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a b s t r a c t 

This paper presents the development of a new set of switched velocity controllers of a swarm of unmanned 

ground vehicles (UGVs) from multiple Lyapunov functions, which are invoked according to a switching rule. The 

Lyapunov-based Control Scheme (LbCS) has derived the multiple Lyapunov functions that fall under the artificial 

potential field method of the classical approach. Interaction of the three main pillars of LbCS, which are safety, 

shortness, and smoothest path for motion planning, bring about cost and time effectiveness and efficiency of the 

velocity controllers. The switched controllers enable the UGVs to navigate autonomously via hierarchal landmarks 

in a cluttered workspace to their equilibrium state. The switched controllers give rise to a switched system whose 

stability is proven using Branicky’s stability criteria for switched systems based on multiple Lyapunov functions. 

Simulations results are presented to show the effectiveness of the nonlinear time-invariant controllers. Later, 

effects of noise are included in the velocity controllers to show system robustness. 
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. Introduction 

The recent past decades have seen unprecedented attention, im-

ortance, and investment given to robots by researchers, academics,

ponsors, and industries, with an exponential growth in real-world

pplications related especially to human livelihood and endeavors,

nd found in most sectors that have complicated, dull, dangerous,

nd dirty environments [1,2] , and mostly requiring automation, repe-

ition, and high work rates [3,4] . These real-life applications include

urveillance, transportation, save and rescue, pursuit-evasion, pedes-

rian navigation, waste management, foraging, entertainment, and me-

ia, pick and place, surveying, and explorations [1,2,5–8] . An exten-

ive array of robotic systems such as mobile manipulators, anchored

nd unanchored arms, car-like, tractor-trailer, aerial and underwater

obots, swimming and flying robots, and parallel robots have been

esigned to operationalize these real-life applications [9–14] . Addi-

ionally, we now have a strong presence of assistive robots such as

obotics pets, surgical robots, telesurgery robots, and companionship

obots in the health and social care for surgery, company, monitor-

ng, elderly assistance, and handicap assistance, to name a few major

nes [15] . 

The emergence of swarm robotics is commendable in providing so-

utions to problems where general robotics would turn out to be less

fficient in terms of sensing capabilities, situation awareness, robust-

ess to a mission failure, sharing of workload, search and rescue. Swarm
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obotics is an approach to the coordination of multiple robots as a sys-

em that consists of large numbers of mostly simple physical robots [16] .

warm intelligence is nature-inspired but is not limited by the emergent

ehaviour observed in social insects. The attempts of researchers to com-

rehend biological swarming can be categorized into two different mod-

ling approaches: the Eulerian and the Lagrangian approaches [5,17–21] .

n the Eulerian approach, the swarm is considered a continuum described

y its density in one-, two- or three-dimensional space. Partial differen-

ial equations describe the time evolution of swarm density. In the La-

rangian approach, the state (position, instantaneous velocity or instan-

aneous acceleration) of each individual and its relationship with other

ndividuals in the swarm is studied; it is an individual-based approach,

n which the velocity and acceleration can be influenced by spatial co-

rdinates of the individual. The time evolution of the state is described

y ordinary or stochastic differential equations. Comprehensive reviews

f these approaches and their advantages and disadvantages can also be

ound in Gazi(2004) [22] and Merrifield(2006) [23] . 

More recently, researchers have considered the use of bio-inspired

ehavior of landmarks from nature to find better and more inclusive

olutions to the motion planning and control problems [24–26] . A land-

ark is a distinctive feature that exists naturally in the environment to

upport the motion. In the field of robotics, landmarks are either used

or guidance to desired goal(s) [26–28] , or to allow mapping and local-

zation of robot positions [25,29,30] . A set of landmarks selected for a

pecific task is known as waypoints, which can also include physical ob-
21 
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ects, devices or coordinates imprinted with navigation details for robot

avigation or human movements [24,31] . 

Moreover, landmarks for a planning problem are subgoals [32] , and

oals are landmarks [33] as well. Landmarks are abstract tasks that are

andatory and should be performed by any solution plan. Landmarks

an be performed simultaneously, or they could be prioritized in hier-

rchical order. An example of hierarchical landmarks would be to com-

lete task A before performing task B [34] , where task B is to apply

 finishing coat of paint to a building wall, and task A is to apply the

ndercoat to a building wall. In literature, a single robotic agent has

een mostly considered for multiple point convergence. For instance,

or a robot to navigate from starting position to the marked goal area,

n [35] , a robot converges to its goal using selected landmarks from sev-

ral landmarks. Furthermore, Beinhofer et. al. [36] linearized the whole

avigation cycle representing the landmark locations by a discrete set

nd then used a user-defined bound for the conservative approxima-

ion of landmark visibility and selection. The concepts of landmarks

nd waypoints have invariably been applied to multi-agents and robotic

warms in applications such as environmental tracking, sensor deploy-

ent, mine clearing, search-and-rescue, and intrusion detection [37–

9] , compounding the advantages of multiple robots with those of land-

arks or waypoints. 

This paper aims to develop the velocity controllers of a Lagrangian

warm of UGVs, which navigate via hierarchal landmarks to the swarm’s

arget. The navigation of the swarm of UGVs will be based on the meta-

euristic approach of Reynolds rules [40] which are (1) collision avoid-

nce with neighbors, (2) matching velocity of the neighbors, and (3)

taying close to the neighbors. The hierarchal landmarks serve as the

aypoints for a swarm of UGVs. Navigation via the hierarchal land-

arks requires different velocity controllers for the UGVs for each dis-

inct landmark. Thus, navigating to a distinctive hierarchal landmark

ill give rise to a separate subsystem. Combining the distinct subsys-

ems will, therefore, create a switched system. A switched system is

 hybrid dynamical system comprising of a family of continuous-time

ubsystems and includes a law that coordinates the switching between

hem [41] . Therefore, the switched velocity controllers will enable the

ndividuals of a swarm of UGVs to maneuver from their initial position

n a a priori known environment via distinct hierarchal landmarks to

heir equilibrium state successfully. This approach is centered around

ignificantly enhancing a technique of solving the find path problem

or a swarm comprising of 𝑛 ∈ ℕ individuals developed by the authors

n [42] . This novel technique can potentially have real-life applications

n the military, health care, logistics, and surveillance. For instance, a

equence or series of hazardous or harmful areas to human beings can

e mapped and sampled by a swarm of UGVs to determine the con-

amination. The authors constructed a planar Lagrangian swarm model

ased on the hypothesis that swarming is an interplay between long-

ange attraction and short-range repulsion between the individuals in

he swarm. The stability of the switched system for the arbitrary switch-

ng signal is established by employing multiple Lyapunov functions. The

elocity based-controllers for the individuals of a swarm of UGVs are de-

ived for each subsystem using the multiple Lyapunov functions. 

It is known that in measurements, there are rare, inconsistent obser-

ations with the largest part of the population of observations, called

utliers. Noises and uncertainties can affect the convergence of the so-

ution and its stability. Thus, the effects of noise will be later included

n the velocity controllers to show its robustness. 

The major contributions of this paper are: 

1. Swarm navigation through hierarchal landmarks. In contrast, the

swarm individuals in [37] navigated back and forth between two

targets, whereas the swarm of robots in [39] explore an environ-

ment using multiple landmarks with limited sensor range. 

2. The development of a new switched system from multiple Lyapunov

functions for navigation. 
2 
3. Switched nonlinear, time-invariant, continuous and stabilizing ve-

locity controllers of the individuals of a swarm of UGVs are dis-

tributed as it could be noted in the publications [22,43] , the use of a

gradient system ensures there is an element of distribution of tasks

among the members of the swarm and that the swarm members are

performing distributed optimization . Whereas there is no evidence of

system stability present in [37] and [39] . 

4. The controllers’ inherent robust nature due to LbCS absorbs the

effect of noise and uncertainty and can exhibit different swarm-

ing patterns like split-and-rejoin, tunneling, and linear formations

[14,42,44] while performing event-based hierarchal navigation.

While the controllers presented in [42] only enable the swarm in-

dividuals to maneuver from their initial configuration to a goal con-

figuration exhibiting self-organization patterns. 

The paper’s remainder is organized as follows: A literature review on

he related work is presented in Section 2 . Section 3 provides awareness

f the LbCS. Section 4 gives a system for a swarm of UGVs. Section 5 pro-

ides an insight into our findpath problem via landmarks. The switched

elocity-controllers for an individual of the swarm are derived from

ultiple Lyapunov functions in Section 6 . In Section 6 , the stability of

he switch system is discussed vigorously. Section 7 provides an insight

nto the roles of parameters used in the multiple Lyapunov functions. In

ections 8 , simulation studies of the UGVs are presented. The switched

elocity controllers of the UGVs with the effect of noise are presented

n Section 9 , a discussion in Section 10 . Finally, this paper is concluded

ith recommendations of future work in Section 11 . 

. Related work 

With the design of new mechanical systems and the growing list

f real-life applications, there is still a sustained interest in finding

easible solutions to the problem of motion planning and control of

obots which deal with coordinated, controlled, and collision-obstacle

ree movements in known, partially known, and unknown environments

2,45–47] . The advantage of the multi-agent system and swarm system

s that such systems operate at a higher speed due to the parallel pro-

essing and proficiency in the relevant area of operation [48] . There is a

eed to find algorithms that present automated safe-smooth-short navi-

ation in crowded and busy places such as malls, schools, colleges, uni-

ersities, or industries. The new roles of companionship and assistance

eal with precise and safe navigation in more constrained spaces. In

iterature, these solutions are secured from different techniques, strate-

ies and methods usually categorised under two approaches; classical

pproach (including roadmap, cell decomposition, artificial potential

eld, virtual force field, graph theory, fuzzy logic), and more recently

euristic-based approach (including neural network, genetic algorithm,

article swarm optimization, ant-colony optimization, firefly algorithm,

uckoo search algorithm). 

Existing research has demonstrated the effectiveness of fuzzy logic

nd artificial potential fields approach to provide a collision-free trajec-

ory for a platoon of UGV [49,50] . The advantage of fuzzy logic systems

s that it is a robust system where no precise inputs are required. The

isadvantage of it is that these systems’ accuracy is compromised as the

ystem mostly works on inaccurate data and inputs. In comparison, the

rtificial potential fields method’s advantages are its simplicity, easier

mplementation in practice, easier analytic representation of system sin-

ularities, limitations, and equalities. The major drawback of the artifi-

ial potential field approach is the possibility of getting trapped in the

ocal minima. A popular method for path planning and obstacle avoid-

nce is the Particle Swarm Optimisation (PSO) approach, which enables

obots to escape local minima [51] . Communications and control struc-

ures in a group of UGV are theoretically established through the wide

se of Graph theory [52,53] . Theoretically, graph search techniques are

legant, but they can involve computationally intensive algorithms. 



S.A. Kumar, B. Sharma, J. Vanualailai et al. Swarm and Evolutionary Computation 65 (2021) 100926 

 

o  

n  

o  

a  

i  

d  

t  

a  

w  

t  

l  

e  

t  

m

 

t  

d  

a  

t

3

 

b  

i  

t  

t  

s  

f  

t  

t  

i  

i  

m  

i  

c  

L  

s  

c  

s  

 

F  

1  

T  

t  

p  

o  

L  

c

4

 

b  

c  

o

4

 

w  

(

D  

a  

i

𝑉  

D  

[

x  

 

i  

a

U

w  

𝑧  

a  

s  

n  

c  

l

w  

(  

W

𝑥  

a  

S  

b

 

n

𝜎

f  

a  

fi

ℝ

𝐱  

5

 

a  

k  

g  

o

D  

𝒙

𝐿

D  

(

𝑂  

D  

x  

c

𝜏
𝜏

 

For the past three decades, the entire focus has been on self-

rganization, scalability and robustness, formations, control and con-

ectivity, path planning, and obstacle avoidance. Recently, the concepts

f landmarks and waypoints have invariably been applied to multi-

gents and robotic swarms in applications such as environmental track-

ng, sensor deployment, mine clearing, search-and-rescue, and intrusion

etection [37–39] , compounding the advantages of multiple robots with

hose of landmarks or waypoints. The navigation of swarm robots back

nd forth between two targets was studied in [37] via delay-tolerant

ireless communications. Using the frontier-based exploration strategy,

he bearing-based controller was designed for a swarm of robots with

imited sensor range was presented in [39] , which had to explore an

nvironment with multiple landmarks. There is a need for controllers

hat could guide a swarm to its target destination using hierarchal land-

arks. 

The essence of the paper [42] was to provide Lyapunov-based con-

rollers to 𝑛 ∈ ℕ individuals of a swarm. The controllers enabled the in-

ividuals to maneuver from their initial state to their equilibrium state

utonomously. The system studied in [42] will be modified in this paper

o meet the objective of this research. 

. Lyapunov-based control scheme 

The multiple Lyapunov functions are derived from the Lyapunov-

ased Control Scheme (LbCS), which has been deployed successfully

n literature to find feasible and stabilizing solutions for a wide spec-

rum of applications [1,2,14,42,45,54–56] . The Lyapunov-based Con-

rol Scheme falls under the artificial potential field method of the clas-

ical approach. The development of attractive and repulsive potential

unctions is the primary intention of LbCS. Subsequently, these func-

ions are part of a total potential function called the Lyapunov func-

ion from which one could extract the time-invariant nonlinear veloc-

ty or acceleration-based controllers. Using LbCS, designing controllers

s easy, and the controllers are continuous, which are the scheme’s

ain strengths. It is easy to include control conditions, specifications,

nequalities, and mechanical constraints of mechanical systems in the

ontrollers through developing mathematical functions when applying

bCS [14,45,54–56] . The main disadvantage of LbCS is that algorithm

ingularities (local minima) can be introduced. In practical applications,

ontinuity has to be discretized, and only asymptotic stability could be

hown. The reader is referred to [14] for a detailed account of the LbCS.

An illustration of the LbCS is given utilizing Fig 1 (a) and Fig 1 (b).

ig 1 (a) shows the contour plot generated over a workspace −10 < 𝑧 1 <

50 and −10 < 𝑧 2 < 150 for a robot whose initial position is at (10,10).

he dashed line is the robot’s trajectory from its initial position to its

arget position (100,100), which shows the robot avoids the obstacle

ositioned at (50,50) with a radius 10. Fig shows the 3D visualization

f the attractive and repulsive potential fields. The blue line shows the

yapunov function, which shows that the robot’s energy is monotoni-

ally decreasing and is zero at the target position. 

. A Swarm of UGVs 

Consider a swarm of 𝑛 ∈ ℕ individuals that we shall treat as rigid

odies [42] . In two-dimensional space, their translational components

an describe the positions of the swarm individuals. Consider a swarm

f 𝑛 ∈ ℕ UGV as car-like nonholonomic vehicle analyzed in [14] . 

.1. Car-like UGV model 

Let the position of the 𝑖 𝑡ℎ UGV at time 𝑡 ≥ 0 be x 𝑖 = ( 𝑥 𝑖 ( 𝑡 ) , 𝑦 𝑖 ( 𝑡 ))
ith orientational angle 𝜃𝑖 = 𝜃𝑖 ( 𝑡 ) , for all 𝑖 ∈ {1 , 2 , 3 , … , 𝑛 } , with

 𝑥 𝑖 ( 𝑡 0 ) , 𝑦 𝑖 ( 𝑡 0 )) =∶ ( 𝑥 𝑖 0 , 𝑦 𝑖 0 ) and 𝜃𝑖 ( 𝑡 0 ) = 𝜃𝑖 0 as initial conditions [42] . 

efinition 4.1. The 𝑖 𝑡ℎ rear wheel driven UGV with front wheel steering is

 disk with radius 𝑟 𝑣 𝑖 and is positioned at center ( 𝑥 𝑖 , 𝑦 𝑖 ) [42] . The 𝑖 𝑡ℎ UGV
3 
s precisely described as the set 

 𝑖 = {( 𝑧 1 , 𝑧 2 ) ∈ ℝ 

2 ∶ ( 𝑧 1 − 𝑥 𝑖 ) 2 + ( 𝑧 2 − 𝑦 𝑖 ) 2 ≤ 𝑟 2 
𝑣 𝑖 
} . (1)

efinition 4.2. The centroid of the swarm of 𝑛 ∈ ℕ UGVs as mentioned in

42] is 

 𝐶 = ( 𝑥 𝐶 , 𝑦 𝐶 ) ∶= 

( 

1 
𝑛 

𝑛 ∑
𝑘 =1 

𝑥 𝑘 , 
1 
𝑛 

𝑛 ∑
𝑘 =1 

𝑦 𝑘 

) 

. (2)

The 𝑖 𝑡ℎ rear wheel driven UGV with front wheel steering is shown

n Fig. 2 . The distance between the two axles is 𝜂 and the length of each

xel is l . Thus, the kinematic model, adopted from [1,2,14] , of the 𝑖 𝑡ℎ 

GV with respect to its center ( 𝑥 𝑖 , 𝑦 𝑖 ) ∈ ℝ 

2 is derived as 

𝑥̇ 𝑖 = 𝑣 𝑖 cos 𝜃𝑖 − 

𝜂

2 
𝑤 𝑖 sin 𝜃𝑖 , 

𝑦̇ 𝑖 = 𝑣 𝑖 sin 𝜃𝑖 + 

𝜂

2 
𝑤 𝑖 cos 𝜃𝑖 , 

𝜃̇𝑖 = 𝑤 𝑖 , 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(3) 

here the variable 𝜃𝑖 gives the UGV’s orientation with respect to the

 1 -axis of the 𝑧 1 𝑧 2 cartesian plane, and 𝑣 𝑖 and 𝑤 𝑖 are the translational

nd rotational velocities respectively. To ensure that the 𝑖 𝑡ℎ UGV steers

afely pass obstacles (either moving or static obstacles), we adopt the

omenclature of [2,14] and enclose the vehicle by the smallest possible

ircle. As shown in Fig. 2 the vehicle is enclosed by a protective circu-

ar region centered at ( 𝑥 𝑖 , 𝑦 𝑖 ) , with radius 𝑟 𝑉 ∶= 

√
(2 𝜖1 + 𝜂) 2 + (2 𝜖2 + 𝑙) 2 

2 
here 𝜖1 > 0 and 𝜖2 > 0 are the clearance parameters. At 𝑡 ≥ 0 , let

 𝜎𝑖 ( 𝑡 ) , 𝜓 𝑖 ( 𝑡 )) ∶= ( 𝑥 ′
𝑖 
( 𝑡 ) , 𝑦 ′

𝑖 
( 𝑡 )) be the instantaneous velocity of the 𝑖 𝑡ℎ UGV.

e have thus a system of first-order ODEs for the 𝑖 𝑡ℎ UGV: 

 

′
𝑖 
( 𝑡 ) = 𝜎𝑖 ( 𝑡 ) , 𝑦 ′𝑖 ( 𝑡 ) = 𝜓 𝑖 ( 𝑡 ) , (4)

ssuming the initial conditions at 𝑡 = 𝑡 0 ≥ 0 as 𝑥 𝑖 0 ∶= 𝑥 𝑖 ( 𝑡 0 ) , 𝑦 𝑖 0 ∶= 𝑦 𝑖 ( 𝑡 0 ) .
uppressing 𝑡 , we let 𝐱 𝑖 ∶= ( 𝑥 𝑖 , 𝑦 𝑖 ) ∈ ℝ 

2 , and 𝐱 ∶= ( 𝐱 1 , 𝐱 2 , 𝐱 3 , … , 𝐱 𝑛 ) ∈ ℝ 

2 𝑛

e the state vectors. Also let 

𝐱 0 ∶= 𝐱( 𝑡 0 ) ∶= ( 𝑥 10 , 𝑦 10 , 𝑥 20 , 𝑦 20 , … , 𝑥 𝑛 0 , 𝑦 𝑛 0 ) ∈ ℝ 

2 𝑛 . If the instanta-

eous velocity ( 𝜎𝑖 , 𝜓 𝑖 ) has a state feedback law of the form 

𝑖 ( 𝑡 ) ∶= − 𝜇𝑖 𝑓 𝑖 ( 𝐱( 𝑡 )) , 
𝜓 𝑖 ( 𝑡 ) ∶= − 𝜑 𝑖 𝑔 𝑖 ( 𝐱( 𝑡 )) , 

or 𝑖 ∈ {1 , 2 , 3 , … , 𝑛 } , for some scalars 𝜇𝑖 , 𝜑 𝑖 and some functions 𝑓 𝑖 ( 𝐱( 𝑡 )) ,
nd 𝑔 𝑖 ( 𝐱( 𝑡 )) , to be constructed appropriately later, and if we de-

ne 𝐠 𝑖 ( 𝐱) ∶= (− 𝜇𝑖 𝑓 𝑖 ( 𝐱 ) , − 𝜑 𝑖 𝑔 𝑖 ( 𝐱 )) ∈ ℝ 

2 and 𝐆 ( 𝐱) ∶= ( 𝐠 1 ( 𝐱) , … , 𝐠 𝑛 ( 𝐱)) ∈
 

2 𝑛 , then the swarm of 𝑛 individuals is represented by 

̇
 = 𝐆 ( 𝐱) , 𝐱( 𝑡 0 ) = 𝐱 0 . (5)

. Findpath problem via landmarks for a swarm of UGVs 

Considering a priori known workspace cluttered with 𝑞 ∈ ℕ station-

ry obstacles. Assume that the positions of the 𝑚 ∈ ℕ landmarks are prior

nown. System (5) has to go through each of these landmarks before

oing to its ultimate target, avoiding collision with static and moving

bstacles. 

efinition 5.1. A landmark 𝐿𝑀 𝑝 , 𝑝 = 1 , 2 , ⋯ , 𝑚 , is a disk with center

 𝐿𝑀 𝑝 
= ( 𝑥 𝐿𝑀 𝑝 

, 𝑦 𝐿𝑀 𝑝 
) and radius 𝑟 𝐿𝑀 𝑝 

. It is described as the set 

𝑀 𝑝 = {( 𝑧 1 , 𝑧 2 ) ∈ ℝ 

2 ∶ ( 𝑧 1 − 𝑥 𝐿𝑀 𝑝 
) 2 + ( 𝑧 2 − 𝑦 𝐿𝑀 𝑝 

) 2 ≤ 𝑟 2 
𝐿𝑀 𝑝 

} . (6) 

efinition 5.2. The 𝑘 𝑡ℎ solid stationary obstacle is a disk with center x 𝑂 𝑘 =
 𝑜 𝑘 1 , 𝑜 𝑘 2 ) and radius 𝑟 𝑂 𝑘 > 0 . It is described as the set 

 𝑘 ∶= {( 𝑧 1 , 𝑧 2 ) ∈ ℝ 

2 ∶ ( 𝑧 1 − 𝑜 𝑘 1 ) 2 + ( 𝑧 2 − 𝑜 𝑘 2 ) 2 ≤ 𝑟 2 
𝑂 𝑘 

} . (7)

efinition 5.3. The ultimate target for the swarm of 𝑛 ∈ ℕ individuals is

 𝜏 , which is actually a target for centroid of the swarm. It is a disk with

enter x 𝜏 = ( 𝑎, 𝑏 ) and radius 𝑟 𝜏 . It is described as the set 

∶= {( 𝑧 1 , 𝑧 2 ) ∈ ℝ 

2 ∶ ( 𝑧 1 − 𝑎 ) 2 + ( 𝑧 2 − 𝑏 ) 2 ≤ 𝑟 2 } . (8)
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Fig. 1. An illustration of the Lyapunov-based control scheme. 

Fig. 2. Kinematic model of the 𝑖 𝑡ℎ rear wheel driven UGV with front wheel 

steering and steering angle 𝜙𝑖 . 
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We can consider the target x 𝜏 as an additional landmark, that is,

𝑀 𝑚 +1 = 𝜏. 

efinition 5.4. The centroid of the swarm at time 𝑡 = 0 is 

 𝐶 0 
= ( 𝑥 𝐶 0 , 𝑦 𝐶 0 ) ∶= 

( 

1 
𝑛 

𝑛 ∑
𝑘 =1 

𝑥 𝑘 0 , 
1 
𝑛 

𝑛 ∑
𝑘 =1 

𝑦 𝑘 0 

) 

. (9)

The distance, 𝑑 𝐿𝑀𝑝 , between the initial centroid ( 𝑥 𝐶 0 , 𝑦 𝐶 0 ) of the

warm and 𝑝 th landmark, where 𝑝 ∈ {1 , 2 , 3 , … , 𝑚 + 1} , is given by 

 𝐿𝑀 𝑝 
= 

‖‖‖x 𝐶 0 − x 𝐿𝑀 𝑝 

‖‖‖. (10)

t is further assumed that 

 𝐿𝑀 1 
< 𝑑 𝐿𝑀 2 

< 𝑑 𝐿𝑀 3 
< … < 𝑑 𝐿𝑀 𝑚 +1 

. (11)

hen the equilibrium point for the 𝑖 𝑡ℎ agent is 𝐱 𝑖𝑒 = ( 𝑥 𝑖𝑒 , 𝑦 𝑖𝑒 ) ∈ ℝ 

2 .

f the system has an equilibrium point, we shall denote it by 𝐱 𝑒 =
 𝐱 , 𝐱 , … , 𝐱 ) = ( 𝑥 , 𝑦 , 𝑥 , 𝑦 , … , 𝑥 , 𝑦 ) ∈ ℝ 

2 𝑛 . 
1 𝑒 2 𝑒 𝑛𝑒 1 𝑒 1 𝑒 2 𝑒 2 𝑒 𝑛𝑒 𝑛𝑒 

4 
. Lyapunov-based velocity controllers of UGVS 

.1. Components of multiple Lyapunov function 

In the multiple Lyapunov functions to be proposed, the following

otential functions will be included. 

.1.1. Attraction to the centroid 

The attractive potential function that will ensure that the 𝑖 𝑡ℎ UGV

s attracted towards the swarm centroid is proposed to be, for 𝑖 ∈
1 , 2 , 3 , … , 𝑛 } : 

 𝑖 ( 𝐱) ∶= 

1 
2 

[(
𝑥 𝑖 − 𝑥 𝐶 

)2 + 𝜁
(
𝑦 𝑖 − 𝑦 𝐶 

)2 ]
. (12)

he control variable 𝜁 ∈ ℝ determines the ratio of the minor axis (y-

irection) to the major axis (x-direction) affecting the eccentricity of

he swarm. 

.1.2. Landmark attraction function 

The attractive potential function that will ensure that the centroid of

ystem (5) maneuvers via landmarks to reach its target is proposed to

e: 

 𝑝 ( 𝐱) ∶= 

1 
2 
‖‖‖x 𝐶 − x 𝐿𝑀 𝑝 

‖‖‖2 . (13)

.1.3. Target attraction 

To ensure that the UGVs converge to their equilibrium positions, we

hall utilize the radically unbounded function about the target 

( 𝐱) ∶= 

1 
2 
‖‖x 𝐶 − x 𝜏

‖‖2 . (14)

.1.4. Inter-agent collision avoidance 

For short-range repulsion between the 𝑖 𝑡ℎ and the 𝑗 𝑡ℎ UGV, 𝑗 ≠ 𝑖 ,

, 𝑗 ∈ {1 , 2 , 3 , … 𝑛 } , we consider the function 

 𝑖𝑗 ( 𝐱) ∶= 

1 
[ ‖‖x 𝑖 − x 𝑗 

‖‖2 − (2 𝑟 𝑣 ) 2 
] 
. (15)
2 ‖ ‖
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.1.5. Stationary obstacle avoidance 

For the purpose of avoiding possible collision with the 𝑘 𝑡ℎ station-

ry solid obstacle governed by Eq. (7) where 𝑖 ∈ {1 , 2 , 3 , … , 𝑛 } and

 ∈ {1 , 2 , 3 , … , 𝑞} , we adopt the following obstacle avoidance function

or the 𝑖 𝑡ℎ UGV: 

 𝑖𝑘 ( 𝐱) = 

1 
2 

[ ‖‖‖x 𝑖 − x 𝑂 𝑘 
‖‖‖2 − 

(
𝑟 𝑂 𝑘 + 𝑟 𝑣 𝑖 

)2 ] 
. (16)

.2. Multiple Lyapunov functions 

Let there be real numbers 𝛼, 𝛿𝑝 , 𝛾𝑖 , 𝛽𝑖𝑗 , and 𝜆𝑖𝑘 , and let 𝑑 =
x 𝐶 − x 𝐶 0 

‖‖‖. Define, for 𝑖, 𝑗 ∈ {1 , 2 , 3 , … , 𝑛 } a family of Lyapunov func-

ion of the form, 

 𝑝 ( 𝐱) = 𝐻( 𝐱) 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛼 + 𝛿𝑝 𝑉 𝑝 ( 𝐱) + 

𝑛 ∑
𝑖 = 1 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛾𝑖 𝑅 𝑖 ( 𝐱) + 

𝑛 ∑
𝑗 = 1 , 
𝑗 ≠ 𝑖 

𝛽𝑖𝑗 

𝑄 𝑖𝑗 ( 𝐱) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(17) 

+ 𝐻( 𝐱 ) 
𝑛 ∑

𝑖 = 1 

𝑞 ∑
𝑘 = 1 

𝜆𝑖𝑘 

𝑊 𝑖𝑘 ( 𝐱 ) 

hich we invoke according to the switching rule 

 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 , 0 ≤ 𝑑 < 𝑑 𝐿𝑀 1 
2 , 𝑑 𝐿𝑀 1 

≤ 𝑑 < 𝑑 𝐿𝑀 2 
3 , 𝑑 𝐿𝑀 2 

≤ 𝑑 < 𝑑 𝐿𝑀 3 
⋮ 
𝑚 + 1 , 𝑑 𝐿𝑀 𝑚 

≤ 𝑑 ≤ 𝑑 𝐿𝑀 𝑚 +1 
. 

(18)

.3. Velocity controllers 

Along a trajectory of system (5) , we have 

̇
 𝑝 ( 𝐱) = 

𝑛 ∑
𝑖 =1 

[
𝑓 𝑖 𝑝 ( 𝐱) ̇𝑥 𝑖 + 𝑔 𝑖 𝑝 ( 𝐱) ̇𝑦 𝑖 

]
, (19)

here 

 𝑖 𝑝 
( 𝐱 ) = 

1 
𝑛 

(
𝑥 𝐶 − 𝑎 

)
⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛼 + 𝛿𝑝 𝑉 𝑝 ( 𝐱 ) + 𝛾𝑖 𝑅 𝑖 ( 𝐱 ) + 

𝑛 ∑
𝑗 = 1 , 
𝑗 ≠ 𝑖 

𝛽ij 

𝑄 ij ( 𝐱 ) 
+ 

𝑞 ∑
𝑘 = 1 

𝜆ik 

𝑊 ik ( 𝐱 ) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
+ 𝐻 ( 𝐱 ) 

( 

𝛿𝑝 

𝑛 

(
𝑥 𝐶 − 𝑥 𝐿𝑀 𝑝 

)
+ 𝛾𝑖 

(
𝑥 𝑖 − 𝑥 𝐶 

)) 

− 𝐻 ( 𝐱 ) 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
2 

𝑛 ∑
𝑗 = 1 , 
𝑗 ≠ 𝑖 

𝛽ij 

𝑄 

2 
ij 
( 𝐱 ) 
(
𝑥 𝑖 − 𝑥 𝑗 

)
+ 

𝑞 ∑
𝑘 =1 

𝜆ik 

𝑊 

2 
ik 
( 𝐱 ) 
(
𝑥 𝑖 − 𝑜 𝑘 1 

)
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (20) 

nd 

 𝑖 𝑝 
( 𝐱 ) = 

1 
𝑛 

(
𝑦 𝐶 − 𝑏 

)
⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛼 + 𝛿𝑝 𝑉 𝑝 ( 𝐱 ) + 𝛾𝑖 𝑅 𝑖 ( 𝐱 ) + 

𝑛 ∑
𝑗 = 1 , 
𝑗 ≠ 𝑖 

𝛽ij 

𝑄 ij ( 𝐱 ) 
+ 

𝑞 ∑
𝑘 = 1 

𝜆ik 

𝑊 ik ( 𝐱 ) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
+ 𝐻 ( 𝐱 ) 

( 

𝛿𝑝 

𝑛 

(
𝑦 𝐶 − 𝑦 𝐿𝑀 𝑝 

)
+ 𝛾𝑖 

(
𝑦 𝑖 − 𝑦 𝐶 

)) 

− 𝐻 ( 𝐱 ) 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ 2 
𝑛 ∑

𝑗 = 1 , 

𝛽ij 

𝑄 

2 
ij 
( 𝐱 ) 
(
𝑦 𝑖 − 𝑦 𝑗 

)
+ 

𝑞 ∑
𝑘 =1 

𝜆ik 

𝑊 

2 
ik 
( 𝐱 ) 
(
𝑦 𝑖 − 𝑜 𝑘 2 

)
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ . 

(21) 
⎜ ⎝ 𝑗 ≠ 𝑖 ⎟ ⎠ 
5 
et there be scalars 𝜇𝑖 > 0 and 𝜑 𝑖 > 0 . Then the velocity controllers of

ystem (5) are 

𝑖 = − 𝜇𝑖 𝑓 𝑖 𝑝 and 𝜓 𝑖 = − 𝜑 𝑖 𝑔 𝑖 𝑝 . (22)

iven (22) , system (5) becomes therefore a switched system 

̇
 = 𝐆 𝑝 ( 𝐱) , 𝐱 0 ∶= 𝐱( 𝑡 0 ) , 𝑝 ∈ {1 , 2 , ⋯ , 𝑚 + 1} . (23)

.3.1. Steering control laws 

The steering control laws could be accordingly defined as 

𝑣 𝑖 ∶= − 𝜅𝑖 

(
𝑓 𝑖 𝑝 ( 𝐱) cos 𝜃𝑖 + 𝑔 𝑖 𝑝 ( 𝐱) sin 𝜃𝑖 

)
, 

𝑤 𝑖 ∶= 

2 𝜅𝑖 
𝜂

(
𝑓 𝑖 𝑝 ( 𝐱) sin 𝜃𝑖 − 𝑔 𝑖 𝑝 ( 𝐱) cos 𝜃𝑖 

)
, 

⎫ ⎪ ⎬ ⎪ ⎭ (24) 

here 𝜅𝑖 is desired to be some arbitrary continuous positive function of

 𝑖 and 𝑦 𝑖 and 𝑓 𝑖 𝑝 ( 𝐱) and 𝑔 𝑖 𝑝 ( 𝐱) are defined in (20) and (21) respectively.

hus, system (3) can be expressed as 

𝑥̇ 𝑖 = − 𝜅𝑖 𝑓 𝑖 𝑝 ( 𝐱) , 

𝑦̇ 𝑖 = − 𝜅𝑖 𝑔 𝑖 𝑝 ( 𝐱) , 

𝜃̇𝑖 = 

2 𝜅𝑖 
𝜂

(
𝑓 𝑖 𝑝 ( 𝐱) sin 𝜃𝑖 − 𝑔 𝑖 𝑝 ( 𝐱) cos 𝜃𝑖 

)
. 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(25) 

he positions of the vehicles 
(
𝑥 𝑖 ( 𝑡 ) , 𝑦 𝑖 ( 𝑡 ) 

)
are governed by first two terms

f (25) while the third governs their orientations. 

.3.2. Maximum velocities 

Practically there are restrictions on the velocities and steering angle

f a vehicle. A vital role is performed by the function 𝜅𝑖 = 𝜅𝑖 ( 𝑥 𝑖 , 𝑦 𝑖 ) > 0
n restricting the magnitudes of 𝑣 𝑖 , 𝑤 𝑖 and the steering angles 𝜙𝑖 . 

Given any real number 𝜒 > 0 , from (24), ||𝑣 𝑖 || ≤ 𝜅𝑖 

(
𝜒 + 

|||𝑓 𝑖 𝑝 ( 𝐱) ||| + 

|||𝑔 𝑖 𝑝 ( 𝐱) |||), ||𝑤 𝑖 
|| ≤ 

2 𝜅𝑖 
𝜂

(
𝜒 + 

|||𝑓 𝑖 𝑝 ( 𝐱) ||| + 

|||𝑔 𝑖 𝑝 ( 𝐱) |||). 
⎫ ⎪ ⎬ ⎪ ⎭ (26) 

f we let 𝑣 𝑚𝑎𝑥 ∶= max 𝑖 ∈ℕ ||𝑣 𝑖 || be the maximum translational speed then

rom the first inequality of (26) 

𝑖 ∶= 

𝑣 max 

𝜒 + 

|||𝑓 𝑖 𝑝 ( 𝐱) ||| + 

|||𝑔 𝑖 𝑝 ( 𝐱) ||| . (27)

.3.3. Maximum steering angle 

The size of steering angle 𝜙𝑖 is restricted using (26) and (27) . Let the

aximum steering angle be 𝜙𝑚𝑎𝑥 ∶= max 𝑖 ∈ℕ ||𝜙𝑖 
||, where 0 < 𝜙𝑚𝑎𝑥 < 

𝜋

2 .

hen 

𝑣 𝑖 
|| ≤ 𝑣 max and 𝑣 𝑖 

2 ≥ 𝜌2 𝑤 𝑖 
2 where 𝜌 ∶= 

𝜂

tan 𝜙max 
(28)

re the constraints imposed on the translational velocities, 𝑣 𝑖 , and the

otational velocities 𝑤 𝑖 as shown in [57] . From (28) 

𝑤 𝑖 
|| ≤ 

||||𝑣 𝑖 𝜌 |||| ≤ 

𝑣 max |𝜌| . (29)

rom (26) , (27) and (29) 

𝑤 𝑖 
|| ≤ 

2 𝜅𝑖 
𝜂

(
𝜒 + 

|||𝑓 𝑖 𝑝 ( 𝐱) ||| + 

|||𝑔 𝑖 𝑝 ( 𝐱) |||)
nd 

𝑤 𝑖 
|| ≤ 

𝑣 max |𝜌| (𝜒 + 

|||𝑓 𝑖 𝑝 ( 𝐱) ||| + 

|||𝑔 𝑖 𝑝 ( 𝐱) |||). 
et |𝜌| = 

𝜂

2 and from (28) tan 𝜙𝑚𝑎𝑥 = 2 . Thus 𝜙𝑚𝑎𝑥 = tan −1 2 and hence

he maximum steering angle of every vehicle is set at 𝜙𝑚𝑎𝑥 = tan −1 2 .
o add on, maximum velocity and maximum steering angle of a car-

ike vehicle can also be treated as artificial constraints, which could be

art of the total potential as repulsive potentials. The above technique

s equivalent. 
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.4. Stability analysis 

It is evident that 𝐿 𝑝 ( 𝐱) , for 𝑝 = {1 , 2 , ⋯ , 𝑚 + 1} , is positive over the

omain 

 

(
𝐿 𝑝 ( 𝐱) 

)
∶= 

{ 

𝐱 ∈ ℝ 

2 𝑛 ∶ 𝑄 𝑖𝑗 ( 𝐱) > 0 , 𝑊 𝑖𝑘 ( 𝐱) > 0 , ∀ 𝑖, 𝑗 = {1 , 2 , 3 , … , 𝑛 } , 

𝑖 ≠ 𝑗 and 𝑘 = {1 , 2 , 3 , … , 𝑞} 
} 

. 

ith respect to system (3) and with the control laws (24), 

̇
 𝑝 ( 𝐱) = − 

𝑛 ∑
𝑖 =1 

1 
𝜅𝑖 

( 

𝑣 𝑖 
2 + 

𝜂2 

4 
𝑤 𝑖 

2 
) 

≤ 0 , 

𝐱 ∈ 𝐷 

(
𝐿 𝑝 ( 𝐱) 

)
. At the target, where ( 𝑥 𝐶 , 𝑦 𝐶 ) = ( 𝑎, 𝑏 ) , the instantaneous

elocities, 𝜎𝑖 and 𝜓 𝑖 , are zero because 𝑓 𝑖 𝑝 = 0 and 𝑔 𝑖 𝑝 = 0 . Thus, the in-

ividuals assume a constant configuration or arrangement about the

arget. Their stationary positions therefore are components of an equi-

ibrium point 𝐱 𝑒 of system (23) . It is easy to see that 𝐿 𝑝 ( 𝐱 𝑒 ) = 0 ,
 𝑝 ( 𝐱) > 0 ∀ 𝐱 ≠ 𝐱 𝑒 and 𝐿̇ 𝑝 ( 𝐱) ≤ 0 . System (23) has the simple switching

equence 𝑆 = ( 𝑥 0 , 𝑦 0 ) ∶ ( 𝑝 0 , 𝑡 0 ) , ( 𝑝 1 , 𝑡 1 ) for 𝑝 = 1 , … , 𝑚 + 1 , from which we

asily get the trajectory 

 𝑆 ( ⋅) ∶= 

{ 

( 𝑝 0 , 𝑡 0 ) ∶ 𝐱̇ = 𝐆 𝑝 0 
( 𝐱( 𝑡 ) , 𝑡 ) , 𝑝 = 1 , … , 𝑚 + 1 , 𝑡 0 ≤ 𝑡 < 𝑡 1 

} 

. 

hus, 𝐿 𝑝 ( 𝐱) are monotonically non-increasing on ( 𝑆|𝑝 ) . Hence, for 𝑆

nd for all 𝑝 , 𝐿 𝑝 are Lyapunov-like for 𝐆 𝑝 and 𝐱 𝑆 ( ⋅) over 𝑆|𝑝 . Accord-

ngly, by Branicky’s Theorem 2.3 [58] , system (23) is stable in the

ense of Lyapunov. Looking at equations (20) and (21) , we see that

he functions that appear in the denominator are 𝑄 𝑖𝑗 , for all 𝑗 ≠ 𝑖 ,

, 𝑗 ∈ {1 , 2 , 3 , … , 𝑛 } and 𝑊 𝑖𝑘 for 𝑖 ∈ {1 , 2 , 3 , … , 𝑛 } and 𝑘 ∈ {1 , 2 , 3 , … , 𝑞} .
ence, we can easily conclude that 𝐆 𝑝 ( 𝐱) ∈ 𝐶 

1 [ 𝐷( 𝐿 𝑝 ( 𝐱)) , ( ℝ ) 2 ] for all 𝑝 =
1 , 2 , ⋯ , 𝑚 + 1} , which implies that at least on some time interval [ 𝑡 0 , 𝑠 ] ,
 > 0 , the solution of 𝐱( 𝑡 ) of system (23) exists and is in 𝐷( 𝐿 𝑝 ( 𝐱)) . Cer-

ainly, since the functions 𝑄 𝑖𝑗 and 𝑊 𝑖𝑘 appear in the denominator in (20)

nd (21) , they will also appear in the denominator of higher-order par-

ial derivatives, with each derivative continuous on 𝐷( 𝐿 𝑝 ( 𝐱)) . This indi-

ates that indeed 𝐆 𝑝 ( 𝐱) = (− 𝜇𝑖 𝑓 𝑖 𝑝 ( 𝐱) , − 𝜑 𝑖 𝑔 𝑖 𝑝 ( 𝐱)) ∈ 𝐶 

∞[ 𝐷( 𝐿 𝑝 ( 𝐱)) , ℝ 

2 ] . This

mplies the existence of the solution 𝐱( 𝑡 ) of system (23) on [ 𝑡 0 , 𝑠 + 𝜌] ,
> 0 being independent of 𝑠 > 0 . Hence, we can conclude that 𝐆 𝑝 ( 𝐱) is
lobally Lipschitz continuous on 𝐷( 𝐿 𝑝 ( 𝐱)) . Therefore, system (23) is sta-

le for a swarm of 𝑛 ∈ ℕ individuals for hierarchal landmark navigation.

. Roles of the parameters in the Lyapunov function 

In this section, we provide an overview of the roles of the parame-

ers. This is an altered strategy from work conducted in [2,14,44,54] .

onsider our multiple Lyapunov functions (18) again 

 𝑝 ( 𝐱) = 𝐻( 𝐱) 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛼 + 𝛿𝑝 𝑉 𝑝 ( 𝐱) + 

𝑛 ∑
𝑖 = 1 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛾𝑖 𝑅 𝑖 ( 𝐱) + 

𝑛 ∑
𝑗 = 1 , 
𝑗 ≠ 𝑖 

𝛽𝑖𝑗 

𝑄 𝑖𝑗 ( 𝐱) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
+ 𝐻( 𝐱) 

𝑛 ∑
𝑖 = 1 

𝑞 ∑
𝑘 = 1 

𝜆𝑖𝑘 

𝑊 𝑖𝑘 ( 𝐱) 

hich we invoke according to the switching rule 

 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 , 0 ≤ 𝑑 < 𝑑 𝐿𝑀 1 
2 , 𝑑 𝐿𝑀 1 

≤ 𝑑 < 𝑑 𝐿𝑀 2 
3 , 𝑑 𝐿𝑀 2 

≤ 𝑑 < 𝑑 𝐿𝑀 3 
⋮ 
𝑚 + 1 , 𝑑 𝐿𝑀 𝑚 

≤ 𝑑 ≤ 𝑑 𝐿𝑀 𝑚 +1 
. 

he parameter 𝛼 > 0 can be considered as a measurement of the strength

f attraction between the swarm centroid x and the ultimate swarm
𝐶 

6 
arget. The smaller the parameter is, the slower the convergence of the

warm centroid to the swarm target. Hence, 𝛼 can be called a target con-

ergence parameter . The parameter 𝛿𝑝 invoke according to the switching

ule (18) can be considered as a measurement of the strength of attrac-

ion between the swarm centroid x 𝐶 and the 𝑝 𝑡ℎ landmark. The smaller

he parameter is, the slower the swarm centroid’s convergence to the 𝑝 𝑡ℎ 

andmark. Hence, 𝛿𝑝 can be called the landmark convergence parameter .

t large distances between the 𝑖 𝑡ℎ and the 𝑗 𝑡ℎ individuals, the ratio, 

𝑛 ∑
 = 1 

𝑛 ∑
𝑗 = 1 , 
𝑗 ≠ 𝑖 

𝛽𝑖𝑗 

𝑄 𝑖𝑗 ( 𝐱) 
𝑇 ( 𝐱) (30) 

s negligible, and the term 

𝑛 ∑
𝑖 =1 

𝛾𝑖 𝑅 𝑖 ( 𝐱 ) 𝑇 ( 𝐱 ) dominates and acts as the at-

raction function ; each individual is attracted to the centroid. Thus, the

arameter 𝛾𝑖 > 0 can be considered as a measurement of the strength

f attraction between an individual 𝑖 and the swarm centroid x 𝐶 . The

maller the parameter is, the weaker the cohesion of the swarm is.

ence, 𝛾𝑖 can be called a cohesion parameters . Now, consider the situ-

tion where any two individuals 𝑖 and 𝑗 approach each other. In this

ase, 𝑄 𝑖𝑗 decreases, and the ratio (30) increases, with 𝛽𝑖𝑗 > 0 acting as

 coupling parameters that is a measurement of the strength of inter-

ction between the individuals. In this way, the ratio (30) acts as an

nter-individual collision-avoidance function because it can be allowed to

ncrease in value (corresponding to avoidance) as individuals approach

ach other. The parameter 𝜆𝑖𝑘 is the stationary obstacle avoidance pa-

ameter, respectively. We have used two other parameters, 𝜇𝑖 > 0 , and

 𝑖 > 0 in system (23) . Because the parameters are a measure of the rate

f decrease of 𝐿 𝑝 ( 𝑡 ) at time 𝑡 > 0 , we name them convergence parameters .

. Simulation results 

Simulations were generated using Wolfram Mathematica 11.2 soft-

are. To achieve the desired results, a number of sequential Mathe-

atica commands were executed. Before the algorithm is executed, the

alues of the convergence, cohesion, coupling, and stationary obstacle

voidance parameters have to be stated. The number and positions of

he hierarchal landmarks, number of obstacles, and UGVs have to be

efined. We numerically simulated system (25) using the RK4 method

Runge-Kutta Method) and the following values for each car-like vehi-

le. 

• Clearance parameters: 𝜖1 = 𝜖2 = 0 . 1 ; 
• Width and length of the vehicle: 𝑙 = 1 , 𝜂 = 2 ; 
• Radius of circular protective region: 𝑟 = 1 . 25 ; 
• Maximum speeds and steering angle: 𝑣 𝑚𝑎𝑥 = 1 and 𝜙𝑚𝑎𝑥 = tan −1 2 ;
• 𝜒 = 1 in 𝜅𝑖 defined as in (27). 

At 𝑡 = 0 , the initial positions ( 𝑥 𝑖 0 (0) , 𝑦 𝑖 0 (0)) and orientations 𝜃𝑖 (0) were

andomly generated. The initial velocities are calculated from these val-

es from (24). The vehicles are drawn as arrows, with the arrowhead

ndicating the front of the vehicles. 

Due to the inherent nature of the artificial potential field method,

hich includes LbCS, there is a possibility that some initial conditions

an produce trajectories that get trapped in local minima. Such initial

onditions are avoided when assigning values to parameters through

rute-force. 

xample 8.1. Navigation via Landmark in Obstacle Free Configu-

ation Space 

We consider a swarm of 10 UGVs with 3 landmarks. The initial po-

itions and orientations of UGVs are shown in small orange circles as

hown in Fig 3 . The swarm clusters around the centroid as time evolves,

nd then it moves to the target of the centroid as a well-spaced the cohe-

ive group as shown in Fig 3 . Fig 4 shows that 𝐿 𝑝 ( 𝐱) decreases on each

nterval where the 𝑝 𝑡ℎ subsystem is active. This indicates that the swarm
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Fig. 3. Example 8.1 . Positions and orientations of UGVs at 𝑡 = 0 , 118 , 205 , 290 , 
380 , 465 and 600 respectively show the self-organization of the UGVs. The tra- 

jectory of the centroid is shown in dashed. For this formation, 𝛼 = 0 . 000001 , 
𝛾𝑖 = 0 . 1 , 𝛽𝑖𝑗 = 10 , 𝛿𝑝 = 0 . 2 for 𝑝 ∈ {1 , 2 , 3 , 4} and 𝜁 = 1 . 

Fig. 4. Example 8.1 . Multiple Lyapunov-like functions. Solid/dashed denotes 

corresponding system active/inactive. 

Fig. 5. Example 8.1 . The instantaneous velocities of the agents showing rapid 

deceleration as the swarm approaches the target. 

Fig. 6. Example 8.2 . Positions and orientations of UGVs at 𝑡 = 0 , 97 , 149 , 189 , 255 , 
319 , 409 , 473 and 800 respectively show the self-organization of the UGVs. The 

trajectory of the centroid is shown in dashed. For this formation, 𝛼 = 0 . 000001 , 
𝛾𝑖 = 0 . 1 , 𝛽𝑖𝑗 = 10 , 𝛿𝑝 = 0 . 2 for 𝑝 ∈ {1 , 2 , 3 , 4} and 𝜁 = 60 . 

Fig. 7. Example 8.2 . The instantaneous velocities of the agents showing rapid 

deceleration as the swarm approaches the target. 
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7 
s converging to its target. The vehicles’ velocities are captured in Fig 5 ,

hich shows that the swarm is a cohesive group since the individual

elocities are the same as time evolves. 

xample 8.2 (Linear Formation) . A swarm to take up linear formation

s of very high importance, as mentioned in [5] , as this formation could

e utilized to search extensive areas such as exclusive economic zone

EEZ) for search and rescue. The linear formation is designed using the

ontrol variable 𝜁 given in equation (12) . If 𝜁 is significantly small, it will

osition the swarm individuals in a vertical linear formation. However,

f 𝜁 is significantly large, it will position the swarm individuals in a

orizontal linear formation. In this example, a swarm of 10 UGVs is

onsidered. The initial positions and orientations of UGVs are shown in

mall orange circles as shown in Fig. 6 . The swarm clusters around the

entroid as time evolves, and it moves to the target of the centroid via

he landmarks in a linear formation as a well-spaced cohesive group as

hown in Fig. 6 . The velocities of the vehicles are captured in Fig 7 ,

hich shows that the swarm is a cohesive group since the individual

elocities are the same as time evolves. 

xample 8.3 Navigation via Landmark in an Obstacle-Cluttered En-

ironment. A swarm of 10 UGVs clusters around the centroid as time

volves and then moves to the centroid’s target as a well-spaced cohe-
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Fig. 8. Example 8.3 . Position and orientation of the UGVs at 𝑡 = 0 , 124 , 214 , 276 , 
411 , 500 and 800 respectively. The trajectory of ( 𝑥 𝐶 , 𝑦 𝐶 ) is shown in dashed. For 

this formation, 𝛼 = 0 . 000001 , 𝛾𝑖 = 0 . 1 , 𝜆𝑖𝑘 = 𝛽𝑖𝑗 = 10 , 𝛿𝑝 = 0 . 2 for 𝑝 ∈ {1 , 2 , 3 , 4} 
and 𝜁 = 1 . 

Fig. 9. Example 8.3 . The instantaneous velocities of the agents showing rapid 

deceleration as the swarm approaches the target. 
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ive group avoiding obstacles in its path, as shown in Fig. 8 . A split-and-

ejoin and the tunneling maneuvers are emerging, as shown in Region

 and Region B, respectively. A split-and-rejoin maneuver is where the

warm individuals move cohesively together in a formation split to steer

ast the encountering obstacle(s) and then rejoin. Moreover, tunneling

aneuver is where the swarm individuals change formation to drive

ast narrow passageways. The vehicles’ velocities are shown in Fig 9 ,

hich shows that the swarm is a cohesive group since the individual
elocities are the same as time evolves. r

8 
. Effect of noise 

In this section, the effect of noise on the controllers is considered.

he noise components are included in the obstacle avoidance functions,

nd the multiple Lyapunov functions are redefined as follows 

 𝑝 ( 𝐱) = 𝐻( 𝐱) 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛼 + 𝛿𝑝 𝑉 𝑝 ( 𝐱) + 

𝑛 ∑
𝑖 = 1 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛾𝑖 𝑅 𝑖 ( 𝐱) + 

𝑛 ∑
𝑗 = 1 , 
𝑗 ≠ 𝑖 

𝛽𝑖𝑗 

𝑄 𝑖𝑗 ( 𝐱) + 𝜉𝜛 𝑖𝑗 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(31) 

+ 𝐻( 𝐱 ) 
𝑛 ∑

𝑖 = 1 

𝑞 ∑
𝑘 = 1 

𝜆𝑖𝑘 

𝑊 𝑖𝑘 ( 𝐱 ) + 𝜉𝜚 𝑖𝑘 

hich is invoked according to the switching rule 

 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 , 0 ≤ 𝑑 < 𝑑 𝐿𝑀 1 
2 , 𝑑 𝐿𝑀 1 

≤ 𝑑 < 𝑑 𝐿𝑀 2 
3 , 𝑑 𝐿𝑀 2 

≤ 𝑑 < 𝑑 𝐿𝑀 3 
⋮ 
𝑚 + 1 , 𝑑 𝐿𝑀 𝑚 

≤ 𝑑 ≤ 𝑑 𝐿𝑀 𝑚 +1 
. 

(32)

he terms 𝜛 𝑖𝑗 and 𝜚 𝑖𝑘 are time-dependent variables randomized between

nd including −1 and 1 and 𝜉 ∈ [0 , 1] is the noise level. Thus, the func-

ions 𝑓 𝑖 𝑝 ( 𝐱) and 𝑔 𝑖 𝑝 ( 𝐱) in the velocity controllers of system (5) as showed

n equation (22) with effect of noise would be 

 𝑖 𝑝 
( 𝐱 ) = 

1 
𝑛 

(
𝑥 𝐶 − 𝑎 

)
⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛼 + 𝛿𝑝 𝑉 𝑝 ( 𝐱 ) + 𝛾𝑖 𝑅 𝑖 ( 𝐱 ) + 

𝑛 ∑
𝑗 = 1 , 
𝑗 ≠ 𝑖 

𝛽ij 

𝑄 ij ( 𝐱 ) + 𝜉𝜛 ij 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
+ 

1 
𝑛 

(
𝑥 𝐶 − 𝑎 

) 𝑞 ∑
𝑘 = 1 

𝜆ik 

𝑊 ik ( 𝐱 ) + 𝜉𝜚 ik 

+ 𝐻 ( 𝐱 ) 
( 

𝛿𝑝 

𝑛 

(
𝑥 𝐶 − 𝑥 𝐿𝑀 𝑝 

)
+ 𝛾𝑖 

(
𝑥 𝑖 − 𝑥 𝐶 

)) 

− 2 𝐻 ( 𝐱 ) 
𝑛 ∑

𝑗 = 1 , 
𝑗 ≠ 𝑖 

𝛽ij (
𝑄 ij ( 𝐱 ) + 𝜉𝜛 ij 

)2 (𝑥 𝑖 − 𝑥 𝑗 
)

− 𝐻 ( 𝐱 ) 
𝑞 ∑

𝑘 =1 

𝜆ik (
𝑊 ik ( 𝐱 ) + 𝜉𝜚 ik 

)2 (𝑥 𝑖 − 𝑜 𝑘 1 
)

(33) 

nd 

 𝑖 𝑝 
( 𝐱 ) = 

1 
𝑛 

(
𝑦 𝐶 − 𝑏 

)
⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛼 + 𝛿𝑝 𝑉 𝑝 ( 𝐱 ) + 𝛾𝑖 𝑅 𝑖 ( 𝐱 ) + 

𝑛 ∑
𝑗 = 1 , 
𝑗 ≠ 𝑖 

𝛽ij 

𝑄 ij ( 𝐱 ) + 𝜉𝜛 ij 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
+ 

1 
𝑛 

(
𝑦 𝐶 − 𝑏 

) 𝑞 ∑
𝑘 = 1 

𝜆ik 

𝑊 ik ( 𝐱 ) + 𝜉𝜚 ik 

+ 𝐻 ( 𝐱 ) 
( 

𝛿𝑝 

𝑛 

(
𝑦 𝐶 − 𝑦 𝐿𝑀 𝑝 

)
+ 𝛾𝑖 

(
𝑦 𝑖 − 𝑦 𝐶 

)) 

− 2 𝐻 ( 𝐱 ) 
𝑛 ∑

𝑗 = 1 , 
𝑗 ≠ 𝑖 

𝛽ij (
𝑄 ij ( 𝐱 ) + 𝜉𝜛 ij 

)2 (𝑦 𝑖 − 𝑦 𝑗 
)

− 𝐻 ( 𝐱 ) 
𝑞 ∑

𝑘 =1 

𝜆ik (
𝑊 ik ( 𝐱 ) + 𝜉𝜚 ik 

)2 (𝑦 𝑖 − 𝑜 𝑘 2 
)

(34) 

espectively. 
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Fig. 10. Example 9.1 . The instantaneous velocities of the agents with 𝜉 = 0 . 5 . as 

the swarm approaches the target. 
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.1. Stability analysis 

Subsection 6.4 is followed with the fact that at the target, where

 𝑥 𝐶 , 𝑦 𝐶 ) = ( 𝑎, 𝑏 ) , the instantaneous velocities, 𝜎𝑖 and 𝜓 𝑖 , are zero because

 𝑖 𝑝 
and 𝑔 𝑖 𝑝 are zero, in Eqs. (33) and (34) , respectively. 

.2. Simulation result 

xample 9.1. For Example 8.3 with the same parameters the velocities

f the vehicles with noise level 𝜉 = 0 and 𝜉 = 0 . 5 are shown in Fig 9 and

ig 10 , respectively. 

0. Discussion 

The switched nonlinear, time-invariant, continuous, and stabilizing

elocity controllers of the individuals of a swarm of UGVs, that exhibit

elf-organization patterns for navigation through hierarchal landmarks

ave been established. Simulation results such as the ones shown in

ig 3, Fig 6 , and Fig 8 show the controllers’ effectiveness in navigation

ia hierarchal landmarks. It is evident, as seen in Fig 10 that the con-

rollers presented can absorb the effect of noise and uncertainty, which

nvariably show the robustness of the system. 

In comparison to the systems presented in [37] and [39] our system

s stable; exhibits emergent patterns; absorbs the effect of noise, shows

ystem robustness, and most importantly, can navigate via hierarchal

andmarks, whereas the system presented in [42] cannot. 

Although we have this component of distributed optimization as the

ndividual velocities are discovered, our approach doesn’t guarantee

calability. Any expansion in swarm size brings about a more prominent

nterest in computing resources. In applied circumstances, for detecting

bilities, each individual knows the situation of all other individuals in

he swarm. In any case, the dramatic growth in processing power, mem-

ry, and storage capacity of computing gadgets joined by diminishing

osts of these gadgets, and the expanding utilization of the Global Po-

itioning System to counterbalance detecting constraints will assume a

ignificant part in lessening the effect of scaling. Besides, after the pre-

entation of quantum computing, scalability will not be an issue by any

tretch of the imagination [44] . 
9 
1. Conclusion 

While the control of a swarm of UGVs is a well studied problem, this

aper presents a new and novel solution where a Lagrangian swarm of

GVs is navigated to its target via hierarchal landmarks in cluttered

nvironment using nonlinear time-invariant continuous velocity-based

ontrol laws derived from LbCS. The switched velocities of the swarm in-

ividuals were constructed using multiple Lyapunov functions that gave

ise to a switched system. Interaction of the three main pillars of LbCS,

hich are safety, shortness, and smoothest path for motion planning,

ring about cost and time effectiveness and efficiency of the velocity

ontrollers. The switched system was successfully showed to be stable

n the sense of Lyapunov. Moreover, linear formation, split-and-rejoin,

nd tunneling maneuvers emergent due to individuals’ self-organization

f the swarm of UGVs. The effect of noise on velocity controllers was

resented to exhibit the system’s robustness. The drawback of this ap-

roach is that scalability is not guaranteed. Future work could be of

eveloping a system in which the roles of the landmark are dynamic. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper. 

RediT authorship contribution statement 

Sandeep A. Kumar: Conceptualization, Methodology, Writing -

riginal draft. B. Sharma: Methodology, Writing - review & editing. J.

anualailai: Methodology, Validation, Writing - review & editing. A.

rasad: Validation, Writing - review & editing. 

eferences 

[1] B. Sharma, J. Vanualailai, S. Singh, Motion planning and posture control of

multiple n-link doubly nonholonomic manipulators, Robotica 35 (2015) 1–25,

doi: 10.1017/S0263574714002604 . 

[2] B. Sharma , J. Raj , J. Vanualailai , Navigation of carlike robots in an extended dy-

namic environment with swarm avoidance., Int. J. Robust Nonlinear Control 28

(2018) 678–698 . 

[3] A. Filipescu, V. Minzu, A. Filipescu, E. Minca, Advances in Automation and Robotics,

Vol.1. Lecture Notes in Electrical Engineering, Springer, pp. 401–409. 

[4] C. Pacchierotti , S. Sinclair , M. Solazzi , A. Frisoli , V. Hayward , D. Prattichizzo , Wear-

able haptic systems for the fingertip and the hand: taxonomy, review, and perspec-

tives, IEEE Trans Haptics 10 (4) (2017) 580–600 . 

[5] S.A. Kumar , J. Vanualailai , A Lagrangian UAV swarm formation suitable for monitor-

ing exclusive economic zone and for search and rescue, in: Proceedings of the 2017

IEEE Conference on Control Technology and Applications, Kohala Coast, Hawai’i,

USA, 2017, pp. 1874–1879 . 

[6] K. Shojaei , Neural adaptive output feedback formation control of type (m, s) wheeled

mobile robots, Int. J. Adapt. Control Signal Process 29 (2015) 855–876 . 

[7] X. Xing , R. Zhou , L. Yang , The current status of development of pedestrian au-

tonomous navigation technology, in: Proceedings of the 26th Saint Petersburg In-

ternational Conference on Integrated Navigation Systems (ICINS), 2019 . 

[8] K.M. Williams , M.H. Assaf , Intelligent public transportation system, International

Journal of Mathematics and Computers in Simulation 112 (2018) 124–132 . 

[9] A. Prasad, B. Sharma, J. Vanualailai, S.A. Kumar, A geometric approach to target

convergence and obstacle avoidance of a nonstandard tractor-trailer robot, Int. J.

Robust Nonlinear Control 30 (13) (2020) 4924–4943, doi: 10.1002/rnc.5021 . 

10] A. Prasad , B. Sharma , J. Vanualailai , A solution to the motion planning and control

problem of a car-like robot via a single layer perceptron, Robotica 32 (6) (2014)

935–952 . 

11] S.A. Kumar , J. Vanualailai , B. Sharma , Lyapunov functions for a planar swarm model

with application to nonholonomic planar vehicles, in: Proceedings of the 2015 IEEE

Conference on Control Applications, IEEE, Sydney, Australia, 2015, pp. 1919–1924 .

12] S.A. Kumar , J. Vanualailai , B. Sharma , A. Chaudary , V. Kapadia , Emergent forma-

tions of a Lagrangian swarm of unmanned ground vehicles, in: Proceedings of the

2016 14th International Conference on Control, Automation, Robotics and Vision,

ICARCV 2016, IEEE, Phuket, Thailand, 2016 . 

13] A. Devi , J. Vanualailai , S.A. Kumar , B. Sharma , A cohesive and well-spaced swarm

with application to unmanned aerial vehicles, in: Proceedings of the 2015 2017

International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, Miami, FL,

USA, 2017, pp. 698–705 . 

14] B. Sharma , J. Vanualailai , S. Singh , Tunnel passing maneuvers of prescribed forma-

tions, Int. J. Robust Nonlinear Control 24 (5) (2014) 876–901 . 

https://doi.org/10.1017/S0263574714002604
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0002
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0002
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0002
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0002
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0004
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0004
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0004
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0004
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0004
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0004
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0004
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0005
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0005
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0005
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0006
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0006
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0007
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0007
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0007
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0007
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0008
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0008
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0008
https://doi.org/10.1002/rnc.5021
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0010
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0010
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0010
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0010
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0011
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0011
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0011
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0011
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0012
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0012
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0012
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0012
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0012
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0012
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0013
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0013
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0013
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0013
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0013
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0014
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0014
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0014
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0014


S.A. Kumar, B. Sharma, J. Vanualailai et al. Swarm and Evolutionary Computation 65 (2021) 100926 

[  

[  

 

 

[  

[  

 

[  

[  

[  

[  

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

[  

[  

 

[  

 

[  

[  

 

[  

 

[  

[  

[  

[  

 

[  

[  

[  

 

[  

 

[  

 

 

 

[  

 

[  

 

[  

 

 

[  

[  

 

[  

[  

[  

[  
15] A. Khan, Y. Anwar, Advances in Computer Vision. CVC 2019. Advances in Intelligent

Systems and Computing, vol. 944, Springer, Cham, pp. 280–292. 

16] S.A. Kumar, J. Vanualailai, A. Prasad, Distributed velocity controllers of the

individuals of emerging swarm clusters, in: 2020 IEEE Asia-Pacific Confer-

ence on Computer Science and Data Engineering (CSDE), 2020, pp. 1–6,

doi: 10.1109/CSDE50874.2020.9411585 . 

17] A. Okubo , S. Levin , Diffusion and Ecological Problems: Modern Perspectives, Inter-

disciplinary Applied Mathematics, Springer, 2001 . 

18] L. Edelstein-Keshet , Mathematical models of swarming and social aggregation, in:

Procs. 2001 International Symposium on Nonlinear Theory and Its Applications,

Miyagi, Japan, 2001, pp. 1–7 . 

19] A. Mogilner , L. Edelstein-Keshet , A non-local model for a swarm, J Math Biol 38

(1999) 534–570 . 

20] S.A. Levin , Complex adaptive systems: exploring the known, the unknown and the

unknowable, Bulletin of the Americal Mathematical Society 40 (1) (2002) 3–19 . 

21] A. Mogilner , L. Edelstein-Keshet , L. Bent , A. Spiros , Mutual interactions, potentials,

and individual distance in a social aggregation, J Math Biol 47 (2003) 353–389 . 

22] V. Gazi , K.M. Passino , Stability analysis of social foraging swarms, IEEE Transactions

on Systems, Man and Cybernetics – Part B 34 (1) (2004) 539–557 . 

23] A.J. Merrifield , An Investigation Of Mathematical Models For Animal Group Move-

ment, Using Classical And Statistical Approaches, University of Sydney, NSW, Aus-

tralia, 2006 Ph.D. thesis . 

24] A. Mansour , A. Y-K. , Three-dimensional optimal path planning for waypoint guid-

ance of an autonomous underwater vehicle, Rob Auton Syst 67 (2015) 23–32 . Ad-

vances in Autonomous Underwater Robotics 

25] A. Bais , R. Sablatnig , Landmark based global self-localization of mobile soccer

robots, in: Lecture Notes in Computer Science, Hydrabad, India, 2006, pp. 842–851 .

26] A. Dawadee , J. Chahl , N. Nandagopal , A method for autonomous navigation of UAVs

using landmarks, in: Proceedings of the 16th Australian Aerospace Congress, 2015 . 

27] A. Prasad, B. Sharma, J. Vanualailai, S. Kumar, Stabilizing controllers for landmark

navigation of planar robots in an obstacle-ridden workspace, Journal of Advanced

Transportation 2020 (2020), doi: 10.1155/2020/8865608 . 

28] A.J. Briggs, C. Detweiler, D. Scharstein, A. Vandenberg-Rodes, Expected shortest

paths for landmark-based robot navigation, Int J Rob Res 23 (7–8) (2004) 717–728,

doi: 10.1177/0278364904045467 . 

29] H. Fujii , Y. Ando , T. Yoshimi , M. Mizukawa , Shape recognition of metallic landmark

and its application to self-position estimation for mobile robot, Journal of Robotics

and Mechatronics 22 (6) (1999) 718–725 . 

30] H. Hu , D. Gu , Landmark-based navigation of mobile robots in manufacturing, in:

Proceedings of the IEEE International Conference on Emerging Technologies and

factory Automation, 1999, pp. 121–128 . 

31] P. Boucher, Waypoints guidance of differential-drive mobile robots

with kinematic and precision constraints, Robotica 32 (2014) 1–24,

doi: 10.1017/S0263574714001921 . 

32] E. Keyder , S. Richter , M. Helmert , Sound and complete landmarks for and/or graphs,

ECAI, 2010 . 

33] K. Erez , D. Carmel , Cost-optimal planning with landmarks, in: Proceedings of the

21st International Jont Conference on Artifical Intelligence, in: IJCAI’09, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2009, pp. 1728–1733 . 

34] M. Elkawkagy , B. Schattenberg , S. Biundo-Stephan , Landmarks in hierarchical plan-

ning, ECAI, 2010 . 

35] L. Frommberger, Representing and Selecting Landmarks in Autonomous Learning of

Robot Navigation, vol. 5314, Springer, pp. 488–497. 

36] M. Beinhofer , J. Müller , A. Krause , W. Burgard , Robust landmark selection for mobile

robot navigation., in: Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems

(IROS), 2013 . 
10 
37] F. Ducatelle , G. Di Caro , A. Förster , M. Bonani , M. Dorigo , S. Magnenat , F. Mondada ,

R. O’ Grady , C. Pinciroli , P. Rétornaz , V. Trianni , L.M. Gambardella , Cooperative

navigation in robotic swarms, Swarm Intell. 8 (2014) 1–33 . 

38] S. Singh , P. Sujit , Landmarks based path planning for UAVs in GPS-denied areas,

IFAC-PapersOnLine 49 (1) (2016) 396–400 . 

39] R. Ramaithititima , S. Bhattacharya , Landmark-based exploration with swarm of re-

source constrained robots, in: 2018 IEEE International Conference on Robotics and

Automation (ICRA), 2018, pp. 5034–5041 . 

40] C.W. Reynolds , Flocks, herds, and schools: A distributed behavioral model, in com-

puter graphics, in: Proceedings of the 14th Annual Conference on Computer Graphics

and Interactive Techniques, New York, USA, 1987, pp. 25–34 . 

41] D. Liberzon , A.S. Morse , Basic problems in stability and design of switched systems,

Control Systems, IEEE 19 (5) (1999) 59–70 . 

42] S.A. Kumar , J. Vanualailai , B. Sharma , Lyapunov-based control for a swarm of planar

nonholonomic vehicles, Mathematics in Computer Science 9 (4) (2015) 461–475 . 

43] V. Gazi , K. Passino , Stability analysis of swarms, IEEE Trans Automat Contr 48

(2003) 692–697 . 

44] S.A. Kumar, J. Vanualailai, B. Sharma, A. Prasad, Velocity controllers for a swarm of

unmanned aerial vehicles, Journal of Industrial Information Integration 22 (2021)

100198, doi: 10.1016/j.jii.2020.100198 . 

45] B. Sharma , S. Singh , J. Vanualailai , A. Prasad , Globally rigid formation of n-link

doubly nonholonomic mobile manipulators, Rob Auton Syst 2018 (2018) 69–84 . 

46] B. Wohlfender , Studies on Mechatronics: Autonomous Collaborative Vehicles, 2010 .

47] G.F.L. D’Alfonso, G. Fedele, Distributed model predictive control for constrained

multi-agent systems: a swarm aggregation approach, in: 2018 Annual American Con-

trol Conference (ACC), 2018, pp. 5082–5087, doi: 10.23919/ACC.2018.8431392 . 

48] H.W.D. Hettiarachchi, K.T.M.U. Hemapala, A.G.B.P. Jayasekara, Review of applica-

tions of fuzzy logic in multi-agent-based control system of AC-DC hybrid microgrid,

IEEE Access 7 (2019) 1284–1299, doi: 10.1109/ACCESS.2018.2884503 . 

49] C. Solano-Aragón, A. Alanis, Multi-agent system with fuzzy logic control for au-

tonomous mobile robots in known environments, in: O. Castillo, W. Pedrycz, K. J.

(Eds.), Evolutionary Design of Intelligent Systems in Modeling, Simulation and Con-

trol. Studies in Computational Intelligence, 275, Springer, Berlin, Heidelberg, 2009,

pp. 33–52, doi: 10.1007/978-3-642-04514-1_3 . 

50] M. Sisto , D. Gu , A fuzzy leader-follower approach to formation control of multiple

mobile robots, 2006 IEEE/RSJ International Conference on Intelligent Robots and

Systems (2006) 2515–2520 . 

51] G.G. Rigatos, Distributed gradient and particle swarm optimization

for multi-robot motion planning, Robotica 26 (3) (2008) 357–370,

doi: 10.1017/S0263574707004080 . 

52] R. Olfati-Saber, R.M. Murray, Graph rigidity and distributed formation stabilization

of multi-vehicle systems, in: Proceedings of the 41st IEEE Conference on Decision

and Control, 2002., 3, 2002, pp. 2965–2971 vol.3, doi: 10.1109/CDC.2002.1184307 .

53] M. Mesbahi , M. Egerstedt , Graph Theoretic Methods in Multiagent Networks, Prince-

ton University Press, NJ, 2010 . 

54] B. Sharma , J. Vanualailai , A. Prasad , A dø-strategy: facilitating dual-formation con-

trol of a virtually connected team, Journal of Advanced Transportation 2017 (2017)

1–17 . 

55] K. Raghuwaiya , B. Sharma , J. Vanualailai , Leader-follower based locally rigid for-

mation control, Journal of Advanced Transportation 2018 (2018) 1–14 . 

56] B. Sharma , J. Vanualailai , A. Prasad , Formation control of a swarm of mobile ma-

nipulators, Rocky Mountain Journal of Mathematics 41 (3) (2011) 909–940 . 

57] G.J. Pappas , K.J. Kyriakopoulos , Stabilisation of non-holonomic vehicle under kine-

matic constraints, Int J Control 61 (4) (1995) 933–947 . 

58] M.S. Branicky , Multiple Lyapunov fuctions and other analysis tools for switched and

hybrid systems, IEEE Trans Automat Contr 43 (4) (1998) 475–482 . 

https://doi.org/10.1109/CSDE50874.2020.9411585
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0017
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0017
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0017
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0018
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0018
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0019
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0019
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0019
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0020
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0020
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0021
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0021
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0021
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0021
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0021
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0022
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0022
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0022
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0023
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0023
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0024
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0024
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0024
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0024
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0025
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0025
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0025
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0026
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0026
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0026
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0026
https://doi.org/10.1155/2020/8865608
https://doi.org/10.1177/0278364904045467
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0029
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0030
https://doi.org/10.1017/S0263574714001921
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0032
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0032
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0032
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0032
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0033
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0033
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0033
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0034
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0034
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0034
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0034
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0036
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0036
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0036
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0036
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0036
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0037
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0038
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0038
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0038
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0039
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0039
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0039
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0040
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0040
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0041
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0041
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0041
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0042
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0042
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0042
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0042
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0043
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0043
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0043
https://doi.org/10.1016/j.jii.2020.100198
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0045
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0045
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0045
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0045
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0045
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0046
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0046
https://doi.org/10.23919/ACC.2018.8431392
https://doi.org/10.1109/ACCESS.2018.2884503
https://doi.org/10.1007/978-3-642-04514-1_3
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0050
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0050
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0050
https://doi.org/10.1017/S0263574707004080
https://doi.org/10.1109/CDC.2002.1184307
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0053
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0053
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0053
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0054
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0054
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0054
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0054
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0055
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0055
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0055
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0055
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0056
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0056
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0056
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0056
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0057
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0057
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0057
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0058
http://refhub.elsevier.com/S2210-6502(21)00087-0/sbref0058

	Stable switched controllers for a swarm of UGVs for hierarchal landmark navigation
	1 Introduction
	2 Related work
	3 Lyapunov-based control scheme
	4 A Swarm of UGVs
	4.1 Car-like UGV model

	5 Findpath problem via landmarks for a swarm of UGVs
	6 Lyapunov-based velocity controllers of UGVS
	6.1 Components of multiple Lyapunov function
	6.1.1 Attraction to the centroid
	6.1.2 Landmark attraction function
	6.1.3 Target attraction
	6.1.4 Inter-agent collision avoidance
	6.1.5 Stationary obstacle avoidance

	6.2 Multiple Lyapunov functions
	6.3 Velocity controllers
	6.3.1 Steering control laws
	6.3.2 Maximum velocities
	6.3.3 Maximum steering angle

	6.4 Stability analysis

	7 Roles of the parameters in the Lyapunov function
	8 Simulation results
	9 Effect of noise
	9.1 Stability analysis
	9.2 Simulation result

	10 Discussion
	11 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References


