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Abstract

Concrete is the most widely used building material in the world. The low rawmaterials cost, its high
compressive strength and the simplicity of the production process makes it an enormous attractive
and easy to apply material for the construction and building sector. However, when applied,
concrete suffers from cracks, which are inevitable and are the result of various environmental and
loading impacts such as traffic load, freeze-thaw cycles, but it also depends on the construction
quality. These cracks provide harmful elements such as chloride, carbon dioxide or sulphur ions a
pathway, which may induce steel corrosion of reinforced concrete structures. It is a mechanism that
will seriously threaten the service life of a concrete structure, while causing significant maintenance
costs. Mitigating this phenomenon has led to a worldwide development on self-healing methods
for crack closure.
In the last few years, research efforts on self-healing methods have mainly concentrated on
experimental work, where only a limited number of numerical models have been reported in
literature. These models treat the boundaries, i.e. interfaces, between different the surfaces
of components with a zero thickness. In fact, such interface describes the kinetics of a phase
transformation from a non-equilibrium to an equilibrium state. This problem requires the diffusion
equations to be solved at the interface under moving boundary conditions, which, although feasible
for the evolution of simple geometries, becomes rather impossible for higher-dimensional systems
and/or complicated interfaces.
For a more accurate description of the above problem, this PhD study presents a novel approach for
self-healing of cementitious materials by means of a phase-field (PF) method. Unlike the traditional
sharp interface models, a PF method provides a convenient way to numerically deal with free
moving boundaries, where the interface is implicitly expressed as a time- and space-dependent
function, representing the phase state, and is defined over the entire domain.
In this work, the diffusion-controlled isotropic dissolution of minerals is first investigated from a
mesoscale phase transition point of view. Based on earlier formulations by Kim and co-workers
[1], an expression of interface mobility under diffusion-controlled conditions is proposed. Using
sodium chloride dissolution as an example, the results of their PF method are compared with
that of analytical models and experiments, while extending the application of a PF method
to the field of mineral dissolution. Based on this, the evolution of a carbonation front, which
separates the dissolution zone from the carbonation fraction, is modelled on a thermodynamic
basis, while mimicking the self-healing carbonation reaction in cementitious materials. Physical-
chemical aspects are used to construct the free energy functions for incorporating dissolution
and precipitation systems. Moreover, the dissolution model determines the local concentration
fields of the active species in the PF. The model parameters were experimentally calibrated on
a single mineral, i.e. the carbonation of calcium hydroxide. As a novel feature, the evolution of
multiple interfaces is investigated and demonstrated by an experimental case of self-healing with
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calcium hydroxide carbonation. Good qualitative agreement was achieved between the model
results and the experimental data and the evolution of the crack morphology was demonstrated.
This PhD study showed the potential of a PF method as a predictive tool to estimate self-healing in
cementitious materials.
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Zusammenfassung

Beton ist das weltweit am häufigsten verwendete Baumaterial. Die niedrigen Rohstoffkosten,
seine hohe Druckfestigkeit und die Einfachheit des Herstellungsprozesses machen ihn zu einem
äußerst attraktiven und leicht zu verarbeitenden Material für den Bau- und Gebäudesektor. Der
Beton reißt im Laufe der Nutzungsdauer, was unvermeidlich ist und auf verschiedene Umweltein-
flüsse und Belastungen wie Verkehrsbelastung, Frost-Tau-Zyklen, aber auch auf die Betonqualität
zurückzuführen ist. Diese Risse bieten Substanzen wie Chloridionen, Kohlenstoffdioxid oder
Schwefelionen einen Weg, bei Stahlbetonkonstruktionen Korrosion hervorzurufen. Durch diese
Mechanismen wird die Lebensdauer einer Betonstruktur ernsthaft gefährdet und verursacht gle-
ichzeitig erhebliche Instandhaltungskosten. Daher werden Selbstheilungsmethoden zum Schließen
von Rissen in Beton entwickelt.
In den letzten Jahren haben sich die Forschungsarbeiten zu Selbstheilungsmethoden hauptsäch-
lich auf experimentelle Arbeiten konzentriert, während in der Literatur nur wenige numerische
Modelle beschrieben werden. Diese Modelle setzen die Dicke von Rändern oder Grenzflächen
zwischen verschiedenen Oberflächen zu Null. Eine solche Grenzfläche beschreibt die Kinetik
einer Phasenumwandlung von einem Nicht-Gleichgewichtszustand in einen Gleichgewichtszustand.
Dieses Problem erfordert, dass die Diffusionsgleichung an den Grenzflächen unter beweglichen
Randbedingungen gelöst werden muss, was zwar für die Entwicklung einfacher Geometrien
machbar ist, aber für höherdimensionale Systeme oder kompliziert geformte Grenzflächen nicht
zielführend ist.
Für eine genauere Beschreibung des oben genannten Problems wird in dieser Dissertation ein neuar-
tiger Ansatz für die Selbstheilung von zementbasierten Materialien mithilfe der Phasenfeldmethode
(PF-Methode) vorgestellt. Im Gegensatz zu den traditionellen scharfen Grenzflächenmodellen
bietet die PF-Methode eine bequeme Möglichkeit, mit frei beweglichen Grenzflächen endlicher
Dicke numerisch umzugehen. Hierbei wird die Grenzfläche implizit als zeit- und raumabhängige
Funktion ausgedrückt, die den Phasenzustand darstellt und über dem gesamten Berechnungsgebiet
definiert ist.
In dieser Arbeit wird die diffusionskontrollierte isotrope Auflösung von Mineralien zunächst unter
dem Gesichtspunkt des mesoskaligen Phasenübergangs untersucht. Auf der Grundlage früherer
Formulierungen von Kim et al. [1] wird die Grenzflächenmobilität unter diffusionskontrollierten
Bedingungen hergeleitet. Am Beispiel der Solvatation von Natriumchlorid in Wasser werden
zunächst die Ergebnisse der PF-Methode mit denen von analytischen Modellen und Experimenten
verglichen, wobei die PF-Methode zur Auflösung von Mineralien angewendet wird. Anschließend
wird die PF-Methode zur thermodynamischen Simulation der Präzipitation von mineralischen
Substanzen verwendet. Es zeigt sich, dass die Karbonatisierungsfront die Auflösungszone und
den Karbonatisierungsfortschritt unterscheidet. Physikalisch-chemische Aspekte werden genutzt,
um die Funktionen der freien Energie für die Auflösungs- und Ausfällungssysteme zu konstru-
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ieren. Darüber hinaus bestimmt das Solvatationsmodell die lokalen Konzentrationsfelder der
aktiven Bestandteile im Phasenfeldmodell. Die Modellparameter werden experimentell anhand
der Karbonatisierung des Minerals Calciumhydroxid ermittelt. Neu ist, dass die Entwicklung
mehrerer Grenzflächen beschrieben und durch experimentelle Untersuchungen validiert werden
kann. Hierbei wird die Selbstheilung durch die Karbonatisierung von Kalziumhydroxid betra-
chtet. Die Modellergebnisse und die experimentellen Daten stimmen gut überein. Außerdem
wird die Entwicklung der Rissmorphologie nachgewiesen. Diese Dissertation zeigt das Potenzial
der PF-Methode als Vorhersageinstrument zur Abschätzung der Selbstheilung in zementbasierten
Materialien.
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1 Introduction

1.1 Research background
Concrete is the most usedman-made constructionmaterial of today and is used in massive quantities
in countless infrastructure applications around the world. More than 12 billion tons of concrete
are used in global construction each year [2]. Once applied, it is subjected to a combination of
mechanical loads and environmental loads (e.g. freezing and thawing [3]), causing volumetric
instabilities (e.g. creep and shrinkage [4]), which may lead to bigger and smaller cracks. Although
smaller cracks, micro-cracks, do not directly cause structural failure, they may influence the rate
of deterioration of a concrete structure.
Maintenance of buildings and infrastructures is a worldwide problem, causing every year significant
human, financial and resource investments. In the United States, the annual economic impact
associated with concrete structures undergoing inspection, repair, and/or replacement is estimated
at $18-21 billion [5]. The maintenance cost for bridges only amounts $5.2 billion [6]. The
indirect loss of time and productivity of the general public due to delays and disruptions caused by
maintenance activities is estimated to be more than 10 times the direct cost. In Europe more than
half of the annual construction budget is spent on the maintenance and repair [7]. In China, the
total cost from the maintenance of roads and bridges due to concrete and rebar corrosion is more
than $9.65 billion, equivalent to 4.0% of the total industry investments [8].
Maintenance of concrete structures, using cement-based repair materials, may also have a significant
impact on the environment, as the cement production is energy-intensive. The production of 1
tonne (t) of cement requires about 3.2 gigajoule (GJ) to 6.3 GJ of energy and 1.7 t of raw materials
(mainly limestone) [9]. Due to the enormous amounts cement produced annually, the share to
the world’s total carbon dioxide emission is up to 7% [10]. It is expected that, with the current
growth of the economy, population, and the current service life expectation of concrete structures,
the annual cement production will increase from about 3.3 billion tonnes (bt) now to 4.8 bt in
2030 [11]. The resulting ecological degradation will be significant.
Confronted with this, there is an urgent need in both academia and industry to find innovative
solutions for enhancing the long-term performance of concrete structures. Over the past few
decades, concrete has shown to have the intrinsic ability to heal the crack less than 150 µm in
width [12]. Inspired by nature, various self-healing mechanisms have been developed for cracks
with widths larger than 300 µm [13]. According to the definition of RILEM TC-221-SHC [14], the
self-healing mechanicm of cement-based materials can be divided into two categories: autogenous
and autonomous self-healing. The autogenous self-healing process only involves the remaining
reactivity of the original components in the material, regardless of the effect of other additives.
These original components may undergo chemical reactions under appropriate environmental
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conditions while promoting crack healing. Autonomous self-healing processes are always depending
on aid of healing additives, such as micro-capsules containing healing agents or bacterial spores.
So far, in self-healing developments experiment-based solutions have received a lot of attention,
while optimizations based on numerical simulations were mostly disregarded. The limited number
of numerical methods published in the literature are mainly used to simulate: (1) crack healing
due to chemical reactions driven by carbonation, hydration and precipitation accompanied by
transport effects; (2) continuous damage and mechanical strength recovery of structures, which
usually follow the Smeared-Crack Approach (SCA) and the Discrete Crack Approach (DCA). In
these models, the solid-liquid interface is usually assumed to be regular sharp or directly simplified
to one-dimension, while quantifying only the healing efficiency. While the ion diffusion and the
chemical reactions in solution are simulated, the microscopic morphological variations of cracks
due to a soluble mineral dissolution and precipitation mechanism are completely ignored. However,
changes in crack morphology directly affect the concentration distribution of aqueous substances
in solution, which in turn, may act on the chemical reaction and mechanical effect at the interface.
Therefore, a novel and reliable numerical model is needed that combines these defects. Moreover,
this numerical model should be able to make reasonable predictions of autogenous crack healing
while providing excellent solutions for enhancing the durability and structural safety of cementitious
materials. A Phase-Field (PF) method, emerged in recent years, turned out to be a powerful tool
for handling mobile interfaces induced by phase transitions, and are widely used in solidification
problems [15]. The advantage of a PF method over other competitive numerical methods lies in its
ability to capture interface motions without introducing any additional special techniques and/or
remeshing strategy. This provides a powerful and innovative approach to study the microstructural
migration caused by the phase transition during a self-healing process.

1.2 Research objectives
The main objective of this research is to develop a numerical model using a PF approach for
self-healing of cementitious materials based on the dissolution and precipitation mechanism from
a phase transformation perspective. For this, the following three key aspects are addressed, which
are considered to be crucial to understand and design a successful PF model for self-healing
of cementitious materials. Firstly, understand and verify the feasibility of the PF method for
the moving boundary problem of mineral dissolution. From an experimental point of view, the
dissolution reaction is the first step in activating the self-healing mechanism. From a modeling
point of view, this sequence helps to better understand and disentangle the complex self-healing
mechanism based on nonequilibrium thermodynamics. Secondly, simulate the healing behavior
of the single component minerals based on the physical parameters provided by experimental
results, while focusing on the interface evolution during phase transformation. An innovative
multi-phase multi-interfaces PF model for dissolution and precipitation should be based on the PF
dissolution model validated in the first step. Finally, practical examples of cementitious materials
are numerically implemented and analysed. In this thesis, these three key issues are taken as
research questions and addressed by the numerical modeling techniques using a finite element
method (FEM) platform. The main objectives are listed as follows:
• Comparison of a classical binary PF model with an analytical model for a general diffusion-

controlled dissolution process and validation with experimental results for a congruent dissolu-
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tion case.
• Development of a multi-phase PF model for precipitation/dissolution based self-healing. Predic-

tion of healing kinetics under multiple factors.
• Implementation of carbonation experiments of calcium hydroxide. Experimental quantification

of the amount of reaction products formed in cracks as a function of time. Analysing the boundary
evolution and investigation of kinetic parameters of the multi-phase PF model.

• Simulation of the self-healing of actual irregular shaped cracks of cementitious materials and
comparison with experimental results.

1.3 Research scope
The scope of this research comprises the following:
• The present study focuses only on the self-healing reaction based on the dissolution/precipitation

mechanism.
• In the study of the carbonation reaction, only the end product, i.e. calcium carbonate (CaCO3),

is considered without other intermediate substances.
• When applying the PF model to the cementitious materials, the diffusion and precipitation of

all aqueous species are represented by a single ionic concentration. The self-healing product
phase does not distinguish between calcium–silicate–hydrates (C–S–H) and calcium hydroxide
(Ca(OH)2)) or other secondary hydration products.

1.4 Outline
This dissertation is composed as a cumulative one, which includes 4 chapters (Figure 1.1). Chapter 1
gives a brief introduction of the research background, objectives and corresponding scopes. Chapter
2 provides a review of most relevant fundamentals, self-healing mechanisms and the underlying
theory of PF methods. Chapter 3 includes the three-following peer-reviewed publications:
publication 1
title: A Review on Cementitious Self-Healing and the Potential of Phase-Field Methods for Modeling
Crack-Closing and Fracture Recovery [16]
journal: Materials, MDPI
publication 2
title: Numerical Phase-Field Model Validation for Dissolution of Minerals [17]
journal: Applied Sciences, MDPI
publication 3
title: A Phase-Field Approach for Portlandite Carbonation and Application to Self-Healing Cemen-
titious Materials [18]
journal: Materials and Structures, Springer
Finally, in chapter 4 the conclusions and outlook of this thesis are reported.
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Figure 1.1. Outline of this thesis.

4



2 State of the art

2.1 Fundamental

2.1.1 Diffusion
Diffusion is a physical process in which molecules of a substance migrate from high to low
concentration areas until they are evenly distributed [19]. Diffusion can take place in gases,
liquids, or solids [19]. The driving force of diffusion are chemical potential, concentration and/or
stress gradient. In 1855, Adolf Fick [20] developed the first law of diffusion, which is based on the
analogy to heat conduction. In one-dimension x, the flux J of diffusing substances is proportional
to the concentration gradient ∂c/∂x

J = −D∂c

∂x
, (2.1)

where, D is the diffusion coefficient; the negative sign indicates the direction of diffusion from
high to low concentration areas.
A combination of Eq.(2.1) with the conservation equation yields Fick’s second law. It describes the
variation of concentration with time t

∂c(x, t)

∂t
= −∂J

∂x
= D

∂2c(x, t)

∂x2
(2.2)

For the case of diffusion in two dimensions or more and D is a constant, Fick’s second law is
expressed as

∂c(x, t)

∂t
= D∇2c(x, t) (2.3)

where, ∇ is the vector differential operator.

2.1.2 Dissolution
Dissolution is the process by which a solute (solid and/or gas) is uniformly dispersed in a solution
(liquid). The dissolution of solid particles in a liquid involves two main steps: 1) the detachment
of molecule or ion from the surface of the solid to form a hydrated molecule with the liquid (the
reaction-controlled dissolution), and 2) the mass transfer from the solid-liquid interface to the
bulk solution (the diffusion-controlled dissolution) [21]. The equation for the diffusion-controlled
dissolution is already proposed by Noyes and Whitney [22] in 1897, where the dissolution rate Rd
is proportional to the difference between the solubility and the bulk concentration

Rd = κd(cs − cb), (2.4)
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where, cs is the solubility; cb is the bulk solution concentration, and κd is the dissolution rate
constant, which is related to the transport property of the solute.
The equation for the reaction-controlled dissolution rate Rr is [23]

Rr = κs

(︃
1− c

ceq

)︃
, (2.5)

where, κs is the effective transport coefficient and ceq is the equilibrium concentration.

2.1.3 Precipitation
Precipitation is the process of converting dissolved substances from a supersaturated solution into
insoluble solids [24]. When the concentration of the dissolved solute in the solution is higher
than the solubility, the solution is supersaturated. At this state, the solute particles agglomerate
with each other to form insoluble solids, which then precipitate out of the solution. When the
solute concentration in the solution decreases until the solution equilibrium is established, i.e.,
the migration rate of substances between the solid and solution phases is equal to each other, the
solution reaches a saturation state. The precipitation process can be divided into the following
steps: nucleation, growth, ripening, and recrystallization [25]. The equilibrium constant for the
dissolution and precipitation of a slightly soluble ionic solid is called the solubility product Ksp.
For a heterogeneous equilibrium involving the solid AmBn and its ions mAn+ and nBm−

AmBn(s) ⇌ mAn+(aq) + nBm−(aq), (2.6)

where, “s” and “aq” refer to species in the solid and aqueous states, respectively.
The solubility product is expressed as

Ksp =
{︁
An+

}︁m {︁
Bm−}︁n , (2.7)

where {︁An+
}︁ and {︁Bm−}︁ are the ionic activities; the right-hand side of Eq.(2.7) is referred to as

the ion activity product (IAP), which can be used to estimate the saturation of a solution for a
particular substance by estimating the saturation index (SI)

SI = log10

(︃ IAP
Ksp

)︃
. (2.8)

If SI<1, the solution is unsaturated and the dissolution process continues; if SI>1, the solution is
supersaturated and the precipitation begins; if SI=1, the solution is in the equilibrium state.
Thermodynamically, the precipitation is accompanied by changes in the solute concentration and
the free energy. Lamer and Dinegar [26] used sulfur nucleation as an example to illustrate the
change in the solute concentration from soluble monomer particles to colloidal clusters (Figure
2.1 (a)). Firstly, soluble monomers are gradually formed in the solution and their concentration
increases (Stage I). Soluble monomers nucleate from the solution when their concentration is higher
than the critical supersaturation level cmin (the minimum supersaturation for the nucleation). The
nucleation phase ends when the concentration of soluble monomers reaches the supersaturation
level cmax (ultimate supersaturation) (Stage II). When the supersaturation concentration is lower
than cmin but higher than the saturation concentration cs (solubility of soluble monomers), the
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stable nuclei in solution continue to grow by diffusion. Cluster growth ends when the concentration
of monomeric species drops to the solubility level of the bulk solid (Stage III).

Figure 2.1. Schematic illustration of variation in solute concentration and free energy during
precipitation. (a) The concentration of molecules before and after nucleation as a
function of time. Reproduced with permission from [26]. Copyright 1950 American
Chemical Society. (b) The variation of the free energy as a function of particle size.
Reproduced with permission from [27]. Copyright 2013 Elsevier.

Patel and Anderson [27] elucidated the variation of free energy of the precipitate nucleation (Figure
2.1 (b)). Initial nucleation requires overcoming the activation energy ∆Ga and then generating a
critical nuclei. The critical nuclei gradually grow in the region of the metastable supersaturated
state, forming larger particles. A solution in a supersaturated state is thermodynamically unstable,
thus it tends to reach a steady state by lowering the free energy of through precipitation. Eventually,
the nuclei size reaches its maximum at the equilibrium solubility and particles precipitate out of
the solution.

2.2 Self-healing in cementitious materials
Cementitious materials are known as brittle materials with a low tensile strength and fracture
toughness. Microcracks occur inevitably during the construction and service life period. If microc-
racks are not timely repaired, cracking will exacerbate the structural damage, thus affecting the
durability of the structure. Over the past decades, tremendous efforts have been made to develop
self-healing techniques for various types of cementitious materials from both experimental and
simulation perspectives. This chapter gives an overview on the various mechanisms of self-healing
(in Section 2.2.1), followed by a synthesis of existing analytical and numerical simulation methods
(in Section 2.2.2).

2.2.1 Self-healing mechanisms
The RILEM Committee TC-221 SHC and the Technical Committee TC-075B of the Japan Concrete
Institute (JCI) have classified self-healing mechanisms into autogenous and autonomous [14, 28].
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Table 2.1. A taxonomy for research in self-healing mechanisms
Category Crack width Mechanisms Reference

Autogenous 100–150µm

Further hydration of
unhydrated cement clinker

[29–33]

Carbonation of portlandite,
precipitation of calcite

[29, 34–37]

Recrystallization of portlandite
leached from the bulk paste

[14, 31, 38–40]

Autonomous ≥300 µm

Mineral
admixtures

Expansion term [41, 42]
Swelling term [43–45]
Crystalline term [43, 46]

Bacteria Direct application [47, 48]
With encapsulation [49–52]

Adhesive
agents

One-component [53, 54]
Multi-component [55, 56]

The autogenous self-healing process involves only the efficacy of the original components in
the material, regardless of the effects of other additives. These original components can react
chemically under appropriate environmental conditions to foster crack healing. The autogenous
healing is capable of repairing cracks up to a width of 100-150 µm [13]. In contrast, autonomous
healing can heal cracks up to 300 µm [13, 47]. However, the autonomous self-healing process
must be accomplished with the help of healing agents such as micro-capsules containing healing
agents or bacterial spores. The classification of self-healing mechanisms and corresponding crack
healing widths are summarized in Table 2.1. The principles of each self-healing mechanism are
described in detail in Section 2.2.1.1 and 2.2.1.2.

2.2.1.1 Autogenous self-healing

Autogenous self-healing comprises of three main chemical reactions: a further hydration of the
unhydrated cement clinker generating additional Calcium Silicate Hydrates (C−S−Hs), precip-
itation of calcite, and recrystallization of portlandite. There are some secondary mechanisms,
including volume expansion due to water absorption by the cement matrix and mechanical filling
cracks caused by the accumulation of mineral debris in solution [14]. These mechanisms are not
considered in this thesis.
(1) Further hydration of unhydrated cement clinker

For young concrete the further hydration of the unhydrated cementitious clinker is the main
mechanism of self-healing [37]. Unhydrated cement clinker of cracked surfaces inside a cement

8



matrix begin to dissolve once they are in contact with water, where Ca2+ ions and silicates
diffuse from the anhydrates [57]. When the concentration of the various ions in the solution
reaches the equilibrium criteria for precipitation, further hydration products are formed in
the crack solution [31]. As further hydration products form on the crack surface, the rate of
further hydration slows down and the self-healing changes from a chemical reaction-controlled
process to a diffusion-controlled one [32].
The strength of the hydration products formed by further hydration is similar to that of the
primary C−S−H gels, which may be effective in restoring the mechanical properties of the
cementitious composite. The content of Ca(OH)2 (CH) in the self-healing products is higher
than that of the C−S−Hs and differs significantly from the composition of hydration products
in bulk cement paste [31]. In addition, the nucleation and growth of the hydration products
formed at the crack surface also differ from those in the bulk cement paste.
There are two reasons for that: 1) The amount of water provided for further hydration at
the crack surface is much more abundant than that in the bulk cement paste (w/c>0.3),
which ensures that the cement clinker is fully hydrated, resulting in larger sized crystal-like
products [40]. However, further hydration in the cracks will stop when the water in the cracks
is completely absorbed due to the capillary effect of the concrete matrix; 2) the space provided
for the nucleation and growth of hydration products at the crack surface is much larger than
that in the hydrated cement paste [13]. Thus, the distribution of hydration products generated
at the crack surface is more dispersed than that in the bulk cement matrix.

(2) Carbonation of portlandite, precipitation of calcite
Crystallization of calcium carbonate CaCO3 is proved to be the main mechanism for autogenous
self-healing [29, 34]. The chemical reaction process could be described as follows⎧⎪⎪⎨⎪⎪⎩

Ca(OH)2(s)
H2O−→ Ca2+(aq) + 2OH−(aq),

CO2(g→ aq) + H2O −→ CO2−
3 (aq) + 2H+(aq),

Ca2+(aq) + CO2−
3 (aq) −→ CaCO3(s),

(2.9)

where, “aq”, “g” and “s” refer to species in an aqueous, gaseous and solid state, respectively.
Initially when the cracks are filled with water, portlandite and unhydrated cement clinker
dissolves, releasing Ca2+ ions. The Ca2+ ions transported from the cement matrix react with
carbonate CO 2–

3 ions from the atmospheric carbon dioxide dissolved in water and form CaCO3
precipitates [40]. This stage is reaction controlled. Once an initial calcite layer on the crack
surface has formed, the amount of Ca2+ ions supplied by the concrete matrix will reduce
including a transition to a diffusion-controlled precipitation. Ca2+ ions from the cementitous
matrix can only reach the crack surface by diffusion through the calcite layer to form the
healing products.
The carbonation reaction is often limited by an insufficient supply of Ca2+ and CO 2–

3 ions
[29]. On the one hand this is due to the fact that a certain portion of the portlandite (the main
source of Ca2+ ions) is used in the pozzolanic reaction for C−S−Hs development [58]. On
the other hand, that CO 2–

3 ions are difficult to transport to the deeper crack regions. Thus
CaCO3 is often experimentally observed to form mainly at the surface near the crack openings,
as the sufficiently high Ca2+ and CO 2–

3 ions content in this area is available for the CaCO3
precipitation [13, 58].
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(3) Recrystallization of portlandite leached from the bulk paste
CH is quantitatively an important hydration product of Portland cement clinker, which is able
to fill cracks by recrystallisation [59]. Solid particles of CH are first dissolved in the form of
solute ions, which diffuse into the depths of cracks and then precipitate in a supersaturated
state [60] according to

Ca(OH)2 (s)
H2O−→ Ca2+ (ion) + 2OH− (ion) H2O−→ Ca(OH)2 (s), (2.10)

where, “ion” refers to species which are in an ionic state.
Compared to the autogenous self-healings mentioned above, CH recrystallization is less efficient,
since the solubility of CH is 100 times higher than that of CaCO3 polycrystals [61, 62]. In
addition, solid CH in the cementitious matrix first dissolve in the unsaturated solution. However,
Ca2+ ions are continuously consumed by the carbonation reaction, making it difficult for the
CH recrystallization [59]. The diffusion rate of solute ions and degree of supersaturation of
CH are important factors affecting its recrystallisation rate [63]. In addition, the results in
[39, 59] showed that a number of CH was found as large, well-formed crystals in deep cracks
with a very high moisture content, since carbonation was inhibited in this region, giving a
suitable condition for CH recrystallization.

2.2.1.2 Autonomous self-healing

Due to the limited effectiveness of autogenous self-healing, many attempts have been made in
concrete engineering to improve the crack healing performance by artificially adding additional
ingredients (healing agents), either encapsulated or non-encapsulated. Healing agents are available
in a variety of compositions such as minerals, bacteria, and polymers. The healing mechanism of
each additive is described in detail below:
(1) Mineral Admixtures

Mineral admixtures filled in the cementitous materials can react with water when cracks appear
so that the cracks are healed with reaction products [43]. According to the type of reaction,
mineral admixtures can be divided into three categories: expansive, swelling and crystalline
admixtures.
The expansive admixture works on the principle of using the increase in volume of the reaction
products to fill the cracks [42, 58]. Commonly used are calcium sulfoaluminate (CSA) based
expansive agents [64]. Due to the rapid hydration of CSA in 2 to 24 hours the dense product
can heal the cracks in a short time [65–67]. Geomaterial-based additives consisting of silicon
dioxide, sodium aluminum silicate hydroxide, and bentonite clay can heal cracks by swelling
[43–45]. The main mineral component of crystalline admixture is tricalcium silicate (C3S),
which reacts with water producing C−S−H crystals [68, 69].

(2) Bacteria Admixtures
The main mechanism of bacteria based self-healing is that the bacteria themselves act as
catalysts, converting precursor compounds into suitable filler materials. Bacteria containing
calcium nutrient sources are added to cementitous materials at the time of mixing [70]. At this
point, the bacteria are inactivated in the form of spores [71]. When cracks appear, water enters
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the interior of the structure and activates the bacteria [72]. Through their metabolism, CaCO3
deposits are produced to fill the cracks. So far, two types of bacterial metabolic pathways have
been used to increase the crack healing potential of cementitous materials:
Metabolism of aerobic alkalophilic bacteria [71, 73]
Aerobic alkalophilic bacteria can convert calcium lactate Ca(CH3COO)2 into CaCO3 precipitate,
which is the direct ability of microbially enhanced crack healing

Ca(CH3COO)2(aq) + 4O2(aq)→ CaCO3(s) + 3CO2(aq) + 3H2O(aq). (2.11)

The indirect ability is manifested by the reaction of metabolically generated CO2 molecules
with Ca(OH)2 minerals present in the cement matrix to produce additional CaCO3 precipitates.
Wiktor and Jonkers showed that this method can lead to complete healing of cracks up to 460
µm in width within 100 days [72]. A two-component biochemical self-healing agent consisting
of a mixture of bacterial spores and calcium lactate, can promote the healing of cracks with a
width of more than 900 µm [72]. However, the main disadvantage of the aerobic respiration
pathway is that the healing capacity is limited by the amount of O2, since metabolically active
bacteria require large amounts of O2. In the absence of O2, the healing capacity is inhibited
[73].
Urea hydrolysis [74, 75]
This pathway has a better self-healing property than that of the first one. Special bacteria
like Bacillus cohnii, Sphaericus, Subtilis, Pasteurii, Megaterium, and Sporosarcina urea can
convert urea to ammonium NH4+ and CaCO3 in a highly alkaline environment [76]. Although
microbial urea decomposition mechanisms can promote rapid healing of cracks, e.g. a 970 µm
wide crack can heal in 8 weeks [77], the hydrolysis product NH4+ becomes NH3 under alkaline
conditions. During this conversion process the OH– ions in the concrete are depleted and this
leads to degradation of the concrete [47]. In addition both NH4+ and NH3 are considered to
be harmful to aquatic life [78]

CO(NH2)2(aq) + 2H2O(aq) +Ca(NO3)2(aq)→ CaCO3(s) + 2NH+
4 (ion) + 2NO−

3 (ion). (2.12)

It is worth noting that when applying these pathways, the spores or bacteria should be protected
from the harsh concrete environment in order to maintain their activity [79]. When bacterial
spores are added directly to cement mixtures, they survive for only 1-2 months [71]. In
addition, the direct addition of organic biomineral precursor compounds can cause a significant
reduction in the strength of cementitious materials. Therefore various encapsulation techniques
for bacteria have been investigated, such as immobilizing them with microcapsules [52, 77]
and porous expanded clay aggregates [80].

(3) Adhesive Agents
Compared to the two methods mentioned above, using adhesive agents is the most rapid
one. Strength recovery rates of up to 75% were observed after 48 hours of crack healing
[53]. The adhesive agents can be encapsulated in microcapsules [81], hollow fibers [82] or
vessel networks [83]. Adhesive agents can be classified as one-component or multi-component.
Commonly used one-component adhesive agents are polyurethane [53] and epoxy [54]. It
is worth mentioning that epoxy resins can also be divided into one-component and two-
component. One-component epoxy resins are generally latent epoxy resins, where a curing
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agent or catalyst has been added to the epoxy resin. However, the two-component one is
resin and curing agent are initially encapsulated separately. When cracks appear, the two
components are released from the sealing device subsequently undergo a hardening reaction
to heal the cracks.
In addition to two-component epoxy resins, a commonly used multi-component adhesive
is methylmethacrylate (MMA) [55]. Yang et al. combined MMA with triethylborane (TEB,
catalyst) and obtained positive self-healing results [81]. Dry et al. used a three-component
MMA [84], i.e. cumine hydroperoxide and cobalt neodecanoate as catalysts to promote the
polymerization and hardening of the MMA. Multi-component adhesives have higher stability
than single-component adhesives, since they are activated in situ. However, due to the inability
to control the ratio of multi components penetrating into the crack, one-component adhesives
have proven to be more effective in repairing cracks [85].

2.2.2 Self-healing modeling
The existing numerical methods for self-healing can be divided into: (1) chemical-transport-based
models and (2) fracture-based models. Table 2.2 summarizes the existing models and their
techniques.

2.2.2.1 Chemical-transport-based model

The chemical-transport-based model focus mainly on the diffusion mechanisms of heat, moisture
and aqueous species in the cementitious material, and the chemical thermodynamics and kinetics
for precipitation of hydration, carbonation and/or hygro-electrochemical self-healing products.
Cementitious materials are considered as the porous multiphase medium, with air and/or capillary
pores in the solid matrix occupied by liquid and/or gaseous phases. At the macroscopic scale, the
governing equations of these models are formulated based on the average conservation equations
for mass (phases and chemical species) and enthalpy under the assumption of local thermo- and/or
hygral equilibrium.
For the further hydration self-healing, Zhang et al. [86] proposed a model in which the unhydrated
cement nuclei were randomly distributed in the cementitious composite matrix. The cracks were
simulated by splitting (the crack go through the unhydrated cement particles) and dome-like
(the crack go along the surface of unhydrated cement particles) methods. The efficiency of self-
healing influenced by the volume fraction and the particle size distribution of unhydrated cement
nuclei was calculated from the perspective of geometric probability theory. Huang and Ye [32]
determined numerically the self-healing efficiency by using capsules containing water to promote
further hydration of unhydrated cement particles. The volume of additional water in the fracture
was calculated as a function of time based on the transport theory. The amount of hydration
products was determined by a thermodynamic model coupled by the mass balance, the charge
balance and the chemical equilibrium.
A several hygro-thermal-chemical models were developed. Di Luzio et al. [87, 88] proposed a
SMM (Solidification-Microprestress-Microplane) model to simulate the healing effect of concrete
under different humidities, thermal fields and hydration degrees. The modified model can also
simulate the effect of cracks on the permeability and the evolution of mechanical properties of
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concrete. On this basis, Ferrara [89] introduced a recovery degree to approximate the degree
of the self-healing. In addition, the recovery of the load-bearing capacity of concrete with and
without additives was simulated and compared with experimental data. Chitez and Jefferson [90]
presented a coupled thermal-hygro-chemical model and used reactive water transport component
to predict the movement of healing materials. Moreover, a hydro-chemo-mechanical model based
on micro-mechanical observations was established by Hilloulin et al. [91]. Based on a diffusion-
hydration model, the recovery of mechanical properties during self-healing was evaluated using a
continuum damage model.

Table 2.2. A review of self-healing modeling.
Phenomena Category Technique Reference

Chemical-
transport

Autogenous

Splitting crack model [86]
Thermodynamic-diffusion model [32]
Hygro-thermal-chemical model [87–90]
Hydro-chemo-mechanical model [91]

Reaction-diffusion model [92]
Embedded finite element method [93]

Autonomous

Level set method [94]
Coupled transport-damage model [95]

Hybrid genetic algorithm [96]
Analytical model [97]

Fracture

Autogenous

Micro-mechanical model [98]
Two phases micro-mechanical model [99]

Softening-healing with SDA [100]
Cohesive zone damage-healing model [101]

Discontinuity embedded model [100]
Lattice model [102]

Autonomous

Phenomenological model [103]
Continuous damage model [104]

Reversed cohesive constitutive model [105]
Discrete element method [106]

Cohesive surfaces technique [107]
LatConX system model [108]

Particle flow code (PFC2D) [109]

General Thermodynamic constitutive model [110–114]
Coupled damage-plasticity model [115]

For the carbonation self-healing, Aliko-Benítez et al. [92] proposes a reaction-diffusion model using
Finite Element Method (FEM). The diffusion of aqueous species and the reaction rate calculated
from the three main species Ca2+ ions, CO 2–

3 ions and CaCO3 precipitates were taken into account.
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For the same mechanism, Ranaivomanana and Benkemoun [93] discretized the transport-reaction
partial differential equations for the fracture and porous matrix using the Embedded Finite Element
Method (E-FEM).
In contrast to autogenous self-healing, only a few chemical-transport models have addressed
autonomous self-healing. Zemskov et al. [94] presented a mathematical model of bacterial self-
healing. The moving boundaries were tracked using a level set method. Freeman and Jefferson
[95] proposed a model for the delivery of healing agents to damaged zones. By coupling a crack
flowmodel with the mass balance equation, the continuum and discrete-crack flows were simulated.
Suleiman and Nehdi [96] developed a hybrid genetic algorithm-artificial neural network model
predict the self-healing efficiency of concrete under the influence of different factors, i.e. water-to-
cement ratio (w/c), type and dosage of supplementary cementitious materials, and bio-healing
materials. In addition to numerical models mentioned above, Zhu et al. [97] developed an
analytical model to predict the microcapsule-based self-healing efficiency.

2.2.2.2 Fracture-based model

Few studies aimed at the healing mechanical properties of cementitious materials are available in
the literature. A representative fracture model is a two phase micro-mechanical constitutive model
developed by Davies and Jefferson [99]. A cohesive zone damage-healing model was presented by
Abu Al-Rub and Alsheghri [101]. In this model, the classical continuum damage mechanics were
extended to describe the healing evolution within the crack cohesive zone. Zhang and Zhuang
[100] proposed a time-dependent softening-healing law for self-healing quasi-brittle materials and
evaluated the reliability of the model using a strong discontinuity embedded approach.
The main idea of Remmers and Borst’s [105] phenomenological model is that fracture healing
is triggered by fluid pressure. The re-bonding of the crack surface was modelled by a reversed
cohesive constitutive model. Zhou et al. [106] proposed a three-dimensional damage healing
model for microencapsulated self-healing cementitious materials under compressive loading by
using a discrete element method. This model can be used to simulate local healing effects, as
well as stress concentration effects and local healing effects. Hazelwood et al. [108] developed a
LatConX model to predict the long-term healing behaviour of concrete materials containing shape
memory polymer tendons.
For general fracture self-healing problem, several thermodynamic-based micro-damage healing
models have been made in the literature [110–114]. Additionally, Caggiano et al. [115] proposed
a damage-plastic constitutive theory for zero-thickness interfaces. The model was based on the
fracture-energy concept and included the time evolution of concrete porosity. In addition, some
thermodynamic-based constitutive models and coupled damage-plasticity model can be applied to
both autogenous- and autonomous self-healing mechanisms [110–115].

2.3 A moving boundary problem

2.3.1 Introduction
The moving boundary problem (MBP), also known as the Stefan problem, was studied in depth by
J. Stefan [116, 117]. The MBP occurs in many physical and engineering processes, e.g. dissolution

14



[118], heat transfer involving phase transformation [119], cracks in solid mechanics [120] and
metallurgy [121]. These problems are usually defined as a system of partial differential equations
(PDEs) in a certain domain, however the boundary (interface) separating two phases is unknown
and must be determined as an integral part of the solution. The location of the moving boundary
(MB) is described by a function of time t and space x, controlled by the transport conditions.
To illustrate the MB problem in more detail, the evolution of the solid-liquid boundary due to
thermal diffusion and latent heat exchange in a homogeneous medium will be illustrated below
using a classical solid-liquid system as an example (as shown in Figure 2.2). The solid phase I and
the liquid phase II are divided into region Ω1 and Ω2 by an interface I of approximately zero width.
Melting or solidification caused by temperature changes leads to regional changes in each phase.
Therefore the position and the morphology of the interface I change accordingly. The temperature
µ at the interface is the phase change temperature. The moving boundary obeys the laws of mass
conservation and energy conservation, which are Stefan’s conditions [122].

Figure 2.2. A two phases system with a MB. The domain Ω consists of phase I (Ω1) and phase II
(Ω2). The contour bounds the overall domain (Γ), while the two phases are separated
by a MB (I).

The temperature µ is governed by the heat conduction equation, which is expressed in the solid
and liquid phases as follows

c1ρ1
∂µ

∂t
= k1

∂2µ

∂x2
, (2.13)

c2ρ2
∂µ

∂t
= k2

∂2µ

∂x2
, (2.14)

with the boundary condition
µ(0, t) = const, (2.15)

and the initial condition
µ(x, 0) = const, (2.16)

where, k1 and k2 are the thermal conductivities, c1 and c2 are the specific heat capacities, ρ1 and
ρ2 are the densities of solid and liquid phases, respectively.
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The condition on the interface I is
µ1 = µ2, (2.17)

where, µ1 and µ2 are the temperature of the solid and the liquid phases, respectively.
The Stefan conditions on the interface I are{︄

λρ1
dI
dt

= k1
∂µ1

∂x
− k2

∂µ2

∂x
,

I(0) = 0,
(2.18)

where, λ is the latent heat.

2.3.2 Numerical methods
For solving MBP, there are three main numerical methods. The first one is the fixed grid method
(FGM) also called Eulerian method, where the grid is spatially fixed in Cartesian form. The MB is
tracked by using a marker function or an auxiliary variable. Depending on the marker function,
the FGMs can be divided into three categories, i.e., point, surface and volume marker methods.
The point marker method is very effective in tracking interfaces with small perturbations, while
producing numerical instability for complex migrations [123]. A commonly used surface marker
method is the level set method [124], where the position of the MB is given as the zero-level set of
an auxiliary field defined over the domain [125]. The volume marker method is often used for
tracking of the internal region of the fluid. The interior of the fluid is discretized and each cell
is assigned a volume fraction. The topologically changing fluid boundary is tracked through the
changing volume [126].
In addition to the above-mentioned marker function, the most widely used auxiliary variable is the
enthalpy function. The location of the interface is determined from the enthalpy function H(T )
where an energy jump occurs due to the phase transformation [127]. The heat transfer equation
at the interface is expressed as

∂H(T )

∂t
= K∇2T, (2.19)

where K = λ/(cρ); T is the temperature; λ, c and ρ represent the thermal conductivity, the specific
heat capacity and the density of the material, respectively.
The enthalpy as a function of temperature is written as [128]

H(T ) =

⎧⎪⎨⎪⎩
cT, T < T1 solid phase

cT + L(T−T1)
T2−T1

, T1 ≤ T ≤ T2 interface region
cT, T > T2 liquid phase

(2.20)

where T1 and T2 are the temperatures at the lower and the higher ends of the interface region,
respectively; L is the latent heat.
An outstanding advantage of the FGM is that its computational effort is low because the calculation
is performed on a uniform and orthogonal fixed Cartesian grid.
The second method is the variable grid method (VGM) [129] also known as Lagrangian method,
where the MB is located on a line of the grid nodes and the grid is scaled as the boundary moving.
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It can also be subdivided into Variable Space-Step Method (VSSM), Variable Time-Step Method
(VTSM), and Variable Time-Space-Step Method (VTSSM). A significant advantage of VGM is that
the boundaries can be accurately calculated, because the MB coincide with a line of numerical
nodes. However, the grid must be updated at each time step, and the computational effort is quite
expensive. In addition, due to the shape of the moving interface and its trajectory are frequently
compressed, it is possible to make the large deformation of the grid cells, which leads often to
numerical errors.
The last approach is the hybrid method (HM) also called mixed Eulerian–Lagrangian method
[130, 131] which employs properties of both fixed and deforming grids. Combining the advantages
and disadvantages of the FGMs and VGMs, the calculation of this method is performed on a fixed
Cartesian grid, which effectively avoids the problem of computationally heavy grid redistribution.
The irregularly shaped interface is tracked on the fixed grid and represented by a marker function.
The shape information of the interface is obtained by connecting the marker functions, e.g., for
the point marker function, the node position and curvature are obtained. The new interface is
obtained by the Lagrangian translation of updated marker functions.

Figure 2.3. Expression of MB by using FGM, VGM and HM, respectively. FGM and VGM: Repro-
duced with permission from [132]. Copyright 2020, Springer; HM: Reproduced with
permission from [130]. Copyright 1999, Elsevier.

2.4 Phase-field method
In the methods mentioned above, the thickness of the interface is considered to be infinitely
sharp. This assumption limits their application. First, a series of partial differential equations
are coupled by moving and unknown boundary conditions at the interface, which need to be
explicitly tracked [133]. Complex changes in interface morphology often cause difficulties in
convergence of iterations in numerical calculations. Second, treating an interface with limited
width as a sharp interface leads to discontinuities in some continuously varying parameters (e.g.
ion concentration and temperature fields), making it inaccurate to trace the evolution of certain
physical processes. Third, anisotropic surface tension and interface kinetics are ignored, which can
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lead to an unstable solution of the continuum model [133]. Irregular shape can in turn affect the
direction of anisotropic growth of the interface. These formidable problems provide the impetus for
developing a new model in which all these factors can be considered. The phase-field (PF) method
avoids the difficulties of tracking interfaces at a conventional sharp interface by using a diffusive
interface, thus can effectively simulate the complex microstructural evolution of non-equilibrium
processes. In the following sections, general concepts will first be explained followed by a review
of the basic thermodynamic principles, which are necessary in the context of the PF approach.
Then thermodynamics of phase transitions and governing equations are be introduced.

2.4.1 General concepts
The microstructure of a material can be considered as a spatial distribution of phases and crystal
structures of different compositions [134]. The evolution of the microstructure occurs as a result of
phase changes, chemical reactions, the aggregation and coarsening of atoms or clusters within the
material due to changes in temperature, the action of external stress, electric and magnetic fields
[135]. This process is accompanied by a minimization of the total free energy (e.g. interfacial,
elastic, magnetic, chemical and electrostatic energies) in the presence of an applied external field
(e.g. applied stress, electric, temperature, concentration and magnetic field) [136]. Based on the
energy evolution, a PF model is formulated thermodynamically by means of phenomenological free
energy functions written in terms of phase and other fields (e.g. temperature, solute concentration,
strain, etc.). The gradient energy across the diffusive interface is also taken into account. By
minimising the free energy function, the migration of the interface can be determined [137].
Changes in the position and topology of the interface can be captured automatically without the
interface tracking [138].

Figure 2.4. Schematic of a diffuse and sharp interface with corresponding typical interface profiles.
Phases I and II are separated by the interface I. ϕ(x, t) varies smoothly across the
interface in the PF model, taking its bulk value on either side of the interface. However,
ϕ(x, t) is discontinuous at the interface in the sharp interface model.

Due to the universality of the energy concept, the PF method is widely used to deal with different
physics and their coupling problems: solidification [15, 139], solid-state phase changes [140,
141], grain growth, nucleation and coalescence processes [142–144], dislocation dynamics [145],
temperature inducing phase transformations [146], liquid-phase sintering [147], mass transport
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phenomena [148], hydrodynamics [149] and electromigration [150]. Recently, many problems in
solid mechanics deal with the use of PF for describing fracture phenomena and to capture complex
crack patterns [151–155].
The main feature of a PF model is the description of a diffusion interface between two phases.
The evolution of the interface microstructure is described in terms of a discrete order parameter
(OP) that vary continuously in space and time, e.g., ϕ(x, t) (Figure 2.4). The OP has a constant
value in the bulk phase (e.g. ϕ(x, t) = 0 in bulk phase I and ϕ(x, t) = 1 in bulk phase II). Over the
diffusion interface (0<ϕ(x, t) <1), the variation of ϕ(x, t) is described by an interpolation function.
In contrast, in the sharp model, the interface width is zero, in which ϕ(x, t) jumps discontinuously.
A second feature of a PF model is the focus on the non-equilibrium state of the phase. The OP
acts as an independent state variable distinguishing different states of the material that may be
identical in terms of other variables such as temperature, concentration, pressure, etc.

2.4.2 Thermodynamic free energy
The PF method is based on thermodynamics including the combined effect of the order-disorder
state and the driving force to describe the evolution dynamic of a system. In the following, the
basic thermodynamic principles relevant to this study are explained.
Thermodynamics is a discipline that studies the laws of state transitions and energy conversion
in thermal phenomena. It is mainly concerned with the equilibrium state of matter and the
physicochemical processes associated with the quasi-equilibrium state [156]. Thermodynamic
processes with different limiting conditions are accompanied by different expressions of the free
energy, which serves as a criterion for whether a process can proceed spontaneously or not. If the
free energy changes negatively, the process can proceed spontaneously; if the free energy changes
positively, the process cannot proceed spontaneously, but the reverse process is spontaneous [157].
When the change of the free energy equals to zero, the system is in thermodynamic equilibrium
[157]. For a closed isothermal system (one that can not exchange any matter with its surroundings)
with no chemical reactions in a constant volume, the Helmholtz free energy F can be expressed
by the internal energy U , the temperature T and the entropy S of the system

F = U − TS. (2.21)

The Gibbs free energy G is most commonly used as a measure for the judgment (especially in
chemistry) when it is convenient for applications that occur at constant pressure P and T

G = U + PV − TS = H − TS, (2.22)

where, H is the enthalpy.
The basic thermodynamic relationships are expressed by the following equation. For a closed
system in thermal equilibrium, the microscopic change in internal energy dU is expressed by
microscopic changes in entropy dS and volume dV

dU = T dS − P dV. (2.23)

The fundamental relation can be also expressed in terms of G in the following way

dG = −S dT − V dP. (2.24)
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2.4.3 Thermodynamics of phase transitions
A thermodynamic system may contain different phases. The states of these phases change at critical
values under varying external conditions [158]. In order to describe the phase transition, the
thermodynamic potential is used along with the corresponding equation of state, which describe
the state of matter under a given set of physical conditions, e.g., pressure, volume and temperature.
As mentioned in section 2.4.2, the thermodynamic potential can be expressed in terms of G [159].
The following section will provide a brief description of G and the chemical potential of an ideal
solution and a binary phase system.
The chemical potential is the amount of energy that can be absorbed or released as a result of a
change in the particle number of a given species during a chemical reaction [160]. For a given
temperature, a molecule has a high chemical potential in the region of high concentration and a
low chemical potential in the region of low concentration. The molecule tends to move from the
region of higher chemical potential to the region of lower chemical potential, accompanied by the
release of free energy. At chemical equilibrium, the free energy of the system is at minimum. The
chemical potential of a species µi is also known as the molar Gibbs free energy under the condition
of constant T , P and amount of all other components Nj [161]

µi =

(︃
∂G

∂Ni

)︃
T,p,Nj ̸=i

, (2.25)

where, N is the number of molecules.

Figure 2.5. (a) The relationship between Gibbs free energies and chemical potentials of an ideal
solution, Reproduced with permission from [162]. Copyright 2014 Elsevier; (b) Gibbs
free energy curves corresponding to binary phase diagrams, showing the miscibility of
the liquid and solid states, Reproduced with permission from [163]. Copyright 2006
John Wiley and Sons.

The relationship between the molar Gibbs free energy and the chemical potential can be well
elucidated with an ideal solution (a solution with zero enthalpy of mixing) consisting of two
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components A and B (Figure 2.5a). The left and right vertical lines represent the state of the
two pure components. The straight blue line connecting the molar Gibbs free energy of the pure
components represents the molar Gibbs energy of the mechanical mixture, while the red curve
represents the molar Gibbs free energy of the ideal solution Gl. The intersection of the tangent
line to the lowest point of the Gl curve (the equilibrium state) with the sides of pure component A
and B marks their corresponding chemical potentials µA and µB. The minimum molar Gibbs free
energy of the solution with the composition xA and xB (xA + xB = 1) is

Gl
eq = xBµA + (1− xB)µB. (2.26)

In addition, the difference between the molar Gibbs free energy of the pure component ( 0
GA and

0
GB) and the chemical potential of A and B can be written with the activity of component α as:
−RT lnαA and −RT lnαB, respectively,

0
GA−µA = −RT lnαA, (2.27)

0
GB −µB = −RT lnαB. (2.28)

For a heterogeneous system with two or more phases, such as pure components A and B both
containing liquid (l) and solid (s) phases, the Gibbs free energy curves of the two phases must
be considered separately (Figure 2.5b). 0

G
l
A, 0

G
l
B, 0

G
s
A and 0

G
s
B denote the molar Gibbs free

energy of the liquid and solid phases of the A and B pure component systems, respectively. The
compositions of the two phases in equilibrium at temperature T are xl

eq and xs
eq, with their

corresponding Gibbs free energies denoted as Gl
eq and Gs

eq, respectively.

2.4.4 Governing equations
The evolution of OPs can be described by their variable fractions of the free energy functional.
Depending on whether the OPs are conserved or not, the equations for their evolution can be
divided into two categories: (1) non-conserved field variables (e.g. ferroelectric polarisation
fields [164, 165], grain orientation fields [143], gas-liquid-solid phase fields [166] and cracking
fields [152]) mainly using the Allen-Cahn equation [167], and (2) conserved field variables (e.g.
concentrations [168, 169]), whose dynamics are mainly described by the Cahn-Hilliard equation
[170],
The Allen-Cahn equation:

∂ϕi(x, t)

∂t
= −Lϕ

δF

δϕi(x, t)
, (2.29)

where ϕi(x, t) is the non-conserved field variable with i= 1, 2 ..., n, while Lϕ is the kinetic structure
operator (PF mobility); t is the time and x is the spatial coordinate.
The Cahn-Hilliard equation:

∂ci(x, t)

∂t
= ∇Mc∇

δF

δci(x, t)
, (2.30)

where ci is the conserved concentration field variable; Mc is the kinetic coefficient of diffusion.
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One of the key components of the PF method is the free energy functional. When temperature,
pressure and molar volume are constant and there are no elastic, magnetic or electric fields, the
total free energy of a system consisting of a concentration field c and the OP ϕ can be given by
[134]:

F (ϕ, c) = Floc + Fint =
∫︂
V

[floc(ϕ, c) + fint(∇ϕ,∇c)] dV, (2.31)

where, Floc and Fint represent the energy contributions from the homogenous local phases and the
diffuse interface region, respectively; floc represents the contribution of chemical interactions to
the local free energy density, fint is the gradient energy density, which is only non-zero at and
around the interface.

Figure 2.6. Graphic illustration for key functions of PF model. (a) 3D graphic of the local free
energy floc as a function of the solute concentration c and the OP ϕ; (b) the free
energy of the solid and the liquid phase; (c) the double-well function g(ϕ); (d) the
interpolation function h(ϕ).

In a binary system, floc is commonly expressed as the free energy expressions of the coexisting
phases combined by an interpolation function h(ϕ) and a double-well function wg(ϕ) (see Figure
2.6(a)):

floc(ϕ, c) = h(ϕ)fs(c) + (1− h(ϕ)) fl(c) + wg(ϕ) (2.32)
where, h(ϕ) has a variety of expressions in the literature, e.g., h(ϕ) = −2ϕ3 + 3ϕ2 [1] and
h(ϕ) = ϕ3(6ϕ2 − 15ϕ + 10) [136], both change from h(0) = 0 to h(1) = 1; w is the height of
the double-well function g(ϕ) = ϕ2(1 − ϕ)2 [1]; fs(c) and fl(c) are homogeneous free energy
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expressions for c dependence of the solid and the liquid phase. Figure 2.6 (b) shows that the
concentration of the interface lies between cle and cse. The tangent line indicates the equilibrium
component of the coexisting phases. The dotted curve shows a possible evolution of floc across the
interface. The functions g(ϕ) and h(ϕ) are used to construct floc, which are plotted in Figure 2.6
(c) and (d), respectively.

2.4.5 Multi phase-field model

Self-healing of cementitious materials can also be considered as a physicochemical reaction involv-
ing multiple phases including the cement matrix phase, the self-healing product phase consisting
of the product of the further hydration and the carbonation reaction, air void phase and the
solution phase. A review of multiphase models in the literature provides important insights into
solving of the self-healing problems. In dealing with complex phase transformations, such as
structure (poly-crystal) [171], multi-phase and/or multi-component (alloys and mixtures of fluids)
[172–174] or the orientation of the crystal lattice (grains) [175], multi PF models are introduced.
The phase is represented by a set of OPs ϕi. The following basic constraint is often applied to a
system with N phases [176]

N∑︂
i=1

ϕi = 1. (2.33)

For conserved OPs, the following constraint is commonly used

c =
N∑︂
i=1

h({ϕi})ci, (2.34)

where h({ϕi}) is an interpolation function.

Table 2.3. A review of multi-PF models
Multi-PF model Feature Application Reference

WBM model
Phases have the

same composition but
different volume fractions

Solidification
in binary alloys

[177, 178]

KKS model Phases have
different compositions

Solidification
in binary alloys

[1]

Steinbach model
Geometric description of
the interface through the

interface curvature

Eutectic and peritectic
solidification, grain growth

[176, 179]

Losert model
Directional solidification
with some asymptotics
and vanishing kinetics

Solidification in
dilute binary alloy

[180]
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Commonly used models for addressing two or multi-phase transition processes are Wheeler-
Boettinger-McFadden (WBM) model [177, 178], Kim-Kim-Suzuki (KKS) model [1], Steinbach
model [176, 179] and Losert model [180], which are summarized in Table 2.3. Since the inception
of these models, many other studies have used or expanded the ideas in the above references
[181–184].
Wheeler et al. [177, 178] proposed a PF model dealing with isothermal phase transitions in binary
alloys. The WBM model works well for sharp interface and finite interface thickness issues, but is
not applicable for large interface thicknesses cases [179, 183, 185, 186]. The Gibbs free energy
functional is based on the chemical potential of each component combined with the corresponding
weighted concentration, which is given by

f(η, c, T ) = cfB(η, T ) + (1− c)fA(η, T ) +
RT

vm
[c ln c+ (1− c) ln(1− c)]. (2.35)

Different from the WBM model, the interface in the Kim–Kim–Suzuki (KKS) model [1] was defined
as a mixture of liquid and solid phases of different compositions, but with the same chemical
potential as follows

∂f(c′s)
∂c′s

=
∂f(c′l)

∂c′l
. (2.36)

In the KKS model, each point throughout the domain is a mixture of two phases. The local free
energy is determined to be a fraction-weighted average value of both solid and liquid free energy
and an imposed double-well potential ωg(ϕ) as follows

f(c′, ϕ) = h(ϕ)fs(c
′
s) + [1− h(ϕ)]fl(c

′
l) + ωg(ϕ), (2.37)

where the interpolation function h(ϕ) is built as h(ϕ) = −2ϕ3 + 3ϕ2, ω is the height of the double
well potential energy function given by g(ϕ) = ϕ2(1−ϕ)2. Unlike the two models mentioned above,
the model proposed by Steinbach et al. [176, 179] is not based on a thermodynamic treatment,
but on a geometric description of the interface through an interpolation function of the interface
curvature. The free energy functional is postulated

f(ϕ) =
n∑︂

i,k(i<k)

fik

=
n∑︂

i,k(i<k)

{︃
ε2ik
2
|ϕk∇ϕi − ϕi∇ϕk|2 +

1

4αik

[ϕ2
iϕ

2
k

−mik(
1

3
ϕ3
i + ϕ2

iϕk −
1

3
ϕ3
k − ϕ2

kϕi)]

}︃
,

(2.38)

where fik is the energy term that is sensitive on the boundary between phases i and k; n is the
number of phase states in a system; mik is the linear coefficient of the thermodynamic equilibrium
deviation; εik and αik are the thermophysical data.
Later, Losert et al. [180] exploited the similarity between alloys and pure materials to extend the
thin interface model to the case of dilute binary alloys by matching variables in the pure material.
However, there are two strict assumptions that limit the application of the model: (1) the solid
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and the liquid phases have constant partition coefficients, and (2) the solute diffusivity is constant
throughout the whole domain.

τ(n)∂tϕ = (1− ϕ2)

[︃
ϕ+ α(ϕ2 − 1)

(︃
µ+

z − z0 − Vpt

lT

)︃]︃
+ ∇⃗[w(n)2∇⃗ϕ] + ∂x

(︃
|∇⃗ϕ|2w(n)∂w(n)

∂ϕx

)︃
+ ∂z

(︃
|∇⃗ϕ|2w(n)∂W (n)

∂ϕx

)︃
,

(2.39)

where τ(n) is a function related to ϕ; n is a normal vector; µ is a factor of the chemical potential;
α is a constant factor; z and z0 represent the real and the reference interface position, respectively;
z0 is the reference position of the steady state planar interface; lT is the thermal length; Vp is a
constant interface velocity and w(n) is the interface thickness.
Based on the above review, the existing research on PF methods related to cementitious materials
need to be summarized. As the main initial process of the self-healing mechanism, mineral
component dissolution, will be investigated using the PF method to understand and verify the
feasibility of the PFmethod for the moving boundary problem of mineral dissolution. The estimation
of interfacial mobility and the interaction analysis of PF parameters need to be done, which lays the
theoretical foundation for the multi-process multi-interface simulation. Based on the PF dissolution
model validated in the previous step, a novel PF model dealing with the dynamic equilibrium
of dissolution and precipitation will be developed. In the following chapter, the methodology,
implementation and results of each step of the study will be described in detail through the three
peer-reviewed publications.
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3 Results

3.1 Publication 1: A Review on Cementitious Self-Healing and the
Potential of Phase-Field Methods for Modeling Crack-Closing
and Fracture Recovery

Sha Yang1, Fadi Aldakheel2, Antonio Caggiano1,3, Peter Wriggers1 and Eddie Koenders1

1 Institute of Construction and Building Materials, Technical University of Darmstadt, Franziska-
Braun-Straße 3, 64287 Darmstadt, Germany

2 Institute of Continuum Mechanics, Leibniz Universitaet Hannover, An der Universitaet 1, 30823
Garbsen, Germany

3 CONICET and LMNI-FIUBA, Universidad de Buenos Aires, Buenos Aires C1127AAR, Argentina
Journal: Materials 2020, 13(22), 5265; https://doi.org/10.3390/ma13225265

3.1.1 Introduction

Concrete is characterized by its high compressive strength, a wide availability of its raw materials,
and simple production methods, which is the main reason that it became the most commonly
used construction material in the world [187, 188]. However, its low tensile strength is the main
reason that various types of cracks can occur in a concrete element that may adversely affect its
service life [189]. While under internal, external, or environmental load, open or closed micro-
and/or meso cracks may develop inside a concrete element that may successively result in a loss of
structural integrity [190]. Open surface cracks may also allow water or hazardous substances to
enter and thereby severely impairing its durability [191, 192]. Therefore, improving the durability
of concrete structures, asks for a limitation or reduction of the number of cracks where self-healing
strategies could be solution. In the last decades, enormous efforts have already been done to
develop various kinds of self-healing methods for cementitious systems [166, 193–200]. Most
comprehensive scientific report so far is the RILEM TC-221-SHC [14], that summarizes the current
research progress and defines the difference between “autogenic” and “autonomic” self-healing
methods, depending on whether crack closure happens due to either the material itself [29, 201–
203], or is triggered by means of engineered additions [28, 46, 70, 77, 198, 199, 204–209].

From a modeling point of view, the presently existing numerical approaches can be grouped
according to the nature of their particular self-healing mechanism into (1) chemical reaction-based
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models [32, 87, 89, 92, 166], for predicting carbonation, hydration, polymerization and precipita-
tion phenomena; (2) transport phenomena-based models [94, 210], in which the phases affecting
the healing processes are transported through the concrete pore-structure network; and (3)
fracture-based models, smeared [88, 91, 98, 99, 103, 104, 108, 110–112] and discrete [100, 105,
107, 109, 113–115] crack approaches for predicting strength recoveries of self-healing systems.

When considering the number and type of experiments required to study the performance of
self-healing concrete, it turns out that optimizing self-healing mechanisms through extensive
experimental studies is a very demanding task. However, this task becomes more doable when
employing numerical simulation models. However, most existing models do not incorporate
physically/chemically driven boundary movements for an accurate simulation of solid-liquid
interfaces. To overcome these difficulties, phase-field (PF) methods have been proposed as
a powerful tool for handling moving interfaces caused by phase transitions [15, 135, 211]. In
conventional numerical models for phase transformations and microstructural evolutions, interfaces
are considered to be infinitely sharp and have to be schematized explicitly [212–214]. It leads to
incompatibilities that makes calculations very complex and difficult to implement in a computer
program. Contrarily, PF methods are based on thermodynamic principles and assume a diffuse
interface, which makes them suitable for solving complex morphological evolutionary processes.
The evolution of the “field”, over time and space, is controlled by the nonlinear Cahn-Hilliard
diffusion equation and its relaxation by the Allen-Cahn equation [215, 216]. For concrete, a self-
healing mechanism is physically almost similar to a dissolution and/or precipitation principle that
evolves at the cracked surfaces. It makes a PF modeling approach very suitable for solving this
type of moving interface problems at cracked surfaces, caused by phase transformations.

This article provides a review on existing models to simulate self-healing in cracked concrete,
with emphasis on PF methods. After the introduction in Section 3.1.1, the currently available
self-healing methods for concrete are reported in Section 3.1.2. In Section 3.1.3, the possibility
of using PF methods for simulating self-healing in concrete is presented and discussed. Then,
in Section 3.1.4, the basic equations of a PF method are presented. Next, in Sections 3.1.5 and
3.1.6 existing PF techniques for precipitation and fracture in concrete are reported, respectively.
Finally, items that should be addressed in self-healing models along with future research priorities
and a concluding discussion on the whole article is given in Section 3.1.7.

3.1.2 Self-Healing Mechanisms in Concrete

In general, self-healing processes in cement-based materials can be divided into two categories:
(1) autogenous self-healing and (2) autonomous self-healing [195, 217, 218]. Autogenous self-
healing involves only the original components of a concrete. These components may, due to their
specific chemical compositions, promote crack healing under favorable environmental conditions,
driven by chemical reactions or transitions [30, 34, 196]. However, autonomous self-healing
processes can only take place with the help of healing additives, such as microcapsules that
may contain healing agents like polymers or bacterial spores [199, 219]. Autogenous healing
mechanisms have a limited healing capacity, typically only being able to heal cracks of about
100-150 µm in width [13]. In contrast to this, autonomous mechanisms can easily heal cracks
up to 300 µm µm and sometimes even more than 1 mm [13]. These self-healing mechanisms are
described below in detail.
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3.1.2.1 Autogenous Self-Healing

Autogenous self-healing has been extensively investigated in the last decades [12, 34, 195, 196,
220], mainly by using experimental techniques.

Physical cause

Swelling

Chemical causes

Continued
hydration

Calcium carbonate
formation

Mechanical causes
Fine particles:

Broken of from
fracture surface

Originally in
the water

a

b c

Figure 3.1. The autogenous self-healing mechanisms, products, and their corresponding chemical
composition. (a) Schematic representation of the mechanisms of autogenic self-healing.
Reproduced with permission from the authors of [221]. Copyright 2013, Springer.
(b) Morphology of healing products (GHP refers to the gel-like healing product and
CHP refers to the crystal-like healing product). Reproduced with permission from
the authors [31]. Copyright 2013, Elsevier. (c) Ratios of Ca/Si and Al/Si of healing
products with time. Reproduced with permission from the authors of [31]. Copyright
2013, Elsevier.

Figure 3.1a shows three main categories: physical, chemical, and mechanical healing. The physical
healing mechanism is the process where the crack surface inside a cement matrix absorbs water
and causes volume expansion [221, 222]. The chemical healing mechanism consists of two main
reactions, namely, a further hydration of the still unhydrated cement clinker inside a concrete,
generating additional Calcium Silicate Hydrates (C-S-Hs), and carbonation of the additionally
formed portlandite [34–36, 223]. Finally, mechanical healing mechanisms refers to the filling of
a crack with fine cement particles, which appear in a crack by water transport or diffusion [35].
The chemical mechanism is the primary and most promising healing method for hardened concrete
at a young age [14]. Due to the relatively high content of unhydrated cement particles in these
concretes, continuing hydration will still be possible and may result in a healing of cracks [29, 30].
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At later ages after crack initiation, the formation and growth of calcium carbonate crystals (CaCO3)
becomes the main healing mechanism [37]. Figure 3.1b,c shows the main healing products and
their chemical components.

a b c
regular cement

DEP cement

membrane

Figure 3.2. Self-healing with Dissoluble Encapsulated Particles (DEP): (a) Schematic representa-
tion of regular cement blended DEP cement [166]. (b) Initial state of microstructure
by vol.-10% cement replacement by DEP [166]. (c) A high pH value will cause the
DEP capsule to rupture, the healing agent will be released and a special hydration
reaction with accompanying volume expansion will begin [224].

To improve the effectiveness of autogenous crack repair, an improved self-healing method called
Dissoluble Encapsulated Particles (DEP) has been proposed [166, 197, 224]. In this self-healing
method a certain amount of cement in a concrete mixture remains unhydrated for a predefined
period of time because of the pre-encapsulation of certain cement fractions which are covered
with a thin membrane that can dissolve whenever it is affected by a crack (Figure 3.2). A crack in
a cementitious surface may open the DEP membrane due to either (1) a dissolution mechanism
caused by low pH-conditions, i.e. due to increased CO2 ingress, or (2) by mechanical fracture.
After this happened, the original unhydrated cement will be exposed to the local environmental
temperature and humidity conditions causing the cement to react and finally close the crack [224].

3.1.2.2 Autonomous Self-Healing

Autonomous self-healing is a method to improve the effectiveness of self-healing mechanisms for
concrete, by either embedding encapsulated or non-encapsulated additions [13, 217]. Until now,
addition of encapsulated agents (micro/meso < 1 mm, macro ≥ 1 mm) is the most preferred
method adopted for autonomous self-healing concrete [13], which may contain mineral [41, 43],
bacteria [49, 70–72, 199, 225–230], and polymers [200, 231, 232]. Non-encapsulated additions
may also contain these listed substances, but are added to a mixture in a pure, non-encapsulated,
form where they become active directly after mixing of the concrete [68, 233, 234].

3.1.2.3 Self-Healing Based on Mineral Admixtures

Mineral admixtures are materials that are mixed in a concrete and react with water to form reaction
products with an expanded volume to heal cracks developed in an already hardened concrete.
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With this healing mechanism [42, 68, 198, 235], crack widths up to 120 µm can be repaired [13].

(1) Expansion term (Expansive agents)

(2) Swelling term (Geo-materials)

(3) Precipitated term (Chemical agents)

Figure 3.3. Three main self-healing mechanisms using mineral admixtures. Reproduced with
permission from the authors of [43]. Copyright 2010, JCI.

Depending on the type of mineral additives, three subcategories can be identified: (1) expansive
additives, (2) geo-material based additives, and (3) chemical agents (crystalline additives) (Fig-
ure 3.3). Expansive additives develop reaction products with an increased volume that can fill
the cracks [58]. Commonly used are sulfoaluminate based expansive additives (C−S−A) [41].
The geo-material-based additives consist of silicon dioxide, sodium aluminum silicate hydroxide,
and bentonite clay, which have the capacity to swell [43–45]. When this type of geo-material is
exposed to water, its volume may increase 15-18 times its initial dry volume [43]. The most basic
crystalline additive is tricalcium silicate (C3S), which is the main clinker component in cement
and reacts with water to form calcium silicate hydrate C−S−H phases [46].
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3.1.2.4 Self-Healing Based on Bacteria

A certain category of bacteria can be applied for healing cracks in concrete [70]. It results in a
closed crack which is watertight and has a limited capacity to restore the mechanical strength of a
concrete [71, 72, 225]. The maximum crack width that can be healed with this system are 150
µm [226], which is rather limited whenever compared with other healing systems. Figure 3.4
shows a schematic impression of a fractured concrete with microencapsulated bacterial spores and
the results of previous experiments [71, 72, 236].

precipitate
minerals

released
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encapsulated
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Figure 3.4. Self-healing mechanism using bacterial spores. (a) Schematic diagram of bacterial
repair of concrete cracks. Bacteria on the surface of the crack are activated by water
and precipitate minerals such as calcite to seal the crack and protect the reinforcement
from external chemical attack. Reproduced with permission from the authors of [236].
Copyright 2018, Elsevier. (b) ESEM photomicrograph (15,000×magnification) of B.
cohnii spores, showing that spore diameter sizes are up to 1 µm. Reproduced with
permission from the authors of [71]. Copyright 2010, Elsevier. (c) Mineral precip-
itates (20-80 µm sized) on crack surfaces (250×magnification). Reproduced with
permission from the authors of [71]. Copyright 2010, Elsevier. (d) Stereomicroscopic
images of crack-healing process in bio-chemical agent-based specimen before and
(e) after 100 days healing. Reproduced with permission from the authors of [72].
Copyright 2011, Elsevier.

Bacteria provide an important reaction component in a self-healing mechanism, where they are
enhancing the calcium carbonate CaCO3 production, needed for crack closing [237]. During heal-
ing, the mechanism passes the following two sequential steps; (1) conversion of calcium lactate
and (2) hydrolysis of urea through (ureolytic) bacterial metabolism. In the first mechanism, oxygen
and water penetrate into the concrete interior through cracks where the bacteria are activated
to convert calcium lactate into CaCO3 crystals and CO2. Portlandite particles near the cracks will
further react with CO2 to produce more CaCO3 which precipitates at the crack surfaces [72]. In the
second mechanism, many components capable of producing organic urea (e.g. Bacillus cohnii,
Sphaericus, Subtilis, Pasteurii, Megaterium and Sporosarcina ureae) can act as a catalyst during
the self-healing process [76]. As it undergoes demineralization, negatively charged bacterial cells
take up components from the cell wall and then react to CaCO3 precipitates [238].
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The efficiency of the precipitates generated by bacterial induction is determined first by the avail-
able water content and moisture movement in the concrete matrix [239, 240], and second by the
concentration of calcium ions, the pH of the pore solution, the concentration of inorganic carbon
and by the presence of nucleation sites [241, 242]. The first three are available in the concrete
matrix, while the last one is related to the type of bacteria used [225]. In addition, factors that
affect the effectiveness of healing include (1) the type of carrier (direct [243], encapsulated [52]
containers like clay and aggregates [64, 80]) and (2) the concrete compatible chemical reactions
taking place in producing CaCO3 [228, 244].

3.1.2.5 Self-Healing Based on Adhesive Agents

This method is based on injecting adhesives into a crack to induce manual healing [56, 81].
The crack widths which can be healed with these systems vary from 50 µm up to 250-300 µm [13,
245]. Adhesive agents can be divided into one-component andmulticomponent systems. Commonly
used one-component adhesive agents are polyurethane [53] and epoxy [54]. Multicomponent
adhesives are methylmethacrylate [55] and ureaformaldehyde/epoxy [56]. Adhesive agents are
encapsulated in spherical capsules [81], tubular-shaped capsules [55, 246], and hollow fibers [82,
247, 248] that are mixed with fresh concrete (Figure 3.5). When cracks occur, rupture of the
encapsulation takes place, where the adhesive will be released into the crack by capillary action,
initiating crack healing with time.

a

b c

d e

Figure 3.5. Self-healing mechanism based on adhesive agents. (a) Test setup used to determine the
tensile strength of laboratory-scale hollow glass tubes with an outer hole of diameter 5
mm and an inner pin of diameter 3 mm. Reproduced with permission from the authors
of [55]. Copyright 2015, Elsevier. (b) Hollow glass fibres of 60 µm external diameter
with a hollowness of 50%. (c) Cross section through impact damaged hybrid solid
glass/hollow glass/epoxy laminate. Reproduced with permission from the authors of
[247]. Copyright 2005, Elsevier. (d) Spherical microcapsules with diameter of 120
± 33 µm. Reproduced with permission from the authors of [249]. Copyright 2012,
Elsevier. (e) Short glass/ceramic capsules attached to reinforcement, Reproduced
with permission from the authors of [246]. Copyright 2015, Elsevier.
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3.1.3 Phase-Field Methods for Modeling Concrete Self-Healing

The Phase Field (PF) method for simulating lower scale micro- and/or mesostructural cracking in
materials has got an enormous upswing in the last decades. However, so far classical PF applica-
tions were focusing on the distribution of non-reactive multi-phase systems [250]; solidification
problems [15, 139]; solid-state phase changes [140, 141]; grain growth, nucleation, and coales-
cence processes [142–144]; dislocation dynamics [145]; temperature inducing phase transforma-
tions [146]; liquid-phase sintering [147]; mass transport phenomena [148]; hydrodynamics [149];
and electromigration [150]. Recently, many problems in solid mechanics deal with the use of PF
for describing fracture phenomena and to capture complex crack patterns [151–155]. Based on
the present literature review, the following can be summarized.
• PF is an extremely powerful mathematical modeling scheme for accurately describing physical

movements of phase boundaries.
• PFwasmainly employed for solving solidification dynamics, material phase changes/separations,

growing phases driven by chemo-kinetics and transport phenomena, nucleation and coales-
cence processes between particles in micro-to-mesostructures.

• PF has been successfully employed in fracture mechanics to capture the cracking response of
brittle/ductile materials without the need for employing Discrete Crack Approaches (DCAs)
and/or Smeared Crack Approaches (SCA).

Because of this, and as also supported by various state-of-the-art reports [15, 165, 211, 251–
253], PF models can be employed for self-healing of brittle or plastic (ductile) materials in a
fundamental and consistent way. It will combine the impact of two main phase changes that
occur simultaneously in a self-healing mechanism, i.e. chemical reactions and fracture. Gradual
changes from the fully-cracked (failure) to the uncracked configuration can be driven through
the so-called Phase-Field order parameter (ϕ). It will provide a smooth transition of all relevant
phenomena between the fully cracked configuration and the intact material phases: this strength
and crack recoveries actually represent the self-healing process. The governing equations of the
proposed unified model will be derived in the framework of thermodynamics concepts, in terms
of kinematics and balance equations, dissipation inequality and constitutive laws. Particularly,
the free energy will be considered as the sum of the contributions due to elasticity, reaction PF
and fracture PF. The free energy of the system is described in a unified form over the entire phase
transition region. In this regard, the advantage of the PF method over other competitive numerical
methods is its enormous capability of capturing movements of interfaces, without the need for
introducing any additional ad hoc technique, criteria and/or remeshing strategies, and also without
any explicit tracking of the actual interface positions of these coupled processes. The governing
equations of PF models for chemical/moisture reactions and fracture processes, associated with
self-healing, as well as the coupling among them, can be formulated in a unified PF framework.
The next sections report a review on the available formulations for a unified and coupled set of PF
approaches for modeling reactions and fracture of self-healing mechanisms in concrete.

3.1.4 Main Equations of a Phase-Field Approach

The phase-field (PF) approach is a very powerful technique to simulate complex physical phenomena
in multi-field environments. The main attributions of this approach are simplicity and generality.
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A popular PF application is a diffusion interface model that is frequently used to simulate phase
transformation problems in materials research [134, 254, 255]. The classical PF method is
formulated based on the theory of Ginzburg and Landau, elaborated in the 1950s [256]. Compared
with the sharp interface model, the PF diffusion interface model has the important advantage that
no boundary conditions are specified on the interface between the different domains (Figure 3.6). A
diffusive order parameter ϕ is a continuous function coordinate of time and space, which indicates
each phase to convert between 0∼1 or -1∼1 within a thin translation layer [135, 253]. Moreover,
ϕ is controlled by a set of coupled partial differential equations that can be discretized and solved
numerically by evolving the equations. Any phase transformation is driven by a reduction of the
free energy of the system F , which can be described by a set of conserved ci and non-conserved ϕi

field variables. The domain of the model is the entire phase transition system. The free energy of
the system consists of the energy contributions from the homogenous bulk phases Fbulk and the
diffuse interface region Fint, according to [134]

F (ϕ, c) = Fbulk + Fint =
∫︂
V

[floc(ϕ, c) + fint(∇ϕ,∇c)] dV (3.1)

where floc defines the local free energy density (including chemical, interfacial and elastic strain free
energy density), while fint defines the diffusive interface energy density. From the computational
point of view, monolithic or staggered algorithms can be computed to solve the problem unknowns,
in which mechanical, chemical, interface, and phase-field variables are computed simultaneously
or sequentially, respectively. For more details the interested reader is referred to the works in
[151, 257, 258]. In those works, robust and efficient monolithic schemes were employed for the
numerical implementation.
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Figure 3.6. Schematic representation of sharp interface model and phase-field model.

3.1.4.1 Evolution Equation

The generalized PF method is represented by the Ginzburg-Landau or Onsager kinetic equation
combined with the well fitted Landau- or Redlich-Kister-type free energy density functionals, which
are dependent on both conserved and non-conserved field variables [134]. The time-dependent
evolution of the conserved field variables (chemical concentration) is defined using a modified
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Cahn-Hilliard equation [170], while the Allen-Cahn equation describes the transformations with
non-conserved variables (e.g. crystal orientation, long-range order, crystal structure, and elastic
strain) [167].
The Cahn-Hilliard equation is

∂ci(r, t)

∂t
= ∇ ·Mc∇

δF

δci(r, t)
(3.2)

where ci is the conserved concentration field variable, Mc is the kinetic coefficient of diffusion
(associated mobility), t is the time and r is the spatial coordinate, ∇ is a vector of partial derivative
operator, and δ denotes the variational derivation of the functional F .
The Allen–Cahn equation is

∂ϕi(r, t)

∂t
= −Lϕ

δF

δϕi(r, t)
(3.3)

where ϕi(r, t) are the i different structure field variables with i=1, 2 ..., n, while Lϕ is the kinetic
structure operators (order parameter mobility). Depending on the problem, Lϕ has different
expressions [139, 259, 260].

3.1.4.2 Local Free Energy Function

The local free energy function is a key component in the PF model [176]. This function describes
the free energy density of each bulk phase, whose coefficients are obtained from thermodynamic
data [259]. The expression of the local free energy depends on the problem of interest. For ex-
ample, a double-well form is often used for solidification [255, 261]. When dealing with an
electromigration problem, a double-obstacle potential is usually applied [15, 262]. A crystalline
energy function is used to describe an overlapped dislocation of an elastically anisotropic crys-
tal [263–265]. When the problem is temperature-controlled, as in the melting and solidification
processes of crystals, the local free energy function contains a temperature field [266, 267]. In such
cases, the phase-field is needed to be coupled with a temperature field [266–270]. Furthermore,
a Landau-type polynomial potential can be applied for the treatment of a solid-state phase trans-
formation [271–276]. Table 3.1 summarizes examples of the universal expressions, the graphs of
the local free energies and existing phase-field applications.

3.1.5 Phase-Field Modeling of Precipitation Reaction Mechanisms

Self-healing of concrete can be numerically treated as a precipitation process of solutes at the solid–
liquid crack interface [277, 278], which is time-dependent and controlled by chemical reactions
and diffusion [94, 279]. When the rate of the chemical reactions at the interface is sufficiently high
and there is no fluid flow, diffusion will be the only mechanism left for solute transport. The whole
process is then a diffusion-controlled precipitation one [278]. However, when the chemical kinetics
is slow enough, the precipitation process becomes chemically determined [280]. A review of
existing models for self-healing that are based on chemical reactions show that these models are
employing a reaction-diffusion process to describe the self-healing evolution [32, 87, 89, 92, 166].
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Table 3.1. Expressions, graphs, and applications of the local free energy.
Double-well

f(ϕ) = A
(︁
−1

2ϕ
2 + 1

4ϕ
4
)︁
;ϕ ∈ (−1, 1),

where A is the height of the potential energy between the two states at the minimum free energy.
solidification [15, 24, 135, 173, 255, 260, 261, 281–287]
coarsening and grain growth [142, 143, 288–290]
dislocation dynamics [291, 292]
crack propagation [151–155]
crystal growth under stress [293, 294]
biological application [295, 296]
phase transformations in thin films [297]
electrochemical process [169, 298–301]

Double-obstacle
f(ϕ) = ψ(ϕ) + I[−1,1](ϕ),

where ψ(ϕ) = A(1− ϕ2); I[−1,1](ϕ) =

{︃
∞ |ϕ| > 1
0 |ϕ| ≤ 1

.When the phase transition only occurs
in the narrow interface layer ϕ ∈ (−1, 1) instead of in regions outside the interfacial layer.

solidification [302, 303]
cell dynamical system [304, 305]
stiffness maximization [275]
electromigration [306, 307]

Crystalline energy
f(ϕ) = A sin2(πϕ);ϕ ∈ (−∞,+∞),

where A is the energy barrier between two neighboring minima. This function is formulated with an infinite
number of degenerated minima.

dislocation system [263, 264, 308, 309]

spiral growth [265, 310]

Potential with temperature field
f(ϕ, T ) = 1

8α(1− ϕ
2)2 − (Ti − Tm)ϕ,

where Ti − Tm is the difference between the current temperature and the melting temperature;
α is a positive constant.

solidification [266–270]

Landau-polynomial
f(ϕ) = fdis +Aϕ+Bϕ2 + Cϕ3 +Dϕ4 + Eϕ5 + Fϕ6,

where fdis is the free energy of the disordered phase; A ∼ F are expansion coefficients related to temperature.

solidification [273, 311–314]
solid-state phase transformations [271, 272, 315–317]
electrochemical process [274, 318]
crystal growth under stress [275]
phase transformations in thin films [276, 319, 320]
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These models focus on two processes: (1) the diffusion mechanism where dissolved ions (e.g.,
calcium ions) are transferred from the concrete interior toward the surface of the crack, and (2)
the precipitation of mineral ions reacting with, for example, carbon dioxide or carbonate ions
to form calcium carbonate. They mostly consider how the chemical environment affects the
formation of self-healing products and how to achieve agreement with experimental results
[32, 87, 89, 94, 98, 108, 166, 210, 321].
However, these models have several limitations. First, they only simulate chemical reactions in
solution and do not explicitly account for the change of the initial solid phase boundary due to
the dissolution of soluble minerals at the fracture surface. Reaction diffusion models only include
precipitation reactions in solution and do not simulate the dissolution reactions of the solid phase
with a solution. Second, these models only uniformly simulate the healing process at the crack
and do not accurately simulate the change in micro-morphology of the crack. The change in crack
morphology is directly influenced by the concentration of aqueous substances and precipitations
inside the solution [244]. In return, the change in crack morphology does affects the local
concentrations of aqueous substances and precipitations in the solution. This interaction between
the two factors is not reflected by existing models.

Figure 3.7. Schematic of the phase field model for the autogenous self-healing mechanism. ΓS
and ΓL are the solid and liquid boundaries with coordinates rS and rL, respectively; n
is the outward unit normal vector.

A PF method can fill these gaps. Figure 3.7 shows schematically a potential application of a PF
model for an autogenous self-healing mechanism. The solid-liquid phase distribution is described
by an eigenfunction in the value range [0,1]. The solid phase can be subdivided into an initial solid
phase (ϕ1) and a healing solid phase (ϕ2), while ϕ3 represents the solution phase. The solid-solid
(ISS) and solid-liquid (ISL) interfaces are simulated continuously. In addition to the solution (DL),
diffusion constants are distinguished between the concrete (DS1) and the healing region (DS2) due
to differences in the meso- and microstructures. Neumann boundary conditions (Zero composition
flux) were applied at the top, bottom, left and right (the light gray part) boundary for the solute
concentration ci and the order parameter ϕi. The Dirichlet boundary condition (c3 = 0.1 and ϕ3 =
1) was applied at the right boundary (the blue part). The initial conditions are set based on the
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initial concentration in each phase. In this model, we chose to use the diffusion equation instead of
Cahn-Hilliard equation because there is no phase separation. The Allen-Cahn equation is applied
for solving the order parameter ϕi.
This approach can accurately capture information about the alteration of the crack morphology
due to solidification by the hydration reactions or the accumulation of precipitates [12, 34, 220].
With this, an overview of the PF approaches to the solute precipitation [24, 322] and precipitation in
binary alloys [287, 323, 324] is provided that are instructive for simulating self-healing mechanisms
of concrete. The following models are presented in chronological order (Table 3.2).

Table 3.2. PF models for precipitation mechanisms.
Main Application PF Model Reference Feature

Solute
precipitation

Xu-Meakin model [23,321
324-326]

Discontinuity of the solute
concentration gradient

at the interface

Noorden-Eck model [287, 323–325]
Single-phase free
boundary problem

with dynamic conditions
at the moving boundary

Metal
precipitation

Wang-Chen model [286, 326]
Solid-state precipitation

controlled by transformation-
induced elastic strains

Rubin-Khachaturyan [273, 327] 3D stochastic PF modelmodel

Chen-Ma model [285, 328]
Kinetic data of existing

databases CALPHAD applied
into the PF model

3.1.5.1 Solute Precipitation

Solute precipitation is the process at which a solute changes from a liquid phase to a solid phase
and precipitates outside its solution [329, 330]. In fact, precipitates are mostly insoluble [331].
(1) Xu-Meakin Model, 2008
Xu and Meakin [24, 322] developed a PF model for studying the dynamics of liquid-solid interfaces
due to precipitation and/or dissolution of phases, based on the Karma-Rappel model [260] for
pure melt solidifications. Discontinuities in the solute concentration at the interface are explicitly
considered. An additional term has been added to the solute diffusion equation to describe
the discontinuity of the solute concentration gradient at the interface. In addition, a detailed
asymptotic analysis was used to establish a connection between the sharp interface and the PF
model by correlating the reaction rate parameter k with the microscopic PF parameters. This
ensures that the PF model will converge to the corresponding sharp-interface limit. A modified
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solute diffusion equation is built up as follows,

∂c

∂t
= D∇2c+ A1

∂ϕ

∂t
+ A2

∂ϕ/∂t

|∇ϕ|

(︃
D∇2ϕ− ∂ϕ

∂t

)︃
, (3.4)

where the second additional term of the equation is corresponding to the discontinuity the solute
concentration gradient at the interface. While the third additional term represents the net source
or sink of the solute coming from the discontinuity in the solute concentration across the interface;
D is the diffusion coefficient; A1 and A2 are two constants, which can be determined by the
sharp-interface boundary conditions.
(2) Noorden-Eck Model, 2011
Van Noorden and Eck [287] proposed a PF model for a precipitation and/or dissolution process.
The model describes a single-phase free boundary problem with dynamic conditions at the moving
boundary. The concentration on the precipitate side of the interface is specified, and the velocity
normal to the interface is nonlinear dependent to the concentration on the other side of the
interface. The evolution equation of ϕ and c is described according to

∂ϕ

∂t
=

1

α
∆ϕ− 1

αϵ2
p′(ϕ)− 1

αϵ
βk′(ϕ) [f(c) + f ′(c)(c− ρ)] ; (3.5)

∂c

∂t
= D∇

[︃
∇c+ (ρ− c)

k′(ϕ)

k(ϕ)
∇ϕ
]︃
, (3.6)

where p(ϕ) is a double-well potential; f(c) is a rate function; k(ϕ) is an interpolation function; α,
β, D, and ρ are physical parameters; and ϵ is the thickness of an interfacial layer.
Redeker and Rohde [323, 324] extended the Noorden-Eck model by incorporating curvature
effects between two fluid phases to simulate precipitation in a porous medium. The model contains
two immiscible fluids and one solid phase. Dissolved ions in one of the fluids can precipitate at the
pore boundaries. Bringedal et al. [325] considered not only the diffusion of ions in the fluid phase,
but also the effect of fluid flow on precipitation.

3.1.5.2 Metal Precipitation

Unlike solute precipitation, metal precipitation occurs in a supersaturated solid solution. Metals and
metal oxides exist in the form of crystals. A crystal is a structure in which its atoms or molecules
are arranged in an orderly fashion according to certain rules. A crystal is pure when all the
components are just a single substance or a compound. If there is another substance involved that
occupies the original atomic location and does not destroy the original structure, then this is a
solid solution [332]. The original component is equivalent to a solvent and the foreign component
is equivalent to a solute. As with a solution, when the solute in a solid solution is supersaturated in
the solvent, it can no longer remain stable in the crystal structure and eventually precipitates [333].
The precipitate particles are generally metallic compounds, but may also be formed by aggregation
of solute atoms in supersaturated solid solutions in a number of small solute-rich regions [334].
The precipitated particles act as barriers to dislocation movement, allowing significant increase in
strength and hardness of most structural alloys of aluminum, magnesium, nickel, and titanium,
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as well as some steels and stainless steels [335]. The precipitation mechanisms of different binary
and ternary alloys have been intensively studied by using PF models [289, 336, 337].
(1) Wang–Chen Model, 1993
In the earlier study byWang et al. [286], a PFmodel based on amicroscopic kinetic model and elastic
strain theory was developed to study the morphological evolution of the solid-state precipitation,
controlled by transformation-induced elastic strain. The free energy of an inhomogeneous solid
solution is given by the following equation,

F (c) =
1

2

∑︂
ϕ′

W (r − r′)c(r)c(r′) + kBT
∑︂
r

[c(r) ln c(r) + (1− c(r)) ln(1− c(r))] (3.7)

where ϕ(r, t) is the non-equilibrium single crystal sites of solute atoms, r is the crystal lattice site,
W (r − r′) is the pairwise interaction energy of two atoms at the lattice site r and r′, and kB is the
Boltzmann’s constant. The drawback of this model is that the matrix phase and the precipitates
are iso-structurally treated. However, this assumption does not apply to the simulation of Al-Li
alloy precipitation.
(2) Rubin–Khachaturyan Model, 1999
Rubin and Khachaturyan [273] developed a 3D stochastic PF model for simulating the microstruc-
tural evolution of Ni-Al superalloys. This model considers the coherency strain in an elastic
anisotropic system. The coarse grained stress-free free energy was expressed as

F =

∫︂
V

[︄
1

2

(︄
αij∇ic∇jc +

3∑︂
p=1

βij(p)∇iϕp∇jϕp

)︄
+ f(c, ϕ1, ϕ2, ϕ3)

]︄
d3r (3.8)

where αij and βij(p) are the gradient coefficients, ∇ic and ∇jc denote the gradient terms of multi-
composition profile c(r, t), ∇iϕp and ∇jϕp are the gradient terms of multi-component long-range
order parameter ϕ(r, t), the specific free energy f(c, ϕ1, ϕ2, ϕ3) is approximated by a polynomial,
and the second integral term is the total strain energy functional based on the Fourier transform
microelasticity method.
(3) Chen–Ma Model, 2004
Chen et al. [285] designed a quantitative PF modeling scheme for multicomponent diffusion-
controlled precipitate growth and dissolution in Ti-Al-V system in which the thermodynamic and
kinetic data of existing databases CALPHAD was directly inserted into the PF model. The total
Gibbs free energy is described as follows,

G(T, c, ϕ) =
1

Vm

∫︂
V

[︄
Gm(T, ci, ϕ) +

n−1∑︂
i=1

ki
2
|∇ci|2 +

kϕ
2
|∇ϕ|2

]︄
dV. (3.9)

where Gm is the local molar Gibbs free energy; ki and kj are the gradient-energy coefficients for
concentration and order parameter inhomogeneities, respectively; Vm is molar volume.
The temporal evolution of the composition is governed by Cahn-Hilliard diffusion equation on the
basis of the phenomenological Fick-Onsager equations

1

V 2m

∂ck
∂t

= ∇
n−1∑︂
j=1

Mkj (T, ci, ϕ)∇
δG

δci
(3.10)

where Mkj are chemical mobilities related to atomic mobilities.
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3.1.6 Phase-Field Modeling for Fracture Mechanisms
Fracture mechanics of concrete is a topic of intensive research during the last years. Simulation
technology for analyzing crack initiation and propagation in concrete are numerous [213, 338–354].
Besides boundary and finite element methods for linear elastic fracture analysis, different versions
of the so called eXtended Finite Element Method (XFEM) are frequently applied [355, 356].
Starting with the works of Bourdin et al. [357] and Miehe et al. [251], fracture processes were
modeled explicitly by a PF approach. Due to its simplicity this methodology gained a wide interest
and started to be used in the engineering community since 2010. From there on many scientist have
worked in this field and developed PF approaches for finite elements methods (FEM), isogeometirc
analysis (IGA), and recently also for the virtual element methods (VEM). The main driving force
for these developments is the possibility to handle complex fracture phenomena within numerical
methods in various dimensions. Thus, research on PF approaches is still actual and points in many
different directions.
In this review article, the simulation of fracture processes in concrete is achieved by utilizing
the continuum PF method, which is based on the regularization of sharp crack discontinuities.
This avoids the use of complex discretization methods for crack discontinuities and can account
for multi-branched cracks within a solid skeleton (e.g. hydrated cement paste, unhydrated clinker
particles, and stones). In particular due to the over-complicated geometry and content of concrete
at multi-scales, in Figure 3.8 an example for PF modeling of water-induced failure mechanics in
concrete microstructure is presented. In recent years, several brittle [358–395] and ductile [257,
396–423] PF fracture formulations have been proposed in literature. These studies range from
modeling 2D/3D small and large strain deformations, variational formulations, multi-scale/physics
problems, mathematical analysis, different decompositions and discretization techniques with
many applications in science and engineering. All these examples demonstrate the potential of PF
method for crack propagation.

Figure 3.8. Concrete failure in poro-elasto-plastic media. (a) Schematic of the concrete idealized
microstructure: Light gray color refers to the hydrated cement paste, dark gray color
stands for the unhydrated clinker particles, and blue color depicts the water content.
(b-d) Evolution of crack phase-field ϕ for different deformation states up to final failure,
as outlined in [258].

The aforementioned PF approaches consider the fracture behavior of concrete, i.e. as a crack
initiation and propagation. However, an important aspect in concrete is the treatment of the
crack-closure effects. This response was firstly investigated in the works [424, 425] for fatigue
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crack closure under cyclic tension. Thereby, the results indicate a fatigue crack, propagating
under zero-to-tension loading may be partially or completely closed at zero load. A review of this
physical phenomena can be seen in [426–428]. To the author’s best knowledge, a PF approach for
modeling crack closure is still an open issue. To this end, cohesive elements along the crack path
will be coupled with the PF formulations to prevent overlapping of the crack faces. Another future
direction is to use a contact scheme at the crack faces similar to the work developed by [429].
A further important aspect is the PF modeling of crack-closure induced by a self-healing mechanism
(introduced in Section 3.1.3) in cementitious systems. These topics await investigation.

3.1.6.1 Fundamental Variational Formulations

In Griffith-type fracture formulations, the mechanical deformation denoted generally by “state”
and the sharp crack surface Γ in a brittle elastic solid (e.g. cement paste) are determined by the
incremental minimization problem developed by Francfort and Marigo [430] as

E(state,Γ) =

∫︂
V \Γ

f(state) dV +GcH(Γ)→ Min! (3.11)

where Gc is the Griffith critical surface energy release and H(Γ) is the Hausdorff surface measure
of the crack set Γ. In Equation (3.11), the functional E has a structure identical to that for image
segmentation developed by Mumford and Shah [431]. It consists of the strain energy stored in the
solid as well as the energy release due to fracture.

3.1.6.2 Regularized Variational Theory

The numerical evaluation of the sharp crack interface in the functional E (Equation 3.11) is not
suitable within a standard finite element framework, as outlined in the work of Bourdin et al. [357].
Therefore, a regularized crack interface using a specific regularization profile γ is introduced in
the studies of Miehe et al. [251, 396]. It is based on a geometric regularization of sharp crack
discontinuities that is governed by a crack PF

ϕ ∈ [0, 1] with ϕ̇ ≥ 0 (3.12)

It characterizes locally for the initial condition ϕ = 0 the unbroken and for ϕ = 1 the fully broken
state of the material. Thus, the critical fracture energy is approximated by

GcH(Γ) ≈
∫︂
V

Gc γ(ϕ,∇ϕ) dV with γ(ϕ,∇ϕ) := 1

2 lf
ϕ2 +

lf
2
|∇ϕ|2 (3.13)

in terms of the crack surface density function per unit volume of the solid. The regularization is
governed by a fracture length scale lf . Note that the limit for vanishing the fracture length scale
lf → 0 gives the sharp crack surface Γ.
Therefore, the minimization problem represented by Equation (3.11) can be expressed in the
following form, ˜︁E(state,Γ) =

∫︂
V

ˆ︂W (state, ϕ,∇ϕ) dV → Min! (3.14)
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defined in terms of the total work density function ˆ︂W as

ˆ︂W (state, ϕ,∇ϕ) = g(ϕ) f(state) +Gc γ(ϕ,∇ϕ) , (3.15)

contains a degraded elastic work density and the crack energy release per unit volume. g(ϕ) is a
degradation function defined as g(ϕ) = (1− ϕ)2. It describes the degradation of the solid with the
evolving crack phase-field ϕ, as depicted in Figure 3.8b–d.

3.1.7 Discussion and Conclusions
Based on the above literature review, it can be observed that PF methods have a great potential for
simulating self-healing mechanisms in concrete. Therefore, it can be applied to solve problems
that cannot be addressed by commonly applied models. It has the potential of an unprecedented
breakthrough. As self-healing of concrete is a rather complex process, it is an interaction between
physical, chemical and mechanical mechanisms. Obtaining a novel, versatile model for self-healing
concrete is a multidisciplinary study involving civil engineering, materials science, and chemistry.
Many studies have been conducted in these fields using the PF approach, while it will be a great
reference for the development of a self-healing PF model.
In future research, it would be recommended to include in the polynomial system of the PF approach
the pore structure, concrete matrix, water dissolution, and hydration product phases at the crack
front. In this way, the free-energy equations will combine hydration kinetics, crystallization
kinetics, polymerization reaction kinetics, mass transport and chemical energies to provide a
detailed description of the phase nucleation and growth mechanisms at the crack front. Coupling
a reactive PF model with a fracture PF model allows to simulate the crack development and its
mechanical self-healing recovery effects at different stages and under different environmental
conditions. In order to achieve this goal, there are several self-healing mechanisms that need to be
studied in great detail. Validating these models should be continuously done by comparing them
with experimental results. The following potential future steps are identified:
(1) Evolution of the pore structure at the crack surface:

During the process of autonomous self-healing, soluble substances at the crack surface enter
the solution and undergo various dissolution reactions, followed by hydration and carbonation
crystallization reactions. Part of the solution will diffuse into the capillary pores of the concrete
matrix, where crystallization and precipitation also occur. The growth of the cracked surface
also forms a new pore structure, which further affects the diffusion and chemical reaction
processes. Thus, the pore structure of the crack boundary is constantly changing with ongoing
reaction. Its interaction with the crack morphology, reactant concentration, and mass transport
needs to be investigated in the future.

(2) Influencing factors and simulations for mechanical repair of cracks:
The fracture PF part is a combination of elastic and fracture energies. Elastic free energy will
follow the classical assumptions while the fracture part will account for the fracture toughness,
order formulation, evolution equations, and healing regain laws. Moreover, both are closely
related to the packing density field. This is because the mechanical properties at fracture
mainly depend on the solid-phase continuity. The mechanical properties are enhanced in a
homogeneously dense position of the filler and, conversely, worse in the disconnected parts of
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the solid phase. The packing density field, in turn, is related to the mass transport. Therefore,
a numerical transport–mechanical coupling strategy shall be developed to simulate the overall
performance of the self-healing mechanism.

(3) Evolution of crack healing morphology:
The morphology of the crack greatly influences its local healing effect. At the crack tip, healing
products are produced faster and more frequently because of the higher concentration of
reactants. The movement of the crack tip is faster than at other locations. Thus the crack
morphology changes continuously with the healing process. As the PF model avoids tracking
the boundary conditions at the interface and instead simulates the evolution of the auxiliary
field. Therefore, the evolution of the interfacial morphology is easier to simulate. In addition,
the simulation of interfacial morphology will take into account the distribution of bacteria,
adhesive agents and mineral admixtures. Therefore, the macroscopic representation of a crack
healing morphology shall be simulated from a micro-level point of view.

(4) Free energy to distinguish between various product phases:
Self-healing products contain multiple substances (CSH, CH, or additional byproducts) that,
although they have the same healing mechanism (aggregation, crystallization and precipi-
tation), their chemical reaction kinetics are different. This affects the rate of healing of the
cracks as a whole. Therefore, the free energies of the various product phases and the cor-
responding thermodynamic parameters will be distinguished in the future and reflected in
specific simulations.

(5) Determination of PF parameters:
A formulation for the determination of the PF parameters needs to be provided. Information
on the PF parameters and their interrelationships will be obtained from thermodynamic and
diffusion databases in combination with experimental data. Combined with the second law of
thermodynamics and non-equilibrium thermodynamics, the self-diffusion, mutual diffusion,
and chemical diffusion coefficients will be related to the diffusion mobility (M). The order
parameter mobility (L) will be derived and their relationship to other phase-field parameters
will be investigated.

(6) Development of a three-dimensional model:
As a self-healing process includes complex physical-chemical-mechanical processes, these mech-
anisms can only be accurately simulated in a fully three-dimensional system. Therefore,
a three-dimensional simulation of the self-healing process need to be performed with realis-
tic boundary conditions. The simulation results need to be verified and compared with 3D
computed tomography scan (CT scan) results of concrete specimens.

In conclusion, the use of a PF method is feasible and has a significant application advantages in the
field of self-healing concrete applications. Although this method still has a long way to go before it
becomes a fully fledged simulation tool, these early studies are considered to be an important step
towards reaching this goal.
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3.2.1 Introduction
Mathematical modelling of the moving-boundary dissolution fronts of minerals is important
in a wide range of engineering technologies. For example, it is of great importance in fields
of geochemistry, materials science, hydrometallurgy, etc. Predictions of the moving boundary
dissolution phenomena can support in the design of engineering processes where dissolution is
desired: e.g. in extraction of elements or reactivity of cementitious minerals, but also when not
desired, e.g. in durability (corrosion) issues of building materials (e.g. steel-reinforced concrete
frames). In general, minerals dissolve when exposed to aggressive solution environments and
form leached layers of varying density and strength [432]. This in turn affects the mechanical
and transport properties of the microstructure which further may be relevant at higher scales, for
example when the material (rock, concrete or mortars) has structural applications. In addition,
the dissolution mechanisms of some special minerals can be of great industrial and environmental
interest. For example, the dissolution of scorodite is considered a potentially good carrier for arsenic
fixation [433]. Moreover, the application of innovative self-healing concrete in civil engineering
has been extensively and intensively studied in recent years. The disdissolution of Ca(OH)2 from
the concrete matrix is one of the key processes of the durability and self-healing mechanisms
[12, 13, 221].
The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid
interface. However, this can be simplified at the mesoscale to the problem of a continuously moving
boundaries. Traditional sharp interface models are thus required to trace these moving fronts [434–
444]. However, this becomes extremely difficult for high-dimensional problems, with complex
dynamic geometries, especially those whose interface evolution is accompanied by energy changes.
In this sense, phase-field (PF) methods provide a powerful way to track such interfaces. The PF
method has been applied to various phenomena in materials science area, such as, solidification,
solid-state phase transformation, recrystallization, grain growth, fracture, and electromigration
[285, 298, 309, 445–447].
Generally speaking, the PF model can be regarded as a kind of diffusion interface model [15, 139,
211], which assumes that the thickness of the interface is limited, while the physical properties on
the interface are continuous and smooth [253, 314]. The moving solid–liquid interface can thus
be accurately tracked [136]. Compared with sharp interface models, the PF diffusion interface
model has the important advantage that no boundary conditions are specified on the interface
between different domains [134, 177]. This allows us to study the evolution of arbitrarily complex
morphology without tracking the microscopic shape of the grain [448, 449]. A new variable,
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namely the order parameter, is required to represent the ordered numbers of materials in terms of
time and position [173, 281]. In these works, the complex interfacial spatial-temporal evolution has
been investigated through the aforementioned order parameter in an implicit way. An additional
feature of the PF method is that there is a functional total free energy that can characterize the
nature of the phase transition. It includes the various energy contributions of the system at the
non-equilibrium state: i.e. chemical energy [450–453], electric potential energy [158, 454, 455],
stress energy [358, 360, 363], etc. It is the competition between these different energies that
leads to the generation of changing microstructural topography during the phase transition. In
solving the PF model, conservative fields such as concentration fields can be described e.g. through
the Cahn–Hilliard equation [170], while non-conservative fields, as order parameters, can be
described via the Allen–Cahn one [167].
There are four models in the literature that are most commonly used to address two or multi-phase
transition processes. They provide important insights into solving of the mineral dissolution
problems: the Wheeler-Boettinger-McFadden (WBM) model [177, 178], the Kim-Kim-Suzuki
(KKS) model [1], Steinbach model [176] and Losert model [456]. The WBM model is derived in a
thermodynamically consistent way, which is based on an assumption that each point of the interface
is a mixture of coexisting phases with the same composition but different volume fractions [314].
This model works under both sharp-interface condition and finite-interface thicknesses [185, 186].
However, the larger interface thickness will lead to unreliable calculation results [179, 183, 457].
KKS model shows a different definition of the free energy density, which defines the interface as a
mixture of liquid and solid phases of different compositions, but with the same chemical potential
[185]. For the KKS model, the relationship between model parameters and material properties
can be established through the equilibrium and thin interface limit analysis [1]. The Steinbach
model is not based on the thermodynamic treatment, but based on the geometric description of
interface through the innterpolating function of interface curvature. This model is more suitable
for a dilute alloy [270]. Losert et al. [456] finally used the similarity of alloys and pure materials
to expand the thin interface model by matching variables in pure materials. However, there are
two strict assumptions in the model that limit its application (1) the liquidus and solidus lines
need to be parallel, and (2) the diffusivity of the solute is constant in the entire region [458].
In applying the PF model, described above, to the moving boundary problem of minerals, it is
necessary to understand how to select the interface mobility so that the model can effectively
describe the dissolution process. In the literature, there are only a few studies that address
this issue. Qin and Bhadeshia [259] proposed that, in a single-component system, the interface
mobility is related to the interface velocity and the driving force according to the chemical rate
theory. In the case of spinodal decomposition, the interface mobility can be obtained from the
diffusion coefficient and thermodynamics. When the model is used to simulate the complex meso-
morphological evolution, the interface mobility needs to be determined based on experiments,
as also demonstrated in this paper (Section 3.2.6.3). Karma and Rappel [139] made a linear
approximation of the temperature gradient at the interface and proved that in dealing with the
solidification problem of pure melting, the PF parameters can be accurately determined under the
thin interface limit. Based on this model, Xu and Meakin [24] developed a phase-field approach for
aqueous dissolution/precipitation reactions assuming first order reaction kinetics. The model was
validated by a one-dimensional analytical solution of interface motion due to solute precipitation.
Two additional terms were added to the diffusion equation, one corresponding to the discontinuity
of the solute concentration gradient, at the interface, while the second one represents the net
source (or sink) of the solute, coming from the discontinuity in the solute concentration across
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the interface. In most of the studies, the values of interface mobility are used as empirical or
hypothetical ones [168, 172, 459–463]. Furthermore, few attempts have been made to explain
in detail the calculation of the interface mobility and its relation to other physical parameters
[182, 185, 303, 464, 465]. Therefore, tackling of this difficulty will be one of the innovations of
this paper.
In contrast to the reaction kinetics controlled case, here we further validate the PF approach
on the experimental results (of NaCl dissolutions) and are focusing mainly on the diffusion
limited mechanisms. First, the one-dimensional diffusion-controlled dissolution problem will be
simulated using an analytical solution and the classical KKS model, separately. The results will
then be compared to clarify the estimation and interaction of the interface mobility with other
PF parameters. The effect of solid particle shape on the dissolution process is 2D analysed and
validated on literature data for NaCl dissolutions. The PF results are then validated against the
data obtained from analysis by the video-microscopy images and compared with the analytical
model. Finally, a concluding discussion on the whole article is given.

3.2.2 Dissolution Mechanisms

3.2.2.1 Types of Dissolution

Chemical dissolution of minerals occurs as a congruent or an incongruent reaction, depending
upon the type of a mineral [466]. Congruent dissolution of a solid mineral is a chemical reaction
which completely dissolves the mineral and all products of this reaction are dissolved species. An
obvious example would be calcite CaCO3 and NaCl [467, 468]:

AaBb(s)→ aA(aq) + bB(aq) (3.16)

when the primary solid phase is altered and at the same time a secondary solid phase is formed,
incongruent dissolution occurs, for example the alteration of albite to gibbsite NaAlSi3O8, or
Kaolinite [469, 470], which requires a more advanced thermodynamic modelling approaches to
be integrated in the PF:

AaBb(s)→ cC(s) + dD(aq). (3.17)

3.2.2.2 Diffusion-Controlled Dissolution Mechanisms

Figure 3.9 shows the dissolved diffusion process of soluble minerals based on the diffusion interface.
When dealing with the problem of moving boundaries, the conventional approach separates the
different phases by a sharp interface. The interface movement is solved by a partial differential
equation describing, for example, mass and thermal diffusion equations. These equations have
to be combined with boundary conditions of varying values and positions. When some variables
(heat flux or concentration) cross the sharp interface, jump discontinuities can occur, making the
calculation very difficult. In the PF model, the interface is described as a diffuse interfacial layer
with smooth transitions. Thus, the phase transformation is represented by a change in an order
parameter (ϕ). As shown in Figure 3.9, the solid phase is represented by “1” while the liquid
phase by “0”, hence the order parameter varies continuously between 0 and 1 at the solid–liquid
interface.

47



Figure 3.9. Schematic representation of solute concentration of soluble minerals in situ (i.e. green
dotted line) and equilibrium states (i.e. red solid line), and the phase transformation
within a diffuse and sharp interface, respectively. For the sharp interface, the evolution
of the solute concentration is discontinuous at the interface. However, for the diffuse
interface, the solute concentration evolves continuously between their equilibrium
values at the mineral (cSe) and solution boundary (cLe).

As the congruent dissolution process occurs, the solute is gradually transferred into the solution,
the length of the solute base phase decreases, and the solid–liquid diffuse interface gradually
moves toward the inside of the solute base phase. The solute concentration in the initial solution
is cL0, while the solute concentration at equilibrium is cLe. The solute concentration in the solid is
kept constant when the diffusion phenomenon in the solid is not taken into account. The change
of solute concentration in solution with time is related to its position. The solute concentration
(cL) increases with time away from the solute matrix phase; solute concentration (clS) decreases
with time near the solute matrix phase. The solute concentration in between (cl) is in a state of
dynamic increase or decrease. xSe, xS0, xLe and xL0 indicates the positions corresponding to the
above solute concentrations.

3.2.3 Mathematical Methods

3.2.3.1 Analytical Solutions

A following 1D planar analytical description of a diffusion-controlled dissolution for phase trans-
formation is considered, where the solid is immersed in a (semi-)infinitive liquid solution. The
diffusion equation is a parabolic partial differential equation, which is expressed as follows:

∂c(x, t)

∂t
= DL∇2c(x, t), (3.18)
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where DL is the diffusion coefficient, c(x, t) is the concentration at location x and time t, subject to
the conditions:

c|x=R, t = cLe(0 < t ≤ ∞), (3.19)

c|x, t=0 = cL0(x ≥ R), (3.20)
where x = R is the position at the solid-liquid interface, cL0 and cLe represents the initial concen-
tration and the equilibrium concentration of one component in the liquid phase.
At the solid–liquid interface, the following independent flux balance condition must be fulfilled:

(cS − cLe)
dR

dt
= DL

∂c

∂x
|x=R, (3.21)

where cS is the concentration in solid phase which is taken as a constant.
The exact analytical solution for the field is [434]:

c(x, t)− cM = (cLe − cL0)
erfc [︁(x−R0)/2

√
Dt
]︁

erfc(−λ) . (3.22)

The interface position at current time can be expressed as
R = R0 − λI

√︁
Dt, (3.23)

where R0 denotes the value of R at the time t = 0, while
λI = 2λ, (3.24)

where λ is given by: √
πλexp(λ2)erfc(−λ) = β/2, (3.25)

where β = 2(cLe − cL0)/(cS − cLe).
Different from the planar solid where exact solution is available, only approximately analytical
solution model for the diffusion-controlled dissolution of the spherical solid has been found. The
stationary-interface approximation is expressed as [434]:

c(x, t)− cM =
(cLe − cL0)R

x
erfc

[︃
x−R

2(DLt)1/2

]︃
, (3.26)

where the current interface position is R2 = R2
0 − βDLt; β as defined in Equation 3.25.

The implicit expression for the particle radius ratio y (y = R/R0) with respect to time is defined as
follows:

ln [︁y + 2p(τ)1/2y + τ
]︁
+

2p

(1− p2)1/2
arctan

(︄
(1− p2)

1/2

y
τ1/2

+ p

)︄
= 0, (3.27)

where,
τ =

αt

R2
0
, (3.28)

α2 = βDL, (3.29)

p2 =
κ

4π
. (3.30)
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3.2.3.2 The Phase-Field (PF) Method

The total free energy of the thermodynamic system drives changes in the micro-structure of
materials only when the total free energy changes from a high chemical potential (or a higher free
energy) state to a low chemical potential (or a lower free energy) state to eventually attain an
equilibrium. The total free energy of the system is a function of the solute concentration c and the
phase parameter ϕ and expressed as:

F (c, ϕ) = Floc + Fint =
∫︂
V

[︂
floc(c, ϕ) +

κ

2
|∇ϕ|2

]︂
dV, (3.31)

where Floc is the local free energy of the system, Fint is the interfacial energy, and κ is the gradient
energy coefficient. In order to simplify the numerical calculation, the molar concentration of
the solute is normalized by the molar concentration of the solid cS, that is, c = c′/cS. The molar
concentration of the solid is defined as the density of the solid divided by its average molar
mass [471]. Each point in the entire domain is a mixture of two phases with different chemical
compositions. The Gibbs free energy expression, in the KKS model, has been widely employed in
solidification mechanisms of binary alloys [472, 473], in addition to the recent extension to the
field of electrochemical corrosion [182, 459]. The mechanism of the corrosion reaction is similar
to that of the dissolution reaction, i.e. both are phase transformations triggered by the diffusion of
ions. Hence, the double well potential (i.e. Gibbs free energy density) has two minima at ϕ = 0,
ϕ = 1 and a maximum at ϕ = 0.5 (middle of the interface). Based on this theoretical basis, the
present model identifies the local free energy floc(c, ϕ) as a fractionally weighted average of the
solid fS(cS) and liquid free energies fL(cL), and imposes a double-well potential ωg(ϕ) as follows:

floc(c, ϕ) = h(ϕ)fS(cS) + [1− h(ϕ)] fL(cL) + ωg(ϕ), (3.32)

where the interpolation function h(ϕ) is built as h(ϕ) = −2ϕ3 + 3ϕ2, and ω is the height of the
double-well potential function given by g(ϕ) = ϕ2(1− ϕ)2.
The free energy density of the solid and liquid phase is approximated by a parabolic function with
the same curvature A as follows:

fS(cS) = A(cS − cSe)
2, (3.33)

fL(cL) = A(cL − cLe)
2, (3.34)

where cSe = cS/cS = 1 and cLe = csat/cS are the solute concentrations at the normalized equilibrium
of the solid and the liquid phase, respectively.
Complementary condition indicates that the phase concentrations are constrained such that the
chemical potentials of each phase are equal:

∂fS(cS)
∂cS

=
∂fL(cL)
∂cL

. (3.35)

The solute composition in the interface area is the fraction-weighted average of the liquid and
solid composition, and the same formula is used for the diffusion coefficient, as shown below:

c = h(ϕ)cS + [1− h(ϕ)] cL, (3.36)

50



D = h(ϕ)DS + [1− h(ϕ)]DL. (3.37)

The interfacial evolution is controlled through coupled conserved and non-conserved dynamics.
Particularly, the Allen-Cahn equation is used to describe the temporal evolution of the non-conserved
variable ϕ. However, the diffusion equation is applied for solving the evolution of the conserved
parameter c:

∂ϕ(x, t)

∂t
= −LδF

δϕ
= −L

[︃
∂f(ϕ)

∂ϕ
− κ∆ϕ

]︃
, (3.38)

where L is the PF mobility:
∂c(x, t)

∂t
= D∇2c(x, t), (3.39)

where D is the diffusion coefficient.
The energy of the system is minimal when it reaches equilibrium. In order to find the PF profile
ϕ0(x) and the composition c0(x) at equilibrium state, Kim, et al. [1] deduced a one-dimensional
solidification problem with boundary conditions ϕ0|x→−∞ = 1 (solid) and ϕ0|x→+∞ = 0 (liquid).
Since the equilibrium state means the vanishing of the driving force, the PF profile ϕ0(x) should
satisfy the following Equation:

δF

δϕ0
=

∂f(ϕ0)
∂ϕ0

− κ∆ϕ0 = 0. (3.40)

Thus, by combining with the double well equation, the PF profile can be expressed as:

ϕ0(x) =
1

2

[︃
1− tanh

(︃
x

√︃
ω

2κ

)︃]︃
. (3.41)

Then, the composition is:

c0(x) = h(ϕ0(x))c
e
S + [1− h(ϕ0(x))] c

e
L. (3.42)

3.2.4 Problem Description and Model Tests

In this section a 1D congruent dissolution case study is presented selected as benchmark for
verifying the soundness and capability of the proposed PF procedure.

3.2.4.1 Benchmark with Analytical Model for One-Dimensional (1D) Congruent Dissolution

The model consists of a one-dimensional domain with a size of 20 mm. The solid and liquid
domains have a 3:17 ratio (see Figure 3.10). This is chosen to ensure that the length of the solution
must be long enough for diffusion to take place in a system whose domain is considered to be
semi-infinite.
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Figure 3.10. Initial benchmark configurations and boundary conditions for 1D single-component
dissolution of a planar solid.

In the initial aqueous solution concentration cL0 is specified as 0.1 mol/m3. The concentration
cS of the solid was constant at 1 mol/m3. The equilibrium concentration cLe was maintained at
0.4 mol/m3 at the fluid-solid interface. The diffusion coefficient of the solute in the liquid DL is
taken as 1.0 × 10-9 m2/s, while the diffusion of the solute in the solid DS is 1.0 × 10-15 m2/s.
Neumann conditions (zero flux) were applied on the right and left side of the domain boundary.
The parameters used in this study and their values are listed in Table 3.3.

Table 3.3. Summary of benchmark parameters.
Parameter Description Value Unit
∆G Gibbs free energy 2233.23 J/m3

A curvature of the free energy density function 6.20 × 103 J/m3

ω height of the double well potential 1.94 × 104 J/m3

L interface mobility 4.02 × 10-5 m3/(J ·s)
κ gradient energy coefficient 1.12 × 10-5 J/m
l0 initial thickness of the diffuse interface 1.0 × 10-4 m
σ interfacial energy 1.1 × 10-1 J/m2

DL diffusion coefficient in solution 1.0 × 10-9 m2/s
DS diffusion coefficient in solute 1.0 × 10-15 m2/s
cSe saturation concentration in the solid phase 1.0 mol/m3

cLe saturation concentration in the solution 4.0 × 10-1 mol/m3

R gas constant 8.31 J/(K ·mol)
T ambient temperature 2.93 × 102 Kelvin
K equilibrium constant 0.4 [-]
t calculation time 2.88 × 104 s
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3.2.4.2 Simulation Case Study Based on Available Measured Experimental Data of Mineral
Particle Dissolution

Most of the available experimental data on solid dissolution in the literature focus on recording
the evolution of solute concentration [439, 442, 474, 475] or dissolved solid mass over time,
and do not explicitly observe the movement of the solid–liquid boundary [474, 475]. In some
experiments, the dissolution process was influenced by convection with stirring [476–479]. In
this sense, sodium chloride (NaCl) is one of the most common minerals: its congruent dissolution
mechanism and the corresponding reaction thermodynamics and kinetics are well documented in
the literature [468, 480–485]. However, studies addressing solid–liquid boundary regression due
to diffusion-controlled dissolution have mainly tended to focus on the nanoscale [486–488].

The study of Quilaqueo and Aguilera [118] is one of the few studies that provides detailed
experimental dataset to be used for the experimental validation of the PF numerical models. They
performed image analysis by coupling a digital camera to a stereo microscope to obtain microscopic
images of the dissolution process. Recording started by placing a single NaCl particle in 500 µL
of water without stirring at 20°C. The time profile of dissolution was obtained by calculating the
projected area of the single crystal as a function of dissolution time from the video microscope
image.

Based on these experimental data, one-dimensional simulations of the dissolution process of a
single salt particle performed, in a spherical coordinate system, and two-dimensional simulations
of the dissolution process of three different shapes of NaCl particles, namely round, ellipsoidal and
irregular, have been performed by using the PF model. Neumann no-flux boundary conditions
are applied for 1D simulation. Periodic boundary conditions are used for 2D simulations. The
thin interface limit is supported by the chosen experimental case of the highly soluble mineral
crystals, which can be considered as non-porous. This results in negligible solid-liquid thickness
(at the mesoscopic scale) and it has been considered in this paper. The employed parameters
are summarized in Table 3.4. For easier implementation of energy equations at microscale, all
length dimensions were normalized by the solution radius and energy terms normalized by A (see
Appendix A4).

Table 3.4. Model parameters for diffusion-controlled NaCl dissolution.
Parameter Value Unit Ref. Parameter Value Unit Ref.

∆G 5.15 × 105 J/m3 DL 1.68 × 10-9 m2/s [489, 490]
A 5.17 × 105 J/m3 DS 1.68 × 10-15 m2/s
ω 1.51 × 105 J/m3 csolid 3.70 × 104 mol/m3 [118]
L 4.11 × 10-3 m3/(J ·s) p 357 - 360 g/L [491, 492]
κ 1.44 × 10-6 J/m r 6.41 × 10-4 m [118]
l0 1.28 × 10-5 m t 5 × 102 s [118]
σ 1.10 × 10-1 J/m2 [489]
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3.2.5 PF Modelling Methodology and Numerical Implementation

3.2.5.1 Summary of Modelling Assumptions

In the analytical solution and the PF model, following simplifying assumptions are made:
(1) The NaCl particle dissolves isotropically;
(2) The diffusion coefficients of aqueous species in solids and in solution are constants, respectively;
(3) The diffusion of all aqueous species is expressed in terms of a single ionic concentration;
(4) The solubility of NaCl in solution is independent of particle size.

3.2.5.2 Parameterization

The relationships between material properties (interface thickness l0 and interface energy σ) and
PF parameters (coefficient of PF gradient κ and double-well potential ω) are discussed in Appendix
A1. The derivation of the interface mobility L, under the thin-interface thickness condition, is
shown in Appendix A2. The curvature of the free energy density function A can be determined
from the Gibbs free energy, i.e., ∆G (Appendix A3).

3.2.5.3 Parameter Normalization

Normalization of the model parameters is one of the important steps of data pre-processing. A
series of input values are normalized to the range [0, 1] according to Appendix A4, in order to let
models converge effectively.

3.2.5.4 Finite Element Implementation

Numerical implementation of the PF model is carried out by using finite element method in the
framework of multiphysics object-oriented simulation (MOOSE) environment [136]. Transient
solver with preconditioned Newton’s method was used. In this case, the full and accurate Jacobian
was calculated. The backward Euler algorithm was employed. Adaptive time stepping was used to
improve computational efficiency. The time step would grow or shrink according to the number
of iterations taken and needed to obtain a converged solution in the last converged step. The
maximum number of nonlinear iterations per time step was also set to provide optimal solution
efficiency. For 2D simulation, the triangular element type was chosen to mesh the geometry.
In addition, an adaptive mesh refinement (AMR) was used [490]. Based on the error estimated
from the FEM results, the global and local mesh errors were calculated, and then the mesh size
was automatically adjusted to the changing morphology of the grain boundaries at each time
step. This is very effective for the numerical solution of partial differential equations in regions of
arbitrary shape. In order to ensure numerical stability and simulation accuracy, at least 5 nodes on
the diffusion interface were used to describe the boundary morphology, while coarser grids were
used for solutions and solids that were far from the boundary (Figure 3.11). This does not only
provide an accurate representation of the boundary evolution, but also improved the computational
efficiency. The relative and absolute error tolerance was set to 10-8.
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Figure 3.11. Adaptive mesh refinement in the simulation for mineral dissolution.

3.2.5.5 Central Processing Unit (CPU) Computation

The analytical experiments were performed using an Intel Core i7-6500U central processing unit
(CPU) 2.5 GHz with 8 GB of RAM and MATLAB R2017a (64-bit). For the PF computation, a
parallel computing was achieved by using Open Multi-Processing (OpenMP 42.0.51) on a High
Performance Computer.

3.2.6 Results and Discussion
3.2.6.1 PF Validation against Analytical Solution for a Dissolution of Planar Mineral

Under diffusion-controlled dissolution conditions, if the initial thickness of the diffuse interface
(l0) is known, the interface mobility L can be determined using Equation (A10). Due to the lack of
relevant experimental data upon the values of l0, a parametric study of L was carried out. Under
the assumption of a thin interface condition [1], the value of l0 should be taken much smaller than
the minimum radial dimensions of the initial solid phase; however, from a computational point
of view, it is expected that the thickness of the interface has to be as large as possible in order to
keep the interface from being overly densely meshed, which increases the computa-tional effort.
Therefore, three cases of initial interface width, i.e., 1 × 10-8 (PFM1); 1 × 10-5 (PFM2) and 1 ×
10-4 (PFM3), were tested, corresponding to 0.0003%, 0.33% and 3.33% of the initial length of the
solid phase. In addition, there must be at least 5 to 10 grid points in the interface area to ensure
the stability of the numerical calculation and the reliability of the results [136]. Three cases of V0
(1 × 10-6 (PFM4); 1 × 10-8 (PFM5) and 1 × 10-10 (PFM6)) were tested.
Figure 3.12 shows a comparison between the analytical (diffusion limited) model and six cases of
PF models, where the reaction rates are slower than in case of diffusion control. As l0 decreases, L
increases (as they are inversely related by Equation (A10)), causing a faster dissolution reaction,
till reaching a limit defined by a diffusion control. At 8 h, PFM1 dissolves at a thickness 1.15 times
greater than that of PFM3. The result of PFM2 is in good agreement with that of the analytical
model. It can also be seen that the slope of the dissolution curve becomes progressively smaller
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with dissolution time due to the diffusion-controlled dissolution, i.e., the overall rate of dissolution
slows down as it is governed by the diffusion flux and thus dependent on the concentration gradient
that reduces with saturation of the solution. However, the (slow) reaction-controlled mechanism
(see curves PFM4, PFM5 and PFM6) approaches linearity as the V0 decreases, and the lower the V0,
the slower the dissolution speed. The above results show that the PF model developed is capable
of describing both the diffusion-controlled and the reaction-controlled dissolution. Under the
thin interface limit condition, the agreement between the analytical (diffusion-controlled) results
and the PF model for the diffusion-controlled dissolution is in satisfactory agreement with the
converged solution (PFM2).

Figure 3.12. Comparison of analytical and phase-field (PF) model results of a dissolving planar
mineral with variation of interface mobility L, to shift from the fastest diffusion
controlled mechanism towards the slower ones limited by reaction rates.

A slight overestimation by the PFM1 model may be attributed to the used approximation (Equation
(A10)) to numerically approach the diffusion-limited case. In this approximation, V0 is approx-
imated as DL/l0 (where DL is the diffusion coefficient of the solute in the solution). The slight
difference could also be the result from small incompatibility issues between the employed thermo-
dynamic parameters, namely the used NaCl interfacial energy in PF model, and the NaCl solubility
constant (p). Overall, we argue that the obtained agreement is overwhelming considering that no
fitting calibration of the parameters has been performed.
Figure 3.13 shows the spatial distribution of solute normalised concentration over time. As
solid dissolution starts, the concentration of solution cL at the diffusive solid–liquid interface
rapidly reaches saturation concentration (i.e. cLe equilibrium state), while the solute normalised
concentration in the solid phase keeps constant at 1 (i.e. at initial concentration). The solutes
form a diffusion layer at the thin solid–liquid interface and continue to enter (diffuse) into the
bulk solution. This results in a gradual decrease in the width of the solid phase. The concentration
of solutes in the solution is gradually increasing, and the increase of the concentration near the
solid–liquid interface is particularly significant due to diffusion limited transport through the
solution. In turn the concentration of solute smoothly decreases to zero from the interface zone
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to the right end of the solution. This confirms also that the dissolution is carried out in a system
that is regarded as semi-infinite space, which is only controlled by a diffusion mechanism without
any significant effects of the imposed boundary conditions (which deviate from the idealized
semi-infinitive case).

Figure 3.13. One-dimensional distribution of solute concentration by PF model (L= 4.02 × 10-1).

Figure 3.14 shows the movement of the interface over time. As the dissolution proceeds, the
interface gradually moves toward the solid phase. It can be seen from the reduced width of the
solid phase that the speed of dissolution starts faster and then slows down, again due to the limited
diffusion process of the solute through the exposure solution.

Figure 3.14. One-dimensional distribution of interface by PF model (L = 4.02 × 10-1).

3.2.6.2 The Effect of Mineral Shape: Dissolution Simulation by Two-Dimensional (2D) PF
Model

Irregular particles can be simplified by spherical shapes provided certain conditions are met.
Numerical simulations are then performed using the spherical symmetry and coordinate system,
reducing the model to only one space dimension (1D model). However, some studies have shown,
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both theoretically and experimentally, that the particle shape and surface roughness may affected
the dissolution rates [491–495]. Therefore, before adopting the spherical simplified 1D model for
NaCl crystals in this study, the effect of particle shape on the dissolution rate was analysed. In this
way one can determine whether the simplification of the spherical shape for NaCl particle having
some circularity factors (0.71 ± 0.06) as in used literature data [118] is reasonable.

Figure 3.15. Snapshots corresponding to different time points in the dissolution profile of the
NaCl crystal in 2D simulation.

Therefore, Figure 3.15 shows the 2D dissolution simulation results over time for spherical, elliptical
and irregular shapes but with the same area. Qualitatively, the sharp edges of irregular shapes
gradually disappear during the initial stages of dissolution, and the curvature decreases until they
are completely rounded. The ratio of the major axis to the minor axis of the ellipse gradually
decreases and develops towards the circular direction. The radius of the circle decreases gradually
and the curvature remains constant. It can be seen that the dissolution under all shapes follows
the process of spheroidization. The edges of the particle become smoother during dissolution.
As the dissolution reaction proceeds, the morphological differences between the particles with
different shapes become smaller.
The reason for this trend is that among closed geometries of equal area, circles have the smallest
circumference. This means that the total interfacial free energy of the solid-liquid is minimal.
Irregularly shaped solids have a high solid–liquid total interface free energy due to their uneven
boundaries. A high interfacial energy means a high total free energy of the system. The system
always tends to decrease the total free energy, this being an important factor in determining the
mineral shape during dissolution. The area of the solid–liquid interface tends to decrease, which
causes the flange at the solid–liquid interface to disappear and eventually to become round.
Since the solid–liquid interface is described in the PF model as a diffuse interface, with a certain
width, it is difficult to describe the interface length in terms of the absolute perimeter of the solid
phase. However, in order to characterize the change in the surface morphologies of crystals for
different shapes with time, the contour length of ϕ=0.5 is taken to approximate the solid-phase
perimeter. Figure 3.16 shows that at the initial condition, the irregular mineral grain has the
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maximum interfacial length. As the dissolution reaction proceeds, the interfacial length gradually
decreases and the curves of the ellipse and circle almost coincide.

Figure 3.16. The contour change diagram of different particles for ϕ=0.5.

Figure 3.17. Evolution of normalized ϕ∗ and c∗.

The normalized phase ratio ϕ∗ is defined as ϕ∗ = (ϕt−ϕmin)/(ϕmax−ϕmin), being ϕt the integration
of the phase at the time t, over the domain, while ϕmin and ϕmax are representing the min and
max integration of the phase, respectively (for c as well). The profile of the normalized phase
ratio physically represents the projected area of particles. It can be seen from Figure 3.17 that
the projected area of the three shapes of particles decreases with time, while the normalized
concentration ratio (c∗) keeps constant, which proves the conservation of mass for solute transport.
The slope of ϕ∗ becomes progressively smaller. This is because as the solid phase dissolves, the
interfacial area decreases. The contact area between the solute source and the diffusion-solution
zone is getting smaller. This results in a decreasing solute flux to the solid surface, which leads
to a progressively slower dissolution rate. It can also be seen from this figure that the ϕ∗ profile
of the circles and ellipses basically overlap. The dissolution rate of irregular shapes before 200
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s is slightly faster than that of circles and ellipses, while after 200 s, the three curves overlap
and dissolve completely at the same time. This is because the perimeter of the irregular shape
is much larger than that of the circles and ellipses, which exhibits a faster rate at the beginning
of dissolution. As the dissolved shape tends to be round with the lowest interfacial energy, the
circumference between the three shapes becomes similar (Figure 3.16). Therefore, in the later
stages of dissolution, the dissolution curves of the three shapes are coincident.

Figure 3.18. Concentration profiles of single NaCl spherical particle along radial direction with
time.

Figure 3.19. Phase profiles of single NaCl spherical particle along radial direction with time.

Figures 3.18 and 3.19 show the concentration along the radial of the circle and the spatial
distribution of its phase with time, respectively. The concentration of the solute in the solid
phase remains constant. The radial length of the solid phase decreases symmetrically towards the
centre. After the onset of dissolution, the concentration of solutes near the solid–liquid interface
saturates rapidly. The concentration of solutes in the solvent gradually increases with the diffusion
mechanism.
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3.2.6.3 PF Validation against Experimental Results and Analytical Solution

Figure 3.20 shows a comparison of the analytical solution, the PF model results and experimental
results regarding the dissolution rate of individual NaCl crystals. The undissolved area is calculated
from the residual solid phase length in the 1D simulation. The analytical solution is slightly below
the lower boundary of the experimental values. In order to ensure that the dissolution reaction
rate is completely controlled by the diffusion, the length (volume) of the exposure solution must
be large enough so that semi-infinitive conditions are met, corresponding to the analytical solution.
In that case no increase in concentration of solute should occur at the system (solution) boundary
point.

Figure 3.20. Comparison of numerical and experimental results of NaCl single particle dissolution.

Figure 3.21. Change in solute at the solution boundary with time.

The length of solution 0.3 times (PFM_D1), 0.4 times (PFM_D2) and the original length (PFM_D3,
4.92× 10-3 m) were tested using the PF method. From the results it can be seen that the dissolution
rate slows down and the solute concentration increases significantly at the solution boundary point
as the solution phase length becomes shorter (Figure 3.21). The change in solute at the boundary
point, calculated using the solution lengths in the experiment (PFM_D3), is almost zero. It was
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thus verified that the diffusive dissolution of individual NaCl crystals can be simulated well using
our implementation of the PF method.
The experimental result in Figure 3.20 shows lower initial rates, due to the reaction controlled
mechanism. Initially, the diffusion flux is very high, as the solute concentration of the initial
exposure solution is zero (initial condition). Therefore the overall reaction rate is limited by the
reaction rate which is lower than the initial high diffusion flux. Such reaction rates in the PF model
can be considered in the interface mobility (L) that should vary with time and is fundamentally a
function of the Gibbs free energy of the chemical reaction or the solute concentration. In future, it
should be attempted to physically represent the interface mobility kinetics (L) as a function of the
solute-under saturation, as commonly used in reaction rates expressions. Such a more fundamental
approach is still missing in PF, due to the complexity in its mathematical derivation. Here, L is
adjusted in a simplified way as a smaller value (4.11 × 10-6) within 100 s and a larger value (4.11
× 10-3) after 100 s whose result is represented by PFM_R1. As can be seen from the comparison,
the dissolution rate is relatively flat at the early stage of dissolution when process controlled by
the reaction. The curve of PFM_R1 is higher than that of PFM_D1, D2 and D3. However, after
100 s, PFM_R1 almost overlap with the other three due to the conversion of the dissolution rate
control into the diffusion control mechanism.

3.2.7 Conclusions
Based on the results of this study, the following conclusions can be summarized:
(1) by comparing with the results of the analytical method, it is verified that the PF model can ac-

curately handle the dynamic evolution of the general diffusion-controlled phase transformation
process;

(2) using NaCl as an example, the PF model can successfully simulate the mesoscopic evolution
of inorganic non-metallic materials caused by diffusion-controlled dissolution. Using the
derived interfacial mobility, the PF numerical simulation results show accurate and consistent
agreement with the analytical method results, as well as with the experimental ones derived
with video-microscopy images analyses. It is worth mentioning that all the input parameters
of the PF model have real physical meaning and are based on the experiments data;

(3) an observed discrepancy was related to the dissolution mechanism, which was found to be
initially limited by the reaction rate, being slower than the diffusion flux due to the rapid change
of solute concentration. This change in dissolution mechanism was successfully captured by
adjusting the PF interface mobility (L).

(4) the dissolution characteristics of NaCl particles with different circularity factors were analysed
by the 2D PF model. The simplification of spherical shape for NaCl particles was verified to
hold.

In future studies, the reaction control and diffusion control mechanisms will be combined with the
second law of thermodynamics and non-equilibrium thermodynamics with respect to L, so that L
can be represented as the function of solute concentration or the Gibbs free energy of the reaction.
In addition, numerical simulations need to be implemented at higher space dimensions to allow
the introduction of complex microstructures in mineral particles, such as pores, grain structure
and surface roughness, so that their impact on dissolution kinetics can be assessed. The above
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results confirm that the dissolution kinetics of mineral particles can be successfully simulated using
the employed PF model and the irregular morphological evolution can be effectively simulated in
2D. It is worth noting that the surface morphology of irregular particles has a strong influence
on the dissolution kinetics. Numerical simulations need to be implemented in a higher spatial
dimension to allow the introduction of complex microstructures such as pores, grain structures
and surface roughness in mineral particles so that their influence on dissolution kinetics can
be evaluated. The complex evolution of particle morphology in physicochemical processes can
be accurately evaluated only in a full 3D system. Furthermore, a dynamic (apparent) diffusion
coefficient should be explicitly taken into account, e.g. as a function of concentration, which is
of critical importance in analyzing the diffusion-controlled dissolution through porous materials
involving additional chemical interactions. However, highly soluble (NaCl) crystals, as investigated
in this work, can be considered as non-porous which leads to assume that their diffusion coefficient
can be kept constant. It is worth mentioning that the proposed PF approach can be also extended
for simulating the opposite processes of those presented in this paper, namely the precipitation of
NaCl. This is part of forthcoming research and will be undertaken by enriching the current free
energy density function of the liquid phase through adding an extra precipitation term, i.e. ∆rf .
This should be considered for further development to develop a comprehensive mineral dissolution
and precipitation modelling tool.
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3.3.1 Introduction
The problem of cracks in cementitious materials is a widespread and thorough engineering problem
[496]. Although small cracks do not directly cause structural failure, they can also accelerate the
deterioration of a structure [497]. The presence of cracks not only affects the permeability of
building structures and reduces their freeze-thaw resistance, but also many enhance the chloride
attack of concrete [498–501]. Inspired by nature, a variety of self-healing mechanisms have
been developed for cementitious materials [13, 49, 58, 193, 195], which has led to concrete
materials becoming intelligent and capable of detecting the damage and repairing themselves.
According to the report RILEM TC-221-SHC, the self-healing mechanism can be classified into
“autogenic” and “autonomic” [14]. The autogenous self-healing is mainly based on the original
composition of cementitious materials, which consists of three mechanisms: 1) the cement matrix
on the crack surface absorbs water leading to volume expansions [14], 2) further hydration of
the unhydrated cement clinker [31], and 3) carbonation of the additionally formed portlandite
[30]. The autonomous self-healing is carried out with the help of healing agents. Depending on its
composition, the healing agent can be divided into polymers [55], minerals [41] and bacterial
spores [502].
The currently available numerical methods for self-healing can be grouped according to the
nature of their self-healing mechanisms into: 1) chemical reaction-based models, for predicting
carbonation [92], further hydration [31, 86, 87, 90, 91, 166, 503, 504], precipitation [89, 94]
and encapsulation [97, 106, 505, 506]; and 2) transport-based models [92, 94], in which the
phases affecting the healing processes are transported through the pore-structure network. A few
models involve thermodynamics. Huang and Ye [32] modeled the further hydration of unhydrated
cement particles based on a thermodynamic-diffusion model with coupled mass balance, charge
balance and chemical equilibrium. In addition, Lattice-Boltzmann Method (LBM) as a class of
Computational Fluid Dynamics (CFD) methods for fluid simulation has been used for self-healing
materials in non-equilibrium thermodynamic states, such as polymer [507] and cementitious
materials [508]. For the carbonation reaction, which is one of the important mechanisms of
self-healing in cementitious materials, there are numerous studies that consider it as a moving
boundary problem since the position of the free boundary is a function of time [509–512].
Based on the present literature review, it can be summarized that self-healing of cementitious
materials is treated analytically and numerically mainly using reaction-diffusion equations. How-
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ever, these models have several limitations. Firstly, the solid-liquid interface is treated as a sharp
interface, which leads to the discontinuity in some of the continuously varying parameters at
the interface (e.g. ionic concentration field), making it difficult to trace the evolution of certain
physical processes, notably, the concentration profile across the interface. Secondly, sharp interfaces
have to be explicitly tracked, especially for the evolution of high-dimensional, microstructurally
complex interfaces, which can make numerical calculations extremely difficult. Thirdly, only single
solid-liquid interface has been investigated in existing models. The effect of dissolution of soluble
minerals on the fracture surface on the initial solid-phase boundary is not yet considered. Finally,
these models are concentrated solely on the standalone self-healing process, neglecting interactions
between the concentration of aqueous species in the solution, the moving front of self-healing
products, and the morphology of the interface. The above limitations will be overcome by applying
the Phase-Field (PF) method presented in this study.
The PF method provides an effective way to simulate migration problems of thermodynamically
driven interfaces, which applies order parameters (OPs) to represent microstructures (e.g. pores,
liquid and solid phases) and can include natural thermodynamic quantities such as concentration
and temperature. The OPs take different constant values in different regions and have a continuous
spatial variation across the interface. The microstructure and its evolution is thus reproduced by
the spatial and temporal distribution of the OPs, without the need for interfacial tracking [513].
Several PF models for dissolution and/or precipitation simulations have been proposed: solutes
in liquids [24, 287, 322], tri phases in porous media (two immiscible fluids and a solid phase)
[323], binary or ternary alloys [273, 285, 286]. Moreover, some PF models for simulating metal
corrosion are also worthy of reference [182, 298, 459].
Unlike the conventional sharp and/or single interface PF models, the contribution of presented
novel PF model is based on thermodynamics to simulate the evolution of multi diffusion interfaces
of self-healing process. We used the physicochemical principles of the self-healing problem to
construct a free energy function that incorporates the mechanism of dissolution and precipitation
interactions. By introducing an auxiliary (phase) field as a front tracking tool, the complex interface
migration are implicit solved. Specifically, the solution of the model consists of determining the
concentration fields of the active species and the PF.
Based on the above overview, this study will report numerical simulations of the carbonation
reaction of cementitious materials using the PF method from the perspective of dissolution and
precipitation. The numerical model is introduced in chapter 3.3.2, including the novelty on the
construction of energy functions for multiphase dissolution and precipitation. Numerical simulation
and experimental methodology is presented in chapter 3.3.4. The experimental validation and the
model application are demonstrated in chapter 3.3.5, followed by a series of parametric studies.
Finally, concluding remarks are provided in chapter 3.3.6.

3.3.2 Phase-field model of self-healing
3.3.2.1 Phase-field scenario

From a chemical point of view, the hydration reaction of cementitious materials is a complex
dissolution-precipitation reaction in which, unlike the reaction of a single component, numerous
components of cementitious materials react simultaneously with different thermodynamics and
kinetics, and the various mineral components interact with each other. This poses a great challenge
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for modeling. However, the carbonation reaction, which is one of the main mechanisms of
self-healing in cementitious materials, could be simplified as a Ca(OH)2 dissolution and CaCO3
precipitation process. From the modeling point of view, a simplified approach to the analysis of
the carbonation reaction (Eq. 3.43) [40, 509] can help to analyze and understand the complex
self-healing mechanism based on nonequilibrium thermodynamics.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CO2(g) + H2O
⟨1⟩←→ CO2(aq) + H2O

⟨2⟩←→ H2CO3(aq)
⟨3⟩←→ HCO−

3 (aq) + H+(aq)
⟨4⟩←→ CO2−

3 (aq) + 2H+(aq), 1

Ca(OH)2(s)
H2O←→ Ca2+(aq) + 2OH−(aq), 2

Ca2+(aq) + CO2−
3 (aq)←→ CaCO3(s), 3

(3.43)

where, “aq”, “g” and “s” refer to species which are in an aqueous, gaseous and solid states,
respectively.
Figure 3.22 shows the carbonation process and the corresponding profiles of the OPs in the PFmodel.
Generally, the carbonation based self-healing consists of three main mechanisms: 1) CO2 dissolves
in water to form carbonate ions, 2) dissolution of Ca2+ ions source phase Ca(OH)2, hydration
product, e.g. calcium silicate hydrate (C-S-H or 3CaO · 2SiO2 · 3H2O) and non-hydrated cement
phases, e.g. tricalcium silicate (C3S or 3CaO · SiO2) and dicalcium silicate (C2S or 2CaO · SiO2)
[514] in the unsaturated solution, and 3) nucleation and growth of precipitated CaCO3 in the
supersaturated solution [515]. The dissolution of CO2 (g) in water proceeds through a multi-step
equilibrium reactions (mechanism 1, reaction ⟨1⟩), where the reaction ⟨2⟩ is the bottleneck process,
as only a very small fraction of CO2 (aq) is transformed into H2CO3. In our first PF approach, a full
availability of CO 2–

3 species is considered, thus neglecting the kinetic effects of CO2 dissolution
steps ⟨1⟩−⟨4⟩. A more detailed modeling approach for the carbonation of cement pastes considering
chemical thermodynamics and diffusive and convective transports can be found in recent literature,
e.g. [516]. Following the PF scenario, the ion diffusion in each phase (labeled as i) is described
with a conserved field variable, i.e. ci adopting physical meaning of the concentration and track
the phase evolution with a non-conserved field variable, i.e. ϕi adopting the physical meaning
of the volumetric fraction of the phase i. Note here the ci refers to the ratio of the actual ionic
concentration Ci at a certain position and time to the initial concentration of the source phase
C0

sou, both in units of mol/m3 (see Table 3.5, Sect. 3.3.4.2). The calcium ion source phase ϕsou
(hereafter referred to as the source phase), the precipitation phase ϕpre and the aqueous solution
phase ϕaq together form a multiphase system.
In the initial stage (0 < t <tp), when the dissolution begins, i.e., only ϕsou, ϕaq and their interface
Ia-s, are present in the system. Then Ca2+ ions diffuse from Ca(OH)2, hydration products and
unhydrated cement particles (t > tp), and react with dissolved CO2 in water to form suspended
CaCO3. As its concentration reaches a saturation cEaq and even an oversaturation state csataq , calcium
carbonate pre-nucleates, nucleates, and eventually later forms crystals, precipitating on the crack
surface. The interaction energy of CaCO3 particles is strongly dependent on the ionic concentration
in the solution [517]. This is mainly due to the fact that Ca2+ ions in solution produce short-range
attractive and long-range repulsive interactions [518]. CaCO3 particles accumulate more in ion-
concentration-enriched regions. Therefore, the ion concentration can be used to express the local
packing density of precipitated CaCO3 particles. The corresponding interfaces of ϕpre with ϕsou
and ϕaq are denoted by Is-p and Ip-a, respectively.
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Figure 3.22. Schematic diagram of the simplified self-healing mechanism and profiles of the order
parameters of the corresponding phases; tp is the time to start precipitating.

Based on the self-healing mechanism described above, several modeling assumptions have been
made:
• only the reaction of Ca2+ with CO 2–

3 ions to form CaCO3 is considered. The carbonation products
do not contain other intermediate substances;

• all Ca2+ ions localized in the crack solution may eventually be equilibrated with respect to
CaCO3 precipitates;

• since the number of moles of CaCO3 is the same as that of Ca2+ ions it contains, the diffusion
of all aqueous species (Ca2+ ions and suspended CaCO3) can be expressed as a single ionic
concentration ci;

• the diffusion coefficients of aqueous substances in phase (ϕpre, ϕsou and ϕaq) and the correspond-
ing interface (Is-p and Ip-a) are constant, respectively (see Figure 3.22).

3.3.3 Thermodynamic and kinetic formulations
The multi non-conserved OPs {ϕi} are continuous functions of time t and space x, which indicate
each phase to convert between 0 and 1 within a thin diffusion translation interface. Subscription i =
sou, pre and aq is used further. The three phase contributions (ϕsou, ϕpre and ϕaq) are constrained
following [519], i.e.,

ϕsou + ϕpre + ϕaq = 1. (3.44)
Considering this multi-phase constraint, the free energy L , within the simulation domain Ω with
the Lagrangian multiplier λ, is written as

L ({ci}, {ϕi,∇ϕi}) =
∫︂
Ω

[︂
floc({ci}, {ϕi}) + fint({∇ϕi}) + λ(1−

∑︂
ϕi)
]︂
dΩ, (3.45)

where floc and fint are the terms for local and interface free energy density, respectively. The local
free energy floc can be formulated as an extension of the double-well function as

floc({ci}, {ϕi}) =
∑︂
i

[Φi(ϕi)fi(ci) + ωig(ϕi)] (3.46)
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where Φi(ϕi) are originally the tilting functions [520], which is reduced in this work in a two-phase
interpolating function as: Φi(ϕi) = (10− 15ϕi+6ϕ2

i )ϕ
3
i . ωi is the height of the imposed double-well

energy barrier of each phase. g(ϕi) = ϕ2
i (1 − ϕi)

2 is the double-well potential. The free energy
density of each phase fi(ci) is approximated by a parabolic function as follows

fsou(csou) = Asou(csou)
2, (3.47)

fpre(cpre) = Apre(cpre − cEpre)
2 −∆rf, (3.48)

faq(caq) = Aaq(caq − cEaq)
2, (3.49)

where Ai is the potential parameter employed to construct the local free energy of distinct phases
in order to approximate the actual thermodynamic system.

Figure 3.23. (a) Processes and driving forces for the three stages. (b) Logarithmic free energy
density landscape among the source phase, the precipitation phase, and the aqueous
solution as the junction phase. Energy variation paths (of dissolution and precipita-
tion) are also illustrated.

Figure 3.23 illustrates the path of local free energy variation with the concentration {ci} and the
order parameters {ϕi} for the three stages of the self-healing reaction, i.e. (0) undersaturation,
(1) saturation and (2) oversaturation. In the unsaturated state, Ca2+ ions dissolve from the
cementitious matrix and diffuse into the solution to form suspended CaCO3, which is accompanied
by a decrease in the solute concentration in the cementitious matrix from c

(0)
sou to c

(1)
sou and an increase

in the solute concentration from c
(0)
aq to c

(1)
aq in the solution. The difference in the diffusion energy

of the cementitious matrix changes from ∆disf (0) to ∆disf (1). The precipitation chemical driving
force ∆pref (0) is negative when the solution is not saturated, which corresponds to the inability to
precipitate but only to dissolve. When the solution is saturated or even supersaturated (c(1)sou to
c
(2)
sou and c

(1)
aq to c

(2)
aq ), i.e. the chemical driving force ∆pref (2) is positive, after which the suspended
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CaCO3 starts to precipitate. In order to properly emulate this process, Asou < Aaq ≪ Apre should
be numerically satisfied. Meanwhile, the thermodynamic driving force for the precipitation of
CaCO3 consists of the contribution of the reaction part ∆rf (2) and the diffusion part ∆diff (2).
The precipitation follows a non-equilibrium process in which CaCO3 aggregates with characteristic
mean cluster size form and grow, thus filling the cracks. For CaCO3 nanoparticles present in
solution, their mutual clustering is strongly dependent on the ionic concentration of the solution.
When the ionic concentration is small, dissolution of the reactants is promoted. An increase in
the ionic concentration rapidly promotes the production of more precipitation. The precipitation
reaction term ∆rf should be an expression of the free energy density related to the chemical
formation of CaCO3 particles [451]. In this PF model, we simplify the precipitation term to a
non-negative constant. With this constant we are able to define the free energy of the precipitation
phase fpre(cpre) (as shown in Eq. (3.48)) in the region that allows the CaCO3 precipitation, i.e.
located in the oversaturation (OS) regions.
The energy contributions at the diffusive interface is formulated [1] as

fint(∇{ϕi}) =
∑︂
i

κi

2
|∇ϕi|2 (3.50)

where κi is the gradient energy coefficient of each phase. Based on the formulations of [1], the
interface is described as a mixture of multi-phase with different compositions, but with the same
chemical potential. The local concentration c is thus defined as the weighted superposition of each
phase ci

c = Φsoucsou + Φprecpre + Φaqcaq. (3.51)

These phase concentrations are further constrained by an equal-chemical-potential condition, i.e.

µ =
∂fsou
∂csou

=
∂fpre
∂cpre

=
∂faq
∂caq

. (3.52)

The temporal evolution of the non-conserved order parameters {ϕi} is governed by the Allen-Cahn
equation [167] as

∂ϕi

∂t
= −Li

δL

δϕi

(3.53)

with the corresponding interface mobility coefficient Li. On the other hand, the conserved local
concentration field c is governed by diffusion equation [1] as

∂c

∂t
= ∇ ·

(︄
D
∑︂
i

Φi∇ci

)︄
, (3.54)

which can be also regarded as the reduced version of Cahn-Hilliard equation by applying the
chain rule on the chemical potential [1]. The solute diffusion coefficient can be formulated as
D =

∑︁
i ΦiDi considering the effective value of each phase Di and corresponding interpolation Φi.

Analyzing the equilibrium properties of the kinetic equations (3.53) and (3.54) by means of
the thin interface limit analysis [1], the unknown model parameters κi and ωi can be expressed
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by the interfacial energy σi-j and the interfacial width li-j. As the general formation, κi and ωi,
corresponding to the OP ϕi, are calculated as follows

κi =
3

4
(σi-jli-j + σi-kli-k − σj-klj-k) , (3.55)

ωi = 6

(︃
σi-j
li-j

+
σi-k
li-k
− σj-k

lj-k

)︃
, (3.56)

where i, j, k are distinct phase subscriptions, i.e. sou, pre or aq.

3.3.4 Method
3.3.4.1 Simulation setup

Figure 3.24 shows a 2D schematic view of a simulation domain of size 375 µm × 750 µm for
the parameter research. The initial width of the crack is set to 150 µm. In this model, the solid
calcium hydroxide provides a source of calcium ions. When the crack width is much smaller than
the size of the source phase and the number of cracks is sufficiently few, it can be considered as a
constant supply of calcium ions in the system. However, when the cracks are densely distributed,
this causes competition for the supply of Ca2+ ions around the cracks. Therefore, only a limited
ions supply is available. This phenomenon can be simulated by two boundary conditions (BC), i.e.
BC1: the boundary of the domain Γ1 is a constant concentration ion reservoir following (Equation
3.51); BC2: there is no mass exchange between the domain and the environment along the
outward unit normal of the boundary Γ2. n is the normal vector. For the realistic simulation of the
model, Binary Large Objects (BLObs) were converted from the experimental images derived from
the stereo microscope (see Sect. 3.3.5.3), imported and processed using the MOOSE-embedded
ImageFunction and associated utilities.

Figure 3.24. Schematic view of a typical crack and the initial and boundary conditions used in
the PF model. The source phase and the aqueous solution phase are separated by
the diffusion interface Ia-s.
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3.3.4.2 Parameter normalization

To ensure the convergence of the model and to improve the computational efficiency of solving the
non-linear governing equation sets, all variables are normalized. Spatial derivatives are normalized
with respect to the reference length r, which is set to 5% of the initial crack width. Dimensionless
forms of other quantities are given in Table 3.5.

Table 3.5. The dimensionless forms of the parameters.
Symbol Normalization Symbol Normalization

Physical
quantity

ci c∗i = Ci/C
0
sou

Model
parameter

Ai A∗
i = Ai/ωpre

Li L∗
i = ωprer2Li/(Daq) ωi ω∗

i = ωi/ωpre
t t∗ = Daqt/r2 κi κ∗

i = κi/(ωprer2)

Di D∗
i = Di/(Daq)

Operators ∇ ∇∗ = r∇

In order to enable a valid comparison of the varying order parameters in the same time frame, the
original data were linearly transformed by equation 3.57.

ϕ∗
i =

ϕt
i − ϕmin

i

ϕmax
i − ϕmin

i

(3.57)

where, ϕt
i is the integration of the corresponding phase at the time t over the 2D domain, while

ϕmin
i and ϕmax

i represent the minimum and maximum integration of the corresponding phase,
respectively. The residual source phase ratio, the precipitation generation ratio and the self-healing
ratio can be expressed as the corresponding normalized phase ratio ϕ∗

sou, ϕ∗
pre and ϕ∗

aq, respectively.
The physical meaning for the integration, could be related in terms of the derivative of the porosity
integral on the surface.

3.3.4.3 Finite element implementation

The PF model was implemented using the Finite Element Method (FEM) in the framework of
the Multiphysics Object-Oriented Environment (MOOSE) [521]. 4-node quadratic Lagrangian
elements were chosen to mesh the geometry. Transient solver with preconditioned Jacobian-Free
Newton–Krylov method (PJFNK) and backward Euler algorithm were employed. Adaptive mesh
and time stepping schemes are used to reduce computation costs. Error indicators employed in
H-adaptive meshing scheme on both {ϕi} and {ci}, with the h-level as four, were specified to
guarantee the precision requirement of the diffusive interface.

3.3.4.4 Experimental method

Experimental studies were conducted at the Institute of Construction and Building Materials of
the TU Darmstadt. The Ca(OH)2 powder (ROTH, >96%) was compressed by a hydraulic press
(ENERPAC P142, USA) at 40 MPa pressure into tablet specimens having dimensions of 15 mm
diameter and 10 mm height (Figure 3.25). The specimens were completely sealed using a vacuum
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impregnation device (EPOFIX from Struvers, Denmark) at a pressure of 20 kPa then a fissure
opening with a width of 1.0 mm was carved along its diameter. This geometry was chosen to ensure
one dimensional advancement of the carbonation reaction front. Each specimen was immersed
in 200 mL distilled water and transferred to a regulated environmental chamber (ICH-C 110,
Memmert, Germany) and carbonized for 3, 7, 14 and 21 days at a temperature of 20°C, a relative
humidity of 80% (to avoid the evaporation of water from the vessel).
Due to the low concentration of CO2 in the atmosphere (about 0.03% by volume), the carbonation
process of Ca(OH)2 and cementitious materials is very slow in the natural environment. Accelerated
carbonation experiments are usually performed in the laboratory to quickly assess the carbonation
process. In the literature, the CO2 concentration for accelerated carbonation varies from 3% to
100% [522, 523]. The carbonation rate increases with increasing CO2 concentration. However,
this development is not significant at CO2 concentrations above 20%, due to the fact that at high
CO2 concentrations, in the outer layers of the concrete, dense carbonation microstructures are
formed, which prevent further penetration of CO2 [524]. In order to ensure that the accelerated
carbonation produces a sustained self-healing effect, a CO2 concentration of 5% by volume was
chosen for this study. Here it is important to note that our model disregarded the CO2 dissolution
kinetics, by assuming that the CO2–

3 is fully available in the pore system, i.e. the dissolution kinetics
is instantaneous. In future modeling works, the CO2 dissolution kinetics should be considered as
well.
At each exposure time period, the corresponding specimen was taken out of the water and dried
at 40°C for 24 hours. The crack opening was then vacuum filled with a low viscosity (nominally
0.6 mPa·s) epoxy resin. After the epoxy resin hardened, the specimens were polished using a
semi-automatic grinding–polishing machine (LaboSystem, Struers, Denmark), initially using a
disc in hardness range HV 150 to 2000 at a rotational speed of 300 rpm, followed by a lubricated
cloth and polycrystalline diamond spray of, consecutively, 9, 3, and 1 µm sizes at a rotational
speed of 150 rpm. The polished cross-sections of the specimens were imaged by an environmental
scanning electron microscopy using a back-scattered electron detector (SEM-BSE, Zeiss EVO LS25,
Germany). The chemical analysis of the polished cross sections of the samples were conducted
using the energy dispersive spectroscopy (EDS) detector.

Figure 3.25. Schematic procedure of Ca(OH)2 carbonation experiments.

3.3.5 Results and discussion
3.3.5.1 Experimental validation

The purpose of the experimental observation of the carbonation reaction of a single substance,
Ca(OH)2, is to verify the appropriateness of the multiple interfaces settings in the PF model. Figure
3.26(a) shows the SEM images of specimens after different repair time. The dashed line indicates
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the initial solid-liquid interface Ia-s. The dissolution process of calcium hydroxide occurs first on
the exposure surface. As the solution penetrates the surface layer of Ca(OH)2 is exfoliated. By day
7, typical dendritic calcium carbonate crystals can be clearly observed on the stripped layer. Based
on this dendritic layer of CaCO3 crystals, CaCO3 will continue to precipitate and fill the voids,
resulting in a porous layer. The pore system provides a channel for further bi-directional diffusion
of CO 2–

3 and Ca2+ ions. By day 14 it can be seen that the carbonate ions diffuse through the porous
CaCO3 layer generated at the crack surface into the Ca(OH)2 matrix and undergo precipitation
reactions, which allows the interface Is-p to continue to move deeper into the matrix. At the same
time, the interface Ip-a continued to grow toward the solution, and by day 21, the cracks had
completely healed. Non-homogeneously distributed light-colored patches in the healed regions
were observed in the SEM images, which was due to the studied cross-section of the precipitation
region containing crystalline CaCO3 [525]. We also analysed the different depths of the cracks in
combination with stereo microscopy and found that in the 21-day sample, the deeper areas of the
cracks were completely filled with calcium carbonate. CaCO3 composition was confirmed using
EDS point analysis (average composition of 40.05 wt% Ca, 15.71 wt% C, 44.24 wt% O, Figure
3.26(c)). From the experimental results in Figure 3.26(b), it can be seen that by 21 days, the total
moving distance of single side of Ip-a is 2.7 times greater than that of Is-p.

Figure 3.26. Image and data analysis of the interfacial migration of Ca(OH)2 carbonation over
time. (a) SEM image after different self-healing exposure times, i.e. 3, 7, 14 and
21 days; (b) comparison of numerical and experimental results of the interface
migration distance, Model case is abbreviated as MC; (c) the EDS spectrum of the
self-healing product.

The experiment results also showed that Is-p receded rapidly during the first 7 days of the experiment
and moved slowly thereafter. The reason for this phenomenon is that the solute concentration of
the exposed solution is zero (initial condition), i.e. the diffusion flux is initially very high. This
leads to a rapid retreat of the interface due to the continuous dissolution controlled by Lsou. As
the precipitation reaction continues on the fracture surface, a structurally dense CaCO3 layer is

73



formed, which prevents the penetration of CO 2–
3 ions into Ca(OH)2 matrix on the one hand, and

the leaching of Ca2+ ions into the solution on the other hand. This rate of interface migration in
the PF model may be considered in the future in Lsou, where this mobility should vary with time
and is fundamentally a function of solute concentration and porosity. However, in this study, Lsou
is simplified to a constant. The effects of varying Lsou (case 1, 2, and 3) on the evolution of Is-p are
compared with the experimental results.
The migration distances of the single side of Ip-a and Is-p are calculated from the integration lengths
of ϕaq and ϕsou in the 1D simulation, respectively. The model parameters for case 1 are summarized
in Table 3.6.

Table 3.6. Model parameters
Symbol Value Unit Symbol Value Unit Ref.
Asou 2.40×10−5 J/m3 κpre 7.24×10−9 J/m
Apre 2.40×10−2 J/m3 κaq 1.76×10−9 J/m
Aaq 2.40×10−4 J/m3 σs-p 2.11×10−4 J/m2 [526]
ωsou 27.48 J/m3 σp-a 1.20×10−4 J/m2 [526]
ωpre 23.16 J/m3 σa-s 1.38×10−4 J/m2 [527]
ωaq 5.64 J/m3 Dsou 1.34×10−14 m2/s

Lsou 7.00×10−5 m2/(Js) Dpre 5.40×10−12 m2/s [528]
Lpre 1.80×10−4 m2/(Js) Daq 1.34×10−9 m2/s [529]
Laq 1.80×10−4 m2/(Js) cEpre 1.35×104 mol/m3

κsou 8.59×10−9 J/m cEaq 1.40×10−1 mol/m3 [530]

The parameter Ai is taken to construct the free energy of the cementitious system (Figure 3.23).
The interface mobility coefficient Li is related to the interface velocity and the driving force
according to the chemical rate theory. In most of the studies, the values of interface mobility
are used as empirical or hypothetical ones [459, 460]. In our study, the interface mobility was
determined based on experiment results. For case 2 and case 3, Lsou has the value of 5 × 10−5

and 3.5× 10−5, respectively. Other parameters are the same as that of case 1. cEaq is derived from
the solubility of CaCO3 at 20°C and 1 atm. cEpre is the molar concentration of the calcium ion of
CaCO3 with a porosity of 47%. C0

sou is calculated by dividing the density of CaCO3 by its average
molar mass [471]. The porosity of the diffusion coefficient of the source phase Dsou is obtained
from the compaction density and the particle density of Ca(OH)2 specimens, i.e. 30%. Based on
the relationship between the diffusion coefficient, the open porosity and the pore morphology
[17, 531], Dsou is set to be 5 orders of magnitude smaller than in its solution. As this is a crack
scale model, it operates both with ion diffusivity in pore (crack) solution and effective diffusivity
through porous matrix. The value of Dpre was determined by choosing the ion diffusion coefficient
of a cementitious material with approximate porosity to the precipitated phase.
Figure 3.26(b) shows that the profiles of Ip-a in the three cases were in good agreement with the
experimental results, although the measured value on day 7 is slightly lower than that of the
simulation where the measured value on day 14 is higher than the simulated values. The results
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for the three models cases show a slowdown in the rate of interface migration after day 16, which
is consistent with the results of the parametric analysis in Figure 3.27(a) in Sect. 3.3.5.2. For
the evolution of Is-p it can be seen that for an increasing Lsou, it is possible to facilitate the Is-p
migration in case 1 (7× 10−5) and case 2 (5× 10−5) and to make the total distance consistent with
the experiments. However, the backward distance of Is-p grows rapidly during the first 7 days of
the experiment, which is not reflected in the model results, which is due to the detachment of the
surface layer after soaking of the Ca(OH)2 specimens. However, it should be noted that only the
continuous dissolution is considered in this model.

3.3.5.2 Parameter research

An exhaustive series of parametric studies was conducted to identify the effect of each parameter
containing an actual physical significance on the model results. Firstly, the effect of the morphology
of the crack on the healing effect was analyzed. The cracks are represented by two parallel sine
waves. The surface roughness is constructed by adjusting the sinusoidal frequency. The amplitude
of four cases is 2 and the frequencies are 1, 5, 10 and 20 respectively. As the surface roughness
increases, the precipitation fills first in the areas of greater curvature. Then the interface Ip-a
gradually becomes flat. As seen in Figure 3.27(a1), case 4 is the first to be completely healed,
while case 1 only reaches 0.8. From Figure 3.27(a3), it can be observed that the growth rate of self-
healing ratio keeps increasing until 0.04 s, while it gradually decreases afterwards, which makes
the four curves almost parallel after 0.5 s (in Figure 3.27(a2)). This is due to the curved interface
which migrates spontaneously toward the center of the curvature. The larger the curvature of the
interface, the smaller the radius of the curvature, the faster the interface migration, and the faster
the interface will move.
The rate of the interface migration resulting from the thermodynamic driving force of precipitation
and dissolution is controlled by Li. In this model, L∗

sou and L∗
pre is referring to the normalized

interface mobility coefficient of Is-p and Ip-a, respectively. Figure 3.27(b1) shows snapshots of crack
simulations with three coefficient ratios (L∗

pre/L
∗
sou=1, 10 and 100) at 0.3t∗ and 0.6t∗. It is obvious

that when the coefficient ratio increases from 1 to 100, the self-healing ratio increases (Figure
3.27(b2)) while the residual source phase ratio decreases (Figure 3.27(b3)) significantly.
In order to simulate the physicochemical reactions correctly, the thickness of the interface has
to be sufficiently small compared to the mesoscopic structure of the system; however, from a
computational point of view, it is expected that the thickness of the interface has to be as large
as possible in order to keep the interface from being overly densely meshed, which increases the
computational effort. Therefore, for the simulation of crack healing with sinusoidal morphology,
we quantitatively evaluated the effect of different interfacial widths (li−j=1, 2 and 4) on the
model behavior. Figure 3.27(c1) shows that the operating state of sinusoidal cracks is sensitive
to the interface thickness. It is evident that when the interface thickness is 1, there is a clear
boundary between the two phases. And when the interfacial thickness increases to 4, the interface
morphology becomes blurred. Figure 3.27(c2) shows the spatial distribution of ϕpre at 0.25t∗ along
the dashed line. As the interfacial width increases, the value of ϕpre at the crack location becomes
larger, which implies that the cracks can heal faster.
So far, for all simulations the same diffusion coefficient was assumed for each phase. Therefore,
the performance of the model will be tested when varying the effective diffusion coefficient of ions
in the source phase Dsou and that in the precipitation phase Dpre. All of them are normalized (D∗

sou
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= 5× 101, 5× 102 and 5× 103; D∗
pre = 4× 101, 4× 102 and 4× 103) with Daq = 1× 10−9 m2/s (see

Table 3.5, Section 3.3.4.2).

Figure 3.27. The effect PF parameter on profile of OP {ϕi}. (a1) Simulation of self-healing with
different crack morphologies, (a2) and (a3) the evolution of normalized phase ratio
and its slope; (b1) Evolution of self-healing with variation of interface mobility
coefficient Li, (b2) and (b3) normalized phase ratio ϕ∗

pre and normalized phase ratio
ϕ∗
sou as a function of time, respectively; Effect of interfacial width and (c2) phase ϕshp

profile evolution.

Figure 3.28(a2) shows that the concentration profile of D∗
sou = 5× 101 is higher compared to that

of D∗
sou = 5×102 and D∗

sou = 5×103 at 0.4t∗ in the ion source phase and clearly decreases from the
boundary of the ion source phase to the fracture surface, especially with a low concentration spike at
x= 34. This is due to the large difference betweenD∗

sou andD∗
pre, which drives the ions appearing at

the crack surface to diffuse rapidly into the precipitation region forming a concentration depletion
zone at the crack surface. At 0.8t∗ (Figure 3.28(a3)) the concentration spike rises due to more ions
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being transported to the fracture surface, thus compensating for the local concentration depletion.
Figure 3.28(a4) presents that the high concentration region (c∗=1) widened significantly with
increasing D∗

pre. Higher D∗
pre promotes rapid ion abstraction from the source phase, which causes

the concentration to decrease with increasing D∗
pre in the ion source phase. Figure 3.28(a5) shows

the concentration profiles from 0.2t∗ to 0.8t∗ for D∗
pre = 4× 103. Combining Figure 3.28(a5) and

(a6), it can be observed that the expansion of the high concentration region (c∗=1) slows down
with time which leads to a decrease in the precipitation phase ϕ∗

pre. The above results indicate that
an increase in the effective diffusivity of ions produces a significant increase in the precipitation
width. It is worth emphasizing that in the PF method the order parameter and the concentration
field are defined based on the mean field theory, which means that the fluctuated property of the
concentration coefficients in the same phase are homogenized and therefore represented by a
constant value. For the case where the mass transfer (incl. diffusion and fluid transfer) depending
on the local pore structures, an additional conserved order parameter and corresponding fluid
dynamics should be implemented [532].

The effect of two boundary conditions (BC1 and BC2) on the self-healing efficiency is discussed
next. Under BC1, the effects caused by ion concentrations of 0.5 and 1.0 are compared. The
position of the studied profiles is shown in Figure 3.28(a1). Figure 3.28(b) investigates the self-
healing ratio ϕ∗

pre and normalized concentration profiles c∗i with the above boundary conditions. As
shown in Figure 3.28(b1), when the constant concentration c∗o of the boundary (Figure 3.24) is
increased from 0.5 to 1.0, the ratio of self-healing increases. As time increases from 0.2t∗ to 0.8t∗,
there is no change in the concentration profiles in the source phase in case of boundary with a
constant concentration. In contrast, the normalized ion concentration in the source phase under
BC2 decreases from 0.61 to 0.39 due to further diffusion of calcium ions from the boundary to the
crack surface (Figure 3.28(b2) and (b3)).

Since it is not clear whether and how the precipitation reaction term ∆rf affects the concentration
profiles, the effect of three cases ∆rf = 5, 9 and 13 will be discussed now. The results in Figure
3.28(c1) and (c2) indicate a strong dependence of the concentration profiles on ∆rf . Changing
∆rf from 5 to 13 produces a significant decrease of the ion concentration in the source and
solution phase, which finally results in a wider precipitation region. From 0.2t∗ to 0.7t∗, all
depressions in the middle of the curve with OS=13 are replaced by a high concentration, indicating
that the crack is completely healed. The driving force contributed by ∆rf drives the ions to
diffuse from the source phase into the solution eventually accumulating at the crack surface. As a
result, the ion concentration in the source phase and solution decreases rapidly, while the high
concentration region in the phase with self-healing products increases. The above results show
that the precipitation reaction progress can be effectively controlled by adjusting ∆rf .

3.3.5.3 Modeling Applications

The following two examples (Figure 3.29) demonstrate that the PF model can be used to quantita-
tively simulate the morphological migrations of self-healing cementitious materials. Example 1
is the autogenous self-healing studied by Lee and Ryou [41], while example 2 is bacteria-based
self-healing studied by Erşan et al. [47]. The reasons for choosing these two examples are as
follows. First of all, the primary mechanism of the autogenous self-healing is the crystallization of
CaCO3 [533].
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Figure 3.28. The effect PF parameter on profile of concentration ci. (a1) the position of the
studied profiles, (a2) and (a3) the distribution profiles of c∗ at 0.4t∗ and 0.8t∗ with
the variation of D∗

sou, respectively, (a4) the distribution profiles of c∗ at 0.8t∗ with the
variation of D∗

pre, (a5) the distribution profiles of c∗ of the case D∗
pre = 4× 103 at four

time points, (a6) the evolution of the normalized phase ratio ϕ∗
pre with the variation

of D∗
pre; (b1) Evolution of self-healing ratio ϕ∗

shp with different boundary conditions,
normalized concentration profile evolution (b2) at 0.2t∗ and (b3) at 0.8t∗; Evolution
of normalized concentration profile with the different oversaturation terms ∆rf at
(c1) 0.2t∗ and (c2) 0.7t∗.
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Secondly, the principle mechanism of bacterial self-healing is that the bacteria act primarily as
catalysts, and convert the organic biomineral precursor compound into insoluble inorganic CaCO3
based minerals [72, 74, 237, 238]. When bacteria control the catalytic reaction much faster than
diffusion, the self-healing process is mainly controlled by diffusion. In conclusion, these two
examples can be numerically treated as a dissolution and precipitation process of solutes, which is
time-dependent and controlled by diffusion. Therefore, both can be simulated using the PF model
proposed in this study.
The initial widths of examples 1 and 2 are taken from the experimental data, i.e., 174 µm and 318
µm, respectively. The model parameters are the same as that in Table 3.6 except Laq = 1× 10−7

m3/(Js), Lpre = 1×10−4 m3/(Js) and Lsou = 1×10−10 m3/(Js) used for example 1 and Laq=1×10−5

m3/(Js), Lpre=1× 10−4 m3/(Js) and Lsou=1× 10−10 m3/(Js) used for example 2, respectively. The
precipitation reaction term ∆rf is an expression of the free energy density related to the chemical
formation of CaCO3 particles (equation 3.48). In this PF model, we simplify the precipitation term
to a non-negative constant. Based on the authors’ research experience, a reasonable range of values
for ∆rf is from 1 to 20. In order to focus on the effect of other parameters on the self-healing
effect and to avoid the model being subjected to a large ∆rf that would lead to too rapid healing,
∆rf was taken as 5 in both examples.
Figure 3.29 shows schematically the concentration field c, the phase field ϕi and the experimental
results for the 2 examples at different times, respectively. At the beginning of cracking, the
reactant ion concentration c is highest in the cementitious matrix and nearly 0 in the solution. At
14 days, c at the crack surface reaches 1, while a layer of self-healing products. This indicates
that the Ca2+ ions in the solution are carbonated and the concentration of CaCO3 reaches the
saturation state forming a layer of self-healing products. The concentration in the cementitious
matrix is low compared to that on the crack surface. Such a difference is set to numerically reflect
a physical meaning, i.e., CaCO3 precipitation is difficult to form in the deep cementitious matrix
due to the lack of CO2. It can be carbonated only when Ca2+ ions diffuse to the crack surface.
It is one of the innovations of our model that c can reach 1 only near the crack surface, thus
allowing the formation of the self-healing products locally. With this strategy, the different phases
can be effectively distinguished by their concentrations and tracked by the corresponding order
parameters.
It is clear from the experimental results that the morphology of the cracks largely influences their
local healing effect. At the same time the morphology of the crack is constantly changing with the
healing process. In the depression out of the crack surface, the healing products precipitate faster
and more frequently due to the higher concentration of solutes. Therefore, its local boundary
moves faster than that of other locations.
The effect of crack width on the self-healing efficiency can also be seen in the simulation results
of examples 1 and 2. This effect has also been mentioned in the literature [223, 534]. From the
simulation results of example 1, it can be seen that the crack healing rate from 0-15 days is slower
than that from 15-23 days. This is due to the slow diffusion process of Ca2+ ions from the cement
matrix to the crack surface and their gradual accumulation in the early stage of crack appearance.
Precipitation occurs only when ions concentration reaches the saturation state. The results from
days 0 to 15 reflect the gradual accumulation of reactant concentrations. after 15 days, the crack
healing rate is accelerated. This is due to the synergistic effect of Ca2+ ions diffusing from both
crack sides. However, the width of example 2 is 1.8 times wider than that of example 1, which leads
to the fact that the processes of diffusion of Ca2+ ions and occurrence of precipitation reactions on
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both sides of the crack are independent of each other and have no synergistic effect. Therefore the
self-healing rate of example 2 was almost constant until 20 days. The self-healing rates of the two
examples slowed down after 23 and 20 days, respectively. This is due to the formation of a CaCO3
layer on the crack surface thereby preventing further diffusion of Ca2+ ions outward.

Figure 3.29. Two examples demonstrating the practical application of the PF model. (a) example
1: the autogenous self-healing, reproduced with permission from the authors of [41],
copyright 2014, Constr Build Mater, Elsevier; (b) example 2: the bacteria-based
self-healing, reproduced with permission from the authors of [47], copyright 2016,
Cem Concr Compos, Elsevier.

The above two numerical simulations provides consistent results with experiments, which is
encouraging as for the capacity of the present model to predict the morphology and the geometrical
details of the interface migration of self-healing processes in cementitious materials. However, we
should keep in mind that the comparison between numerical and experimental results is mainly
qualitative, since we have focused only on the dissolution-precipitation mechanism, whereas for
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cementitious materials containing mineral additives, the corresponding self-healing processes have
to be extended to consider more types of reactions (e.g. hydration) and additional physicochemical
effects (e.g. swelling and dissolution). In addition, although the empirical relationship between
effective diffusivity and porosity (single value) takes into account the effect of w/c ratio, the
variation of porosity is not studied in this study. The porosity should be related to the local
concentration of ions and the phase in which they are located. The diffusion coefficient could be
expressed as an equation related to the porosity and pore structure [531]. This model can be
flexibly extend to a multiphase multicomponent form to analyze the effect of real cementitious
materials on self-healing, e.g., by adding a order parameter ϕsou_csh for C-S-H in the phase of ϕsou.
For this, a thermodynamic dissolution-precipitation description should be implemented as well
as a change of the homogenized properties. The fluctuated properties should be homogenized
and generally represented by a non-constant value, where e.g. the effective diffusion coefficient
depends on the pore structure (e.g. using empirical relations [516, 531]).

3.3.6 Conclusion
In this study, a novel PF model for self-healing of cementitious materials is presented. The model
can effectively capture the evolution of dissolution and precipitation interfaces controlled by
diffusion and the behavior of solute concentration profiles. From the results of this study following
conclusion can be drawn:

(1) the free energy of the system, approximated by a set of parabolic functions, varies with solute
concentrations and order parameters, which is able to describe the self-healing processing
by analyzing the thermodynamic driving force of the solute diffusion and precipitation in a
thermodynamic-consistent way and thereby capable in recapitulating the process under various
solute conditions, i.e. undersaturation, saturation and oversaturation;

(2) calcium hydroxide-based carbonation measurements confirm that multiple interface evolution
occurs during the self-healing process. Using the derived interfacial mobility, the PF numerical
simulations show a consistent agreement with the experimental results;

(3) by conducting a series of parametric studies, it was confirmed that model parameters with clear
physical meanings can reflect the evolution of multiple interfaces under different conditions;

(4) 2D simulations of the interfacial growth kinetics during the self-healing of cementitious materials
were carried out. Comparison with experimental results shows that the PF model is able to
provide good qualitative predictions of the morphological and geometric details of interfacial
migration during self-healing of cementitious materials in terms of minerals dissolution and
precipitation (Figure 3.29). For a further quantitative analysis, additional types of chemical
reactions and additional physical factors need to be considered.

In future studies, the free energies and the corresponding thermodynamic parameters of the
involved phases will be examined to quantify mechanisms for the formation of the self-healing
products, e.g. hydration kinetics, crystallization kinetics and swelling. Due to the dependence
on the ion type, ion concentration, capillary pore structure, degree of chemical reaction, etc. an
explicit formulation of the diffusion coefficient on relevant factors shall be derived and validated
with experiments [535]. The chemistry modeling should be extended with the Ca2+ ion diffusion
coefficient to be subject to the interaction of porosity and chemical reaction rate. Ion transport and
local chemical reactions can be calculated using PHREEQC (a computer program for speciation,
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reaction-path, advective transport, and inverse geochemical calculations). The yielded results
are then transferred to the PF model for the further phase transformation analysis. The complex
evolution of crack healing morphology in physicochemical processes can be accurately evaluated
only in a full 3D system. All the above should be considered for further development of a
comprehensive self-healing modeling tool for cementitious materials.
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4 Conclusion and outlook

4.1 Conclusion

In this thesis, the dissolution of a single mineral particle is analysed from a phase transformation
perspective using the PF method. On this basis, a conceptual multiphase-PF model is proposed to
simulate the complex microstructural evolution during the self-healing of cementitious materials.
The model focuses on the carbonation-based healing mechanism, which is activated by dissolving
soluble calcium-containing minerals and precipitating CaCO3. Based on the research presented
and the results, the following general conclusions can be drawn:
(1) comparing with analytical methods, it was observed that the dynamic evolution of the solid-

liquid boundary induced by diffusion-controlled dissolution, could be accurately reproduced
by using the PF method. Taking the NaCl particle as an example, the PF model showned to be
successful in modelling the mesoscopic evolution of inorganic non-metallic materials caused
by diffusion-controlled dissolution. By adjusting the PF interfacial mobility parameter, the
dissolution of the NaCl particle was effectively captured at different stages of the transition
from reaction-controlled to diffusion-controlled mechanism;

(2) a novel PF model for self-healing in cementitious materials was applied to simulate the Ca(OH)2
carbonation. The results showed that the PF model based on a thermodynamic basis and
proposed energy equations was effective in capturing the evolution of the diffusion-controlled
dissolution and precipitation interfaces as well as the behaviour of the solute concentration
profiles;

(3) a comparison with experimental results of self-healing of cementitious materials revealed
that the PF model was able to provide good qualitative predictions of the morphological and
geometric details of interfacial migration during self-healing of cementitious materials in terms
of mineral dissolution and precipitation;

(4) by conducting a series of parametric studies, it was confirmed that PF model parameters with
a clear physical meaning can reflect the evolution of complex morphology and physical masses
under different conditions.

4.2 Outlook

The development and successful application of the PF model has contributed to a deeper under-
standing of the complex boundary evolution of the self-healing process of cementitious materials
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from a thermodynamic and kinetic perspective. However, there are still a large number of unre-
solved challenges that deserve a more in-depth study. The following potential future steps are
identified:
(1) Combining the reaction kinetics of multiple substances

There are many factors that are affecting the chemical kinetics of self-healing, i.e. different
ratio of adhesive agents, mineral admixtures and bacteria; fluctuations of carbon dioxide,
humidity and temperature in the environment, which are affecting the overall crack healing
rate. Therefore, the free energies and corresponding thermodynamic parameters of different
substances need to be distinguished and their mechanisms for the formation of self-healing
products, i.e. hydration kinetics, crystallization kinetics, polymerization reaction kinetics and
swelling kinetics, should be reflected in specific simulations.

(2) Introduction of a dynamic diffusion coefficient
The diffusion coefficient of aqueous species is related to the type, local concentration, capillary
pore structure, degree of reaction, etc. An expression for a dynamic diffusion coefficient need
to be derived by combining relevant factors and should be validated with experimental data.

(3) Evolution of capillary pore structures
The microscopic structure of capillary pores of the solid phases is in dynamic exchange with
the chemical reaction. The precipitation generated in the capillary pores hinders local ion
transport while contributing to an altered pore structure, which further affects the diffusion
potantial. Therefore, the interplay between the capillary pore structure, thermodynamics,
reactant concentration and mass transport should be investigated in more detail.

(4) Development of a three-dimensional model
Although the present study has confirmed that the proposed PF model can effectively simulate
the evolution of different fracture morphologies in two dimensions. However, it is worth
noting that the interfacial morphology has a strong influence on the kinetics of dissolution
and precipitation. In addition, inhomogeneous spatial distribution of aggregates, and the
direction of moisture penetration may all affect the evolution of the interface morphology of
cementitious materials. Therefore, to significantly enhance the accuracy and predictability of
a crack healing process, only a full 3D system with realistic boundary conditions would apply.
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Appendix

A1 The Height of the Double Well Potential ω and Gradient Energy
Coefficient κ
Using the composition and PF profile at equilibrium, the interface energy σ, and the interface
thickness l0 can be evaluated as:

σ =

√
κω

3
√
2
, (a1)

l0 = 2.94
√
2

√︃
κ

ω
. (a2)

In general, σ and l0 can be estimated from the experiment, then the height of the double well
potential ω and gradient energy coefficient κ can be easily obtained by the Equations (a1) and
(a2):

ω =
6× 2.94σ

l0
, (a3)

κ =
3l0σ
2.94

. (a4)

A2 The Interface Mobility L

The interface velocity V is typically expressed as product of a factor involving the thermodynamic
driving force for dissolution and a kinetic factor involving the interface mobility [536], i.e.

V = V0

[︃
1− exp

(︃
∆G

RT

)︃]︃
, (a5)

where the kinetic factor V0 corresponds to the limiting velocity under infinite driving force (forward
reaction rate), ∆G is the Gibbs free energy difference, between the free energy of solid and liquid
which is responsible for the interface displacement. The driving force of dissolution ∆F is given by
∆F = f L(ceL)− fS(ceS)− (ceL − ceS)f

S
CS(cS), (-∆G=∆F ). Thus, Equation (a5) is obtained by Taylor

series expansion and approximated as:

V ˜︁=− V0
∆G

RT
= V0

∆F

RT
. (a6)

Using the derivation in the KKS model, Equation (23) can be expressed in terms of ∆F as follows:
∂ϕ

∂t
= −L [∇κ∇ϕ+ h′(ϕ)∆F ]− ωg′(ϕ). (a7)
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Under 1D instantaneous steady state, ϕ is derived for the position as follows:

dϕ

dt
= −L

V

[︃
κ
d2ϕ

dx2
+ h′(ϕ)∆F − ωg′(ϕ)

]︃
. (a8)

Under the thin interface limit condition, Equation (a8) combined with the equilibrium phase
expression dx/dϕ0 = −

√
κ/
√
2ω [1/ϕ0(1− ϕ0)] and Equation (a1) modifies into:

RT

V0
=

σ

Lκ
. (a9)

It should be noted that this equation only holds if the diffusion potential of solute in the interface
region is constant. In addition, if the dissolution process is controlled by diffusion, V0 is usually
approximated as DL/l0; where DL is the diffusion coefficient of the solute in solution [448]. In
general, the determination of V0 is very difficult [537]. In summary, L can be derived from Equation
(a9):

L =
DLσ
l0RTκ

. (a10)

A3 The Curvature of the Free Energy Density Function A

The Gibbs free energy ∆G can be obtained through equilibrium constant K:

∆G = −RT lnK, (a11)

∆G = −8.314× 293.15× ln
(︃
0.4

1.0

)︃
= 2233.23 (J/m3). (a12)

The value of A can be derived from ∆G. Following [459], A makes the free energy of the solid
phase is equal to ∆G when c is 0.4 (see Figure a1).

Figure 4.1. Variation of concentration with chemical driving force.
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A4 PF Parameters Normalization
In order to ensure the convergence of the model on the mesoscale and improve the calculation
efficiency, all variables are normalized. All molar concentrations are normalized by the solid molar
concentration cS, and all length scales are normalized by the length of the domain (l). According
to the total energy function in Equation 3.24, three equations are proposed as follows:

∇∗ = l0 · ∇, (a13)

F ∗ =
F

A
, (a14)

D∗
S =

DS
DL

. (a15)

The normalized variables are presented as follows:

A∗ = 1, (a16)

κ∗ =
κ

A · l20
, (a17)

ω∗ =
ω

A
, (a18)

L∗ =
A · l20 · L

DL
, (a19)

t∗ =
DL · t
l20

, (a20)

D∗
L = 1, (a21)

cSe =
csolid
csolid

= 1, (a22)

cLe =
p

csolid
, (a23)

where, p is the solubility of sodium chloride at 20 °C and 1 atm, which needs to be converted to
units of mol/m3 in the calculation.
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