulated system (3) using RK4 method (Runge-

Kutta Method). At t = 0, the initial positions (xi0(0), yi0(0))
were randomly generated.
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Example 4.1: In this example, 20 point-mass rigid bodies

is considered. Their initial positions at time t = 0 are shown

in Fig. 3 using circles in colour red. The rigid bodies form

three sub-swarm clusters as time evolves as shown in Fig. 3.

As time evolves Fig. 4 shows that two of the three sub-

swarm clusters join to form a new swarm cluster. As time

evolves further, the two clusters that are shown in Fig. 4 join

to form a swarm whose individuals are moving in circular

motion that shows the natural phenomena of milling as

shown in Fig. 5. Usually, natural swarms utilize the milling

patterns to confuse its predators so that a particular individual

is not made a target. The velocities of the individuals are

shown in Figure 6. As time evolves it is evident that the

velocities of the ith individual matches the velocities of the

individuals in its neighbourhood. For this example, ri = 1,

rd = 10, μi = ϕi = 0.01, λi,j is randomized between 2 and

5, and γi,j is randomized between 0.01 and 3.

10 20 30 40
0

10

20

30

40

z1

z
2

Fig. 3. The positions of the individuals at t = 149 shows three
swarm clusters.
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10

20

30

40

z1

z
2

Fig. 4. The positions of the individuals at t = 191 shows two
swarm clusters.
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0

10

20

30

40

z1

z
2

Fig. 5. The positions of the individuals at t = 308 shows that the
swarm clusters have joined to form a single swarm.
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Fig. 6. The velocities of the individuals.

Example 4.2: In this example, 30 point-mass rigid bodies

is considered. Their initial positions at time t = 0 are shown

in Fig. 7 using circles in colour red. The rigid bodies form

three sub-swarm clusters as time evolves initially as shown

in Fig. 7. As time evolves Fig. 8 shows that two of the three

sub-swarm clusters join to form a new swarm cluster. As time

evolves further Fig. 9 shows that the two sub-swarm clusters

join to form a bigger swarm. The evolution of the velocities

of the individuals are similar to that shown in Fig. 6. For

this example, ri = 1, rd = 5, μi = ϕi = 0.05, λi,j = 0.5,

and γi,j is randomized between 0.1 and 0.5.

0 20 40 60 80
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20
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z
2

Fig. 7. The positions of the individuals at t = 64 shows three
swarm clusters.
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Fig. 8. The positions of the individuals at t = 80 shows two swarm
clusters.
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Fig. 9. The positions of the individuals at t = 773 shows that the
swarm clusters have joined to form a single swarm.

V. CONCLUSION AND FURTHER WORK

This paper presents the formulation of a total potential

function suitable for anisotropic swarm clusters from at-

tractive and repulsive potential functions. The distributed

velocity-based control laws of n ∈ N individuals considered

rigid bodies in a partially known environment are derived

from the total potential function. Engaging computer sim-

ulations verified the control laws. The results here provide

further scope for developing a swarm cluster system in which

the clusters exhibit distinct tasks.
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