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Abstract: This study proposes a state formulation of the space-vector dynamic model of the Synchronous Reluctance Motor
(SynRM) considering both saturation and cross-saturation effects. The proposed model adopts the stator currents as state
variables and has been theoretically developed in both the rotor and stator reference frames. The proposed magnetic model is
based on a flux versus current approach and relies on the knowledge of 11 parameters. Starting from the definition of a suitable
co-energy variation function, new flux versus current functions have been initially developed, based on the hyperbolic functions
and, consequently, the static and dynamic inductance versus current functions have been deduced. The dynamic inductance
functions have been derived so to fulfill the reciprocity conditions. This study presents also a technique for the estimation of the
parameters of the proposed magnetic model, which is based on stand-still tests without the need to lock the rotor. The
identification process has been performed based on the minimization of a suitably defined error function including the difference
between the measured and estimated stator fluxes. The proposed parameter estimation technique has been tested in both
numerical simulation and experimentally on a suitably developed test set-up, permitting the experimental validation of the
proposed model.

1௑Introduction
Synchronous reluctance motors (SynRMs) have proved to be a
valid alternative to permanent magnet synchronous motors
(PMSMs) over the last few decades, especially for their robustness,
simplicity and lower prices [1–3]. Indeed, they can tolerate short-
duration overload, have high dynamical performance over a wide
range of speeds, and can be operated in deep flux weakening,
which has resulted in several industry applications. In particular,
SynRMs can operate at an efficiency comparable or higher than that
of the induction motor (IM), because of the absence of power
losses in the rotor, especially when maximum torque per ampere
(MTPA)) strategies are added into the control strategy of the drive
system. However, one of the roadblocks to enhance their
dynamical performance is the appropriate development of the
dynamical model along with an accurate estimation of the related
parameters, which can vary significantly with the saturation of the
iron core.

Actually, if non-linear control techniques are to be adopted, the
correct modelling of SynRM plays an all-important role, e.g. if the
input–output feedback linearisation were used, it is well known
that its performance would be highly affected by how accurate the
model is. In this respect, it is most convenient to write the
dynamical model in terms of state variables. This would make it
possible the application of linear or non-linear control strategies as
well as suitable observers for either speed estimation or
implementation of MTPA based approaches. For this purpose, the
complete flux versus current, or also the current versus flux,
characteristics should be fully identified, to include self- and cross-
saturation effects [4–6].

In [7], the authors have investigated the effects that non-optimal
modelling of the SynRM can have on the dynamic performance of
the control. It has been found that neglecting magnetic saturation
can severely hamper the dynamic performance of closed-loop
control and considering constant inductances lead up to a severe
deviation in torque capability prediction. The authors compute
inductances look-up tables (LUT) by using finite element method

(FEM): even if FEM can give better results in terms of model
precision, it lacks generality, since a FEM analysis should be done
for a given motor geometry, and it also needs the knowledge of
motor constructive elements that are rarely available to the user.

In [8] the authors exploit an offline inductance estimator to
obtain a loss minimisation control: the adopted model uses 16
parameters, to be identified through experimental tests. Their
inductances equations, however, do not satisfy the reciprocity
condition and are not thus suitable to describe the cross-magnetic
saturation.

In [9] the authors address the issue of the experimental
magnetic characterisation of the flux versus current relationship of
IPMs and PM assisted SynRMs. In particular, a simplified but
effective model of the cross-saturation phenomenon is proposed
where the co-energy variation function is divided into three terms,
two related to the direct component and one related to the
quadrature components of the stator currents.

In [10] the authors present the analysis and mathematical
dynamic modelling of SynRMs, with the state equations expressed
as a function of the stator flux. It should be noted that no magnetic
modelling of the machine is included and only simulation results
are presented. Moreover, no state formulation of the model as a
function of the stator current is proposed.

In [11, 12] the authors present the modelling and vector control
of SynRMs, taking into consideration the stator iron losses. In [11]
the stator iron losses have been modelled by an equivalent
resistance in voltage equations, but no self- nor cross-saturation has
been treated. Xu et al. [12], besides the control, presents also a
simplified steady-state d–q dynamic model including saturation
and iron losses.

A state variable formulation using the space vectors is proposed
in [13], where the authors select either the stator flux or the stator
current components as state variables. In addition, they develop an
in-depth review of the approaches proposed in the literature and
show the need of the analytical expression of the inductances
versus current, derived from the expressions of the flux versus
current components, if stator currents are employed as state
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variables. Inductances are modelled as piecewise functions in [14,
15] goes a step forward by including the cross-saturation effects. A
further development is achieved in [16] where inductances are
modelled with polynomials of 12th degree and the coefficients are
estimated by using a least-square (LS) method. An enhancement is
described in [17], which models inductances with rational
functions requiring the estimation of 16 coefficients, but it fails to
fulfil the reciprocity conditions. On the other hand, the adoption of
the stator flux as state variable leads up to the necessity of using an
inductance versus the flux function, which can be obtained with a
current versus the flux function. In this respect, the current versus
flux can be modelled by using a power function [18], resulting in
the development of an inductance versus flux function, although
cross-saturation effect is again neglected. In the same fashion, an
inverse tangent function has been adopted in [17] to model the
inductance: this approach needs only three coefficients with a
physical interpretation and, therefore, the fitting procedure is
simpler; however, also in this case, cross-saturation effect is
neglected. Unlike these works, another approach is presented in
[13] by using an augmented power function for fitting the current
versus flux relationship. This work uses nine coefficients and
considers the cross-saturation. However, since this approach uses
the current versus flux relationship, its coefficients cannot be easily
interpreted from a physical perspective.

As for the characterisation of SynRMs, and the estimation of the
model parameters, the common strategy generally requires the
SynRM to operate at constant speed, with the resulxting need of a
prime mover drive controlled in speed in the four quadrants [19].
Another approach is based on the acceleration tests [20], or the
injection of large signals at high frequency in standstill conditions
[21]. Identification techniques in standstill with zero torque have
also been developed in [22, 23]: the background idea lies in
applying square voltage waveforms to the direct and quadrature
axes circuits of the motor with the effect of identifying the self-
saturation parameters separately. Subsequently, two other square
voltage waveforms at different frequencies are simultaneously
applied to the two axis circuits, to identify the cross-saturation
parameters of the model. In particular, a flux versus current
function is used in [22], where a linear approximation of the flux is
adopted for low current values, whereas for higher values, a linear
and inversely proportional function is employed. In this approach,
four parameters are used for the self-saturation on each axis and
they are estimated with a multiple linear regression (MLR) method.
This approach yields the entire flux map, considering also the
cross-saturation effect, but does not provide any analytical
expression for the cross-saturation flux term. Differently from this
work, a current versus flux approach is the base in [23], whose
model includes explicitly both the self-saturation and cross-
saturation terms like [13]. Specifically, this last work demonstrates
that simple polynomials can be used to model inverse functions
describing the saturation effect, fulfilling at the same time the
reciprocity conditions. This model uses in total nine coefficients,
three for describing the self-saturation on each axis and three for
the cross-saturation. All these parameters have been estimated by a
linear least-squares (LLS) method.

2௑Improvements with respect to previous
contributions
Recently, in the scientific literature, the mathematical modelling of
the magnetic saturation of SynRMs has been addressed by using a
flux versus current approach, exploiting a mathematical
representation with eight coefficients [24]. This mathematical
model is based on a combination of linear and exponential terms,
and it considers both self-saturation and cross-saturation. In
particular, cross-saturation phenomenon has been modelled to fulfil
the reciprocity conditions. Starting from the stator flux versus
stator current functions, the corresponding expressions of the static
and dynamic stator inductances have been deduced, including the
cross-saturation dynamic inductances. In [25], a space-vector
dynamic model of the SynRM has been developed, where the stator
currents have been chosen as state variables. The model in [25],
expressed in the rotor reference frame, requires the knowledge of

the static and dynamic inductances, as presented in [24]. As for the
identification of the parameters of the magnetic model in [24], a set
of steady-state standstill tests has been devised, not requiring the
rotor to be locked in any predefined angular position. Two
approaches have been followed. The first minimises an error
function of the difference between the measured and estimated
stator currents by using a Levenberg–Marquardt algorithm (LMA)
[25]. The second minimises a similar error function, dependent on
the stator flux error, by using genetic algorithms (GAs) [24]. Both
approaches have been assessed in simulation and experimentally
on a suitable experimental rig.

This paper is in the framework of [24, 25], but improves them
in the following aspects. Like [24, 25], it is based on a flux versus
current approach, but the mathematical modelling of the magnetic
saturation of SynRMs has been entirely rewritten and enhanced
with the use of hyperbolic functions. The cross-saturation flux term
has been obtained based on the preliminary definition of a suitable
co-energy variation function. This co-energy variation function has
been created to properly represent the physical phenomenon of the
cross-saturation in certain operating points, as fully explained in
the following. Starting from the definition of the co-energy
function, the static and dynamic inductance functions have been
defined, including the cross-saturation term. In particular, the co-
energy function has been defined so that the cross-saturation
inductance can fulfil the reciprocity conditions. The entire
magnetic model requires the knowledge of 11 parameters: 6
describing the self-saturation on the direct and quadrature axis, and
5 describing the cross-saturation. A set of steady-state standstill
test has been devised to identify the entire set of the 11 parameters
of the model, not requiring the rotor to be locked in any predefined
angular position. The method is based on the minimisation of a
suitably defined cost function based on the error between the stator
flux components, respectively, estimated by the model and
experimentally measured. In particular, GAs have been exploited to
solve the optimisation problem, as in [24].

This paper, besides the mathematical model of the magnetic
saturation of the SynRM, presents also a further improvement, with
respect to [25], of the space-vector dynamic model of the SynRM in
state form, assuming the stator currents as state variables.
Specifically, the entire formulation of this model has been
expressed also in the stator reference frame, that proves
particularly useful for developing non-linear controllers and
observers.

The parameters of the model have been experimentally
identified on a suitably developed test set-up, and the proposed
model has been fully assessed.

As for the number of parameters required by the model, the
proposed model requires three parameters to describe the self-
saturation on each axis, equal to those required by Hinkkanen et al.
[23] and one less than those required by Bedetti et al. [22].
Moreover, the proposed model requires five parameters to describe
the cross saturation, whereas Hinkkanen et al. [23] require three
parameters and Bedetti et al. [22] do not present a mathematical
model of the cross-saturation. The reason why the proposed model
requires a higher number of parameters than Hinkkanen et al. [23]
is that it better describes the reduction of the cross-saturation effect
in the deep saturation region (as clearly shown in Fig. 2 of [4]). As
for the complexity, the proposed model is certainly more involved
than that in [22], but it is more accurate since the non-linearity of
the curve can be much better tracked with hyperbolic functions,
especially on the direct axis and in correspondence of the knee of
the saturation curve. The proposed model presents a complexity
that is comparable to that of the model in [23]. It should be noted
that the main reason for adopting a current versus flux approach is
that a simple polynomial function can interpolate the experimental
points. On the contrary, the interpolating flux versus current
function is inherently more complex. The flux versus current
approach reflects better the physics of the phenomenon, since
inside the machine the current is the cause and the magnetic flux is
the effect. As for the computational requirement, the following
considerations can be made. In general, the dynamic model is used
off-line on a regular PC for simulating the behaviour of the
machine before the experimental tests. From this point of view, a
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higher computational time is certainly not a big problem, given the
very high computational power offered by modern PCs. In general,
the dynamic model can be even suitably exploited to develop non-
linear control techniques or observers. As for the on-line
implementation on embedded platforms (DSPs) of the non-linear
functions describing the model, linearly interpolated look-up tabled
can easily be used, ensuring at the same time good accuracy and
low computational demand. It should be further noted that
hyperbolic functions are just combination of simple exponentials,
while trigonometric functions are combination of complex
exponential, which are far more complex and computationally
demanding. Furthermore, the hyperbolic notation permits certainly
a more compact form of the equations and a better elegance of the
mathematical representation.

3௑Space-vector dynamic model of SynRM motor
Fig. 1 shows the cross-section of a SynRM. The space-vector
dynamic model described in the following is based on the
assumption of fundamental of the magnetomotive force (MMF),
meaning that all its space harmonics are neglected. In the
following, the model has been initially developed in the rotor
reference frame. If the stator flux space-vector Ψs

r = ψsx + jψsy is
chosen as state vector variable, the classic space-vector equations
of the SynRM expressed in the rotor reference frame with the x axis

aligned in the direction of minimum reluctance can be obtained,
written in complex form:

dΨs
r

dt
= us

r − Rsis
r − ωr jΨs

r (1)

and in scalar form, after decomposing on the direct x -axis and
quadrature y-axis:

dψsx

dt
= usx − Rsisx + ωrψsy

dψsy

dt
= usy − Rsisy − ωrψsx

(2)

where us
r and is

r are the stator voltage and current space-vectors,
respectively, Rs is the stator resistance and ωr is the angular speed
of the rotor in electrical angles. The r superscript indicates that all
variables are written in the rotor reference frame.

3.1 Magnetic characterisation of the SynRM

The magnetic characteristics of the SynRM have been deduced by
using a flux versus current approach rather than the current versus
flux approach, because it is more consistent with the physics of the
real system. The problem of finding the stator flux variation on the
direct and the quadrature axes due to the cross-saturation has been
addressed by adopting a variable-separation method [4, 26]. In
particular, the co-energy variation caused by the cross-saturation
has been expressed as a product of two non-linear functions, each
depending on the stator current component of only one axis

ΔW′ = F isx G isy

=
γ

4
tanh

isx − μ1sign isx

σ1

⋅ sign isx + 1

⋅ tanh
isy − μ2sign isy

σ2

⋅ sign isy + 1

(3)

Fig. 2 shows the co-energy variation surface ΔW′ in (3) versus
the stator current components isx, isy, related to the SynRM under
test, where the parameters are shown in Table 1. It can be observed
that the co-energy variation is null for zero value of any stator
current component, and it saturates to a maximum positive
(negative) value with increasing values of the stator current
components of the same (different) sign.

The physical explanation of this model is explained in the
following. Equation (3) describes the co-energy variation function
due to the cross-saturation, expressed as the product of two
functions, one depending only on isx and the other depending only
on isy. This last condition is very important since it permits the
reciprocity conditions (8c) to be properly fulfilled. The
mathematical formulation has been created based on the analysis of
Fig. 2 in [4]. This last figure shows that ψsx reduces for increasing
values of the current isy. Moreover, for a given value of isx, the
amount of reduction of ψsx depends on the absolute value of isy,
being independent of its sign. The higher the absolute value of isy,
the higher the flux reduction on the x-axis. In addition, the same
figure shows that the flux variation on the x-axis is null for zero
value of isx, very small for high values of isx, while it presents a
maximum for a certain intermediate range of isx. These
considerations suggest that the flux variation on the x axis should
be weighted with a function of isx presenting a bell shape. A
possible choice would be the Gaussian, but this function does not
present a known primitive, necessary to compute the co-energy
function (4). Another function choice with a bell shape, which has
been adopted here, is the 1/cosh2( ⋅ ) function, centred on μ1 and
characterised by a rate of change related to σ1, whose primitive is
well known as the tanh( ⋅ ) function. Finally, this formulation
permits the reciprocity conditions to be properly fulfilled, since the
cross-saturation dynamic inductances on the two axes are equal and

Fig. 1௒ Cross-section of the SynRM
 

Fig. 2௒ Co-energy variation surface versus isx, isy

 
Table 1 Rated data of the SynRM
rated power, kW 2.2
rated voltage, V 380
rated frequency, Hz 50
pole-pairs 2
rated speed, rpm 1500
rated current, A RMS 5.5
rated torque, Nm 14
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related to the product of two 1/cosh2( ⋅ ) functions. Based on the
above considerations, the choice of the representation of the co-
energy function as the product of two tanh( ⋅ ) functions reveals
ideal to properly represent the physical behaviour of the system.

Starting from the expression (3), the flux variation terms caused
by the cross-saturation have been derived as follows:

∂ΔW′
∂isx

= F′ isx G isy = − ΔΨsx (4a)

∂ΔW′
∂isy

= F isx G′ isy = − ΔΨsy (4b)

The self-saturation terms have been devised as the sum of two
terms, the first based on a tanh function plus a linear term. As a
result, the expressions of the flux terms on the direct and
quadrature axes are the following equations:

Ψsx = α1tanh β1isx + η1isx +

−
γ

4
sign isx

tanh
isy − μ2sign isy

σ2
⋅ sign isy + 1

σ1cosh2 isx − μ1sign isx

σ1

(5a)

Ψsy = α2tanh β2isy + η2isy +

−
γ

4
sign isy

tanh
isx − μ1sign isx

σ1
⋅ sign isx + 1

σ2cosh2 isy − μ2sign isy

σ2

(5b)

Fig. 3 shows the stator flux variation ΔΨx versus isx, isy (3rd
terms in (5)) caused by cross-saturation related to the SynRM under
test, whose parameters are shown in Table 1. It can be observed
that ΔΨx is negative for positive values of isx, changing its sign
with the sign of isx. On the contrary, ΔΨx does not change its sign
with the sign of isy, depending only on its absolute value.
Moreover, ΔΨx varies with a tanh function of isy with a null value
for isy, 0 = μ2sign isy, 0 , weighted with a 1/cosh2 function of isx with
a maximum for isx, 0 = μ1sign isx, 0 ; as a result, the cross-saturation
flux variation is null for isx = 0, and tends to zero for isx → ∞
presenting a maximum for a non-null value of isx. Furthermore, it
represents the cross-saturation phenomenon better than [24, 25],
where ΔΨx increases with isy and is maximum for null value of isx

while reducing quickly for increasing values of it (see Fig. 8 in
[24]). Finally, in [24] ΔΨx does not change its sign with isx,
differently from what is represented in Fig. 3.

Starting from the equations of the stator flux components, the
relationship between the vectors of the stator flux and current is the
following equation:

Ψs
r =

Lsxx 0

0 Lsyy

is
r = Lsis

r (6)

where the direct (x) and quadrature (y) static inductance
components (also called synchronous inductances) can be deduced,
from the stator flux components in (4), as

Lsxx =
Ψsx

isx
=

α1tanh β1isx

isx
+ η1 +

−
γ

4
sign isx

isx

tanh
isy − μ2sign isy

σ2
⋅ sign isy + 1

σ1isxcosh2 isx − μ1sign isx

σ1

(7a)

Lsyy =
Ψsy

isy
=

α2tanh β2isy

isy
+ η2 +

−
γ

4
sign isy

isy

tanh
isx − μ1sign isx

σ1
⋅ sign isx + 1

σ2isycosh2 isy − μ2sign isy

σ2

(7b)

Figs. 4 and 5 show the stator static inductances Lsxx, Lsyy versus
isx, isy, related to the SynRM under test, whose parameters are
shown in Table 1, and plotted on the basis of (7). Fig. 4 clearly
shows that Lsxx varies mainly with isx, while it is only moderately
influenced by isy. This is to be expected, considering that the
magnetic circuit on the x-axis lies mainly in iron, while that on the
y-axis presents both iron and flux barriers. Starting from its
maximum value, Lsxx reduces quickly with isx because of the
saturation of the iron path on the x-axis. In a certain range of values
of isx, for high absolute values of isy (independently of its sign), the
inductance is further reduced, since the load causes an increased
saturation of the iron core. Above some values of isx, the magnetic

Fig. 3௒ Stator flux variation ΔΨx versus isx, isy caused by cross-saturation
 

Fig. 4௒ Static inductance Lsxx versus isx, isy

 

Fig. 5௒ Static inductance Lsyy versus isx, isy
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circuit has been already so saturated that the load has a minimum
impact, independently of the amplitude of isy. On the contrary, Fig.
5 clearly shows that Lsyy varies significantly with both isx and isy. In
particular, it reduces quickly with isy because of the rapid saturation
of the iron part of the circuit on the y-axis, as expected. At the
same time, even small increases of isx lead the magnetic circuit on
the quadrature axis to saturation. Indeed, if isy is small in absolute,
even a small positive increase of isx causes the magnetic circuit to
achieve full saturation, with consequent sudden reduction of the
inductance.

Starting from the stator flux components in (5), the direct (x)
and quadrature (y) dynamic inductance components can be
deduced as follows:

(see (8a)) 
(see (8b)) 
(see (8c)) 

Figs. 6–8 show the stator dynamic inductances (also called
incremental inductances) Lsxx′ , Lsyy′  and Lsxy′  versus isx, isy, for the
SynRM under test, whose parameters are shown in Table 1, and
plotted on the basis of (8). Figs. 6 and 7 clearly show that the
shapes of the dynamic self-inductances are very similar to the
corresponding ones of the static self-inductance. It can be further
observed that the effect of the cross-saturation is more apparent in
the dynamic inductances than in the static ones.

Fig. 8 shows that the dynamic cross-saturation inductance
presents a polar symmetry, as expected. There are specific current
ranges in which the cross-saturation inductance is non-null, with
maxima values obtained for specific values of isx, isy, while
elsewhere it is close to zero because of the full saturation of the
magnetic circuit. When isx and isy present the same sign, then the
cross-saturation dynamic inductance assumes negative values,
while when they present opposite signs, it presents positive values,
accordingly with the analysis in [27].

The comparison of Figs. 4–8 with the corresponding ones in
[24, 25] highlights the different approach in modelling the cross-
saturation phenomenon.

3.2 State formulation based on the stator currents

Finally, the complete space-vector dynamic model of the SynRM in
state form, selecting the stator currents as state variables and
expressed in the rotor reference frame, can be written as

dis
r

dt
= Ls′

−1
us

r − Rsis
r − ωr jLsis

r (9)

where the Ls′ is the Jacobian matrix of the stator flux function
defined in (6). This matrix is symmetrical for the reciprocity
condition and can be related to the derivative of the stator flux as
follows:

dΨs
r

dt
=

dΨs
r

dis
r

dis
r

dt
=

Lsxx′ Lsxy′

Lsxy′ Lsyy′

dis
r

dt
= Ls′

dis
dt

(10)

and its components are defined in (8).
It can be observed that the dynamic inductance matrix presents,

different from the static one, non-zero cross-coupling terms. Such
coupling terms are responsible for the cross-saturation. The cross-
coupling terms are equal, in accordance with the respect of the
reciprocity conditions. Finally, the inverse of the stator dynamic
matrix in (9) is defined as follows:

Ls′
−1 =

1

Lsxx′ Lsyy′ − Lsxy′ 2

Lsyy′ −Lsxy′

−Lsxy′ Lsxx′
(11)

The definition of the dynamic model in (9), where the dynamic
inductances are defined in (8), is one of the major contribution of
[25]. Fig. 9, describing (9), shows the block diagram of the space-
vector model of the SynRM, including both self- and cross-
saturation phenomena, expressed in the rotor reference frame. 

Lsxx′ =
dΨsx

disx
=

α1β1

cosh2
β1isx

+ η1 +
γ

2σ1
2

sign isx tanh
isx − μ1sign isx

σ1
tanh

isy − μ2sign isy

σ2
⋅ sign isy + 1

cosh2 isx − μ1sign isx

σ1

(8a)

Lsyy′ =
dΨsy

disy
=

α2β2

cosh2
β2isy

+ η2 +
γ

2σ2
2

sign isy tanh
isy − μ2sign isy

σ2
tanh

isx − μ1sign isx

σ1
⋅ sign isx + 1

cosh2 isy − μ2sign isy

σ2

(8b)

Lsxy′ =
dΨsx

disy
= Lsyx′ =

dΨsy

disx
= −

γsign isx sign isy

4σ1σ2cosh2 isx − μ1sign isx

σ1
cosh2 isy − μ2sign isy

σ2

(8c)

Fig. 6௒ Dynamic inductance Lsxx′  versus isx, isy

 

Fig. 7௒ Dynamic inductance Lsyy′  versus isx, isy
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As a major theoretical contribution of this paper, the proposed
space-vector model in (9) has been expressed also in the stator
reference frame. If (9) is vector-rotated from the rotor reference
frame (r) to the stator reference frame (s), the state formulation of
the dynamic model of the SynRM can be found. Being T the
transformation matrix from the stator to the rotor reference frame

T =
cos θr sin θr

−sin θr cos θr

Equation (9) can be written as

Ls′
d
dt

Tis
s = Tus

s − RsTis
s − ωr jLsTis

s (12)

where j, matricial equivalent to imaginary unit, is defined as

j =
0 −1

1 0

Defining the R matrix as

R =
sin θr −cos θr

cos θr sin θr

= jT

it results that

dT

dt
= − ωrR = − ωr jT

therefore, (12) can be written as

dis
s

dt
= Ls′T

−1
Tus

s − RsTis
s + ωr Ls′R − jLsT is

s =

= Ls′T
−1

T us
s − Rsis

s + ωr Ls′T
−1

Ls′R is
s +

−ωr Ls′T
−1

jLsT is
s

(13)

All the matrices defined in (13) are given as below:

Ls′T
−1 =

1

Lsxx′ Lsyy′ − L′sxy
2

Lsxy′ sin θr + Lsyy′ cos θr −Lsxx′ sin θr − Lsxy′ cos θr

Lsyy′ sin θr − Lsxy′ cos θr −Lsxy′ sin θr + Lsxx′ cos θr

Ls′R =
Lsxx′ sin θr + Lsxy′ cos θr Lsxy′ sin θr − Lsxx′ cos θr

Lsxy′ sin θr + Lsyy′ cos θr Lsyy′ sin θr − Lsxy′ cos θr

jLsT =
Lsyysin θr −Lsyycos θr

Lsxxcos θr Lsxxsin θr

Ls′T
−1

T =
1

2 Lsxx′ Lsyy′ − L′sxy
2

Lsyy′ + Lsxx′ + Lsyy′ − Lsxx′ cos 2θr + ⋯

+2Lsxy′ sin 2θr

Lsyy′ − Lsxx′ sin 2θr − 2Lsxy′ cos 2θr

Lsyy′ − Lsxx′ sin 2θr − 2Lsxy′ cos 2θr

Lsyy′ + Lsxx′ − Lsyy′ − Lsxx′ cos 2θr + ⋯

−2Lsxy′ sin 2θr

Ls′T
−1

Ls′R = j

(see equation below)
It can be observed that several terms depending on twice the

rotor angle appear, that are typical of the main magnetic saliency of
such machines and are present also in the classic model of the
PMSM expressed in the stationary reference frame.

It is to be further noted that, if the saturation of the iron core is
neglected, the dynamic inductance matrix coincides with the static
one and the model identifies with the classic dynamic model of the
synchronous machine, where the permanent magnet flux term is
null.

4௑Parameter estimation technique
The parameter estimation requires three tests at standstill under
different supply conditions, as performed in [22]. In all of the three
tests, a simple hysteresis current controller has been adopted,
regulating the stator current direct and quadrature components in
the rotor reference frame. Fig. 10 shows the block diagram of the
parameter estimation technique. 

As for the x-axis controller, the control law can be written as
follows:

Fig. 8௒ Dynamic inductance Lsxy′  versus isx, isy

 

Fig. 9௒ Block diagram of space-vector SynRM model in the rotor reference
frame

 

Ls′T
−1

jLsT =
1

2 Lsxx′ Lsyy′ − L′sxy
2

LsyyLsyy′ − LsxxLsxx′ sin 2θr + LsyyLsxy′ 1 − cos 2θr − LsxxLsxy′ 1 + cos 2θr

− LsyyLsxy′ + LsxxLsxy′ sin 2θr + LsyyLsyy′ 1 − cos 2θr + LsxxLsxx′ 1 + cos 2θr

− LsyyLsxy′ + LsxxLsxy′ sin 2θr − LsyyLsyy′ 1 + cos 2θr − LsxxLsxx′ 1 − cos 2θr

− LsyyLsyy′ − LsxxLsxx′ sin 2θr + LsyyLsxy′ 1 + cos 2θr − LsxxLsxy′ 1 − cos 2θr
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usx, ref(k) =
Usx, 0  if isx(k) < − isx, max

usx, ref(k − 1)  if  isx(k) ≤ isx, max

−Usx, 0  if isx(k) > isx, max

where Usx, 0 is the constant value of the voltage to be generated by
the inverter, isx, max is the limit value allowed for the current to flow
in the stator windings, k is the sampled time interval. Such a
controller prevents the stator current from overcoming the allowed
maximum value. As for the position of the rotor reference frame,
the value of the initial angle of the x-axis should be estimated
under the assumption that the rotor will not move significantly
during the test. If the motor is installed in such a way that the rotor
position cannot be modified, the DC current can be injected into
the desired direction before the test, so that the magnetic field is
spatially aligned with the rotor. Alternatively, the initial x axis
position could be found by using a signal-injection method,
without any resulting rotor movement.

During test 1, only the x-axis is supplied, while the y-axis
voltage is null. The measured currents are acquired and post-
processed by the identification algorithm to estimate the
parameters α1, β1 and η1 related to the self-saturation effects on the
x-axis; the other parameters are not considered in this test because
isy = 0, therefore, Ψsy could be assumed to be zero, and also the
third term of (5a) can be neglected since it takes into consideration
the cross-saturation effects. During test 2, only the y-axis is
supplied, while the x-axis voltage is null. In this case, the
parameters α2, β2 and η2 are estimated related to the self-saturation
effects on the y-axis: also in this case, only these three parameters
are considered since isx = 0.

The cost function to be minimised depends on the error between
the measured and estimated stator flux x, y components. In this
case, the stator flux components have been estimated on-line on the
basis of (1), where the state variable is the stator flux space-vector.
Such equations describe the so-called voltage model, expressed in
the rotor reference frame. The cost functions are defined by (14a)
for test 1 and (14b) for test 2

S1(ρ1, k) =
1
N

∑
k = 1

N

Ψsx(k) − Ψ
^

sx(k)
2

(14a)

S2(ρ2, k) =
1
N

∑
k = 1

N

Ψsy(k) − Ψ
^

sy(k)
2

(14b)

where N is the total number of samples supplied to the algorithm,
ρ1 = [α1, β1, η1] and ρ2 = [α2, β2, η2] are the parameters vectors, and
Ψsx, Ψsy and Ψ

^

sx, Ψ
^

sy are the direct and quadrature components of
the stator fluxes, respectively, measured and estimated by
mathematical model (1) using the computed values of the
parameters.

 
Remark 1: The so-called measured stator fluxes components are

estimated quantities themselves (even if estimated on-line on the
DSP); they have been obtained by integrating (2) with the
measured values of usx, usy, isx and isy, and using the rated value of
Rs. Moreover, the condition ωr = 0 has been considered because
during these tests the angular speed of the machine is zero. There
are two sources of errors in the experimental estimation of the
stator flux x, y components.

The minimisation of the cost functions (14) has been carried out
by means of the GAs, since the problem is not linear, and therefore,
it is not possible to solve it by convex optimisation. In particular,
the GA of MATLABTM has been used. The GA is an evolutionary
algorithm that, starting from a generic initial condition, generates
different sets of parameter vector ρji

, j=1, 2, and i=1, 2, …, M,
under the linear constraint ρinf < ρi < ρsup (the number of
generated sets M is called the number of individuals for each
generation). Afterwards, the algorithm computes the cost function
(14) associated with each set ρi. At each iteration, the algorithm
selects the best vector ρi and generates a new set of parameters

including the best one of the precedent generation: this represents
the new generation. This cycle continues until the algorithm finds a
set of parameters such that the cost function (14) is less that a fixed
quantity chosen by design or after a maximum number of
generations. For the case under study, the following parameters
have been used: M =30, ρinf =[0.1 0.1 0.1], ρsup =[2 2 2], and the
stopping criteria has been fixed by choosing the maximum number
of generations equal to 50 (see [28] for further details on GAs).
Moreover, the third parameter of ρ has been scaled by 100, such
that all parameters range in comparable intervals, avoiding
numerical issues due to a wrong conditioning of the optimisation.

During test 3, both the x and the y axes are simultaneously
supplied to consider the entire range of the isx, isy currents. To this
aim, voltage square waveforms on the two axes have been chosen
with frequencies multiple of each other. In this case, the parameters
γ, μ1, μ2, σ1 and σ2, related to the cross-saturation effects, are
estimated on the basis of the minimisation of the following
quadratic error, by combining the flux errors on both the direct and
the quadrature axes:

S(ρ3, k)=
1
N

∑
k = 1

N

Ψsx(k)−Ψ
^

sx(k)
2

+ Ψsy(k)−Ψ
^

sy(k)
2

(15)

GAs have been used as described above, but with the following
parameters: M = 30, ρinf = [0, 03 0, 03 0, 03 0, 03 0, 03],
ρsup = [1 1 1 1 1], and the stopping criteria has been fixed by
choosing the maximum number of generations equal to 50. Also, in
this case, some parameters have been scaled by constant factors
such that all parameters range in comparable intervals. In
particular, parameter γ has been multiplied by 10, while μ1 and μ2

have been divided by 10.
At the end of the three tests, all the 11 parameters of the model

have been estimated. The set of final values of the estimated
parameters as obtained at the end of the identification process is
shown in Table 1.

5௑Test set-up
The adopted test set-up has been arranged with a SynRM motor
model ABB 3GAL092543-BSB whit rated data shown in Table 1.
The motors have been supplied by a voltage source inverter (VSI)
with insulated gate bipolar transistor (IGBT) modules, model
Semikron SMK 50 GB 123, driven by a space-vector pulse-width
modulation (SV-PWM) technique with PWM frequency set to 5 
kHz. The identification scheme shown in Fig. 10 and the adopted
PWM technique have been implemented on a dSPACE card
(DS1103). The sampling time of the identification scheme has been
set equal to 10 kHz. The SynRM motor is mechanically coupled to
a torque controlled PMSM drive working as the active load (not
necessary in this case). Fig. 11 shows the photo of the SynRM drive
test set-up. 

Fig. 10௒ Block diagram of the adopted parameter estimation scheme
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6௑Experimental results
The parameter estimation technique described in Section 4 has
been applied to identify the parameters of the proposed magnetic
model described in Section 3.1.

As for the parameter estimation procedure of the SynRM, the
values of the constant voltage applied to the motor have been
selected equal to ±200 and ±100 V, respectively, on the x and y
axes, considering that the stator inductance on the y-axis is much
lower than that on the x-axis. The limit value of the stator current
has been chosen equal to 10 A on the x-axis and 8 A on the y-axis.
The current limits have been chosen slightly higher than the rated

current of the machine and in any case, big enough to ensure the
machine to get full saturation on both axes.

Figs. (12)–(16) describe the experimental results. Fig. 12 is
related to test 1 and shows the direct components of the stator
voltage, the stator current and the stator flux versus time. In
particular, both the measured stator current and the corresponding
one computed by the model in (9) are plotted together; the same
consideration is valid for the stator flux, which is estimated
exploiting (1). As recalled above, the measured flux is itself an
estimated quantity. Specifically, the stator flux has been estimated
adopting the so-called ‘voltage flux model’ based on the stator
voltage equations. The open-loop integration problem has been
solved here adopting the so-called neural adaptive integrator [29].

A good match between the two graphs can be noticed,
confirming the validity of the proposed dynamic model as well as
its correct parameterisation obtained thanks to the proposed
identification technique. The good accuracy in the estimation of the
stator currents is confirmed by an equally correct estimation of the
stator flux. As a result, Fig. 13 shows the map of the experimental
points describing the relationship between the direct component of
the stator current and the related stator flux component, as well as
the function ψsx = f 1(isx) computed by the saturation model in (5)
on the basis of the measured stator current. Since the x-axis is
related to the magnetic circuit with minimum reluctance, the
typical effect of the saturation is clearly visible. As for the
experimental points, the scattering is caused by two reasons. The
first one, is the presence of a certain amount of undesired noise
superimposed to the data. Such an effect is limited. The second and
more significant one, is the effect of the hysteresis. As a matter of
fact, the supply square voltage waveform causes the current to span
between high positive and high negative values, with the
description of the consequent hysteresis cycle. Such an effect is not
considered by the mathematical functions represented by (5),
which describe only the saturation phenomenon. The obtained final
values of the parameters α1, β1, η1 are shown in Table 2, which
shows also the respective mean square errors. Figs. 14 and 15 show
the corresponding waveforms related to test 2, which completely
characterise the magnetic circuit of the machine on the y-axis.

Since the y-axis is related to the magnetic circuit with
maximum reluctance due to the flux barriers, the typical effect of
the saturation is less visible and consequently, the ψsy = f 2(isy)
function presents a more linear shape. The obtained final values of
the parameters α2, β2, η2 are shown in Table 2. Fig. 16 shows the
corresponding time waveforms related to test 3, permitting the
characterisation of the cross-saturation effect. It can be seen that
the square waveforms of the stator voltages applied to the two axes
present frequencies which are multiple of each other, permitting the
retrieval of the entire map between the stator flux and currents
components. The final values of the parameters γ, μ1, μ2, σ1, σ2

obtained with this identification process are shown in Table 2.
Fig.s 17 and 18 show the ψsx = f 1(isx, isy) and ψsy = f 2(isx, isy)

surfaces computed with the model in (5), on the basis of the final

Fig. 11௒ Photograph of the experimental set-up with the SynRM
 

Fig. 12௒ usx, isx, ψsx waveforms during the test 1, proposed model
 

Fig. 13௒ ψsx = f 1(isx) identified at the end of the test 1, proposed model
 

Fig. 14௒ usy, isy, ψsy waveforms during the test 2, proposed model
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values of its identified parameters. These figures also show
superimposed the experimental points describing the mapping
between the same variables. It can be observed that both computed
surfaces properly interpolate the experimental points in the three-
dimensional space, confirming the goodness of the proposed
saturation model as well as its correct parameterisation.

6.1 Comparison with the magnetic models [22, 23]

In order to highlight the advantages offered by the proposed model
in terms of accuracy in approximating the experimental
measurements, the parameter estimation technique described in
Section 4 has been employed to estimate the parameters of the
magnetic models presented in [22, 23]. The finals values of the
parameters of the models in [22, 23] are provided in Table 2. With
this specific regard, it should be noted that model [22], based on a
flux versus current approach, includes only the self-saturation

effect, while model [23], based on a current versus flux approach,
includes both self- and cross-saturation effects.

Figs. 19 and 20 show the maps of the experimental points
describing the relationship between the direct and quadrature
components of the stator current and the related stator flux
components, as well as the functions ψsx = h1(isx), ψsy = h2(isy)
computed by the self-saturation model in [22], on the basis of the
measured stator current. It can be noted that the model in [22] is
composed of two branches of linear functions, each characterised
by a different rate of change. Remark that, while the ψsy = h2(isy)
curve quite well interpolates the experimental measurements,
because of the more linear nature of the magnetic circuit on the
quadrature axis due to the presence of the flux barriers, ψsx = h1(isx)

Fig. 15௒ ψsy = f 2(isy) identified at the end of the test 2, proposed model
 

Fig. 16௒ usx, y, isx, y, ψsx, y waveforms during the test 3, proposed model
 

Table 2 Identified models parameters
Proposed model Model in [22] Model in [23]
Parameter Value Parameter Value Parameter Value
γ 0.1072 L0d 0.239 ad0 5.82
μ1 3.210 L1d 0.048 add 0.823
μ2 1.4380 βd 0.005 aq0 29.7
σ1 0.6987 Ith, d 3.22 aqq 44.1
σ2 0.8023 L0q 0.110 adq 18.8
α1 1.1627 L1q 0.021 S 6
β1 0.3044 βq 0.005 T 1
η1 1.0923 ⋅ 10−2 Ith, q 1.02 U 1
α2 0.1224 V 0
β2 1.1125
η2 2.7329 ⋅ 10−2

 

Fig. 17௒ ψsx = f 1(isx, isy) identified at the end of the test 3, proposed model
 

Fig. 18௒ ψsy = f 2(isx, isy) identified at the end of the test 3, proposed model
 

Fig. 19௒ ψsx = h1(isx) identified at the end of the test 1, model in [22]
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interpolates the experimental measurements with less accuracy,
particularly in correspondence of the knee of the saturation curve.
Moreover, it is observable that the model fails on the direct axis in
a deep saturation region.

Figs. 21 and 22 show the maps of the experimental points
describing the relationship between the direct and quadrature
components of the stator flux and the related stator current
components, as well as the functions isx = g1(ψsx), isy = g2(ψsy)
computed by the self-saturation model in [23], on the basis of the
measured flux. It can be noted that the magnetic model in [23]
quite well interpolates the experimental points, on both the direct
and quadrature axes. As for the curve on the direct axis, the rate of
change of the interpolating function does not properly match the
one of the experimental points in the linear region, since the slope
is slightly higher. Moreover, in the deep saturation region, the
interpolating function does not saturate as the experimental points,
because of the polynomial nature of the interpolating function. On
the contrary, Figs. 13 and 15, related to the proposed magnetic
model, show clearly that the proposed model correctly interpolates
the experimental points in the entire working region, both in linear
zone and in deep saturation.

To confirm what commented above, Table 3 shows a summary
of the comparative analysis, in terms of accuracy of estimation,
between the proposed model and those presented in [22, 23]. The
metric adopted for comparing the accuracies is composed of two
indexes: the first is the cost function minimised by GAs (14 and
15), that is linked to the integral of the squared error between the
estimated and measured fluxes, the second is the maximum
estimation error between the fluxes. It can be observed that the
proposed model overcomes those presented in [22, 23], in both the
cost function and maximum estimation error. In particular, the
maximum estimation errors offered by the models [22, 23] are

much higher than those of the proposed model, on both the direct
and quadrature axes. On the direct axis, the percent reduction of the
cost function obtained with the proposed model is almost 43% with
respect to the model in [22], and 15% with respect to the model in
[23]. On the quadrature axis, the percent reduction of the cost
function obtained with the proposed model is almost 19% with
respect to the model in [22], and 7% with respect to the model in
[23]. The increase of overall accuracy achievable with the
proposed model is therefore much higher on the direct axis than on
the quadrature one, that is to be expected given the higher non-
linearity of the magnetic circuit on the direct axis. From this point
of view, the model [22] is more accurate than that in [23] on the
quadrature axis, which is also to be expected given the higher
linearity of the magnetic circuit on the quadrature axis. All the
above considerations are confirmed by the maximum estimation
error, which is always much lower with the proposed model than
with those in [22, 23].

A specific comment should be made on the computational
demand of the above three magnetic models. With regard to the
computational time, using a laptop with an i5 Intel processor and a
8 Gb DDR3 RAM, the time necessary, for each iteration, is about
15 s both for step 1 and for step 2, and about 20 s for step 3.
Moreover, the computational effort for the off-line identification
procedure obtained with the proposed model is almost the same as
that obtained for the models proposed in [22, 23] with negligible
differences.

7௑Conclusions
This paper proposes a space-vector dynamic model of the SynRM
including both self-saturation and cross-saturation effects and
selecting as state variables the stator currents. The proposed
dynamic model is based on an original function between the stator
flux and current components, and relies on 11 coefficients. Starting
from the definition of a suitable co-energy function, new flux
versus current analytical expression have been retrieved, based on
hyperbolic functions. Consequently, the static and dynamic
inductances analytical expressions have been deduced as well.
Furthermore, the space-vector formulation of the dynamic model
adopting the stator currents as state variables has been formulated
in both the rotor and stator reference frames. This paper presents
also a technique for the estimation of the parameters of the
proposed magnetic model, which is based on stand-still tests

Fig. 20௒ ψsy = h2(isy) identified at the end of the test 2, model in [22]
 

Fig. 21௒ isx = g1(ψsx) identified at the end of the test 1, model in [23]
 

Fig. 22௒ isy = g2(ψsy) identified at the end of the test 2, model in [23]
 

Table 3 Values of the cost functions S1, S2 and S3 (× 100) and
maximum estimation error obtained during tests 1, 2 and 3

Test 1 Test 2 Test 3
S1 emax S2 emax S3 emax

proposed model 1.7 0.18 1.1 0.11 2.32 1.47
model in [22] 3.02 0.31 1.18 0.25 n.a. n.a.
model in [23] 2.02 0.3 1.36 0.23 2.86 1.82
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without the need of locking the rotor. The identification process is
based on the minimisation of a suitably defined error function
which includes the difference between the measured and estimated
stator fluxes. The proposed parameter estimation technique has
been tested in both numerical simulation and experimentally on a
suitably developed test set-up. The accuracy of the proposed model
has been experimentally compared with other models in the
scientific literature, and a precise metric for evaluating the
achieved improvements has been adopted.
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