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Abstract

The number of application areas of deep neural networks for image clas-
sification is continuously growing. A general desired attribute of these
networks is to generalize well to test data that visually differs from the
training data, but still shows the relevant features of the classes to be
discriminated. Reasons for such a difference in data could be related to a
change in background, illumination, or camera properties. The research
area of Domain Adaptation (DA) deals with the transferability of classifi-
cation models between such datasets, called domains, with the target to
maximize the transferability.

Typically, the differences and similarities of domains are described by
the notion of general data distributions. This method, however, does not
allow to identify and describe sufficiently the actual cause of a reduced
performance on a new domain. To tackle this, in this thesis a novel
description of domains, based on a theory of visual factors that describes
the characteristics of domains will be introduced. As it will be shown, it can
also be used to explain the targets and effects of existing DA approaches
more understandable, which ultimately can be used to improve those even
further.

When it comes to the application of classification models in context of
domains, several generalization cases can occur. In literature the most
relevant ones are the cases where the application domain is the same
domain as the training domain or the application domain is a completely
new domain. The case that the application domain was one of multiple
training domains is usually neglected, but will be investigated in this thesis
as well, since it has high relevance for the usage of pre-trained classification
models on own image data. As it will be shown further, the awareness
about the domains for all three generalization cases is important for a
well performing classification model in the application domain. The novel
investigations in this context will be introduced under the term Effects of
Domain Awareness. Different cases of domain awareness are investigated
in combination with different domain constellations within the training
and test data using the simple DA method of RGB mean normalization.
The results on a road segmentation task show the importance to treat a
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domain during training and test always in the same way, since otherwise a
significantly reduced performance can be observed.

A typical assumption in current DA research is that each training domain
includes samples for all classes that should be discriminated. However,
thinking of distributed camera systems with a shared classification model,
where each system potentially represents a domain, this assumption is
too restricted. The more realistic assumption here is that not all classes
are covered by samples from each domain during training of the classifier.
The aforementioned scenario, which is overlooked in literature, will be
extensively investigated under the term Domain Mixture scenario in this
thesis. The experiments on MNIST and real-world object classification
data show that, given the Domain Mixture scenario, the application of an
approach from DA is essential, since otherwise the classification model is
not capable to perform well on domain-class combinations that were not
represented by supervised samples during training.

A common DA approach to obtain a classification model that performs
invariant of a domain well, is to remove all factors from the internal
class feature representation that allow a discrimination of domains. This,
however, can be harmful if at the same time task-informative factors are
removed. To prevent this negative effect, the novel approach of Factor-
Preserving DA (FP-DA) will be introduced which allows to preserve a
selected factor during training with an adversarial DA approach. The
experiments in this context will first show on real-world data that this
negative effect exists and afterwards how factors worth preserving can be
identified and subsequently be preserved through FP-DA in a multi-domain
setting. The results show that FP-DA is capable to achieve the highest
average and minimum performance in such a setting compared to the used
baseline method.

In summary, this thesis introduces a novel description of domains and
based on that, investigates multiple highly relevant constellations for DA
and additionally proposes a novel DA approach.
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Kurzfassung

Die Anzahl der Anwendungsgebiete von tiefen neuronalen Netzen fiir die
Bildklassifikation wéchst kontinuierlich. Eine grundsétzliche, gewiinschte
Eigenschaft solcher Netze ist es, auf Testdaten zu generalisieren die sich
zwar optisch von den Trainingsdaten unterscheiden, aber dennoch die
relevanten Merkmale der zu unterscheidenden Klassen aufweisen. Die
Griinde fiir solch einen Unterschied in den Datenséitzen kénnen mit einer
Anderung des Hintergrundes, der Beleuchtung oder der Kameraeigen-
schaften zusammenhéngen. Das Forschungsgebiet der Doménen Adapta-
tion (DA) beschiftigt sich mit der Ubertragbarkeit von Klassifikationsmod-
ellen zwischen solchen Datensitzen, genannt Doménen, mit dem Ziel die
Ubertragbarkeit zu maximieren.

In der Regel werden die Unterschiede und Gemeinsamkeiten von
Doménen anhand von allgemeinen Datenverteilungen beschrieben. Diese
Methodik erlaubt es allerdings nicht den eigentlichen Grund fiir eine re-
duzierte Leistungsfihigkeit auf einer neuen Doméne zu identifizieren und
ausreichend zu beschreiben. Um dieses Problem anzugehen, wird in dieser
Thesis eine neue Beschreibung von Doménen eingefiihrt. Diese basiert auf
einer Faktor Theorie, welche die Charakteristiken von Doménen beschreibt.
Es wird gezeigt, dass diese auch dafiir genutzt werden kann um die Er-
wartungen und Effekte bestehender DA Ansétze verstandlicher darzulegen,
was wiederum dafiir genutzt werden kann um diese weiter zu verbessern.

Bei der Anwendung von Klassifikationsmodellen im Kontext von
Doménen koénnen verschiedene Generalisierungsfille auftreten. Die relevan-
testen Fille in der Literatur sind die, bei welchen die Anwendungsdoméne
die gleiche Doméane wie die Trainingsdoméne ist, oder die Anwendungs-
doméne eine vollstdndig neue Doméne ist. Der Fall, dass die Anwen-
dungsdoméne eine von mehreren Trainingsdoménen ist, wird tiblicherweise
nicht betrachtet. In dieser Thesis wird dieser jedoch untersucht, da er
eine hohe Relevanz fiir die Benutzung von vor-trainierten Klassifikation-
smodellen auf eigenen Bilddaten hat. Wie zudem gezeigt wird, ist fiir
ein performantes Klassifikationsmodell in der Anwendungsdoméne das
Bewusstsein iiber Doménen in allen drei Generalisierungsféllen wichtig.
Die neuen Untersuchungen in diesem Zusammenhang werden unter dem
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Begriff Effekte des Doménen Bewusstseins vorgestellt. Unterschiedliche
Fille des Doménen Bewusstseins werden in Kombination mit verschiedenen
Domaénen Konstellation innerhalb der Trainings- und Testdaten unter Ver-
wendung der einfachen DA Methode der RGB Mittelwert Normalisierung
untersucht. Basierend auf einer Straflensegmentierungsaufgabe zeigen die
Versuchsergebnisse die Bedeutsamkeit, eine Doméne wiahrend des Trainings
und des Testens stets gleich zu behandeln, da andernfalls eine deutlich
reduzierter Leistungsfihigkeit beobachtet werden kann.

In der aktuellen DA Forschung wird typischerweise angenommen, dass
jede Trainingsdoméne Beispiele fiir alle zu unterscheidenden Klassen enthélt.
Bei verteilten Kamerasystemen mit einem gemeinsamen Klassifikationsmod-
ell, wobei jedes Kamerasystem eine Doméne darstellt, ist diese urspriingliche
Annahme aus der Literatur allerdings zu beschrankt. Die realistischere
Annahme ist, dass wahrend des Trainings des Klassifikators nicht alle
Klassen durch Beispiele aus jeder Domane abgedeckt sind. Dieses in der
Literatur unberticksichtigte Szenario wird in dieser Thesis unter dem Begriff
Domain Mixture ausfiihrlich untersucht. Wie die Experimente auf MNIST
Daten und realen Objektlassifikationsdaten zeigen, ist eine Anwendung von
DA unerlésslich, wenn das Domain Mixture Szenario vorliegt, da andern-
falls das Klassifikationsmodell nicht in der Lage ist auf Domé&nen-Klassen
Kombinationen zu generalisieren, welche wéhrend des Trainings nicht mit
gelabelten Daten représentiert waren.

Fin gingiger DA Ansatz, um ein Klassifikationsmodell zu erhalten,
das unabhéngig von der Doméne gut funktioniert, besteht darin, alle
Faktoren von der internen Klassenmerkmals-Reprasentation zu entfernen,
welche eine Unterscheidung von Domaénen erlauben. Dies kann allerdings
nachteilig sein, wenn gleichzeitig aufgaben-relevante Faktoren entfernt
werden. Um diesen negativen Effekt zu verhindern, wird der neue Factor-
Preserving DA (FP-DA) Ansatz vorgestellt, welcher es ermoglicht einen
ausgewahlten Faktor wiahrend des Trainings mit einem Adversarial DA
Ansatz zu erhalten. Die Experimente in diesem Zusammenhang werden
zundchst anhand von realen Daten zeigen, dass dieser negative Effekt
existiert und anschliefend, wie erhaltenswerte Faktoren identifiziert und
durch FP-DA in einem Multi-Doménen Setting erhalten werden kénnen.
Die Versuchsergebnisse zeigen, dass FP-DA in der Lage ist in solch einem
Setting die hochste durchschnittliche und minimale Leistung im Vergleich
zur verwendeten Baseline-Methode zu erzielen.

Zusammenfassend fithrt diese Arbeit eine neuartige Beschreibung von
Doménen ein, untersucht darauf aufbauend mehrere hochgradig relevante
Konstellationen fiir DA und stellt zusétzlich einen neuen DA Ansatz vor.






1 Introduction

In recent years computer vision approaches based on deep neural networks
have shown outstanding results by achieving performances at and above
human-level on selected computer vision benchmarks. The most common
application areas of neural networks in computer vision range from tasks
like image segmentation, object detection, image classification up to image
transformation. The scope of this thesis will be image classification where
the goal is to classify an input image as a whole. The major breakthrough
of deep neural networks in the area of image classification can be dated back
to the convolutional neural network architecture called AlexNet, that was
introduced by Krizhevsky et al. in 2012 [48]. In their work they combined
an advanced neural network architecture with an efficient utilization of
graphics processing units, which allowed to optimize the parameters of the
architecture on the ImageNet [13] database with 1.2 million images in a
comparatively small amount of time. Various improved architectures have
been published in the following years [32, 37, 91], however, until today,
such architectures still require large amounts of training images to obtain
a classification model that is capable to generalize well to test images that
represent the same class but with different visual characteristics.
Therefore, if being limited to little amounts of image data, for example
due to costly image collection and labeling, ideally the images used for
the optimization should have similar visual characteristics as the images
that are expected in the final application area of the classification model.
The areas of application, however, might vary a lot, and with it the visual
characteristics of the images there. Typical practical application areas
where camera based systems are already used can be found in the industrial
robotic context or the area of autonomous vehicles. Today’s cars for
example are usually already equipped with cameras to increase safety and
thus to pave the way to fully-autonomous driving. In the near future it
is further conceivable that humans will have different types of robots in
and around their house that support them in their daily life. Most of
them will be equipped with camera sensors to perceive their environment.
Already now there are autonomous systems like vacuum cleaner robots
or lawn mower robots that are equipped with camera based systems that
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are used for example for trajectory planning based on visual perception.
The visual characteristics of images acquired in these different application
areas can differ significantly. While for distributed household robots the
images are mostly captured under artificial light combined with typical
indoor background clutter, for outdoor systems natural lighting conditions
combined with outdoor environments in the background can be observed. A
typical background for images captured by a lawn mower is likely to be grass,
while for cars this would be the asphalt of a street. In literature, as well
as in this thesis, a set of images with such dominant visual characteristics
throughout most of the contained images is usually called a domain. An
example where the images from different camera systems can be described
as an individual domain is depicted in Fig. 1.1.

In the described constellation of multiple camera based systems the
underlying image classification models would profit if they were connected,
since often the goal is to discriminate the same classes. For object classi-
fication that means that the same objects can potentially be observed in
each domain. Using instead an individual classifier for every domain can
be useful to handle the typical visual characteristics of each domain very
well. However, this requires many training images from all involved classes
from each domain, which on the one hand requires a lot of storage space
and on the other hand assumes that all image data is already available
when setting up a new system. To circumvent the need of massive amounts
of storage space and to quickly integrate a new system into an existing
network of camera systems, a shared classification model that shows a
reasonable classification performance along all domains would be desirable.

Naively transferring a model that was optimized with standard methods
on a certain domain to a completely new domain often leads to poor
performance on the new domain, due to the high dependence on the visual
characteristics of the original training domain. A shared classifier therefore
has to be optimized in a way to become domain invariant. The research
area of Domain Adaptation (DA), which is the research topic of this thesis,
deals with this target. Using an approach from DA to optimize a deep
classification model can help to increase the general usability of a classifier
along various domains compared to standard optimization algorithms.

Despite many well established DA approaches, this research area can still
be considered as a new area with many open research topics, especially when
it comes to different domain constellations that have not been considered
yet. Furthermore, an often neglected topic is so called negative transfer.
Negative transfer describes the situation where the application of DA leads
to an even weaker performance on a new domain than simply transferring



i i i &8
EIE ¥

-

!

el
=

L

2
\,u

[

Class
)V FHEE
;@}ﬁ

J

O
o
3
Q
>

Figure 1.1: Exemplary constellation of multiple camera based systems. While
the objects captured by all systems are the same, the visual characteristics
introduced by each system’s working environment differ. This allows to interpret
each camera system as an individual domain in which all captured images have a
certain consistent visual characteristic.
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the model that was trained on the original domain(s) with standard methods.
I.e. DA causes here the opposite effect of what it is designed for. In the
investigations of this thesis multiple of such cases will be shown, and ways
to prevent negative transfer will be proposed.

In particular this thesis deals with a new investigation about the aware-
ness of involved domains during training and test with respect to input
normalization as a DA method, a new domain constellation scenario with
high relevance for the robotics community and a new approach to preserve
a chosen factor during DA, which can help to reduce negative transfer
significantly.

All three parts will be based on a newly introduced factor theory that
allows to analyze the differences of domains in more detail than it is
mostly done in recent literature. Usually, the investigations of datasets
for their similarity are carried out through a distribution analysis of their
data samples in a selected feature space. If the data distributions differ
significantly, the different datasets are categorized as domains and DA
is recommended to be used for a classifier. For many use cases this way
of analyzing the datasets might be sufficient, however, it does not give
any detailed, human interpretable insights of what caused the mismatch
of the distributions. In contrast, the factor theory introduced in this
thesis allows to describe domain differences in more detail through factors
that have consistent values within a domain, but might possibly have a
different value in another domain. Typical factors can be the lighting, the
background, or the camera that was used for acquisition. With the factor
theory it is possible to describe characteristics of datasets more formal
and understandable. Furthermore, it allows to increase the predictability
of the classification performance on a new application domain and can
help to design DA approaches that consider factors, as it is done in this
thesis. Fig. 1.2 shows an example case where the differences and similarities
between a set of domains is described more precisely through factors instead
of data distributions. The factor theory will be introduced as the first
contribution of this thesis and will be used throughout it to interpret the
experimental results.

Based on the factor theory the first experimental section of this thesis
treats the topic of awareness of involved domains in the training set and the
relation to an application domain. In general, an easy way to adapt a model
to a new domain can be the method of dataset based input normalization.
In the context of image classification with neural networks this is usually
done by simply subtracting the RGB mean over images from the domain on
which the network is applied before forwarding it through the network. This
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Figure 1.2: Description of the characteristics of a set of domains by data
distributions and factors. Using only the data distributions of the involved
domains as an explanation for the differences between domains might lead in the
exemplary feature space to little human interpretability with no similarity between
domains. Using the factors ’location’ € {indoor, outdoor} and ’hand’ € {present,
absent} allows to describe similarities and differences in more detail. Aspects like
the visible hand allow a better interpretation of transferability between domains
and thus can help to predict how well a model trained on three domains would
perform on a fourth domain. Note, the visualization style of the lower plots is
used throughout this thesis and is referred to as the feature space plot.

is an efficient DA technique if the domain difference is primarily reflected
in the RGB mean of the images of each domain. Nowadays, this procedure
is a common way to adapt a pre-trained neural network to own image
data. Such pre-trained networks have usually been optimized on huge
image databases where potentially multiple hidden domains might have
been included. Due to the missing domain label, such underlying domains
are usually ignored during the initial optimization of the original network.
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Specifically this would imply that the RGB mean that is subtracted from
the training data is generated over all involved domains and not for each
domain individually. As part of the findings of this thesis it will be shown
along multiple extensive evaluations that the naive standard workflow of
normalization based on the application domain can lead to negative transfer
here. This is the case if the test domain was one of the underlying domains
in the training set and the images of these domains were not normalized
individually. An example where inconsistent treatment of domains during
training and test can cause negative transfer is depicted in Fig. 1.3. The
experimental findings of the effects of domain awareness investigations in
this thesis are based on a patch-wise street scene segmentation task where
domains are defined by different camera types with different sensitivities
in the color channels.

The second main experimental findings are based on DA scenarios that
have a high relevance for the robotic context but are neglected in current
research. A typical assumption in DA research is that each training domain
contains labeled images, i.e. supervised samples, for all classes, while the
application domain is usually only represented by few labeled images or only
images without label, i.e. unsupervised samples. This standard scenario
is depicted in Fig. 1.4a, where the lawn mower represents the application
domain. However, the fact that this scenario does not apply to most
real-world systems with distributed camera systems becomes clear when
considering the introductory example of Fig.1.1. The existence of multiple
distributed systems does not only lead to different visual characteristics,
but also to different object encounters over time and environment. The
probability to encounter certain objects might differ across the application
environments. While street scenes have higher chances of vehicle encounters,
indoor environments are more likely to include typical household objects.
Furthermore, since labeling requires human input, it can not be assumed
that all classes of a domain have labeled samples when the shared classifier is
trained. With all these constraints, the more realistic situation is described
by a scenario where certain classes of single domains are not covered by
samples and further that the labeled domain-class combinations are non-
uniformly distributed in the domain-class space. The scenario is exemplary
depicted in Fig. 1.4b. In the context of this thesis it is called the Domain
Mixture scenario.

Since the biggest challenge of a domain invariant classifier here is to
generalize to the domain-class combinations that are not represented at all
or at maximum by unsupervised samples during training, the focus of the
investigations will be on the maximization of the classification rate on these
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Figure 1.3: Example of a case where the unawareness of multiple domains in
the training set can lead to negative transfer on the test domain. During training
the RGB mean used for normalizing the input image through mean subtraction is
generated from a mix of the three underlying domains, while during test the mean
is generated only from the test data, where only a single domain is represented.
Here, the test domain is one of the underlying training domains. The depicted
scenario shows that an input image from the test domain is thus normalized
differently during training and test. For a neural network the normalized sample
appears as two different samples and might cause a false classification.
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Figure 1.4: Different domain scenarios. (a) Shows the typical scenario from
literature. The main assumption is that all classes of the involved domains are
covered by samples. Research investigates the transfer to a single domain, here
the lawn mower, of which no or only unsupervised samples are available. (b)
Shows the more realistic Domain Mixture scenario investigated in this thesis.
It is highly relevant for multi-camera environments where not all classes have
necessarily been seen in all domains, causing gaps in the domain-class space, and
domains might only partially be labeled. Here, the classification performance of
interest is on the domain-class combinations that are not labeled, independent of
the domain.

domain-class combinations. These evaluations are of particular interest
when considering that the shared image database for a common classifier
of multiple systems is only built up over time. It will be shown that for the
Domain Mixture scenario the application of DA is essential, since otherwise
the neural network takes the easiest path and learns to classify the training
samples based on values of domain specific factors. As a consequence, it
fails to classify samples of unsupervised or not represented domain-class
combinations where the values of these domain specific factors differ.
The third main contribution proposes an improved adversarial DA ap-
proach that can help to prevent negative transfer in a constellation of
multiple supervised training domains. It is based on the adversarial DA
approach from [22] which uses an additionally attached domain classifier
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Figure 1.5: The application of a domain classifier based DA approach on the
shown domain constellation would remove all factors from the feature representa-
tion that allow a discrimination of domains. The hand would be removed here
as well, since it is only present in domain 3 and 4. However, here the removal
of it is harmful for the object classification task, since it provides information
about the object by its posture. A flat posture indicates the mug, while a hollow
posture the ball.

to remove the bias that discriminates domains. The goal of it is to classify
the domain origin of each sample during training, while being attached via
a gradient reversal layer. The combination of the domain classifier and
the gradient reversal layer targets to remove all factors from the feature
representation that allow a discrimination of domains. However, as it will
be discussed and experimentally shown, this can also lead to the removal
of task relevant information and therefore cause a reduced classification
performance, i. e. negative transfer. Fig.1.5 shows an exemplary domain
constellation where the hand would be such a factor that helps to distin-
guish domains. With the adversarial DA approach the hand would therefore
be removed. However, within domains where the object is presented in a
hand, the hand posture, which is flat or hollow, is also task-informative,
since it indicates the actual object class. A removal of the hand from the
feature representation therefore can cause negative transfer.

To avoid this negative transfer, Factor-Preserving DA will be introduced.
It allows to preserve a chosen factor during DA by switching off competition
in the domain classifier between domains that differ in this chosen factor.
At the example of extensive experiments, including visualizations of learned
features and attention areas, it will be demonstrated that the preservation
of factors with the introduced Factor-Preserving DA can help to prevent
negative transfer in a leave-one-domain-out setting. With this method
significant performance improvements for the average accuracy as well as
for the minimum accuracy, which can be considered as of great importance
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1 Introduction

for safety critical systems, can be observed.

1.1

Contribution

The overall contribution of this thesis comes with a strong focus on in-depth
investigations of special cases in the DA context, which are highly relevant
for distributed camera based systems, e.g. multi-robot environments. Sub-
results of this thesis were published in [84], [85], and [86]. Some passages
of the mentioned publications have been quoted verbatim in this thesis.
The overall contributions can be summarized as follows:

Introduction of a factor theory, which allows the interpretation of
differences in domains more fine-grained than the unspecific notion
of data distributions [86].

Extensive in-depth investigations and discussions of neural network
behavior in context of DA [85, 86].

Prove that the naive application of input normalization can cause
negative transfer, if the application domain was already involved in
the training set [84].

Investigations of multiple variants of the Domain Mixture scenario
with high importance for real-world applications [85].

Development of a novel DA approach, named Factor-Preserving DA,
that allows to preserve a chosen factor in DA with multiple involved
domains [86].

Extensive evaluations and analyses of the novel Factor-Preserving
DA method on two real-world datasets, that show in which cases
negative transfer can be reduced and standard adversarial DA be
outperformed [86].
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1.2 Thesis Outline

The structure of the remainder of this thesis is depicted in Fig. 1.6, where
chapters involving novel contributions that resulted from this PhD project
are marked in blue.

Factor Theory
Chapter 2

!

Related Work
Chapter 3

~

Baseline Experiments

Chapter 5
Effects of Domain Awareness Domain Mixture Investigations Factor Preserving Domain Adaptation
Chapter 4 Chapter 6 Chapter 7
Conclusion
Chapter 8

Figure 1.6: Thesis structure. Chapters containing the main contributions of
this thesis are colored in blue.

The subsequent Chapter 2 starts with theoretical fundamentals that
include a formal definition of domains, as well as the typical data shift
types that cause the differences between domains. The factor theory, which
generally allows to describe scenes captured in images by a superposition
of factors, and thus to describe the characteristics of domains by domain
factors, will be introduced there as the main part of the chapter. The
principles of this theory will be used throughout the thesis to explain and
predict the results of experiments.

Chapter 3 introduces related work and general capabilities of deep
neural networks when it comes to feature manifestation and generalization
between domains. The first section will give an overview of different image
datasets that are commonly used for benchmarking. This is followed by
a short recap on convolutional neural network architecture principles and
their capabilities to generalize. After that, two main ways of DA will
be introduced with example approaches from literature and a review on
current research in the context of negative transfer will be given. All
explanations in both sections come with a strong focus on the introduced
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factorization view. Finally, this chapter ends with a discussion of typical
feature manifestations of deep classification models under specific example
domains and details on the attributes of factors in context of classification
tasks.

Chapter 4 introduces the importance of awareness about domains during
training and test of a neural network at the example of patch-based road
terrain classification on camera images. Three different cameras, each
with its own RGB sensitivity characteristics, are treated here as individual
domains. Using the parameter based DA method of RGB mean subtraction
it will be shown how negative transfer can be avoided when being aware
about the treatment of multiple domains during training. Additionally
general recommendations will be given on how to best apply downloadable
pre-trained networks on own data.

The following chapters are concerned with effects of adversarial DA
approaches. First in Chapter 5 the architecture of [22] will be described,
which will be used as a baseline approach in two variants. Then the MNIST
domain dataset, that is relevant for Chapter 6, and the CORe50 dataset,
that is relevant for both, Chapter 6 and Chapter 7, will be presented.
Additionally, for the COReb0 dataset transfer experiments will be carried
out with the introduced architecture, that serve as a baseline for the
following two chapters.

Chapter 6 starts with the introduction of two relevant variants of the
Domain Mixture scenario and proceeds with experiments of these on the
introduced MNIST benchmark dataset. The experiments are further ex-
tended to the CORe50 real-world object classification dataset to underline
the high relevance of this scenario for real-world problems. For the evalua-
tions a novel measure called 'subset confusion’ will be introduced, which
helps to understand the learned features of the neural network better.
As the major outcome of this chapter, the results will reveal that the
application of DA is strictly necessary for the investigated Domain Mixture
scenarios to obtain a high classification performance.

In Chapter 7 the novel approach of Factor-Preserving DA for datasets
with multiple domains will be introduced. Extensive evaluations will
show how error causing factors can be identified from one-to-one transfer
experiments and later be used for FP-DA to prevent negative transfer
in the multi domain setting. The investigations of such error causing
factors will not only be carried out on domain level, but also on class level,
which provides potentials for improvements of the proposed approach in
future works. The effectiveness of Factor-Preserving DA will further be
substantiated by the two visualization methods t-SNE and Grad-CAM.
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By using the OpenLORIS object dataset as a second dataset, it will be
shown how factors must be represented for FP-DA to work and to result
in leave-one-domain-out experiments in the highest average and highest
minimum performance.

In Chapter 8 the main contents of this thesis will be summarized and an
outlook to future research directions will be given.
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2 Theory of Visual Factors

This chapter begins with the introduction of formal mathematical notations
that are used throughout the DA research community. Further contents are
the introduction of the most common types of data shifts and with it the
notion of data distributions that is mostly used to explain the differences
of domains. As main part of this chapter, with high relevance for the
remainder of this thesis, the theory of visual factors will be introduced.
It allows to describe certain aspects of domains more detailed than data
distributions and was developed as part of this PhD project and published
in [86].

2.1 Domain Adaptation Fundamentals

Supervised machine learning algorithms usually optimize the parameters
of a classification model based on a labeled dataset

(X,Y).
A dataset consists of a set of n multi-dimensional feature vectors x;,
X ={x1, --r, Xn},
together with a set of corresponding label vectors,

Y = {y17 L] Yn}

In image classification a sample x; usually describes a vector of feature
values that have been extracted from an image b;. The feature space X
from which the feature vectors are drawn could be given by a raw RGB
image with a certain dimensionality, or a feature space with a manually
pre-defined dimensionality where the non-linear mapping is defined by the
layers of a neural network. In supervised machine learning, each x; has a
corresponding label vector y,, drawn from a label space ), that assigns one
or multiple ground-truth classes to the sample i. A given dataset (X,Y)
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comes with the joint probability distribution

P(x,y) = P(y,x),

which can be reformulated, using the product rule of probabilities [6] as

P(x,y) = P(y[x)P(x), (2.1)

or respectively as
P(x,y) = P(x|y)P(y)- (2.2)

Following this definition, a difference, i.e. a shift, between datasets is
ultimately expressed in different joint distributions P(x,y), which in turn
can be traced back to differing conditional and marginal distributions of
the datasets. If such a shift between datasets exists, those are usually
called domains. Specifically, the domains that are used for the optimization
of a classifier are called source domains and the ones on which testing or
application is carried out are called target domains. Respectively, when
considering only a single source and a single target domain, there are two
datasets (X;,Ys) and (X4, Y;) with their corresponding joint distributions
Ps(x,y) and P;(x,y). Note, in the following it is only referred to a single
source and a single target domain, however, this does not represent a
restriction to only two domains. The assumptions can easily be extended
to multiple domains.

There are special types of data shifts between domains if only one of
the two factors in (2.1) or (2.2), i.e. either only the conditional or only
the marginal distribution, differ [47]. The most common reasons that
lead to such a special type of data shift are a sample selection bias or
non-stationary environments. The three most relevant special data shift
types will be described in more detail in the following, using exemplary a
single source and a single target domain. Note that any two datasets are
equally applicable here. An overview of the three types is shown in Fig. 2.1.

Prior Shift. This data shift type exists when only the marginal proba-
bilities of the classes differ between the domains, i.e.

Pi(y) # Pi(y),

and the conditional probabilities are identical, i.e.

Py(x]y) = P;(xly).
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Data Shift

\ 4

Prior Shift Covariate Shift Concept Shift

Figure 2.1: Special types of data shift.

Prior shift is mainly caused by a sample selection bias, meaning that the
ratio of samples belonging to a certain class differs between the source and
the target domain. A simple example for this shift could be the task of
classifying images of products from a production process into faulty and
correctly produced products, where the occurrence of faulty products is
below 5%. If, however, the source domain that is used for training an
image classification model is composed of images where faulty and correctly
produced product image samples are represented equally, the classifier
might be incorrectly biased towards faulty products. Consequently this
would cause problems during application which can be interpreted as the
target domain dataset.

In general, given prior shift, the optimized classification model might be
biased towards a certain distribution among classes from the source domain
that does not hold for the target domain. If the shift is explicitly known,
typical methods that are used to avoid such a bias are sample re-weighting
or oversampling. In re-weighting the influence of overrepresented classes
on the parameter optimization is reduced by giving these samples a smaller
weight during the parameter update, or vice versa for underrepresented
classes. In oversampling, samples from the underrepresented classes are
copied and added to the source dataset, to obtain an artificial correction
of the class sample ratio to the desired ratio of the target dataset.

Covariate Shift. This data shift type occurs when only the feature
distributions of the samples between the domains differ, i.e.

Py(x) # Pi(x), (2.3)
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while the conditional distributions are identical, i.e.
Py(ylx) = Pi(ylx). (24)

The reason for this shift type can also be a sample selection bias. This time
however, it is not caused by unevenly distributed samples to the classes
in the dataset, but rather by an imbalance with regard to the features
that represent a certain class in the dataset. Besides a sample selection
bias, missing data can also be a reason. An example here could be be
a face detection system where images of elderly people are completely
excluded from the source domain dataset that is used for the training
of the system. Thus typical features that occur with elderly people are
completely unknown to the system. In real-world applications, which can
be seen as the target domain, however, such features can occur and faces of
elderly people might therefore not be detectable. Another typical example,
that is mostly relevant for this thesis, are changes related to the visual
characteristics of the environment between the domains in images of an
object classification task as it was depicted by the introductory example of
Fig.1.1.

The main problem that this type of data shift can cause is that a
classification model trained by standard methods embeds unintentionally
irrelevant features from the source domain that do not exist in the target
domain. In the remainder of this thesis several DA approaches will be
presented that target to avoid this behavior.

Concept Shift. This type of shift is also often referred to as concept
drift [21]. Here one of the conditional distributions between the domains
differs, i.e.

Pi(y|x) # Pi(y|x) or Pi(x|y) # P;(x|y), (2.5)

while the corresponding prior probabilities are identical,
Pi(x) = P(x) or Pi(y)=Py). (2.6)

The main reason for such a shift between datasets are non-stationary
environments. This means that the mapping from feature vectors to classes,
or vice versa, changes over time. An example where this shift occurs could
be a production process where at some point in time certain features of
work pieces were not considered to classify them as defective, while at a
later point in time they would be used to classify them as defective. This
change of interpreting features could occur due to a change in production
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quality requirements. The consequence of such a data shift is that decision
boundaries that were learned to solve a classification task based on the
source domain might not hold anymore on the target domain and need to
be adjusted or have to be learned completely new.

Of the three data shift types presented, this thesis deals mainly with
covariate shift occuring between domains in image classification tasks. The
covariate shift of the investigated cases here is mainly related to changing
recording environments and different cameras that make the captured
images look different.

In recent literature [12, 70, 95, 106], source and target domains are
typically formally defined by the domain sets

D, ={X;,Ps(x)} and D;={X;, P:(x)} (2.7)
with the corresponding task sets
7; - {ybapb(Y|X)} and 7; = {yt7pt(Y|X)} (28)

where X; and X; are potentially different feature spaces and accordingly
Vs and Y, different label spaces. In DA literature [12, 106] it is generally
distinguished between heterogenecous DA, where the feature spaces differ,
i.e. Xy # X, and homogeneous DA, where Xy = X;. This work will only
consider the latter case. Regarding the tasks there is a differentiation
between open set DA, i.e. Vs # V; and closed set DA, i.e. Vs = Y [10].
Thus, open set DA describes the case where the involved classes in the
classification task of the source domain and the target domain differ. The
scope of this work will only be closed set DA. As in this thesis only covariate
shift (see (2.3) and (2.4)) will be considered, the difference between domains
therefore is only caused by the accompanying marginal distributions.

In general, the goal of a classifier is to predict the label vector y, that
belongs to a given sample x;. To do this it needs to have an internal
model that approximates the conditional probability distribution so that
the approximation P(y|x) satisfies

P(ylx) = Py(y|x) = Pi(ylx).

Typically, this approximation is based on a supervised dataset, here the
source domain dataset (X, YY), that is used for the optimization of the
internal parameters of the classification model. However, since the approxi-
mation is learned only based on the source dataset, the classification model
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might be biased towards the source domain, i.e. it might include features
that exclusively occur in the source domain to solve the task. Consequently
a decreased performance on the target domain dataset (X¢,Y:) can be
expected, since Ps(x) # P;(x). Further details and illustrative examples
on this topic will be given in Chapter 3. Approaches from the research
area of DA target to make the approximation P(y|x) less dependent on the
characteristics of the source domain dataset, i.e. Py(x), and thus closer to
the actual conditional probability distribution Ps(y|x) = P(y|x). Selected
recent approaches that show how this can be achieved in context of deep
neural networks will be presented in Chapter 3.
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2.2 Domains in Context of Visual Factors

As shown in the previous section, in literature the difference between
domains is usually mainly explained by different feature distributions of
source and target domain, i.e. Ps(x) # P;(x). However, using only this
notion, especially in the context of image classification, does not allow to
model the rich constellation of multiple domains comprehensively. In this
section the theory of visual factors will be introduced, which targets to
describe domains as combinations of a set of shared underlying factors
instead. Using the relations between factors in the domains, the effects of
DA approaches can better be predicted and thus influenced.

The theory of visual factors is based on the assumption that each high-
dimensional image b; of a scene i can be generated by a mixing function

M(f;) = by,
from an activation of factors

fi = {fir, fiz, -, fu}-

Each factor can either be a continuous or categorical variable. Generally,
there is no fixed combination of the mixer M and the factors F to model
the same image data I, rather there are infinite possibilities for modeling
the image data. The goal of this factor theory is not to analytically solve
the factorization for a given optimality criterium. The goal is more to
discuss properties of factors in relation to image classification tasks in
context of domain transfer. As it will be shown in this thesis, the theory
can be used to describe attributes of image datasets more detailed than
only the notion of data distributions. Furthermore, it allows to predict and
influence the effects of DA approaches.

When it comes to the classification of an image b;, usually a feature
extractor is used to transform the image from the original image space,
e.g. the RGB image space, to a different multi-dimensional feature space
that mostly has a lower dimension than the original input space. The
transformation function of the feature extractor can be defined as

X; = Ge(bi; 06)7

which depends on the internal parameters .. The target of G.(-) is to
transform the image to a space where classes can easily be separated.
The result of this transformation is the feature vector x;. The actual
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Figure 2.2: An image b; can be generated by a complex mixing function M
from an activation of factors f;. For image classification, a feature vector x;
can be extracted from b;, and the label vector y,” can be predicted by a label
classifier.

classification of the image b; is then realized in a second step by a label
classifier with the transfer function

"= Gy(xi;0y)

which assigns a vector of class probabilities y,” to the feature vector x;
using its internal parameters ¢,. A visualization of the overall process that
includes image generation and classification is given in Fig. 2.2.

Considering a classification task, the factors {f;1, fie, ..., fi} can be
categorized as task-informative or not task-informative. Accordingly, the
value of a factor that is task-informative is strongly correlated to a specific
class. This can be direct or more indirect with respect to the target class.
An example for an indirect correlation would be given for the classification of
objects that are presented in a human hand. Here the factor ‘hand posture’
is not directly related to the object, but can still be task-informative, since
objects are usually held in different ways which can give hints about the
ground-truth object class.

Given multiple domains, factors can also be categorized by their property
of being domain-informative. A factor is domain-informative if its value has
a correlation with a certain domain, i.e. it has a value that mainly shows
up in a certain domain. In this work, however, a more strict definition of
factors is used. This definition restricts the domain-informative factors to
those that have a constant value for all images within a domain, independent
of the ground-truth class, and change their value across domains. In real-
world image domain datasets such factors can typically be related to fixed
recording locations, which induce changing lighting or background related
factors across domains. According to this definition, a domain can be
described by multiple of these factors. Throughout this thesis such factors
will be referred to as domain factors.
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Class Domain 1 Domain 2 Domain 3 Domain 4
'‘background': street wooden flooring grass windows
£
3 ‘location’: outdoor indoor outdoor indoor
%]
E '‘hand’: absent absent present present
'hand posture': absent absent flat / hollow flat / hollow

Figure 2.3: The variations in the shown set of domains can be described
by different categorical factors, as e.g. ’background’ € {street, wooden flooring,
grass, windows}, Tlocation’ € {indoor, outdoor}, ’hand’ € {present, absent}, ‘hand
posture’ € {absent, flat, hollow}. A factor is called a domain factor, if it has a
constant value within each domain, but different values across domains. All of
the mentioned factors are domain factors, except the ’hand posture’, whose value
changes here also along classes. Since its values correlate in Domain 3 and 4 with
the same classes it can be categorized as task-informative.

Fig. 2.3 shows an exemplary factorization, including the categorization
of the factors, for the four domains of the introduction chapter.

Using the definition of domain factors it becomes obvious that a domain-
invariant feature extractor should not learn features that are related to
domain factors. If such features are learned, it can lead to misclassification
in a target domain, where the values of the domain factors potentially
change. However, a domain factor can also be a task-informative factor,
or it can be close to a task-informative factor. Neglecting domain factors
in these cases can have a negative effect. Further details on this negative
effect will be given in Chapter 3.

In general there are various possibilities on how to factorize scenes by
visual factors. One way is for example to choose the factors manually,
i.e. by human design, as it was done in Fig. 2.3. This has the advantage
that the number of factors is actively chosen and the nameability of the
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factors is always guaranteed. On the other hand, when using a factorization
that is estimated from a component analysis method, the likelihood of a
good nameability of the determined factors is clearly reduced, since those
factors might not necessarily be human interpretable. Other aspects like
the mutual dependence of individual factors, which accordingly influences
their values, and the controllability of a factor in a scene are also dependent
on the chosen factorization. In the end, a well-chosen factorization might
provide increased predictability and explainability of classification models
when handling new factor values or new combinations of known values.
However, this also depends on the fineness of the factorization. While for
some constellations of domains the choice of a factor location’ € {indoor,
outdoor} is sufficient to explain certain effects, for others a more fine-
grained factorization that additionally includes other factors as for instance
lighting’ might be required.

Exemplary views on how to factorize scenes can be found in scene
rendering or photography. In the rendering view the factorization is based
on human interpretable factors:

e Object factors: ’type’, ’shape’, ’color’, ’texture’, "viewpoint’, ...
e Light source factors: ’type’, ’positioning’, ’emission power’, ...
e Camera factors: ‘sensor’, 'filter’, ‘processing’, "viewpoint’, ...

The factorization and thus the number of factors is pre-defined by the
rendering program. The factor values and their mutual dependence are
fully controllable by a rendering artist. The artist for instance ultimately
decides how chosen object colors appear in combination with placed light
sources in the rendered scene.

The photographer view differs from the rendering view in having increased
flexibility between more and less control over factors and their mutual
dependence. While in natural images, the object in focus and the viewing
angle are usually controlled by the photographer, there is less control
over natural lighting conditions and context objects. Here, certain objects
usually induce other context objects, just as a car would most likely induce
asphalt. On the other hand, when considering a pure studio environment
with artificial lighting and background, the overall controllability over
factor values is significantly increased.

The presented views describe two variants regarding controllability of
factor values. Sometimes, real-world image datasets, especially those used
for DA, describe a mixture of these. This is for example the case when
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objects are artificially placed in environments where they usually would not
be observed. Here the target object related factors and the environmental
background factors are highly controlled as in a studio or a rendering
program, but factors like the natural lighting might be less controlled.
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3 Related Work and Classifier
Habits

The first section of this chapter will introduce different datasets that are
commonly used for general image classification tasks, and in specific those
that are used for DA research. All datasets will be analyzed in relation to
the introduced concept of visual factors. Afterwards, a brief recap on the
basic principles of Convolutional Neural Networks (CNNs) will be given,
which forms the foundation for understanding the subsequent introduction
of recent DA approaches and the analysis of network behavior for different
domains. Most parts of this chapter are based on the contents of [84-86]
that were published in context of this PhD project.

3.1 Image Datasets in Context of Visual
Factors

For the evaluation of image classification approaches there are multiple
image datasets with labeled images publicly available. Many of them are
based on internet search results, like for example the very well-known Ima-
geNet database [13] or the Caltech-256 dataset [29]. Generally using images
from search engines provides a large variation within the individual class
representations, like for example the object instances or the surroundings
in which the objects are present. This is a good foundation to optimize a
model that generalizes well, however, even such large datasets are afflicted
by dominant dataset biases. Typical biases here are for example a western
world bias [15, 89], that is expressed by images mainly showing scenes from
the western world, or a capture bias [98], which can be expressed by either
only showing professional or only amateur photos. Such biases ultimately
influence the control over different factor values like for example certain
object types or the viewing angles.

In datasets that are commonly used for DA research, like [46, 51, 75, 76],
specific factors are usually more controlled regarding their values. In
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[5, 74, 82, 103] the increased control is for example achieved by introducing
constraints on internet search engines that limit the results for instance
to only images from Amazon or only clipart images. The search results
based on one of such constraints then usually describes one of multiple pre-
defined domains. Such domains can be found for example in the well-known
Office-31 DA dataset [82] (see Fig.3.1b) or the DomainNet dataset (see
Fig.3.1c) that also includes domains solely based on sketches or paintings.
Another example here is a restriction to synthetic or real images within a
domain only, as it is for example the case in the Syn2Real dataset [76] (see
Fig. 3.1d). However, also such restricted search engine based domains show
still only little control over certain factors, like for example the actual class
instances that are meant to represent a specific class, e. g. the object types.
In datasets of robotics research, usually more control over factors in general,
and in specific over the class instances is introduced. The datasets there are
often composed of domains where the same objects are placed in different
environments, meaning that the values of environmental factors change
across domains. Two datasets where this was done so are the OpenLORIS
object dataset [90] and the CORe50 dataset [56] (see Fig.3.1e). Note
that domains there are usually not named as such but rather as different
recording sessions. Due to the changing conditions within these sessions,
they still meet the definition of domains and can therefore be used as
such. Generally such datasets allow more clear investigations due to less
superimposition effects that could be caused by different object instances
within the domains. Both presented datasets, COReb50 and OpenLORIS
will therefore also be used for the experiments in Chapter 7. Similar control
over objects can also be found in the popular Office-31 DA benchmark [82]
(see Fig.3.1b), where the Webcam and the DSLR domain were generated
similarly.

Single domains in other DA datasets were generated manually by chang-
ing specific factors artificially based on the segmentation of the image. This
procedure has been applied, for example, for the handwritten digit dataset
MNIST-M [22] which has been generated from MNIST [49] by changing
the background artificially (see Fig.3.1a). In research, both datasets are
commonly interpreted as individual domains. Full control over all factor
values is generally only found in completely rendered datasets. In the
Shapes3D dataset [9] (see Fig. 3.1f) simple object shapes are positioned in
an artificial environment with changing values for factors like size, viewing
angle, color, and others. Similar datasets can be found in the disentangle-
ment library [55]. Also here, domains are not explicitly defined, however,
they can easily be manually generated under the constraint of consistent
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Figure 3.1: Selected image classification benchmark datasets. a) - d) are
commonly used for DA, e) and f) have not been found to be used in the DA
context, but provide a clean setting for DA investigations. Images were taken
from the listed sources and partially adapted.
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domain factor values within a domain.

3.2 Recap - Convolutional Neural Networks

To interpret neural network behavior in context of DA, it is required to have
a fundamental understanding of the basic functionalities of the architectural
main components. Therefore a brief recap of the basics of CNNs will be
given here.

Input Layer Hidden Layers Output Layer

f_/%

D Convolutional Layer D Max-Pooling Layer D Fully-Connected Layer

Figure 3.2: Typical structure of a standard CNN architecture. Usually one
or multiple convolutional layers are followed by a max-pooling layer. Each
convolutional layer can have multiple channels (feature maps) that are not
shown in this figure. The extracted features are then usually combined in the
fully-connected layers, which are followed by the final output layer.

A typical CNN architecture consists of an input layer, multiple hidden
layers, and an output layer. An example of this structure with typical
standard layers is shown in Fig. 3.2. The standard layers, like convolutional
layers and fully-connected layers, usually consist in their core of classic
artificial neurons. The neuron’s inputs are multiplied by weights, a bias is
added, and the sum of all inputs is forwarded through a chosen activation
function to the neurons of the next layer. The model parameters, i.e. the
weights and the biases, are updated end-to-end, based on a training dataset
and a chosen loss function that is usually targeted to be minimized with
respect to the parameters and the given data. Commonly a backpropagation
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algorithm is used for this.

The input layer is usually described by the input images that are rep-
resented in a pre-defined feature space, like the RGB image space. The
hidden layers in CNNs are usually composed of two types, fully-connected
layers and convolutional layers. Fully-connected layers describe the classic
connections, where each neuron of a layer is connected to each neuron of
the subsequent layer via a weight. In convolutional layers only a subset
of the neurons, that lie within a receptive field, is connected to a neuron
of the subsequent layer. The receptive field can be interpreted as a filter
with a limited size, that is moved over the neurons. The weights are shared
for all filter positions and will only be updated during backpropagation.
An example for this process is shown in Fig. 3.3. The receptive field can
be interpreted as a feature detector that generates a 2D feature map and
detects specific features invariant of their location. While in the shallow
layers of a CNN usually features like specific edges or colors are detected,
with increasing depth more comprehensive features are detected.
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Figure 3.3: Receptive field of a convolutional filter moving over the input with
a step-size of 1. The filter weights are multiplied by the corresponding values
within the position of the receptive field on the input layer and summed up.
Note, the subsequent pass of the resulting values through an activation function
is not shown here.

Since for general image classification tasks the exact location of the
detected features is mostly not of major importance, commonly max-
pooling layers are used. Those layers only forward the maximum value
within a small receptive field and thus reduce the feature map size and
ultimately also the overall amount of parameters in the network.

Several stacks of convolutional layers and pooling layers are usually
followed by one or multiple fully-connected layers that take the extracted
features as input, combine them non-linear, and output the classification
result. For further details on general neural network architectures and
training it should be referred to [6].

In context of DA research the question arises, which conditions must be
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met so that such an architecture can be described as domain invariant. As
stated earlier, from a theoretical point of view this means that features that
are close to the output layer should not contain information about domain
factors. However, a standard neural network is not enforced to fulfill this
requirement and often uses domain specific information for classification.
This means that the network’s filters are likely to be biased towards the
source domains that are used for optimization. Consequently such filters
might fail their actual task on domains that were not involved during
training. A highly simplified example for such a situation is shown in
Fig. 3.4, where the object appearance is unchanged across domains, but
the value of the factor related to the background changes in the target
domains. For edge filters in general, there is a high chance of domain factor
dependency, since an overlap to the non-relevant background exists and
weights and biases are adapted to the given source domains. Generally
the learned features in a CNN are mostly more complex than the given
example, since numerous filters from multiple layers are connected with each
other, directly or indirectly, forming more sophisticated feature detectors.
However, if no restrictions are applied, this does not resolve the domain
factor dependency problem. DA approaches try to tackle this issue by
introducing additional constraints on the feature learning process.

3.3 Domain Adaptation Approaches in
Context of Visual Factors

Generally current DA approaches can be divided into two main categories,
parametric DA and learned DA. While with parametric DA approaches the
adaptation to the target domain is achieved by adapting certain parameters
after the model has already been optimized, in learned DA approaches
the adaptation is achieved already during optimization by controlling the
feature learning process. Both categories will be presented in the following
in more detail.

Parametric Domain Adaptation

Parametric DA is mostly based on a simple mathematical layer operation
that is designed to normalize out a given aspect of the data explicitly.
Usually the adaptation of selected parameters of this layer to the target
domain is done after the neural architecture has been optimized on the
source domain. If the bias that distinguishes source and target domain
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Figure 3.4: Simplified description of the domain transfer problem based on a
single edge filter that has been optimized on the source domain and is evaluated
on two target domains with changing background values. For simplification the
bias parameter is neglected here. Object parts in the input are represented with
a value of 1. As desired, in the source domain the filter is activated on the edge
shape and not activated when completely on the object or the background. In
contrast, in target domain 1 it fails for the edge position and in target domain
2 on the background position by generating false-negative and false-positive
activations respectively.

is known, it can be sufficient that such a layer realizes a simple standard
normalization method that adapts the target domain to the model trained
on the source domain. An example is given in Fig. 3.5.

A common bias is a differing RGB mean between the domains, which can
be removed through standard dataset RGB mean normalization. For this,
the global mean value for each color channel is computed over the entire
dataset and used to normalize each input image. Despite the simplicity of
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Figure 3.5: Example how parametric normalization can help to adapt a target
domain to a classification model optimized on the source domain. The filter
kernel that was optimized on the source domain (left) outputs a false-negative
activation at the edge position, when applied on the original target domain
(center). Normalizing the target domain by subtracting the bias from the input
values, here 5, results in the desired behavior of the filter (right).

this method, there are also special constellations in which this procedure
can lead to negative transfer, as it will be shown in Chapter 4.

Another parametric method that can be used for DA is batch normaliza-
tion [38]. Originally it is implemented as an intermediate layer between
standard layers like convolutional layers. It normalizes the batch’s mean
and variance for each training batch individually and like this targets to
speed up convergence. During testing on single images the population
mean and variance from the training set, i.e. source domain, are used
for normalization. The architecture is consequently biased towards mean
and variance of the source domain. In [53] they simply replace this mean
and variance during test to the one of the target domain and show that
competitive adaptation between domains can be achieved.

In terms of visual factors, the parametric DA methods mainly operate
well for factors whose values influence the appearance of the entire image,
like for example a chosen lighting type, or the camera type as it will be
shown in Chapter 4. The presented methods are comparatively simple
since they do not require to affect the actual learning process and are
fully applicable post-training. Nowadays this is an important aspect, since
comprehensive architectures whose parameters have been optimized on
large image datasets, where the training process potentially takes up to
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several weeks, can be downloaded and with a simple modification adjusted
to own datasets. However, this requires that the bias that distinguishes
the domains has to be easy to estimate and needs to be modelable.

Learned Domain Adaptation

When it comes to complex or unknown biases, an alternative method is
to intervene already in the optimization process of the features. Here
the normalization between the domains is learned. Many deep learning
approaches target to obtain domain invariant features by adding addi-
tional cost functions to specific layers within the architecture. Available
unsupervised image data of the target domain can here be exploited to
minimize the difference in feature space between source domains and the
target domain. If no target domain data is available, the different images
of multiple involved source domains can be used to enforce general domain
invariance that most likely also positively affects a target domain.

Recent approaches where the normalization of source and target domains
is learned can be divided into kernel-based methods and adversarial methods.
Both methods are usually implemented in form of an additional loss function
besides the main classification loss, that is applied on a shared feature
extraction layer to align the distributions of source and target domain
there. A typical kernel-based method that is often found in literature
[8, 42, 58, 59, 61, 101] is based on so-called maximum-mean discrepancy [28].
During optimization a training batch is composed of supervised data of the
source domain and unsupervised data of the target domain. While only
the supervised data of the batch is used to optimize the classification loss,
the complete batch is used to align the distributions on the selected layer
by minimizing the maximum-mean discrepancy loss.

Adversarial DA methods [2, 99] also try to match distributions. However,
here the alignment is not based on measuring and minimizing the distance
between the different domain distributions directly [23], but rather by
modifying the feature activation in a way so that it is not discriminative
with respect to the domains. It is mostly realized by a regressor or a domain
classifier that is additionally attached to a shared feature extraction layer
and connected via a gradient reversal layer [8, 22, 23, 60]. During training
the gradient reversal layer acts in the forward phase as an identity function,
but reverses the gradient from the domain classifier during backpropagation.
An exemplary architecture with a domain classifier based on the proposed
architecture of [22] is depicted in Fig.3.6. Referring to the theory of
visual factors, the goal of the domain classifier, together with the gradient
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Figure 3.6: Adversarial DA approach from Ganin et al.[22]. An additional
domain classifier is connected via a gradient reversal layer (GRL) to the shared
feature extractor. The target of the domain classifier is to classify the domains.
In combination with the GRL it removes all domain factors from the feature
representation given by the parameters 6. of the feature extractor.

reversal layer, is to remove all information about domains from the features
of the layer to which the domain classifier is connected. Thus all domain
factors should be removed, whereby the overall classification model is
meant to become domain invariant for the domains used during training.
A visualization of this concept in the feature space plot is given in Fig. 3.7.
However, a drawback of this method is that also task-informative factors
might be removed from the feature representation, which can aggravate the
classification task. Details on this issue and an improved DA method to
preserve a chosen factor will be presented in Chapter 7. Other adversarial
DA approaches like [100] are based on the principle of generative adversarial
networks [26]. Given a single source and target domain, their approach
trains first supervisedly a feature extractor only on the source domain.
Afterwards the unsupervised data of the target domain is used to train
a separate target feature extractor that is enforced to generate similar
outputs as the source feature extractor. This is achieved with the help of
a discriminator that should not be able to distinguish the domains based
on the outputs of the two feature extractors. In the end, the classification
model for the target domain is formed by combining the target feature
extractor with the source label classifier. A visualization of this procedure
is shown in Fig. 3.8. In case of multiple source domains this procedure is
carried out for each source-target pair individually and the classification of
target domain images is based on an ensemble of weighted classification
models. The weights are based on a score corresponding to the similarity
of source and target domain that is evaluated in the training process of the
target feature extractor [111]. With such a method, the domain factors of
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Figure 3.7: Simplified visualization of the effect of an adversarial DA approach
based on an attached domain classifier. (a) Without DA the feature subspace
that is relevant for the classification model is only based on the source domains.
Here, the target domain is out of the scope and a classification is more likely
to fail. (b) Applying DA with a domain classifier, shifts the embedding of all
domains to a common space, where the domain factors ’location’ and ’hand’ are
not represented anymore. An improved classification performance on the target
domain can be expected.
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Figure 3.8: Generative Adversarial Network based DA approach from [100].
Dashed boxes represent fixed internal parameters. In a first step a feature
extractor and a label classifier are trained end-to-end on the source domain.
Then a new feature extractor for the target domain is optimized with the help of
a discriminator to generate similar outputs as the source feature extractor for the
unsupervised target domain images. For application on the target domain, the

optimized target feature extractor is combined with the classifier of the source
domain.

Discriminator
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the source domains are still present, since the target domain is mapped to
each source domain. The domain factor values of the target domain can
be imagined to be artificially changed to the values of the paired source
domain. A visualization of this process for the approach with multiple
source domains is shown in Fig. 3.9.
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Figure 3.9: Generative Adversarial Network (GAN) based DA approach [111]
for multi-source DA. (a) The target domain is not in a relevant feature subspace
of the classifier. (b) The target domain is mapped independently to each source
domain. The overall classification model is based on an ensemble of weighted
(w1, w2, w3) source-target classifiers. The domain factor values of the target

domain can be imagined to be artificially changed to the values of the source
domains.

Negative Transfer

Commonly most of the approaches in current DA literature mainly report
results where the performance on a target domain is improved through
the application of DA. However, sometimes DA can also have a negative
effect, i.e. the classification rate on the target domain drops through the
application of DA compared to the baseline, where no DA is applied. This
effect is called negative transfer [80, 106] and its investigation represents
a major focus of this thesis. So far, in literature it has only rarely been
addressed [11, 24, 41, 105]. In [11] for example it was shown that it can
be caused by different label spaces between the domains, i.e. YV, # YV,
which, however, describes a case of open-set domain adaptation and was



3.4 Classifier Habits in Context of Visual Factors 37

neglected for this thesis. Other works identify latent domains or underlying
multimodal structures within pre-defined domains as a potential cause for
negative transfer. Latent domains in a single source domain, studied also in
[25, 34, 108], were found in [64] to be one main reason for negative transfer.
There, they tackled the negative transfer by aligning each of the identified
latent domains of the source domain individually to the target domain.
In this work the idea is not to find underlying sub-domains, but more
to describe multiple domains data by their superposing factors. Another
stated reason is that global domain alignment is generally too inaccurate
[14, 40, 54, 71, 107] and can therefore lead to negative transfer. Classes
within the globally aligned distributions of the involved domains might
for example still be mapped incorrectly to each other. This underlying
mismatch is tackled in [73] by using individual domain classifiers for each
class instead of a single domain classifier as in [22]. Further in [36] global
and local domain alignment is combined in a hierarchical manner.

In context of domain factors, the removal of all of them from the feature
representation can cause negative transfer as well. This is for example
the case when the domain factors are simultaneously task-informative. In
a setting with multiple domains even more domain factors are expected
to be removed, potentially leading to an increased negative transfer. In
[16, 24] they observed such increased negative transfer with multiple source
domains being involved, and traced this back to irrelevant source domains
that harm the adaptation process.

3.4 Classifier Habits in Context of Visual
Factors

This section contributes with a qualitative analysis of how classification
models typically handle domain factors and how this would effect the
performance on a target domain, with and without DA. The theoretical
analyses are discussed with the help of simplified example domains.

Clarification of Image Segment Notations

For the subsequent discussions and the remainder of this thesis, specific
notations in context of the image content description have to be clarified for
better understanding. In object classification from camera images, which
is the main considered classification task of Chapter 5, 6 and 7, the target
is to classify for a certain object visible in the image, while presenting the
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Figure 3.10: Clarification of image segment notations in this thesis. Areas
corresponding to the depicted image segments are colored.

image as a whole, meaning without any segmentation applied. The object
to classify for, which is ideally focused and centered within the image, will
be called target object. On natural images, there are many other objects
visually close to the target object that make up the scene. Some of them
might have a close interrelation with the target object, those will be called
context objects, while others that are not closely interrelated will be called
background objects. An example is given in Fig. 3.10.

Domain-dependent Feature Manifestation

In general, during the optimization process CNNs tend to learn the simplest
features that allow to solve the classification task. If for example a binary
object classification task is described by the discrimination of two objects
with differently pronounced colors that always show up in front of a white
background, it is very likely that the learned features are solely based on
these colors. In the opposite case where no color difference of the objects is
represented, e.g. due to only grayscale images or bad lighting conditions,
the model is forced to learn more comprehensive shape based features to
solve the task. In general, this shows that the values of certain factors
especially domain factors, here for example the factor ‘lighting’, can put a
strong constraint on the general type of features that are learned during
optimization. A visualization of the feature manifestation of two domains
with different values for the domain factor “lighting’ is shown in Fig. 3.11.
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Figure 3.11: Feature manifestation. The type of learned features, here exemplary
only color or shape features, highly depends on the value of the domain factor
lighting’. With less light the learned features are more biased towards different
shapes than colors. Note, the assumption here is that the factor ’lighting’ is a
continuous variable.

New Factor Values or new Factor Value Combinations in Test
Set

A classification model should generalize well to data that has not been
involved during training. In terms of visual factors this consequently means
first, that the model is desired to be capable of handling new, unseen factor
values of test images that show the same classes, and second that the model
should be able to generalize to new combinations of factor values that were
already seen during training. An example constellation of training and test
set for both cases is shown in Fig. 3.12.

In object classification tasks, new values for factors in the application
domain could be found for factors related to the target object, for instance
different object types or changing object colors. Furthermore, new values
could be observed for factors related to context objects or background
object factors, like new surrounding objects or changing lighting conditions.
In theory a well generalizing classification model therefore should not
embed such factors into its internal class representations that potentially
change their value.
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Figure 3.12: Training (blue) and test set (red) constellations depicted by visual
factors. Top: The test set introduces a new value for the factor "location’. Bottom:
All factor values are already shown during training but a new combination of
those shows up during test. In both cases a classification model is expected to
be able to generalize to the changes introduced in the test data.

The use of standard machine learning algorithms can not prevent the
exploitation of such factors, since the knowledge about the change of the
factor values in the application dataset is not provided during training.
Unsupervised DA approaches like [22, 100] introduce the new values by
showing unsupervised image samples from the target domain already during
training. Skillful integration of the samples in the optimization process can
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prevent the classification model to put too much focus on the factors that
change their value.

The problem that occurs with new combinations of factor values that
have already been seen during training is that classification models tend
to learn a fixed combination of factor values as a single representative
feature. This can be the case if the involved factor values always show up
exclusively in certain constellation during training. Therefore, if only one
of the factor values is different in the test set, the learned feature detector
is not activated anymore and the whole classification chain might fail. If
one of the involved factors is a domain factor, DA like [22] might remove
them with the help of the unsupervised samples from the target domain
already while training, and thus prevents that such factors are embedded
in the features.

Task-informative Factor

As stated in Chapter 2, some factors can be classified as task-informative.
Considering only a single domain, a domain factor can generally not be task-
informative since it is constant within the domain by definition. However,
if in a constellation of multiple domains, a domain has a general prior for
the appearance of a certain class, a domain factor can be categorized as
task-informative. In such a case, a deep classification model will exploit
this and uses such a factor as a prominent feature that helps to solve the
classification task. An example for this case is depicted in Fig. 3.13, where
the occurrence probability for the class ’ball’ is higher within domains
where the domain factor ‘location’ has the value outdoor. With the removal
of task-informative domain factors through DA, the network is consequently
forced to learn different features. However, such features possibly need
to be more complex and can in consequence also reduce the classification
performance on the source domains. Other factors that are neither domain
factors nor related to the target object, can also be task-informative. This is
for example the case for the factor ’hand posture’ that refers with its value
to the held object class, or for a factor “traffic light’ in street scenes, which
indicates a higher probability for pedestrians. Without DA such factors are
likely to be used to improve classification. If those appear in a potential
target domain as well, correct classification is then more likely. Generally
the application of DA should not remove those factors, since they are no
domain factors. However, there is a chance that such factors are removed
as well, if they are related to domain factors. Removing for example the
domain factor ’hand’ would consequently also remove features related to
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the task-informative factor ‘hand posture’. Due to network architectural
reasons regarding the filter size, this might further apply for factors that
are visually close to the domain factors. In general, if domain factors close
to the target object are removed, then edge features of the target object
may also no longer be used. Both depicted cases can ultimately cause
negative transfer.
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Figure 3.13: Task-informative factor: The domain factor ’location’ is task-
informative for the depicted domains. Indoor indicates a higher probability for
the mug class, while outdoor a higher probability for the ball class.

Exemplary Domain Constellations and Classifier Habits

The extent to which a factor is relevant to solve a classification task, i.e.
its property of being task-informative, in general depends on the given
domains and how classes can be discriminated there based on certain
factors or their combinations. While in a source domain a factor might be
task-informative, it may no longer be so in a target domain. Furthermore,
due to network architectural reasons (compare Fig.3.4) certain non task-
informative factors might be inevitably also represented in the learned
features for a specific class. An example where a factor changes its property
from being task-informative to not task-informative is given by the source
domain depicted in Fig. 3.14a and the target domain in Fig. 3.14b. While in
the source domain the factor ’coffee beans’ with its values present/absent is
task-informative, the additional occurrence of the beans in the background
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Figure 3.14: Different constellations of a source domain and different target
domains that a classification model could potentially face.

of the ball in the target domain changes this attribute. Without DA, an
application of the classification model trained solely on the source domain
to the target domain might cause false-positive predictions for the mug
class if the learned features rely on the presence of the beans. Since the
class-invariant presence of beans can be interpreted as a domain factor
when considering source and target domain, DA is likely to inhibit to learn
the presence of the beans as a standalone feature. Instead, more complex
features that are for example only activated through the combination of
the presence and a certain location of the beans could be learned.

Another case is depicted with the second target domain in Fig. 3.14c,
where a formerly task-informative factor might change its value. While in
the source domain the value for the factor of the ball’s global shape can
be described as round, in the target domain this value has changed to a
different shape due to the occluding hand. If without DA, certain features
are based on the ball’s global shape, this could lead to false-negative
classifications of images showing the ball in the human hand, as those
features might not be activated anymore. Using DA in this case could
remove also such features, since those help here to discriminate source and
target domain. This depicts a nice example where not only domain factors
are removed through DA, but also class specific factors that change their
value across domains.

As depicted before at the example in Fig. 3.11 with the factor “lighting’,
domain factors can strongly influence the type of features learned on a
single domain. The target domain in Fig. 3.14d, which differs from the
source domain only by being based on grayscale images, describes a domain
combination where this can cause problems. Training on the source domain
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might most likely also include color based task-informative factors, which
are absent in the target domain. The application of DA could help here to
remove features related to color based factors.

The target domain in Fig. 3.14e depicts the classic case where only the
background related domain factor value changes. Here the main reason
for a potential performance drop on the target domain without DA is
related to filters that overlap with the background (compare Fig.3.4). In
context of convolutional filters, DA could again inhibit that such filters are
used as individual features in the higher layers. Assuming the idealized
case that the positions of objects are always the same within the image,
a fully-connected layer could simply exclude irrelevant image areas by
assigning a weight of 0 to neurons that correspond to those.

3.5 Summary

The first part of this chapter showed how the characteristics of current
research datasets for image classification can be described in more detail
by visual factors. It was shown that the control over factors that is applied
during collection or acquisition is a major aspect that differentiates datasets.
The real-world datasets with most control over factors are usually found
in the robotics community. There, the values of only few factors are
changed purposely between recording sessions, while most of the factors
are kept constant within a recording session. This characteristic makes
such recording sessions highly suitable to treat them as individual domains
for DA research.

A short recap on CNN architectures showed how their standard working
principles can lead to a poor generalization between domains. This was
followed by an overview of current DA approaches, which can generally be
divided into two main categories, the approaches with a parametric adap-
tation between domains and the ones with an adaptation that is learned
during optimization of the classification model. Parametric adaptation is
comparatively easy to use, but has the disadvantage that the difference be-
tween domains needs to be easily modelable by hand. Most DA approaches
based on a learned normalization between domains are capable to handle
more complex differences between domains. A common approach there is
the attempt to remove all domain factors from the feature representation
with the help of an attached adversarial domain classifier.

Negative transfer was introduced as a common unwanted drop in perfor-
mance through the application of DA. This topic also represents a core of
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this thesis, where the goal is to investigate in detail the reasons for this
effect and reduce it in a subsequent step. It was discussed that the removal
of all domain factors from the feature representation, to obtain a domain
invariant model, can be harmful if such factors are task-informative or have
visual closeness to task-informative factors.

Further details on the feature manifestations within neural networks and
their potential difficulties when it comes to generalization to target domains
where domain factors can have different values were introduced. It was
shown that neural networks tend to solve the classification task with the
most simple features as possible, where the features do not necessarily have
to be related to the target object in the captured scene. The type of features
learned, like for instance shape or color features, may be heavily dependent
on a certain factor, like as it was shown for the factor “lighting’. The learned
features ultimately influence the ability of an architecture to generalize,
which was discussed at simple exemplary domain constellations where
hypothetical considerations about the usage of DA were made. Moreover,
the properties of task-informative factors were discussed.
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4 Effects of Domain Awareness

This chapter contributes with an extensive investigation of different domain
constellations during training and test of a multi-domain scenario, which
have been neglected in literature so far. The topic is highly relevant when
considering the increasing number of pre-trained downloadable neural
networks that can be used on own data. Special focus will be put in
these investigations on the awareness about domains during training and
test, which can have direct influence on the treatment of those. The used
domains for the investigations mainly differ in the values of the domain
factor ‘camera’ which are described by different camera types that were
used for recording the images. The investigations of the CNN’s capability
to generalize between domains are based on a road detection task on
street scene images. As an exemplary parametric DA method RGB mean
normalization will be used here. Nowadays, when using CNNs, RGB mean
normalization is a standard pre-processing step, however, there are multiple
possible ways on how to carry such a normalization out depending on the
awareness about domains. The results show that generally the awareness
of the camera type during test can improve the performance for an unseen
camera, but can lead to negative transfer when the test camera was already
one of multiple cameras during training.

The quantitative numbers presented in this chapter are a result of the
previous master’s thesis project [83], while the evaluations of these in
context of DA and the subsequent publication [84] were part of this PhD
project. The main contents of this chapter are therefore based on [84].

The chapter is structured as follows. In Section4.1 the different general-
ization cases on which the effects of domain awareness are investigated will
be introduced. Furthermore, the exemplary road segmentation task that
is used for the investigations will be presented there. Section4.2 gives a
brief overview of related work. In Section 4.3 the domains defined by three
different cameras, as well as the detailed CNN architecture that is used for
the segmentation task will be introduced. Subsequently, in Section 4.4 the
experiments that were carried out to demonstrate the effects of domain
awareness will be presented. The chapter will close with a brief summary
of the results and research directions for future work in Section 4.5.
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4.1 Problem Statement and Classification
Task

Nowadays CNNs have become state-of-the-art tools for image classification
tasks. Networks that have been pre-trained on large-scale object recognition
benchmarks [48, 91] are easily accessible and an application on own data
can be achieved with only little effort. Downloading such a pre-trained
network from the internet can save in certain cases up to several days
of training time. If the classification tasks are the same, one common
adaptation to own data that is applied is the RGB mean normalization
of the input images, which can be seen as a parametric DA method as
stated in Chapter 3. However, even with this simple DA method, in certain
cases the performance on own data, i.e. potentially different domains,
can be significantly reduced for various reasons. First, as stated earlier,
the bias that distinguishes the datasets might not be easily modelable
and requires a learned normalization, or second, that the bias is modeled
incorrectly or inconsistently. In this chapter the latter will be considered
and it will be investigated in which generalization cases combined with
different normalization strategies such a situation can occur.

Three different generalization cases will be investigated. The first case
describes the classic investigation of DA approaches, where the transfer
from one or multiple source domains to a new target domain is investigated
only [53, 101]. This case will be called the new-case. It is visualized in
Fig.4.1a at the example of two domains, where the value of the domain
factor ’camera’ is assumed to be defined by a certain camera type that was
used for acquisition and influences the appearance of the images. This case
is the most challenging generalization case that will be investigated here,
since the classification model needs to handle a new value for the factor
‘camera’ in the test data. A less challenging case is the same-case (see
Fig.4.1b). This describes the typical case from machine learning literature
[96, 98], where a dataset is split up into a training and a test set, i.e. when
training and test data stem from the same domain. Therefore, a trained
CNN is expected to perform well here. A case that is mostly overlooked
and only rarely investigated in literature (e.g. [43]) is the part-case (see
Fig.4.1c), where the test domain is one of multiple domains that were
already involved during training. This case is highly relevant considering
networks that were trained on image databases that potentially include
multiple latent domains and the own test data describes one of them. As a
major contribution of this chapter it will be shown how this part-case can
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lead to negative transfer.

Type A Type B
Factor 'camera’

(a) new-case

Type A Type B Type A Type B
Factor 'camera’ Factor 'camera’
(b) same-case (¢) part-case

Figure 4.1: Generalization cases between a training and a test domain. The
value of the domain factor ‘camera’ is taken as an example to distinguish domains.
Note, the terms source and target domain are not used, since here the definition
that no supervised data of the target domain is available does not hold for all
cases. In the same-case (b) and the part-case (c), supervised training data of the
test domain is involved during training.
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Each of the introduced generalization cases will be investigated for three
different domain awareness cases that influence the way how the input
normalization parameters are determined during training and test.

Usually the training set is treated as a single domain and the normaliza-
tion parameters, e.g. the RGB means as here, are determined based on
the complete training set. During test these parameters are then newly
determined for the test domain. This case of awareness will be called the
test-aware case (see Fig.4.2a), since only during test there is an aware-
ness about a new domain. It largely describes the situation when using
a pre-trained network from the internet on own data. As the results will
show, for the test-aware case in the part-case of generalization a weak
performance could be observed. This indicates an inconsistent normaliza-
tion treatment of the same domain during training and test. Therefore,
two more awareness cases were investigated, where it is guaranteed that
domains are treated consistently. Those cases are the never-aware case
and the always-aware case.

In the never-aware case (see Fig. 4.2b) domains are completely neglected,
the normalization parameters are only once derived from the entire training
set and then reused for the normalization during test on any domain. This
case is the most naive and least recommended one since here no adaptation
is performed at all, which is likely to result in a poor performance for the
new-case of generalization.

The always-aware case (see Fig.4.2c) also treats domains consistently
during training and test. Here, the test domain is again normalized
based on data from this domain. During training, however, domains are
normalized individually, leading to the consistent treatment of training
and test domains for any case of generalization. This shows an awareness
during training and test about domains, leading to the notation of this
case. However, often this awareness case is not applicable, since, as stated
earlier, large datasets potentially represent a composition of multiple latent
domains. Individual treatment of latent domains is generally a challenging
task and mostly not considered.

The task on which the awareness cases in combination with the general-
ization cases are investigated was chosen to be a road segmentation task,
where different domains are defined by different camera types that were
used for acquisition. For Advanced Driver Assistance Systems this is a
highly relevant research topic, since such systems are usually extensively
developed using certain types of cameras that might differ to the ones used
in production for cost reasons. Different camera types generally might
have different values for extrinsic factors like for example the viewing
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Training Test

Domain 1 Domain 2 Domain X Domain X

Training Set ‘ ‘ Training Set Training Set ‘ ‘ Test Set

Normalized Normalized Normalized
Training Set Training Set Test Set
(a) Test-aware
Training Test
Domain 1 Domain 2 Domain X
Training Set ‘ ‘ Training Set ‘ Test Set ‘
Parameters
Normalized Normalized Normalized
Training Set Training Set Test Set
(b) Never-aware
Training Test
Domain 1 Domain 2 Domain X Domain X
Training Set ‘ ‘ Training Set ‘ Training Set ‘ ‘ Test Set
‘ Parameters ‘ ‘ Parameters ‘ ‘ Parameters ‘
Normalized Normalized Normalized
Training Set Training Set Test Set

(c) Always-aware

Figure 4.2: Three different cases of domain awareness.
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angle or the focal-length which result in different perspectives on the scene.
Furthermore, different mounting positions within the car can influence the
field of view. To have a rather controlled domain transfer scenario, with
limited other effects for the investigations, here the used cameras mainly
differ in their sensitivity of RGB channels, which thus define the dominant
bias between domains.

The specific goal of the classification task is to segment a street scene
image into road-like-area and non-road-like-area. Typically, for such tasks
complex CNN architectures like [4, 20] are used, that take the whole image
as input and provide architecture wise a larger receptive field that is able
to take global image semantics into account. The target for the evaluations
here, however, is rather to investigate the different domain awareness
cases in general, than achieving a highly competitive segmentation result.
Therefore, it was decided to base the segmentation on the classification
of small image patches combined with a simple CNN architecture (see
Section 4.3). On this segmentation task all three generalization cases, the
same-case, the part-case, and the new-case with all three cases of domain
awareness, the test-aware case, the never-aware case, and the always-aware
case are evaluated.

4.2 Related Work

As stated in Chapter 3, many DA datasets like the Office-31 dataset [82]
or datasets that are completely based on a web-search as [29], provide
a rather uncontrolled setting for in-depth deep learning investigations
due to uncontrolled factor values that for example influence the image
quality or the types of class representatives. The consequence can be a
mixture of effects caused by latent domains that hinder a clear qualitative
interpretation of the results. To avoid such effects the choice here was to
use three domains composed of typical road scene images that only differ
in the value for the domain factor camera’. The values of this factor define
the camera type that was used for acquisition. In this setting domains are
therefore mainly characterized by the color profile of each camera.

The generalization cases that are investigated here are in literature
usually limited to only two of the three introduced cases. Those are
the same-case, as for example in [96, 98], as the normal training test
split, and the new-case [53, 101], which describes the standard benchmark
case for DA. The part-case is only very rarely investigated in recent DA
literature. An example where this generalization case was investigated,
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but not in context of deep learning architectures, is given in [43]. There
they propose an extension for a support-vector machine classifier where
an additive bias is learned per source domain. This method outperforms
a standard support-vector machine that is not aware of domains during
training. These different support-vector machine versions are evaluated
on the two awareness cases never-aware and always-aware. However, for
their investigations they also use a mix of web search based benchmarks,
whereby latent domains might still persist. Furthermore, in contrast to
them the investigations of this thesis also include the relevant test-aware
case, which a naive user usually does after having downloaded a pre-trained
network from an external internet source.

The chosen parametric DA approach of RGB mean normalization is,
as stated earlier, one of the easiest and quickest ways to adapt a model
to a new domain and therefore is a common pre-processing step used in
literature, e.g. [48, 91]. Furthermore, it is generally proven to improve
convergence speed during optimization [50]. A methodical similar DA
approach, but more complex in application, is the adapted version of batch
normalization presented in [53] (see Chapter 3). Despite the popularity of
RGB mean normalization, it has not sufficiently been researched regard-
ing the generalization cases with respect to different domain awareness
cases. This chapter will close this gap and provide important insights and
recommendations on how to handle unknown awareness cases.

There are also more sophisticated normalization techniques that are
aware of the meaning and structure of input elements. An example for
this is color constancy [77], which was used in [45] to yield invariance to
changes in illumination for online learning of color and shape categories.
However, this adaptation is done for each image frame individually, in this
way lacking the notion of a more stable domain. For the camera DA here,
a constant value is subtracted from each RGB channel of all images. This
simple parametric DA method is motivated by the strong difference of color
sensitivity given by the domains used here, and further, it will prevent that
the comparison of different domain awareness strategies is shadowed by a
complex method targeting a learned normalization.

4.3 Data and Network Architecture Training

For the evaluation of the effects of domain awareness three different camera
type datasets were used. An individual CNN architecture was trained on
each single camera, each possible pair and for all cameras together. This
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results in overall seven different domain combinations used to train the
CNNs. After optimization those architectures were tested independently on
each camera test set, covering the three generalization cases, the same-case,
the new-case and the part-case. During training and test the three cases
of domain awareness (see Fig.4.2) were applied. Further details on the
used data, the architecture, and the optimization procedure are given in
the following.

4.3.1 Data

The domains used in the experiments are defined by three image datasets,
each recorded by a single different type of RGB camera. Each camera is
facing to the front, capturing the street scene in front of the ego-car. The
first domain dataset is composed of the KITTI Road Benchmark [19] which
is publicly available for download. The other two domains are composed of
two street scene image datasets that were acquired by the Honda Research
Institute Europe and provided for this work. The cameras that were
used for these datasets were the BlackMagic camera! (BMAG) and the
ELESYS camera that is a special in-house made camera where no external
reference is available. Each domain is composed of street scene images that
were recorded in different recording sessions where different routes were
taken by the car. This consequently also induces changing illuminations
and weather conditions. Due to these changing conditions, which lead
to many constantly changing factor values within a domain, there is a
high likelihood that the camera type is the only constant factor within a
domain and thus a domain factor. Details of the three domains are given
in Tab.4.1. There, the channel-wise means over pixels of training patches
show a strong difference between the individual domains. These differences
justify the treatment of each camera as an individual domain. Moreover,
different relations between the channels of one camera can be observed,
which justifies the mean normalization of each channel individually.

For each street scene image a manual annotation of one or more road-
like-area polygons is given. The patches which are extracted from the
images and classified by the CNN are labeled as positive samples if their
center pixel is part of the annotated road-like-area, otherwise it is labeled
as a negative sample. The images further come with areas annotated as
exclude-area that mark areas that can not be clearly defined as road-like-
area. If a patch has an overlap with such an area, it is excluded from

Lhttp://www.blackmagicdesign.com/de/products/blackmagicpocketcinemacamera
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Table 4.1: Data statistics of the different camera datasets. The RGB means
are based on the samples in each dataset.

KITTI BMAG ELESYS

Image resolution 1242x375  1952x1112  1376x720
Hor. field of view 81.4° 54.9° 64.6°
Red channel mean 96.5 115.3 83.3
Green channel mean 97.0 136.0 89.6
Blue channel mean 92.2 132.0 55.5
#Images 289 113 166
Training #Samples 2,312,000 5,085,000 2,822,000
Pos. /neg. 1/1 1/1 1/1
#Images 290 111 166
Test #Samples 42,165,099 85,041,497 49,325,077
Pos. /neg. ~1/1 ~2/1 ~2/1

the training and test data. Moreover, the extraction area is limited to a
metric corridor in the so-called Bird’s-Eye-View [62]. The determination
of this corridor requires the knowledge about the mounting position and
angle of each camera, which is given for each dataset. For details on the
calculation of this corridor it should be referred to [62]. Here it was limited
to 10 meters to the right and to the left of the camera position, and 5 -
45 meters to the front. This ensures negative samples mainly close to the
road and the removal of patches above the horizon that mostly contain the
sky. Fig. 4.3 shows an exemplary image from the BMAG camera together
with its corresponding Bird’s-Eye-View transformation of the mentioned
corridor.

The images of each camera are split into a training and a test set of similar
size. Subsequently patches with a size of 37 x 37 pixels were extracted
from the images, where the size corresponds to the required input size of
the chosen CNN architecture. To speed up the training process, only 5%
of the available patches were chosen randomly from the training images,
while the balance of positive to negative samples was guaranteed. For
testing, all negative and positive sample patches inside the Bird’s-Eye-View
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Figure 4.3: Example street scene image of the BMAG domain. The patches
that are extracted from the image in perspective view (left) are limited to the
corridor highlighted by colored pixels. The corridor is determined by a limitation
of the metric Bird’s-Eye-View area (right).

corridor were used. Tab. 4.1 shows the number of used training and test
patches from each domain. Between the domains the number of samples
are clearly imbalanced. Evaluations showed, however, that the results are
unchanged when using more advanced balancing strategies to cope with
this imbalance.

4.3.2 Cases of Domain Awareness Implementation

The different awareness cases are all based on a global channel-wise RGB
mean normalization. The ”parameters” in Fig. 4.2 are here three values,
one for each color channel, that are subtracted from all pixels of the
corresponding color channel of the input image to obtain the normalized
image. Sometimes mean subtraction is done pixel-wise, i.e. without
considering the structure of the input elements, and should improve the
convergence speed of gradient descent methods. For the experiments here
no negative effect on convergence is expected since the small patches are
sampled from many slightly different positions in the image, so there is
no bias on the presence of a certain pattern inside a patch. This is in
contrast to networks trained on image classification data sets like ImageNet,
where the target pattern is, due to the photographer bias, usually found
in the center of a training sample, resulting in some stronger variation
between background and foreground areas. This hypothesis was tested by
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Table 4.2: Architecture details for the Effects of Domain Awareness experiments.
In all convolutional and fully-connected layers a ReLU activation function was
used.

Layer Kernel Stride Filters Parameters  Dimension
Size (HxWxCh)
Input Layer - - - - 37x37x3
Convolution 1 5xH 1 16 1216 33x33x16
Max-Pool 2x2 1 - - 32x32x16
Convolution 2 5x5 1 20 8020 28x28x20
Max-Pool 2x2 2 - - 14x14x20
Convolution 3 5x5 1 20 10020 10x10x20
Max-Pool 2x2 2 - - 5xHx20
Fully-Conn. - - - 501000 1x1x1000
Output Layer - - — 2002 1x1x2

calculating for each RGB channel the standard deviations over the pixel-
wise mean. These are 3.64, 5.44, and 6.75 for the ImageNet LSVRC-2012
competition data, while here, for the used training patches, those are with
1.23, 1.26, and 1.29 substantially lower. The evaluations justify the usage
of channel-wise RGB values in this case. Note, in the test-aware and in
the always-aware case the RGB values of the test domain are calculated
from the corresponding training data of the same domain to ensure a fair
comparison and no bias towards the actual test data.

4.3.3 Network Architecture Training and Evaluation
Measure

The task of the CNN model is to assign to each normalized input patch of
37 x 37 pixels a class label, which can either be road-like-area or non-road-
like-area. The used architecture has three convolutional layers with a filter
size of 5 x 5 and a varying number of channels per layer. Each convolutional
layer is followed by a max-pooling layer. After the last convolutional layer,
a fully-connected layer with 1000 neurons and a subsequent output layer
of two neurons with a softmax function follow. Padding of the feature
maps was omitted to be able to use the architecture in a fully-convolutional
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Figure 4.4: Exemplary patches from the BMAG domain that need to be classified
by the CNN model. The center pixel of each patch of 37 x 37 pixels defines the
ground-truth label of the sample.

manner [57] during testing, which speeds up the evaluation process since
the patch extraction part can be skipped. Since the avoidance of padding
results in a stronger spatial reduction of the networks feature map size with
increasing network depth, the step-size of the first convolutional was set to
only 1, instead of 2 as in the other layers. The idea is to preserve sufficient
spatial information after the last convolutional layer in combination with
a rather small input image size. An overview of the used architecture is
shown in Tab. 4.2, some example patches are given in Fig. 4.4.

The CNN architecture was implemented using the deep learning frame-
work Caffe [39]. As a loss function the cross-entropy classification loss

C
— > y;log(y}),
;

was chosen, with the index of summation j, that takes the value of all
classes C, here only two classes. The network parameters were optimized
with the mini-batch gradient descent algorithm with a batch-size of 50.
The number of iterations was fixed to a value so that each sample of the
training data was presented on average 20 times to the network. The initial
learning rate po was set to 0.001 and multiplied by 0.5 after every ten
percent of the maximum number of iterations. Momentum was applied with
a factor of 0.9, weight decay with a factor of 0.0005. Furthermore, dropout
regularization with 0.5 was applied on the first fully-connected layer during
training, which means that the output value of each neuron there is set to
0 with a probability of 0.5. All hyperparameters were determined based on
a manual hyperparameter search.

If the output class road-like-area is interpreted as the positive class and
non-road-like-area as the negative class, the predicted classes of the samples
can be categorized as belonging to one of the four categories, true-positive
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(TP), false-positive (FP), true-negative (TN), and false-negative (FN).
Given a test set where all samples were assigned to a certain class and
the ground-truth class is given, the evaluation measures of Precision and
Recall [6] can be calculated as

Precision = — 1L
FeCSIOn = T p e
TP
=— -
Recall = 775N

Precision indicates the proportion of how many of the samples classified as
positive, here as road-like-area, are actually positive. Recall indicates the
proportion of how many samples of the positive class have been classified
correctly. Both measures then can be combined in a Precision-Recall curve,
where for each activation threshold a specific precision and recall value are
depicted. The two measures are typically used in road segmentation task
benchmarks [19] in form of the measure of Average Precision (AP) [17]

AP = L max Precision(7), (4.1)
re0,0.1,.1" "

where r define the recall values. It can be interpreted as the area under
the curve of a precision-recall plot approximated by the sections defined by
the value of . The advantage of AP is that it is a measure independent
of a specific decision threshold. The main evaluation measure for the
experiments in this chapter therefore will be the AP presented in (4.1) with
11 evaluation sections.

4.4 Experiments

For the evaluation of the different awareness cases the value of the output
neuron corresponding to the road-like-area prediction is interpreted as a
confidence score on which the different thresholds are applied to determine
the value of the AP as depicted in (4.1). An exemplary qualitative result
of a test image that was pixel-wise classified into road-like-area and non-
road-like-area is given in Fig.4.5. Tt is an example of the same-case of
generalization, where the threshold was adjusted to maximize the Quality
measure over the entire test set. The details of the Quality measure are
of no further relevance for the evaluations here and therefore it should
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Figure 4.5: Classification of a test image into road-like-area (positive class) and
non-road-like-area (negative class). The area of classification is limited to the
Bird’s-Eye-View corridor.

be referred to [66]. The qualitative results show that, from a theoretical
perspective, the consideration of information from a larger receptive field
during training, i.e. using larger input patches, could help to avoid certain
false classifications. This applies for example on single yellow pixel areas
in the image that are completely surrounded by road-like-area predictions.
However, the focus here is not to maximize the segmentation accuracy, but
rather to investigate the effects of different domain awarenesses in context
of the introduced generalization cases.

Note that the AP numbers in the KITTI Road Benchmark [19] are
reported for Bird’s-Eye-View space, while here the evaluation is conducted
in the perspective image space (Fig. 4.3, left).

Tab. 4.3 shows the results in AP for the different experiments. The
top rows show the individual domain constellations, while the last three
rows show the averaged AP for the three generalization cases. Each result
column represents a specific domain awareness case.

Test-aware case. In the test-aware case (see Fig. 4.2a) the highest
performance can be observed when the training set consists of only one
domain and the test data is of the exact same domain, i.e. in the same-case
(blue). This is expected, since here the classification model does not have
to generalize to new values of domain factors. Furthermore, the domain is
normalized in the test-aware case by the same parameters during training
and test which guarantees a consistent treatment of samples from the same
domain. For the part-case a performance drop to 89.96 AP on average can
be observed. In terms of the values for the domain factor ’camera’ this is at
first sight surprising, since here no new factor values are presented during
test to the classification model. The test domain was already involved
during training. The results indicate, however, that this is related to the
inconsistent treatment of domains during training and test. During training
the normalization parameters are determined over the entire training set,
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Table 4.3: Results of different domain awareness cases for different cases of
generalization (AP in %). The three cases of generalization are marked by
different colors. Blue refers to the same-case, gray to the part-case and green
to the new-case. Gray numbers indicate unchanged results in comparison to
previous cases of domain awareness. The average results over domain (camera)
combinations are shown at the bottom.

Used cameras Domain awareness
Training Test ‘ Test  Never Always
KITTI B 9394 93.94  93.94
KITTI + BMAG KITTI 89.66 93.76 93.64
KITTI + ELESYS KITTT 90.12 94.04 93.93
KITTI + BMAG + ELESYS | KITTI 88.03  93.72 93.82
BMAG KITTI 85.99  58.57 85.99
ELESYS KITTT 90.10 86.52 90.10
BMAG + ELESYS KITTT 78.55  59.99 90.04
BMAG BMAG | 96.29  96.29 96.29
BMAG + KITTI BMAG 95.65 96.27 96.25
BMAG + ELESYS BMAG 93.12  96.31 96.24
BMAG + KITTI + ELESYS BMAG 94.80 96.21 96.28
KITTI BMAG 93.28 73.68 93.28
ELESYS BMAG 93.70  89.88 93.70
KITTI + ELESYS BMAG 80.65  80.08 93.46
ELESYS ELESYS ‘ 95.97  95.97 95.97
ELESYS + KITTI ELESYS | 91.33  96.02 95.97
ELESYS + BMAG ELESYS | 86.68 95.77 95.91
ELESYS + KITTI + BMAG ELESYS | 80.25 95.80 95.88
KITTI ELESYS | 86.67 77.12 86.67
BMAG ELESYS | 84.11 74.35 84.11
KITTI + BMAG ELESYS | 80.66 75.46 80.02
Same 95.40  95.40 95.40
Averages Part 89.96 95.32 95.32
New 85.97  75.07 88.60
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i.e. by neglecting individual domains within. During test, however, the
evaluated domain is normalized by normalization parameters that are
determined exclusively from this domain. The assumption is that the CNN
overfits too much on the combination of normalization parameters and
images from a specific camera and therefore can hardly handle images from
the same camera with a different normalization applied. As expected, due
to the completely new factor values in the new-case the performance is
with 85.97 AP on average the worst among all three generalization cases.
Note, this drop might not only be related to the RGB sensitivities of the
cameras, but also to certain aspects like the image noise or the resolution
that change with the camera type that was used.

Never-aware case. In contrast to the test-aware case, in the never-
aware case (see Fig. 4.2b) only one set of normalization parameters is
determined during training that is later also used for the test set, indepen-
dent of the actual test domain. The AP for the same-case of generalization
is not affected by this since here the same parameters are used. The new-
case, however, is strongly affected by this way of normalization. The AP
here is at only 75.07. Such a result was to be expected since no adaptation
at all is made to the new data, which comes with a new domain factor value.
Analyzing this case in more detail revealed that many of the predicted
confidences on the test domain for road-like-area were either very high or
significantly low. This is a indicator that the trained networks are driven
outside of their working range when a domain is presented that is defined
by completely different input ranges, or camera characteristics here. One of
the major results in the never-aware case is the enhanced performance for
the part-case of generalization. Although no adaptation to the new domain
is made here at all, the performance is better than in the test-aware case.
This result emphasizes the high importance that domains should be treated
consistently during training and test.

Always-aware case. The way of normalization in the always-aware case
(see Fig. 4.2¢) is defined by an independent normalization of all individual
domains involved during training and test. This removes the inconsistent
treatment in the part-case of generalization, since now also during training
domains are treated independently. In this case of generalization, the
same high performance as in the never-aware case can be observed, which
confirms the importance of consistent domain treatment. Noteworthy for
this case of domain awareness is the individual AP on the KITTI domain
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and the BMAG domain in the new-case (see last row of first and second
result section in Tab.4.3). Compared to the other two cases of domain
awareness the performance has drastically improved, to 90.04 AP and 93.46
AP respectively. A reason for these significant improvements could be that
the classification model is now forced to learn more general features for
road-like-area during training, since the input samples of multiple domains
are now more similar due to a better zero-centering of those.

4.5 Summary

As one of the contributions of this thesis, in this chapter the effects of
domain awareness were investigated at the example of a road segmentation
task. For this a controlled setting with three domains was used. The domain
factor here was ’camera’, whose values are defined by different camera
types that were used during acquisition of the street scene images of each
domain. The camera types introduce different characteristic RGB means
on the recorded images and represent the prominent bias that differentiates
the domains. Since this bias is easily modelable, RGB mean normalization
was used as a simple parametric DA method that targets to remove this
bias.

It was shown that the standard workflow of adapting the normalization
parameters to the test domain can lead to negative transfer if the test
domain was already one of multiple domains during training and those
domains were not normalized individually there. However, when using
pre-trained neural networks, e.g. downloadable ones from the internet,
it is often not evident if the targeted application domain was part of the
original training set and if so, how it was normalized during optimization
of the provided network.

The findings from the experiments are highly relevant for the DA com-
munity and the general usage of pre-trained neural networks. From the
experiments it can be derived that in practice, when handling pre-trained
networks for own purposes, it is very beneficial to find out if the test
domain was already part of the training data on which the network was
optimized. If it was part of the training data, it is further important to
know, how it was treated during optimization to adapt the normalization
method accordingly to achieve the maximum possible performance.

In general, the use of the controlled investigation setting together with a
simple DA method strongly helped to reveal the effects of the awareness
about involved domains. Future experiments could investigate less con-
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trolled settings or different adaptation methods, like for example batch
normalization as an alternative parametric DA method [53], to see whether
the awareness about domains influences the results similarly.
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5 Setup and Baseline for
Adversarial DA Experiments

After parametric DA now the focus will be on adversarial DA. The evalu-
ations carried out in Chapter 6 and 7 are both based on the established
unsupervised adversarial DA approach from Ganin et al. [22] that allows to
learn a normalization between domains. The basic principle of this archi-
tecture was already introduced in context of Fig. 3.6. Here, in Section 5.1
more details on the used architectures, the training procedure, and relevant
hyperparameters will be given. Furthermore, Section 5.2 introduces the
datasets, MNIST with MNIST-M, and CORe50, on which the main results
of the remaining chapters are based. For the latter, baseline experiments
relevant for the upcoming chapters will be presented in Section 5.3. Most
parts of this chapter are based on the results that were published in the
conference paper [85] and in the journal publication [86].

5.1 Implemented Domain Adaptation
Architectures

The base adversarial DA approach that was used for a learned normalization
between domains was taken from Ganin et al. [22] (see Fig.3.6). The
target of this approach is to remove all domain factors from the feature
representation embedded in the parameters 6. of a shared feature extractor
with the mapping function

X; = Ge(bi; 96).

The removal is achieved through an additional domain classifier with the
parameters 64, with the mapping function

d;’ = Ga(xi;04),
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that is positioned in parallel to the label classifier with the parameters 6,
and the mapping function

Yi '= Gy(xi? 9y)~

The domain classifier is attached to the shared feature extractor via a
gradient reversal layer (GRL), which does not influence the forward path
of an input sample, but flips the gradient during backpropagation. Like
this, the embedding of domain-informative features should be inhibited.
The parameters of the entire classification model are updated during
backpropagation in the following way for each batch:

L L
b 9e—u<299 —A20d> (5.1)
oL
0, <+ 0,—p-"2 (5.2)
0Ly
) Og — p—— 5.3
d < d Maed (5.3)

Here, L is the corresponding loss function, u the learning-rate and A\ an
adaptation factor that controls the influence of the domain classifier on the
shared feature extractor. A is smoothly increased during the optimization
process, which was evaluated in [22] to lead to more stable optimization.
In the original implementation of [22] the domain classifier was used to
only discriminate a single source and target domain, nevertheless, it can
also be used with multiple source domains, which eventually allows to use
it without any unsupervised target data.

With a single supervised source domain and a single unsupervised target
domain, the mini-batches used for training are composed of one half
randomly chosen supervised samples from the source domain and one half
randomly chosen unsupervised samples from the target domain. For the
samples in the first half of the batch the class label vector y, as well as
the domain label vector d; are known, while for the second half only d; is
known. The entire batch is forwarded to train the domain classifier, while
only the first half of the batch is forwarded to train the label classifier.
The batch-size during training was set to 64 samples for all experiments.

For A\ = 1, the gradients backpropagated from both, the label and the
domain classifier, influence the shared feature extractor equally. During DA
training of the reported experiments, the adaptation factor X is increased
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smoothly from 0 to 1, following the update rule proposed by [22],

2

Ap = 1 + e(=10-p) o

1, (5.4)
where p corresponds to the proportion of iterations already completed over
the number of maximum iterations. The optimized update rule from [22]
for the decrease of the learning rate p was likewise incorporated in the

optimization process of the models. The update rule for p is

Ko

= 5.9
Hp (1+10-p)0-75" (5.5)

where the initial learning-rate ;o was chosen depending on the architecture.
For pre-trained architectures a comparatively smaller learning-rate was
used. For both, the label and the domain classifier, the cross-entropy loss
function was chosen, which is commonly used for classification problems
with discrete target output values. For the label classifier it is calculated
for a single sample as:

C
Lee =— Zyjlog(y;‘)
J

where the index of summation j runs over all C classes. For the domain
classifier y is replaced by d. Before the loss is determined, the outputs
of the classification model are passed through a softmax function, which
transforms the outputs of the neurons to a range between 0 and 1, while
all sum up to 1. The transformation of a single neuron ¢ is achieved by

ehi

= 42? o )

where h; is the activation of the i-th output neuron corresponding to the i-th
of C classes. The implementation of the architectures in Python was done
with the deep learning framework TensorFlow [1]. For the optimization
of the internal parameters the Adam optimizer [44], pre-implemented in
TensorFlow, was used.

y;

Adversarial DA architecture for small input images. For the in-
vestigations in the upcoming chapters two different network architectures
were used. The feature extractor and the label classifier of the first archi-



5.1 Implemented Domain Adaptation Architectures 67

tecture are similar to [22] inspired by the popular LeNet-5 architecture
from [49]. This architecture was designed to solve handwritten digits clas-
sification tasks based on low resolution input images with a size of 32x32
pixels. The architecture comes with only two convolutional layers and two
fully-connected layers. Similar to [22], a domain classifier was attached to
the feature extractor via a GRL layer. It consists of a single fully-connected
layer and an output layer with two neurons. Rectified linear unit activation
functions (ReLU) [68] were used on all layers. Further details about this
architecture can be found in Tab. 5.1. All weights of this architecture were
initialized randomly by drawing them from a uniform distribution.

Table 5.1: Adversarial DA architecture for small input images inspired by
LeNet-5 [49] and [22].

Layer Kernel Stride Filters Parameters  Dimension
Size (HxWxCh)

Feature Extractor

Input Layer - - - - 32x32x3

Convolution 1 5xH 1 32 2432 28x28x32

Max-Pool 2x2 2 — - 14x14x32

Convolution 2 5x5 1 32 25632 10x10x32

Max-Pool 2x2 2 - - 5xHx32

Label Classifier

Fully-Conn. 1 - - - 80100 1x1x100

Fully-Conn. 2 - - - 10100 1x1x100

Output Layer - - - 1010 1x1x10
Domain Classifier

GRL Layer — — - — 5x5x32

Fully-Conn. 1 - - - 80100 1x1x100

Output Layer - - - 202 1x1x2

Adversarial DA architecture for large input images. Since the
previously presented architecture can only be used for datasets with artificial
images of low resolution, another architecture was implemented that is
capable to solve real-world image classification problems with images



68 5 Setup and Baseline for Adversarial DA Experiments

of higher resolution that ultimately carry more information. For the
adversarial DA architecture, the VGG-16 architecture from [91] was used,
of which the 14 convolutional layers were interpreted as the feature extractor
and the two subsequent fully-connected layers as the label classifier. The
convolutional layers used zero padding at the edges of the input feature
maps to preserve the feature map dimensions. Thus, the feature map size
in this architecture is only reduced through max-pooling layers. In the
label classifier, the original number of neurons was reduced to 4000 in the
first and 1000 in the second fully-connected layer to speed up convergence.
Several pre-studies revealed that this has only a minor influence on accuracy.
The additionally attached domain classifier has been extended compared to
the previously introduced architecture (Tab.5.1) and is here composed of
two fully-connected layers with 1024 neurons each. Also for this architecture
the ReLU activation function was used on all layers. Since the training of
all weights would require huge amounts of training data and ultimately lead
to long training times, it was decided to use a set of pre-trained weights
for the shared feature extractor. The weights are based on a pre-training
on the ImageNet database [13]. Details on the architecture can be found
in Tab. 5.2.

5.2 Datasets
MNIST & MNIST-M

The Domain Mixture investigations in Chapter 6 are primarily based on
the usage of two domains defined by the standard MNIST dataset [49]
and the adapted MNIST-M dataset [22]. Throughout the remainder of
this thesis the first will be referred to as S and the latter as M. Both
domains consist of images showing handwritten digits from 0 to 9. Sample
images are shown in Fig.5.1. M was originally generated by [22] through
random extraction of patches from the BSDS500 image dataset [3] with
the same size as images from the S dataset. On these patches, the pixels
corresponding to the location of the digit pixels in the S samples were
inverted to obtain the final samples. In terms of visual factors the two
domains can thus mainly be described by the domain factor ’background’,
which can be interpreted to have the value black in S and cluttered in M.
Generally, for the classification task, the M domain is due to its nature
much more challenging since it can additionally also have digits with dark
pixels on a bright background and furthermore with hard edges within
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Table 5.2: VGG-16 architecture with attached domain classifier.
Layer Kernel Stride Filters Parameters  Dimension
Size (HxWxCh)
Feature Extractor
Input Layer - - - - 224x224x3
Conv 1.1 3x3 1 64 1792 224x224x64
Conv 1.2 3x3 1 64 36928 224x224x64
Max-Pool 2x2 2 - - 112x112x64
Conv 2_1 3x3 1 128 73856 112x112x128
Conv 2.2 3x3 1 128 147584 112x112x128
Max-Pool 2x2 2 - - 56x56x128
Conv 3_1 3x3 1 256 295168 56x56x256
Conv 3.2 3x3 1 256 590080 56x56x256
Conv 3.3 3x3 1 256 590080 56x56x256
Max-Pool 2x2 2 - - 28x28x256
Conv 4_1 3x3 1 512 1180160 28x28x512
Conv 4.2 3x3 1 512 2359808 28x28x512
Conv 4.3 3x3 1 512 2359808 28x28x512
Max-Pool 2x2 2 — — 14x14x512
Conv 5_1 3x3 1 512 2359808 14x14x512
Conv 5.2 3x3 1 512 2359808 14x14x512
Conv 5.3 3x3 1 512 2359808 14x14x512
Max-Pool 2x2 2 — - TxTx512
Label Classifier
Fully-Conn. 1 - - - 100356000 1x1x4000
Fully-Conn. 2 - - - 4001000 1x1x1000
Output Layer - - - 1001*Classes 1x1xClasses
Domain Classifier
GRL Layer - - - - Tx7x512
Fully-Conn. 1 - - - 25691136 1x1x1024
Fully-Conn. 2 - - - 1049600 1x1x1024

Output Layer

1025*Domains 1x1xDomains




70 5 Setup and Baseline for Adversarial DA Experiments

B oli (20> 415]617] 514

Figure 5.1: Domains used to evaluate the Domain Mixture scenarios in Chapter 6:
Standard MNIST (S) and MNIST-M (M).

the written digits (see digit 5 and 9 in Fig.5.1). This generally requires
more complex features to discriminate the classes. The randomly extracted
patches for the generation of M might further have the effect, that S might
already be included in great parts in M, which is given when randomly
complete black patches are extracted.

Both datasets come with a pre-defined split into a training set of 60,000
samples and a test set of 10,000 samples. The separation of training and
test is kept throughout all experiments with these datasets. All samples
have a size of 28 x 28 pixels. For the training of the DA architecture for small
input images (see Tab.5.1), the samples were scaled up to 32x32 pixels.
The label space for all classification tasks is defined as Y = {0,1,...,9},
where the label of an individual sample is defined by the handwritten digit
shown on the image.

CORe50

The CORe50 dataset that was introduced by Lomonaco et al. in [56] is
the second main dataset of this thesis. It will be used for the evaluations
of the Domain Mixture scenarios (Chapter 6) and the evaluations of the
new Factor-Preserving DA approach (Chapter 7). The dataset consists
of images of objects from 10 distinct categories with 5 objects each. All
objects were recorded in 11 different recording sessions that are mainly
defined by different locations where a consistent background clutter can
be observed. All objects were held and rotated in a human hand during
acquisition. For each object there are 300 images per session, which results
in a total of 15,000 images per session and 165,000 images overall. Some
example images from all recording sessions are shown in Fig. 5.2.

The CORe50 is mainly used as a benchmark dataset for continuous
learning approaches [63, 72], where the challenge is mostly to adapt a
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ams
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Figure 5.2: Exemplary images for three of 50 objects that were recorded in the
11 different recording sessions of the COReb0 dataset. The background clutter
characteristic for each session is representative for all 50 objects. In each session
a single hand, i.e. right or left, was used exclusively for presentation. Each
session is used as an individual domain in this thesis.

classification model to newly emerging class representatives that occur over
time, without loosing the ability to classify samples from previous time
steps. However, because of the dataset’s controlled and clean recording
setting it will be used in this thesis for the evaluation of DA approaches,
where each recording session is interpreted as an individual domain. As of
today, this research project is the first to use the CORe50 dataset in the
context of DA. The chosen classification task here is the discrimination of
the 10 object categories represented in the dataset.

In context of the introduced factor theory this dataset corresponds mostly
to the photographer view, where often a special object is placed in natural
environments. The domain factors here are mostly related to the location
where the images were captured. All objects are exactly the same in each
domain and therefore all factors directly related to the objects can initially
be assumed to have the same value across domains. During acquisition
of the domains one hand was used exclusively to present the object, i.e.
either the right or the left hand, which makes it an additional domain
factor. Furthermore, it was observed that individual objects are held and
moved differently across domains, however it cannot be judged if there is a
consistent presentation style inside a domain and thus a domain factor.

Due to the originally intended use of the dataset for continuous learning
approaches it does not come with a pre-defined separation into training
and test data. However, since this split is necessary for the experiments in
this thesis, this was done manually by dividing the 300 images per object
and session into chunks of 20 images and using the odd chunks as training
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data and the even chunks as test data. Note, when evaluating a transfer
without DA between source domain A and target domain B, all images of
the domain A are used, but the performance is evaluated only on the half
of the images of domain B. This is done for reasons of comparability since
with DA the other half of B is always used as unsupervised data.

The neural DA architecture that was used in context of the COReb0
dataset was the VGG-16 architecture for large images (see Tab. 5.2). For all
experiments the image samples with a size of 128 x128 pixels were upscaled
to a size of 224x224 pixels to be compatible with the input size of the
pre-trained VGG-16 architecture.
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5.3 Baseline Experiments on CORe50

In Chapter 6 the approach of Ganin et al. [22] will be used in a special
domain setting compared to its original version, while in Chapter 7 the
novel Factor-Preserving DA approach will be based on it. Therefore, here
some baseline experiments with [22] on the CORe50 domains will presented.
The idea is to get a first impression of the general functionality of the
standard DA approach from Ganin et al. [22] and further to understand
the difficulty of the domains and the transfers of models across them. In
a first step multi-source leave-one-out DA experiments will be presented,
where a single domain represents the target domain and all others the
source domains. After this, single transfers, i.e. one-to-one experiments,
between all domains will be investigated, with and without DA. Note, there
are much more other constellations that generally can be investigated here,
however, this thesis will only consider the leave-one-out and the one-to-one
experiments since those are the most meaningful corner cases and also
tractable to do. These results have been published in [86].

Leave-one-domain-out Experiments

The first experiments target to investigate how well multiple source domains
generalize to a single target domain. The experiments are conducted in a
leave-one-out manner without DA and with DA. As stated earlier, with
the availability of multiple source domains the DA approach of [22] can
also be used without any data of the target domain. This investigation and
the investigation where unsupervised data of the target domain is used,
will represent two distinct cases of the use of DA here. In the experiments
special focus is put on the effects of the removal of the domain factors from
the feature embedding of the shared feature extractor, which is the goal of
the used adversarial DA approach.

For the experiments here the VGG-16 architecture (see Tab.5.2) was
used, where the number of output neurons was set to 10, corresponding to
the number of object categories in CORe50. The COReb0 comes with 11
domains. Therefore, depending on the investigated DA case, the number
of output neurons of the domain classifier was set either to 10, when no
unsupervised data was used, or to 11, when additionally unsupervised
data of the target domain was used. For the experiments without DA
the adaptation factor in the GRL layer was set to 0, i.e. A = 0. In
the experiments with DA it was updated according to Eq.(5.4). The
initial learning rate was set to pp = 0.0001 and reduced over iterations
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according to Eq. (5.5). To reduce overfitting, dropout [92] was used in both
classifiers as a regularizer. The input data was RGB mean normalized
following the strategy of the never-aware case (see Fig.4.2b). In the
end, the chosen normalization strategy does only introduce a bias on all
results, while general effects of the major changes between the experiments
are not affected by this. Besides the RGB normalization, no further data
modification or augmentation methods were applied. The number of epochs
was set to two for all experiments, which turned out to be a good trade-off
between convergence and overfitting to the training data.

To get an impression about the trends of the training loss and the training
accuracy of the label and the domain classifier with respect to A and p
during training, an exemplary optimization run is shown in Fig. 5.3 and
Fig.5.4. There, domain 9 was used as the target domain and the remaining
ones as the source domains. For completeness the loss and the accuracy of
the domain classifier without DA are shown as well, although there was no
influence of it on the feature extraction path in this case due to A = 0. The
plots in Fig. 5.3 show that all accuracy curves follow the desired behavior.
Except the domain classifier in case of DA, all curves converge towards
100% training accuracy. When DA is applied, i.e. A # 0, the classification
accuracy of the label classifier can be observed to be significantly less stable.
This is obviously due to the changing features it receives as input from
the shared feature extractor. The domain classifier in case of DA starts
with an increasing accuracy but collapses at some point with a growing
A. This is the expected behavior which shows that it now has difficulties
to discriminate the domains based on the output of the shared feature
extractor due to the removal of domain factors. The cross-entropy losses
in Fig. 5.4 show the corresponding trends for the described characteristics.

For the main evaluation of the multi-source leave-one-domain-out ex-
periments a single result is based on 10 runs with randomly initialized
parameters ¢, of the label classifier and parameters 4 of the domain
classifier. The parameters of the feature extractor 6. were initialized in
all runs with the same pre-trained weights. Furthermore, in each run the
training data was shuffled randomly, resulting in differently composed
mini-batches used during optimization. The reported numbers refer to the
average classification accuracy over the 10 runs. Besides the results for
each leave-one-domain-out experiment the average and the minimum over
all experiments is reported. The minimum performance can be considered
an important measure, especially when looking at safety critical systems
where it is essential, independent of the specific case, to not fall below a
certain performance threshold value that ensures a safe behavior of the
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Figure 5.3: Top: Accuracy curves for the leave-one-domain-out experiments
where domain 9 was the target domain. The plot shows two epochs with a moving
average applied to flatten the original curve. Bottom: Curve of the learning rate
and the GRL adaptation factor A during training. Without DA, A = 0 for the
entire optimization process.
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Figure 5.4: Cross-entropy losses during training corresponding to the curves
from Fig.5.3.

system.

The general expectation of the experiments here is that a good perfor-
mance should be observed even without DA since in the CORe50 dataset
there is usually at least one domain that is visually similar to one of the
other domains, i.e. most of the relevant factor values should already be
covered by the training set. If there are nevertheless new factor values in
the target domain, DA with unsupervised data should help to improve the
performance in such a case. If there are only new combinations of factor
values in the target domain, DA without unsupervised data should already
be sufficient to improve the generalization ability of the models.

The results are shown in Fig. 5.5. The general expectation that many
domains are very similar and thus the target domain factor values are well
covered by other domains is satisfied when looking at the results without
DA. There, independent of the target domain, mostly more than 90 %
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Figure 5.5: Multi-source leave-one-out experiments. The left out domain
represents the target domain, while the others are used as the supervised source
domains. The experiments were carried out with and without standard DA, while
the latter was applied with and without additional unsupervised (usv) samples
from the target domain.

classification accuracy can be reached. The only outliers are domain 6
and 10. Analyzing the samples of these domains reveals that those can be
expected to be more difficult to transfer to since their background char-
acteristics differ strongly from other domains. Both come with dominant
fine-grained edges in the background of the presented object. In domain
6 this is caused by a carpet and in domain 10 by a fence. From theory,
considering these appearances as visual factors those can either be new
values or new combinations. A clear tendency to one of these cases can
not be made only from the experiments without DA.

If DA without unsupervised data is applied for the same source-target
constellations, predominantly negative transfer can be observed, i.e. a
drop in classification performance occurs compared to no DA. Possible
reasons for this drop can be either the additional constraint on the feature
extractor that is introduced by the domain classifier or the removal of task-
informative factors through DA. Looking at domain 6 and 10 no significant
changes in classification accuracy can be observed. This shows that the
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main reason for the low accuracy is most likely caused by completely new
factor values and not by new combinations of already known values from
training.

When DA with unsupervised data is applied, the performance on domain
6 and 10 improves significantly. This confirms the assumption about new
factor values in these domains that are now introduced by the unsupervised
samples. However, for other target domains, like domain 1, 4, and 8, even
a further decrease in performance compared to DA without unsupervised
data can be observed, i.e. negative transfer occurs here. A possible reason
for this could be the increased number of domains during training, through
which possibly even more domain factors are removed, which potentially
include task-informative factors as well. Also, compared to the experiments
without DA, significant negative transfer can be observed on seven target
domains. This drop is most likely also caused by the gradient from the
domain classifier and the removal of task-informative factors.

In summary, looking only at the averaged results of the experiments
without DA and DA with unsupervised data, it can be seen that those
are similar. This is due to the fact that the slight negative transfer on
several domains is balanced out with the strong improvement for domain 6
and 10 when unsupervised data is used. When looking at the minimum
performance, the clear method of choice would be DA with unsupervised
data since this also leads to a high performance for cases where the target
domain comes with new factor values. From the leave-one-domain-out
experiments, however, it can not be clearly inferred which factors cause the
negative transfer, since the factors are based on mutual similarity and dif-
ference between individual domains. Consequently one-to-one experiments
are required to gain more insights into factors that cause errors when being
removed.

One-to-one Transfer Experiments without DA

To get a better impression of the transfers between individual domains of
the COReb0 dataset and to identify factors that potentially caused negative
transfer in the previous multi-domain experiments, one-to-one experiments
were conducted. In a first step this was done without DA between every
possible pair of domains. For the implementation this means optimizing
the VGG-16 architecture from Tab.5.2 on each domain with A = 0 and
testing it on all other domains.

The results for all transfers are given in Tab.5.3. The table further
shows the maximal performance for a given target domain among all source
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Table 5.3: One-to-one transfer experiments without DA. The results show the
classification accuracy. Good performance is indicated by bright green color,
while bad performance by bright red color. Left-hand domains are marked in
blue.
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8 0.83 059 0.57 0.76 0.71 (0.59 057 - [0480.52/050) 0.61 0.1
9 [0:52]/0.661 (0. 74 072 |05 01801 (057|051 - [0M01 066 051 0.30
10 (03751 [0:69110:631 0811 075 [0:69] 0501 0-74 060 - [0:64 0.69 0.59
11 [0:57] 0661079, (048110721 (0401 0.74 [0:58] 0.66 (048] - | 0.57 0.40

Avg 0.68 0.61 0.64 0.63 0.59 0.51 0.59 0.64 0.56 0.50 0.58
Maz 0.83 0.78 0.80 0.81 0.75 0.70 0.74 0.80 0.76 0.68 0.76

Source Domain

domains. Comparing the results to those of the corresponding target
domains in the leave-one-domain-out experiments in Fig.5.5, it can be
observed that in the single transfer experiments the performance generally
is lower. This shows that training on multiple-source domains not only
memorizes internally all source domains, but rather builds a more general
model that helps to perform better on the target domain.

The overall tendencies of the accuracies are very similar to the multi-
source experiments. This can been seen at the example where domain 6
and 10 are the target domains (columns). Reflected in the average accuracy,
here the performance is compared to other target domains very low, which
was also a major outcome of the multi-source experiments.

However, when domain 10 is the source domain (row), the best average
and highest minimum performance can be observed. This indicates that
the domain itself covers already a large variety of values for factors related
to the background and thus the model is able to handle those for the
different target domains. Among the target domains, domain 1 shows
both, the highest maximum and the highest average performance. Since
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this domain comes with a white and mainly clutterless background, this
could be assumed to be the reason since the other domains are more
complex and thus already cover this easier domain. However, in Chapter 7
a characteristic of the presenting hand will be identified as contributing
mostly to this result.

Looking at the transfer matrix as a whole, reoccurring patterns of weak
performance can be observed. Examples for such are the transfers from
source domains 4, 5, 6, and 8 to the target domains 2, 3, 7, 9, 11. Analyzing
the images of these domains shows that for the mentioned source domains
the objects are exclusively presented in the right hand, while for the target
domains the left hand was used (see Fig. 5.2). The transfer between these
two groups of domains obviously leads to a clear drop in performance. The
same can be observed when the mentioned source and the target domains
are swapped. In contrast, the transfer of models between domains where
the same hands were used works clearly better.

The results showed that the hand might obviously be a prominent factor
that is embedded in the feature representation of classes and consequently
causes errors for changing hands. Removing the hand from the feature
representation through DA could therefore theoretically help to improve
the transfer performance.

One-to-one Transfer Experiments with DA

For the application of DA between a single source and a single target
domain, following the approach of [22], unsupervised data of the target
domain is additionally used. As stated earlier the goal of this DA approach
is to remove all domain factors from the feature embedding of the shared
feature extractor. In the previous one-to-one transfers without DA it was
shown that the hand used for presenting the object is a factor value that
changes across certain domains and thus might be the main reason for a
reduced performance between domains where a different hand was used.
Since the hand is obviously a domain factor in such a transfer constellation,
the removal of it through DA could be expected to lead to an improved
transfer performance.

The results are given in Tab.5.4, where the difference in percentage
points to the experiments without DA is reported. Here, surprisingly similar
patterns can be observed as in the experiments without DA. Obviously the
performance on transfers where the hand changes between the domains has
decreased even further. This is particularly pronounced for the transfer
from domain 3 to 5 with a decrease of 17 percentage points and 7 to 8
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Table 5.4: Improvement by DA on one-to-one experiments. The colored cells
show the difference in percentage points to Table5.3. Min and Max refer to
absolute accuracies. Left-hand domains are marked in blue.

Target Domain (w/ usv data for training)
1 B B 4 5 6 @ 8 @ 10 [l Avg Min
1 - 008 -0.06 0.04 007 021 -001 0.04-007 022 0.09 0.0 0.19
10.02 -0.02 -0.02 -0.07 0.04 0.02 -0.04 0.05 0.03 0.00 .15
3 -003 002 - 011 -0.17 -0.02 0.02 -010 0.01 0.06 0.07 -0.02 0.33
4005 000 -0.05 - 0.2 006 -0.05 007 -0.08 0.05 -0.03 001 0.2
5 004 0.06 005 002 - 0.09-003 005 -0.05 0.12/0.00 0.02 1.3
6 [0.08 006 -0.03 010 0.14 - 001 011 -0.08 0.7 -0.02 0.05 031
-0.09 004 0.02 -0.09 009 0.02 - -0.16 -0.01 0.03 -0.03 043
£0.00 0.04 -0.08 0.03 0.09 008 -007 - -0.08 017 0.01 0.41
9 1005 010 0.07 -0.08 -005 -0.02 0.11/-002 - -0.02 0.1 0.03 .23
10 [10:031[50:05] <0:13: [010T] 10:001 F0:01] ~0:07 00T 045! - [50:05] -0.01 0.15
11 [F0:0% [NOR0T =001 01001 [<0:091 =003 H01001 F01H NO07F002| - | -0.02 034

Source Domain

Avg 0.01 0.03 -0.03 -0.01 0.00 0.03 -0.01 -0.01 -0.05 0.08 0.02
Maz 0.83 0.80 0.82 0.83 0.83 0.76 0.75 0.84 0.75 0.74 0.78

with 16 percentage points. The targeted goal to improve the performance
through DA can mainly be observed between domains where the hand
does not change. Here, the transfers from domain 1 to 10 and 1 to 6 show
the biggest improvement with 22 and 21 percentage points respectively.
A plausible reason for this, similar to the multi-source experiments, is
that the new, unique factor values of domain 6 and 10 are introduced
through the unsupervised data during training which ultimately leads to a
better classification accuracy. Overall, the average increase for transfers
between domains where the same hand was used is at 5.7 percentage points.
For changing hands an average decrease of -3.8 percentage points can be
observed.

Without DA the highest minimum performance of 59% accuracy could
be achieved when domain 10 was the source domain. After the application
of DA, the domain in this category is now with only 49% accuracy domain
1, indicating the strong negative transfer introduced through DA.

Contrary to the expectation that the removal of the factor ’hand’ from
the feature representation through DA could improve the transfer between
domains where different presenting hands were used, the experiments
showed the opposite. A possible reason for this could be related to the
fact that the hand is not only domain-informative, but can also be task-
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informative by giving hints about the object category through its posture
when holding the object. Furthermore, a holding hand is visually close
to the target object or even overlaps with it. This can also have negative
effects since object features overlapping with the hand will not be allowed
anymore, as already explained in Chapter 3. In Chapter 7 FP-DA will be
proposed to preserve such a valuable factor in the leave-one-domain-out
DA setting, reducing the shown negative transfer significantly.

5.4 Summary

This chapter introduced in the first part details on the functionality of the
DA approach from [22] and presented the two implemented variants of it
that are used as a baseline DA model for the experiments in the subsequent
chapters. The two variants differ in their usability for images of different
sizes, which require a different number of layers and thus parameters.
Furthermore, two relevant DA datasets for the evaluations, the MNIST digit
dataset in two variants and the CORe50 object classification dataset, were
introduced. Since the latter is relevant as a baseline for both subsequent
chapters, baseline experiments were carried out on this dataset here as
well. The idea of those is to provide a better understanding of the DA
approach and the transferability of models between the pre-defined domains
from the COReb50 dataset. The experiments were composed of leave-one-
domain-out experiments as well as one-to-one transfer experiments with
and without DA. The leave-one-out experiments showed that through the
application of DA negative transfer can be observed, which is suspected
to be caused by the removal of task-informative factors. The following
investigations of one-to-one transfers revealed that generally the transfer
between domains with a change in the presenting hand leads to a reduced
performance in comparison to similar hands. The assumption that the
removal of the domain factor ’hand’ from the feature embedding through
DA would lead to a better transferability could not be confirmed in the
subsequent experiments, instead an even worse performance was observed.
A hypothesis for this observation is that the removal of the hand removes
also task-informative factors, like here the hand posture. Furthermore, the
visual closeness or overlap of the hand with the target object might have a
negative effect due to architectural reasons.
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6 Domain Mixture Scenario

In this chapter the commonly neglected Domain Mixture scenario will be
introduced and evaluated. The scenario describes a situation where there
are domains that only have training samples for a subset of all relevant
classes. Two constellations, the complete and the sparse Domain Mixture
scenario, will be investigated in this chapter on the two introduced domain
datasets MNIST/MNIST-M and CORe50. The results on the MNIST
domains were published in [85].

The first section of this chapter discusses commonly investigated scenarios
and introduces the two variants of the Domain Mixture that are investigated
here. This is followed by a brief overview of related work, where the focus
is on the scenarios occurring there, and their distributions of samples in the
domain-class space during training. The experiments that are composed of
the investigations of a standard scenario and the two variants of the Domain
Mixture scenario will be presented in the subsequent section. Finally, a
short summary closes this chapter.

6.1 Domain Adaptation Scenarios

The typical scenario that is investigated in DA research is the case that
one or multiple source domains and a single target domain are given,
while in all source domains usually all classes from ) are represented with
supervised samples and for the target domain no or only unsupervised
samples of all classes are available. In this thesis this described DA scenario
will be called the standard scenario. The sample coverage of the domain-
class space in this scenario is exemplary depicted in Fig. 6.1 (I), where the
classification task comprises three classes and domain 3 is the unsupervised
target domain. The only known label of the target domain samples is the
domain label d;.

However, the standard DA scenario with its highly regular assignment of
supervised and unsupervised data is very idealized in context of real-world
applications. This is for example the case for a constellation with multiple
intelligent camera systems, as it was described in the opening example of
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Figure 6.1: Top: Distribution of object samples in an interactive object learning
setting of different camera systems. Each system represents an individual domain.
Bottom: For a given domain-class combination, 'O’ describes supervised samples,
’X> unsupervised samples, and empty fields missing samples. The investigations
of this chapter are based on the shown scenarios, the standard scenario (I) and
the overlooked Domain Mixture scenario in the two configurations (II), (III).
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this thesis (see Fig. 1.1). There, each system encounters samples of different
classes during lifetime and can receive labels for them through interaction
with users, as e.g. presented in [31]. The depicted situation most likely
leads in an early stage of the system to a sparse distribution of supervised
samples for certain classes across domains. Furthermore, due to limited
user interaction some classes might also only be covered by unsupervised
samples. Such DA scenarios will be called Domain Mizture scenarios (see
Fig.6.1 II&IIT). A distinction is made further between the complete (II)
and the sparse (III) Domain Mixture scenario. In the complete scenario
the entire domain-class space is covered by samples, while in the sparse
scenario all classes are covered, but some domain-class combinations are
lacking data completely. For real-world systems the sparse scenario is the
closest approximation since databases of such systems usually build up
over time. In the depicted situations the source and target data is mixed,
therefore, the terms source and target dataset will be used in the following
instead of the terms source and target domain.

A visualization of the complete Domain Mixture scenario in the feature
space plot is given in Fig. 6.2. The Domain Mixture scenario shows a kind
of strong sample selection bias, where the selection bias affects classes that
are exclusively selected or excluded from certain domains in the overall
source dataset.

6.2 Related Work

Related work of the DA research area mostly assume that the source dataset
is composed of one or multiple domains, where each provides sufficient
samples for all classes defined by ). In such a case the notation source
domain(s) is a valid notation [7, 67, 101].

A categorization of DA approaches that has not been introduced yet in
Chapter 3 can be based on the amount of label information that is available
from the target domain. Here it is usually differentiated between supervised
DA approaches, semi-supervised DA approaches and unsupervised DA
approaches.

In supervised DA approaches like [67, 81, 101] the target domain is
covered by supervised samples, however, usually only few of such, which
makes the optimization of a well generalizing classification model chal-
lenging. The limited availability separates this group of approaches from
standard network training, where domains are commonly not considered.
A typical approach here is to use these limited labeled samples from the
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Figure 6.2: Visualization of the source dataset (left) and the target dataset
(right) constellation of the complete Domain Mixture scenario at the example of
two domains in the feature space plot. The visualization depicts the extreme case
of only two domains with only two classes. Note, here the domain factor ’hand’
might mistakenly be interpreted as task-informative when training is carried out
only on the source dataset.

target domain to align the distributions not only globally in the feature
space but also on a class level, which can reduce hidden class misalignment
between domains and thus reduce negative transfer [67]. Semi-supervised
DA approaches like [35, 53] investigate more challenging scenarios, where
only a subset of all classes are covered by few supervised samples from the
target domain. In this case the supervised target data can be used to align
at least the represented classes between the domains in the feature space.
If additionally unsupervised data of the other classes are available, both,
the class alignment and the global alignment, e.g. via a domain confusion
loss, can be combined for improved DA [35].

Most DA approaches, e.g. [7, 18, 81, 82, 93], face the most challenging
case, where only unsupervised samples of the target domain are available,
i.e. the case depicted in Fig. 6.1 (I). Since here no additional class align-
ments are possible due to the missing labels, the deep learning approaches
mainly focus on additional cost functions that target to align the global
distributions better [8, 22, 94, 101].

Furthermore, DA approaches can be categorized by how domains are dis-
tributed to the source and the target dataset. The classic case investigated
is that the source dataset consists of a single domain and the target dataset
of a single, different domain, as e.g. [100]. This describes the new-case of
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generalization from Chapter 4 (see Fig.4.1a). Also multiple domains can
be included in the source dataset, as for example in [27, 34, 51]. However,
as stated already in Chapter 4 the part-case of generalization, where the
target domain is one of multiple source domains, is mostly neglected there.

A general goal that investigations from literature and the investigations
related to the Domain Mixture scenarios (II) and (III) have in common is
to generalize well to the unseen or unlabeled domain-class combinations. In
literature these domain-class combinations are all of a single domain, while
here those are distributed over all domains. The entire Domain Mixture
investigations of this chapter can be categorized as part of unsupervised
DA, since from the domain-class combinations that should be generalized
to no supervised samples are assumed to be given. The DA approach of
[22] (Fig.3.6) is used here as an exemplary unsupervised adversarial DA
approach for the investigations, but could generally also be replaced by
another approach like [8]. The results are expected to be invariant of the
chosen unsupervised DA approach.

6.3 Experiments

The datasets that were used for the main investigations of the Domain
Mixture scenario are the standard MNIST dataset (S) and the MNIST-
M (M) dataset, where each was considered as a pre-defined domain, i. e.
d € {S, M} (see Chapter5). Other typical DA datasets like [5, 69, 82, 97]
that provide a more challenging classification task could have been used
here as well, however, to get a first general idea of the difficulties of the
Domain Mixture scenario, the simple MNIST data was most suitable. Since
the investigation required several hundred optimization runs, the dataset
choice further allowed to use an architecture with less parameters, which in
consequence results in less training time. To show that the results also hold
for real-world datasets in combination with a more complex architecture,
extended investigations with the CORe50 dataset are presented at the end
of this section.

For the MNIST experiments the adversarial DA architecture depicted in
Tab. 5.1 was used. The learning-rate ;1 and the adaptation factor A\ were
updated during training according to (5.5) and (5.4). The initial learning
rate was set to pp = 0.01 and dropout was applied in all fully-connected
layers during training. A single optimization run consisted of two epochs.
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6.3.1 Standard Scenario (I)

In the first experiments the standard scenario (I), will be investigated
using the two MNIST domains with their ten digit classes. The results
of these will later be used as a baseline for the newly defined Domain
Mixture scenarios. Some experiments reproduce values from the used
architecture in [22], however, due to the fact that for the DA approach an
own implementation in a different framework was used, slightly different
results could be expected.

The results for these experiments are shown in Tab.6.1. Each reported
number is based on an average of 10 optimization runs, where in each all
parameters were initialized randomly. For the experiments here the term
source and target domain are valid notations since for one domain all classes
are either completely covered by supervised or unsupervised samples. For
each transfer configuration, i.e. S— M, M =S, (S+ M) — (S+ M),
three results are reported. The 'DA [22] result and two baselines without
DA. ’Source only’ refers to the baseline of training only on the source
domain. 'Train on Target’ to the baseline of training on the training set of
the target domain. All reported numbers are based on the test sets of the
pre-defined domains.

Table 6.1: Standard DA experiments with the MNIST domains. The results
show the accuracy on the target test sets.

@ Source: S M S+ M
Target: M S S+ M
Source only | 0.546 0.976  0.978

DA[22] | 0.763 0.963  0.965

Train on Target | 0.962 0.992  0.978

Column 1 of Tab. 6.1 shows the classic transfer S — M that has also
already been investigated in [22], where S is the source domain and M the
challenging target domain that comes with new factor values related to
the background. 'Source only’ shows with the very low accuracy of only
54.6 % that the classification model is biased too much to the monotonous
black background in S and therefore is not forced to learn filters that are
able to cope with varying background values as represented in M. Using
the adversarial DA method [22] leads to a significant gain in classification
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accuracy to 76.3 %. The introduction of the new factor values through the
unsupervised samples from M obviously helps to learn features that can
handle varying background factor values better. Compared to the results for
the same experiment presented in [22], where 81.5 % accuracy was reached,
the number here is slightly lower. The lower result is assumed to be related
to the different deep learning framework that was used. Nevertheless, the
general tendencies are similar and thus show the correct implementation
of the approach. The last result for S — M is the upper baseline *Train
on Target’, which shows which performance can be reached if training and
test data are both from the M domain. As expected for this case, a high
classification accuracy of 96.2 % could be reached.

The transfer M — S, given in the second column of Tab. 6.1, shows a
very high accuracy even without the application of DA, i.e. training only
on the training set of M. The most likely reasons for this are on the one
hand side that M introduces already a large variety of background related
factor values and on the other hand side that the S domain might anyways
already implicitly be included in M due the way how M was created (see
Chapter 5). Thus the latter explanation would correspond to the part-case
of generalization that was introduced in Chapter4 (see Fig. 4.1c). Applying
DA for the M — S case leads to slight negative transfer. Possible reasons
for this could be the removal of task-informative factors related to domain
factors and the general influence of the additional loss from the domain
classifier that puts in this case a needless constraint on the feature learning
process.

The third investigated experiment represents a rather unusual transfer
with (S + M) — (S + M). It describes the same-case of generalization
(see Fig.4.1b). Here, the two baseline results ’Source only’ and "Train on
Target’ are identical. The accuracy is with 97.8 % approximately in the
middle between *Train on Target’ of S — M and M — S. For DA, negative
transfer can be observed for probably the same reasons as at M — S. The
result here and the result of the previous transfer M — S show the general
risk of negative transfer when a DA approach with a learned normalization
is applied in the same- or the part-case of generalization.

6.3.2 Complete Domain Mixture Scenario (II)

In this section the more open Domain Mixture scenario will be investigated
in its complete configuration (see Fig. 6.1 (II)). The goal is here to reveal the
effects on the classification model with and without DA for the described
scenario. Furthermore, it will be investigated how labels should ideally be
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distributed in the domain-class space if control over labeling is given, but
the amount of labels is limited.

In the experiments here, the source dataset is composed of supervised
samples from the subset of classes Vg C Y from the S dataset and the
subset of classes Vs C Y from the M dataset. It is ensured, that the union
of both include all digit classes, i.e. Ys U Yy = Y. Additionally, in the
experiments the cardinality of the subsets of classes is always identical, i. e.
q = |Vs| = |Ya]|- Under the conditions described, the possible cardinalities
of Vs, Vas are in the range of 5 < ¢ < 10. For ¢ > 5 this means that certain
classes are represented by supervised samples from both domains in the
source dataset, i. e. partial overlap of supervised classes in the domain-class
space. The case ¢ = 10 corresponds to full overlap and thus to the standard
DA experiment (S + M) — (S + M) reported in Tab.6.1.

The target dataset is composed of unsupervised samples for all domain-
class combinations that are not in the source dataset, i.e. V=Y \ Vs
and Yy =Y \ Y. Since one is generally interested in the generalization
to the domain-class combinations for which no supervised data is available,
Vs and V) also define the test classes on which the evaluations of the
experiments are carried out here. This will be done independently of the
application of DA. The experiments were conducted in dependence of the
number of supervised classes per domain g = || with d € {S, M}. Every
result for a specific cardinality is based on 35 runs, while in each run the
classes in ); were chosen randomly under the introduced constraints. An
exemplary run configuration is shown in Fig. 6.3.
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Figure 6.3: Exemplary distribution of the domain-class combinations to Vs, Vs,
Vs, and Vs, for ¢ = |Va| = 7. ’O’ describe supervised samples, 'X’ unsupervised
samples. Note, the supervised and unsupervised domain-class combinations in
the experiments are randomly distributed and are not necessarily concatenated
as shown here.
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The upper two plots of Fig. 6.4 show the results for the ’Source only’ and
'DA [22]’ evaluations under the conditions introduced. The ’Source only’
evaluations reveal a remarkably poor performance for the case of |V4| = 5.
This is the case where no overlapping supervised class samples from the two
domains exist and testing is performed on the domain-class combinations
that were not involved during training at all. The average accuracy on the
entire test set, i.e. on Vg and Yy, reaches only 15.8 %. This is surprisingly
low, since naively one could have expected the classification model to
generalize better, as it has seen all domains and all classes. In terms
of domain factors this means there should not be completely new factor
values anymore, but rather only new combinations of already known values.
Especially, in comparison to the ’Source only’ standard DA experiment
S — M (see Tab. 6.1), where in contrast the model only saw a single domain
with all classes, i.e. new factor values are introduced by the target domain,
a higher accuracy was expected here. This shows that new combinations
of already known factor values seem to be the more challenging task here.

As a consequence of the unexpected poor performance, the errors made by
the classification model were investigated more closely. The investigations
showed that the classification model matches test data of one domain to
classes that have been seen during training of the same domain. Given
the exemplary constellation of Fig. 6.3, where from M the digits 3 to 9
were shown during training, testing is performed on the digits 0 to 2 of
M. The predicted classes for the test data then mostly are among the
digit classes 3 to 9 that were shown during training. This indicates that
the classification model obviously uses the value of a domain factor as
an additional powerful feature for classification. Doing so, it allows the
classifier to split the training data into two groups for the two domains, and
then based on that, classify which digit is shown. Overall, this simplifies the
classification, since within the pre-classified groups only 5 digit classes have
to be discriminated for the case of |V4| = 5. This pre-grouping, however,
becomes harmful if new domain-class combinations appear and can thus
lead to false classifications as a consequence.

To provide a measure for the influence of this pre-grouping, the subset
confusion was defined as

5 Hil max (y;) € Yo, max(y;) € Va}|

suCeYa) = (i | max (v;) € i) 6D

for a given test set of the classes )); with samples i, the given ground-truth
one-hot label vector y, and the predicted one-hot label vector y,”. If
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Figure 6.4: 'Source only’ and DA results for the accuracy on Y, and the subset
confusion SuCo();). During optimization of the architecture, the training set,
i.e. source dataset for DA, was composed of supervised (sv) samples from S
for the classes Vs, and sv samples from M for YVys. For DA all domain-class
combinations that were not in the source dataset were involved unsupervised
during optimization.
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SuCo(Y;) = 0 it means that all the predicted classes of the test samples are
in the correct subset ). Note, this does not indicate that the classification
was correct. For SuCo();) = 1 it means that all test samples were mixed
up with classes that were included in the source dataset from the same
domain. A value of 1 thus indicates that none of the classifications was
correct.

The lower plots of Fig. 6.4 show the corresponding subset confusions for
the experiments. Without DA the subset confusion shows for |V;| =5 a
very high value and thus explains the low classification accuracy of this
constellation. Generally, when comparing the curve of the accuracy and the
subset confusion, it is evident that they are basically the flipped counterpart
of each other. This indicates that the classification errors are mostly caused
by the described pre-grouping learned on the given source dataset.

When the amount of supervised classes per domain |);| increases, the
accuracy on the unseen domain-class samples increases as well, and ul-
timately reaches 66 % over all test samples. The reason for the gain in
accuracy is most likely caused by the increasing overlap of supervised
classes samples in Vg and Y;; during training. In terms of factors this
means that an increased amount of factor value combinations is shown.
Showing the same digit supervised with varying background factor values
forces the classification model more to learn the factors independent of their
combinations rather than using the combination itself as a single feature.
Thus, digit shapes and background are represented more independently,
from which also the test samples in Vg and Vs profit.

Overall, similar to the previous experiments on the standard DA sce-
nario (Tab.6.1) the results here also showed the increased difficulty of M
compared to S, which is reflected in the permanently lower accuracy on
M.

When the DA method from [22] is applied in the complete Domain
Mixture scenario (II), already at only five supervised classes per domain,
i.e. | V4| =5, a very high accuracy can be observed (see Fig. 6.4, top right).
The accuracy reaches here without any overlap in supervised classes from
the domains a high accuracy of 86 %. This accuracy meets the expectations
since it lies directly in the middle of the standard experiments with DA of
S — M and M — S from Tab.6.1.

The attached domain classifier together with the unsupervised domain-
class combination samples obviously helps to inhibit the learned pre-
grouping, i.e. it inhibits the domain factors as a feature, making them no
longer available for exploitation. In contrast to the experiments without
DA, surprisingly here the accuracy does not further increase with a larger
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overlap of supervised classes from the domains, instead it remains approxi-
mately constant. An increase could have been expected here as well since
with more overlap of supervised class samples from the domains, the model
could be forced to learn more general features.

With regard to a multi-camera system setting with human interaction it
can be concluded from the standard DA experiments (I) and the complete
Domain Mixture scenario experiments (II) that it makes most sense to
primarily provide labels to domains that come with a high variance in factor
values. If this domain property is known, it allows to achieve the better
performance, as it was shown in the S — M vs. M — S experiments. The
application of DA is not an essential requirement in this case. However,
the domain that provides the greater variance in factor values is sometimes
unknown. If for such a case the goal is to keep the minimum performance
as high as possible, it makes most sense to distribute labels across the
involved domains and combine this with DA, to inhibit that domain factors
are used to learn a pre-grouping of the classes.

6.3.3 Sparse Domain Mixture Scenario (III)

The even more realistic and relevant scenario for real-world applications is
the sparse configuration of the Domain Mixture scenario (III). In contrast
to the complete Domain Mixture scenario, here the domain-class space is
not completely filled, meaning that for some domain-class combinations
not even unsupervised samples are available. The relevant question for
this configuration is whether the unsupervised domain-class samples are
actually required for DA and if so, how many are needed to achieve a
reasonable performance. Note that in the Domain Mixture scenario the
domain classifier can still be trained even without unsupervised data, since
data from both domains is always available in the chosen investigation
setting.

To answer this questions the evaluation scheme of the experiments
was slightly changed. In the previous investigations, ); always repre-
sented all unsupervised (usv) domain-class combinations during training,
ie. Vo= Vi, .- For the sparse Domain Mixture scenario investigations is
Vi =i, U Viyuu, where Yy, . represents the domain-class combina-
tions that were not shown during optimization at all, i.e. the gaps in the
domain-class space. In the experiments here, the number of supervised
classes per domain was fixed to |Vg| = 5 and the number of unsupervised
classes per domain was increased from 0 to 5, i.e. |V, | € {0,...,5}, to
investigate the necessity for unsupervised data.
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Figure 6.5: Investigation of the necessity of unsupervised samples in the chosen
DA approach for a fixed number of supervised classes per domain |V4| = 5. The
right plots show the result for an adapted batch-size, where the appearance
frequency of domain-class combinations in the batch is balanced. Bottom: Split
up of the upper results into actual unseen and unsupervised (usv) domain-class
combinations.
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Fig. 6.5 shows the results of the experiments. The results for |V, | =5
correspond to the result of the complete Domain Mixture scenario with DA
for the case of |V = 5. In the top left plot, |V, | = 0 depicts the case
where no additional unsupervised data from the target dataset is added.
The average accuracy reached there is with 57.9 % clearly higher than the
accuracy for 'Source only’ at |Vy| = 5 in Fig. 6.4, where only 15.8 % with
the identical training and test data was reached. This clearly reinforces the
general benefits of using DA in the Domain Mixture scenario, even without
additional unsupervised data. The domain classifier attached to the shared
feature extractor obviously removes the background related factors to a
large extent and thus hinders that features are based on the corresponding
domain factors. Through this the mentioned pre-grouping of the samples
is suppressed in large parts. Since most domain factor values are already
sufficiently represented in Vs and Y, no additional unsupervised data is
obviously required to achieve a first positive effect of the domain classifier.
With an increasing number of unsupervised classes per domain an increase
in accuracy can be observed. This is likely caused by new background
related factor values that add to the positive effect of the domain classifier.

Another notable result of the experiments conducted here can be seen in
the bottom left plot of Fig.6.5. In this plot, the test accuracy is further
split up into V., and Yg,.....- The accuracy for the unsupervised samples
of M, i.e. Yu,,, is for all |V, | slightly above the unseen domain-class
combinations Yy, ... This could have been expected, since the model
has seen the Yy, domain-class combinations already during training and
thus should be capable of handling those better. In the S domain this
is different. Here the accuracy on Vs, is surprisingly constantly below
VS s While this is very pronounced for small |V, |. A hypothesis for
this effect is related to the visual ’simplicity’ of the S dataset on which
already with only training on M a good accuracy can be achieved, as shown
in Tab.6.1 for M — S without DA. Adding in such a case an additional
constraint by means of the domain classifier can lead to negative transfer
on the unsupervised domain-class combinations similar to the experiments
M — S and (S+ M) — (S + M) with DA.

For a more detailed study of the effect that the unseen domain-class
combinations show a better result than the unsupervised combinations,
the composition of batches during training was closer investigated. During
training of the DA architecture proposed by [22], the second half of each
batch consists of images from the available unsupervised samples, i.e.
samples of which only the domain label is known. In the sparse Domain
Mixture scenario investigations, however, this can lead to a strong imbalance

usv
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among all domain-class combinations when training the domain classifier.

With a batch-size of 64 and ten supervised domain-class combinations,
each supervised combination appears on average 3.2 times in the first half
of a training batch. Following the procedure of [22] for the experiments
here, the second half of each batch is filled up with unsupervised domain-
class combinations. This leads to an imbalance regarding the appearance
frequency if less unsupervised than supervised domain-class combinations
are available. In such a case the unsupervised domain-class combinations
are presented more frequently to the domain classifier and can lead to a
falsely biased tendency to classify samples. To tackle this issue a heuristic
was chosen with which for each experiment an individual batch-size was
determined. The batch-size was increased starting from 32 samples by
approximately 3.2 samples for each additional unsupervised domain-class
combination to keep the overall average appearance of 3.2 times per domain-
class combination in the complete batch. With the increase of the number of
unsupervised classes per domain |}, | from 0 to 5 the batch-sizes are BS €
{32,38,45,51,58,64}. Note that this heuristic does not necessarily define
the optimum solution. The results for the adapted batch-size experiments
are given in the right plots of Fig. 6.5. It shows that the general accuracy
for all experiments where the imbalance existed increased with the adapted
batch-size. However, the described effect that Vg, is constantly below
VS een could only be reduced but not resolved completely.

Theoretically, this adaptation of the batch-sizes would also have been
necessary for the previous DA experiments in the complete Domain Mixture
scenario (Fig. 6.4). The imbalance exists there as well for || > 5. However,
generally such an adaptation for real-world applications is not feasible since
the classes represented in the unsupervised data are unknown.

6.3.4 Evaluation on CORe50 Dataset

The MNIST domains provide a clean setting that allowed to reveal the
actual problem of the Domain Mixture scenario when no DA is applied. To
show that these findings generally also hold for real-world applications com-
bined with more complex architectures, the investigations of the complete
Domain Mixture scenario were also conducted on the CORe50 dataset (see
Fig.5.2). The architecture that was used here is the VGG-16 architecture
depicted in Tab.5.2. Here a batch-size of 64 was chosen as well and the
initial learning was set to pop = 0.0001.

For the evaluations in this thesis only pairs of the CORe50 domains were
investigated. Combinations of more than two domains would have been
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equally possible and would probably lead to comparable results. Since the
baseline experiments in Chapter 5 revealed that the combinations of the
used hand within the domain has a major influence on the generalization
between them, two constellations are investigated in the experiments here.
The first constellation examines the case of same hands, while the second
constellation the case of two different hands.

For the constellation of same hands, here the right hand, the COReb0
domains 1 and 4 were chosen, i.e. d € {1,4}. The results for the accuracy
and the subset confusion, with and without DA, are shown in Fig. 6.6.

For "Source only’, the general tendency of the accuracy over an increasing
|Va| are similar to the MNIST experiments, with a constant gain in perfor-
mance the more supervised domain-class combinations are available while
training. The maximum average accuracy that is reached here without
DA is at 44 % for |V4| = 9. Similar to the MNIST experiments the subset
confusion explains here also most of the errors, which is most likely caused
by the dominant green background of domain 4 in contrast to the simple
white background of domain 1. In contrast to the MNIST experiments
the overall accuracy reached here is lower, which can be explained by the
generally more difficult classification task of CORe50. Looking at the
difference of the individual results of the two domains involved here, i.e. of
Y1 and Y4, the gap between them can be observed to be smaller. Domain
1 shows a slightly better result, which is also in line with the results of the
one-to-one transfers of Tab. 5.3 where domain 1 was on average easier to
generalize to.

When DA is applied, also a clear improvement of the classification
accuracy on the unsupervised domain-class combinations can be observed.
The accuracy increases slightly with increasing |Vg4|. Interestingly, here
domain 4 shows now a better result than domain 1. Clear reasons for this
could not be found within the scope of this thesis.

The other domain constellation that was investigated involved domains
3 and 4, that were recorded presenting the objects in different hands. In
domain 3 the left hand was used, while in domain 4 the right hand. As
shown in the baseline experiments of Chapter 5, two domains with varying
hands generalize clearly worse to each other. Therefore, also in the Domain
Mixture scenario significantly lower accuracies can be expected. The results
shown in Fig. 6.7 confirm this.

In the case of ’Source only’ the average accuracy reaches a maximum
of only 16 % accuracy on the domain-class combinations that were not
involved during training. Note this low accuracy despite the fact that the
overlap in supervised class samples between the domains is here already at
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Figure 6.6: Complete Domain Mixture experiments on the CORe50 dataset,
here in both involved domains, domain 1 and domain 4, the right hand was used
for presenting the objects. Compared to the MNIST experiments the overall
tendencies are similar, however, the maximum accuracy is lower and the results
of the individual domains are closer. Note the different scaling of the y-axis in
the top left plot.
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Figure 6.7: Complete Domain Mixture experiments on the CORe50 dataset,
here with a change of the presenting hand between the involved domains. In
domain 3 the left hand was used, while in domain 4 the right hand was used. A
significantly lower performance compared to the transfer between domains where
the same hand was used can be observed.
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its maximum with |V4| = 9. Obviously the architecture is in this case still
not forced to learn more general features, which could indicate that it has
too many free parameters allowing to solve the classification task based on
the pre-grouping for the classes in ;. Furthermore, here a larger variance
along | V4| can be observed, which is especially pronounced for |V;| = 8.
This might be caused by certain object categories that are more difficult to
classify than others and that have been randomly assigned to Vy. A larger
number of runs would probably compensate for this. The subset confusion
shows for "Source only’ here as well, that most of the errors can be traced
back to the pre-grouping.

When DA is applied, a reduced, but still significant overall increase in
accuracy can be observed here as well. For |Vy| = 5 the accuracy is at 49 %
which is better than the result of 3 — 4 and 4 — 3 with DA of Tab.6.1,
where 41 % and 45 % respectively were reached with DA. Note that the
domain classifier sees in both evaluations exactly the same images during
training. The increase can therefore be explained by the label classifier
which is more familiar with both domains since it has seen supervisedly some
classes of each during training. Also here an increase with more overlap in
the supervised classes from both domains can be observed. However, the
maximum accuracy reached here is only at 64 %. A hypothesis for this low
accuracy compared to the same hand domains is again, that the removal
of the factor ’hand’ also removes task-informative components. The subset
confusion here is still on a high level, which shows that the removal of the
domain factor ’hand’ from the feature representation is more challenging
than only the background. If it is still partially embedded in the features,
it can still be used for the pre-grouping. With domain 1 and domain 4 it
was no domain factor and therefore could not be used for the pre-grouping,
resulting in a lower subset confusion.

Further experiments with other combinations of domains can be found in
the Appendix A.1. The overall tendencies are all similar. For a combination
of domains that are more similar regarding the background and further
come with the same presenting hand, like for example domain 1 and domain
8, the performance gain through DA is reduced, but still significant. All
in all, the general difficulties of the Domain Mixture scenario without DA
and the benefit of using DA there, could be confirmed on the real-world
dataset combined with a more complex neural network architecture.
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6.4 Summary

This chapter introduced and investigated the Domain Mixture scenario.
The scenario is an overlooked constellation in DA that describes the situa-
tion where several domains are represented with supervised samples during
training, however, no domain is completely represented by supervised sam-
ples for all competing classes. It was shown that this scenario has high
relevance for real-world systems with multiple entities, e. g. robots, that
are equipped with cameras and collect image data over time for which
not necessarily a ground-truth label is provided. It was shown at baseline
experiments on MNIST and later confirmed on CORe50 that, given the
Domain Mixture scenario, a standard CNN uses the domain factors as
prominent features to perform some form of pre-grouping that eases the
overall classification task. However, this makes the generalization to unseen
domain-class combinations almost impossible. In contrast, using a DA
method like [22], the domain factors are mostly removed, whereby the
model is not capable to apply the pre-grouping in the classification process
anymore and a significantly improved generalization to new domain-class
combinations is possible. This leads to a clear increase in classification
accuracy, even without any overlapping supervised domain-class combi-
nations of the involved domains. For the MNIST experiments, it was
further shown that even with gaps in the domain-class space, i.e. with
domain-class combinations which are not even represented by unsupervised
samples, a significant increase in performance through DA can be achieved.

Generally, based on the evaluations of this chapter, it can be recom-
mended that if being limited to labeling only specific domain-class combina-
tions and the goal is to achieve always the highest minimum performance,
then the labels should be distributed among the domains and DA should
be used. The experiments showed that this strategy is only harmful if
one of the domains implicitly covers already one of the other domains. If
this is known beforehand, then the best performance can be achieved by
allocating all labels to the classes of the more comprehensive domain and
to train the classification model without DA.
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7 Factor Preserving Domain
Adaptation

In this chapter Factor Preserving DA (FP-DA) will be introduced, a new
training method that was developed as part of this PhD project. The
idea of this training method is to reduce negative transfer caused by the
removal of specific factors through DA. With FP-DA it is possible to
preserve a chosen factor during DA with multiple source domains. If such
a factor is task-informative, this procedure can help to reduce negative
transfer. In the first section of this chapter the theoretical idea of FP-DA
will be presented, while in the subsequent Section 7.2 related work will
be introduced in brief. The preservation of a factor in FP-DA is only
useful if the removal of the chosen factor would influence the transfer
performance negatively. To find such factors, it will be shown that the
application of PCA on one-to-one transfer experiments between the domains
can be a useful means. This procedure will exemplarily be carried out
in Section 7.3.1 based on the baseline results of the COReb0 one-to-one
experiments of Chapter 5. As an extension, it will be shown in Section 7.3.2
how this PCA procedure can further be used to identify factors on class
level that potentially add to a poor generalization between the domains.
The effectiveness of the proposed FP-DA method will then be demonstrated
on the CORe50 domains quantitatively in Section 7.3.3 and qualitatively
with different visualizations methods in Section 7.3.4. Additionally, to show
limitations and necessary constraints of FP-DA to work, it will also be
applied on the OpenLORIS object dataset [90] in Section 7.3.5.

The main contents of this chapter are based on the published journal
article [86].

7.1 FP-DA Approach

In the one-to-one experiments that were carried out in Chapter 5.3 it was
shown that negative transfer through DA mainly occurred between domains
where different hands are used to present the objects. It is assumed that
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this also caused the observed negative transfer within the multi-source
setting investigated in the leave-one-out experiments (see Fig.5.5). As a
potential reason of this negative transfer the removal of all domain factors
from the feature representation through DA has been identified. As stated
before, a domain factor can be semantically related or just visually close
to some task-informative factors. In both cases the removal can make the
classification task more difficult. To sum up, it is not always beneficial to
remove all domain factors, in certain cases it might be useful to preserve
some factors despite the fact that they are domain-informative.

With FP-DA it is possible to preserve a chosen factor f. during DA.
The proposed architecture of Ganin et al. [22] (see Fig. 3.6) represents the
basis for this approach. The update rules of the parameters of the feature
extractor 8., the label classifier ,, and of the domain classifier 84 were
introduced in (5.1), (5.2) and (5.3). Using this approach in the way as
proposed by [22], all domains compete against each other in the domain
classifier, resulting in the removal of all domain factors. In FP-DA this
competition is limited to only groups of domains whereby a chosen factor
fe can be preserved. The competition here is switched off between domains
that have different values for f.. This is achieved by decomposing during
backpropagation the partial derivative of the loss Ly with respect to the
parameters of the domain classifier 8,

0Ly 0Ly od’

- Rl 1
00, od 00, (7.1)
and replacing % by .
0Lg4 0Lg4
—= —F . 7.2
6d/ z @ ( ad/ ) ( )

Here, z is a m-dimensional vector of which each element z; corresponds to
one of the m domains in a given multi-domain constellation. The value of
each element is either 1 or 0. For z; = 1 it means that the gradient of the
domain output neuron d; is kept and backpropagated to the parameters
04. In contrast, if z; = 0, then the gradient from the output neuron d; is
not backpropagated. The elements of z are determined dependent on a
given training sample of domain k the following way:

L {1 if folj) = folk)

. (7.3)
0 otherwise,
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where f.(k) is the value of the factor f. in domain k and f.(j) of domain j.
Like this, it is guaranteed that there is only competition between domains
that share the same value for the factor f. as the current training sample.
Note that the application of FP-DA requires a factorization based on
categorical factor values. Fig.7.1 visualizes the principle in the domain
classifier at an example of four given domains.

Factor f.: 'hand’

dLg

od’

Training Sample

Figure 7.1: The developed FP-DA training method uses given groups of domains,
here generated by the values of the chosen factor f., ’hand’, and allows competition
only between domains within each group. A training sample from the group
where f.=absent is forwarded through the domain classifier. The resulting
gradient vector ‘Zﬁ‘f is element-wise multiplied by Zabsent that zeros the gradients
of the domains where f. = present.

To guarantee that still all other domain factors are removed, the domains
within each group should contain different values of the other domain
factors. If this is not the case, a reduced effect of DA could be expected,
which depicts a limitation of FP-DA. The effect of FP-DA compared to
the standard approach of [22] is shown in the feature space plot in Fig. 7.2.
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Figure 7.2: Comparison of the DA effect in the feature space plot between
the standard adversarial DA approach [22] and the novel FP-DA approach. In
Ganin [22] both domain factors are removed. With FP-DA it is possible to
preserve a chosen factor, here the factor ’hand’, and to remove only the remaining
factors, here ’location’.

7.2 Related Work

This section is a short extension to the related work that has already been
introduced in Chapter 3.

The developed FP-DA method is designed to completely switch off
competition between groups of domains that are not sharing the same value
for a selected factor. In literature, with focus on multi-source DA, there
are other approaches that try to better control or limit the competition
between domains to reduce negative transfer.

Often such a limitation is introduced by a weighting strategy of the
involved domains. One method is to weight pair-wise the target domain
in relation to each single source domain as it was for example done in
[30, 65, 79, 109, 111]. The overall classification model is then usually
defined by multiple sub-classification models for each pair, that together,
weighted by a score of the pair-wise domain similarity, contribute to the
final classification of samples from the target domain. An approach of this
kind is the GAN based approach already presented in Chapter 3, Fig. 3.9.
Another method is to not only consider the source-target relations, but
also the relations between multiple source domains and use them to form
a weighted classification model [52, 74, 78, 104]. In contrast to FP-DA,
none of the methods found in literature considers factor or group based
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competition between domains.

The main goal of FP-DA is to reduce negative transfer by preserving a
chosen factor. As mentioned in Chapter 3 other approaches target to reduce
negative transfer through aligning the domains additionally on class-level.
This is for example also done in [112]. There, the alignment of class specific
clusters of source and target domain is achieved through an additional
cluster adaptation loss that is based on pseudo labels generated during
training for the unsupervised target domain samples. In [110] they add
additionally to a domain classifier a sliced Wasserstein distance measure
on the softmax output of the label classifier with the target to increase the
discriminability of classes also for the target domain. Unlike adversarial
approaches solely based on a domain classifier, here the unsupervised
samples are also forwarded to the label classifier. In contrast to the
mentioned approaches, FP-DA considers the effect of class independent
factors in multi-domain data, which is a complementary direction.

In [87] they consider the case where the difference between a source and
target domain can be described by an accumulation of multiple intermediate
domains. Their approach is to adapt the model step-wise to the target
domain, by generating pseudo labels and fine-tuning the model on the
intermediate domains until the target domain is reached. In terms of
factors they consider a single continuous domain factor that changes its
value smoothly between the adjacent domains. FP-DA in contrast considers
the more general case of multiple heterogeneous factors in a larger multi-
domain setting, while further no intermediate domains are assumed to be
given.

7.3 Experiments

This section will present the experiments that were done to evaluate
the proposed FP-DA approach. Similar to the previous experiments the
classification task will be image classification, here mainly based on the
domains of COReb0 but in Section7.3.5 extended by experiments on
the OpenLORIS object dataset. The preceding experiments that are
relevant for this section are the multi-source leave-one-out experiments and
the single-source one-to-one transfer experiments on the CORe50 dataset
from Chapter 5.3. Using the results of the one-to-one experiments it will
be shown how factors that potentially cause errors in transfer between
domains can be identified and used to group the domains as it is required
by the FP-DA approach. To show that not only domain factors are
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responsible error factors, the investigations will be extended on the class
level. This allows to get more detailed insights of domain differences and
provides directions for future research. Subsequently it will be shown how
preserving a factor through FP-DA is capable of improving the average
and minimum performance in the leave-one-out setting. The positive
effects of it will be highlighted through different visualization methods.
Limits and requirements of FP-DA will then further be investigated in the
experiments on the OpenLLORIS object dataset. The setup regarding the
chosen hyperparameters and the VGG-16 architecture of all optimization
experiments was chosen the same as in Chapter 5.3. All reported numbers
are based on 10 runs with randomly chosen parameters 64, 6, and randomly
composed batches.

7.3.1 Identification of Error Factors on Domain Level

In the experiments in Chapter 5.3 it was already shown how domain factors
that potentially cause errors when being removed can be identified from
one-to-one experiments manually. There, the hand that changes between
the domains was identified as such a factor. In this section the evaluation
should be carried out in a more systematic way that also allows to identify
less obvious domain factors. Here, Principal Component Analysis (PCA)
was selected as a means. It is applied on the one-to-one experiments matrix
of Tab.5.3. Each row there is treated as a sample with 11 dimensions and
the gaps on the diagonal of the matrix are replaced for simplicity with the
value 1.0. The total variance of the accuracies in Tab. 5.3 is 0.26. With the
first PCA component, 60% of the total variance are already explained. The
activation of the first component for the different source domains is shown
in Fig.7.3. There, a clear grouping of the domains into high positive and
high negative values can be observed. The domains within each of the two
groups are all domains where the same hand was used during recording.
Moreover, a visual analysis of the domains reveals that the absolute value
of the activation further indicates how clear on one side of the target object
the hand is positioned within the image. The activation of domain 1 is for
example a special case with its value close to zero. In comparison to the
other domains, here the hand mostly shows up in a neutral position below
the target object (see also Fig.5.2).

The second principal component explains 12% of the total variance.
As shown in Fig. 7.3, the distribution is rather continuous among the
activations compared to the first component’s activations. The images
of domains that show high positive activations have compared to the
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Figure 7.3: PCA analysis of Tab. 5.3: The sign of the 1st component activation
is in line with the hand that was used. Positive values refer to left hand domains
(marked blue), negative values to right hand domains. Note the low absolute
value for domain 1 which indicates the hand presenting the object in a neutral
position from the bottom. Positive values in the 2nd component could be related
to domains with low contrast, while negative ones to high contrast. The 3rd
component might indicate highly textured background by high positive values.

other domains a lower contrast of the objects and the holding hand to
the background. This is especially pronounced in the domains 5, 6, 9 and
partly 11.

With the third PCA component another 10% of the variance can be
explained. Similar to the second component here the distribution of the
activations is rather continuous again (see Fig.7.3). The activation could
possibly correlate with the strength of the background texture. The highest
values for this component can be observed for the domains 6, 10 and 11,
which all have a highly textured background.

The evaluation showed that the PCA components can give hints about
possible domain factors. Each component indicated a certain characteristic
that is similar in certain domains, but changes compared to other domains.
Here the interpretation of the factors in relation to the component activa-
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tions was done manually. Another possibility would be to automate this
by using a correlation analysis based on the PCA activations and image
metadata, like the time of the day, the time of the year, or the GPS location
of the recording. Note that in general this approach does not necessarily
lead to humanly interpretable factors, since the similarities among domains
suggested by the PCA might also be based on a mix of multiple factors.
Likewise it would be conceivable to replace PCA with other factorization
methods like independent component analysis, that potentially lead to
different results which can be more or less meaningful depending on the
proposed factorization.

The evaluations proposed here are based on the pre-defined separation
of the COReb0 dataset into domains. Therefore this method allows only
to detect domain factors that have a strong influence on the transfer
performance. Other factors that are individual for each class, like factors
related to target objects that have different values between domains, can
not be clearly identified like this. However, these can potentially also
have influence on the measured transfer performance. Therefore, in the
next section PCA will be applied on class level, i.e. here the 10 object
categories.

7.3.2 Identification of Error Factors on Class Level

In the previous section the analysis of factors that influence the transfer
between domains was only limited to domain factors. However, despite
these factors there can also be class specific factors that negatively influence
the transfer performance between domains. Such factors can be related for
example to target object factors, e.g. the object color, or factors related
to the background that are typical for the objects only within a certain
domain. An example for the latter could be an object that is placed on a
different table in each of the domains.

To identify such factors, the same PCA procedure as in the previous
section has been applied here, however, individually for the transfer matrix
of each class. The transfer matrix from Tab. 5.3 describes the average over
all classes of the COReb0 dataset. Note, the same classification models
were used here, while only the evaluation is split up into the accuracies
per class. The classes here correspond to the 10 CORe50 object categories
{plug adapter, mobile phone, scissors, light bulb, can, glasses, ball, marker,
cup, remote control}.

Since in all domains exactly the same object instances are presented,
mainly the style of presentation, i.e. how the object is held or moved, or
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the state of an object can lead to a poor generalization between domains.
Here, a factor in context of hand held objects could be the position at which
the object is held, as e.g. the bulb at the glass cover or the socket. The
object state could be for example for the scissors described by the factor
'scissor state’ with the values {open, closed}. Exemplary for all classes,
the two classes plug adapter and glasses were picked for the investigations
here. While for the first no obvious object states exist, the second comes
with the two object states {folded, unfolded}.

In principle when naively assuming that the domain factors are the
only reason for a performance drop, one could expect that all sub-transfer
matrices show similar classification accuracies, independent of the actual
object class. However, the results show that this is not the case. Comparing
the transfer matrix for the plug adapter class in Tab.7.1 to the transfer
matrix where all classes are represented (Tab. 5.3), similar patterns of weak
performance between domains where different hands were used can be
observed. Here, however, those transfers perform clearly worse, while some
of the transfers between same hand domains perform far above average.
Very low performances can for example be observed for the transfers from
domain 5 and 6 to the domains 2, 3, 9, and 11. Similar observations
can be found in many transfers with domain 9 as the source domain,
where for target domain 8 the lowest transfer performance can be observed.
Investigating the image samples of domain 9 and domain 8 reveals that one
of the plug adapter instances is consistently held in another way. Exemplary
samples for the instances from these domains are given in Fig. 7.5. Besides
the changing hand, this different way of holding an object is likely to
occlude certain features and therefore reduces the transfer performance
even further.

Compared to the general average transfer accuracy over all domains
for all classes (Tab.5.3), where 59% accuracy was achieved, only 50% is
reached here. This is most likely due to more complex holistic features
that need to be learned for this class. In contrast, for the simpler ’cup’
class, the average accuracy is at 72%.
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Table 7.1: One-to-one transfer experiments for the plug adapter class only.

Target Domain (only plug adapter class)
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Figure 7.4: PCA result for the analysis of the one-to-one domain transfers of
the plug adapter class in Tab. 7.1.
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Figure 7.5: Samples of plug adapter instances of domain 9 and domain 8.
Instance 1 in domain 8 is held throughout the entire recording stream at the
blue part.

As expected, since a similar pattern of weak performance could be
observed, the application of PCA (see Fig.7.4) groups the domains based
on the sign of the first component in the same way as when all classes are
involved. The absolute values, however, differ more significantly. Overall,
the first component explains 73 % of the total variance. The second
component explains 17% of the variance and also results in the same
grouping as before, different absolute values can be observed here as well.
The third component suggests a different grouping than before, but can be
neglected due to its low importance here, which is expressed by explaining
only 3% of the total variance.

All in all, apart from the very low and very high accuracies on single
transfers, the overall results of only the plug adapter class are similar to the
results where all classes were considered. The patterns of weak performance
caused by the changing hand can be observed here as well, indicating that
the domain factors here are the factors that influence the generalization
between domains for the plug adapter class the most.

For the transfers of the 'glasses’ class, given in Tab. 7.2, the patterns of
low classification accuracy are not as pronounced as in the transfer matrix
for all classes anymore. The most prominent low performances can be
observed again with domain 9 as the source domain. Obviously the transfer
based on the training samples for the glasses to any other domain results
for this source domain in a poor accuracy. This is also reflected in the
PCA analysis in Fig. 7.6. Here, the first component explains 46 % of the
variance. The grouping of the domains by the hand is not given anymore,
instead a clear separation of domain 9 from the others can be observed.
The second and the third component explain 32 % and 9% respectively,
where neither of the two suggests a hand based grouping indicated by the
sign of the activity.
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Table 7.2: One-to-one transfer experiments for the glasses class only.

Target Domain (only glasses class)
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Figure 7.6: PCA result for the analysis of the one-to-one domain transfers of
the glasses class in Tab. 7.2.
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A detailed investigation of the poor transfer performance when training
on domain 9 revealed that the image samples from this domain of all five
glasses instances showed the glasses in a folded state. In the other domains
those are mostly unfolded or at least partially unfolded. Exemplary image
samples of the glasses instances of domain 9 and domain 3 are given in
Fig.7.7. Interestingly the transfer from unfolded glasses to folded glasses
performs better, which can be seen in the higher average accuracy of the
column where domain 9 is the target domain.

oomn s I 8 2 B
Domain 3: éo/ i"‘) LN\ ﬁ/

Inst.1 Inst.2 Inst.3 Inst.4 Inst.5

Figure 7.7: Samples of glasses instances of domain 9 and domain 3. In domain
9 all glasses are folded throughout the recording stream, while in domain 3 they
are mostly at least partially unfolded.

A similar occurrence was found for the scissors class. Here, the reason
was not the state of the scissors, but rather how it was presented by the
human. In this specific case most of the domains show the scissor instances
held by the blade of the scissors, while in domain 6 three of the instances
were held exclusively by the handle.

The conducted investigations on class level demonstrated that not only
domain factors are responsible for a drop in performance, but also class
specific factors of a certain domain. It was shown that such factors can
be related to a state of a certain object that is consistent in one domain,
but changes across domains. Furthermore, other factors, like the way of
presenting a specific object, which ultimately influences which features can
be detected, can have an effect on the transferability of models between do-
mains. Adversarial DA with a domain classifier, like in [22], pre-dominantly
removes domain factors, since those are the most significant ones to dis-
criminate the domains. Generally other factors like the class specific factors
presented in this section might also be removed, since those can also help
to discriminate the domains. However, if such factors are removed depends
on the capabilities of the domain classifier. Removing such would require
to learn multiple comprehensive feature representations, possibly individ-
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ual features for each domain-class combination. The introduced FP-DA
approach, which is based on a grouping of the domains by the value of a
chosen factor therefore is primarily designed to only preserve domain fac-
tors. Class-level factors would be preserved as well, if the domain grouping
is in line with the values of those. Generally, in this thesis, more elaborate
versions of FP-DA that also consider a factor preservation on class level
were not considered, but could point out directions for future work.

7.3.3 Quantitative Evaluations of FP-DA on CORe50

This section will demonstrate how FP-DA is capable of reducing negative
transfer by preserving a chosen factor in the leave-one-out experiments of the
CORe50 domains. The previous one-to-one evaluations with and without
DA in Chapter 5.3 showed that the hand could be a factor that causes
negative transfer. Therefore, preserving it and consequently grouping the
domains in FP-DA by the used hand seems most promising. This grouping
was also suggested by the sign of the first PCA component activation of the
domain-level transfer analysis in Section 7.3.1 as a prominent cause of error.
Two more groupings, based on the sign of the second and the third PCA
component’s activations, will also be evaluated here. Generally, to benefit
most from FP-DA it is necessary that the factor that is preserved through
the grouping is task-informative and that its removal would cause a large
error. Note that FP-DA switches off competition between certain domains,
which leads to an overall reduced influence of the classifier path on the
shared feature extractor. This alone could lead already to reduced negative
transfer. To evaluate the influence of this effect, additionally three random
factors were preserved, which was achieved through groupings of 5 and 6
random domains per group respectively. The results for these leave-one-out
experiments, together with the results from Chapter 5.3 as comparison, are
shown in Fig. 7.8.

Using FP-DA and grouping the domains based on the first PCA com-
ponent, where the factor ’hand’ is preserved, clearly shows the overall
highest average and highest minimum classification accuracy among all
experiments. This outperforms significantly the original approach of [22] on
the given CORe50 domains. Compared to the approach of [22] with unsu-
pervised data, the quantitative improvement is for the average accuracy at
1.9 percentage points and for the minimum performance at 1.1 percentage
points. The individual results show that in most of the constellations the
negative transfer caused by DA was clearly reduced through FP-DA with
a hand based domain grouping. Comparing FP-DA with this grouping to
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Figure 7.8: Leave-one-domain-out DA on the COReb0 domains using the
proposed FP-DA approach. '1st’, ’2nd’, and ’'3rd’ describe the grouping based on
the three PCA components shown in Fig. 7.3, 'rand.” a random permutation. FP-
DA with the domain grouping based on the used hand ("1st’) and usv data shows
the highest average and highest minimum performance among all constellations.

the experiments without DA, it shows here in many cases also an improved
performance. Domain 4 and domain 7 are examples for this. However,
not in all cases this observation is given. Examples here are domain 1 and
domain 3, where negative transfer was reduced, but no application of DA
still results in the better performance. All in all, here the expectations of
FP-DA to reduce negative transfer by preserving a task-informative factor
were fulfilled and its effectiveness was shown.

Factors other than the hand are preserved when grouping the domains
based on the second or the third PCA component. FP-DA based on both
groupings achieves only a reduced gain of approximately 1.2 percentage
points on average compared to the experiments with [22]. The effect
of reduced negative transfer, that nevertheless still occurs here, can be
explained by the results for the random grouping of domains, i. e. neglecting
completely the PCA step. For these experiments a similar gain can be
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observed. This indicates that in general a reduced competition between
domains and thus influence of the domain classifier is beneficial. Further,
this shows that there is no particular benefit of preserving the factors
suggested by the second or the third PCA component, i.e. the suggested
factors are not semantically related to task-informative factors.

Note, a strategy to face the general problem of the hand showing up on
the left or the right side of a target object in the domains could also be to
use artificial data augmentation methods. Here, a random horizontal and
vertical flipping of input images during training could force the network
architecture generally to be less dependent on local features that are not
part of the target object. However, this is not a method to deal with
domain factors in general and could also have a strong negative influence to
objects that change their class membership when being flipped horizontally.

7.3.4 Qualitative Evaluations of FP-DA on CORe50

For a qualitative evaluation of the FP-DA approach applied on the CORe50
domains, two common visualization methods were chosen. At first the
sample embedding in feature space was investigated. For this the frequently
used method of t-distributed stochastic neighbor embedding (t-SNE) [102]
was used to visualize the samples mapped from the high-dimensional feature
space to a human interpretable 2D feature space. As a second visualization
method Grad-CAM [88] was chosen, which allows to determine the areas of
sample images that had most influence on the output classification result.

t-SNE Visualizations

A common method to visualize how samples are embedded in feature space
is the t-SNE method from [102]. It uses a nonlinear technique that reduces
the dimensionality of high-dimensional data to a dimension that is easier
to interpret by humans, like 2D or 3D. It is designed in such a way, that
data that is close in the higher-dimensional space is also close in the lower
dimensional space. The method is often used in context of deep neural
networks which allows to analyze how data samples are clustered based on
the embedding of a chosen feature layer.

For this thesis a mapping of the high-dimensional data to the 2D feature
space was chosen, which allows to visualize the samples in 2D scatter plots
that are easy to interpret. The three cases, without DA, DA [22] with
unsupervised data, and FP-DA with a grouping based on the first PCA
component were investigated. For each case a single trained multi-source
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model was chosen from a run where domain 9 represented the target domain.
The high-dimensional embeddings of two layers were investigated here
separately. The first was the output of the last layer of the shared feature
extractor after the max-pooling operation, which has a dimensionality
of 25,088. The second was the second fully-connected layer of the label
classifier with a dimensionality of 1000.

For the visualizations the amount of data samples was limited to 2000
samples, 1000 randomly chosen samples from the target domain test data
and 1000 samples from all source domains. The resulting t-SNE em-
beddings were visualized with different annotations, in specific source
domains vs. target domain, left-hand domains vs. right-hand domains, and
all classes individually of domain 9. Other visualizations, where correct
and falsely classified samples, and each domain individually are marked
are given in Appendix A.2.

When no DA is applied, the feature embedding of the samples from
the source domains after the last layer of the shared feature extractor
should still be easily separable from the samples of the target domain.
The reason for this is that samples from the target domain most likely
are out of the scope of the known value distribution of the network and
therefore would map to different locations in feature space. For the source
domains, generally class based clusters should already be slightly visible
in this feature layer, but not yet clearly separated as it is expected in one
of the subsequent fully-connected layers, where features are more class
specific.

The upper t-SNE plot in Fig. 7.9 (left column) shows for the case where
no DA is applied that these expectations are fulfilled. Many samples of
the target domain cluster with samples from the source domains, which
was expected, since even without DA here an accuracy of about 90% was
achieved. However, a separation of source domains and target domain
samples is clearly visible, where source domain samples are more frequently
found in the lower part of the plot. When DA [22] is applied the desired
effect occurs that a differentiation of source domains and target domain
is not easily possible anymore. Interestingly, clusters for the ten different
classes are now pronounced more clearly as well. With FP-DA, the clusters
are less separated as with DA, but still more than without DA. This was
expected since FP-DA reduces the overall influence of the domain classifier
path. Nevertheless, a separation of source and target domain samples is
not given, which shows that the main goal of DA is still achieved.

Looking at the same data with right-hand and left-hand domains labeled
in Fig. 7.9 (right column), the result without DA shows as expected that
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the used hand can still be distinguished. With DA, this separability is
clearly reduced. Here, smaller clusters randomly distributed in space
are more dominating, while left- and right- hand clusters mostly overlap.
When FP-DA is applied, such clusters persist, however, the overlap of left-
and right-hand clusters is reduced, which could indicate the preservation
of the information about the hand while simultaneously clustering by
the object classes. Note that right-hand domain samples are generally
underrepresented in this plot, since half of the samples were chosen from
the target domain, which is a left-hand domain. Nevertheless, the discussed
observations are not affected by this.

Fig. 7.10 shows a t-SNE mapping for only samples from domain 9, where
the ten class labels of the samples have been visualized. Without DA
a lot of samples with different ground-truth labels are close together in
the center. A separation of these thus is likely to be more complex in a
subsequent layer. With DA, the clusters are better separated, however, on
the top right a similar area of mixed classes can be observed. When FP-DA
is applied, there is still a cluster of samples with mixed ground-truth labels
in the center, however, within this cluster they seem to be more cleanly
separated. Furthermore, the overall impression compared to the other
approaches is that FP-DA provides here the cleanest separation of the
samples, despite the fact that clusters seem to be closer together than with
DA [22].
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Figure 7.9: t-SNE plots for the last layer of the shared feature extractor.
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Figure 7.10: t-SNE plots for samples from domain 9, labeled by the ground-truth
class. The embeddings are from the last layer of the shared feature extractor.
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In the fully-connected layers feature embeddings are usually more class
specific, thus better separable clusters should be observable in the t-SNE
plots. Nevertheless, samples from uninvolved domains that differ signifi-
cantly from the training data are expected to still not be assignable to a
certain cluster. The t-SNE plots for the second fully-connected layer shown
in Fig. 7.11 (left column) confirm these assumptions. Without DA most
of the samples from the target domain can be assigned to one of the now
very clearly separated clusters, which is in line with the achieved accuracy
of about 90% on the target domain data. Within the clusters source and
target domains are mostly still separable. As expected, in the center there
are some target domain samples that can not be assigned to the clusters.
When DA is applied those unassignable samples become less and within
the clusters the samples are more evenly distributed. With FP-DA the
even distribution within the clusters seems to be kept, but the unassignable
target domain samples become more, showing again the decreased influence
of the domain classifier path. The results with the used hand being labeled
in Fig. 7.11 (right column) show for this layer similar effects as for the last
layer of the shared feature extractor. Here, left- and right-hand domains
are least separable in the case of the normal DA approach.
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Figure 7.11: t-SNE plots for the second fully-connected layer.
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Grad-CAM Visualizations

An additional qualitative evaluation to show the effect of FP-DA was to
visualize which areas of an image contribute most to the activation of the
output neuron of the target class. This was realized by the method of
Gradient-weighted Class Activation Mapping (Grad-CAM) from [88]. To
highlight the area of an image that contributes most to the target class, the
image is in a first step regularly forwarded through the trained network,
whereby each layer’s feature activation maps are computed. Then, only
the gradient of the output neuron of the target class is backpropagated
with respect to the activation maps of a chosen layer, resulting in feature
gradient maps. Those gradient maps are averaged and represent a weight
for each corresponding feature activation map of the chosen layer. In a next
step the feature activation maps are summed up, while each is weighted by
the previously determined weight. The resulting summed activation map is
then passed through a rectified linear unit, showing only the features that
positively contributed to the activation of the target class. The rectified
map that highlights specific areas is then rescaled to the original input
image size, allowing clearer visual interpretations of those highlighted areas.

For the experiments with the CORe50 data in specific, it should be
investigated whether there is visual evidence that the factor ‘hand’ is
preserved when FP-DA is applied based on a domain grouping by the used
hand. For the evaluations here, again a trained model for each of the cases,
without DA, DA [22], and FP-DA was chosen, with domain 9 as the target
domain. The investigated example images were taken from test data of
domain 9. The Grad-CAM visualizations are based on the feature maps
after the last max-pooling layer of the shared feature extractor. Fig.7.12
shows the results for selected images. The images show the general effect
that the application of DA puts more focus on the actual target object and
removes activations from the background that can be observed in cases
where no DA is applied. This is especially pronounced for the mobile phone
in the second row. Overall, the highlighted area is also clearly shrunk and
shifted away from the hand in comparison to the case where no DA is
applied. In contrast, with FP-DA, this area is less shrunk and activations
closer to the hand can be observed, while at the same time almost no
activation on the background is visible. This indicates that the ’hand’ is
preserved and that target object related features close to the hand can be
considered for classification.
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(a) Input (b) no DA (c) DA [22] (d) FP-DA

Figure 7.12: Grad-CAM visualization for selected images of target domain 9.
DA [22] removes background activation (especially row 2), but also shrinks the
activation on the object (especially row 4) and shifts it away from the hand
(especially row 3). With FP-DA this area is less shrunk and activations closer
to the hand can be observed.
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7.3.5 FP-DA on OpenLORIS Object Dataset

Figure 7.13: Example images of three objects from the 12 domains of the
OpenLORIS object dataset. In each domain one of the factors ’object pizelsize’
(px), ‘llumination’ (i), ’occlusion’ (oc), and ’clutter’ (cl) has a fixed value,
according to one of three levels of difficulty. Level 1 is the easiest, while level 3
is the most difficult level.

To further evaluate the capabilities of the FP-DA approach it was applied
on the OpenLORIS object dataset [90]. Similar to CORe50, this dataset
is also mostly used in the robotics community when the robustness of
models to certain environmental changes should be investigated. The
dataset consists of 69 objects that were presented in 12 domains. During
acquisition of each domain, one of the four factors ’object pizelsize’ (px),
“lumanation’ (il), ‘occlusion’ (oc), and ’clutter’ (cl) was set to one of three
difficulty values {levell, level2, level3}, while the other three factors are
undefined. For px the size of the shown object decreases from levell to
level3 (px1 to px3), for il the illumination reduces, for oc the objects become
more occluded, and for cl the background gets more cluttered. Exemplary
images of three objects in all domains are given in Fig. 7.13. Despite the
fact that the dataset comes with the pre-defined factors, the effectiveness
of FP-DA might be strongly limited in preserving one of these factors since
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the combinations of the factors are not represented in the dataset. A clear
preservation of the factor ’clutter’ would for instance require to group all
domains based on the values of this factor. Here, however, images from the
pX, il, and oc domains are undefined for the factor ’clutter’. Nevertheless,
similar steps as on CORe50 still make sense here, since also other factors
worth preserving could be detected through the one-to-one experiments
with the related PCA analysis.

The results for the PCA analysis of the one-to-one experiments for the
OpenLORIS domains are shown in the top plot of Fig. 7.14. The first PCA
component explains 44% of the total variance and clearly separates the
difficult level3 domains together with oc2 from the other domains. The
second component explains 17% of the variance and slightly suggests a
grouping of {px, oc} and {il, cl}. The third component explains 12% of
the variance and separates px3 and cl3 from the remaining domains.

The corresponding leave-one-out experiments are shown in the lower
plot of Fig. 7.14. For DA [22] the results show similar patterns as for the
COReb0 dataset. The difficult domains, here the level3 domains, come
with the largest performance increase through DA, while for the easier
domains like px2, ill, and ocl slight negative transfer can be observed.
The application of FP-DA based on the first PCA component leads here
only to a minimal increase of the average performance. The minimum
performance is even decreased. The other groupings, based on the other
PCA components and random grouping, are only slightly worse on average
and slightly better in the minimum performance. All in all, FP-DA can
not outperform DA [22] in this case. It is assumed that a possible reason
for this result is the lack of missing combinations of factors in the data.

To investigate whether this is the case, the overall complexity of the
setting was reduced by limiting the involved domains to only two of the pre-
defined factors and evaluating all possible pairs of two factors. Thus, there
are only 6 domains instead of 12. The results for the corresponding PCA
analysis and the multi-source experiments showed very similar patterns as
in the previous experiments. FP-DA could not outperform the reference
DA method [22] here either. The quantitative results for these experiments
are given in the Appendix A.3.

To investigate whether FP-DA would benefit from a combination of
factors in the data, i.e. there must be at least two clearly defined factors per
domain, the original OpenLORIS domains were overlaid with an additional
manually introduced artificial factor ’brightness’. The possible values of
this factor are {normal, dark}. The original OpenLORIS domains that
were used before have the value 'normal’ for this factor, while new domains
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Figure 7.14: PCA and FP-DA on the OpenLORIS dataset. Top: PCA identifies
the most difficult domains plus oc2 in the first component. The second component
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cllD cl2D cl3D

Figure 7.15: Exemplary domains from the adapted OpenLORIS dataset. Do-
mains indicated with clI*D were generated manually from the corresponding
OpenLORIS domains cl* by darkening the images. Thus, each image has two
factor labels, one label for ’clutter’ € {levell, level2, level3} and one for ’bright-
ness’ € {dark, normal}.

are generated with the factor value ’dark’. The new domains are generated
by multiplying the value channel of all images of an original OpenLORIS
domain in the HSV space by 0.3. With this modification each image of the
extended dataset has now two labeled factors. The following experiments
with FP-DA were carried out such that the new factor ’brightness’ was
individually tested in combination with either px, oc, or cl. Exemplary
images of the domains that were used for the investigations with cl are
shown in Fig. 7.15. Note, the combination of the newly introduced factor
with il was omitted, since ’brightness’ and ’“illumination’ are of similar
nature.

Fig.7.16 shows the PCA and the leave-one-domain-out results for the
investigated domain constellations. The latter are reduced here to the
relevant measures of average and minimum performance. The PCA analyses
show that in the first component, consistently the ’dark’ and 'normal’
domains are clearly separated from each other by the sign of the activation.
This is an expected result, since the conducted one-to-one experiments
showed that a change in the factor ’brightness’ is a more challenging
transfer for the model than a change in the difficulty level of the other
involved factor. The second PCA component separates for all constellations
the level3 domains from the remaining domains since the difficulty level
still has major influence on the transfer performance. This is also reflected
in the average explained variance for the second component which is at
approximately 25 %. For the third component no common patterns among
all three investigated domain combinations can be observed. The average
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results of the leave-one-out experiments show that here DA [22] mostly leads
to slight negative transfer. This also applies for the minimum performance,
except on px where a slight increase can be observed. When FP-DA is
applied based on a grouping of the first PCA component an even further
decrease in comparison to DA [22] occurs. However, using a grouping based
on the second component leads to a strong gain in performance and clearly
outperforms most of the other experiments. Taking the third component,
only the result for oc is similarly good, while on px and cl it is clearly
worse.

Analyzing the used groupings in more detail, it becomes obvious, that
the first PCA component suggests to preserve the factor ’brightness’, while
the other involved factor, i.e. ‘object pizelsize’, ’occlusion’; or ’clutter’ is
removed. This can be harmful when considering that the latter factors are
for the OpenLORIS dataset generally task-informative as well, since the
shown target objects constantly show up with individual context objects
that vary across classes within a domain and across domains in general.
The removal of those therefore complicates the classification task. Note,
the described situation also applies for px3 since with the greater distance
between camera and object, also more task-informative background noise is
visible in the image (see Fig.7.13). In contrast, the grouping suggested by
the second PCA component removes mainly the factor ’brightness’, since
‘normal” and ’dark’ domains are represented in each group of domains.
Through the separation of the level3 domains in an individual group, this
also preserves most of the task-informative background noise and therefore
leads to a clear superiority of FP-DA.
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Figure 7.16: PCA and FP-DA on subsets of OpenLORIS domains with artifi-
cially darkened domains (*D). All DA experiments use unsupervised data.
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7.4 Summary

As discussed in the related work chapter, most adversarial DA approaches
that rely on additional domain classifiers, like the approach of [22], mainly
target to remove all domain factors embedded in the feature representation
of the feature extractor. However, this can be harmful if the domain factors
are not only domain-informative but also task-informative or are visually
close to task-informative factors. In the baseline experiments of Chapter 5.3
this effect of negative transfer was observed using the adversarial DA
approach of [22] in multi-source experiments on the CORe50 dataset.
Subsequent evaluations on one-to-one domain transfer experiments with
and without DA showed that the domain factor ’hand’ leads generally to
a poor transfer performance if it changes its value between domains and
that the removal of it through DA causes an even weaker performance.
A hypothesis for this weaker performance was that through the removal
of the factor 'hand’ also the task-informative factor ’hand posture’ was
removed. The assumption was that this also caused the negative transfer
observed in the multi-source experiments.

To preserve a chosen factor and thus to reduce negative transfer, FP-DA
was proposed in this chapter. FP-DA is a novel adversarial DA method
based on [22] which uses during training a domain grouping based on
the value of the factor to preserve and switches off competition in the
domain classifier between domains from different groups. With FP-DA
it was possible to achieve the highest average and minimum performance
on the COReb50 domains. The effectiveness was further substantiated
through qualitative analyses with t-SNE and Grad-CAM visualizations.
Additional experiments on the OpenLORIS object dataset showed that
insufficient combinations of factor labels are adverse for FP-DA. Overlaying
an additional factor ’brightness’ showed that FP-DA works best here as
well.

It was further shown in this chapter that a meaningful factor that is
worth to be preserved can either be derived manually or with the help of a
PCA analysis on one-to-one transfer experiments. The PCA evaluations
showed that one of the first PCA components can be a beneficial factor
to be preserved. Furthermore, additional PCA investigations on class
level showed that there is increased potential to reduce negative transfer
when considering not only the preservation of domain factors, but also
a preservation of class specific factors. In the current design, however,
FP-DA does not consider such class-level factors. The extension of FP-DA
to such factors could therefore be a possible direction for future work.
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8 Conclusion

This chapter summarizes the main contents of this thesis which are com-
posed of the Effects of Domain Awareness, the Domain Mixture scenario,
and the Factor-Preserving DA method, that all have been evaluated in
context of the newly introduced factor theory. Subsequently future research
directions for the three presented main topics will be discussed and basic
ideas for an implementation of a DA-based 24/7 learning system with
multiple camera entities in a smart environment will be presented.

8.1 Summary

This thesis discussed and evaluated different DA approaches and DA
constellations in context of visual factors. In this work, the appearance of an
image is explained by a mixture of multiple factors that have different values
and describe a scene. In contrast to current domain transfer literature,
using such factors allows to explain effects like negative transfer more
precisely than the unspecific notion of differing data distributions across
domains. Furthermore, the better understanding of these effects provides
the opportunity to develop new DA approaches that explicitly consider
such factors and thus improve the domain transfer capabilities of deep
classification models. The introduced factor theory can on the one hand
help to interpret and explain the characteristics of image datasets from
literature, as well as on the other hand help to interpret the behavior and
effects of recent DA approaches from literature. Both aspects were shown
in this thesis.

Further, it was shown that general habits of deep classification models,
e.g. the type of features that are learned, can more easily be explained by
using such factors. The generalization challenges 'new factor values’ and
‘new combinations of known factors’ that occur in potential application
domains in context of DA have been discussed here with a particular focus
on.

As one of the main parts of this thesis the effects of domain awareness
during training and test of a classification model were investigated at
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the example of a road segmentation task. For the evaluations, the simple
normalization technique of RGB mean subtraction was used as an exemplary
method for parametric DA. The results showed that the unawareness about
domains during training and test can cause negative transfer if the test
domain is normalized individually and was already one of multiple training
domains but not normalized there individually. A general recommendation
derived from the experiments is to always try to treat the same domains
consistently during training and test to achieve the best classification
performance.

The second main contribution of this thesis was the investigation of the
Domain Mixture scenario, which describes a DA scenario that is usually
neglected in current literature. In this scenario the training dataset is
composed of multiple domains, of which, however, no domain is completely
covered by supervised samples for all classes. The investigations showed
the tendency of the classification model to pre-group the training data
based on domain factors if no DA is applied, which results in a very
poor performance when little overlapping domain-class combinations are
given. The experiments showed that the application of DA, in this case the
adversarial DA approach of [22], is essential to achieve a good performance
on the domain-class combinations that are not represented with supervised
data in the training set. Further, it was shown that even without any
samples of the domain-class combinations that are not supervisedly given
during training, the application of DA [22] is useful to achieve a higher
minimum performance on these combinations.

The problem of the standard adversarial DA approach of [22] is that
primarily all domain factors are removed from the feature representation,
which can lead to negative transfer if those are task-informative or visually
close to such. To prevent this negative effect, the novel FP-DA approach was
introduced in this thesis. It allows to preserve a chosen factor during DA in
a multi-source domain constellation. The effect of negative transfer caused
by the approach of [22] was shown in multiple one-to-one and multi-source
transfer experiments. An in-depth analysis of the transfer results combined
with PCA on one-to-one transfer experiments helped to reveal factors that
potentially lead to a decreased performance when being removed and thus
are worth to be preserved through FP-DA. The effectiveness of FP-DA
was then demonstrated on two different object datasets from the robotics
community, the COReb0 dataset and an adapted version of the OpenLORIS
dataset, while the latter allowed to reveal the requirement of labeled factor
combinations for FP-DA to work best. Overall, FP-DA was able to show
the highest average and minimum performance across all constellations in
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a leave-one-domain-out setting with multiple domains.

8.2 Future Research

DA is a challenging task when it comes to deep neural networks. Due to
the large number of parameters within deep neural networks, the human
interpretability of which features a model learned and how they are inter-
connected within the classification model is generally very limited. This
thesis provided a factor based analysis of different scenarios and approaches
which helps to better understand and interpret deep neural network be-
havior. The three main parts of this thesis provided essential insights and
ideas how to improve the generalization ability of neural networks, however,
there are many other conceivable research directions for each part.

Regarding the investigations of domain awareness, here the experiments
were limited to small image samples where simple features are sufficient to
classify those. Whether the presented outcomes also hold for more complex
datasets, as for example the presented CORe50 dataset, in combination
with a more comprehensive architecture could be a direction for future
research. An interesting investigation there would be whether the more
comprehensive architecture would be capable to overcome a normalization
mismatch in the part-case of generalization or would suffer even more
from the stronger color bias introduced by the backgrounds of certain
CORe50 domains. Further, the scalability of the findings to different DA
approaches could be worth investigating. Here only a parametrized DA
method was used, however, naturally the question arises, whether the
results also hold in combination with an additional DA method that uses a
learned normalization like [22].

For the generalization investigations of the Domain Mixture scenario,
experiments with more than two domains are conceivable. With multiple
domains involved, the omission of DA would most likely lead to similar
results on the unseen domain class combinations. Of course, here the chosen
architecture plays a major role, which defines the complexity and amount
of features that can be learned. Furthermore, this can be influenced by
the number of classes and their general discriminability. If DA is applied
in the presence of multiple domains, also in the Domain Mixture scenario
a larger influence of negative transfer similar to the COReb0 baseline
leave-one-out experiments could be expected, which potentially shades
other effects. The evaluations regarding the imbalance within the training
batches also revealed more potential for improvement. As stated, the
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adaption of the batch-size does not scale to real-world problems where
the number of classes within the unsupervised data is generally unknown.
A more advanced heuristic needs to be found to overcome this issue and
improve the performance even further.

For FP-DA, further datasets could be investigated to substantiate the
effectiveness of it even more. The most promising area of research would be
the extension of the architecture to a class-level approach that does not only
group domains, but also classes. Generally a hierarchical approach would
be conceivable, where in a first instance the domains would be grouped by
a chosen domain factor, since this most likely has most influence on the
transfer performance, and in a second instance a grouping by classes to
preserve certain factors on class-level. This would of course require special
treatment of the unsupervised data of the target domain since there no
class information is available. Nevertheless, the classes of the different
source domains within a group could be grouped according to this, from
which the overall feature learning process might already benefit.

An interesting area of research would be to investigate the integrability
and importance of all researched topics in this thesis for a 24/7 smart
environment with a connected network of multiple camera entities. This
could be composed of an evaluation of the relevance of each part’s findings
for a system where image data is collected 24/7 and an image classification
model is frequently updated based on the expanding image data pool. Such
a system could be built, as depicted in the introduction, of multiple camera
based systems representing domains and therefore make the application
of DA algorithms crucial. During runtime all acquisition metadata should
further be stored, to be able to use it in subsequent correlation analyses for
the identification of factors that highly influence the generalization ability
of the classification model shared among the entities.
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A.1 Additional Results - Complete Domain
Mixture on CORe50
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Figure A.1: Complete Domain Mixture scenario on the CORe50 dataset. Here,
two domains, each using the right hand to present the object were combined. I.e.
D1 w/ {D4, D6, D8, D10}. Note, here only the accuracy on the entire target
dataset is shown.
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Figure A.2: Complete Domain Mixture scenario on the CORe50 dataset. Here,
two domains, each using the left hand to present the object were combined. I.e.
D2 w/ {D3, D7, D9, D11}.
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Figure A.3: Complete Domain Mixture scenario on the CORe50 dataset. Here,
two domains, each using a different hand for presenting the object were combined.
Ie. D2 w/ {D4, D5, D6, D10}.
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Figure A.4: Complete Domain Mixture scenario on the CORe50 dataset. Here,
two domains, each using a different hand for presenting the object were combined.
Ie. D3 w/ {D4, D5, D6, D10}.
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Figure A.5: Complete Domain Mixture scenario on the CORe50 dataset. Here,
two domains, each using a different hand for presenting the object were combined.
Ie. D7 w/ {D4, D5, D6, D10}.
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A.2 Additional t-SNE Plots
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Figure A.6: t-SNE plots for the last layer of the shared feature extractor. Here,

the samples are colored by domains.
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Figure A.7: t-SNE plots for the last layer of the shared feature extractor. Here,

the samples are colored by correct and false predictions.
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Figure A.9: t-SNE plots for the second fully-connected layer. Here, the samples
are colored by correct and false predictions.
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Figure A.10: PCA and FP-DA results on subsets of the OpenLORIS domains.
The left column shows the PCA results, the right column the leave-one-out
experiments where only the relevant average and minimum performance is shown.
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OpenLORIS domains. (Continuation of Fig. A.10)
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