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KURZFASSUNG

Diese Dissertation befasst sich mit der mathematischen Modellierung von dynamischen
Systemen unter Unsicherheit, der Bayes’schen Inferenz und dem Lernen von unbekannten
Grofen, wie dem Zustand des Systems und dessen Parametern sowie der Berechnung
optimaler Entscheidungen innerhalb dieser Modelle. Probabilistische dynamische Modelle
erzielen erhebliche Leistungsgewinne bei dem Prozess der Entscheidungsfindung (engl.:
decision-making). Ihre Fihigkeit den Systemzustand in Abhéngigkeit der Entscheidungen
zu pradizieren ermoglicht effizientes Lernen mit kleinen Datenmengen und somit werden
gefiihrte optimale Entscheidungen ermdglicht. Mehrere probabilistische Modelle fiir dyna-
mische Systeme im Zustandsraum unter zeitdiskreten und zeitkontinuierlichen Annahmen
werden vorgestellt. Sie bieten die Grundlage fiir die Berechnung der Bayes’schen Einschiit-
zung (engl.: belief) und der Berechnung der optimalen Entscheidungen unter Unsicherheit.
Numerische Algorithmen werden entwickelt, indem mit der exakten Systembeschreibung
begonnen wird und prinzipielle Approximationen vorgenommen werden, um sowohl zu
berechenbaren Algorithmen fiir Inferenz und Lernen, als auch fiir die Entscheidungsfindung
zu gelangen. Die entwickelten Methoden werden anhand von Kommunikationssystemen
und anderen Anwendungen demonstriert. Die spezifischen Beitrdge zur Modellierung,
Inferenz und Entscheidungsfindung gestalten sich inhaltlich wie folgt:

Der erste Beitrag ist eine Inferenzmethode fiir nicht-stationire Punktprozessdaten, wie sie
zum Beispiel bei Warteschlangen in Kommunikationssystemen {iiblich sind. Ein hierarchi-
sches Bayes’sches nicht-parametrisches Modell mit einer Gamma-Verteilungsannahme fiir
die Haltezeiten des Prozesses dient als Grundlage. Fiir die Inferenz wird eine berechenbare
Methode auf der Grundlage eines Markov-Ketten-Monte-Carlo-Samplers hergeleitet und
anschliefend unter der Modellierungsannahme mittels synthetischer Daten und in einem
Szenario mit Echtdaten validiert.

Der zweite Beitrag ist ein schneller Algorithmus zur Anpassung von Bitraten beim Videostre-
aming. Dies wird durch einen neuen Algorithmus fiir adaptives Bitraten-Videostreaming er-
reicht, der ein schwachbesetztes Bayes’sches lineares Modell fiir eine Quality-of-Experience-
Metrik verwendet. Der Algorithmus nutzt dabei ein berechenbares Inferenzschema, um
relevante Merkmale aus Netzwerkdaten zu extrahieren und baut auf einer Contextual-
Bandit-Strategie fiir die Entscheidungsfindung auf. Neben der numerischen Validierung
des Algorithmus erfolgt die Darlegung einer Implementierung und Evaluierung in einem
Named-Data-Networking-Szenario.

Der dritte Beitrag ist eine neuartige Methode, die sich Korrelationen in Entscheidungsproble-
men zu Nutzen macht. Die zugrundeliegenden Modellparameter konnen sehr dateneffizient
inferiert werden, basierend auf einem Bayes’sches Modell fiir korrelierte Zihldaten in
Markov-Entscheidungsprozessen. Um Intraktabilititen, die bei der exakten Bayes’schen
Inferenz auftreten, zu iiberwinden, wird ein berechenbarer Variationsinferenz-Algorithmus
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vorgestellt, der ein Augmentierungsschema nutzt. Die Methode wird ausgiebig in verschiede-
nen Entscheidungsszenarien evaluiert, wie beispielsweise bei dem Reinforcement-Learning
in einem Warteschlangensystem.

Der letzte Beitrag befasst sich mit gleichzeitiger Zustandsinferenz und Entscheidungsfin-
dung in zeitkontinuierlichen, teilobservierbaren Umfeldern. Dabei wird ein neues Modell
fiir diskrete Zustands- und Aktionsraumsysteme vorgestellt, wobei eine Besprechung der
entsprechenden Gleichungen fiir exakte Bayes’sche Inferenz erfolgt. Die Optimalitéts-
bedingungen fiir die Entscheidungsfindung werden hergeleitet. Zusétlich werden zwei
numerische Verfahren vorgestellt, die Funktionsapproximatoren nutzen, um die Losung
im Belief-Raum zu lernen. SchlieBlich erflogt die Vorstellung der Anwendbarkeit der
Methode anhand mehrerer Beispiele, einschlielich eines Scheduling-Algorithmus unter
Teilobservierbarkeit.



ABSTRACT

This dissertation discusses the mathematical modeling of dynamical systems under uncer-
tainty, Bayesian inference and learning of the unknown quantities, such as the system’s state
and its parameters, and computing optimal decisions within these models. Probabilistic
dynamical models achieve substantial performance gains for decision-making. Their ability
to predict the system state depending on the decisions enables efficient learning with small
amounts of data, and therefore make guided optimal decisions possible. Multiple proba-
bilistic models for dynamical state-space systems under discrete-time and continuous-time
assumptions are presented. They provide the basis to compute Bayesian beliefs and optimal
decisions under uncertainty. Numerical algorithms are developed, by starting with the exact
system description and making principled approximations to arrive at tractable algorithms
for both inference and learning, as well as decision-making. The developed methods are
showcased on communication systems and other commonplace applications. The specific
contributions to modeling, inference and decision-making are outlined in the following.

The first contribution is an inference method for non-stationary point process data, which is
common, for example, in queues within communication systems. A hierarchical Bayesian
non-parametric model with a gamma-distributional assumption on the holding times of
the process serves as a basis. For inference, a computationally tractable method based
on a Markov chain Monte Carlo sampler is derived and subsequently validated under the
modeling assumption using synthetic data and in a real-data scenario.

The second contribution is a fast algorithm for adapting bitrates in video streaming. This is
achieved by a new algorithm for adaptive bitrate video streaming that uses a sparse Bayesian
linear model for a quality-of-experience score. The algorithm uses a tractable inference
scheme to extract relevant features from network data and builds on a contextual bandit
strategy for decision making. The algorithm is validated numerically and an implementation
and evaluation in a named data networking scenario is given.

The third contribution is a novel method that exploits correlations in decision-making
problems. Underlying model parameters can be inferred very data-efficiently, by building a
Bayesian model for correlated count data from Markov decision processes. To overcome
intractabilities arising in exact Bayesian inference, a tractable variational inference algorithm
is presented exploiting an augmentation scheme. The method is extensively evaluated in
various decision-making scenarios, such as, reinforcement learning in a queueing system.

The final contribution is concerned with simultaneous state inference and decision-making
in continuous-time partially observed environments. A new model for discrete state and
action space systems is presented and the corresponding equations for exact Bayesian
inference are discussed. The optimality conditions for decision-making are derived. Two
tractable numerical schemes are presented, which exploit function approximators to learn
the solution in the belief space. Applicability of the method is shown on several examples,
including a scheduling algorithm under partial observability.
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INTRODUCTION

1.1 Motivation . . . . . . . . o o e e e e e 2

1.2 Contribution and OVerview . . . . . . . . . . v v v v v 3

Mathematical models have a long history in the natural sciences and are the basis of
modern-day engineering systems. Models enable to generalize for unseen effects, and
therefore to reason about what might happen in the future. They can guide agents (the
decision-makers) in making decisions, to both achieve objectives and at the same time
learn about a system at hand. The model-based decision process is depicted schematically
in Fig. 1.1. To illustrate the decision-making process under uncertainty, consider the
following simple example, of walking to the fridge at night to get a snack. A trained agent
may happily accept the extra effort of switching on a light, to more readily find the fridge
and mitigate possible risks. The agent does this to increase the certainty or its belief of its
model of the kitchen, enabling a faster and safer path to the objective. Generally, by using
a probabilistic model for sensor data and how decisions influence the system, one can find
plans which achieve (i) the goal of learning or inferring the model and (ii) accomplish
optimal decisions, which is also discussed under the names of Bayesian reinforcement
learning (BRL) or dual control [12—-14].

/ \ FIGURE 1.1: Schematic of model-based

Decision Data  decision-making under uncertainty. The agent
influences the system sequentially over time by
Time its decisions. By obtaining data, the model can
be learned, and a belief over specific proper-
ties of the system can guide the agent in its

decision-making.
Agent

\ Belief'




1 INTRODUCTION

This thesis focuses on calculating beliefs with Bayesian inference and how to make (near)
optimal decisions for a large class of decision-making problems. The key questions which
occur in this context are: (i) How can we specify probabilistic models for real systems under
uncertainty? (i1)) How can we computationally efficiently calculate beliefs or infer unknown
quantities of the systems? (iii) How should we make and compute optimal decisions under
uncertainty?

This thesis answers these questions by building on methods from machine learning, statistics,
optimization, and control theory. Numerous application scenarios for the proposed methods
are considered, with a particular focus on communication systems in computer networking.
Example applications include decision-making in queueing networks, design of optimal
scheduling algorithms, or how to decide sequentially for a quality level in a video stream.
However, the ideas, models and solution methods presented in this thesis are by no means
limited to these examples and can be applied to a vast range of topics.

1.1 MOTIVATION

Automated decision-making is one of the key challenges for intelligent systems. When
building decision-making schemes, model-free techniques often need a massive amount
of training data to obtain a good policy since they purely learn by trial and error. This
limits their use in many applications, as we wish to make guided decisions, which obtain
suitable results with as little training data as possible. A promising data-efficient direction,
as opposed to a model-free method, is a model-based method. Building models can guide
the agent in its decision-making and are therefore superior to model-free methods for
systems, where the modeling assumptions hold. Though it is persistently hard to specify all
parameters in a model completely, we still might want to incorporate as much knowledge
into the model as possible, as it will lift a burden from the decision-making agent. Free
unknown parameters can then be learned sequentially from the data obtained. Since a
problematic aspect in training such models is that a naive greedy estimation of the system
parameters will lead to overconfident agents who exploit their knowledge of the system too
much, we will use a Bayesian approach for inference instead. Bayesian methods provide
(i) a natural way to specify prior knowledge and (ii) they provide a degree of uncertainty
for the decision-making strategy enabling a balance of exploration and exploitation.

Applications that benefit from such methods are numerous and can include many decision-
making processes, such as communication systems, recommender systems, the control
of biological systems, robotics, etc. In the context of this thesis the application of
decision-making and inference in communication systems will be a reoccurring theme.
These systems are often prime examples for decision-making under uncertainty as many
environmental effects can influence the systems, such as for example, cross-traffic in
computer networks. Queues are helpful and common models for systems in this regard.
Here, the system state can be described by a discrete number of packets in the queue. Other
systems require a different description using a continuous state, such as the current round
trip time in a scheduling system. Hence, we will specifically discuss both of these modeling
aspects in this thesis. Another aspect is how to model the decision-making process in time.
We will specifically consider both the cases of episodic (discrete-time) decision-making



1.2 CONTRIBUTION AND OVERVIEW

and continuous-time decision-making and will choose a suitable description problem
dependently.

Given this context, the contributions of this thesis are listed next, which address and solve
the previously discussed challenges.

1.2 CONTRIBUTION AND OVERVIEW

This thesis aims to develop probabilistic models, tractable inference and learning algorithms,
and optimal decision-making schemes. The main contributions are the following:

1. A model and a tractable inference algorithm for point process data in continuous
time is developed. Here, the inference of a discrete latent state process modulating
the rate of the point process is considered.

2. A fast episodic decision-making algorithm in a video streaming setting is derived.
For this, the discrete-time system state is modeled using continuous-valued features,
which probabilistically determine the objective to be optimized.

3. A new probabilistic correlation model for decision-making is designed. In the
presented discrete-time setting, the level of the underlying latent correlations is
inferred from the observed discrete state data.

4. The general problem of partially observable decision-making with discrete states in
continuous time is discussed. A new model is provided, the optimality conditions are
derived, and numerical solution algorithms are presented for the latent state inference
and the decision-making.

For an overview of these contributions see Table 1.1. An exhaustive list of our publications
can be found in the front matter of this thesis on Pages vii to viii.

The thesis is structured in the following chapters.

CuaPTER 2. This background chapter gives some preliminaries on the underlying
mathematical ideas, modeling techniques, and numerical solution methods. In the context
of this thesis, some foundational related work is given, and the central machinery of
Bayesian inference and optimal decision-making is discussed.

CuaapTiER 3. This chapter discusses a model for non-stationary continuous-time point
processes. These types of models can be used for describing discrete events at continuous-
valued time stamps. An important example in communication systems is a queueing system,
where we model the arrival time of a packet. Still, we will also look at a different instance
from neuroscience, where we want to model the firing times of neurons in a brain. To model
the non-stationarity, a discrete-state continuous-time latent process modulating the rate
is assumed. The regimes of different rates are modeled using a Bayesian non-parametric
prior and the underlying state and parameters of the process are inferred using a tractable



1 INTRODUCTION

Contribution Time State Inference Decision-Making

1. Chapter 3: BAYESIAN NON-PARAMETRIC C D v X
INFERENCE FOR A CONTINUOUS-TIME POINT
PROCESS MODEL

2. Chapter 4: DECISION-MAKING WITH A D C v v
SPARSE BAYESIAN MODEL IN VIDEO STREAM-

ING

3. Chapter 5: EXPLOITING BAYESIAN CORRE- D D v v

LATION MODELS IN DECISION-MAKING

4. Chapter 6: OPTIMAL DECISION-MAKING IN  C D v v
CONTINUOUS TIME AND DISCRETE SPACES
WITH BAYESIAN STATE INFERENCE

TABLE 1.1: An overview of the contributions. The table shows different discussed model-based
methods for decision-making and inference, and learning. The models use for this a description in
continuous time (C) or in discrete time (D). Similar, the state of the system at hand is described by a
value in a continuous state-space (C) or a discrete state-space (D).

sampling method. The decision-making aspect in similar models is then discussed later on
in Chapter 6. This chapter is based on the published work

[4] B. Alt, M. Messer, J. Roeper, G. Schneider, and H. Koeppl, ‘“Non-parametric
Bayesian inference for change point detection in neural spike trains”, in 2018 IEEE
Statistical Signal Processing Workshop (SSP), IEEE, 2018, pp. 258-262.

CuaprTER 4. In this chapter, we consider a fast decision-making algorithm to adjust
the bitrate in video streaming. The system features are modeled using a Bayesian model,
which extracts essential features from the data. For inference, multiple scalable schemes
are developed based on variational inference. We discuss approximately optimal decision-
making using a bandit heuristic, which considers the uncertainty over parameters of the
model. This fast algorithm is then evaluated extensively in the setting of adaptive bitrate
video streaming. This chapter is based on the published work

[3] B. Alt, T. Ballard, R. Steinmetz, H. Koeppl, and A. Rizk, “CBA: Contextual quality
adaptation for adaptive bitrate video streaming”, in IEEE INFOCOM 2019-1EEE
Conference on Computer Communications, IEEE, 2019, pp. 1000-1008.

CHapTER 5. This chapter describes a method to model correlations in decision-making
problems with discrete state and action spaces. A model for correlations in several aspects
of decision-making is given. A new tractable variational inference scheme based on a
Pdlya-Gamma (PG) augmentation is discussed. Applications include, e.g., the control of a
queueing network with unknown system parameters. This chapter is based on the published
work
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[2] B. Alt, A. Sosié, and H. Koeppl, “Correlation priors for reinforcement learning”,
in Advances in Neural Information Processing Systems, vol. 32, 2019, pp. 14 155—
14 165.

CuaprTER 6. The final content chapter discusses the general problem of partially
observable decision-making in discrete state spaces in continuous time. A new model, the
equations for exact inference, and optimality conditions for decision-making are provided.
Additionally, some numerical algorithms are developed which solve the decision-making
problem using techniques from deep reinforcement learning. The method is evaluated on
several examples, including a continuous-time adaptation of the slotted aloha scheduling
algorithm. This chapter is based on the published work

[1]  B. Alt, M. Schultheis, and H. Koeppl, “POMDPs in continuous time and discrete
spaces”, in Advances in Neural Information Processing Systems, vol. 33, 2020,
pp- 13 151-13 162.

CuapTeERrR 7. This chapter gives a final summary of the discussed contributions, and an
outlook on future research directions based on this work.

APPENDICES. In Appendices A and B some additional content of this thesis is provided.
In Appendix A some probabilistic notation and definitions are given and in Appendix B
some additional results are presented, which have been used in this thesis.
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This chapter introduces mathematical notation and discusses established concepts from
probability, statistical inference, and decision-making.

2.1 PROBABILISTIC MODELING

Throughout this thesis, we use probability theory extensively to build models for the
desired systems. Therefore, we now give some probabilistic modeling concepts, which
we will use in this thesis. We note that basic knowledge of probability theory suffices for
the major part of this thesis, however, some definitions and notational conventions can
be found in Appendix A.1. Additionally, probability distributions used in this thesis are
given in Appendix A.2 and a list of special functions used in this thesis are provided in
Appendix A.3.

PROBABILISTIC GRAPHICAL MODELS. An essential class of probabilistic models
can be described by the use of probabilistic graphical models (PGMs) [15]. Within this
framework, we express conditional independence statements in the form of a graph.
Consider, for example, the distribution

p(x,y,2) = plx)py | ©)p(z | y),

the corresponding graphical model is depicted in Fig. 2.1. Throughout, this thesis we will

—(—0)

FIGURE 2.1: Example for a PGM.
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FIGURE 2.2: Example for a PGM in factor graph notation. Here, diamond-shaped nodes denote
deterministic functions, and factors indicate distributions.

mainly use a representation in a factor graph notation [16]. For this, consider, for example,
a distribution given as

p(z,y,2) = N(z | p,0%) Exp(y | exp(z HPOIS (zn | y), (2.1.1)

where the normally distributed x is the log-rate of the exponentlally distributed y, which
correspond to the rate of the i.i.d. Poisson variables z = [21, ..., 2,] . If we now consider
that we observed the variables z, we can express the distribution in Eq. (2.1.1) by the PGM
in Fig. 2.2 using a factor graph notation.

2.1.1 Continuous-Time Models

Next, we discuss some fundamentals of continuous-time models. These are models which
provide a probabilistic description of a stochastic process {z(t) | ¢ € R>¢}, which is a
collection of random variables (RVs) indexed by a real-valued time stamp.

STOCHASTIC DIFFERENTIAL EQUATIONS. First, we discuss the class of stochastic
differential equations (SDEs) [17]. An SDE is a Markov model on a continuous state space;
ie., x(t) € X C R™ Its evolution can be described by an equation of the form

dx(t) = £(x(t),t) dt + G(x(t), t) dw(t), 2.1.2)

where x(t) € R” is the state at time ¢ and f(x,¢) and G(x,t) are the drift function
and dispersion function evaluated at state x and time ¢, respectively. Here, w(t) is an
n-dimensional standard Brownian motion, which has the defining properties: (i) It starts at
the origin, w(0) = 0, (ii) its increments Aw = w(t) — w(s), with 0 < s < ¢ are Gaussian
distributed; i.e., Aw ~ N(Aw | 0, (¢t — s)I) and (iii) non-overlapping increments are
independent.

Generally, Eq. (2.1.2) is a short-form for the integral representation
x(t) = x(0) + /tf(x(s), s)ds + /t G(x(s),s)dw(s),
where the second integral w.r.t. Borownian motion is (t)he Itd integral defined as
[ (o)) dwls) =l 3 Glxe) 0 ) — w(t),
k

with ¢ty < t;--- < t, = t. This gives rise to the so-called It6 calculus, for more see [17,
18].
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THE POISSON PROCESS. Another important continuous-time model is the Poisson
process [19]. In this model, we consider the Poisson counting process { N (¢) | t € R>¢},
which has the properties: (i) It starts at the origin, NV (0) = 0, (ii) for each ¢, N (¢) is Poisson
distributed with rate parameter At and (iii) non-overlapping increments are independent.
Additionally, as a short-hand for the distribution of the process { N(t) | t € R} we write
N(t) ~PP(N(t) | N).

Similar to the case of an SDE it is helpful to define a differential equation with a counting
process on the r.h.s., e.g.,
dz(t) = h(x(t),t) AN (t), (2.1.3)

where N(t) = SN 1(t < t,,) is a counting process, with jump times {t,, | n = 1,..., N}
and h(x,t) is the jump amplitude for state x at time ¢. This yields the integral form

z(t) = z(0) + /0 h(z(s),s)dN(s).

A sensible definition for this integral w.r.t. the counting process is

N(t)

/0 h(x(s), s)AN(s) = 3 hla(ty ), 8,

n=1

where ¢, denotes the time just before the nth jump-time t,, of N (¢);i.e., t;, = limy,_ot, — h.
Generally, N (t) can be any counting process, however, most often we consider N () to be
a Poisson process, which makes Eq. (2.1.3) an SDE driven by a Poisson process, for more
see, e.g., [20, 21].

CONTINUOUS-TIME MARKOV CcHAINS. The Poisson counting process can be seen
as a simple example of a continuous-time Markov chain (CTMC). Generally, a CTMC
{z(t) | t € Rso}, with z(t) € X, is a Markov model on a discrete state space, e.g., ¥ C N
and in continuous time ¢ € R. Its evolution for a short time step 5 is characterized by

P(X(t+h)=x| X(t) =) = A, 2)h + o(h),

for all z # 2’ and limy,_, # = 0. Here, A : X x X — R is the rate function, where
A(2', z) denotes the rate of switching from state 2’ to state . We define the exit rate of a
state 7 € X as A(2) = 3_ ¢ () A, 2') and the diagonal element as A(z, z) == —A(z).
Note that, due to the memoryless property of the Markov process, the waiting times between
two jumps of the chain is exponentially distributed. The definition can also be extended
to time-dependent rate functions, which correspond to a time inhomogeneous CTMC, for

further details see [19].

2.2 BAYESIAN INFERENCE

For the purpose of inference, we will largely follow the Bayesian viewpoint. Under this
viewpoint, we express our estimates as beliefs over unknown parameters. Using Bayes’
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rule, we can condition on data and incorporate observed quantities to update our belief;
this is known as Bayesian inference, for more see, e.g., [22-24].

As illustration, consider for example a simple model, where the data D = {z,, | n =
1,..., N} is generated as

Ty ~plx,|0) n=1,... )N

This yields the likelihood
N

p(D]0) = [ (e | 6).

n=1
If we want now to estimate the unknown parameters , we can express our initial belief
using a prior distribution p(#). Using Bayes’ rule

p(D | 9)p(9)
p(D)

we find the posterior distribution p(f | D), which expresses our belief as a distribution
after observing the data, by conditioning on it.

p(6| D) = (2.2.4)

Frequently, a problem with Bayesian inference is to calculate the evidence

p(D) = / p(D | O)p(6) b, (2.2.5)

since we have to integrate over all possible parameters € ©O. If the space © is large,
Eq. (2.2.5) can not be solved numerically, which makes the exact posterior update in
Eq. (2.2.4) intractable for all but analytically solvable models. Unfortunately, the class of
models where we can compute the posterior distribution exactly is rather small. Therefore,
we often have to find an approximation to the posterior distribution, which is tractable.

2.2.1 Approximate Bayesian Inference

MARKOV CHAIN MONTE CARLO. One of the most used approximation methods for
Bayesian inference is Markov chain Monte Carlo (MCMC) [25]. We approximate the exact
posterior distribution by sampling from the true posterior distribution (Monte Carlo). For a
lot of sampling techniques, the intractable evidence is not necessary to compute.

One example for MCMC is the Metropolis-Hastings algorithm. In this algorithm, we sample
from the true distribution by performing a random walk in the parameter space, which can
be seen as a Markov chain. We reject and accept the resulting samples by calculating an
acceptance probability. This yields samples from the true posterior distribution, which can
be used to compute, e.g., an empirical estimate of the posterior distribution.

Another method, which we will exploit is Gibbs sampling, which is also a form of MCMC.
Gibbs sampling is performed by iterating between sampling from the full conditionals of
the joint distribution over model parameters and data. For further details on these and other
sampling-based methods, see, e.g., [22, 24, 25].
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VARIATIONAL INFERENCE. Another alternative scheme is to use a deterministic
approximation to the true posterior distribution. Within this line of methods, one popular
approach is variational inference (VI) [26]. In VI, we approximate the true posterior
distribution p(# | D) by an approximating distribution ¢(#). As the objective function,
we select in this thesis the Kullback—Leibler (KL) divergence between the variational
distribution and the intractable posterior distribution; i.e., we aim to solve the optimization
problem

minimize  KL(¢(6) || p(¢ | D)). (2.2.6)

This KL divergence computes to

KL(q(0) || p(6 | D)) = E[log q(0)] — E[log p(D, 0)] + log p(D),

where the expectations are carried out w.r.t. the variational distribution ¢(6). By Jensen’s
inequality, a lower bound on the marginal likelihood (evidence) can then be found as

L{g] = E[log p(D, 0)] — E[log q(0)] < log p(D).

We can use the evidence lower bound (ELBO) L|g| in an equivalent optimization problem to
Eq. (2.2.6); i.e.,

maximize L[g]. (2.2.7)
q

The problem in Eq. (2.2.7) is tractable compared to computing the KL divergence in
Eq. (2.2.6), since for calculating L|[g| it is not required to compute the intractable log-
evidence log p(D).

Note that, to arrive at a tractable solution for the optimization problem in Eq. (2.2.7), we
have to constrain the class of variational distributions further. In this thesis, we will mainly
use the approach of mean-field VI, where we assume independence between components
of the parameters 6.

2.3 DECISION-MAKING: OPTIMAL CONTROL AND REINFORCEMENT LEARNING

For decision-making, we will focus on optimization-based approaches. In control theory,
this is known as optimal control (OC) [13, 27]. In OC, we consider a model, which describes
the dynamical evolution of a state x(t) € X attime ¢ € T which can be altered by applying
an action or control signal {u(t) | t € T}, with u(t) € U to it. A decision-making
agent aims to maximize a reward function R : X x U — R over a time horizon. In this
framework, future effects on the state signal have to be incorporated by planning for the
whole action signal {u(t) | ¢ € 7 }. Mathematically, depending on whether we have a
continuous-time model ¢t € 7 C R or a discrete-time model ¢ € 7 C N, we can write
down the optimization problems, as

maximize J [ujg o] = E[Z WtR(ﬂU(t)’U(t))]

u oo
[0,00] t=0

subjectto x(t+ 1) ~ p(z(t + 1) | z(t),u(t)), Vte{0,1,...}

(2.3.8)

11
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for discrete-time problems and for continuous-time problems we have

maximize J [uj ] =E [/000 e_éR(x(t), u(t)) dt

%[0,00]

(2.3.9)
subjectto  x(t + h) ~ p(x(t+ h) | z(t),u(t)), Vte€ Rso,

where / denotes a small time step.

The OC problems in Eqgs. (2.3.8) and (2.3.9), which are given for an infinite time horizon,
are optimized over the action trajectory uj o = {u(t) | t € T}. This yields for the
discrete-time action trajectory uj ] = {u(0),u(1),...} and for the continuous-time
action trajectory uj ] = {u(t) | t € R>¢}. In Egs. (2.3.8) and (2.3.9) we introduce
a discount factor ~ for the discrete-time problem and an inverse exponential discount
rate 1/7 for the continuous-time problem to ensure convergence of the sum or integral,
respectively. Additionally, this models the intention that earlier rewards are more important
than future ones. As it can be harder to control the future uncertain system state, we value
the earlier rewards higher than the latter ones. Note that we choose both discounts as
further calculations will be simplified for respective problems. Generally, these discount
factors are equivalent as we can quickly transform one into another, as 1/7 = p = — log~.
For the evolution of the state x(t), we assume a Markovian dynamic for both OC problems.
This corresponds for the discrete-time problem in Eq. (2.3.8) to a discrete-time Markov
chain with a transition kernel, with either countable state space or uncountable state space,
in which case p(z(t + 1) | x(t),u(t)) is either a probability mass function (PMF) or a
probability density function (PDF), respectively. For the continuous-time case the model
p(z(t + h) | z(t),u(t)) corresponds to a dynamic evolution either given by a CTMC or by
an SDE for countable state spaces and uncountable state spaces, respectively. Throughout,
we will assume a stationary dynamical system for the state. Note that, in the case of a finite
horizon objective this assumption can be relaxed [27].

Traditionally, the case of countable state spaces is most prominently discussed in operations
research, queueing theory, and machine learning [28—-30]. Within this setting, the OC
problem is known as a Markov decision process (MDP). An MDP is defined as a tuple
(X,U,P, R), where X is the state space, U is the action space, P is the transition model
described by a probability measure and R is a reward function. Vice versa, decision-making
in uncountable state spaces has a long tradition in control theory [13, 31]. In this context, the
problem is known as optimal control (OC) or stochastic optimal control (SOC), depending
on the state’s deterministic or stochastic evolution, respectively.

There exist two main lines of reasoning on how to solve OC problems. One is Pontryagin’s
maximum principle [31, 32], which we will not discuss in this thesis, and the other one
is dynamic programming [27, 33]. We will use dynamic programming as it opposed
to Pontryagin’s maximum principle (i) yields the necessary and sufficient condition for
optimality and (i1) it can be more easily be applied to problems with a stochastic state
evolution.
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2.3.1 Dynamic Programming

Next, we find equations for the so-called value function. Given the value function, it is easy
to (1) find the optimal action trajectory “Fo,m]’ which maximizes Egs. (2.3.8) and (2.3.9),

respectively, and (ii) find the optimal objective value J* := J [“Fo,oo}] .
2.3.1.1 Discrete-Time Bellman Equations

First, we consider the case where the time ¢ is in a countable space; i.e.,t € T C N>o. We
aim to solve the OC problem

maximize J u[o Oo] [Z v R(x( )]

©[0,00]

subjectto x(t+ 1) ~ p(z(t + 1) | z(t),u(t)), Vte{0,1,...}.

We define the value function (or the negative cost to go) as

Ut,c0]

V(x) —maxE[Z’f "R(x(s), u(s))

z(t) = x] . (2.3.10)

Next, we compute for the value function

V(z) = maxE Z’ys’tR(x(s),u(s))

U[t,o0]

= max E | R(z(t),u(t)) + Y 7" ' R(z(s), u(s))

u
[t,00] i s—t+1

= r(n)ae}zg {R(z,u(t)) + vE[V(x(t+ 1)) | z(t) = =]}, (2.3.11)

where Eq. (2.3.11) is known as the principle of optimality. Solving this principle of
optimality is known as dynamic programming.

DISCRETE STATE SPACES. Letz(t+1)=2' € X and 2(t) = x € X be the states at
time ¢ + 1 and ¢, respectively. Additionally, we use u(t) = u € U as the action applied at
time ¢. If we assume a discrete state space, e.g., X C N, we find the Bellman equation

V(z) = magf{ x,u) + 7y Z "z, u) x')}, (2.3.12)

where p(z' | z,u) is a PMF.

13
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CONTINUOUS STATE SPACES. Similarly, for a continuous state space, e.g., ¥ C R and
a PDF p(2' | x, u), the Bellman equation reads

V(z) = max {R(x, )+ / p(a’ | )V (@) da:’} . (2.3.13)

uelU

2.3.1.2 Continuous-Time Bellman Equations

Next, we discuss how, similar to Egs. (2.3.12) and (2.3.13), we can find analog Bellman
equations for the continuous-time case. We start with the OC problem

maximize J [uj o] =E [/ e T R(x(t), u(t)) dt]
U[0,00] 0

subjectto  x(t + h) ~ p(x(t + h) | z(t),u(t)), Vte Rsy.

Analog to Eq. (2.3.10) we define the continuous-time value function as

V(z) = max E {/ e
Ut,o0] t

The principle of optimality can then be found by computing

T R(x(s),u(s)) ds

(t) = x] . (2.3.14)

V(z) = gﬁiE Mn e~ 7 R(x(s),u(s))ds | z(t) = x]
= Bﬁiﬁ?EUtHh e_ST_tR(x(s),u(s))dsnL/t: e 7 R(x(s),u(s))ds | z(t) = 4
— max {E [ /t T e R(a(s),uls)) ds | 2(t) = x} (23.15)

e FEV(a(t+h) | x(t) = x]} .

DISCRETE STATE SPACES. For the discrete state space case, e.g., X C N, we consider
that the dynamic evolution is given by a CTMC. Therefore, we assume the infinitesimal
definition

PX(t+h)=2"| X({t)=2z,ult) =u)=1(x =2") + Az, 2" | u)h + o(h).
Let x(t 4+ h) = 2’ and x(t) = x, then by starting with the principle of optimality we find
tth
V(z) = max {E{/ e 7 R(x(s),u(s))ds | z(t) = x}
Ult,t+h] ¢
Ve FE[V(z(t + h)) | a(t) = x]}

(t) = x}

t

— max {E{ /t T R(as), u(s)) ds

Ult,t+h

te v Z [1(x = 2") + Az, 2" | u)h + o(h)] V(a:’)} :

r'eX
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Next, we rearrange the terms and divide both sides by £, which yields

V(a) (1 _he¢> — max {% £ M+h =5 R(w(s), u(s)) ds

ter Z Az, 2" | u)V(2") + #} :

r'eX

w(t) = 4

Taking the limit lim,_. and rearranging the equation, we find the Bellman equation for the
continuous-time and discrete state space case as

V(z) = max {TR(x,u) +7 Z Az, 2" | u)V(x')} : (2.3.16)

uel
r'eX

CONTINUOUS STATE sPACES. For the continuous state space case, we consider a
dynamical system for the state z(t) = x(t) € X C R" given by the SDE

dx(t) = £(x(), u(t)) dt + G(x(t), u(t)) dw(t).

In order to compute the r.h.s. of Eq. (2.3.15), we compute V' (x(t + h)) using It6 calculus
as

V(x(t+h)) =V(x(t) + /t Wﬂx(s), u(s)) ds

th XIS
+/t wG(X(«S)» u(s))dw(s)  (2.3.17)

v Tl (We<x<s>,u<s>>@<x<s>, u(s)) ) ds.

2 0x2

Using the principle of optimality in Eq. (2.3.15) yields with Eq. (2.3.17)

Vi) = max {E[ /t T e Rix(s). uls)) ds

Ult,t+h

x(t) = x}
e EV(x(t+ h)) | x(t) =x] }

~ max {E[ /t T e Rix(s). uls)) ds x(t):x]

Ut t+h]
+eTE [V(x(t)) - /t %’:{(S))f(x(s), u(s)) ds

t+h x(s
+/t WG(X(S),U(S)) dw(s)

o[ e (P 69,06 (x5 s ) as

x(t):x”.

15
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By rearranging and dividing both sides by h, we have
_ -t tHho
V(x) <1 . > = ur[?ixh] {E {%/t e 7 R(x(s),u(s))ds | x(t) = x}
e*% t+h x(s t+h x(s
+—E {/t mf(x(s), u(s))ds + / MG(X(S), u(s)) dw(s)

. o ) Ox
N / Lu (me(s),u(s»@(x(s), u(s))) ds | =(t) = ] } |

Taking the limit lim;,_,, and let u(t) = u € U, we have the partial differential equation
(PDE)

G(x,u)G"(x,u) | .

(2.3.18)
Equation (2.3.18) is known as the stochastic Hamilton-Jacobi-Bellman (HJB) equation,

which has a long history within control theory; for further discussion, see, e.g., [13, 27, 31,
34].

B IV (x) T [0V (x)
V(x) = max {TR(X, u) + Ta—xf(x’ u) + 5 tr ( e

2.3.2 The Optimal Policy

For the presented OC problems in Eqs. (2.3.8) and (2.3.9) we have assumed that the
transition kernels of the Markov processes are independent of the time variable ¢. In this
case the value functions (Egs. (2.3.10) and (2.3.14)) are equal to the corresponding optimal
objective function, since the Bellman equations hold for every start point ¢ including
t = 0. Therefore, the optimal objective is given as J* = V(x), when starting at time
t = 0 with state 2(0) = . The optimal action signal «*(¢) at time ¢ for a state z(¢) = x is
therefore given as the maximizer of the r.h.s. of the Bellman equation, i.e., the maximizer of
Egs. (2.3.12), (2.3.13), (2.3.16) and (2.3.18). The optimal action u*(¢) can also be written
using a feedback policy pn: X — U, as u*(t) = p(z(t)).

DISCRETE-TIME OPTIMAL PoLICY For the discrete-time case, this policy is therefore

p(z) = arg max {R(m,u) + Z p(a’ | z, u)V(m’)} Ve e X

uel Tex

for the discrete state space case, and for the continuous state space case, we have

p(z) = arg max {R(:c,u) + ’y/p(:z:' | z,u)V (') da:'} Vo e X.

ueU

CONTINUOUS-TIME OPTIMAL POLICY In continuous time we have for the discrete
state space case

p(z) = arg max {TR(x,u) +7 Z Az, 2" | u)V(x’)} Ve e X

uel z'eX
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and for the continuous state space case, we have

11(x) = arg max {TR(X, W)+ 7 ) 4 %tr (w(}(x, WG (x, u)> } ,

weU ox ox2

forallx € X.

2.3.3  Numerical methods

Often, closed-form solutions for the Bellman equations are rare and hard to find. In the
case where all spaces are discrete, we can easily apply methods such as value iteration.
For value iteration, we parameterize the value function for every x € X" as a table. Next,
we iterate the value function by applying a one-step Bellman update. More precisely,
consider the discrete-time discrete state space case from Eq. (2.3.12), this gives for the
value function V{;)(x) at iteration step [ the update formula

J— /
V(l)(x)—rilgzj({ xT,u +'yz "o u) V- 1)(3:)},

r'eX

where the update has to be performed for every z € X, with an arbitrary initialization
Vioy(x), Vo € X. It can be shown, that under certain technical conditions this algorithm
converges to the solution of the Bellman equation [27]. Alternatively, one can use the
state-action value function, or Q-function Q) (z, u), which can be defined as the r.h.s. of the
Bellman equation, without the max-operator; i.e., in the discrete-time discrete state space
case
Q(z,u) = R(x,u +VZ "z, u)V () V(z,u) € X xU.
z’'eX

This definition implies by the Bellman equation that V(x) = max,ey Q(z,u). The
state-action value function can then be easily be used to obtain the optimal policy, as

pu(x) = argmax Q(z,u) Vo e X.

ueU

For the value iteration scheme this yields for the state-action value function the algorithm

Quy(x,u) = R(z,u +72p | z,u maXQ(l y(@', o),

r'eX

where the update has to be performed for every state and action; i.e., V(z,u) € X X U.
For further discussion on value iteration and other numerical schemes see, e.g., [27, 30].

For the continuous-state space case, OC problems tend to be even more challenging than
the discrete-state space case, as we can not anymore iterate over all possible states, as the
state space is continuous. However, a classic method is to map a problem to a closed-form
solution. A celebrated closed-form solution of the Bellman equation (HJB equation) is given
for problems with linear state dynamics and quadratic cost functions. This is known as
linear quadratic (LQ) control for deterministic problems and linear quadratic Gaussian (LQG)
control for stochastic problems, for more see, e.g., [13, 27, 31].
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2 BACKGROUND

Another alternative method for large state spaces, which we will exploit in this thesis, is to
parameterize the unknown value function and use learning to find the optimal parameters,
which fulfill the Bellman equation. In cases where the learning uses data points obtained
by simulating the system, this is known as reinforcement learning (RL) [30], which we
discuss next.

2.3.4 Reinforcement Learning

In reinforcement learning (RL) we solve the Bellman equations approximately, see, e.g., [30,
35]. Usually, the motivation is that we do not know the model of the system at hand; therefore,
we use samples obtained by simulating or running the system to learn an approximately
optimal policy. However, we can also use RL methods to solve planning problems, where
the model is given. RL methods are appealing because they use stochastic approximation to
solve the Bellman equation. This avoids the so-called curse of dimensionality [33], which
makes the Bellman equation hard to solve.

RL methods can be subdivided roughly into two subcategories: (i) model-free approaches
and (ii) model-based approaches. Model-free approaches solve the Bellman equations
without estimating a model, which is in the case of an MDP the transition kernel of
the Markov process. On the other hand, model-based approaches typically first try to
estimate the model and then solve the Bellman equation with the estimated model. Model-
free approaches are usually less computationally expensive compared to model-based
approaches and do not need a model. However, we will largely follow a model-based
approach in this thesis, as model-based RL is favorable in sample efficiency, and we will
show how to obtain scalable models for various settings.
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This chapter discusses how we can obtain a continuous-time model for event-based time-
series data common in many applications. This can include recording the time stamps of
events in social networks or computer networks. It is, for example, customary to model
requests to a server as a point process. Often these point processes are non-stationary, and
therefore the time between two events has a time-dependent distribution. Similar models
are, for example, Markov modulated Poisson processes, which are used, e.g., in queueing
theory [36]. However, classical models often do need substantial compute power to infer
the latent Markov chain. Another line of work focuses on modeling the point process using
a different more tractable latent stochastic process modulating the rate of the point process.
This can, for example, be a Gaussian process (GP) as, e.g., in [37]. However, often it is
sensible in many application scenarios to choose this process as piecewise constant as
the latent process models some switching behavior between different regimes. Given this
description, inference can be improved substantially as more data can be used to infer
statistics of the time-dependent waiting time distribution. Though, a challenge is how to
specify the number of regimes and the base distribution, which models the waiting time.
In the following chapter, we, therefore, present a method that solves these two challenges.
For this, we evaluate the presented method for synthetic data, which has similar behavior
to packages arriving in a network system, see e.g., [6, 8, 9]. Additionally, we present an
application that concerns the case of neuron-firings in the brain of mice, which have similar
non-stationary behavior. Here, we consider the switching of recurring neuronal states.
These neuronal states in the brain are essential for adapting to a changing environment, such
as switching between inattentive and vigilant states depending on the task demand [38].

We will focus on the inference of such systems, and a discussion on decision-making is
left for Chapter 6, where we will elaborate more on the general case of making decisions
under uncertainty for similar continuous-time piecewise-constant processes. This chapter
extends and contains parts and material from the published work [4].
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(a) Piecewise constant process modulating the rate. (b) Histogram of the holding times in state x3.

FIGURE 3.1: A latent piecewise-constant rate function modulating the holding times. (a) A step
rate with four change points ¢1, ..., %4 up to time 7'. The rate takes three values (states, x1, X2, x3).
(b) An example histogram for the holding times within state x3, (i.e., in [t3, t4]).

Background

In the statistical analysis of series of events, the non-stationarity of point processes is a
persistent problem. For this, consider the data for the point process described by the set

D={y,|n=1,...,N},

with IV data points y,, € R>o. These data points can be interpreted as the sojourn times
of a counting process N (t) = ZnN=1 1(t, < t), where t,, denote the event times; i.e.,
Yp = tp+1 —ty, witht € R>(. A standard assumption is to model this counting processes as
a Poisson counting process N (t) ~ PP(N(t) | A), with rate \. However, this assumption
can be limiting in two ways (i) it does not capture non-stationary behavior, as the rate
A is a constant and (ii) it implicitly has an exponential distributional assumption on the
waiting times; i.e., ¥, ~ Exp(y, | A). This is emphasized in scenarios such as the one
depicted in Fig. 3.1. The non-stationary behavior is also very challenging, as typical
analysis methods assume constant parameters and may lead to erroneous conclusions
when applied to non-stationary data [39, 40]. Therefore, one tries to identify changes in
the firing rate (change points) to split up the spike trains into sections of approximately
constant rate and apply the analyses in the individual sections separately. As this may
reduce the sample size, it would be helpful if sections of similar rate could be joined in the
analysis, see Fig. 3.1. Also, change points may indicate exciting aspects of the internal state.
Secondly, assuming exponentially distributed waiting times can lead to wrong statistical
conclusions. Therefore, we follow a different route and assume that the data points are
gamma distributed, i.e., y,, ~ Gam(y, | ax, b,), and have the shape parameter a,, and rate
parameter b,, reoccurring.

To this end, we, therefore, present a model which deals with the two discussed limitations.
We build upon the work of [41] and present a modeling framework for point processes
with gamma-distributed increments, where a piecewise constant latent process controls the
shape and scale of the distribution. By exploiting Bayesian non-parametrics, we utilize a
Chinese restaurant process (CRP) [42] as a prior for the discrete number of states of the
latent process. The inference is carried out using a tractable MCMC approach. This leads to
a new model and inference method, which can be used in, for example, empirical spike
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train recordings, which inherently possess non-stationary and non-Poissonian behavior.

The accompanying code is publicly available via Git.!

Related Work

In the related discipline of change point detection, many methods have been proposed that
are often based on moving or cumulative sums, Bayesian methods, or information criteria,
for a review see, e.g., [43]. Recently, a method that has been designed specifically for
the temporal properties and peculiarities of neuronal spiking patterns has been proposed,
called multiple filter test (MFT) [44, 45]. Often, these methods allow the rate to follow an
arbitrary step function. However, this assumption does not account for the mechanism of
recurring states of firing rates between which, e.g., neurons in the brain may switch over
time.

Methods assuming Markovian dynamics have been investigated for a fixed number of states.

Many such methods inherently assume exponential distributed holding times. However,
in many application scenarios, such as network modeling or in the case of neurons, this
assumption does not hold. Consider, for example, the case of neuron firing; here, the
neurons possess a stochastic refractory period, which prohibits them from firing in arbitrary
short intervals. Therefore, some methods use more general assumptions on the distribution
of holding times, such as the gamma distribution [46, 47]. These methods often require
that the number of discrete states is defined before the analysis. However, this knowledge
is not available in many scenarios. Therefore, we generalize the work in [41], which
has a non-parametric assumption on the number of states using a CRP with exponentially
distributed holding times, to gamma-distributed holding times, allowing the analysis of
applications such as neuronal firing patterns.

3.1 A GENERATIVE MODEL FOR POINT PROCESSES

THE LIKELIHOOD. In this chapter, we assume the data D to be a realization of an
inhomogeneous gamma process, with time-dependent shape parameter a(t) € R, and rate
parameter b(t) € Rs(. Additionally, we require that the latent process x(t) := [a(t), b(t)]"
is a piecewise constant process in R?. Hence, we have equal jump times in both a(t) and
b(t). We define its path-wise realization as x| 7] = {x(t) | t € [0,T]}. As the latent
process x(t) in the interval [0, 7] is piecewise constant, we can assume without loss of
generality that it jumps c-times in the interval. Therefore, it can be fully described by
its ¢ + 1 holding times and the corresponding values during the intervals. Hence, the
parameters of the gamma process can be written as a matrix @ = [0;,...,0,,]", with m
distinct states, m < ¢ + 1 and the parameter 6; = [a;, b;]" of astate i = 1, ..., m contains

1 https://github.com/bastianalt/non_param_bayes_change_points
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the corresponding shape parameter a; and rate parameter b;. This yields the likelihood of
the data D for a given path x|y 77 as

p(D | xpm) = [ [ [Gam(yn | @i, b)) =" 3.1.1)

i=1n=1
Here, we use the assignment variables z = [z, ... ,ZN]T, where the variable z, €
{1,...,m} assigns the nth data samples y,, to its corresponding state z,. Note that for a

given path x|y 1) the assignment variables z are entirely determined. For more information,
see [22] where similar formulations are used, e.g., for Gaussian mixture models. The
corresponding log-likelihood to Eq. (3.1.1) is therefore

log p(D | x0,1)) = Z ni(—logI'(a;) + a;log b;) + (a; — 1)s; — b;5;,

=1

where I'(-) is the gamma function. Here, we define the number of times state i € {1,...,m}
is chosen for all data points as

and the sufficient statistics [23] of the corresponding gamma distributions are given as

N

§; = Z 1(z, = 1) logy,
n=1
N

gz = Z ﬂ(zn - Z)yn
n=1

THE PRIOR DISTRIBUTION.  Next, we describe the prior distribution of the latent process
x(t). Here, we use a prior as presented in [41] and shortly recap the proposed approach.

For the jump times of the latent process x(¢) we leverage a Poisson process, such that
the ¢ + 1 holding times T = [7q, ..., 7.41] " between two jumps of the piecewise constant
process are exponentially distributed with rate f; i.e.,

c+1

p(r]f)= HExp 7 | f). (3.1.2)

j=1

This yields the explicit expression p(T | f) = f¢"le~/T, as the waiting times sum up to
the length of the interval; i.e., Z J_ri 7, =T.

For the assignment of the ¢ + 1 segments of the latent process x(t) to the parameters, we
use as a prior distribution a Chinese restaurant process (CRP) [42]. Here, the assignment
parameters k1, ko, . .. follow the CRP with concentration parameter «; i.e.,

plk; | ki1, ... ki) = CRP(k; | o, kj1,. .. ky).
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n=1...,N

- J

FIGURE 3.2: PGM for the generative point process model presented in Section 3.1.

The joint distribution for k = [k, ..., k1] " € {1,...,m}°"! can hence be derived as

m (g, —1)!
pic| o) = o AL B2
Hj:1(04 +j-1)
where U, = Zjﬁ 1(k; = i) is the number of times state ¢ has been chosen for all
segments.

Therefore, we specify the prior distribution of a path x| 77 given the jump rate f, the
concentration parameter « and a base distribution p(6;) for the prior of the parameters as

p(X[O,T] | f; Oé) _ fc+1€—fTamH;icl_gz(ei)(\Ij.i - ]')'
Hj:l (a+j—1)

Note that similar to the variable z,, which assigns the data y,, to the corresponding

parameter, the variables k; assigns the segments of the latent process to its parameter.

Hence, the variables k are entirely determined given a realization of a path xjo 7).

A PGM can be found in Fig. 3.2, where we instantiated the prior distribution over the ith
parameter 8; as p(0;) = Gam(a; | Va4, xa) Gam(b; | v, Xx3) and the jump rate has a prior
p(f) = Gam(f | vy, xr)-
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3.2 POSTERIOR INFERENCE WITH MARKOV CHAIN MONTE CARLO

Having specified the generative model in Section 3.1, we are now able to devise a posterior
inference scheme for a given data set D. As we deal with a gamma distribution for the
likelihood, we extend the work of [41] and present a modified version of their MCMC
sampler. For an overview on MCMC, see [25]. In order to sample from the posterior
of a path p(x 7] | D) given the data D we use a Metropolis-within-Gibbs sampler.
The Metropolis-Hastings sampler generates a new sample path xjo 77 conditioned on the
parameters @ and f. The Gibbs step then updates the parameters € and f given the path
X[o,7]- This is done by specifying an additional hierarchy to estimate the rate f using a
prior distribution p(f). Note that the approach presented here, compared to [41], faces
several technical obstacles, which arise in the case of the inhomogeneous gamma processes
model. Next, we present how these can be tackled.

3.2.1 Sampler Initialization

First, for the initialization of the sampler, we draw a path from the prior X[((()),)T] ~ p(X[,1)-

This is done by sampling a rate f from the prior

f~n(f)

Conditioned on f we create ¢ + 1 holding times in the interval [0, 7' by sampling

m; ~Exp(r; | ), j=1,....¢
such that 37| 7; < T'. We set the last holding time to 7.1 =T — > _7_, 7;.

Next, for all segments, we sample an assignment parameter from the CRP
]{ZjNCRPU{?j’Oé,]{)jfl,...,kl), jzl,,C+1
Here, whenever we introduce a new state ¢, we sample a new parameter set from the prior

0; ~ p(0;).

Hence, this creates the full description of the initial path XES?T]. The corresponding

pseudo-code is provided in Fig. 3.3.

3.2.2  Updating the Path: Metropolis-Hastings Step

In this step of the sampler, we sample a new path xféJrTl}) by using a Metropolis-Hastings

random walk. We propose a new path X[0.7] by modifying the old path xfé)ﬂ 2 This

0

modification of X0 1

| is done by either: (i) adding a jump, (ii) shifting a jump time,

2 All parameters in relation to the proposal are denoted using *.
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input :7": length of time interval

f ~ p(f): rate prior sample

a: concentration parameter

p(0;) = p(a;, b;): parameter prior
output :xjy 7] ~ p(X[o,r)): prior sample

// Sample holding times
Initialize time ¢ = 0, initialize counter 7 = 1
while ¢t < T do
Sample holding time 7; ~ Exp(7; | f)
Update time ¢ < t + 7;, update counter j <— 7 + 1
end
Set number of intervals ¢ = j — 1.
Set last holding time 7.1 =7 — > 7_, 7;.

// Sample assignments and parameters
Initialize counter j = 1, initialize number of states m = 0
while ) < c+ 1do
Sample assignment k; ~ CRP(k; | o, kj_1,..., k1)
if k; is new then
Sample parameter 0.1 ~ p(Q1)
Update number of states m = m + 1
end
Jj=Jj+1
end
return Construct path X r) using { T: holding times, 0: parameters, k: assignments

}

FIGURE 3.3: Pseudo-Code for sampling from the Prior.

(ii1)) removing a jump, (iv) switching the assignment of a segment to another state,
(v) joining two states or (vi) dividing a state into two states. This type of MCMC scheme is
known as reversible-jump MCMC; for more information, see [41, 48].

The modification of an old path XEQT] to the new path proposal XTO,T] is done by first

choosing one of the proposal actions at random.

ADDING A JUMP. When choosing the add option, we add a jump at time ¢* to the old
path. We choose the jump time uniformly at random, ¢* ~ Uniform(¢* | 0,7"). We choose
to either create a new parameter 8™ with probability ¢, or reuse an old parameter with
probability 1 — g,.

SHIFTING A JUMP TIME. A jump is shifted by drawing the shifted jump time from a
truncated Gaussian distribution, such that the shifted jump time is still between the two
neighboring jumps.
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REMOVING A JUMP. When the remove action is chosen, we draw one jump uniformly at
random and remove it.

SWITCHING THE ASSIGNMENT.  We switch the assignment of a segment j from an old
state k; to a new state k7, by either creating a new parameter 6* with probability ¢, or
choosing an old one with probability ¢, — 1.

JOINING TWO STATES. We join two states by selecting two states at random and then
assigning a new parameter to this new state.

DIVIDING A STATE. For dividing a state into two states, we randomly select a state from
the set of all states, which have at least two segments assigned to them. Then we draw two
new states and assign the segments to one of the two new states.

3.2.2.1 Proposal Parameter Sampler

Whenever a new parameter is created by either adding a jump, switching a segment
assignment, or in the process of joining or dividing states, we draw a new parameter for the
proposal path xf‘oﬂ. The Metropolis-Hastings algorithm, in general, achieves sampling
from the posterior distribution by performing any completely random walk. Nevertheless,
if the new parameter is drawn conditioned on the data, the mixing of the Markov Chain is
expected to be significantly better in practice. For this reason, it is desirable to draw the
new proposal parameter for the state m + 1 from the posterior p(8;,, | D, XFO,T]) given
the proposal path and the data. Hence, the likelihood for the data given the new proposal
parameter is

N

p(D | XTO,T}? 0 1) = H[Gam(yn | Qi1 bjn+1>]]l(2;;:m+1)-

n=1

Note that for this likelihood, a closed-form conjugate prior cannot be found, see [49]. This
is problematic as we have to calculate the acceptance probability of the proposal path. For
this, it is needed to have an expression for density of the posterior at the new parameter
value 6, . For this reason we add a new value 6, by fixing the corresponding shape
parameter a;, ., = 1;ie., 0, = [1,b},.,]". This lets the likelihood collapse to a product
of exponential distributions as

N
p(D | Xfo1y, 05y1) = H (Gam(y, | 1,b7,,,)] G=m+D

N
= H Exp(yn | byyyr)] "7,

Now, a conjugate prior can be found to this likelihood and hence provides a closed-
form posterior for the rate parameter 0}, , ;. Hence, we use a conjugate gamma prior as
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*
m

p(br, 1) = Gam(by, . | v, X») With hyper-parameters v, and x;. The parameter b
therefore be sampled from the resulting posterior distribution

41 can

P(briy | Daxfo,T]) x p(D | X>[k0,Tb 6,,1)P(by 1) o Gam(by, oy | Vo + gy Xo + Spin)-

(3.2.3)
Here, the sufficient statistics are calculated using the assignments 2 to the new state m + 1
of the proposal path as

N
Wi = Uz =m+1)
n=1

N
S = S L = m+ Ly,
n=1

This new proposal parameter 0, , = [a%, . b}, ,]" has always a shape parameter of
ay, ., = 1. However, a;, ., is only needed for the proposal of a new path, and the parameters
are corrected in the Gibbs-step of the sampler.

Another benefit of the proposed closed-form expression is that if we choose to reuse an
existing value, for example, in the process of adding a jump, we can sample an old parameter
0 with probability proportional to the posterior in Eq. (3.2.3). Here, the posterior density
p(b; | D,xjyq) is evaluated at the rate parameter b}, which is calculated by moment
matching the parameters of the gamma distribution to the parameters of the exponential
distribution; i.e., b} = b;/a;.

Finally, we can calculate the acceptance probability of the Metropolis-Hastings step as

pM = min(1, A, ®,Q,), (3.2.4)
DIx; x5 Ne' .
with likelihood ratio A, = %, prior ratio ¢, = % and proposal ratio

a(X[0,771%7y 11)
Q:p _ [0,771%[0,17]

= —— , which dependents on the proposal action that has been chosen.
Q(X[O7T] ‘X[O,T])

3.2.3 Updating the Parameters: Gibbs Step

In the Gibbs step, we sample the jump rate f and the parameters 0 from the corresponding
distribution conditioned on the path x[o 7).

jump RATE. For the full conditional of the jump rate parameter f we use a conjugate
prior p(f) = Gam(f | v, x) to the likelihood Eq. (3.1.2), with hyper-parameters v and
X - This yields the full conditional

p(f|7T)oxp(r| f)p(f) < Gam(f | vy +c+1,x;+71).

27
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PARAMETERS. The full conditional of the parameters 0 given a path can be calculated
by noting that it factorizes as

m

p(0 | DaX[O,T}) = Hp(ei | DaX[O,T})-

=1
Hence, we can use for the likelihood term of the 7th state, i.e.,

N

p(D | XJ0,17]> 0;) = H [Gam(yy, | a;, bz‘)]ﬂ(%:i) )

n=1

a gamma prior for a; and b;; i.e.,
p<02> = Gam(a’i ‘ V(mXa) Gam(bl ‘ Vp, Xb>7

with the hyper-parameters v/,, ., » and ;. Therefore, we compute the full conditional of
each parameter 8; up to a normalizing constant using

p(0; | D,x)0.11) X p(D | X[0,17,0:)p(6;). (3.2.5)

Since the normalizing constant of Eq. (3.2.5) cannot be computed analytically, as discussed
in [49], we use an additional Metropolis sampler for Eq. (3.2.5).

The Metropolis sampler is initialized by choosing a starting point close to the mode of
Eq. (3.2.5) with 0 = [a(® p]T, where we choose a(® = 1 and b = arg max;, p(b |
D, xj0,17 a)). In practice, this ensures a faster convergence of the Markov chain. We
perform the random walk in the Metropolis algorithm by drawing r,, 7, ~ N(r | 0,03)
and then setting a* = exp(r, + loga) and b* = exp(r, + log b), where o3 is a parameter
of the sampler. This yields the proposal distribution for §* = [a*, b*]T as

q(0* | 8) = Lognorm(a* | log a, o3) Lognorm(b* | log b, o3).
Hence, the acceptance probability of a proposal is
pg/IH = min (1, qu)gQg) s

- _ P(Dlxpo,1},6") _ p(6) _ a(6]6*)
with A@ = m, (I)g = pp(—e) and Qg = Z(e*w).

3.2.4 Path Point Estimate

Here, we note that it is possible to find a point estimate. We can achieve this by calculating
the maximum a posteriori (MAP) estimate over all possible paths

X[o,r) = argmax p(Xp,r | D). (3.2.6)

*[0,T]

An approximate solution to the intractable optimization problem in Eq. (3.2.6) can be
computed by simulated annealing. The reader is referred to, e.g., [25]. For simulated
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annealing, we decrease the acceptance probability of the Metropolis-Hastings sampler for
Xo,7], by introducing an inverse cooling schedule 3; which increases over the number of
iteration steps [ of the sampler, with lim, ., 5; — co. The annealed acceptance probability
is found by modifying Eq. (3.2.4) to

pMI(3) = min(1, [A,P,]" Q).

Using this acceptance probability in the sampler yields a Markov Chain, where its stationary
state approximates the solution of Eq. (3.2.6).

3.3 EVALUATION OF THE METHOD: SIMULATIONS AND REAL-WORLD EXPERI-
MENTS

Next, we present the evaluation of the proposed inference method. The method is tested
using the modeling assumption as well as a real-data experiment. For the experiment
under the modeling assumption, we explicitly evaluate two simulation scenarios. For the
real-data experiment, we consider a data set recorded from neuronal firing of mice. All
hyper-parameters are set to yield vague prior distributions, and we use o = 3 for the CRP
as proposed in [41]. For annealing, we use an inverse temperature grid from 10° to 10'° on
the logarithmic scale. We perform 10° iterations for burn-in and in total sample 10° paths.
We conservatively discard 99% samples to ensure the remaining samples are independent.
Consequently, we use 10* samples for the analysis of the posterior.

3.3.1 Simulation Results

We draw two simulation data sets assuming the model presented in Section 3.1 by sampling
two ground truth paths from the prior, see Section 3.2.1. Further, the observation data D is
sampled using the ground truth paths. Note that this can be seen as a synthetic simulator
for network systems, where the holding times are the times between customers in a queue,
see, e.g., [6]. The inference algorithm then uses the simulated observation data.

Figures 3.4 and 3.5 show the results. In the first experiment, displayed in Fig. 3.4a, we can
observe that the posterior distribution nicely infers the ground-truth data. Additionally, it
gives an uncertainty estimate over the parameters. Since we use a non-parametric method,
we can also plot the distribution over the number of latent states, which are represented in
the different rate regimes of the observed data. In Fig. 3.4b we display the corresponding
histogram for the posterior samples. We also use the same experiment to compare our
gamma process assumption against the Poisson process assumption as presented in [41].
In Fig. 3.5a we can see that the Poisson approach tracks the ground truth, but the posterior
mean is not as sharp as in the gamma process case, and the estimate has a higher posterior
uncertainty.

As a second experiment we compare methods for point estimates as displayed in Fig. 3.5b.
Here, we compare the point estimate using simulated annealing and the MFT method
from [44]. Both methods perform similarly and reasonably well. However, our method
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(a) Posterior inference for the shape path a(¢) (upper  (b) Posterior inference for the total number of states.
graph) and scale path 1/b(t) (lower graph).

FIGURE 3.4: Posterior inference results under the model assumption. The ground truth trajectory
(dashed red lines) in (a) is latent. The observations are given as a point process depicted as the small
dashes in the plot. Here, the posterior inference scheme faithfully recovers the path displayed by the
posterior distribution over shape and scale parameters. The black lines denote posterior mean, and
shaded areas are the quantiles between qg o5 and gg.95. In (b) a corresponding histogram for the
posterior samples is displayed, which depicts the posterior distribution over the number of states.

focuses explicitly on the estimation of recurring discrete states, which is helpful in cases
where reoccurring states have an inherent meaning, such as physiologically relevant
neuronal states or regimes of burstiness as, e.g., presented in [6].

3.3.2 Real Data Results

The results for the experimental data are shown in Figs. 3.6 and 3.7.

First, we notice in Fig. 3.6a that the shape parameter during periods with high rates is
somewhat larger than one, which indicates that a gamma process assumption is more
reasonable than the Poisson process assumption. Additionally, we see multiple possible
explanations for the number of states, as depicted in Fig. 3.6b. However, the point estimate
using annealing estimates just three different states of the process. Note that the MAP
estimate is over the joint posterior distribution, which differs from the mode of the marginal
posterior as depicted in the histogram in Fig. 3.6b. In Fig. 3.7b, we see a comparison
between the MAP estimate and the posterior distribution over the time-dependent rate. Here,
we observe that, as it is intuitive, the mean rate has higher uncertainty during rate changes
than during periods with a rather constant rate. Additionally, the approximate MAP estimate
is close to the posterior mean.

34 SUMMARY

In this chapter, we developed a model for continuous-time point processes with a non-
stationary rate. For this, we used an inhomogeneous gamma process model with a CRP on
the state assignment, which copes with the unknown number of states of the inhomogeneous
gamma process. For inference, we used an MCMC scheme by building on the work of [41].
Here, we gave an extension using a Metropolis-within-Gibbs sampler to deal with the case
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FIGURE 3.5: Comparison of the proposed inference scheme. The observations are given as a point
process depicted as the small dashes in the plots. Black lines denote posterior mean, and shaded

areas are the quantiles between gg g5 and gg.95. In (a) we compare two Bayesian inference schemes.

The upper graph displays the presented scheme with a time-dependent posterior rate corresponding
to the gamma distribution assumption; i.e., b(t)/a(t). The lower Graph uses a reference method
under a Poisson assumption with a time-dependent rate. The resulting estimation method tracks the
ground truth sharper in the gamma case compared to the Poisson case. In (b) we compare the point
estimation method using simulated annealing in the upper graph against the MFT method in the
lower graph. The resulting estimation is similar, though the MFT method fails to recover the task of
estimating reoccurring latent states, which generate the data.

of gamma-distributed holding times. For sampling a new parameter in the proposal of the
Metropolis-Hastings random walk, we compensate the lack of a closed-form posterior for

gamma likelihoods by fixing the shape parameter; this is then corrected in the Gibbs step.

An additional Metropolis sampler, therefore, draws parameters of the posterior. We present
a method to find an approximate solution for the MAP estimate of a path using annealing,
which delivers an easily interpretable point estimate.

This Bayesian model is of use in areas such as network modeling as well as for neuronal
spike trains, which often violate the Poisson assumption as shown in Section 3.3.2. In the
case of neuronal spike trains, our results suggest that the analysis of discrete states can be
particularly interesting for identifying hidden physiologically relevant neuronal states. For
decision-making in these types of continuous-time discrete state space problems, a solution
method is discussed in Chapter 6.
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FIGURE 3.6: Posterior inference results for real data of the neuronal activity in mice. The
observations corresponding to firing neurons are given as a point process depicted in (a) as the small
dashes in the plot. The posterior inference scheme estimates the means (black lines) of the shape
path a(t) and scale path 1/b(t) parameters of the corresponding gamma distribution, the shaded
areas are the quantiles between gg g5 and qg.g5. In (b) the corresponding histogram for the posterior
samples over the number of latent states under the CRP prior is displayed. This information helps
interpret regimes of brain activity, which switch over time.
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graph).

(b) Posterior inference for the rate path b(t)/a(t)
(upper graph) and point estimate of the rate path
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FIGURE 3.7: Point estimates and comparison for real data of the neuronal activity in mice. The
observations denoted as black dashes in (a) are used in the simulated annealing procedure to estimate
a point estimate for the shape path a(¢) and scale path 1/b(¢). A comparison of the Bayesian
estimate and the point estimate using simulated annealing is shown in (b). Here, we compare the
posterior distribution for the rate b(t)/a(t) with posterior mean (black lines) and Bayesian credible
interval of quantiles between qg o5 and gg.g5 (shaded areas) to the MAP point estimate for the rate
using simulated annealing.
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This chapter shows how Bayesian models, similar to the one developed in the previous
chapter, can be used in decision-making. In particular, we present a Bayesian model
designed for the use of adaptive bitrate (ABR) video-streaming. In ABR video-streaming, the
streaming client has to choose among a set of bitrates to achieve a high-quality experience
for the user watching a video. This can be seen as a prime example for making decisions
under uncertainty. One significant difficulty is that decisions have to be typically made
in order of milliseconds. This poses a problem for solving the underlying OC exactly.
We, therefore, develop a method using a bandit strategy, which is a form of RL. These
types of heuristics are often faster than comparably more sophisticated model-based RL
algorithms (see Chapter 5), which solve the underlying OC problem with fewer data points,
but typically require a lot more computing power and are therefore often hard to use in

time-critical applications. This chapter extends and contains parts and material from the
published works [3, 50].

From an application standpoint, quality adaptation algorithms for ABR streaming face
an inherent problem when determining sustainable video quality. In this setting, they
may either rely on the information gathered at the client vantage point or on the server
and network assistance. The adaptation problem becomes particularly hard in future
internet settings such as named data networking (NDN), where the notion of a network
connection does not exist. The fundamental problem here is to determine how valuable
either information is for the adaptation decision. Hence, we closely look in this chapter at
the problem of using context information available to the client for video quality adaptation.
Note that the problem description is agnostic to the underlying networking paradigm,
making it an excellent fit for traditional internet protocol (IP)-based video streaming as well
as NDN. In essence, we consider the fundamental problem of sequential decision-making
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------ High-dimensional  |_____
Network packet-level context '
assistance
Client-side < A u
information =
Sparsity

“..enforcing .+

Bitrate

L
Segment number

FIGURE 4.1: A standard client-based and/or network-assisted ABR streaming model (black) with
the proposed contextual-based adaptation (CBA) (dotted). In CBA, high-dimensional context features
from the network and client-side information undergo sparsity enforcement to shrink the impact of
unimportant features.

under uncertainty where the client uses network context information received with every
fetched video segment. In Fig. 4.1 we show a sketch where the client adaptation algorithm
decides on the quality of the next segment based on a high-dimensional network context. We
model the client’s decision on a video segment quality as a contextual multi-armed bandit
problem aiming to optimize an objective quality of experience (QoE) metric that comprises
(1) the average video quality bitrate, (i1) the quality degradation, and (iii) the video stalling.
For this, we use a sparse Bayesian model, which allows taking high-dimensional streaming
context information, including client-measured variables and network assistance, for finding
online the most valuable information for the quality adaptation. For the decision-making,
we opt for the ABR quality adaptation for QoE maximization, which we formalize as a
decision problem under uncertainty. Since the required approximate Bayesian inference can
be computationally expensive, we develop a new fast inference scheme to support online
video adaptation and contribute a sparse Bayesian contextual bandit algorithm denoted
contextual-based adaptation (CBA). We perform an extensive evaluation of our adaptation
algorithm in the particularly challenging setting of NDN, where we use an emulation
testbed to demonstrate the efficacy of CBA compared to state-of-the-art algorithms. The
accompanying code is publicly available via Git.!

Background

Video streaming services such as Netflix, YouTube, and Twitch, which constitute an
overwhelming share of current internet traffic, use ABR streaming algorithms that try to
find the most suitable video quality representation given the client’s networking conditions.
Current architectures use dynamic adaptive streaming over HTTP (DASH) in conjunction

1 https://github.com/bastianalt/cba-pipeline-public
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with client-driven algorithms to adjust the quality bitrate of each video segment based on
various signals, such as measured throughput, buffer filling, and derivatives thereof. In
contrast, new architectures such as server and network assisted DASH (SAND) [51] introduce
network-assisted streaming via DASH-enabled network elements that guide the client, such
as accurate throughput measurements and source recommendations. Given the various
adaptation algorithms that exist in addition to client-side and network-assisted information,
a fundamental question arises on the importance of this context information for the QoE of
the video stream.

The problem of video quality adaptation is aggravated in future internet architectures such
as NDN. In NDN, content is requested by name rather than location, and each node within
the network will either return the requested content or forward the request. Routers are
equipped with caches to hold frequently requested content, thereby reducing the round trip
time (RTT) of the request while simultaneously saving other network links from redundant
content requests. Several attempts to make DASH-style streaming possible over NDN exist,
e.g., [52], for which the critical difficulty is that traditional algorithms rarely play to the
strengths of NDN where the notion of a connection does not exist. Throughput, for example,
is not a trivial signal in NDN as data may not be coming from the same source.

One major challenge with incorporating high-dimensional network context information
in video quality adaptation is extracting the most relevant information to the sought QoE
metric. We note that the interactions within this context space become complicated given
the NDN architecture, where the network topology and cache states influence the streaming
session. Our approach introduces a sparse Bayesian contextual bandit algorithm that is
fast enough to run online during video playback. The rationale behind the sparsity is that
the given information, including network-assisted and client-side measured signals such
as buffer filling and throughput, constitutes a high-dimensional context that is difficult to
model in detail. Our intuition is that, depending on the client’s network context, only a few
input variables significantly impact on QoE.

Related Work

In the following, we split the state-of-the-art related work into two categories; i.e., work on
ABR quality adaptation, especially in NDN, and related work on contextual bandit algorithms
with high-dimensional covariates.

Significant amounts of research have been given to finding streaming architectures capable
of satisfying high bitrate and minimal rebuffering requirements at scale. Content delivery
network (CDN) brokers such as Conviva?® allow content producers to use multiple CDNs
easily and are becoming crucial to meet user demand [53]. Furthermore, the use of network
assistance in CDNs has received significant attention recently as a method of directly
providing network details to DASH players. SAND [51] is an international organization for
standardization (ISO) standard that permits DASH-enabled in-network entities to communi-
cate with clients and offer them quality of service (QoS) information. SDNDASH [54] is
another such architecture aiming to maintain QoE stability across clients, as clients without

2 https://www.conviva.com
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network assistance information are prone to misjudge current network conditions, causing
QoE to oscillate. Beyond hypertext transfer protocol (HTTP), the capabilities of promising
new network paradigms such as NDN pose challenges to video streaming. The authors
of [52] compare three state-of-the-art DASH adaptation algorithms over NDN and TCP/IP,
finding NDN performance to notably exceed that of TCP/IP given certain network conditions.
New adaptation algorithms specific to NDN have also been proposed, such as NDNLive [55],
which uses a simple RTT mechanism to stream live content with minimal rebuffering.

In this chapter, we model the video quality adaptation problem as a contextual bandit
problem assuming a linear parametrization, which has successfully been used, e.g., for ad
placement [56]. Another promising approach is based on cost-sensitive classification in the
bandit setting [57]. Recently, [58] has discussed the use of VI in the bandit setting; wherein
Thompson sampling is considered to cope with the exploration-exploitation trade-off. By
assuming a high-dimensional linear parametrization, we make use of sparse estimation
techniques. High-dimensional information arises in video streaming due to the network
context. Sparsity has been an essential topic in statistical modeling, and both frequentist and
Bayesian approaches have been discussed numerously, e.g., for some prior work discussing
robust sparse frequentist estimators see [10, 11]. For computing sparse Bayesian estimates,
traditionally double exponential priors which correspond to ¢;-regularization have been
used. However, these priors often fail due to limited flexibility in their shrinkage behavior.
Other approaches that induce sparsity include ’spike-and-slab’ priors [59] and continuous
shrinkage priors. Between these two, continuous shrinkage priors have the benefit of
often being computationally faster [60]. For our approach, we use the three parameter
beta normal (TPBN) continuous shrinkage prior introduced by [60], which generalizes
diverse shrinkage priors, e.g., the horseshoe prior [61], the Strawderman-Berger prior, the
normal-exponential-gamma prior, and the normal-gamma prior. Next, we present the entire
model using this sparsity prior.

4.1 A GENERATIVE MODEL FOR DECISION-MAKING WITH SPARSE COVARIATES

We consider a discrete-time setting where at each time step ¢ € N an agent can take a
decision u(t) € U. Here, the agent can choose among a finite set of K possible actions;
ie,U ={u” |i=1,...,K}. The decisions can be made based on a set of context
variables x(t) := {x(t,u) | u € U}, where the different context variables x (¢, u) € R™ at
time ¢ are given for each action. The agent decides on an action u(¢) and observes for this
a noisy reward signal r(¢) € R, which is statistically dependent on the chosen action and
the corresponding context as

r(t) ~ p(r(t) | x(t,u(t)), u(t)).
The goal of the decision-making agent is to get a high cumulative reward over a finite but

typically unknown horizon T i.e., t € {1,...,T}. Therefore, formally the agent tries to
solve the problem

maximize J [u[l,T]] = Z E[r(t)]

U, 1

subject to () ~ p(r(t) | x(t,u(t)), u(t)),



4.1 A GENERATIVE MODEL FOR DECISION-MAKING WITH SPARSE COVARIATES

where up 7 = {u(l),...,u(T)} is the action trajectory. What makes this problem
especially hard is that the agent does not know how the different actions influence
the reward; i.e., it does not know the probability distribution p(r(t) | x(¢,u(t)), u(t)).
However, at a time step ¢ the agent can use the data based on its previous decisions; i.e.,
D(t) = {x(1),u(1),r(1),...x(t — 1),u(t — 1),7(t — 1),x(¢)}. This data can hence be
used to learn a reward model, which is presented next. After this, we will discuss the
problem of optimal decision-making given this learned model.

THE LIKELIHOOD. As areward model, we assume a linear model subject to Gaussian
noise as

p(r(t) | ult), x(t)) = N(r(t) [ x" (t,u(t))B(u(t)), o (u(t))). 4.1.1)
Here, we introduced the regression coefficients 3 = {3(u) | u € U}, with B(u) € R™ and
the precision parameters =2 = {0~ 2(u) | u € U}, with 072(u) € R(. Hence, we use a
linear parameterization for each action independently. This yields the likelihood for the
data set D(t) and parameters 8 = {3, 02} as

p(D(t) | 0) = ﬁN(T(S) | x"(s,u(s))B(u(s)), o*(u(s))).
This likelihood can then be rewritten as

p(D(t)16) =[] ﬁ[N(r(s) | x " (s, u)B(u), o(u))] 5=

ueU s=1

=11 [T NCwmw) | x5, ()B(w), c*(w)),

ueld m=1

where M (u) := 3"} 1(u(s) = u) is the total number of times action « is chosen. Here,
rm(u) and x,,(u) are the reward sample and context variable of action u, respectively,
when action u was chosen the mth time; i.e.,

rm(u) =7r(s"), xn(u) =x(s",u), s =max {s’ : Z L(u(s) =u) < m} :

s=1
Finally, this can be written in vector form as
p(D(t) | 8) = [[N(x(w) | X(w)B(u), o (u)I),
ueU

with reward data r(u) = [ri(u),...,7ym@)(w)]", context data X(u) = [xi(u),...,
X1(u)(u)] T, and I denotes the identity matrix.

THE PRIOR DISTRIBUTION. To learn the model parameters, we use a Bayesian approach.
Therefore, we specify a prior distribution, where we use independent priors for all actions,
as
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As we will deal with high-dimensional context information, we use a sparsity inducing prior
over the regression coefficients 3 to find the most valuable context information. For this,
we leverage the three parameter beta normal (TPBN) continuous shrinkage prior [60], which

puts on each regression coefficient 3(u) = [3,(u), ..., Bn(u)]", the following hierarchical
prior

Aj(u) ~ Gam(X;(u) | bo, ¢(u))

7;(u) ~ Gam(7;(u) | ag, Aj(u)) j=1,...,n

Bj(u) ~ N (B;(u) | 0,75 (u) /o (u).
Here, 7(u) = [11(u), ..., 7,(u)] " are gamma distributed continuous shrinkage parameters
which shrink the corresponding regression coefficient 3;(u), as the component 7;(u)
gets small. The components of the parameters A(u) = [\ (u), ..., \,(u)]" control the

components of 7(u) via a global shrinkage parameter parameter ¢(u). For appropriate
hyper-parameter choices of a and by, different known shrinkage priors are obtained. For
example, we use ag = 1/2, by = 1/2, which corresponds to the horseshoe prior [61].

For the estimation of the global shrinkage parameter ¢(«) an additional hierarchy is used
as

w(u) ~ Gam(w(u) | 1/2,1)
¢(u) ~ Gam(d(u) | 1/2, w(u)).
For the noise precision, a gamma prior is used as
o 2(u) ~ Gam(o2(u) | co/2,do/2),

with hyper-parameters ¢, and dy. The PGM [16] of this generative Bayesian model is
depicted in Fig. 4.2.

4.2 APPROXIMATE POSTERIOR INFERENCE

Given the generative model, one goal of the decision-making agent is to infer the posterior
distribution over the model parameters 6 and prior parameters ¥ = {7, A, ¢, w}, with the
shorthands

T={7(u) |uel}
A={A(u) |uelU}
¢ ={o(u) |uell}
w={w(u) | veld}

However, for the posterior distribution
__ p(D{E)[6,%)p(6,¥)
[p(D(t) | 6,%)p(6,¥)dO d¥

the evidence in the denominator for the specified model in Section 4.1 is intractable to
compute. Therefore, we resort to approximate inference using a variational approach. First,
we show how a mean-field variational Bayes estimate can be obtained as proposed in [60].
After this, we will present a new inference scheme for this model leveraging stochastic
variational inference (SVI) [62], which can be used to reduce the computation time. This is
especially useful in the context of sequential decision-making.

p(6,% | D(t))
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FIGURE 4.2: PGM for the reward model. The Figure shows the generative Bayesian regression
model with TPBN prior. Here, ’dot” denotes the inner product.

4.2.1 Mean-Field Variational Bayesian Inference

Since exact inference of the posterior distribution p(8, ¥ | D(t)) is intractable [22], we
apply approximate inference in form of variational Bayes (VB) for posterior inference. We
use a mean-field variational approximation, with

4(6. %) = [ [ a(B(w)a(o(w))a(r(w)a(A(w)a(d(u))g(w(w) (4.2.2)

ueU

for the approximate distribution. The variational distributions are obtained by minimizing
the KL divergence between the variational distribution, and the intractable posterior
distribution over the class O of mean-field approximations; i.e.,

inimize KL(q(, ¥ 0, W | D(t))).
minimize (q(6,%) || p(6,% | D(t)))

This yields the equivalent tractable maximization problem over the ELBO L|[q] < log p(D(t))

as
imi L = Ellogp(0, ¥, D(t))| — Ellog q(6, ¥
rrql(a{ur?lze [q] [logp(0,¥,D(1))] [log q(6, ¥)], 4.2.3)
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where the expectation is carried out w.r.t. the variational distribution ¢(8, ¥). Using
calculus of variations [22, 31], the maximizer of the optimization problem in Eq. (4.2.3) is
derived. This yields the optimal variational distribution for 3(u) with its parameters [60]

q(B(w)) = N(B(u) | pg(u), Xg(u))
pa(u) = (X (u)X ( ) + diag (E[°""(u)])) ™ X (u)r(u) (4.2.4)
Sp(u) = E[o~2(uw)] ™ (X7 ()X (u) + diag (E[°(u)])) ",

where (-)°~! denotes the Hadamard inverse (element-wise inversion). The optimal
variational distribution for c=2(u) is given as

g(o*(u)) = Gam(o~*(u) | ¢*(u), d"(u))

¢ () = M(u)—gn+co
M (u)
d*(u) = % r'(u)r(u) — 2r" (u)X( )] + Z x| (u)BT ()] % (1)

+ZE 82 (w)] E[7; 7 (u )}+d0>.

For the shrinkage parameters 7(u) we have

a(r(w) = [[GZG6(73(u) | p. ars(u), brj(w))

J=1

p=ao—1/2 ar(u) = 2ER ()], bey(w) = E[B2(w)] E[o ()],

where GZG(x | p,a,b) denotes the generalized inverse Gaussian (GIG) distribution, see
Section A.2.13. Additionally, we have

(4.2.6)

HGam u) | a;(u),by;(u))

4.2.7)
axj(u) = ao +bo,  bx;(u) = E[7;(w)] + E[p(u)].
The variational distribution for ¢(u) is
q(p(uw)) = Gam(g(u) | ag(u), by(u))
ag(u) = by +1/2, by(u) = Elw(u)] + S DN (u) @29
and finally the variational distribution
(1) = Gam(e() | (1. b)) w20)

ay(u) =1, by(u) = E[p(u)] +

In Fig. 4.3 the corresponding PGM of the mean-field approximation is depicted. Note the
factorization of the RVs, which enables tractable posterior inference in comparison to the
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PGM for the coupled Bayesian regression in Fig. 4.2. The moments of these variational
distributions are given as

E[B(u)] = pp(u), E[B(w)B' (u)] = Zp(u )+ i (u) s (1),
Elo™*(w)] = c"(w)/d"(u),  E[N;(u)] = ax;(u)/br;(u),
(w)]

¢ (
Elp(u)] = ag(u)/bs(u), Elw(u)] = ()/bw(U),
oo (PN K0y () o (ang () Ky (v ()
el = () e =000 (20) K
(4.2.10)
with v;(u) = /2a, ;(u)b, ;(u) and K, (-) is the modified Bessel function of second kind.

4.2.1.1 Calculation of the Evidence Lower Bound

Further, we newly derive an expression for the ELBO in Eq. (4.2.3) under the optimal
variational distributions.

For the derivation, we note that the joint distribution p(6, ¥, D(t)) over parameters and
data factorizes as

p(0, %, D(t)) = [ [ plr(u ,B(u), 072 (u))p(B(u) | =2 (u), 7 (u))p(o™>(u))
ueU
(T (w) | A(w)p(A(w) | ¢(u))p(d(u) | w(u))p(w(u)).
4.2.11)

Using the mean-field variational distribution as given in Eq. (4.2.2), the ELBO in Eq. (4.2.3)
can be calculated as

=Y E[logp(r(u) | X(u), B(u),0(u))] + E[log p(B(u) | o2 (u), 7(u))]

ueU

+E[logp(o™*(w))] + Eflog p(7(u) | A(u))] + Eflog p(A(u) | ¢(u))]
+Eflog p(é(u) [ w(w))] + Ellog p(w(u))] — Eflog ¢(B(u))]
—E[log g(c™*(u))] — Eflog ¢(7 (u))] — E[log g(A(u))]
— Eflog g(¢(u))] — Ellog g(w(u))],

(4.2.12)

Next, we calculate the expectations w.r.t. the variational distribution in Eq. (4.2.2) for the
log-factorized joint distribution p(@, ¥, D(t)) in Eq. (4.2.11). This yields the following
expressions

E[log p(r(u) | X(u), B(u), 0 *(u))] = E[log N (r(u) | X(u)B(u), o (u)I)]
M@)o M)
y et (4.2.13)
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E[log p(B(u) [ o (u), 7(u))] = Ellog (HN(BJ'( | 0,75(u)/o ™ (u )))]

- 10g(27r) + = E[loga — = Z E[log 7 (u %i E[o~2(u)] (219
E[ﬂf(;)ﬁ E[r " (u)]
E[log p(o7*(u))] = E[log Gam(o~*(u) | co/2, do/2)]
= (5 —1) Eflogo™(w)] - @ E[o2(u)] + C—;log% ~logT () @215
Eflog p(7(u) [ A(u))] = E llog (}_[1 Gam(7;(u) | ao, /\j(u)))]
= —nlog'(ag) + ag Z log A, (u)] + (ao — 1) Z Eflog 7; (u zn: E[\(u)]
a h -E[7;(u)]
(4.2.16)
Ellog p(A(u) | ¢(u))] = E [103; (Jl_[l Gam(A;(u) | bo, ¢(u )))]
— “nlogT(by) + bon Ellog d(u)] + (by — 1) Zl Ellog ()] — E[é(w)]  (4.2.17)
>l )
Eflog p(¢(u) | w(u))] = Ellog Gam(¢(u) | 1/2,w(u))] B
~ 5 Elloa(u] ~ ogT" (5 ) — 5 Ellog (0] ~ Elw(w] Efo(u) R
Ellog p(w(u))] = Eflog Gam(w(u) | 1/2,1)]
_ %10% “logT (%) _ % Eflog w(u)] — % Elw(u)]. (*:2.19)

Additionally, the entropy terms, i.e., E[log ¢(6, ¥)] = — H[@, ¥], in Eq. (4.2.3) calculate
to

Eflog ¢(B(u))] = E[log N(B(u) | pg(u), Zp(u))]

=~ log >~ log| ()

E[log q(a’Q(u))} = E[log Gam(o*(u) | c*(u),d*(u))]

= c"(u)logd*(u) —log T'(c*(u)) 4+ (c*(u) — 1) E[log 072(u)] —d*(u)E [U’Q(U)]
(4.2.21)

(4.2.20)
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Ellog ¢(7(u))] = E llog (H GZG(7j(u) | p, ar;(u), br (U))>]

J=1

- Qo 1 2
= (E - 5) [plogZ plogE —|—ZlogE ZlogE B; (u ]
—plogQ—ZlogKao_%(vj + ( ap — —) ZElogTj ZE

J=1

Efry(u)] — 5 E[r(w)] ZE (8 (w)] Elr " (w)]

(4.2.22)
Efllog g(A(u))] = E llog (H Gam(A;(u) | ax;(u), by (u)))]
= —nlogI'(ag + by) + (a0 + bo) Z log (E +E[¢(w)]) + (ao +bo — 1)
Z E[log A, ( Z E[r;(u — E[¢(u)] Z E[7;(u)]
"~ (4.2.23)

Eflog q(¢(u))] = Ellog Gam(¢(u) | ag(u), by(u))]

— <nb0+1)log< +ZE ) logf(nbo+%>+<nbo—%)

n

-Eflog ¢(u)] — Efw(w)] E[¢(u)] — E[p(w)] ) E[\;(u)]

=1

(4.2.24)

(4.2.25)
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Using Eqgs. (4.2.13) to (4.2.25) in Eq. (4.2.12), yields the expression for the ELBO for the
optimal variational distributions as

Llg] = Z —MZ(U) log(27) +

@ log b _ logl’ (%) — c*(u) logd*(u)

2 2
uel
+logT'(¢* +ZE ZE
1 1
—nlogT'(ag) — nlogT'(by) — 2log’ <§> + log 2 ((Z - %) n-g

Jnlog I(ag + bo) + logT (nbo ; %) + 5 Efw(w)] + Elo(u) Elo(u)]

ao B i 42.26
+%10g|25(u)| + (5 — i) (nlogE[a (w)] — Zlog E[/\j(u)]> ( )

(% - }L) Zlog E[ f(u)} — Zlog K, 1(v;(u)) — = E[J‘Q(u)]
E[3(u)] E[le(u)} — <nb0 + %) log(Efw(u)] + Z E[N;(u)])

~(ao+bo) > log(El; (w)] + El¢(u)]) — log(E[g(w)] +1).

Finally, optimizing Eq. (4.2.26) can be achieved by cycling through the coupled moments
in Eq. (4.2.10) and the previously presented parameters of the variational distributions, see
Egs. (4.2.4) to (4.2.9), which corresponds to a coordinate ascent algorithm on the ELBO
L[¢]. This yields a local optimum of the objective in Eq. (4.2.3). The full algorithm is
shown in Fig. 4.4b.

4.2.2 Stochastic Variational Inference

The VB update as presented in Section 4.2.1 requires cycling through the coupled moments
in Eq. (4.2.10) until convergence. Since this computation can be costly, we propose a
new scheme based on SVI [62]. Here, the ELBO L]g| is optimized by using stochastic
approximation [63], where we use a natural gradient descent algorithm [64]. The natural
gradient w.r.t. the mean-field variational distributions can be obtained utilizing the natural
parameterization of the corresponding exponential family distribution [23].

For this, we use the shorthand ® = {@, ¥} for all parameters. In the presented mean-
field approximation in Section 4.2.1, the variational distribution factorizes over all single
parameters as ¢(©) = [ [, ¢(©;). For the presented model, each factor ¢(©;) is a member
of the exponential family. This means that the factors can be written as a probability density

of the form
q(0;) = q(O; | m,) = h(6;) exp{n s(©;) — A(n,)}.
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FIGURE 4.3: PGM for the optimal mean-field approximation. The factorized distribution is an
approximation to the true posterior. The optimal variational parameters are learned to provide the
data dependency.

Here, h(©;) denotes the base measure, 7, are the natural parameters, s(0;) are the sufficient
statistics of the natural parameters and A(n),) is the log-normalizer.

Next, we compute the natural gradient of the ELBO L[g] = L(n) with respect to the natural
parameters of the factorized variational distributions for each variational factor ¢(©;). Note
that the natural gradient of a function f(-) w.r.t. a variable 7 is given as

Vaf(m) = G(n) 'V f(n),

where G(n) = E[(V,7 logq(© | m)) (Vylogq(O© | n))T] is the Fisher information matrix

of the RV © which depends on the parameters 7; i.e., ¢(© | 7). For the natural gradient
of the ELBO in Eq. (4.2.26) it can be shown that the natural gradient w.r.t. to a natural
parameter 77 computes to R

VnL(n) =En]—n,
where the parameters 7y’ are the natural parameters of the full conditional distribution

p(Om | ©_n, D(t)), with ©_,, denoting the tuple of all variables but ©,,. Using a gradient
update the variational approximation can be found as

i+ — n® 4 Vlﬁn L(n®), (4.2.27)
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where [ is the iteration step of the algorithm and +; is a step size parameter, we choose
as 7, = 1/l. Given the vanilla natural gradient update in Eq. (4.2.27), we use random
sub-sampling of the data, which enables constructing a stochastic approximation algorithm.
For this algorithm, E[r’] is replaced by an unbiased estimate 7), which yields a stochastic
natural gradient ascent algorithm on the ELBO in the form

77(l+1) =(1- %)"7(l) + ). (4.2.28)

4.2.2.1 Calculating the Natural Parameter Updates

In the case of the regression problem presented in Section 4.1, we can sample one data
point (u, X, (u), 7, (1)) from the set of observed data points and replicate it M (u) times
to calculate the estimates {7)g(u), 7,-2(u), 7, ;(w), Ny ;(u), f4(u), ), (u)}. To derive the
intermediate estimates, we need to compute the expectation E[n'] for the natural parameters
of the full conditional distributions. The full conditional distributions [60] are given as

p(B(w) | r(u), X(u),02(u), T(u)) = ( () | pa(u ) )y (u))
i) = (X7 ()X (u >+d1ag< W) X
s(u) = U_Q(U)_ (XT( u) + diag (7°7'( Y ))

p(o~*(u) | v(w), X(u), Bu), T(u)) = Gam(c~*(u) | ¢(u), d'(u))

¢ () = M (u) —;n“‘CO
2() = 5 [T r() 2T X @)B) + 3 XL w)Bw)8T (w)xu(w)

p(r(u) | Blu), 0> (u), A(w) = [ [ GZG(7;(u) | ¥, ] ;(u), b, ;(w))

j=1

pl =G — 1/27 ag—,j(u) = 2)‘j (u)7 b:-,j (u) = ﬁ12<u)0_72(u)’

p(A(u) | T(u HGam u) | a ;(u), b ;(u))
aj ;(u ):a0+b0, by j(u) = 7j(u) + ¢(u),

p(é(u) | Alw), (w)) = Gam(e(u) | ag(u), by(w))

ag(u) = nbo +1/2,  by(u A (u

M:

J=1
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and
plw(u) | ¢(u)) = Gam(w(w) | ay,(u), b, (u)).
ag(u) =1, b,(u) = ¢(u) + 1.
Next, the transformation of the parameters of the full conditional distributions into their
exponential family parameterization can be obtained via

ot = (257 W 3% W)
ya() = (¢(w) — 1.~ ()

(1) = (0 = 1.y ()28, (0)/2)
n&,j(U) = (a/,\,j(u) -1 _bl/\,j(u))
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Replicating one data point (u, X, (u), 7, (u)) M (u)-times yields the intermediate estimates
of the natural parameters as

() = (E[02<u>}M<u>xm<u>rm<u>, L Efo )] (M () )] ()
+ diag (E [To’l(u)]) )
Ry o) = (MW T0EC ) L ()2 ) — 20 () ()] () ELB(w)]

+M (), (u) E[B(u)B" ()] xm (u) + 3 _E[B}(u)] E [1(u)]+do)>

a0 = (a0 = o~ ED L E[B2 0] Elo~(w)] 2)

() = (ao + bo — 1, — E[r;(u)] — E[p(u)])

fly(u) = <nbo—1 — Efw ZE >

(4.2.29)

The intermediate estimates in Eq. (4.2.29) can be calculated using the moments in
Eq. (4.2.10), where the transformation from the natural parametrization to the variational
parametrization can be calculated via

(1500 350) = (5 (@) "m0, 5 (' 0)) )
¢ (u), d*(u)) = (77[(, )g(u) 41 _77(2) ( ))

prars (1), bry(w)) = (0 (w) + 1, =20 (u), 202 (u) ) (4.2.30)

Here, we denote by 7V or n¥) the ith variable of the tuple of corresponding natural
parameters 77. The gradient update as in Eq. (4.2.28), with random sub-sampling, is
performed until the ELBO L converges. For a pseudo-code of this SVI algorithm see
Fig. 4.4c.

4.2.2.2 Using One Gradient Step in Stochastic Variational Inference

Since optimizing the ELBO L[g| until convergence with both VB and SVI is computationally
expensive, we present a new inference method called one-step stochastic variational
inference (0OS-SVI), which scales significantly in a sequential decision-making setting.
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Here, at the tth time step in the sequential setting of Section 4.1, the learner has access

to a new context X,;(,)(u) and a reward 7(,)(u) based on the taken action u(t) = u.

Therefore, OS-SVI uses this data point by updating the uth variational parameters by going
one step in the direction of the natural gradient of the ELBO L. For 0S-SVI, we calculate
the intermediate estimates in Eq. (4.2.29) based on ¢ replicates of the observed data point

(x(t),u(t), r(t)). Thereafter, the stochastic gradient update is performed with Eq. (4.2.28),

by transforming the natural parameters back to their corresponding parametric form as in
Eq. (4.2.30). This updating step is computationally significantly faster than using VB or
SVI until convergence. The 0S-SVI pseudo-code is given in Fig. 4.4d.

4.3 DECISION-MAKING USING A BANDIT ALGORITHM

After finding some tractable posterior inference schemes, we now tackle the problem, how
an agent can make optimal decisions to solve the desired problem

T
maximize u[1 T] E Elr
up,T) =

subject to 1 (t) ~ p(r(t) [ x(¢, u(t)), u(t)).

The complete optimization problem is often still intractable even if the posterior distribution
of the reward model can be computed. This is because the agent faces an inherent problem
of deciding when to learn more about the model and gather data and when to act greedily
w.r.t. the current knowledge of the system at hand. This exploration-exploitation dilemma
is discussed under the term multi-armed bandit problem, which dates back to [65]. In our
setting with context information, the contextual bandit problem [66], which is an extension
to the classic problem, can be used. In the bandit setting, it is often helpful to evaluate the
performance of a bandit algorithm in terms of its regret. We introduce the regret for the
linear model in Eq. (4.1.1) as

R(T) =) r*(t)= > _r(t). (4.3.31)

Here, the optimal reward r*(t) ~ p(r*(t) | x(¢,u*(t)), u*(t)) is generated for the optimal

action u*(t) = argmax,, x(t,u)" 3" (u) under the true regression parameters 3" (u).

This is compared to the reward obtained for an algorithm which chooses the action trajectory
upi,r) and generates the rewards r(t) ~ p(r(t) | x(¢,u(t)), u(t)). Hence, the regret in
Eq. (4.3.31) compares the cumulative reward of the algorithm against the cumulative
reward with hindsight. To develop algorithms with a small regret for the linear setting,
many strategies have been proposed. Such algorithms include techniques based on forced
sampling [67], Thompson sampling [68], and the upper confidence bound (UCB) [56,
69-71]. Here, we use the Bayes upper confidence bound (Bayes-UCB) algorithm as
introduced in [72], and we develop a version that fits the given model from Section 4.1.
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4.3.1 The Bayes Upper Confidence Bound Algorithm

First, let Q). (¢, p(z)) denote the quantile function associated to the distribution p(x); i.e.,

P(X < Q.(q,p(x))) = q,

with RV X ~ p(z). Given this implicit definition, the Bayes-UCB algorithm of [72] selects
in each round the action u, which maximizes the acquisition function

1
A(t,u) = Qr (1 - (7, t, u)) , (4.3.32)
Q@
where o € R+ is an exploration parameter for the UCB algorithm. Here,
0 _
m(x, t,u) = 9 (R(t,u) <z | D(t)) (4.3.33)
x

denotes the posterior density of the mean reward under the model in Eq. (4.1.1); i.e.,
R(t,u) = E[r(t) | u,x(t)] = x" (t,u)B(u), (4.3.34)

where the regression coefficients 3(u) under the conditional probability measure in
Eq. (4.3.33) follow the the posterior distribution as B(u) ~ p(B(u) | D(t)). The
acquisition function in Eq. (4.3.32) uses as a strategy a one-step look ahead by exploiting
an upper confidence bound for the posterior density of the mean reward. This means
that a decision is made based on a 1 — % sized upper Bayesian credible interval. This
strategy is sensible because it is optimistic w.r.t. the agent’s reward in the next decision step.
Being optimistic is reasonable, as it leads to exploration. However, the credible interval is
scaled down with the number of iteration steps and with the posterior distribution getting
sharper as more data is available. This leads to a greedier exploitation behavior the longer
the algorithm runs. For an analysis of the Bayes-UCB algorithm, see [72], where some
convergence results, by bounding the random regret as in Eq. (4.3.31), are shown.

4.3.2 The Contextual-Based Adaptation Algorithm

We now calculate the acquisition function in Eq. (4.3.32) for the derived posterior
from Section 4.2. Using the mean-field approximation, as in Section 4.2.1, a Gaussian
approximate posterior for 3(u) was derived as

p(B(u) | D(1)) = q(B(w)) = N(B(u) | pg(u), g (w)).

Since, Eq. (4.3.34) is a linear equation in 3(u) ~ p(B(u) | D(t)), the mean reward R(t, u)
under the mean-field approximation is also Gaussian distributed, and we can calculate its
mean as

(t)]

E[R(t,u) ‘ D(t)] = E[x " (t,u)B(u) |
( (®)]

=x"(t,u) E[B(u) |
=x' (t,u)pg(u)

D
D
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and its variance as
Var[R(t,u)|D(t)] = Var[x' (,u)B(u)|D(t)]
= x"(t,u) Cov[B(u)|D(t)]x(t, u)
=x' (t,u)Sg(u)x(t, u).

This yields the posterior density of the mean reward as
m(F, tu) = N(7 | x"(t,u)B(u), x " (t,u)Es(u)x(t, u)).

Using this, the acquisition function in Eq. (4.3.32) calculates to

A(t,u) =x"(t, u)pg(u) + Qr (1 — %,N(f | 0, 1)> \/XT(t, u)Xg(u)x(t,u),

where we can compute the quantile function explicitly as

Qs (1 - é,/\/(f 0, 1)) = V2erf™! (1 - 3) :

at
with the inverse error function erf !(-). Finally, we use the policy

u(t) = argmax A(t, u)
ueld

as a contextual bandit algorithm. Therefore, the algorithm we call CBA is given as

2

u(t) = argmaxx ' (¢, u)pg(u) + v2erf ! (1 — _t) \/XT(t,U)Eg(u)X(t, u). (4.3.35)
ueU (07

A pseudo-code for this bandit strategy is given in Fig. 4.4a, and the full CBA algorithm is

summarized in Fig. 4.4.

4.4 EVALUATION UNDER THE MODEL ASSUMPTION

We first create data based on the model assumption for the numerical evaluation of CBA
exploiting the TPBN prior. For this, we evaluate two simulation scenarios. Here, we use
a problem with n = 20 context dimensions, ' = 20 actions, and a decision horizon of
T = 1000. For both scenarios, we use a linear ground truth model for the reward generation
as

r(t) ~ N (r(t) | x" (8, u)B" (), 0 (w),

with true parameters 3" (u) and 02" (u), which are unknown to the bandit algorithm.

SCENARIO 1: SPARSE REGRESSION. We consider a scenario with sparse regression
coefficients, where only five regression coefficients per action are not equal to zero; i.e.,

n

D 1B (u) #£0) =5, Yuel.

j=1
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SCENARIO 2: DENSE REGRESSION. We consider a dense scenario for the regression
coefficients; i.e.,

Biu) £0, V() € {1,...,n} xUs
4.4.1 Evaluation of the Accuracy

We compare the developed CBA algorithm with the different posterior inference schemes
VB, SVI, and OS-SVI against two baseline algorithms: LinUCB [56] and contextual Gaussian
process upper confidence bound (CGP-UCB) [71]. For the CGP-UCB algorithm, we use
independent linear kernels for every action, which fits the linear ground truth model
assumption. Figure 4.5 shows the evaluation of the regret Eq. (4.3.31), averaged over
multiple Monte Carlo runs, where Fig. 4.5a considers the sparse setting and Fig. 4.5b
considers the dense setting. For the sparse setting in Fig. 4.5a, which is usually omnipresent
in high-dimensional problems, CBA with VB yields the smallest regret. We observe in
Fig. 4.5b that in the dense setting, CGP-UCB achieves the best performance, which is
closely followed by CBA with VB. Note that it is expected for CGP-UCB to perform well,
as GP regression with a linear kernel corresponds to a dense Bayesian regression with
marginalized regression coefficients [73], and therefore matches the model under which
the dense data has been created.

Algorithm 4.4: Main-routine CBA Algorithm 4.4: Sub-routine VB for CBA
input : 7": horizon input : D(t): data set
a: exploration parameter ao, by, co, dy: hyper-parameters
Mg, 2a: initial parameters output :pg, 3 5: updated parameters
Initialize data set D(0) = {} Initialize variational moments in
fort =1to T do Eq. (4.2.10)
observe contexts x(t) while ELBO in Eq. (4.2.26) not
play action u(t) using Eq. (4.3.35) converged do
observe reward r(t) Update variational parameters,
append data D(t) = Eqgs. (4.2.4) to (4.2.9)
D(t — 1) U {x(t),u(t),r(t)} Update the variational moments
update estimates for p145, 35 using a with Eq. (4.2.10)
sub-routine with D(t) end
end return pi5, 33

(a) The pseudo-code for the decision-making algo- (b) The pseudo-code for posterior inference with VB.

rithm.

FIGURE 4.4: Pseudo code for proposed CBA algorithm (cont. next page).
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Algorithm 4.4: Sub-routine SVI for CBA
: D(t): data set
ao, by, co, dp: hyper-parameters
v;: step size schedule
output :p5, 35: updated parameters

input

Initialize natural parameters 1, 1,-2,
N> Mrj» Mg and 7,

Initialize iteration counter [ = 1

while ELBO in Eq. (4.2.26) not
converged do

Algorithm 4.4: Sub-routine 0S-SVI for
CBA

: D(t): data set

ag, b, co, do: hyper-parameters
v: step size

output :pg, 3 5: updated parameters

input

Extract last data point (u, X,,, (1), r,, (u))
from D(¢) Calculate intermediate
parameters with Eq. (4.2.29) and
M(u) =t

Draw random sample
(U, X (w), 7 (w)) from D(t)

Calculate intermediate parameters
with Eq. (4.2.29)

Do gradient update with Eq. (4.2.28)
and step size v,

Update variational parametrization
with Eq. (4.2.30)

Update moments with Eq. (4.2.10)

Update iteration counter [ = [ + 1

Do gradient update with Eq. (4.2.28)
and step size vy

Update variational parametrization with
Eq. (4.2.30)

return pig, 33

(d) The pseudo-code for posterior inference with
OS-SVI.

end
return pg, 33

(c) The pseudo-code for posterior inference with SVI.

FIGURE 4.4: Pseudo code for proposed CBA algorithm (cont.). In (a) the decision-making algorithm
is shown. The different possible posterior inference schemes are given in (b) (VB), (c) (SVI) and (d)
(0S-SVI).

4.4.2 Evaluation of the Computation Run-Time

In Table 4.1 we show the run-times of the algorithms, where we observe that the run-times
for CBA with VB and SVI, and the CGP-UCB baseline can be impractically high in time-critical
applications. Further, this run-time performance scales with certain parameters as depicted
in Fig. 4.6. This can be seen, e.g., for a scaling of the context dimension n, since the
computational bottleneck of both posterior inference with VB and posterior inference
with SVI are multiple matrix inversions of size n X n, see Fig. 4.6a. Additionally, we
evaluate the effect of the decision horizon 7' on the run-time. Here, Fig. 4.6b shows the
scaling using the identical setup as in Table 4.1. It can be observed that CGP-UCB scales

poorly with 7', as the kernel matrix of size M (u) x M (u) is inverted at every time step.

Since, for many scenarios, decision-making has to be made in the order of a few hundred
milliseconds, neither CBA with VB nor CGP-UCB can be computed under time-critical
conditions. However, we observe that the OS-SVI variant fulfills timing restrictions and
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(a) Scenario 1: Sparse regression.
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(b) Scenario 2: Dense regression.

FIGURE 4.5: Results under the model assumption. Depicted is the average regret for the proposed
CBA algorithm with VB, SVI and 0S-SVI posterior inference compared to the baseline algorithms
CGP-UCB and LinUCB, for (a) a sparse regression scenario and for (b) a dense regression scenario.

Algorithm Sparse Setting  Dense Setting
CGP-UCB 638.68 s 643.44 s
LinUCB 31.24 s 30.70 s
CBA-OS-SVI 91.40s 89.56 s
CBA-SVI 3784.00 s 4081.74 s
CBA-VB 1434.11 s 1760.83 s

TABLE 4.1: Run-times for N = 100 simulations of the CBA algorithms compared to the baseline
algorithms CGP-UCB and LinUCB. Simulations executed on an Intel® Xeon® E5-2680 v3 @2.5GHz
machine.

obtains a much smaller average regret than the fast LinUCB baseline algorithm. The reason
for the increased speed-up of these two methods is that they both have to invert an n X n
matrix only once after a decision.

4.5 APPLICATION SCENARIO: VIDEO STREAMING

After presenting a decision-making algorithm, which can perform its necessary inference in
a small amount of time, we look at a scenario from video streaming. Here, we describe how
a problem in this context, namely ABR streaming, can be modeled as a decision-making
problem, which fits our derived CBA algorithm. In this setting, we look at a video streaming
scenario within NDN, where consumers or clients issue interests, which are forwarded to
content producers, i.e., origin servers, via caching-enabled network routers.

4.5.1 Adaptive Bitrate Video Streaming

The scenario of video streaming is an excellent example of the problem of making decisions
under uncertainty. Modern applications often rely for video streaming on ABR streaming.
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(a) Run-time vs. context dimensions n for a sparse (b) Run-time vs. decision horizon T for a sparse
linear model. (CBA with SVI not shown for clarity.) linear model. (CBA with SVI not shown for clarity.)

FIGURE 4.6: Run-time comparisons for sparse linear model with K = 20 actions. In (a) the
context dimension n is varied with fixed decision horizon of 7' = 100. In (b) the decision horizon
T is varied with fixed number of context dimensions n = 20.

Here, the content provider offers multiple qualities of the same video content to the client.
The client can then decide which quality to pick based on its own client-side logic. In
the context of NDN these interests are then eventually answered with data provided by the
producer or an intermediary router cache.

To decide which quality to pick, each video is divided into consecutive segments, represent-
ing some fixed number of seconds of content, we denote as [. These segment lengths are,
in practice, often chosen to be two to ten seconds [74], with several distinct quality levels to
choose from, such as 720p and 1080p. Here, the segments are encoded at multiple bitrates,
directly mapping to the perceived average segment quality. Hence, from a decision-making
point of view, the set of actions for the agent to choose from are the set of all available
video qualities. Therefore, we denote the set of video qualities as

U={ui=1,... K},

where we let u® > uU) for Vi > 75 1.e., a higher index indicates a higher bitrate and
therefore better quality. Additionally, we denote by s(¢, u) the ¢th segment encoded in the
uth quality. Out of the set of possible quality levels ¢/ a client can then select for each
segment, one of the possible quality levels.

In NDN a consumer will first issue an interest for a media presentation description (MPD), a
extensible markup language (XML)-like file with information on the available video segments
and quality levels of the video, during session initialization. After obtaining the MPD, the
client may begin to request each segment according to its adaptation algorithm. Here,
each segment s(t, ) is given a name in the MPD, e.g., of the form /video ID/quality
level/segment number. Afterwards, the client issues an interest for each data packet
when requesting a particular segment.

After the client decides for a video quality v € U, a video segment is received and placed
into a playback buffer containing downloaded unplayed video segments. A simple queueing
relation can describe this playback buffer. For this, we denote by b(¢) the number of
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seconds in the buffer at the ¢th decision epoch; i.e., at the time point when segment ¢ is
received. The playback buffer size is denoted by B and is the maximum allowed number
of seconds of video in the buffer. This playback buffer size B is usually chosen between
ten and thirty seconds [74]. By convention we let b(0) = 0. The queueing recursion of the
buffer filling can then be written as

b(t) = [b(t = 1) + 1 = £(t, )]y
where []§ := min(max(-,0), B), denotes the truncation operation and £(¢, ) is the fetch

time for the ¢th segment with quality w.

Given this recursion we can ascribe a stalling event for the ¢th segment when £(t, u) >
b(t — 1). Note that in general, uncertainty exists over the segment fetch time £(¢, «) and the
recursion above holds only if b(t — 1) + [ < B; i.e., the client is blocked from fetching new
segments if the playback buffer is full. If this occurs, the client idles for exactly [ seconds
before resuming segment fetching. Since NDN data packets are of small and fixed size,
higher-quality video segments will require more data packets to encode. We note that we
here do not permit the client to drop frames, so all data packets belonging to some segment
s(t, ) must be in the playback buffer to watch that segment.

The most prevalent quality adaptation algorithms take throughput estimates [75] or the
current buffer filling b(¢) [76], or combinations and functions thereof to decide on the
quality of the next segment s(¢ + 1, u). However, overall the goal of the decision-maker
is to find the segment quality which maximizes a QoE metric, such as the average video
bitrate, or compound metrics taking the bitrate, bitrate variations, and stalling events into
account. Hence, for optimizing QoE, the presented application can directly be mapped to
the CBA algorithm presented earlier, as we now show.

4.5.2 Using the Contextual-Based Adaptation Algorithm for Video Streaming

We model ABR streaming as a contextual bandit problem, where we use the presented CBA
algorithm.

Here, we use, as discussed before, as the action set, the set of available bitrates such that
action u(t) = u represents the decision to request the quality u for the ¢th segment; i.e., to
request the segment s(t, u).

Furthermore, we let x(¢,u) represent the network context vector corresponding to an
available action v at segment £. At each ¢, therefore, there will be K unique context
vectors available. There are no constraints on the contents of the context vectors, allowing
CBA to learn with any information available in the networking environment. Moreover,
each context feature may be global or action-specific, such as the current buffer filling
percentage or the last fifty packet RTTs at bitrate u, respectively. In this network-assisted
video streaming scenario, it is hence sensible to use a high-dimensional context vector
for which it is natural to assume sparse regression coefficients 3(u) in the CBA algorithm.
This automatically leads to feature selection since we used for the posterior inference in
CBA the TPBN shrinkage prior.
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In order to use CBA in this video streaming setting, we formulate a real-valued segment-
based QoE function to represent the reward r(t) ~ p(r(t) | x(t,u(t)),u(t)) obtained by
performing u(t). Here, the calculated QoE metric is the feedback used by CBA to optimize
the quality adaptation strategy. As QoE scores for a video segment may vary among users,
we resort in this work to an objective QoE metric similar to ,[77] which is derived from the
following set of factors: (i) video quality, (ii) decline in video quality and (iii) rebuffering
time.

First, for the video quality, we consider the bitrate of the segment; i.e., u(t) € U. Second,
for the decline in video quality we measure if the current segment is at a lower bitrate than
the previous one, [u(t — 1) — u(t)]o for two back to back segments, with [-]o := max(-,0).
The rationale behind using the decline in quality, in contrast to the related work that counts
quality variations, is that we do not want to penalize CBA if the player strives for higher
qualities without the risk of rebuffering. Finally, we consider the amount of time spent
with an empty buffer after choosing u(t) to evaluate the rebuffering time, where we denote
the amount of time spent rebuffering after choosing u(t) as G/(u(t)).

The importance of these three components may vary based on the specific user or context,
so, similar to [77], we define the QoE of a segment as a weighted sum of the above factors.
Hence, the reward or QoE is calculated as

r(t) = QoE(t) = wiu(t) — walu(t — 1) — u(t)]o — wsG(u(t)), (4.5.36)

where wy, w9, and w3 are non-negative weights corresponding to the importance of the
video quality, decline in quality, and rebuffer time, respectively. For a comparison of
several instantiations of these weights, see [77]. Note that this particular reward function is
sensible, though arbitrary. For other purposes, other QoE metrics can be specified for CBA
as long as these comprise a scalar function to produce the reward metric. For example, it
might be of interest to use other low-level metrics such as fetching time or to use subjective
quality evaluation tests for different users to map the weights to a QoE metric, e.g., via the
mean opinion score (MOS) [78].

4.5.3 Evaluation of the Quality Adaptation in Named Data Networking

Next, we evaluate the performance of CBA for video streaming within NDN and compare
it with throughput-based adaptation (TBA) and buffer-based adaptation (BBA) peers by
emulating two NDN topologies as depicted in Fig. 4.7. For the evaluation, we consider
(1) the doubles topology, shown in Fig. 4.7a and (i1) the full topology, shown in Fig. 4.7b.
These topologies are built using an extension of the containernet project’ which allows the
execution of Docker* hosts as nodes in the Mininet® emulator.

3 https://github.com/containernet/containernet
4 https://www.docker.com/
5 http://mininet.org/
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FIGURE 4.7: Emulation testbeds for video streaming in an NDN. The doubles topology in (a)
and the full topology in (b) both have server links with a capacity of 20 Mbps and the internal
cache links have a capacity of 1000 Mbps. In both topologies, the caches can store up to 1500 data
chunks.

VIDEO STREAMING SETUP. The NDN clients use a DASH player implemented with
libdash, based on code from [52]. We utilize the interest control protocol (ICP), where
we set the parameters to yicp = 2, Sicp = 0.5 and initialWindow = 300. We note that
traffic burstiness can vary significantly depending on the ICP parameters used.

The clients begin playback simultaneously, where they stream the first two hundred seconds
of a video encoded in two-second H.264-AVC segments offered at the K = 5 quality
bitrates U/ = {1 Mbps, 1.5 Mbps, 2.1 Mbps, 3 Mbps, 3.5 Mbps}, with a playback buffer
size of thirty seconds; i.e., B = 30s. All containers run instances of the NDN forwarding
daemon (NFD) with the access strategy, and repo-ng is used to host the video on the servers
and caches.

In the following, we compare the performance of CBA with VB and OS-SVI, in addition to the
baseline algorithm LinUCB [56]. We also examine the performance of two state-of-the-art
BBA and TBA algorithms; i.e., the buffer occupancy-based Lyapunov algorithm (BOLA) [76]
and the probe and adapt (PANDA) algorithm [75], respectively. Note that there are many other
adaptation algorithms in the literature, some of which use BBA and TBA simultaneously [77,
79-81]. However, BOLA and PANDA were chosen because they are widely used and achieve
state-of-the-art performance in standard HTTP environments. Buffer filling percentage and
quality-specific segment packet RTTs are provided to the client as context. Furthermore, we
added a numHops tag to each data packet to track the number of hops from the data origin
to the consumer.

For CBA, we track the RTTs and number of hops of the last fifty packets of each segment
received by the client following measurements from [82]. If a segment does not contain
fifty packets, results from existing packets are resampled. As a result, each CBA algorithm
variant is given an n = 101 dimensional context vector x(¢, u), containing the buffer
fill percentage, packet RTTs, and numHops for each of the K = 5 available qualities.
Additionally, we choose for CBA the following hyper-parameters. We use an exploration of
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a =1 as it was shown to yield good results under similar models [72]. For the TPBN prior,
we use ag = by = 1/2 to obtain the horseshoe shrinkage prior. We let ¢y = dy = 1076
such that a vague prior is obtained.

4.5.4 Evaluation of the Doubles Topology

seTuP. For the doubles topology, we modulate the capacity of the bottleneck link using

a truncated normal distribution, where the link capacity is drawn with a mean of 7 Mbps.

The capacity stays unchanged for a random period length, which is drawn from another
truncated normal distribution with a mean of 5 s. For the weights in Eq. (4.5.36) we use
w; = 6, we = 2 and w3 = 2, emphasizing the importance of the average quality bitrate
without allowing a large amount of rebuffering to take place.

Bitrat Quality Switch Parameter
Algorithm [l\}[lg?)f] switches magnitude update

[#] [Mbps] time [ms]

CBA-OS-SVI 310 o6 0.57 15
CBA-VB 258 6 0.65 325
LinUCB 2.24 14 1.07 6
BOLA 2.63 36 1.19 -
PANDA 2.51 16 1.00 -

TABLE 4.2: Streaming statistics for client 1 on the doubles topology.
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FIGURE 4.8: Results for different QoE-based metrics on the doubles topology. In (a) we evaluate
the cumulative reward optimization criterion, which in the case of the CBA optimizes for cumulative
QoE. In (b) we compare the regret of QoE fairness for CBA and different baseline methods.

RESULTS. The results are depicted in Table 4.2 and Fig. 4.8. Examining Table 4.2, we
see that the CBA with 0S-SVI yields a significantly higher average bitrate. This is expected
based on the QoE definition Eq. (4.5.36), but we might expect CBA with VB to pick high
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bitrates as well. However, we observe that the parameter update time for the VB variant
is twenty times greater than that of the OS-SVI variant; this puts a delay of one-sixth of
each segment length on average between receiving one segment and requesting another.
Looking at CBA with VB in Fig. 4.8a we see that it accumulates a much larger rebuffer time
than other methods. Hence, CBA with VB is forced to request lower bitrates to cope with
the extra rebuffer time incurred by updating its parameters.

In addition, note that LinUCB fails to select high bitrates despite having a very short
parameter update time, implying that LinUCB is not adequately fitting the context to the
QoE and is instead accumulating a large amount of regret. This is corroborated by its
cumulative QoE depicted in Fig. 4.8a, which performs nearly as poorly as CBA with VB. By
inducing sparsity on the priors and using just one sample, CBA with OS-SVI successfully
extracts the most salient features quickly enough to obtain the highest cumulative QoE of
all algorithms tested.

Concerning the rebuffering behavior, we observe rebuffering ratios of {4.5%, 8.4%, 11.4%,
17.6%, 32.9%} for LinUCB, BOLA, PANDA, CBA with OS-SVI and CBA with VB, respectively.
We trace some of the rebuffering events to the ICP congestion control in NDN. Note
that tuning the impact of rebuffering on the adaptation decision is not a trivial task [52].
Fortunately, this is not hardwired in CBA but instead given through Eq. (4.5.36). Hence, in
contrast to state-of-the-art adaptation algorithms, CBA could learn to filter the contextual
information that is most important for rebuffering by tweaking the QoE metric used.

Interestingly, the CBA approaches shown in Table 4.2 also result in the lowest number
of quality switches, though our QoE metric does not severely penalize quality variation.
We see that the magnitude of their quality switches is also nearly half that of the other
algorithms.

An important consideration when choosing a quality adaptation algorithm is fairness
among clients while simultaneously streaming over common links. While this is taken
care of in DASH by the underlying transmission control protocol (TCP) congestion control,
we empirically show here how the on-off segment request behavior, when paired with
the considered quality adaptation algorithms, impacts the QoE fairness in NDN. This is
fundamentally different from considering bandwidth sharing fairness in NDN, e.g., in [52].
Here we are interested in QoE fairness since the QoE metric and not the bandwidth share is
the primary driver of the quality adaptation algorithm.

For the evaluation, we use as a metric the regret of QoE fairness between both clients. The
regret is calculated w.r.t. the optimal fairness. Here, we choose following the discussion
in [83] the binary entropy as a fairness measure. For the fairness f.. of the algorithm, we
calculate the relative QoE of the two clients as

QOEclient 1 (t) >
QOEclient 1 (t) + QOEclient Z(t) ’

where Hp(-) denotes the binary entropy function and the QoE is given by Eq. (4.5.36).
Further we consider the optimal fairness between two clients as

Fooelt) = Hi (

QOE et (1)
f*oc(t) - HB ( * o * = 17
4 QOEclientl(t) + QOEclientQ (t)
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Bitrat Quality Switch Parameter
Algorithm [l\/lllggse] switches magnitude update
[#] [Mbps] time [ms]
High quality setting
CBA-OS-SVI 155 S 0.82 53
CBA-VB 1.52 15 1.16 1254
LinUCB 1.27 17 1.01 11
BOLA 196 8 0.63 -
PANDA 1.15 18 0.56 -
Low rebuffering setting
CBA-OS-SVI 155 6 0.93 55
CBA-VB 1.68 12 1.08 1362
LinUCB 1.43 22 1.04 16
BOLA 1.92 12 0.71 -
PANDA 1.13 17 0.70 -

TABLE 4.3: Streaming statistics for client 1 on the full topology.

where the optimal fairness is achieved for the ratio 1/2; i.e., Hg (1/2) = 1. Finally, the
regret of QoE fairness Ry, is then defined as a cumulative metric similar to Eq. (4.3.31)

as
T

Roe(T') = Z f;oe(t) - Z Jaoe(t)-

t=1

Figure 4.8b shows the regret of QoE fairness between both clients, where a larger regret
indicates a greater difference in QoE between both clients up to a particular segment. Here,
we observe that the CBA algorithms attain a significantly lower QoE fairness regret than
other techniques.

4.5.5 Evaluation of the Full Topology

seTup. To evaluate the capacity of CBA to adapt to different reward functions in complex
environments, we compare performance with the full topology on two sets of weights
in Eq. (4.5.36). For the evaluation of the full topology, we consider (i) a high quality
setting with weights w; = 6, wy = 2 and w3 = 2, identical to those used in the evaluation
on the doubles topology and (ii) a low rebuffering setting with weights w; = 1, wy = 1
and w3 = 3, placing greater importance on continuous playback at the expense of video
quality.

We evaluate each algorithm with each weighting scheme for thirty episodes, where one
episode corresponds to streaming two hundred seconds of the video. All clients use
the same adaptation algorithm and weighting scheme within an episode, and the bandit
algorithms are initialized for each episode with no prior context information.
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FIGURE 4.9: Results for the high-quality setting on the full topology.
RESULTS. The results are depicted in Table 4.3 and Figs. 4.9 and 4.10. Inspecting

Table 4.3, we observe that the performance statistics among algorithms, even with different
weighting schemes, are much closer than for the doubles topology. We attribute this
to using a more complicated topology in which many more clients are sharing network
resources, resulting in fewer and less predictable resources for each client. Furthermore,
the average bitrate for the bandit algorithms does not change significantly across weighting
schemes and either stays the same or increases when using the low rebuffering setting for
the weights. This may seem contradictory, but, analyzing Figs. 4.9a and 4.10a, we note
that CBA with OS-SVI tended to choose much lower bitrates for the low rebuffering setting
and therefore accruing less rebuffer time in Fig. 4.10b, than for the high quality setting in
Fig. 4.9b, indicating that CBA with OS-SVI successfully adapted to either weighting scheme
within the playback window. Similar to the doubles topology, LinUCB failed to map the
context to either weighting scheme, selecting higher bitrates and rebuffering longer for the
low rebuffering setting. Note that, for either CBA with OS-SVI or LinUCB, the cumulative
rebuffer time in Figs. 4.9b and 4.10b tapers off roughly halfway through the video, as either
algorithm learns to request more appropriate bitrates.

Interestingly, CBA with VB also fails to adapt to either weighting scheme, performing nearly
identically in either case. This is a byproduct of the excessive parameter update time for CBA
with VB in Table 4.3, which stems from the unpredictable nature of a larger network and the
computational strain of performing up to seven VB parameter updates simultaneously on
the test machine. CBA with VB is therefore spending over half of the length of each segment
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FIGURE 4.10: Results for the low rebuffering setting on the full topology.

deciding on which segment to request next, causing long rebuffering times in Figs. 4.9b
and 4.10b, culminating in very low QoE scores regardless of the weighting scheme used.
This obfuscates the underlying QoE function, preventing CBA with VB from differentiating
between the weights in either case within the time allotted. In a real-world scenario, where
each client is an independent machine, we expect that CBA with VB and CBA with OS-SVI
and LinUCB, to a lesser extent, would have parameter update times comparable to those on
the doubles topology, resulting in better performance. However, we leave this evaluation in
such an environment for future work.

Again, we see in Table 4.2 that CBA with OS-SVI switches qualities least frequently despite
neither weighting scheme explicitly penalizing quality variation. Furthermore, according to
Figs. 4.9c and 4.9d and Figs. 4.10c and 4.10d, CBA with 0S-SVI and CBA with VB are both
stable in the number of quality switches and the quality switch magnitude across episodes,
even under different weighting schemes, as opposed to the other algorithms tested.

4.6 SUMMARY

In this chapter, we discussed a sparse Bayesian model for adaptive video streaming. Further,
we developed a contextual bandit algorithm in this setting denoted contextual-based
adaptation (CBA). In contrast to state-of-the-art adaptation algorithms, we take high-
dimensional video streaming context information and enforce sparsity to shrink the impact
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of unimportant features. In this setting, streaming context information includes client-
measured variables, such as throughput and buffer filling, as well as network assistance
information. Since sparse Bayesian estimation is computationally expensive, we developed
a fast new inference scheme to support online video quality adaptation. For this, we gave a
stochastic variational inference algorithm with a computationally easy one-step gradient
scheme, which enables fast inference in the sequential decision-making setting.

Furthermore, we evaluated the algorithm extensively under the model assumption. For the
application scenario of video streaming, the provided algorithm is naturally applicable to
different adaptive video streaming settings, such as DASH over NDN. Finally, we provided
NDN emulation results showing that CBA yields a higher QoE objective value and better QoE
fairness score between simultaneous streaming sessions compared to known throughput-
and buffer-based video quality adaptation algorithms.
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Up until this point, we did model in Chapter 4 only the reward function explicitly. However,
we are frequently interested in a description of the state or action dynamics of a decision-
making agent. By using a model for these types of dynamics, the performance of the
developed algorithms can be substantially increased. For this, we note that many decision-
making problems naturally exhibit pronounced structures inherited from the characteristics
of the underlying environment. In an MDP model, for example, two distinct states can
have inherently related semantics or encode resembling physical state configurations.
This often implies locally correlated transition dynamics among the states. To complete
a particular task in such environments, the operating agent must execute a series of
temporally and spatially correlated actions. Though a variety of approaches exist to
capture these correlations in continuous state-action domains, a principled solution for
discrete environments is missing. Therefore, we present in this chapter a Bayesian learning
framework based on Pdlya-Gamma augmentation that enables analogous reasoning in
such cases. We demonstrate the framework on several common decision-making-related
problems, such as imitation learning, subgoal extraction, system identification, and BRL. By
explicitly modeling the underlying correlation structures of these problems, the proposed
approach yields superior predictive performance than correlation-agnostic models, even
when trained on data sets that are an order of magnitude smaller in size. This chapter
extends and contains parts and material from the published work [2].

Background

Correlations arise naturally in many aspects of decision-making. The reason for this
phenomenon is that decision-making problems often exhibit pronounced structures, which
substantially influence the strategies of an agent. Examples of correlations are even found in
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stateless decision-making problems, such as multi-armed bandits, where prominent patterns
in the reward mechanisms of different arms can translate into correlated action choices
of the operating agent [84, 85]. However, these statistical relationships become more
pronounced in the case of contextual bandits, where effective decision-making strategies
not only exhibit a temporal correlation but also take into account the state context at each
time point, introducing a second source of correlation as discussed in Chapter 4 or in the
related work [71].

In more general decision-making models, such as MDPs, the agent can directly affect the
state of the environment through its action choices. The effects caused by these actions
often share common patterns between different states of the process, e.g., because the states
have inherently related semantics or encode similar physical state configurations of the
underlying system. Examples of this general principle are omnipresent in all disciplines and
range from robotics, where similar actuator outputs result in similar kinematic responses
for similar states of the robot’s joints, to networking applications, where the servicing of
a particular queue affects the surrounding network state (Section 5.4.2.3). The typical
consequence is that the structures of the environment are usually reflected in the decisions
of the operating agent, who needs to execute a series of temporally and spatially correlated
actions to complete a specific task. This is particularly true when two or more agents interact
with each other in the same environment and need to coordinate their behavior [86].

Focusing on rational behavior, correlations can manifest themselves even in unstructured
domains, though at a higher level of abstraction of the decision-making process. This is
because rationality itself implies the existence of an underlying objective optimized by
the agent that represents the agent’s intentions and incentivizes them to choose one action
over another. Typically, these goals persist at least for a short period of time, causing
dependencies between consecutive action choices (Section 5.4.1.2).

Therefore, we propose a learning framework that offers a direct way to model such
correlations in finite decision-making problems; i.e., involving systems with discrete state
and action spaces. A key feature of our framework is that it allows capturing correlations at
any level of the process; i.e., in the system environment, at the intentional level, or directly
at the level of the executed actions. We encode the underlying structure in a hierarchical
Bayesian model, for which we derive a tractable VI method based on PG augmentation
that allows a fully probabilistic treatment of the learning problem. Results on common
benchmark problems and a queueing network simulation demonstrate the advantages of
the framework. The accompanying code is publicly available via Git.'

Related Work

Modeling correlations in decision-making is a common theme in RL and related fields.
GPs offer a flexible tool for this purpose and are widely used in a wide variety of contexts.
Moreover, movement primitives [87] provide an effective way to describe temporal
relationships in control problems. However, the natural problem domain of both is a
continuous state-action environment, which is not the focus of this chapter.

1 https://github.com/bastianalt/correlation_priors_for_rl
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5.1 A GENERATIVE MODEL FOR CORRELATED COUNT DATA IN MDPs

Inferring correlation structure from count data has been discussed extensively in topic
modeling [88, 89] and factor analysis [90]. Recently, a GP classification algorithm with a
scalable variational approach based on PG augmentation was proposed [91]. Though these
approaches are promising, they do not address the problem-specific modeling aspects of
decision-making.

Several customized solutions exist for agents acting in discrete environments that allow
modeling specific characteristics of a decision-making problem. A broad class of methods
that specifically target temporal correlations rely on hidden Markov models. Many of these
approaches operate on the intentional level, modeling the temporal relationships of the
different goals followed by the agent [92]. However, there also exist several approaches
to capture spatial dependencies between these goals. For a recent overview, see [93] and
the references therein. Dependencies on the action level have also been considered in the
past, but, like most intentional models, existing approaches primarily focus on the temporal
correlations in action sequences (such as probabilistic movement primitives [87]), or they
are restricted to the particular case of deterministic policies [94]. A probabilistic framework
to capture correlations between discrete action distributions is described in [95].

When it comes to modeling transition dynamics, most existing approaches rely on GP
models [96, 97]. In the Texplore method of [98], correlations within the transition
dynamics are modeled with the help of a random forest, creating a mixture of decision
tree outcomes. Yet, a full Bayesian description in the form of an explicit prior distribution
is missing in this approach. For behavior acquisition, prior distributions over transition
dynamics are advantageous since they can easily be used in BRL algorithms such as
Bayesian exploration exploitation tradeoff in learning (BEETLE) [99] or Bayes-adaptive
Monte Carlo planning (BAMCP) [100]. A particular example of a prior distribution over
transition probabilities is given in [101] in the form of a Dirichlet mixture. However, the
incorporation of prior knowledge expressing a particular correlation structure is difficult
in this model. To the best of our knowledge, no principled method exists to explicitly
model correlations in the transition dynamics of discrete environments. Also, a universally

applicable inference tool for discrete environments, comparable to GPs, has not yet emerged.
In this chapter, we fill this gap by providing a flexible inference framework for such cases.

5.1 A GENERATIVE MODEL FOR CORRELATED COUNT DATA IN MARKOV DECISION
PROCESSES

Similar to Chapter 4, we consider a discrete-time setting ¢ € N, where an agent can make
decision u(t) € U based on a finite action set U = {u® | i = 1,... m}, with m distinct
actions. However, in this chapter we specifically focus on the setting, where the state of the

agent x(t) € X, takes values from a finite state space X = {z( | i =1,... n} of size n.

Further, compared to Chapter 4 we consider a dynamical model for the states in the form
of a Markovian transition kernel. Here, the agent can select an action u(t) € U for each
time point ¢. When the action u(t) is executed by the agent, it lets it switch its current state
x(t) € X stochastically to a new state (¢ + 1) € X according to

z(t+1) ~plx(t+1) | z(t),ut)).
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For optimal decision-making, we hence consider an MDP with a reward function R :
X x U — R. Given this reward function, the agent tries to solve the OC problem

maximize u[o oo] Z 7 E[R(x(t), u(t))]
t=0

U[0,00]

subjectto  z(t + 1) ~ p(x(t+ 1) | (1), u(t)),

over the action trajectory up o] ‘= {u(t) | t € N>o}, where we consider an infinite horizon
setting with discount factor v € (0,1) C R. Additionally, we denote a deterministic policy
i X — U as a function, which maps a particular state z € X’ to an action u € U; i.e.,
u = p(z). For a stochastic policy we use . : U x X' — [0, 1], which maps a given state
x € X to the probability distribution over actions u € U; i.e., u(u, ) = p(u | x).

THE LIKELTHOOD. One overarching theme in these types of decision-making problems
with discrete state and action spaces is that the data D consists of integer-valued quantities.
Hence, we can model these quantities as draws from multinomial distributions as

S. ~ Mult(s. | N, pe),

with number of trials N, € N, event probabilities p. = [pe1, - -, pcK]T e A and K
denotes the number of categories. Here, ¢ € C indexes some finite covariate space
C={c" |i=1,...,C} with cardinality C. We choose an abstract formulation for this
covariate space C as the count vectors s, € {0,..., N}, with ||s.[; = N, can either
represent actual count data observed during an experiment or describe some latent variable
of our model. Generally, the likelihood for the data D = {s, | ¢ € C} and parameters
0 = {p. | c € C} can be written as

p(D ] 0) =[] Mult(s. | N, p.). (5.1.1)

ceC

To concretize this type of model, we now give three examples in the context of MDPs.

EXAMPLE 1.  Asafirst example, consider the case where the agent produces a state-action
trajectory as

and we want to model the state transition probabilities from a state z(¢) = z to a state
z(t + 1) = 2’ under action u(t) = u; i.e., pruz = p(z’ | x,u).

Here, we can represent the data D = {s. | ¢ € C} using a product covariate space as
C = X x U with K = n = |X| categories. Additionally, the elements of the count vector
Se = Spu = [Swuls- -+ s smn]T are counting outgoing transitions from some state x for a
given action u; 1.e.,

Seur! = Z]l(x(t) =z Au(t)=uAzt+1)=1"), V(r,u,2')eX xUx X.



5.1 A GENERATIVE MODEL FOR CORRELATED COUNT DATA IN MDPs

Furthermore, the total number of transitions from state xz under action « is N,, =
> wex Szuar- This yields the likelihood for the data D and parameters 6 = {p,., | (z,u) €
X x U} as

p(D|0)= H H Mult(szy | Now, Pau)-

zeX ueld

EXAMPLE 2.  Another example for the multinomial model is the case when modeling a
stochastic policy of an agent in an MDP, i.e., P, = u(u, z) = p(u | x), given a state-action
trajectory

D ={x(1),u(1),...,z(T = 1),u(T —1),2(T),u(T)}.

Here, we consider covariate space C = X’ with K = m = |U| categories. The elements of
the vector s, = s, = [S,1, .. ., (sg(;m]T are counting the number of times action w is observed
at a particular state z; i.e.,

T
Sou = Y _ Ma(t) =z Ault) =u).
t=1
Therefore, the likelihood is given as

p(D | 6) = [ Mult(s, | N, p.),

zeX

where N, = Eueu Sqv 18 the total number of times we observe the agent choosing an
action at state x.

EXAMPLE 3. As the last example, we consider the case when modeling the agent’s
intentions. In this case, we choose as the covariate space the state space, i.e., C = X, and
we model K = G distinct goals, which itself might be unobservable (Section 5.4.1.2).
For this, we consider the count vector s, = s, = [s,1, - - -, sxG]T, where the element s,
describes the number of times the agent follows the particular goal g at state z.

THE PRIOR DISTRIBUTION. As a model prior for the probability vectors @ = {p. | ¢ €
C} a computationally straightforward approach is to use independent Dirichlet distributions
for all covariate values; i.e.,

p(0) = [ [ Dir(p. | @),

ceC

where a.. € R%, is a local concentration parameter for covariate value c. This approach
is computationally appealing as the Dirichlet distribution is conjugate to the multinomial
likelihood in Eq. (5.1.1). Hence, posterior inference can be calculated by updating the
posterior parameters using the sufficient statistics of the model. However, the resulting
model is agnostic to the rich correlation structure present in most MDPs and thus ignores
much prior information about the underlying decision-making problem.

Therefore, a more informative approach is to model the probability vectors @ = {p. | ¢ € C}
jointly using a common prior model to capture their dependency structure. Unfortunately,
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this often yields a non-conjugate prior distribution to the multinomial likelihood and hence,
leads to intractable exact posterior inference as the evidence of the distribution contains
an intractable integral over the parameters 6. Additionally, even when using approximate
inference schemes, such as MCMC or mean-field VI [26], a non-conjugacy leads to problems
as the full conditional distributions needed for both methods can not be computed in closed
form.

However, to introduce a dependency on the multinomial likelihood, using a shared prior
over all parameters, a tractable method for approximate inference in dependent multinomial
models has been developed to account for the inherent correlation of the probability
vectors [89]. To this end, the following prior model was introduced,

5.1.2
Pc = HSB(wc-)a Ve e C7 ( )

with latent Gaussian variables v/, € R and hyper-parameters for the mean u, € R® and
the positive-semidefinite covariance matrix 3 € R¢*C Herein, g : RE-T — AK js
the logistic stick-breaking transformation, which is defined component wise for an input

¢=1[C,. . Cr]" eRFLas

and o (-) is the logistic function. The purpose of the logistic stick-breaking transformation
in Eq. (5.1.2) is to map the real-valued Gaussian variables {¢, | k =1,..., K — 1} to
the simplex by passing each entry through the sigmoid function and subsequently applying
a regular stick-breaking construction [102]. Through the correlation structure 3 of the
prior variables ¥ = [t ,,...,% ,_,], the transformed probability vectors {p.. | ¢ € C}
become dependent. The corresponding PGM is depicted in Fig. 5.1.

It can be shown that by introducing a set of auxiliary PG variables {2, a conjugate model
in the augmented space can be established; i.e., the prior distribution p(¥) has the same
Gaussian distributional form as the full conditional distribution p(¥ | €2, D) [89]. Though
the posterior distribution is still intractable under the augmented model, it enables a simple
inference procedure based on blocked Gibbs sampling. Here, the now in a closed form,
available full conditional distributions can be sampled in alternating order. As such, the
Gaussian variables ¥ and the PG variables (2 are sampled in turn, conditionally on each
other and the count data D.

The following section presents a different approximate posterior inference method based on
VI utilizing this augmentation trick, which establishes a closed-form approximation scheme
for the posterior distribution. Moreover, we present a hyper-parameter optimization method
based on variational expectation-maximization (VEM) that allows us to calibrate our model
to a particular problem type, avoiding the need for manual parameter tuning. Applied in



5.2 VARIATIONAL INFERENCE FOR DEPENDENT MULTINOMIAL MODELS

u\.{z\

v

D

k=1,....K —1
- J

I
e N

-

VCGCJ

FIGURE 5.1: PGM for the generative model of the dependent multinomial model. The event
probabilities of the multinomial distribution get correlated through the real-valued latent variables
{¥,, | k=1,..., K}. These latent variables are mapped to the probability simplex by the logistic
stick-breaking transformation IIsp(-).

combination, this takes us beyond existing sampling-based approaches, providing a fast
and automated inference algorithm for correlated count data.

5.2 VARIATIONAL INFERENCE FOR DEPENDENT MULTINOMIAL MODELS

Consider the generative model from Section 5.1, with the likelihood model in Eq. (5.1.1)
and the correlation prior in Eq. (5.1.2). Here, we aim to compute the posterior distribution
p(¥ | D), where ¥ = [ ,...,% ;4] is the matrix of real-valued latent parameters,
and the data D = {s.. | ¢ € C} contains the count vectors. Unfortunately, exact posterior
inference is intractable since the calculation of p(¥ | D) requires marginalization over the
joint parameter space of all variables W. Hence, the goal of our inference procedure is to
find an approximate posterior distribution. Instead of following a Monte Carlo approach as
in [89], we resort to a variational approximation. Within this framework, we consider the
optimization problem

minimize KL(q(W¥ v | D)),
ninimiz (q(®) || p(¥ | D)) (5.2.3)

which searches for the best approximating distribution
¢ (¥) = p(¥ | D)

from a family of distributions Qg. It is hard to carry out this optimization under a
multinomial likelihood because it involves intractable expectations over the variational
distribution. However, in the following, we show that analogously to the inference scheme
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of [89], a PG augmentation of W makes the optimization tractable. To this end, we introduce
a family of augmented posterior distributions Qg o and instead consider the problem

minimize  KL(¢(¥,Q) || p(¥,Q | D)), (5.2.4)

9(¥,Q)eQu o
where we aim to find the optimal variational posterior in the augmented space
¢ (¥, Q) ~p(¥,Q|D)

and Q = [wy,...,wg 1] € RE*E~1 denotes the matrix of auxiliary variables. Notice that
the desired posterior can be recovered as the marginal p(¥ | D) = [ p(®,Q | D) d, i.e.,
for the approximate posterior we can compute

§(T) = / 4(¥,9) A0 ~ p(T | D).

First, for solving Eq. (5.2.4), we use an equivalent formulation by maximizing the ELBO
Llg] < logp(D);i.e.,

maximize  L[g] = E[log p(¥, €2, D)] — E[log ¢(¥, )],
(T, Q)€Qy o [Q] [ gp( )] [ gq( )] (525)

where above expectations are calculated w.r.t. the variational distribution ¢(¥, €2). Hence,
the formulation in Eq. (5.2.5) compared to Eq. (5.2.4) avoids computing the log evidence
log p(D), which corresponds to the intractable computation

p(D) = /p(\Il, Q, D) d¥dQ.

Second, in order to arrive at a tractable expression for the ELBO, we recapitulate the
following data augmentation scheme derived in [89],

p(¥,D) = p(¥)p(D | ¥)

= ( 7 N, | uk,2)> (H Mult(s, | NC7HSB(¢C-))>

k=1 ceC (5.2.6)
K-1 ¢ K-1

= (H N@ ., | 1, Z)) (H H Bin(se | bck,0(¢ck))> )
k=1 c=1 k=1

where the stick-breaking representation of the multinomial distribution has been expanded
using b, = N, — Zf;ll .. From Eq. (5.2.6), by using the binomial PMF we arrive at

-1

C K b 8 o
Nl ”wa)) (H 11 (sck)awck) (1~ o (1)) >

1 k=1
1

_ = c K bew)  (exp(ther))”™™"
_ <k21 N, | uk,zn) <c:1 I1 (Sk> LR )

(5.2.7)
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The PG augmentation, as introduced in [103], is obtained using the integral identity

% = 27" exp(rv)) / exp(—wi?/2) PG(w | b,0) dw, (5.2.8)

with £ = s — 2 and PG(w | b,0) is the density of the PG distribution. Note that the PG
distribution can be defined as an infinite sum, see Section A.2.12. Additionally, for a PG
distributed variable

¢~ PG(C ’ U,U)

we have the exponential tilting property

PG(( | u,v) = eXp(_C(U)?Sh)_I;g;é; u,0)

and the first moment can be computed as

E[¢] = % tanh(v/2).

Using the integral identity from Eq. (5.2.8) yields for Eq. (5.2.7)

K-1 C
bck —b
v D) = by Q™ Ock ckWe 5.2.9
w2 = [ T[N W T ()2 et 5.29)
~exp(—wck¢fk/2) PG(wck ’ bck; 0) dQ,
p(¥.2,D)

where, Ko, = Ser — ber /2. Hence, the integrand of Eq. (5.2.9) defines the augmented
distribution p(¥, Q, D). This augmented formulation is very appealing since the augmented
distributions

p(‘I’, Q, D) - p(\I’)p(Q, D | \Il) (0,8 p(‘I’ | Q, D)

all have a Gaussian form in ¥ and are hence conjugate.

5.2.1 Computing the Optimal Variational Distributions

With this augmented distribution at hand, we can now derive by exploiting calculus of
variations [31] the optimal distributions in Eq. (5.2.5). In this setting, we select a mean-field
family for the class of variational distributions Qg o as

C

o(,92) = [ a0 [t (52.10)

c=1
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5.2.1.1 Calculation for the Variational Distribution q(v )

First, we calculate the optimal forms of the variational distributions ¢(1 ;) for all categories
ke {l,..., K — 1}. Collecting all terms for the objective in Eq. (5.2.5) that depend on

P, gives
L[q] = L[Q(¢k)] + Lconst .

Due to the factorization in Eq. (5.2.10) together with the augmented distribution p(¥, Q, D)
from Eq. (5.2.9), we have

The optimal distribution can be calculated by introducmg the Lagrangian
c

L(a(y.1),v) = Ellog N (., | by D) + Y Elbealrin — Y Elwart)f/2]

— Ellogq(¢,)] +v </Q(;;) dip ), — 1) ,

which ensures that ¢(1 ;) is a proper density, using v as a Lagrange multiplier to enforce
the normalization constraint. The Euler Lagrange equation and optimality condition are

oL oL
5q =0 and o =0, (5.2.11)

respectively. The functional derivative of the Lagrangian yields

oL

c c
7 log N (¢, | oy, 2) + chk’ick — Z Elwer|%, /2 —logq(e,) — 1+ v.
c=1 c=1

By solving the Euler Lagrange equation for ¢() ), we obtain

C c
q(h ) = exp (V —1+log N (9 | i, 2) + ZT/’ckﬁck - Z E[chwgk/Z) :
c=1 c=1

The optimality condition (normalization constraint) in Eq. (5.2.11) yields

C C
q(wk) X N(¢k | M, E) eXp <_% Z E[ch]¢gk + Z wck/{ck)
c=1

c
O(N 'l,bk | ll,k, HN Hck/Ewck | 2bclm 1/ E[wckD
c=1

=N, | py, X) N (diag (Ejw ])_1 Ky | z,b,k,diag(E[wk])_l),

with wy, = [wig, ..., wer] " and kg = [Kik, ..., kcw] . Therefore, the optimal distribution
q(% ;) can be identified as a Gaussian by completmg the square
q(h) =Ny | A, Vi), (5.2.12)

with the variational parameters

Vi = (27" + diag(E[w])) ™ and A = Vi(kr + X7 ).
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5.2.1.2 Calculation for the Variational Distribution q(w.y)

The distribution for ¢(w,) is calculated in a similar fashion. The ELBO in Eq. (5.2.5) in
terms dependent on w.; can be written as

L[Q(wck)] = L[q(wck>] + l—constu
with
L[Q<wck>] = - E[wck] E[lﬁfk} /2 + E[lOg PG(wck | bcka O)] - E[lOg Q(ch)]-

The Lagrangian for the distribution g¢(w,y) is

L(q(wer), V) = — E[we] E[wzk] /2 + E[log PG(wek | bex, 0)] — E[log q(wer)]

+v (/ q(Wer) dwer, — 1) :

The functional derivative of the Lagrangian yields

oL

50 = —Wek E[wfk] /2 4+ log PG(wek | bek, 0) — log g(wer) — 1 + 1.

Solving the Euler Lagrange equation %—i = 0 for g(we), we find

q(wer) = exp (V — 1+ 1log PG(wek | bek, 0) — wer E[zpfk] /2) )

The normalization constraint is used to identify

q(wer) <X PG(we | bex, 0) exp (—wck E[wzk} /2) )

By exploiting the exponential tilting property of the PG distribution, that is,
02
PG(C | ,0) o exp(=2-Q) PG(C | w,0),
we obtain
Q(ch) = PG(ch | bck; wck:)a (5213)
with the variational parameter w., = /E[1)%].

C

5.2.2 The Evidence Lower Bound for the Optimal Distributions

Given the optimal distributions in Egs. (5.2.12) and (5.2.13), we are now ready to derive an
expression for the ELBO in Eq. (5.2.5); i.e.,

L[g] = E[log p(¥, £2, D)] — E[log q(¥, 2)].

75



76

5 EXPLOITING BAYESIAN CORRELATION MODELS IN DECISION-MAKING

Above expectations w.r.t. the previously derived optimal distributions yield

K-1 K-1 C b K-1 C
E[log p(¥ Ellog N (2. | ptp, & +ZZIog( ’“) =3 b log2

k=1 k=1 c=1 Sck k=1 c=1
K- K-1 C K-1 C w
+ Z )\,:nk + Z Ellog PG(wek | bek, Wer )] — Z Z bei, log (COSh %) ,
k=1 k=1 c=1 k=1 c=1
K—1 K-1 C
Eflog ¢(®, Q)] = Y Elog V(¢4 | A, Vi)l + DY " E[log PG (wek | bk, wer)]-
k=1 k=1 c=1

Canceling out the terms E[log PG(we | bex, wer )] and rewriting the prior and variational
terms as KL divergence, we obtain

K-1
Z KLN (¢, | Ak, Vi) | N (@, | g, 2)) + ZIOg (bck)

Sck
= k=1 c=1
K-1 C K-1 K-1 C w
S belog2+ > Ak =SS balog (cosh 7’“) .
k=1 c=1 k=1 k=1 c=1

Finally, by computing the KL divergence, the ELBO can be expressed in terms of the
variational parameters as

K 1 1 K—-1 K-1
_ = - . —1
L[q] 5 13| + 5 Zl log| V| ; tr(XVy)
1 K-1 K-1 C b
- — )3 ~A K—1 ] ck
- Z 0T = M) 0K 1)+ 3 S (1)
K-1 C K-—1 K-1 C w
S balog2+ > Ak - Zbcklog< ;)
k=1 c=1 k=1 k=1 c=1

5.2.3 Optimizing the Evidence Lower Bound

Here, we again summarize the results of our variational procedure and give an optimization
algorithm. A PGM for the optimal variational mean-field approximation to the true posterior
is depicted in Fig. 5.2

For the optimal distributions, we have
q(Pr) =N@Wup [ A, Vi) and  g(wa) = PG(wer | bek, wer)-
The optimal parameters and first moments of the variational distributions are
wer = \VEWZ), Vi = (27" +diag(Elwi]) ™, A = Vilwy + 27 py,)

E[¢ck] ((Vk)cc + )\ck) E[wck] =

(5.2.14)

k
tanh(w../2),
o anh(we/2)
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FIGURE 5.2: PGM for the approximate posterior distribution under the mean-field assumption. By
introducing the PG distributed auxiliary variables {w. | (¢, k) € C x {1,..., K}}, the optimal
variational distribution for the latent variables ¥ become Gaussian under the augmented mean-field
assumption. Note that the conditioned data is included by fitting the variational parameters.

with wy, = [wik, ..., wek] " and Ky, = [Kik,...,Kcx) . Additionally, the ELBO can be
computed as

Lg] =—T|E|+ Zlong——Ztr 27Vy)
1 K-1 K-1 C
=5 2 e = X)) TS (= X)) + C(K = 1)+ ) ) log ( ’“) (5.2.15)
k=1 k=1 c=1
K-1 C K-1 C
log 2 _ ] [ ek
kZI;bck og —I—Z)\knk ;;bk og(cos 5 )

The variational approximation can then be optimized through coordinate-wise ascent
by cycling through the parameters and their moments in Eq. (5.2.14). Finally, the
corresponding distribution over probability vectors {p. | ¢ € C} is defined implicitly
through the deterministic relationship in Eq. (5.1.2).

5.2.4 Hyper-Parameter Optimization

For hyper-parameter learning, we employ A VEM approach [104] to optimize the ELBO
after each update of the variational parameters. Assuming a set of hyper-parameters namely
a covariance matrix X, parametrized by a vector ¢ = [¢y, ..., ¢;]" and the set of mean
vectors = {p, | k =1,..., K — 1} the ELBO as function of the hyper parameters can
be written as

L(¢p, 1) = el — = Z tr(2,'Vy)
(5.2.16)

(1, — )‘k’)TE;l(Nk — Ak) + Leonst -
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5.2.4.1 Derivation of the Optimal Value for the Mean p,

For the optimal mean parameters {p, | k = 1,..., K — 1}, we calculate the gradient of
Eq. (5.2.16) as
oL
— =3 — i) -
Setting the gradient to zero, we obtain
e = Ap. (5.2.17)

5.2.4.2 Derivation of the Optimal Hyper-Parameters of 34
Analogously, for the optimal hyper-parameters ¢ we calculate the gradient of Eq. (5.2.16)
as
oL K — 1 ox P
= ) Jfpp et tr | B, 28,V
0¢; 2 (¢8¢) Z<¢8¢ ’
- 04

Z TE(bl I E ( k_)‘k)'
=1 J

When considering the special case of a scaled covariance matrix Y= $3, we can ﬁnd

(5.2.18)

[\.’)|P—‘

_|_

the optimizing hyper-parameter ¢ in closed form. Note that =>Yand X ¢1 =1 E
therefore, the gradient computes to

K-1

oL _ K. 1 =, el 1 S

Setting the derivative to zero and solving for ¢, we obtain the closed-form expression

qs:KLS;tr (57 Vit (= Az~ A7) (5.2.19)

5.2.4.3 The Maximization Step

The ELBO can now be optimized w.r.t. the hyper-parameters. For this we can use for the
mean parameters {u, | k =1,..., K — 1} the closed form solution in Eq. (5.2.17). For
the optimization of the covariance parameters ¢, we can resort to a numerical scheme
using the gradient expression in Eq. (5.2.18); however, this requires a full inversion of the
covariance matrix in each update step. This can be avoided using the provided closed-form
expression in Eq. (5.2.19) for the special case where ¢ is a scale parameter, i.e., 3y = P,
for some fixed 3. Here, the closed-form solution does not have to perform repeated matrix

. . . 1 . _r
inversions since 3 , being independent of all hyper-parameters and variational parameters,
can be evaluated at the start of the optimization procedure.



5.3 POSTERIOR DISTRIBUTIONS IN DECISION-MAKING

For the experiments, we consider a squared exponential covariance function of the form
/\2 . . .
(Xp)eer = Qexp (—d(cl’—;:)>, with a covariate distance measure d : C x C — R, and

a length scale | € R, adapted to the specific modeling scenario. Yet, we note that
multiple covariance functions can be easily compared against each other for model selection
purposes based on the resulting values of the ELBO [104]. Also, a combination of functions
can be employed, provided that the resulting covariance matrix is positive semi-definite,
see covariance kernels of GPs [73].

Finally, the entire algorithm for finding the optimal variational distribution with optimal
hyper-parameters is shown in Fig. 5.3

input : D = {s.|ce C}: dataset

output :{\;, Vi | k=1,..., K — 1}: optimal Gaussian variational parameters
{wer | (e, k) € C x{1,..., K — 1}}: optimal PG variational parameters
¢, {p, | k=1,..., K — 1}: optimal hyper-parameters

Initialize variational moments in Eq. (5.2.14)
while ELBO in Eq. (5.2.15) not converged do
Update variational parameters { Az, Vi | k=1,..., K — 1} and
{wer | (e, k) € C x {1,..., K — 1}} by cycling through moments in Eq. (5.2.14)
Update mean hyper-parameters {p,, | k = 1,..., K — 1} using Eq. (5.2.17)
Update covariance hyper-parameters ¢ using a gradient ascent step with
Eq. (5.2.18) or using closed form update Eq. (5.2.19)
end
return {\;, Vy | k=1,..., K — 1}
{we, | (e, k) eCx{1,..., K —1}}
o, {p, |k=1,..., K —1}

FIGURE 5.3: Pseudo-Code for VI based on PG augmentation.

5.3 POSTERIOR DISTRIBUTIONS IN DECISION-MAKING

The presented inference framework lends itself nicely to dealing with problems in decision-
making under uncertainty. Here, we restrict ourselves to two significant problems in the
context of decision-making in MDPs: (i) reconstructing a policy and (ii) estimating the
transition model. Using respective estimates, many problems of interest can be solved,
such as imitation learning, subgoal modeling, system identification, and BRL. However, we
would like to point out that the same modeling principles can be applied in many other
situations, e.g., for behavior coordination among agents [86] or knowledge transfer between
related tasks [105], to name just two examples, though a more comprehensive evaluation
study is left for future work.
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5.3.1 Policy Reconstruction

The first type of problem we consider here is to reconstruct the policy of the agent (in this
context called the expert), as described in Section 5.1, Example 2. For the reconstruction,
we suppose to have access to a demonstration data set D = {z(t),u(t) |t =1,...,T}
containing 7' state-action pairs, where each action has been generated through the expert

policy; i.e.,
u(t) ~ p(u(t) | z(t) = plu(t), z(t)).

Assuming a discrete state and action space, with n = |X’| and m = |U|, respectively, the
policy can be represented as a stochastic matrix I = [py, ..., p,], whose xth column
p: € A™ represents the local action distribution of the expert at state x in form of a vector.
Our goal is to estimate this matrix from the demonstrations D. In this setting, we construct
the count vector S, = [s1, ..., Sum] ' using

Sou =Y _ L(x(t) =z Ault) =u). (5.3.20)

t=1

Therefore, the inference problem can be directly mapped to our PG model, with covariate
space C = X and K = m categories. This allows to jointly estimate the coupled quantities
{p. | * € X'} through their latent representation ¥ by approximating the posterior
distribution p(¥ | D) in Eq. (5.2.3). Given the optimal variational distribution

K-1

q(¥) = H Ny, | Ak, Vi),

k=1

statistics can be easily obtained such as the posterior means

Efgp,] =X Vke{l,... K—1}.

Note that even though the variational distribution over the latent variables W has a desirable
factorized Gaussian form, the corresponding distributions ¢(p,) for the probability vectors
{p: | * € X}, with p, = IIsp(?),.) are given by the respective Jacobian transforms;
i.e.,

op. |

q(pz) = ’81# .

This leads to problems when computing posterior statistics, such as the posterior mean
E[p.| under the probability measure in Eq. (5.3.21), since the posterior mean does not have
an analytic form. However, a tractable alternative is to use the mean of the posterior of
the latent variable and then to use the transform as an estimate for the probability vectors;
ie.,

q(¢,), VrelX. (5.3.21)

IA)m = HSB<E[’(/)35]) - HSB(P\xla ceey )\:Jcm]T>>

where ), is the zth component of the vector Ay.



5.3 POSTERIOR DISTRIBUTIONS IN DECISION-MAKING

5.3.2 Transition Model Estimation

Another type of problem, which can be solved using the presented approximate inference
scheme, is faced when we want to estimate the transition probabilities of an MDP as in
Section 5.1, Example 1. In this setting, we consider the state-action trajectory

D= {z(1),u(l),...,z(T = 1),u(T —1),z(T)}, (5.3.22)
with 7" — 1 state transitions. Building the model with covariate space C = X x U and
K = n = |X] categories. We construct the count Vector Sy, = [Spui, - - -, Sgun) | a8

T-1
Spurr = Y L(z(t) = xAu(t) = unz(t+1) =2'), V(z,u,2’) € X xUxX, (5.3.23)

t

1

where the element s,,, represents the number of observed transitions from state z
to 2/ for action u. Here, our goal is to estimate the transition probability vectors
{Pzu | (z,u) € X x U}. Hence, this can be achieved by fitting the variational posterior
distribution of the latent variables W. Again, we can easily compute statistics like the
posterior mean, or we can calculate the density of the probability vectors using the Jacobian
transformation in Eq. (5.3.21).

When making decisions in an MDP the posterior distribution can be directly used by, e.g.,
following a greedy strategy w.r.t. to the posterior mean.

GREEDY STRATEGY. Foragreedy strategy, we apply the deterministic policy p : X — U
which maximizes the state-action values {Q(z,u) | (x,u) € X x U} under the posterior
mean model, hence,

f)a:u - HSB(E[¢xu'])
Q(z,u) = R(x,u) + ) Prusr max Q(a', ')

r’'ex

u = p(r) = arg max Q(x,u).
u' el

Other strategies can be found by applying the principle of BRL. BRL offers a natural
playground for the task of combined model-learning and decision-making as it intrinsically
balances the importance of information gathering and instantaneous reward maximization,
avoiding the exploration-exploitation dilemma encountered in classical RL schemes [14].
There are numerous BRL algorithms such as BEETLE [99] or BAMCP [100], which ap-
proximately plan using the posterior belief as a state in an augmented Bayes-adaptive
Markov decision process (BAMDP) [106]. However, as these methods tend to be very
time-consuming, we follow a different route here and apply a simple bandit algorithm [30].
We can easily apply posterior sampling for reinforcement learning (PSRL) [107] for the
presented model, where future actions are planned using a probabilistic model of the
environment’s transition dynamics. For PSRL, we consider two variants.
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PSRL SAMPLING VARIANT. In the first variant we compute the optimal state-action-
values {QU(z,u) | (z,u,l) € X x U x {1,...,L}} for a fixed number L of posterior
samples representing instantiations of the transition model by solving the corresponding
Bellman equations for Q) (z, 1) as

g q(\Il(l))
W _ 0
Pou = Ilsp(¥20.) I=1.. L (5.3.24)
QU (x,u) = Rl w) +7 Y Pruwer max QV(a', /).
u' eU

r'eX

After calculating the state-action-values for all samples, by, e.g., value iteration, we choose
the deterministic policy p : X — U that yields the highest expected return on average;
i.e.,

L
1
0 !
u = pu(x) = arg max 7 lg_l QY (x,u)

u'et

PSRL MEAN VARIANT. In the second variant, we select the greedy policy dictated by
the empirical posterior mean of the transition dynamics; i.e.,

O~ g(w0) l=1,...,L

L
1
Axu = 7 II @
p I ;1 SB(’d)xu-)

(5.3.25)
Q(z,u) = R(z,u) + Wx/;cpm/ max Q(z', u')
u = p(r) = argmax Q(x,u’).

u' el

In both variants, the obtained policy is followed for a fixed number of transitions before new
observations are taken into account for updating the posterior distribution. These variants
of the PSRL principle are a form of Thompson sampling [108]. Thompson sampling,
which performs well in practice, trades-off exploration and exploitation naturally, since for
uncertain posterior distributions, samples tend to be very random and lead to exploration.
Additionally, for peaked, meaning certain, posterior distributions, a more greedy strategy is
often chosen as the samples become more deterministic. Another appealing property of
the sampling-based approach in, e.g., Egs. (5.3.24) and (5.3.25) is that, we do not have to
compute the Jacobian transforms for the probability vectors as in Eq. (5.3.21). However,
note that applying other bandit strategies with the presented inference scheme are also
possible, such as UCB as presented in Chapter 4.

54 EVALUATION

To demonstrate the versatility of our inference framework, we test it on several modeling
scenarios that commonly occur in decision-making contexts. For this, we concentrate on
imitation learning, subgoal modeling, system identification, and BRL.
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(a) Expert policy. (b) Dirichlet estimate. (c) PG estimate.

FIGURE 5.4: Imitation learning example. The expert policy in (a) is reconstructed using the
posterior mean estimates of (b) an independent Dirichlet policy model and (c) a correlated PG
model, based on action data observed at the states marked in gray. The PG joint estimate of the local
policies yields a significantly improved reconstruction.

5.4.1 Policy Reconstruction in a Grid World Example

5.4.1.1 Imitation Learning

First, we illustrate our framework on an imitation learning example and try to reconstruct
the policy from an expert, as described in Section 5.3.1. To demonstrate the advantages
of the presented joint inference approach over a correlation-agnostic estimation method,
we compare our framework to the independent Dirichlet model described in Section 5.1.
Both reconstruction methods are evaluated on a classical grid world scenario comprising
n = 100 states and m = 4 actions. Each action triggers a noisy transition in one of the four
cardinal directions such that the pattern of the resulting next-state distribution resembles
a discretized Gaussian distribution centered around the targeted adjacent state. Rewards
are distributed randomly in the environment. The expert follows a near-optimal stochastic
policy, choosing actions from a softmax distribution obtained from the state-action-values
(Q-values) of the current state. An example scenario is shown in Fig. 5.4a, where the
displayed arrows are obtained by weighting the four unit-length vectors associated with
the action set U = {left, down, right, up} according to their local action probabilities. The
reward locations are highlighted in green.

I Dirichlet . PG

FIGURE 5.5: Normalized evaluation metrics for
value loss I the imitation learning example. The Hellinger
distance to the expert policy and the correspond-
ing value loss [93] is shown for both an indepen-
dent Dirichlet policy model and a correlated PG

halal 000000
model.
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The results are depicted in Figs. 5.4 and 5.5. Figure 5.4b shows the reconstruction of the
policy obtained through the independent Dirichlet model. Since no dependencies between
the local action distributions are considered in this approach, a posterior estimate can
only be obtained for states where demonstration data is available, highlighted by the gray
coloring of the background. For all remaining states, the mean estimate predicts a uniform
action choice for the expert behavior since no action is preferred by the symmetry of the
Dirichlet prior, resulting in an effective arrow length of zero. By contrast, the PG model
(Fig. 5.4c) is able to generalize the expert behavior to unobserved regions of the state
space, resulting in significantly improved reconstruction of the policy (Fig. 5.5). To capture
the underlying correlations, we used the Euclidean distance between the grid positions as
covariate distance measure d and set [ to the maximum occurring distance value.

5.4.1.2 Subgoal Modeling

In many situations, modeling the actions of an agent is not of primary interest or proves to
be difficult, e.g., because a more comprehensive understanding of the agent’s behavior is
desired (see inverse reinforcement learning (IRL) [109] and preference elicitation [110]) or
because the policy is of complex form due to intricate system dynamics. A typical example
is robot object manipulation, where contact-rich dynamics make it difficult for a controller
trained from few demonstrations to generalize the expert behavior appropriately[111].
A simplistic example illustrating this problem is depicted in Fig. 5.7a, where the agent
behavior is heavily affected by the geometry of the environment, and the action profiles at
two wall-separated states differ drastically.

Similarly to the setup from Sections 5.3.1 and 5.4.1.1, we aspire to reconstruct the shown
behavior from a demonstration data set of the form

D={xt),u(t)|t=1,...,T},

depicted in Fig. 5.7b. However, this time, we follow a conceptually different line of
reasoning and assume that each state z € X" has an associated subgoal g, that the agent is
targeting at that state. Thus, action is considered as being drawn from some goal-dependent
action distribution as

For our example, we adopt the normalized softmax action model described in [93]. Spatial
relationships between the agent’s decisions are taken into account with the help of our PG
framework by coupling the probability vectors that govern the underlying subgoal selection
process; i.e.,

9o ~ Cat(gs | Px),

where p, is described through the stick-breaking construction in Eq. (5.1.2). Accordingly,
the underlying covariate space of the PG model is C = X and we have K = G categories,
with a total number G distinct subgoals.

With the additional level of hierarchy introduced, the count data {s, | x € X’} to train our
model (see Eq. (5.3.20)) is not directly available since the subgoals {g, | x € X'} are not
observable, for a PGM see Fig. 5.6. For demonstration purposes, instead of deriving the full
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é; \é Mult

FIGURE 5.6: PGM of the generative subgoal model using the suggested correlation prior with a
dependent multinomial model for the various goals.

Vee X
J

variational update for the extended model, we follow a more straightforward strategy that
leverages the existing inference framework within a Gibbs sampling procedure, switching
between variational updates and drawing posterior samples of the latent subgoal variables.
More precisely, we iterate between

* computing the variational approximation in Eq. (5.2.4) for a given set of subgoals
{g. | © € X'}, treating each subgoal as single observation count, i.e.,

A(,Q) ~ p(¥,2 | D)
D' = {s, = OneHot(g,) | x € X'}
and
» updating the latent assignments based on the induced goal distributions, i.e.,
¥~ q(P)
gz ‘ D7¢z Np(gx ’ D,lbx) Vo e X,
where

(g2 | D,4,.) x<p(D | 2)p(9x | ¥s.)

= {H [p(u(t) | x<t>,gx>]“f“>‘%’} Cat(g, | Tsp(e,.)).

t=1

The results are depicted in Fig. 5.7. Figure 5.7c shows the policy model obtained by
averaging the predictive action distributions of L = 100 drawn subgoal configurations;
1.e.,
1 L
/:l/(u7 x) - Ezp(u | ‘rag:(pl)>7

=1
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FIGURE 5.7: Subgoal modeling example. The expert policy in (a) targeting the green reward states
is reconstructed from the demonstration data set in (b). By generalizing the demonstrations on the
intentional level while taking into account the geometry of the problem, the PG subgoal model in (c)
yields a significantly improved reconstruction compared to the corresponding action-based model
in (d) and the uncorrelated subgoal model in (e). Red color encodes the Hellinger distance to the
expert policy.

where gg(cl) denotes the [th Gibbs sample of the subgoal assignment at state x. The obtained
reconstruction is visibly better than the one produced by the corresponding imitation
learning model in Fig. 5.7d, which interpolates the behavior on the action level and thus
fails to navigate the agent around the walls. While the Dirichlet-based subgoal model
(Fig. 5.7e) can generally account for the walls through the use of the underlying softmax
action model, it cannot propagate the goal information to unvisited states. For the considered
uninformative prior distribution over subgoal locations, this has the consequence that
actions assigned to such states tend to transport the agent to the center of the environment,
as this is the dominating move obtained when blindly averaging over all possible goal
locations.

5.4.2 Transition Model Estimation and Decision-Making in a Grid World Example

Having focused our attention on learning a model of an observed policy, we now enter
the realm of BRL and optimize a behavioral model to the particular dynamics of a given
environment and focus on the setting described in Section 5.3.2. For this purpose, we
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slightly modify our grid world from Section 5.4.1.1 by placing a target reward of +1 in
one corner and repositioning the agent to the opposite corner whenever the target state
is reached (compare “Grid10” domain in [100]). For the experiment, we assume that
the agent is aware of the target reward but does not know the transition dynamics of the
environment.

5.4.2.1 System Identification

For the beginning, we ignore the reward mechanism altogether and focus on learning the
transition dynamics of the environment. To this end, we let the agent perform a random
walk on the grid, choosing actions uniformly at random and observing the resulting state
transitions as in Eq. (5.3.22). Analogously to the previous two experiments, we estimate
the transition dynamics of the environment, with n = 100 states and m = 4 actions, from
the count data as in Eq. (5.3.23) using an independent Dirichlet prior model and our PG
framework, where we employ a separate model for each action. Hence, we model the
correlation for the next state distribution for a given action v € U using a prior covariance
over last states 3(u) € R™ ™ and prior mean vectors py(u) € R™, for each category
k € {1,...,n — 1} corresponding to the next states.

The graphs describe the resulting estimation accuracy in Fig. 5.8a, and show the distance
between the ground truth dynamics of the environment and those predicted by the models,
averaged over all states and actions. As expected, our PG model significantly outperforms
the naive Dirichlet approach.

5.4.2.2 Bayesian Reinforcement Learning

Next, we consider the problem of combined model-learning and decision-making by
exploiting the experience gathered from previous system interactions to optimize future
behavior. For this, we leverage BRL as described in Section 5.3.2 and evaluate the grid world
experiments for the two PSRL variants as described in Section 5.3.2, PSRL Sampling Variant
and Section 5.3.2, PSRL Mean Variant. In both cases, the obtained policy is followed for a
fixed number of transitions before new observations are taken into account for updating the
posterior distribution.

Figure 5.8b shows the expected returns of the so-obtained policies over the entire execution
period for the three prior models evaluated in Fig. 5.8a and both PSRL variants. The graphs
reveal that the PG approach requires significantly fewer transitions to learn an effective
decision-making strategy.

5.4.2.3 Bayesian Reinforcement Learning for Queueing Networks

As a final experiment, we evaluate our model on a network scheduling problem, depicted
in Fig. 5.9a. The considered two-server network consists of two queues with buffer lengths
By = By = 10. The state of the system is determined by the number of packets in each
queue, summarized by the queueing vector b = [by, by] ", where b; denotes the number of
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FIGURE 5.8: BRL results. (a) Estimation error of the transition dynamics over the number of
observed transitions. Shown are the Hellinger distances to the true next-state distribution and the
standard deviation of the estimation error, both averaged over all states and actions of the MDP. (b)
Expected returns of the learned policies (normalized by the optimal return) when replanning with
the estimated transition dynamics after every fiftieth state transition.

packets in queue . The underlying system state space is X = {0,..., B1} x {0,..., By}
with size n = (By + 1)(B2 + 1).

For our experiment, we consider a system with batch arrivals and batch servicing. The task
for the agent is to schedule the network’s traffic flow under the condition that only one of
the queues can be processed at a time. Accordingly, the actions are encoded as u = 1 for
serving queue 1 and v = 2 for serving queue 2. The number of packets arriving at queue 1
is modeled as

g1 ~ Pois(q1 | 91),

with mean rate ©/; = 1. The packets are transferred to buffer 1 and subsequently processed
in batches of random size
g2 ~ Pois(gz | ¥2),

provided that the agent selects queue 1. Therefore, J5 = ; 1(u = 1), where we consider
an average batch size of ; = 3. Processed packets are transferred to the second queue,
where they wait to be processed further in batches of size

qs ~ POiS(CB | 193)7

with Y3 = P 1(u = 2) and an average batch size of S, = 2. The resulting transition to the
new queueing state b’ after one processing step can be compactly written as

b — |:(b1 +q — q2)§1]
(b 4+ q2 — Q3)032 ’

where the truncation operation (-)¥ = max (0, min(B, -)) accounts for the nonnegativity

and finiteness of the buffers. The reward function, which is known to the agent, computes
the negative sum of the queue lengths

R(b) = —(by + by).
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FIGURE 5.9: BRL for batch queueing. (a) Considered two-server queueing network. (b) Expected
returns over the number of learning episodes, each consisting of twenty state transitions.

Despite the simplistic architecture of the network, finding an optimal policy for this problem
is challenging since determining the state transition matrices requires nontrivial calculations
involving concatenations of Poisson distributions. More importantly, when applied in a
real-world context, the arrival and processing rates of the network are typically unknown,
so that planning-based methods cannot be used.

Figure 5.9b shows the evaluation of PSRL on the network. As in the previous experiment, we
use a separate PG model for each action and compute the covariance matrix 3¢ based on the
normalized Euclidean distances between the queueing states of the system. This encodes
our prior knowledge that the queue lengths obtained after servicing two independent copies
of the network tend to be similar if their previous buffer states were similar. Our agent
follows a greedy strategy w.r.t. the posterior mean of the estimated model, see Section 5.3.2,
Greedy Strategy. After each policy update, the policy is evaluated by performing one
thousand steps from all possible queueing states of the system. As the graphs reveal, the
PG approach significantly outperforms its correlation agnostic counterpart, requiring fewer
interactions with the system while yielding better scheduling strategies by generalizing the
networks’ dynamics over queueing states.

5.5 SUMMARY

In this chapter, we presented a correlation model for decision-making under model
uncertainty. Here, compared to situations with continuous state spaces, as in Chapter 4,
we specifically considered discrete state-action spaces. Since a tractable framework
for modeling and inferring a correlated model in decision-making was missing, we
introduced a new method. With the proposed variational PG model, we have presented
a self-contained learning framework for flexible use in many familiar decision-making
contexts. The framework allows an intuitive consideration of prior knowledge about
the behavior of an agent and the structures of its environment, which can significantly
boost the predictive performance of the resulting models by leveraging correlations and
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reoccurring patterns in the decision-making process. A key feature is the adjustment
of the model regularization through automatic calibration of its hyper-parameters to the
specific decision-making scenario at hand, which provides a built-in solution to infer the
effective range of correlations from the data. We have evaluated the framework on various
benchmark tasks, including an example from communication systems. The framework
lends itself nicely to, e.g., realistic queueing problems, which in a real-world situation
admit no planning-based solution due to unknown system parameters. In all presented
scenarios, our framework consistently outperformed the naive baseline methods, which
neglect the rich statistical relationships to be unraveled in the estimation problems.
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In this chapter, we introduce compared to Chapters 4 and 5 another aspect of complexity
to the up until now discussed decision-making problems. We consider problems under
partial observability and therefore close the circle to the inference problem discussed in
Chapter 3. A famous model for making decisions under partial observability is the partially
observable Markov decision process (POMDP) framework [112]. Here, we extend an MDP
by an additional noisy observation process, on which decisions have to be based. We will
discuss in this chapter specifically a problem in continuous time, similar to Chapter 3.
For this, we take a look at processes that evolve in discrete space and continuous time.
Such processes are omnipresent in many areas, as vast as, e.g., discrete event systems in
engineering or population dynamics in biology. To be precise, we consider the problem
of optimal decision-making in such discrete state and action space systems under partial
observability. This places our work at the intersection of optimal filtering and OC. At the
current state of research, a mathematical description for simultaneous decision-making and
filtering in continuous time with finite state and action spaces is still missing. In this chapter,
we give a mathematical description of a continuous-time POMDP. By leveraging optimal
filtering theory, we derive a HJB type equation that characterizes the optimal solution.
Using techniques from deep learning [113] we approximately solve the resulting partial
integrodifferential equation. We present (i) an approach solving the decision problem
offline by learning an approximation of the value function and (ii) an online algorithm
that provides a solution in belief space using deep RL. We show the applicability on a
set of toy examples which pave the way for future methods providing solutions for high
dimensional problems. This chapter extends and contains parts and material from the
published work [1].
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Background

Continuous-time models have extensively been studied in machine learning and control.
They are especially beneficial to reason about latent variables at time points that are not
included in the data. In a broad range of topics such as natural language processing [114],
social media dynamics [115] or biology [116] to name just a few, the underlying process
naturally evolves continuously in time. In many applications, the control of such time-
continuous models is of interest. There are already numerous approaches that tackle the
control problem of continuous state space systems; however, for many processes, a discrete
state-space formulation is more suited. This class of systems is discussed in the area of
discrete event systems [117]. Decision-making in these systems has a long history, yet,
if the state is not fully observed, acting optimally in such scenarios is notoriously hard.
Many approaches resort to heuristics, such as applying a separation principle between
inference and control. Unfortunately, this can lead to weak performance as the agent does
not incorporate the effects of its decisions for future inference.

In the past, this problem was also approached by using a discrete-time formulation such
as a POMDP model [112]. Nevertheless, it is not always straightforward to discretize the
problem as it requires adding pseudo observations for time points without observations.
Additionally, time discretization can lead to problems when learning optimal controllers in
the continuous-time setting [118].

A more principled way to approach this problem is to define the model in continuous time
with a proper observation model and to solve the resulting model formulation. Still, it is not
clear a priori how to design such a model and even less how to control it optimally. In this
chapter, we formulate this problem by introducing a continuous-time analog to the POMDP
framework. We also show how deep learning methods can be used to find approximate
solutions for control under the continuous-time assumption. Our work can be seen as
providing the first step towards scalable control laws for high-dimensional problems by

using further approximation methods. The accompanying code is publicly available via
Git.!

Related Work

Historically, OC in continuous time and space is a classical problem and has been
addressed ever since the early works of Pontryagin [32] and Kalman [119]. Continuous-
time RL formulations have been studied [120-122] and resulted in works such as the
advantage updating and advantage learning algorithms [123, 124] and more recently in
function approximation methods [118]. Continuous-time formulations in the case of full
observability and discrete spaces are regarded in the context of semi-Markov decision
processes (SMDPs) [27, 125], with applications, e.g., in E-commerce [126] or as part of the
options framework [127, 128].

1 https://github.com/bastianalt/pomdps_continuous_time_discrete_spaces


https://github.com/bastianalt/pomdps_continuous_time_discrete_spaces

6.1 A POMDP MODEL IN CONTINUOUS TIME

A critical area for applying time-continuous discrete-state space models is discussed in
the queueing theory literature [36]. Here, the state space describes the dynamics of the
discrete number of customers in the queue; see also Section 5.4.2.3 in the previous chapter
for an analog discrete-time problem. These models are used, for example, for internet
communication protocols, such as in TCP congestion control. More generally, the topic
is also considered within the area of stochastic hybrid systems [129], where mixtures of
continuous and discrete state spaces are discussed. Though, the control under partial
observability is often only considered under very specific assumptions on the dynamics.

A classic example for simultaneous optimal filtering and control in continuous space is the
LQG controller [13]. In the case of partial observability and discrete spaces, the widely
used POMDP framework [112] builds a sound foundation for optimal decision-making in
discrete-time and is the basis of many modern methods, e.g., [130-132]. By applying
discretizations, it was also used to solve continuous state space problems as discussed
in [133]. Another existing framework close to our work is the partially observable
semi-Markov decision process (POSMDP) [134], which has applications in fields such
as robotics [135] or maintenance [136]. One major drawback of this framework is that
observations are only allowed to occur at time points where the latent CTMC jumps. This
assumption is very limiting, as in many applications, observations are received at arbitrary
time points, or knowledge about jump times is not available.

The development of numerical solution methods for high dimensional PDEs, such as the HIB
equation, is an ongoing research topic. Popular approaches include techniques based on
linearization such as differential dynamic programming [137, 138], stochastic simulation
techniques as in the path integral formalism ,[ 139, 140] and collocation-based approaches
as in [141]. Latter has been extensively discussed due to the recent advances of function
approximation by neural networks, which have achieved substantial empirical success [142].
Approaches to solving HIB equations among other PDEs using deep learning can be found
in [143-146].

6.1 A PARTIALLY OBSERVABLE MARKOV DECISION PROCESS MODEL IN CONTINU-
OUS TIME

In this chapter, we now present a model formulation for a continuous-time equivalent of
a partially observable Markov decision process (POMDP) model with time index ¢ € R
defined by the tuple

(X, U, Y, A, Pyxu R, T).

We assume a finite state space
X={zD]i=1,...,n}

and a finite action space '
U=1{u?i=1,...,m},

with n distinct states and m distinct actions, respectively. The observation space ) can be
either a discrete space or an uncountable space. For the model we assume that a latent
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controlled Markov process {z(t) | t € R>¢}, with z(t) € X, follows a CTMC with rate
function A : X x X x U — R;i.e.,

PIX(t+h)=x|X(t)=2a,ut)=u) = A",z |u)h+ o(h), (6.1.1)

for all x # x’ and the exit rate is defined as

Az |u) = Z Az, 2 | u).

z'eX\{z}

Note that the rate function A is a function of the action variable, therefore, the system
dynamics are described by a time inhomogeneous CTMC, which is modulated by an action
signal {u(t) | t € Rso}, with u(t) € U. We consider a partial observable setting, where
the underlying process {z(¢) | ¢ € R>(} cannot be directly observed, but an observation
process {y(t) | t € Rsq} is available providing information about {z(¢) | t € Rx¢}.
The observation model is specified by the conditional probability measure Py x ,. This
observation model specifies either a discrete-time measurement model for a set of N
observations {y; | t =1,..., N} as

yvi ~p(y: | x(t;),u(t;)) Vie{l,...,N}, (6.1.2)

where y; € ) is the ith observation at time point ¢;; i.e., y; = y(¢;). Alternatively,
Py|x,. s the underlying probability measure corresponding to a continuous-time process
{y(t) | t € Rso}, with y(t) € Y, which follows for example the /-dimensional SDE

dy(t) = g(z(t),u(t)) dt + Bdw(t), (6.1.3)

with y(t) € Y C R, drift function g : X x U — R!, dispersion matrix B € R and
standard Brownian motion w(¢) € RX. The reward function is givenby R : X x U — R.
Throughout, we consider an infinite horizon problem with discount 7. The goal of the
agent is to solve the problem

<1

maximize Jup )] = E [/ —e 7 R(x(s),u(s)) ds|, (6.1.4)
U[0,00] o T

over the action trajectory uj ) ‘= {u(t) | t € R>¢}. Note that, in this chapter, we use a

normalization by 1/7 for the value function as it was found to stabilize its learning process

when function approximations are used [143].

Since, the agent does not have access to the latent process z(t), the decision u(¢) at time point
¢ has to be based on the history of the observation process yo¢) = {y(s) | s € [0,¢)} and
the action process ujo ) = {u(s) | s € [0,t)}. Hence, a sufficient statistic for the latent state
x(t) at time ¢ is provided by the filtering distribution 7(x,t) = P(X(t) = & | y[o,1), Upp,1))-
This filtering distribution is used as a state of the partially observable system in form of
a vector valued belief state 7 (t) € A", with components {7 (z,t) | x € X'}. Therefore,
we define p : A" — U as a deterministic policy, which maps a belief state to an action.
The performance of such a policy p with action u(s) = pu(m(s)), s € [0, 00) in the infinite
horizon case is then given by

T = | [ 2 Rea). ul(s)) s

T

(0) = w},

with initial belief w € A™ and above expectation is carried out w.r.t. both the latent state
and observation processes.
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Next, we derive the equations which describe the evolution of the belief state {7 (¢) | t €
R>0}. For this, we specifically consider (i) a continuous-discrete measurement model as in
Eq. (6.1.2) and (ii) a continuous-time measurement model as in Eq. (6.1.3).

THE LIKELTIHOOD. For the continuous-discrete case with observations at time points
{t; |i=1,..., N}, the likelihood of the data D(t) = {y1,...,yn}, with N = max(N’ :
tnr < t), for a given latent CTMC trajectory xjo4 = {x(s) | s € [0, ]} and action trajectory
uo,] can be expressed as

N

p(D(t) | zog, uon) = [ [ p(yi | (t:), u(t:)). (6.2.5)

i=1

In the case of a continuous observation trajectory ypo 4 = {y(s) | s € [0,]} we can not
express the likelihood in form of a probability density, as y[o ¢ is a collection of uncountably
infinite many RVs. However, for the SDE observation model described in Eq. (6.1.3) we can
express the likelihood of the data D(t) = y|o as a path measure using Girsanov’s theorem
(see, e.g., [17, 20]), as

P(D(t) € dyjoq | Zj0.9, up0,) = P(Yi0.q € dyjo.q | Zjo,9, Uo,)

= ([ & ) (BB) a5 [ &0 620

(BBT) " gla(s), u(s))ds) P(Wioy € dyp).

where P(W[O,t] € ) denotes the Wiener measure w.r.t. the Brownian motion W0, =
{w(s) | s € [0,¢]} in Eq. (6.1.3).

THE PRIOR DISTRIBUTION. The prior distribution is given by the controlled CTMC as
defined by the infinitesimal definition in Eq. (6.1.1). Given this, we give now a derivation
for the master equation [19] of the controlled process {x(t) | ujo4}-

For the derivation of the master equation, we start with the Chapman-Kolmogorov equation
(see, e.g., [19, 20]) by exploiting the law of total probability

PX(t+h) =2 |upen) = Y PX{E+h) =2 X(t) =2 upen)

a'eX
P(X(t) =2 | Ujo,1),
for some i > (. Next, we compute the relative change in probability as
P(X(t+h)=a|upwn) — PX({E) =2 |upg)
h

" h Z P(X(t+h)=x|X(t)= ', U[t,t+h]) P(X(t) = x’ ’ U[O,t]) (6.2.7)
e\ (o}
+PX(1) = @ [ upg) (POX(E+ 1) =2 | X(8) = 2, upern) = 1)}

95



96

6 OPTIMAL DECISION-MAKING IN CONTINUOUS TIME AND DISCRETE SPACES

Using the complementrule P(X (t+h) = @ | X(t) =z, wern) = 1= ) P(X (04
h) =’ | X(t) = @, up4y)) for the transition probabilities yields for Eq. (6.2.7)

P(X(t —+ h) =z ’ U[O,t—i-h]) — P(X(t) =z | u[o,t])

h
1
= E Z P(X(t + h) =7 ’ X(t) = wla u[t,tJrh}) P(X<t> - l‘l ’ U[O,t])
z'eX\{z}
Z P(X(t+h)=a"| X(t) =z, upen) P(X(t) =z | up)
v'eX\{z}

By exploiting the infinitesimal definition in Eq. (6.1.1) and taking the limit limj_,, from
both sides, we arrive at

stP(XU z | upn) = Z A’z | u(t)) P(X(t) = 2" | up)
wex\(z)
N Al | u() PX(E) = 2 | ug).
z’eX\{z}

Finally, let us define A(z,z [ u) = Az [ u) = =3 cy\ 1y Az, 2" | u) and p(z, 1) =
P(X(t) = x| upy). Therefore, we have the master equation

= SOAE x u(t)pla' t) Vo e, (6.2.8)

z’'eX
with initial condition p(x,0) = P(X(0) = z) forevery z € X.

Given the prior distribution and the likelihoods, we are now ready to compute the posterior
probabilities for the filtering distribution.

6.2.1 Continuous-Discrete Filtering

We start with the case of continuous-discrete filtering, as in [116]. In continuous-
discrete filtering, we consider the observation model from Eq. (6.2.5) and prior model
from Eq. (6.2.8). Here, we can find an evolution equation for the filtering distribution
{m(z,t) | (x,t) € X x Rs}, with

m(z,t) =P(X(t) =z | Y[O,t]>u[0,t}) =PX(t) =2y, .. ,}’N,U[o,t])-
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For the calculation, we consider two cases. First, we compute the filtering distribution in
between observations. In this case, we consider an arbitrary interval [¢, ¢ + h], where no
observations occur. Here, we have

m(x,t+h) =P(X({t+h)=2|y1, .., YN Upo+n])
—ZP (t+h)=x,X(t)=2"|y1,.... YN, Uo,+h))

z’'ex

=Y PX(t+h)=x|X(t)=2",y1,....yNn Upesn)

r'eX
’ P(X(t) = ‘T/ | Yi,.-- 7yN7u[0,t+h])
=Y P(X(t+h)=x| X(t) =2, uyen)m(2t).

r'eX

Therefore, 7(x,t 4+ h) in between observations is given by the Chapman-Kolmogorov
equation with the transition probabilities P(X (t + h) = x | X(t) = ', uy41s)), Which
correspond to those of the prior dynamics, as given in the definition in Eq. (6.1.1). Hence,
analogous to the derivation in Section 6.2, The Prior Distribution, we can compute the
filtering distribution in between observations, which follows the master equation

d’/Tl’t

ZAx x| u()r(d' ) Ve e X, (6.2.9)

x'eX
with initial condition 7(z,0) = P(X(0) = z) forevery z € X.

Second, for the case at observation time points {¢; | ¢ = 1, ..., N'} the filtering distribution
computes to

(1)

P(X(ti) =2 |y1,-,¥i> Upo,u))
=p(x,t | Y1, -, Yir Uog)
~op(@t Y, - Y | uog)
B P(Yh e Y \ U[O,ti]>

P(yi | @t y1, - Yie1, U, )P(@ i, Y1y - - Yie1 | Upos))
B P(YL Y ‘ U[O,ti])

p(yi | 2.t y1, - Vi1, up)P(@, L | Y1, - Vi1, Uos))
B p(y1, -5 ¥i | up))

'p(Y1, e Yia ’ u[O,ti])

_ p(yi | l‘vu(ti))ﬂ-(mvti ) . (6.2.10)
Zye)( p(yz | lJ? u(ti))ﬂ-(l‘/7 tz )
where 7(x,t;) = p(x,t; | ¥1,...,¥i-1, Uoy,]) denotes the belief just before the observa-
tion. The reset conditions at the observation time points represent the posterior distribution
of x(t) which combines the likelihood model p(y | x, u) with the previous filtering distri-
bution 7(z, t; ) as prior. Note that the filter equations in Eqgs. (6.2.9) and (6.2.10) can be
written in the differential form as

dr(z,t) = > A,z [u(t)w(@, 1) dt + (7(2, tye) — (x,1)) AN(E).  (6.2.11)

r'eX
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Here, the observations enter the filtering equation by the counting process N(t) =
SV 1(t; < t) and the jump amplitude 7(z, ¢ ~N)) — m(x,t), which sets the filter to the
new posterior distribution 7(x, tx()), as in Eq. (6.2.10).

6.2.2 The Wonham Filter

Next, we derive an evolution equation for the so-called Wonham filter [147]. For the
Wonham filter, we consider the continuous-time observation model from Eq. (6.1.3) and the
CTMC prior model from Eq. (6.2.8). Here, the Wonham filter describes the time evolution
of filtering distribution {7 (z,t) | (x,t) € X x R>¢}, with

m(r,t) =P(X(t) =7 | Yio., U[o,t])-
Further, we give an outline of the derivation, which largely follows the one discussed in [20,

Chapter 18.5], for additional details, see [147, 148].

We start by computing the Bayes rule for the posterior path measure using the likelihood in
Eq. (6.2.6), this yields
P(X[o 1 € dzjg | Yo, to,)
(X5 Yiou1) € d (2, ¥10.1) | wo)
P(Y[ 0.4 € dyjo.9 | 0.5 wo.) P(Xjo4 € dzpg | ug)
t t
—1 1 -1
—oxp ([ 8709006 (BBT) " ay(e) - § [ 8700, uls) (BBT)
0 0
g(x(s),u(s))ds) P(Wy g € dypg) P(Xj0q € dzjog | up4)
t B 1 [t -
conp ([ 87000 (BBT) " ay(s) - [ &7 (w(s).ut) (BBT)
0 0
g(x(s),u(s))ds) P(Xp € dzjoy | uo,)-
Therefore, the posterior path measure can be written as
Z (0.0, Y1) P(Xpo. € dojo | o)
[ Z(xlo > y0.0) P(Xpog € dafy [ upp)”

which is called Kallianpur-Striebel formula. Here, Z (x[07t], y[o,t]) is the Radon-Nikodym
derivative between the posterior and prior path measure; i.e.,

X[y t .
e —ow ([ 8706 (BBT) " ay(y

1

= / g" (x(s), u(s)) (BBT)lg@(S)’“(S”dS) |

Further, the filtering distribution is given as the ¢-point marginal of this path measure;
1.e.,

P(X0,4 € dzoq | Y0, Upo) =

Z(-T[O,t] ) y[O,t]) =

A

X() —$|Y[Ot]7u[ot])
I(x(t) =2 ‘Y[Ot],u[mﬂ

P(
E|
/]l )P(Xj04 € dxo | ¥10.00 Ujo,1))
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Next, for further derivation, we define an analog equation for the unnormalized filter as
o t) = / 1(a(t) = 2)Z (20, y01) P(Xoa € deog | ), 6.2.12)

where W(I,t) = %
ol ex T(@,

Computing d7(z, t) from Eq. (6.2.12) by the use of It6 calculus gives the Zakai equation
dm(z,t) = Z Az | u@)7 (2 t)dt + 7 (2, t)g ' (2, u(t)) (BBT)_1 dy (1),
z'eX
with initial condition 7(x,0) = p(z,0) = P(X(0) = z) forevery z € X..

Further, by computing dlog ) ., (2', ) with It6 calculus, we have

dlog Y- #(e/.t) = [ &7 (u(s).5) (BBT) " ay(s) =5 [ & (us)9)

t
r'eX 0

(BBT)_1 g(u(s),s)ds,

with g(u(t),t) = > cr 8@, u(t))m(2',t). This gives an explicit expression for the
normalizer as

> wte ) e ([ 87000 (BB) ay(s) - [ & (o))

r'eX

(6.2.13)
(BBT)f1 g(u(s),s) ds) :

Hence, Egs. (6.2.12) and (6.2.13) yield for the normalized probabilities

7(x,t)

Zx’eX ﬁ-(‘rla t)
= [0 =a)ewn ([ et - gu(s). )" (BB

m(x,t) =

-1

[y(s) — g(u(s). ) s = 5 [ (o) () — gluts). o)

(BBT)*l (g(x(s),u(s)) — g(u(s), s)) dS) P(X[Qﬂ € drpy ] U[O,t])-

Finally, by computing d7(x,¢) with It6 calculus, we have the controlled Wonham filter or
Kushner-Stratonovich equation [17, 20, 149]

dr(z,t) =Y A,z | u(t)m(2/,t)dt
+(z, 1) (g(w, u(t)) — gu(t), 1)) (BBT) "' (dy(t) — g(u(t), ) dt).
(6.2.14)

Note that we denote the filtering equation as the controlled Wonham filter as the observation
and latent processes are modulated by the control signal u(t).
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Analog to the presented filters, other optimal filters can be derived. Note that the dynamical
laws of these filters are often in the class of jump-diffusion processes, see [21] for an
introduction and the control thereof. This includes also the presented filters in Egs. (6.2.11)
and (6.2.14), where for the Wonham filter case in Eq. (6.2.14) we have a jump diffusion
process without a jump part and for the continuous-discrete case in Eq. (6.2.11) we have a
filter which follows a jump diffusion process without a diffusion part. Another important
observation is that for the case of finite-state spaces, the filtering distribution is described by
a finite-dimensional object, opposed to the case of, e.g., uncountable state spaces, where the
filtering distribution is characterized by a probability density, which is infinite-dimensional.
This is helpful as the filtering distribution can be used as a finite-dimensional state in the
POMDP setting.

6.3 OPTIMAL DECISION-MAKING IN CONTINUOUS TIME

Given the description of how to compute the filtering distribution, we are now ready to
discuss decision-making. For this, we start by describing a generative process for drawing
trajectories from a continuous-time POMDP.

6.3.1 Simulating the Model

For drawing trajectories, we consider the stochastic simulation with given policy ., which
maps a belief 7r to action u. We start at time ¢ with state z:(¢) = 2/, and belief 7(t) € A™.
The first step is to draw a waiting time £ of the latent CTMC after which the state switches.
This CTMC is time inhomogeneous with the exit rate A(z’ | u(m(t))) since the action
modulates the transition function. Therefore, we sample ¢ from the time-dependent
exponential distribution with CDF

P() =1 - exp ( / A | () ds)

for which one needs to solve the filtering trajectory {m(s) | s € [t,t + &)} using a
numeric (stochastic) differential equation solver beforehand. There are multiple ways to
sample from time-dependent exponential distributions. A convenient method to jointly
calculate the filtering distribution and the latent state trajectory is provided by the thinning
algorithm [150]. For an adaptation for the continuous-time POMDP see Fig. 6.1.

As the second step, after having sampled the waiting time &, we can draw the next state
z(t + &) = x given £ from the categorical distribution

0 otherwise

The described process is executed for the initial belief and state at ¢ = 0 and repeated until
the total simulation time has been reached.
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input :{: time point
x: state of the latent CTMC; i.e., x(t) =z
(max = Max,eyy Az | ©): maximum exit rate
output :£: Waiting time between the start time ¢ and the next jump of x(t)

Set current time to start time 7 = ¢
while True do
Sample uniform variable for inverse CDF method ¢ ~ Uniform(¢ | 0, 1)

Calculate minimum waiting time sample &y, = — 28

Update current time 7" = T + &nin
Update the filtering dsitribution up to T'; i.e., 7} 1)
Draw ¢’ ~ Uniform(¢’ | 0, 1)
if ¢ < AL then
Calculate the waiting time § =71 — ¢
return Waiting time & and filtering distribution ;¢
end

dmax

end

FIGURE 6.1: Thinning algorithm adapted to the continuous-time POMDP setting.

6.3.2 The Hamilton-Jacobi-Bellman Equation in Belief Space

Next, we discuss how to compute an optimal policy for the described POMDP. For computing
an optimal policy, we derive an equation for the value function, which can be solved to
obtain the optimal policy.

First, we observe that the optimal discounted cost from Eq. (6.1.4) can be written as

t

max E UOOO L2 R(a(s), u(s) ds] ~ maxE Moo Lo Ra(s), u(s)) ds] ,

U[0,00) T Ut,00) T
using a change in variables in s — t. Further, we define the infinite horizon optimal value

function as the expected discounted cumulative reward

V* () = max E Utm L= R(a(s), u(s)) ds

Uit 00) T

m(t) = w],

where the value function depends on the belief state 7 which provides a sufficient statistic
for the state. By splitting the integral into two terms from ¢ to ¢t 4+ h and from ¢ + h to oo,

we have
t

V*(rr) = max E [ /t Tt p(e) u(s)) ds

Ult,00) T
s—t

+/t<>o l6_ = R(x(s),u(s))ds

+h T

m(t) = 71'}

101



102 6 OPTIMAL DECISION-MAKING IN CONTINUOUS TIME AND DISCRETE SPACES

and by identifying the second integral as e+ V* (7 (t + h)), we find the stochastic principle
of optimality as

V*(m) = max EMM Lo Rlas), u(s)) ds + e 2V (m(t + 1)) ‘ w(t) = |,

Ult,t4h) T
(6.3.15)
Here, we consider the class of filtering distributions that follow a jump-diffusion process

dr(t) = £(m(t), u(t)) dt + G(w(t), u(t)) dw(t) + h(m(t), u(t) AN (),  (6.3.16)

where f : A" x U — R” denotes the drift function, G : A" x U — R™K the
dispersion matrix, with w(t) € R¥ being an K dimensional standard Brownian motion
and h : A" x Y — R" denotes the jump amplitude. We assume a Poisson counting
process N (t) ~ PP(N(t) | \) with rate A for the observation times {¢; };cn, which implies
thatt; — t;_1 ~ Exp(t; — t;—1 | A).

Under the dynamics in Eq. (6.3.16), we apply Itd’s formula for jump-diffusion processes to
the value function and find

th 1% (e (s
V¥ (m(t+ h)) =V*(mw(t)) + /t Wf(ﬂ'(s), u(s))ds
+/t WG(W(S),QL(S)) dw(s)
+/t %tr (%G(W(S),U(S))GT(T&'(S),U(S))> ds
+/t [V (7 (s) +h(m(s),u(s))) — V(w(s))] dN(s).
(6.3.17)
By inserting Eq. (6.3.17) into Eq. (6.3.15) we find
t+h n
Vi(m) = ur[?i}; {E {/t %e_S?R(m(s), u(s))ds+e 7 (V*(m(t))
on '

. /tt+h Mf(ﬂ,<s>’ u(s» s+ /t+h aV*(ﬂ'(S)> G}(»;-;(s)7 u(S)) dW(S)
2

)ds
)l=o--]}

orn
t+h 2V (1(s
[ e (P . ) 6w, ute)
)] AN (s)

L /t [V*(me(s) + h(m(s), u(s)) — V*(m(s
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Collecting terms in V*(7r) and dividing both sides by i we get

_h

V*(ﬂ')l _he_T = max {E[%/t 1e’%tR(ac(S),u(S))018+ ehT (

[ Do) uispas + t+hMG< (5) u(s)) dw(s)
4 /fh %tr (WG(W@), u(s))G u(s ) ds
+ [ 1) + i) — v ) () =] }.
Taking limy,_o and calculating the expectation w.r.t. w(t) and N(t) we find the PDE
2 (m) = e { ZERG(0,0) [ (0) = ]+ 2 o)
rytr (TG m )G (w0 ) + A EV (r + ()] - V() |

for further details, see [21].

Finally, analogous to the case of stochastic optimal control [13], we have the HJB equation

oV*(m)
or

V*(m) = max {E[R(x,u) | ]+ 7 f(m,u)

ueU

+% tr (av—*(ﬂ)c(n, w)G(, u)T) + A (E[V*(m + h(m, u)] — v*(ﬂ))} ,

o2
(6.3.18)
where E[R(z,u) | ®] = Y, .o R(x,u)m(x). Given this general description, we can hence
find the optimality condition for the presented filters.

THE HAMILTON-JACOBI-BELLMAN EQUATION FOR THE CONTROLLED CONTINUOUS

DISCRETE FILTER. For the controlled continuous discrete filter as in Section 6.2.1,

i.e.,

= Z A x| u(t)n (2, t) de

z'eX
p(yN(t) | Z, u(t))ﬂ'(:)?, t) )
+ —7(x,t) ) AN(t),
(St iyt "t 4N
we can compute the HJB equation (6.3.18), by identifying the components { f (7, u, x) |
x € X'} of the drift function f(7, u) as

f(m, u, x) ZAJ? x| u)m(z)

r'eX

and the diffusion term is zero; i.e., G(7, u) = 0. The components {h(7,u,z) | x € X'}
of the jump amplitude h(7, u) are

ply |z, u)m(x)
Ywea Dy | @ u)m(z

h(m,u,z) = 5T m(x),
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withy ~ p(y) = > ,cx P(y | ,u)m(z). Thus, the expectation yields
E[V* (7 + h(m,u))] /Zpy|a:u r)V*(m") dy,
TEX
where the components {7n"(z) | = € X} of the vector " are given by 7" (z) =

pylz,wr(z) : . .
S PR Finally, we have the corresponding HIB equation

V*(m —1&&2({2}%$u ZZ@V* A x| u)r(2h)

TEX reX x’'eX

+T)\</Zpy|xu )V (m Jr)dy—V*(ﬂ'))}.

reX

THE HAMILTON-JACOBI-BELLMAN EQUATION FOR THE CONTROLLED WONHAM
FILTER. Similarly, for the controlled Wonham filter as in Section 6.2.2, i.e.,

=3 Az | u(t)w(2,t)dt

+ (1) (g(z, u(t)) — glu(t), )" (BBT) ' (dy(t) — g(u(t), t) di),
withg(u(t),t) =,y 8(2', u(t))m(a', t), we have the components { f (7, u, x) | z € X'}
of the drift function f (7, u) as
f(m,u, ) Z A’ o | w)m(a’) + 7(2)(g(z, u) — g(u) " (BB') ™ (g(w, u) — &(u)).

The row-wise components {G (7, u, x) | x € X'} of the dispersion matrix G(7r, u) read
G(m,u,x) = m(2)B" (BB') ™ (g(x,u) — g(u)),
with g(u) =Y, g(a’,u)m(z"). The jump amplitude is zero; i.e., h(m,u) = 0.

Hence, we have the resulting HJIB equation

VH(m) = max R(z,u)m(x) + 0127(‘-77)f(ﬂ’ u) + % (ag—;gﬂG(ﬂ,u)GT(ﬂ,u)) :

reX

6.3.2.1 The Advantage Function and the Optimal Policy

To find the optimal policy p* : A™ — U corresponding to the optimal value function

V*(7r), it is useful to define the optimal advantage function coinciding with Eq. (6.3.18)

as

oV* ()
om

-

+ §tr (a‘a/—;_(;)G(w, u)G(m, u)T) + 7A (E[V* (7 + h(m,u))] — V(7)) .

A*(m,u) = E[R(z,u) | ®] = V*(m) + 7 f(m, u)

(6.3.19)
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Note that, given Eq. (6.3.18), V*(7) = max,ecy A*(7, u) + V*(7r). Therefore, to satisfy
the HIB equation, the consistency equation

max A*(mw,u) =0 (6.3.20)

ueld

is required. The optimal policy can then be obtained as

p(m) = argmax A* (7, u). (6.3.21)

ueU

6.3.3 Algorithms

For the calculation of an optimal policy in Eq. (6.3.21) we have to find the advantage
function in Eq. (6.3.19). As the advantage function depends on the value function, we have
to calculate both of them. Since the PDE for the value function in Eq. (6.3.18) does not
have a closed-form solution and the evaluation of the advantage function in Eq. (6.3.19)
can be costly due to the expectations on the r.h.s. of the equation, we present the following
two methods to learn both functions approximately.

6.3.3.1 Solving the Hamilton-Jacobi Bellman Equation Using a Collocation Method

For solving the HIB equation (6.3.18) we first apply a collocation method [141, 143, 144]

with a parameterized value function V,,(7r), which is modeled by means of a neural network.

We define the residual without the maximum operator of the HIB equation under the
parameterization as the advantage

Ap(m,u) = E[R(z,u) | w| — Vy(m) + Tavg—:r)f(ﬂ,u)

+ gtr <%G(w, u)G(ﬂ',u)T> + 7A(E[Vy(m + h(m, u))] — Vy(m)) .

For learning, we sample M beliefs {7 | i = 1,..., M}, with 7 € A", from some
base distribution 7w ~ p(m). As a base distributlon we use in the experiments, e.g., a
Dirichlet distribution (" ~ Dir(7 | ). Further, we estimate the optimal parameters by
minimizing the squared loss w.r.t. the residual of the HIB equation (6.3.18); i.e.,

2
_argmmZ{maL)[(Ad, u)} .
uE

If needed, we can approximate the expectation E[V (7 + h(7w, u))] over the observation

space by sampling. For learning it is required to calculate the gradient d’( ™) and Hessian
%"g) of the value function w.r.t. the input 7v. Generally, this can be achleved by automatic

differentiation, but for a fully connected multi-layer feedforward network, the analytic
expressions are given in Appendix B.1. The analytic expression makes it possible to
calculate the gradient, Hessian, and value function in one single forward pass [151].
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Given the learned value function V;, we learn an approximation of the advantage function
Ay (7, u) to obtain an approximately-optimal policy. To this end we use a parametrized
advantage function A, (7, v) and employ a collocation method to solve Eq. (6.3.19). To
ensure the consistency Eq. (6.3.20) during learning, we apply a reparametrization [118,
152] as

Ay(m,u) = Ay(m,u) — mag{(/_lw(ﬁ,u’).
u'€

The optimal parameters are found by minimizing the squared loss as

_ 2

) = arg minz Z {Aw(ﬂ'(i), u) — max Ay(mD ) — Aq;(ﬂ'(i),u)} :

The corresponding policy can then be easily determined as

p(m) = arg max Ad;(ﬂ', u),
ueU

using a single forward pass through the learned advantage function. A pseudo-code
for the collocation learning procedure in the example case of a controlled continuous
discrete filter (see Section 6.2.1) with a finite dimensional (discrete) observation space, i.e.,
Y={y®|i=1,...,1},is provided in Fig. 6.2.

6.3.3.2 Advantage Updating

The HIB equation (6.3.18) can also be solved online using RL techniques. We apply the
advantage updating algorithm [123] and solve Eq. (6.3.19) by employing neural network
function approximators for both the value function V() and the advantage function
Ay (7, u). The expectations in Eq. (6.3.19) are estimated using sample runs of the POMDP.
Hence, the residual error, using a belief-action-reward trajectory {m(t), u(t),r(t) | t €
[0, 77} of length T', can be calculated as

__oVy(m(),

Byolt) = Aylae(t) u(t) — (1) + Valw(t)) — 722D g, (o)
5 (0, a0 G (0, u(0)T ) = A (Vo () - Vi (0)

which can also be seen in terms of a continuous-time temporal difference (TD)-error d,(t)
as Ey(t) = Ay(m(t), u(t)) — 04(t), similar to the case of deterministic OC [120]. Again
we apply the reparametrization Ay (mw,u) = Ay(mw,u) — max, ey Ay(m,u') to satisfy
Eq. (6.3.20). For estimating the optimal parameters gz§ and @ we minimize the sum of

squared residual errors for a mini-batch of size M at time points {tV) | j = 1,..., M};
i.e.,
- 2
(¢,7) = arg minz {Eqw (tm)} )

The data for learning is generated by simulating episodes under an exploration policy as
in [118]. As exploration policy, we employ a time-variant policy

fi(, t) = arg max{ A, (m,u) + e(u, 1)},
ueU
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input :M/: Number of collocation samples
p(7r): Base distribution for collocation samples
V,(7): Function approximator for state value function with parameters ¢
Ay(m,u): Function approximator for reparametrized advantage function
with parameters v
output :{(ﬁ, @Z} parameters that have been fitted to approximately solve the HIB
equation for V() and /_11@(77, u), respectively.

for: = 1to M do
Sample collocation beliefs () ~ p(r)
for Vu € U do
Compute reset condition wg_i) (x,y,u) = pylz.u)n (z) V(z,y) e X x Y

D e Pyl u)m () (27)?
Compute Advantage values for the samples

Zqu ) + Vy(ml)

TEX
3% (m A | ) (a)
reEX r'EX
+7A0) 7 (2) Z Vo(m (y, ) — Vo)),
z yeY

where {71'@(1’, y,u) | x € X'} are the components of Wi)(y, u).
end
Compute best action u’ = arg max, o, Ay (7, u)

end
Estimate parameters by solving

M
¢ = argmin Z(A¢(i, u'))?
L

Recompute all advantage values {A;(é,u) | V(i,u) € {1,..., M} x U} with fitted b
Solve the non-linear least squares problem

u'el

= argminZZ(ﬁ¢(ﬁ(i),u) maXAw( @ ) — Aé(i,u))Q.

FIGURE 6.2: Collocation algorithm for the controlled continuous-discrete filter and finite
observation space.
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where €(u, t) is a stochastic exploration process which we choose as the Ornstein-Uhlenbeck
process de(u,t) = —re(u,t)dt + o dw,(t). Generated trajectories are subsampled and
saved to a replay buffer [153] which is used to provide data for the training procedure.

6.4 EVALUATION
6.4.1 Experimental Tasks

We tested our derived methods on several toy tasks of continuous-time POMDPs with discrete
state and action space: An adaption of the popular tiger problem [154], a decentralized
multi-agent network transmission problem [155] implementing the slotted aloha protocol,
and a grid world problem. All problems are adapted to continuous-time and observations
at discrete time points. The following provides an overview of the considered problems
and how we model them as continuous-time POMDPs. A detailed description of the
hyper-parameters used can be found in the supplementary material of the published
work [1].

6.4.1.1 The Tiger Problem

In the tiger problem, the state consists of the position of a tiger (left/right), and the agent
has to decide between three actions for either improving his belief (listen) or exploiting
his knowledge to avoid the tiger (left/right). While listening, the agent can wait for an
observation.

MODELING. We use an adaptation of the classical tiger problem for modeling[154],
where the agent has to choose between two doors to open. Behind one door, a dangerous
tiger is waiting to eat the agent; thus, the agent must choose the other door to become free.
Besides opening a door, the agent can also decide to wait and listen to localize the tiger. We
adapted the problem to continuous time by defining the POMDP as follows: The state space X’
consists of the possible positions of the tiger; i.e., X = {tiger left, tiger right}. Executable
actions of the agent are the elements of the action space U = {listen, open left, open right}.
The tiger always stays at the same position; therefore, all the transition rates A(2’, z | u)
are set to zero. When executing the action © = open, the agent receives a reward with
a rate of 0.1 for the door without the tiger and a negative reward of —1.0 for the door
with the tiger. For executing the hearing action, the agent accumulates rewards of rate
—0.01 but receives observations with a rate of 2 by hearing the tiger either on the left side
(y = hear tiger left) or on the right side (y = hear tiger right). The received information
1s correct with a probability of 0.85; thus, with a probability of 0.15, one hears the tiger at
the opposite side. The discount factor 7 is set to 0.9.
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6.4.1.2 The Slotted Aloha Problem

In the transmission problem, stations have to adjust their sending rate to successfully
transmit packages over a single channel as in the slotted Aloha protocol. Each station might
have a package to send or not, and the only observation is the past state of the channel,
which can be either idle, transmission, or collision. New packages arrive with a fixed
rate at the stations. As for each number of available packages — with the exception of no
packages available — there is a unique optimal action, a finite number of transmission rates
as actions is sufficient.

MODELING. Modeling the slotted aloha transition problem as POMDP was introduced
in [155] and dealt with the described decentralized control of stations transmitting packages
in a single channel network. The task can be modeled as a POMDP, since adjusting the
sending rate of the stations is based only on the information about the past transmission
state. The state-space consists of the number of stations that have a package ready for
sending and the past transmission state as observation; thus, the state space is given
by X = {0,..., B} x {idle, transmission, collision}, where we choose B = 9 sending
stations as it limits the total number of states to thirty. For our continuous-time POMDP
model, we consider a continuous-time adaptation of [155]: Observations at discrete time
points arrive with rate A = 0.5 and contain the past transmission state of the system,
which is included in the current state; thus ) = {idle, transmission, collision}. While
the maximum number of packages is not reached, new packages arrive with a rate of
0.5, leaving the past transmission state unchanged. The stations can send a package
simultaneously with a rate of 5 but do not need to. The action p represents the probability
with which a package is sent by a station, resulting in an actual send rate of 5£.

The probability for transmission states given that b packages are available are calculated
as

plidle | p) = (1= p)’

p(transmission | p) = p(1 — p)*~*

p(collision | p) = 1 — p(idle | p) — p(transmission | p)
In the case of perfect information, we can calculate the optimal probability for transmission

p* by maximizing the probability of successful transmission, which can be easily obtained
by setting the derivative to zero resulting into

1
p* = argmaxp(l —p)’~" = =
p b

This motivates the discretization of the actions resulting in i = {% lb=1,..., B}.

6.4.1.3 The Grid World Problem

In the grid world problem, an agent has to navigate through a grid world by choosing the
directions in which to move next; for an analog discrete-time example, see also Section 5.4
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FIGURE 6.3: Learned value and advantage function for the continuous-time tiger problem. The
upper plots show the approximated functions learned by the offline collocation method, while for
lower plots, the online advantage updating method was applied. The orange bars in the lower-left
plot show the proportions of the beliefs encountered during online learning. The advantage functions
on the right can be used to determine the policy of the optimal agent.

in the previous chapter. The agent transitions with an exponentially distributed amount of
time and, while doing so, can slip with some probability so that he instead moves in another
direction. The agent receives only noisy information of his position from time to time.

MODELING. For the continuous-time POMDP model, we consider an agent moving
in a 6 x 6 grid world with a goal at position (3,2). There are four actions U =
{up, down, left, right} indicating the direction the agent wants to move next. In our
continuous-time setting, the agent moves at an exponentially distributed amount of time
with a rate of 10. With a probability of 0.7, it moves into the indicated direction, but with
probability 0.1 moves into one of the other three directions due to slipping. A movement to
invalid fields such as walls is not possible; thus, the transition probability is set to zero for
those fields, and the remaining probabilities are renormalized. Being at the goal position
provides the agent with a reward rate of 1; otherwise, no reward is accumulated. The agent
receives a noisy signal about his current position at a rate of 2. The signal indicates a
field sampled from a discretized 2D Gaussian distribution with a standard deviation of 0.1
centered at the agent’s position.

6.4.2 Results

Both the offline collocation method and the online advantage updating method manage to
learn reasonable approximations of the value and advantage functions for the considered
problems.
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6.4.2.1 The Tiger Problem

For the tiger problem, the learned value and advantage functions over the whole belief
space are visualized in Fig. 6.3. The parabolic shape of the value function correctly
indicates that higher certainty of the belief about the tiger’s position results in a higher
expected discounted cumulative reward as the agent can exploit this knowledge to omit
the tiger. Note that the value function learned by the online advantage updating method
differs marginally from the one learned by collocation in shape. This is because in the
advantage updating method, only actually visited belief states are used in the learning

process to approximate the value function, and points in between need to be interpolated.

The advantage function correctly indicates that for uncertain beliefs, it is advantageous to
first gain more information by executing the action u = listen. On the other hand, for certain
beliefs, directly opening the respective door is more useful in terms of reward for certain
beliefs. Therefore, opening the opposed door is considered even more disadvantageous in
these cases.

6.4.2.2 The Slotted Aloha Problem

For the slotted Aloha transmission problem, the results are depicted in Fig. 6.4. Here, a
random execution of the policy learned by the offline collocation method, and the online
advantage updating method is shown in Figs. 6.4a and 6.4b, respectively. The upper two
plots of Figs. 6.4a and 6.4b show the true states; i.e., number of packages and past system
state, and the agent’s beliefs which follow the prior dynamics of the system and jump
when new observations are made. The plot at the bottom visualizes the learned advantage
function, and the resulting policy for the encountered beliefs is visualized. As derived in
Section 6.4.1.2, in case of perfect information of the number of packages b, it is optimal to
execute action b — 1 with exception of b = 0 where the action does not matter. When facing
uncertainty, however, an optimistic behavior which is also reflected by the learned policy, is
more reasonable: As for a lower number of packages, the probability of sending a package
and therefore collecting a higher reward is higher. Thus, in case of uncertainty, one should
opt for a lower action than the one executed under perfect information. We observed that
the results for the offline collocation method and the online advantage updating method
look qualitatively equal, reflecting the same reasonable behavior.

6.4.2.3 The Grid World Problem

Results for the grid world problem are visualized in Fig. 6.5 which shows the learned value
and advantage function using the offline collocation method (Fig. 6.5a) and the online
advantage updating method (Fig. 6.5b). The figures visualize the resulting values for
certain beliefs; i.e., being at the respective fields with probability one. As expected, the
learned value function assigns higher values to fields that are closer to the goal position
(3,2). Actions leading to these states have higher advantage values. For assessing results
for uncertain beliefs which are actually encountered when running the system, the figures
also contain a sample run that successfully directs the agent to the goal. Results for both
the collocation method and the advantage updating method are found to be very similar.
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(b) Online advantage updating method.

FIGURE 6.4: A sample run for the slotted Aloha transmission problem using a policy learned by
the collocation method (a) and advantage updating method (b). The upper plot (Packages) in (a) and
(b) show the actual number of packages available in the system while the middle one (Transmission)
shows the past system state which can be either idle (i), transmission (t), or collision (c). The
background of these plots (Packages and Transmission) indicate the marginal belief of the number
of packages and past system state, respectively. A cross indicates the past system states that are
observed at discrete time points. The lower plot (Action) shows the agent’s policy resulting from the
learned advantage function, while the background indicates the per time-step normalized advantage
function is indicated by the background.
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(a) Offline collocation method. (b) Online advantage updating method.

FIGURE 6.5: Learned value and advantage function for certain beliefs in the continuous-time grid
world problem using the collocation method (a) and the advantage updating method (b). Being at
the goal at position (3, 2) results in a reward for the agent. The black fields in row 3 represent a
wall that cannot be crossed. Colors of the fields indicate the approximated value function, while
arrows show the proportions of the advantage functions among different actions. The yellow curvy
path indicates a respective random run starting at the field (0, 0) under the resulting policy.

6.5 SUMMARY

In this final chapter of the main part of this thesis, we introduced a new model for decision-
making in continuous time under partial observability. We presented (i) a collocation-based
offline method and (ii) an advantage updating online algorithm, which both find approximate
solutions by the use of deep learning techniques. We qualitatively discussed the found
solutions for a set of toy problems adapted from literature for evaluation. The solutions
have been shown to represent reasonable optimal decisions for the given problems.

In the future, we are interested in exploring ways to make the proposed model applicable
to more realistic large-scale problems. First, throughout this work, we assumed a known
model. In many applications, however, this might not be the case and investigating how to
realize dual control methods [12] might be a fruitful direction, see also the model from
Chapter 5. New scalable techniques for estimating parameters of latent CTMCs, which
could be used, are discussed in [156] but also learning the filtering distribution directly
from data might be an option if the model is not available [132]. An issue we faced was that
for high-dimensional problems, the algorithms seemed to slowly converge to the optimal
solution as the belief space grows linearly in the number of dimensions w.r.t. the number of
states of the latent process. The introduction of variational and sampling methods seems
promising to project the filtering distribution to a lower-dimensional space and make the
solution of high-dimensional problems feasible. This could also enable the extension to
continuous state spaces, where the filtering distribution is generally infinite-dimensional
and has to be projected to a finite-dimensional representation, e.g., as it is done in assumed
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density filtering [17]. This will enable the use for interesting applications, for example, in
queueing networks or, more generally, in stochastic hybrid systems see also [5].
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7.1 SUMMARY AND CONCLUDING REMARKS

This thesis focused on model-based Bayesian inference, learning, and decision-making
and provided applications in communication systems. The specific contributions are
(i) methods for probabilistic modeling, including several prior distributions describing an a
priori Bayesian belief. (ii) Novel Inference and learning schemes are developed using exact
Bayesian inference and tractable approximate posterior inference methods, based on MCMC
and VI. (iii) Finally, new decision-making algorithms are presented, which are tractable
and approximately optimal w.r.t. a reward function. This thesis established sensible models
of real systems by discussing several modeling aspects, such as models for continuous and
discrete state spaces, inferring the number of distinct states, and modeling the dynamical
processes in episodes (discrete-time) or in continuous time.

A Bayesian model for point process data was presented with a tractable MCMC algorithm
in Chapter 3. This chapter focussed explicitly on a non-parametric assumption on the
number of discrete states, yielding a countable infinite state space for the latent process. By
modeling non-exponential holding times a high predictive performance was established.

Episodic decision-making for the application of ABR video-streaming in NDN networks
was considered in Chapter 4. Here, a contextual multi-armed bandit strategy was exploited
to optimize a QoE based reward. The reward function was modeled using a Bayesian sparse
linear model, and some scalable algorithms for inference were provided. The algorithms
are extensively evaluated and are especially fitting for decision-making problems, where
decisions must be executed in a time-critical manner.

A more detailed level of modeling was discussed in Chapter 5 by providing a Bayesian
model for correlation structures occurring in decision-making problems. A new tractable
inference scheme based on mean-field variational inference in a conjugate augmented space
is discussed. This chapter focused on several types of correlation models including an
evaluation for a vast range of problems occurring in decision-making, such as imitation
learning, sub-goal modeling, and BRL. For decision-making, a strategy based on the PSRL
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principle was used, which is easy to implement and yields with the provided correlation
prior to superior performance in terms of cumulative reward, compared to state-of-the-art
naive Bayesian priors.

Finally, in Chapter 6 decision-making in the setup of partial observability of the state
variable was discussed. Here, a new continuous-time POMDP model was presented, and
the optimality conditions for the resulting OC problem in belief space were derived.
Building on prior work, some derivations for optimal filtering dynamics were given, which
describe the evolution of the belief state. Additionally, for decision-making, new numerical
algorithms to solve for optimality utilizing function approximation methods were derived
and evaluated.

Building on the proposed models, inference, and decision-making schemes, we showed the
applicability to several examples in communication systems and beyond.

7.2 OUTLOOK

The presented models, inference schemes, and decision-making algorithms provide several
opportunities for future research. First, an exciting application is the use of Bayesian
non-parametric models as the one discussed in Chapter 3 in the context of decision-making.
Here, similar ideas from discrete-time decision-making, as e.g., presented in [157], could
serve as a base for calculating optimal decision-making schemes in the continuous-time
domain extending the algorithms in Chapter 6.

The correlation model presented in Chapter 5, could serve as a basis for model-learning in
other domains. For example, it could be employed to model the dynamic evolution of the
network features in Chapter 4. A further promising application would be on learning a
transition model, such as those discussed in Chapter 6.

One of the most promising future directions is to make the decision-making scheme
from Chapter 6 tractable in high dimensions. One possibility is to look at approximate
filtering to describe the dynamic evolution of the Bayesian belief state using a lower-
dimensional approximate representation. This could enable the applicability of the method
to high-dimensional problems, such as complex queueing networks.

Overall, the methods discussed in this thesis provide opportunities for future applications,
e.g., optimal decision-making for the switching between functions in communication
services as addressed in [7]. Generally, other application domains are deemed to benefit
from using the presented model-based solutions.
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A.l DEFINITIONS AND NOTATION

Here, we give some definitions from probability theory; we refer the reader to, e.g., [18-20,
158] for a more rigorous treatment of the discussed topics.

THE PROBABILITY SPACE.  We consider a probability space given by the tuple (€2, 3, P),
where () is the sample space, 3 C 2 is the o-algebra and P : 3 — [0, 1] is the probability
measure.

RANDOM VARIABLES. Formally, a RV X is a function X : (2 — &', which maps an
element (event) w € (2 of the sample space to some space X, e.g., to the space of real
numbers, in which case X = R. For the most part, we omit the argument w € 2 of the
function X (w), and we write X. Note that by abuse of notation, we will mainly use small
letters, e.g., x for RVs and capital letters, e.g., X only in formulations that explicitly contain
the probability measure.

We can assign a probability that X is in a set A as
PXeA)=PH{we: X(w)e A}).
Additionally, we write

P(X € A) = /]l(a: e A)P(X € da),

where we integrate w.r.t. the probability measure P(X € dz), e.g., in the case where
X = R", dz denotes the Lebesque measure on R".
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PROBABILITY DISTRIBUTION FUNCTIONS. Throughout this thesis, we write for the
cumulative distribution function (CDF)

P(X) = P(Xl < L1y ,Xn < xn),
where x = [z1,...,2,]" and X = [X},..., X,] denotes a RV in R".
For the corresponding complementary cumulative distribution function (CCDF) we write

P(x)=1-P(x).

Let X denote a RV in some countable space X', then we write for the PMF

p(z) = P(X = z).

Similar, for aRv X € X in some space X C R" we write for the PDF

an
= ——P(x).
p(x) T (x)
More formally, for a set .4, we can write

P(X c A) :/ﬂ(xeA) P(X ¢ dx)

dP
~ p(X) = d_X’

_ /Il(x € A)p(x) dx

where % is the Radon-Nikodym derivative between the probability measure P(X € dx)
and the Lebesque measure dx on R".

THE QUANTILE FUNCTION  We define the quantile function Q). (¢, p(z)) associated to
the PMF or PDF p(z) as

P(X < Qu(q,p(2)) = q.
where the distribution of the RV X follows p(z).

EXPECTATIONS. For the expectation of some function f(x), with a countable space
xr € X and a PMF p(x) we write

and for a PDF p(x) we write

More generally, for a probability measure P we have

E[f(2)] = /f(x) P(X € dx).
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Additionally, for the variance, we have
Var[z] == E[(z — E[x])Q}
and for the covariance matrix, we write

Cov[x] == E[(x ~E[]) (x — E[x])T].

Lastly, we define the entropy of a RV x with a PDF or a PMF p(z) as
Hz] :== E[—log p(z)]

and for the KL divergence or relative entropy w.r.t. another PDF or a PMF ¢(z) we have

KL(g(x) || plz)) = E[log IQ]

where above expectation is carried out w.r.t. ¢(z).

RULES OF PROBABILITY. The two most essential rules in probability are the sum rule
plx) =) plx,y) & pl)= / p(,y) dy
y

and the product rule
p(x,y) = p(x | y)p(y)-

As a direct consequence of the product rule and the symmetry in the arguments of p(z, y)
we have the Bayes’ rule
ply | z)p(x)
plz|y) = -
p(y)

A.2 PROBABILITY DISTRIBUTIONS

This section includes some probability distributions we use in this thesis. For more, see,
e.g., [22-24].

A2.1  The Gamma Distribution

The PDF of a gamma distribution is

Gam(z | o, 8) = 6—:160‘_16_6””,

[(a)

with support © € R+, shape parameter o € R.(, and rate parameter 5 € R-.
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The gamma distribution with parameters @ = [, 5] " is a member of the exponential family
distribution with base measure
h(z) =1,

natural parameters
"7(9) = [Oé - ]-7 _6]T7
sufficient statistics
s(z) = [logz,z]"

and log-normalizer

A(n) =log(m + 1) — (g + 1) log(—n2).

The inverse transform of the natural parameters is obtained by

O(n) = [m +1,—n]".
A.2.2  The Categorical Distribution

The PMF of a categorical distribution is

n

Cat(z | p) = H Va=at),

with support 2 € {2 | i = 1,...,n} and probability vector p = [p1,...,p,|" € A",

The categorical distribution with parameters & = p is a member of the exponential family
distribution with base measure

natur. al parameters
n(8) = [logpi, . ..,logp,]",

sufficient statistics

and log-normalizer
A(n) =0.

The inverse transform of the natural parameters is obtained by

O(n) =lem, ... em".
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A.2.3 The Chinese Restaurant Process

The Chinese restaurant process {k; | j € N5} is a discrete-time stochastic process, where
the transition distribution is given by the PMF

« L(kj=m;+1) ™j 0. 1(kj=i)
CRP(kJ | Q, kj—l,kj_Q,...,]{jl) = (—) H < ij > 7

j—1+a« Pl J— 1+«
with support k; € {1,...,m; + 1} and concentration parameter a € R-,. Here, the
total number of previously occupied tables is m; = max(k;_1, ..., k1) and the number of
customers sitting at table ¢ before customer j arrives is V;; = {;11 1(k; = 7). The initial

distribution is given as
CRP(k | ) = 1(ky = 1),

with m; = 0.

For more details on the Chinese restaurant process see, e.g., [42].

A.2.4  The Exponential Distribution

The PDF of an exponential distribution is
Exp(z | A) = Ae™,

with support z € R, and rate parameter A € R-.

The exponential distribution with parameter # = ) is a member of the exponential family
distribution with base measure

h(z) =1,
natural parameters
n(0) = —A
sufficient statistic
s(z)=x

and log-normalizer
A(n) = —log(—n).

The inverse transform of the natural parameter is obtained by

0(n) = —n.
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A.2.5 The Log-Normal Distribution

The PDF of a log-normal distribution is

1 (logz — u)2>
Lognorm(z | p, o) = exp| ——~— ),
gnorm(z | p1,0°) s &P ( 57

with support # € R., mean parameter /, and variance parameter .

The log-normal distribution with parameters 8 = [u, 02| "

family distribution with base measure

is a member of the exponential

natural parameters

sufficient statistics

and log-normalizer

m* 1
A(n) = —— — =log(—2n,).
(n) I, 9 0g(—2mp)
The inverse transform of the natural parameters is obtained by
T
_[om _L}
1) [ 20" 21

A.2.6  The Uniform Distribution

The PDF of a (continuous) uniform distribution is

1
b—a’

Uniform(z | a,b) =

with support = € [a, b] C R, lower bound a € R, and upper bound b € R, with b > a.

A.2.7  The Multivariate Normal Distribution

The PDF of a multivariate normal (or Gauss) distribution is

Nix | 1.%) = e { -0 = -},

with support x € R", mean parameter € R", and positive semidefinite covariance
parameter 3 € R™*".
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The multivariate normal distribution with parameters @ = (u, ) is a member of the
exponential family distribution with base measure

natural parameters

sufficient statistics

and log-normalizer

1 T -1 1
A(n) = _Z"(l) n? M - §log|—2n(2)|-

The inverse transform of the natural parameters is obtained by

1 -1 1 -1
Om) = [ —2p@ 1pm 2 @7t
(n) ( A A

A.2.8 The Multinomial Distribution

The PMF of a multinomial distribution is

N N
=11 =1

with support x = [z1,...,2k]" € {0,..., N}¥, with 3% 2, = N, number of trials
N € N, and probability vector p = [py,...,pr]" € ALK,

The multinomial distribution with parameters @ = p is a member of the exponential family
distribution with base measure

N!

hx) = ——,
() Hfilxi!

natural parameters

I

n(0) = [logpy, ..., logpx]"
sufficient statistics
s(x) = [21,...,2x]"
and log-normalizer
A(n) = 0.

The inverse transform of the natural parameters is obtained by

O(n) =[e™, ... e"™]".
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A.2.9 The Binomial Distribution

The PMF of a binomial distribution is
. NY . —a
Bin(z | N,p) = (x)p (1—-p),

with support z € {0, ..., N}, number of trials N € N, and success probability parameter
p€0,1] CR.

The binomial distribution with parameter § = p is a member of the exponential family
distribution with base measure

natural parameters

sufficient statistic

and log-normalizer
A(n) = Nlog(1+e").

The inverse transform of the natural parameters is obtained by

A.2.10 The Poisson Distribution

The PMF of a Poisson distribution is

Pois(xz | \) = )\—|e_>‘,
!

with support © € N>, and rate parameter A\ € R-.

The Poisson distribution with parameter # = ) is a member of the exponential family
distribution with base measure

1
natural parameters
n(f) =log A,
sufficient statistic
s(z) ==z
and log-normalizer
A(n) =e".

The inverse transform of the natural parameters is obtained by

0(n) = ¢".
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A.2.11 The Dirichlet Distribution

The PDF of a Dirichlet distribution is

with support p = [p1,...,px] € AK, and concentration parameters a = [y, .. .,
T RK
aK ] S SN

The Dirichlet distribution with parameters @ = « is a member of the exponential family

distribution with base measure .

Hf; pi’

h(p) =

natural parameters

n(0) = [ay,...,ax]",

sufficient statistics
s(x) = [logpy,.. ., logpx]"
and log-normalizer

K K
= logT(n;) —logT <Z m) -
=1 =1

The inverse transform of the natural parameters is obtained by

0(n) = [7717-.-,77K}T~

A.2.12  The Polya-Gamma Distribution

Let X ~ PG(z | b, ¢) be a RV distributed according to the Pélya-Gamma (PG) distribution,
with parameters b € R., and ¢ € R, then X is equal in distribution to an infinite sum of
gamma RVs, to be precise

p 1 &
~ 2n? ; — 1/2 02/(47T2)’

1
where G, ~ Gam(g | b, 1) and L indicates equality in distribution.

Hence, the PDF of the PG distribution can be expressed as an infinite convolution of gamma
PDFs. Alternatively, we have a density formula using an alternating infinite sum, as

o0

PG(z | b,¢) {coshb 6/2)} 2(5) Z<_1)HII:EZ-I—*: llji (\2/7;7—:::")

{ (2n +b)? 2 }
‘eXpl ————— — —x ¢,
8w 2

with support € R+ and parameters b € R- and ¢ € R, for more see [103].
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A2.13  The Generalized Inverse Gaussian Distribution

The PDF of a generalized inverse Gaussian (GIG) distribution is
GIG(x | p,a,b) = (a/b)"*(2K,(Vab))'a? " exp{(ax + b/x)/2},

with support © € R.( and parameters p € R, a € R~¢, and b € R-(. The GIG distribution
with parameters @ = [p, a, b] " is a member of the exponential family distribution with base
measure

h(z) =1,

natural parameters
”7(6> = [p - 17 —(1/2, b/2]T7

sufficient statistics
s(z) = [logz,z,1/x]"

and log-normalizer

(1) -1
A(n) = log ((—77(2)/ )" Lo 0 (V) | ) .
The inverse transform of the natural parameters is obtained by

0(n) = [V + 1, —2n® 27T,
A.3 SPECIAL FUNCTIONS

In this section, we give some definitions of some known special functions used in this
thesis.

THE GAMMA FUNCTION. The gamma function I' : R — R is given by the integral
definition

F(:c):/ 2 lem* dz.
0

THE ERROR AND INVERSE ERROR FUNCTION. The error function erf : R — [—1, 1]

is given as
2 (" s
erf(x) = —/ e * dz.
V7 Jo
The inverse error function erf ' : [~1,1] — R is then implicitly given by

erf (erf ' (z)) = z.
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THE ONE-HOT FUNCTION. The one-hot function OneHot : K — AX maps a category
k € K of a finite set, e.g., K = {1,..., K}, of K categories to the corresponding unit

vector; 1.e.,
OneHot(k) = e,

where ey, is the kth unit vector; i.e.,

(o). = {1 ifi=k

0 else.

THE LOGISTIC FUNCTION. The logistic function o : R — [0, 1] is defined as

THE BINARY ENTROPY FUNCTION. The binary entropy function Hg : [0, 1] — [0, 1]
is defined as
Hp(z) = —zlogx — (1 — z)log(1l — x).

THE MODIFIED BESSEL FUNCTIONS The modified Bessel function of the first kind
I, : R — R, with p € R, is defined as

o0

I(z) = Z m!F(m:—p +1) (g)zmﬂ)'

m=0

The modified Bessel function of the second kind K, : R — R, with p € R, is defined

* L) = L)
Kplr) = 2 sin(pr)
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B.] BACKPROPAGATION FOR THE INPUT OF A NEURAL NETWORK
In this section, we derive the gradient and Hessian w.r.t. the input of a neural network,

using backpropagation.

Consider a H-Layer deep neural network parametrizing a function f(x) as

F(x) = WHZH=1 4 gt
72" =c(@"), h=0,... H-1

at = Whgh=t 9" h=1,... H-1
a’ = W + 9°,

with input x, weights W, biases 9", and activation function o. Component wise, the
equations are given by

d=0al), h=0,...,H-1
aZ:ZwanZ_l—i—ﬁZ, h=1,....H—-1

0_ 0 0
a, = E Wiy T + U
n

B.1.1 The Gradient Computation

Next we calculate the gradient w.r.t. the input; i.e., O f (x). The component wise calculation
yield

Op, [ (X) = Oy, waszl + 9"

n

_ § : H H-1

- wn a$izn ’
n
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where we compute
Oy, 2t = o’ (af Z wi Oy, 2
and o’ denotes the derivative of the activation function o. For the first layer we compute

On, 2y = ' (@)

We define the messages for the partial derivative as mp; := 0, 2'. Therefore, we calculate

the message passing as
ho_ 1 h ho, h—1
my; = o'(ay) E :wknm
n

and

mgi = 0/(6112)“]121'-

Thus, the final equations for the backpropagation of the gradient are given by

mgi :U/(ag)wlgi
Forh=1,...,H —1

h __ l h § h h—1
my, =0 Clk Wi, M

axzf ZwH H-1

B.1.2 The Hessian Computation

For the Hessian, we compute

Oy, 0, [ (x) = O, {Zme
= Z wf@mjmm’l.

The partial derivatives of the messages are

_ ht ho hel 1 h h h—1
8a:]mm o"(ay) § w,m E wy,m,: | + o' (ay) E Wi, O, My
n n

where o denotes the second derivative of the activation function o. For the first layer we
compute

o _ n/ 0 0,0
amjmkz‘ =0 (ak)wkiwkj'

Next, we define the messages for the second order partial derivative as fn',gij = 0y, mpy; =
Oz, Oy, 2. Therefore, we calculate the message passing as

~h _ 1/ h h h—1 h h—1 h ~h—1
mkij =0 (a'k) E Wiy My E wknmnj + U ak § :’LU nz]
n n
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and
~0 _ ns 0 0 0
Myij =0 (ak)wkiwkj'

Finally, the equations for the backpropagation of the Hessian are given by

~0 _ _ns 0 0 0
My =0 (akz)wkiwkj
Forh=1,...,H —1

ko _ _n( h h o, h—1 h o, h—1 1(h Z h oh—1
My = 0" (ay) § WMoy E :wknmna‘ + o' (ay) ) win g
n n

0, 0n, f(x) = Y _wllmll-.







NOTATION

SYMBOL DESCRIPTION

N The set of natural numbers.

N, N5, The set of natural numbers with elements greater/ greater or equal
than i.

R The set of real numbers.

R, Ry, The set of real numbers with elements greater/ greater or equal than
t.

AN The n-dimensional probability simplex; i.e.,
A" ={xeR": >" x;=1Az; >0,Vje{l,....n}}.

1(-) The indicator function.

f(z) A function f of a variable z.

J1f] A functional J of a function f.

V() or 2(:) The gradient w.r.t. to = as column or row vector, respectively.

V() The natural gradient w.r.t. to z.

88—22 (+) Second order derivative or Hessian w.r.t. to x.

ai; (+) The functional derivative w.r.t. to the function f.

P(-) A probability measure.

P(:) A cumulative distribution function.

P(-) A complementary cumulative distribution function.

p(+) A probability density function or probability mass function.

E[] The expectation operator.

Var|| The variance operator.

Cov|[] The covariance operator.

H[] The entropy operator.

KL(p(z) || ¢(xz)) The Kullback-Leibler divergence between p(z) and ¢(x).

L{g] The evidence lower bound dependent on the distribution g.

Gam(- | a, ) Probability density function of the gamma distribution with shape
parameter « and rate parameter [3.

Cat(- | p) Probability mass function of the categorical distribution with proba-
bility vector p.

Exp(- | A) Probability density function of the exponential distribution with rate
parameter .

CRP(- | k, ) Probability mass function of the Chinese restaurant process distribu-

tion with assignment parameter vector k and concentration parameter
.
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NOTATION

SYMBOL

DESCRIPTION

Lognorm(- | i, 0?)

Uniform(- | a,b)

N( | K, E)
gIg( | b, a, b)
Bin(- | N,p)
Mult(- | N, p)
Dir(- | o)
PG(: | a,b)
Pois(- | A)

PP(-| )

Probability density function of the log-normal distribution with
mean parameter /. and variance parameter 0.

Probability density function of the uniform distribution with lower
bound a and upper bound b.

Probability density function of the (multivariate) normal (or Gaus-
sian) distribution with mean parameter p and variance/covariance
matrix 3.

Probability density function of the generalized inverse Gaussian
distribution with index parameter p and parameters a and b corre-
sponding to the concentration v/ab and the scale b /a.

Probability mass function of the binomial distribution with number
of trials N and success probability p.

Probability mass function of the multinomial distribution with
number of trials /V and probability vector p.

Probability density function of the Dirichlet distribution with
concentration parameter vector cx.

Probability density function of the P6lya-Gamma distribution with
shape parameter a and tilting parameter b.

Probability mass function of the Poisson distribution with rate
parameter \.

Probability measure of the Poisson process with rate parameter \.




ACRONYMS

ABR
BAMCP

BAMDP

BBA
BEETLE

BOLA

BRL

CBA

CCDF

CDF
CDN

adaptive bitrate

Bayes-adaptive Monte Carlo
planning

Bayes-adaptive Markov decision
process

buffer-based adaptation

Bayesian exploration exploitation
tradeoff in learning

buffer occupancy-based Lyapunov
algorithm

Bayesian reinforcement learning
contextual-based adaptation
complementary cumulative
distribution function

cumulative distribution function
content delivery network

CGP-UCB contextual Gaussian process

CRP
CTMC
DASH

ELBO
GIG
GP
HIB
HTTP
IP
ICP
IRL
ISO

KL
LQ
LQG
MAP
MCMC
MDP
MFT

upper confidence bound
Chinese restaurant process
continuous-time Markov chain
dynamic adaptive streaming over
HTTP

evidence lower bound
generalized inverse Gaussian
Gaussian process
Hamilton-Jacobi-Bellman
hypertext transfer protocol
internet protocol

interest control protocol
inverse reinforcement learning
international organization for
standardization
Kullback—Leibler

linear quadratic

linear quadratic Gaussian
maximum a posteriori

Markov chain Monte Carlo
Markov decision process
multiple filter test

MOS
MPD
NDN
NFD
(0]6
0S-SVI

PANDA
PDE
PDF
PGM
PG
PMF
POMDP

POSMDP

PSRL

QoE
QoS
RL
RTT
RV
SAND
SDE
SMDP
SoC
SVI
TBA
TCP
TD
TPBN
UCB
VB
VEM

VI
XML

mean opinion score

media presentation description
named data networking

NDN forwarding daemon
optimal control

one-step stochastic variational
inference

probe and adapt

partial differential equation
probability density function
probabilistic graphical model
Pélya-Gamma

probability mass function
partially observable Markov
decision process

partially observable semi-Markov
decision process

posterior sampling for
reinforcement learning

quality of experience

quality of service
reinforcement learning

round trip time

random variable

server and network assisted DASH
stochastic differential equation
semi-Markov decision process
stochastic optimal control
stochastic variational inference
throughput-based adaptation
transmission control protocol
temporal difference

three parameter beta normal
upper confidence bound
variational Bayes

variational
expectation-maximization
variational inference
extensible markup language
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