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Zusammenfassung

Diese Arbeit befasst sich mit der Analyse von isogeometrischen nicht-symmetrischen Kopplungen der Me-
thode der finiten Elemente (FEM, von engl. Finite Element Method) mit der direkten Randelementmethode
(BEM, von engl. Boundary Element Method) für Aufgabestellungen, wie sie bei der Modellierung elektrome-
chanischer Energiewandler vorkommen.

Das (elektro)magnetische Teilsystem eines solchen multiphysikalischen Problems lässt sich mit der Wirbel-
stromnäherung der Maxwellschen Gleichungen beschreiben. Sowohl das statische als auch das quasistatio-
näre Verhalten des Systems werden in dieser Arbeit behandelt. Dafür werden Wirbelstromformulierungen
auf Basis des magnetischen Vektorpotentials in zwei- und dreidimensionalen Lipschitz-Gebieten hergeleitet.
Es werden dabei keine Einschränkungen bezüglich der Topologie der Gebiete vorausgesetzt.
Die FEM wird in solchen Gebieten eingesetzt, in denen nichtlineare Materialien zulässig sind. Im Gegensatz
dazu ist die Anwendung der BEM auf Gebiete beschränkt, die lineares Materialverhalten aufweisen, da eine
Fundamentallösung benötigt wird.

Es wird bei der vorliegenden Analyse von der Theorie Lipschitz-stetiger und streng monotoner Operatoren
ausgegangen. Diesem theoretischen Rahmen entsprechen auch die physikalischen Eigenschaften der betrach-
teten nichtlinearen Materialien.
Um Wohlgestelltheit der Kopplungen zu zeigen, wird je nachdem entweder eine implizite Stabilisierung ein-
geführt (in zwei Dimensionen) oder eine Formulierung in geeigneten Quotientenräumen betrachtet (in drei
Dimensionen). Außerdem wird die Quasioptimalität der Galerkin-Approximation nachgewiesen. Daraus wer-
den Fehlerabschätzungen optimaler Ordnung für konforme B-Spline-Räume abgeleitet. Darüber hinaus weist
der punktweise Fehler bezüglich Funktionalen der Lösung in BEM-Gebieten eine Verbesserung der Konver-
genzraten auf, die unter bestimmten Bedingungen zur Verdopplung dieser Raten führt. Diese Eigenschaft
wird Superkonvergenz genannt.
Zur Geometriemodellierung werden NURBS (von engl. Non-Uniform Rational B-Splines) benutzt, so dass
keine weiteren numerischen Fehler durch die Approximation der Geometrie eingeführt werden. Zusätzlich
erleichtert dieses Diskretisierungsverfahren die Durchführung von h- und p-Verfeinerungen.

Die theoretischen Resultate werden durch numerische Beispiele validiert. Zur Illustration des gekoppelten
elektromechanischen Problems wird das magnetische mit dem mechanischen Teilsystem schwach gekoppelt.
Die für die Kopplung benötigten Kräfte und/oder Drehmomente werden mittels des Maxwellschen Span-
nungstensors ausgehend von den Cauchy-Daten der Lösung des magnetischen Teilsystems berechnet. Bei
den zeitabhängigen numerischen Beispielen wird die Zeitdiskretisierung mittels eines klassischen implizi-
ten Euler-Verfahrens durchgeführt. Alle Resultate entsprechen den Erwartungen und den Referenzlösungen.
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Abstract

The main contribution of this thesis consists in providing a rigorous analysis of non-symmetric isogeometric
couplings of the Finite Element Method (FEM) and the direct Boundary Element Method (BEM) for some
model problems that are relevant for the simulation of electromechanical energy converters.

The corresponding (electro)magnetic subsystem of such a multi-physics problem can be modeled by the eddy-
current approximation of Maxwell’s equations. We study this type of models in both the static and quasis-
tationary case, which we formulate in terms of the magnetic vector potential in two-dimensional (2D) and
three-dimensional (3D) Lipschitz domains with a general topology. We associate FEM with bounded domains
that may be filled with non-linear materials, whereas BEM is applied for bounded and unbounded domains
that contain linear materials, i.e., for which a fundamental solution is available.

Our analysis is based on the framework of strongly monotone and Lipschitz continuous operators, which also
incorporates the required physical properties of the considered non-linear materials.
To establish well-posedness and stability of the continuous settings, we use either implicit stabilization (in
two dimensions) or a formulation in appropriate quotient spaces (in three dimensions) depending on the
specific model. Moreover, we show the quasi-optimality of the method with respect to a conforming Galerkin
discretization. For the concrete discretization, we consider an isogeometric framework, in particular, we
employ conforming B-Spline spaces for the approximation of the solution, and Non-Uniform Rational B-
Splines (NURBS) for geometric modelling. This approach facilitates h- and p-refinements, and avoids the
introduction of geometrical errors. In this setting, we derive a priori estimates, and discuss the possible
improvement of the convergence rates (super-convergence) of the method, when the pointwise error in func-
tionals of the solution (more precisely its Cauchy data) is evaluated in the BEM domain. This improvement
may double the usual convergence rates under certain circumstances.

The theoretical findings are confirmed through several numerical examples. To validate our approach for
the complete electromechanical system, we couple the (electro)magnetic and the mechanical subsystems
weakly, and compute the needed forces and/or torques by using the Maxwell Stress Tensor (MST) method.
For the sake of illustration, time derivatives are discretized by means of a classical implicit Euler scheme.
The results of numerical experiments are in agreement with the expectations and the reference solutions.
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1 Introduction and motivation

Energy cannot be created or destroyed, it can
only be changed from one form to another.

A. Einstein

Under electromechanical energy converters we understand every device that converts electrical energy into
mechanical one, and vice versa. They are involved in a broad spectrum of applications, ranging from micro
to macro scales, and from complex industrial processes to common household items used on a daily basis.
For instance, food processors, refrigerators, microphones and loudspeakers, electric cars, and some types of
power-plant facilities rely particularly on these devices. In general, a pattern can be recognized: The input
energy, which is either electrical or mechanical is transferred to a coupling carrier field, usually a magnetic
field, where it is temporarily stored and then released in terms of the other type of energy. Inevitably, some
energy may dissipate during the process, e.g., in form of heat. For convenience, we classify these devices in
two categories:

• Linear motion devices: the linear motion is caused by the (electromagnetic) force.

• Rotating machines: depending on the direction of conversion, they can be labeled either motors or
generators. The former rely on the conversion of an electrical to mechanical energy, and vice versa for
the latter.

We also use the term electric machines generically to designate both types. More details about the physical
foundation of the topic and its significance can be found in [54]. The development and optimization of such
machines requires first of all a good knowledge of their physical background. Indeed, it consists in a multi-
physics problem with (electro)magnetism as the core physical field coupled at least with the corresponding
mechanical equations. After having a suitable model at our disposal, its resolution poses the next challenge.
An analytical solution is either too complex or not possible in general. Hence, we resort to numerical meth-
ods, which offer a relatively wide spectrum of approaches that may have advantages and disadvantages
depending on the case and on the goal. The most widespread one is the Finite Element Method (FEM). It is
well-established and advantageous in many cases, in particular, in the presence of non-linear materials and
inhomogenities. For an introduction to mathematical modelling and FEM for this type of devices we refer,
e.g., to [113]. However, FEM requires a domain discretization. Hence, considering unbounded or very thin
domains may lead to difficulties. In these cases, the Boundary Element Method (BEM) turns out to be an
attractive alternative, because it transfers a problem from the domain to the boundary. Nevertheless, BEM is
reserved to linear problems with computable fundamental solutions. To cope with this, we opt for a coupling
of FEM and BEM, which we discretize by using the isogeometric paradigm, i.e., by using the same type of
basis functions for the geometric design and for the approximation of the solution. Typically, these basis
functions are B-Splines and/or Non-Uniform Rational B-Splines (NURBS). We will further discuss the choice
of our numerical approach in Section 1.2, but first we address the physical framework encountered in this
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work. The current chapter is then concluded by Section 1.3, where we give an overview on the structure and
content of this treatise.

1.1 Physical framework

In the following, we present the relevant equations that are needed to derive suitable model problems for
machines that rely on electromechanical energy conversions. First, we start by introducing the governing
equations in electromagnetism. These are based on the well-known Maxwell’s equations. In particular, the
considered regime for most electromechanical applications happens to be in the low-frequency range, see
[66, Section 2.2]. In this case, the full set of Maxwell’s equations can be reduced to the so called eddy-
current model, which is also known as the magnetoquasistationary case. In addition, since non-linear ma-
terials are widely considered in this type of applications, we discuss their properties and the required as-
sumptions that are needed for an appropriate physical model. Then, we address the underlying equations
of motion along with the Maxwell Stress Tensor (MST) method, which we utilize for the computation of
forces and torques. Last, we introduce the considered approach to couple the electrical and mechanical
subsystems, which consists in a weak coupling that allows to solve the electromechanical problem sequen-
tially.

1.1.1 Maxwell’s equations

The publication of James Clerk Maxwell [85] is regarded as the foundation of classical electrodynamics.
Thereby, he provided a mathematical model consisting in a set of partial differential equations that describe
electromagnetic fields. In their modern formulation, as given, e.g., in [67], the differential form of Maxwell’s
equations reads

divd(x, t) = %(x, t), (1.1a)
div b(x, t) = 0, (1.1b)
curl e(x, t) = −∂tb(x, t), (1.1c)
curlh(x, t) = ∂td(x, t) + j(x, t) (1.1d)

for any x ∈ R3 and t > 0. Equation (1.1a) is known as Gauß’s law. It relates the electric flux density d(x, t)
to its source, namely, the electric charge distribution %(x, t). The second equation (1.1b) is its equivalent
for magnetism. It states the important result that the magnetic flux density b(x, t) is source free, hence, it
points out to the absence of magnetic monopoles. Equations (1.1c) and (1.1d) are known as Faraday’s and
Ampère’s law, respectively. They relate electric quantities to magnetic ones. In particular, (1.1c) means that
a time-varying magnetic flux density induces a spatial variation of the electric field e(x, t), and vice-versa.
Similarly, a time-varying electric flux density is always accompanied with a spatial variation of the magnetic
field strength h(x, t). In addition, electric currents, denoted by j(x, t), also contribute to the last equation.
In certain situations, the consideration of the full set of Maxwell’s equations is not necessary. Indeed, ne-
glecting the term ∂td(x, t) for low-frequency applications yields a valid approximation, which is labeled in
the literature as the magnetoquasistationary case or eddy-current approximation. Justifications about its va-
lidity are furnished in [11, 16, 105, 112]. Note that for our specific applications, the inductive and resistive
effects are dominant. More generally, when the capacitive effects dominate, a different type of low-frequency
approximation is required, see [112]. Indeed, eddy-current approximation is the standard model to choose
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for the simulation of electric machines, see [102], for instance. We also refer to [99, Section 2.2–2.3] for an
introduction to the subject. Therefore, the system (1.1) simplifies to1

div e(x, t) =
%(x, t)

ε
, (1.2a)

curl e(x, t) = −∂tb(x, t), (1.2b)
curlh(x, t) = j(x, t), (1.2c)
div b(x, t) = 0. (1.2d)

Note that due to ∂td(x, t) = 0, the electric charge distribution %(x, t) is constant in time, i.e., ∂t% = 0. This
yields the continuity equation

div j(x, t) = 0.

Moreover, the electric charge distribution % is decoupled from the magnetic field equations in this context.
Hence, it can be computed in a post-processing step, see [112, Section 3.2].
These equations need to be supplemented by constitutive laws, which define the relation between field quanti-
ties and their fluxes. In the linear isotropic case, we have for themagnetic field

b(x, t) = µh(x, t), (1.3)

where µ is a scalar known as the magnetic permeability. It is defined by µ = µrµ0, where µr denotes the
relative magnetic permeability of the material, and µ0 is a physical constant called the vacuum permeability.
In this context, we restrict ourselves throughout the thesis to the homogeneous case. In general, µ is a
non-linear second-rank tensor. For simplicity, we consider an isotropic case, and focus on the non-linear
dependency of µ on h(x, t), in particular on its magnitude, which we denote by H. Correspondingly, the
magnitude of b(x, t) is designated by B. A positive or negative sign are also associated to the values B and
H to indicate a specific field’s direction.
With the aid of Figure 1.1, we showcase coarsely the response of a generic ferromagnetic material to an
external magnetic field, and refer the reader, e.g., to [66, 102] for more details. For this, let us first assume
that the material is not magnetized a priori. With magnetization, we mean the ability of a material to create
an internal magnetic field, when it is subjected to an external one. For ferromagnetic materials the created
field tends to align itself with the external one. This process is not only non-linear, but it also depends on the
history of the magnetizing field; hence the name hysteresis. Note that because it relatesB toH, the hysteresis
loop is also called B-H curve. In the following, we use both terms interchangeably. A gradual increase of the
external field strength H causes the magnitude of the induced one to increase following path (I), which is
commonly known as initial magnetization curve. After reaching the plateau bs, called magnetic saturation,
the slope behaves like in vacuum. Next, applying a magnetic field in the opposite direction leads the material
to demagnetize gradually according to path (II) until B = 0 for H = −hc. The magnetic coercivity hc is
hence the amount of magnetic field that needs to be subjected to a material in order to demagnetize it. Then
the induced field increases in the opposite direction until saturation at B = −bs. Last, a repetition of the first
step yields path (III) and closes the loop at B = bs. The slope of the secant between a specified point of the
hysteresis and the origin corresponds to the permeability of the material, and its width, which is given by
hc, determines the type of the magnetic material. We characterize here two types: hard and soft magnetic
materials. In Figure 1.2, we show a representative hysteresis loop for each one of these two categories as
well as a possible approximation in the corresponding relevant domain. On one hand, hard materials are

1For (1.2a) we used the constitutive relation for the electric field d(x, t) = εe(x, t), where the electric permittivity ε is assumed
to be a scalar.
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−hc hc

bs

(I)(II) (III)

−bs

H

B

Figure 1.1: Illustration of a hysteresis loop for a ferromagnetic material. The paths (I)-(III) indicate
the curves that are traced by the magnitude B of the induced magnetic flux density sub-
jected to an increase-decrease-increase sequence of the magnetic field’s magnitude H
until saturation. The latter is designated by bs, and the hysteresis’ width by the magnetic
coercivity hc.

recognized by a large coercivity hc and a high remanence br.2 The latter provides information about the
memorized magnetization in the material after removing the applied magnetic field, and thus, about the
strongest possible magnetic field it can produce as a magnet. Therefore, hard materials are employed in
electric machines for permanent magnetization. For simulation purposes, and by considering a properly
designed permanent magnet for this class of applications, a line approximation, as depicted by the red line
in Figure 1.2a, represents a sufficiently good approximation of the B-H curve, see [102, Section 3.1]. The
restriction of the relevant magnetic characteristic to the second quadrant, i.e., forB ≥ 0 andH ≤ 0, is a result
of the Ampère’s law and the conservation of flux3, see [66, Section 4.5.4] for a more extensive explanation.
In this case, (1.3) can be rewritten as

b = µh+ br, (1.4)

where br is the remanent magnetic flux density. Its relation to the coercive field hc is stated by br = µhc.
On the other hand, soft magnetic materials are characterized by a narrow hysteresis with a low remanent
flux density. Due to their high magnetic permeability, such materials are suitable to channel and guide the
flux through them, e.g., to generate a force or create a magnetic field. They are employed in both Direct
Current (DC) and Alternating Current (AC) applications. In particular, energy losses have to be taken into
account in the latter regime. We mention the hysteresis loss, which is related to the area enclosed by the
hysteresis loop, and eddy-current loss, which depends on the electric conductivity. Both sources can be
counteracted with a relatively narrow hysteresis, and by laminating the material. Therefore, soft magnetic
materials are widely considered, i.a., in electric machines, and for magnetic circuits. A good approximation
for the material properties is provided by the initial magnetization curve, which is specified in Figure 1.2b by
the red curve, see [66, Section 4.5]. This characteristic is in general not analytically predefined. It is rather

2We take as a representative example for our purpose and hence as a reference an NdFeBmagnet, which is an alloy of Neodymium,
iron, and boron.

3For an arbitrary closed contour γ consisting of γi and γe, such that γi is contained in the permanent magnet and γe in the
surrounding air, the integral form of Ampère’s law yields Hi = −He

le
li
. Thereby, le and li are the corresponding lengths of γe and γi,

respectively. Moreover, by conservation of flux, Bi and Be have the same direction along γ.
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−hc hc

−br

br

H

B

(a) hard magnetic material with a line approximation
of the characteristic (in red)

−hc hc

−br

br

H

B

(b) soft magnetic material with the initial magnetiza-
tion curve (in red)

Figure 1.2: Examples of hysteresis loops for hard and soft magnetic materials.

constructed by interpolation and/or approximation starting from measured data, which are usually subject
to measurement errors, see [91, Section 3.1] and the references cited therein. From now on, we reserve the
term B-H curve exclusively for the approximations of hysteresis loops, as described above and illustrated by
Figure 1.2b. In order to obtain a physically meaningful B-H curve, some assumptions have to be made, cf.
[91, 96].

Definition 1.1 (Admissible B-H curve). We call a non-linear function g : R+
0 → R+

0 , g(H) = B that describes
a B-H curve admissible if it exhibits the following properties:

• g is continuously differentiable on R+
0 ,

• g(0) = 0,

• g′(s) ≥ µ0, ∀s ≥ 0,

• lim
s→∞

g′(s) = µ0.

As an immediate consequence, if g is admissible then it is Lipschitz continuous and strongly monotone, i.e., for
all s, t ∈ R+

0

∃CgL > 0 : |g(s)− g(t)| ≤ CgL |s− t| (Lipschitz continuity),
∃CgM > 0 : (g(s)− g(t)) (s− t) ≥ CgM (s− t)2 (strong monotonicity)

hold. In particular, CgL := sups∈R+
0
g′(s) and CgM = µ0, see [91, Corollary 2.2].

Assumption 1.2. Throughout this work, all considered B-H curves are assumed to be admissible in the sense of
Definition 1.1.
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The permeability, which is related to g by

µ(s) =


g(s)

s
, s > 0,

lim
s→0

g(s)

s
, s = 0

(1.5)

is continuous on R+
0 . This can be readily seen for s > 0. For s = 0 we see that µ(0) := lim

s→0

g(s)

s
= g′(0),

because g(0) = 0. Moreover, µ is bounded by µ0 ≤ µ ≤ CgL as can be demonstrated analogously to the proof
of [91, Corollary 2.2.6] by using the mean value theorem and L’Hôpital’s rule. With this, the constitutive law
for a soft magnetic material can be written as

b(x, t) = µ(H)h(x, t). (1.6)

Furthermore, we also need the inverse of the permeability. Indeed, the existence of an inverse function
g−1 : R+

0 → R+
0 of g follows from its strong monotonicity. In addition, g−1 satisfies similar properties as

g. In particular, it is also strongly monotone and Lipschitz continuous with a monotonicity constant Cg
−1

M =

(CgL )
−1 and a Lipschitz constant Cg

−1

L = (CgM)
−1 = 1

µ0
:= ν0, where ν0 is the vacuum reluctivity. With this,

we characterize the reluctivity of a magnetic material that is described by an admissible B-H curve g by

ν(s) =


g−1(s)

s
, s > 0,

lim
s→0

g−1(s)

s
, s = 0.

(1.7)

Analogously to µ, the reluctivity ν is continuously differentiable on R+, and bounded with Cg
−1

M ≤ ν ≤ ν0.
We refer to [91, Corollary 2.2] for proofs of the assertions on g−1 and ν.

In the presence of conductive materials, we further state Ohm’s law

j(x, t) = κe(x, t), (1.8)

where κ ≥ 0 is anothermaterial constant, known as electrical conductivity. For simplicity, we restrict ourselves
to the linear, isotropic, and homogeneous case. Note that (1.8) is considered only for passive conductive
materials. Indeed, the Ohm’s law as given above does not apply for active material, see [11, Section 1.2.2],
where additionally to the explanation a more general formulation is furnished. Therefrom, a generalized
Ohm’s law reads

j(x, t) = κe(x, t) + js(x, t), (1.9)

where js(x, t) is an imposed electric current density, which is specified as an input, and thus it is indepen-
dent of the electromagnetic field. Moreover, note that (1.8) and (1.9) are only valid for conductors at rest.
However, they can be extended to take into account moving domains that contain conductive materials. This
will be addressed in the next subsection, which is devoted to motion.

Up to now, the presented setting is only valid in a local sense. For instance, let us consider a field, which is
defined over two bounded domains Ω1 and Ω2 that share a common interface Γ12, i.e., Ω1 ∩ Ω2 = Γ12. In
this case, the field lines may be discontinuous across the interface Γ12, even if the field itself is continuous
over both domains separately. This arises, e.g., if Ω1 and Ω2 are filled with different materials. Provided
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their existence, we denote by n1 and n2 the outward pointing normal vectors of Ω1 and Ω2, respectively. In
addition, we choose n = n1 = −n2 to be the reference direction. In the absence of surface currents, the
continuity is only guaranteed in one component, namely,

(b1(x, t)− b2(x, t)) · n(x) = 0, (1.10a)
(h1(x, t)− h2(x, t))× n(x) = 0, (1.10b)
(e1(x, t)− e2(x, t))× n(x) = 0, (1.10c)
(j1(x, t)− j2(x, t)) · n(x) = 0, (1.10d)

cf. [11, Section 2.2.1]. These conditions, also known as jump conditions, mean that the normal component
of the magnetic flux density b(x, t) and the electric current density j(x, t) as well as the tangential part of the
magnetic and electric field h(x, t) and e(x, t) are continuous. Consequently, the other components can be
discontinuous. In the presence of surface currents, which we express by k(x, t), the tangential component of
h(x, t) is no longer continuous. Equation (1.10b) is then extended to include surface currents in the following
way,

(h1(x, t)− h2(x, t))× n(x) = k(x, t).

Remark 1.3. Note that these results, as presented above, are in disagreement with the implicit regularity as-
sumption that we made for (1.2). Indeed, for the latter to be well-defined in a strong sense, the components of
the involved fields should be differentiable in order to guarantee the existence of the corresponding differential
operators. This is obviously not satisfied in the considered example due to the above discussed discontinuities. Nev-
ertheless, this contradiction can be fixed if we resort to weaker regularity assumptions in a suitable mathematical
setting for both interior or exterior domains and their related boundaries. This is the subject of Chapter 2.

To complete the magnetoquasistationary setting, suitable decay conditions of the fields in unbounded do-
mains should be stated. As demonstrated in [16, Proposition 3.1], if (e(x, t),h(x, t)) solves the eddy-current
model (1.2) supplemented with

e(x, t) = O(|x|−1), uniformly for |x| → ∞,

h(x, t) = O(|x|−1), uniformly for |x| → ∞,

then they admit the following decay condition:

e(x, t) = O(|x|−2), uniformly for |x| → ∞, (1.12a)
h(x, t) = O(|x|−2), uniformly for |x| → ∞. (1.12b)

In the next subsection, we introduce the underlying equations of the mechanical subsystem, and the used
method for the computation of forces and torques.

1.1.2 Equations of motion

In the context of electromechanical energy converters, motion is usually ruled by rigid-body dynamics. The
term rigid implies that regardless of the involved external forces and torques, all deformations of the moving
bodies can be neglected. The content of the current subsection is based on [75, 78, 81].
A trajectory is characterized by the kinematic variables (x, ẋ, ẍ, · · · ), which correspond to the position of the
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moving body, its velocity, acceleration, and if needed further time derivatives of x.

Depending on the position of the reference frame as well as its dynamics, the kinematic variables take differ-
ent representations. Conventionally, we distinguish two main approaches: the Lagrangian and the Eulerian
description. First, the former describes motion as experienced by the material itself. In other words, the
reference frame, which we denote by Σl, is attached to the moving body, e.g., such that its origin and axes
coincide with the center of mass and the principle axes of inertia of the body, respectively. Note that the
Lagrangian reference frame is not an inertial frame, in general.
Second, the Eulerian description is formulated from the perspective of a so called laboratory frame, whose
movement is not accelerated and is independent of the body motion. The Eulerian reference frame is
an inertial frame. We denote it by Σe. The center of mass of the moving body is represented in Σe by
x0
e(t), for t ≥ 0. Furthermore, we designate by xe and xl the coordinates in Σe and Σl, respectively.

The position in Σe can be expressed as an affine transformation of the Lagrangian coordinates as follows

xe = x
0
e(t) + T (t)xl. (1.13)

Thereby, T (t) is an orthogonal transformation, which can be obtained by composing the corresponding rota-
tion matrices associated to each Eulerian angle Ψ, Θ, and Φ, i.e., by T (t) = TΨ(t)TΘ(t)TΦ(t) with t ≥ 0. We
refer to, e.g., [75, Section 2.3.1] for an explicit representation of T (t). Taking the derivative of (1.13) yields
the velocity field in Σe, namely,

ẋe(xe, t) := ∂txe = ẋ
0
e(t) + ωl × (xe − x0

e(t)), (1.14)

where ωl denotes the angular velocity, which can be computed from T (t) following [78].

As mentioned in the previous subsection, Ohm’s law (1.8) does not take motion into account. Indeed, from
the point of view of Σe, (1.8) need to be extended such that

j(xe, t) = κ (e(xe, t) + ẋe(xe, t)× b(xe, t)) . (1.15)

The velocity term ẋe(xe, t)× b(x, t) results from the effect of the Lorentz force on moving charges, see [36,
78]. As for the rest of the model problem defined by (1.2) and (1.3), nothing changes. A similar result is
proved also for the Lagrangian description, namely, the equations of the eddy-current model stay valid even
when they are written with respect to such accelerated reference frame, see [79]. In addition, the velocity
term in (1.15) vanishes in this case, since by definition the reference frame is fixed in the moving conducting
body. Interestingly, a free choice of the reference frame can be made in our context, we refer to [75, 79, 81]
for more details. Therefore, we can choose the Lagrangian description for moving bodies in order to avoid an
explicit representation of the velocity field in the model problem, and for convenience also for the stationary
parts. This allows a decoupling of the electrical and mechanical systems in the sense that they do not need
to be handled simultaneously, as will be explained subsequently.

Motion is a result of external forces and torques exerted on the considered rigid body. Their relations to kine-
matics are given in terms of Lagrangian coordinates by the second Newton law’s of motion [81, Section 1.7.1]

fM = mẍl + ωl ×mẋl, (1.16a)
τM = Θω̇l + ωl ×Θωl, (1.16b)
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where on the left-hand sides fM and τM denote the total force and torque, respectively. On the right-hand
sides m denotes the mass, and Θ the inertia tensor. In particular, the considered trajectories for electrome-
chanical energy converters are usually guided and limited to either a translation or rotation. In the case
where only one degree of freedom is involved, (1.16) reduces to

fM = mẍl (1.17)

for a pure translation, and to
τM = θω̇l (1.18)

for a pure rotation around one specific axis. In the above equation, θ refers to the moment of inertia. In our
context, the computation of themagnetic force and torque plays a central role, considering that they represent
the coupling quantities of the electrical and mechanical systems. For this, we first define the magnetic part
of the MST in empty space, cf. [75, Section 2.2], by

T M =
1

µ0
b⊗ b− |b|2

2µ0
Id, (1.19)

where⊗ denotes an outer product, and Id the identity operator. Then, we choose a surface Γe such that it en-
closes the Region Of Interest (ROI) where themagnetic force and/or torque are aimed at. As it will be clarified
in the remainder of this work, independently of the ROI, which may contain non-linear materials, the points
of the closed surface Γe are always chosen to be in air regions. Whence the validity of (1.19). With this, the
magnetic force is obtained by computing the following surface integral

fM =

∫
Γe

T M · ndx, (1.20)

and the torque is calculated by
τM =

∫
Γe

x× (T M · n)dx. (1.21)

Thereby, the integrals have to be understood with respect to Cartesian components.

With this, we address in the next subsection the considered coupling technique for the electrical and the
mechanical subsystems.

1.1.3 The coupled electromechanical system

Usually, the electrical and the mechanical subsystems have to be solved simultaneously, since a change in
the electrical state of the subsystem affects the mechanical one, and vice versa. In this case, we speak about
a strong coupling. In general, a direct solution is challenging, because of the possible non-linearity of all
involved unknowns in the electromechanical system. However, over a finite set of increasing time steps, the
strongly coupled problem can be simplified and solved using suitable predictor–corrector methods, see [75,
Section 4.6] and the literature cited therein for more details.

As an alternative, we opt for the simpler approach of weak coupling, which consists in solving the electri-
cal and mechanical subsystems sequentially over a finite set of increasing time steps. To give sense to this
simplification, smaller time steps have to be chosen, such that the force/torque and the electromagnetic field
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start

input

i = 0

solve the
eddy-current

problem
Eqs. (1.2)

compute force and
torque

solve the equations
of motion

i := i+ 1

Eqs. (1.20) & (1.21)

Eqs. (1.16)

update geometry
and input

i+ 1 = n

end

t := t0

true

false

t := ti

Figure 1.3: A flowchart representing the main blocks for the solution of an electromechanical prob-
lem over a set of n increasing time steps, i.e., t0 < . . . < ti < . . . < tn−1.

can be assumed to be constant within two steps. In other words, the changes have to be small enough to
be neglected, which depends on the concrete application. Then, the solution of the electromechanical prob-
lem follows the flowchart of Figure 1.3. Thereby, input refers to all the prescribed physical quantities that
are needed to solve the electromechanical problem, such as the right-hand sides, the initial positions, the
material profiles etc. Update geometry and input means the implementation of the body’s new state after
experiencing a motion, which is caused by the exerted force/torque. These information serve then as new
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inputs to the eddy-current problem for the next iteration, and the loop is iterated until the last time step. For
this, the force and torque are obtained by the MST method, i.e., by computing the surface integrals (1.20)
and/or (1.21). The main subsystems of the coupled problem are represented by the eddy-current model and
the equations of motion. The former consists of system (1.2) supplemented by the corresponding constitutive
law depending on the material, i.e., (1.3), (1.4), or (1.6), Ohm’s law (1.9), as well as further boundary and
initial conditions that will be specified in the next chapters, whereas the latter is fully represented by the
equations of motion (1.16) together with suitable initial conditions.

In general, the solution of the coupled problem can not be achieved analytically, especially for complicated
geometries and inhomogenities. Therefore, we resort to numerical methods. Choosing suitable schemes is
dependent on the specific problem. In the next section, we discuss this subject for our particular type of
applications.

1.2 Choice of the numerical method

Let us recall the problem that we have at our disposal by means of a concrete example, consisting in a
Permanent Magnet Synchronous Machine (PMSM). Due to its translational symmetry along the height of
its cylindrical shape, we depict only a two-dimensional (2D) cross-section of the machine in Figure 1.4. It
consists of two disjoint ring domains that are separated by a thin air gap. The outer and inner domains
are called stator and rotor, respectively. Indeed, as the name suggests, the stator which contains the coils
that carry the imposed currents is immobile, whereas the rotor possesses a rotational degree of freedom.
Embedded in the latter are Permanent Magnets (PMs), which provide a permanent magnetic field. The core
of the machine is constructed by stacked steel laminations, in order to reduce eddy-current losses. Both
the PM and steel exhibit non-linear magnetic behavior, in particular, they can be classified as hard and soft
magnetic materials, respectively, see also Figure 1.2. The rotor’s motion results from a mechanical torque,
which is due to the interaction of magnetic fields in the thin air gap. Note that these fields are produced by
the PMs on the rotor’s side, and by the currents that are passing through the coils on the stator’s side.

This example is representative because it manifests the most challenging aspects that need to be taken into
account in order to choose a suitable numerical method for the simulation of electromechanical energy con-
verters. On one hand, we have two disjoint domains that contain non-linear materials. On the other hand,
there is a gap that may be very thin, and which is filled by a linear material. A straightforward choice to deal
with non-linearity and non-homogeneous equations would be FEM. It is well-established theoretically as well
as numerically, and widely used for this type of applications. We refer to the textbooks [88, 102, 113] and to
the manuscripts [11, 13, 60], for instance. FEM relies on a tessellation of the geometry into finite elements,
such as tetrahedrons or hexahedrons, for example. This is called meshing, and it turns out to be a hurdle
when it comes to themeshing of very thin domains. This becomes evenmore challenging if motion is included.

A way around this is provided by BEM. In particular, BEMs are more suitable for problems that are for-
mulated in unbounded domains or in thin geometries, because they require only surface meshing. Indeed,
by means of potential operators a representation formula can be derived. Further steps lead to Boundary
Integral Equations (BIEs) that are formulated on the boundary. However, the existence of a fundamental
solution is conditional to BEM. Hence, non-linear equations are excluded from its range of validity. Other ap-
parent drawbacks of BEM have slowed down its popularity at first glance. Even though the matrices produced
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Figure 1.4: Cross-section of a 6-pole Permanent Magnet Synchronous Machine (PMSM), which con-
sists of: Permanent Magnets (PMs) (red), coils (yellow), and a steel core (gray).

thereby are way smaller compared to FEM as the system’s dimensionality is reduced, they are structurally
dense, whereas the FEM matrix can be stored as a sparse matrix by choosing suitable basis functions for
assembling. Moreover, the mathematical foundation of BEM for Maxwell’s equations lacked for a long time
an appropriate characterization of the corresponding trace spaces in a general Lipschitz setting. Neverthe-
less, thanks to [17, 18, 20] this problem has already been solved. Besides, the time and memory consuming
assembling of BEM matrices can now be tackled by several fast assembling techniques, such as [8, 97, 98].
We also refer to [103, 109] for more BEM-related content.

Hence, an intuitive approach consists in coupling FEM and BEM. In relation to the PMSM example of Fig-
ure 1.4, FEM is considered in the rotor and the stator domains, whereas BEM is applied in thin air gap. As
a consequence, disjoint domains can be modeled separately, which facilitates the incorporation of motion.
Moreover, FEM-BEM couplings, thanks to the BEM part, are suitable for force and torque calculations with
the MST method, as introduced above with Equations (1.19) to (1.21). Furthermore, an interesting feature
can be observed: under some assumptions, the convergence of the numerical solution towards the exact one
is ameliorated in the BEM domain and can even reach a doubling of the standard convergence rates of FEM
with respect to h-refinements. A demonstration in the 2D static case is furnished in [42], and its validity in
the three-dimensional (3D) case is discussed in [43].

Depending on the BIEs that are utilized to supplement the FEM part, three main coupling types that involve
two unknowns arise: a direct symmetric coupling à la Costabel [30], an indirect non-symmetric one as pro-
posed by Bielak and MacCamy in [9], and a direct non-symmetric coupling, called Johnson-Nédélec coupling,
see [69]. Furthermore, an additional coupling with three unknowns, known as the three-field method, has
been considered in [45].
FEM-BEM couplings are usually discretized by means of collocation or Galerkin techniques. Our focus will
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be on the latter. In their classical form, the Galerkin couplings rely on a discretization with lowest order basis
functions. However, one of the main goals of simulation for electromechanical devices is the calculation of
forces and torques, which involves the computation a posteriori of derivatives of the solution. Thus, going
up to higher order basis functions seems more favorable. Moreover, a good representation of the geometry is
necessary in order to avoid an induced approximation error and to facilitate motion. For this, we consider an
isogeometric framework, which was first proposed in [65]. The method is called Isogeometric Analysis (IGA),
and it relies on B-Splines together with some of its extensions such as NURBS. These basis functions play
a central role in Computer Aided Design (CAD) software, because they allow an exact representation of
industry-relevant geometries. We refer the reader to [94] for an introduction to B-Splines and NURBS. In
other terms, the isogeometric framework allows the unification of two processes that are typically separated,
namely, design and analysis. This is achieved by employing the same type of basis functions for both steps.
Moreover, we benefit from an efficient h-refinement that does not alter the original geometry. Furthermore,
basis functions of arbitrarily high order can merely be computed thanks to the definition of B-Splines and
NURBS. The refinement step with respect to the basis functions’ order is called p-refinement. Several works
considered IGA as an alternative to classical FEM and BEM for electromagnetic applications, we mention [10,
29, 119], for instance.

As implied by the PMSM example in this section, the 3D problem can indeed be reduced in some cases to a
2D one. Nevertheless, we are interested in both cases in this thesis. Furthermore, in order to solve the eddy-
current problem, several formulations can be considered either with respect to the fields, which yields, e.g.,
an e-based formulation or by invoking scalar and/or vector potentials. Here, we choose a vector potential
formulation, see Chapter 3. Moreover, we study the magnetoquasistationary case as well as the static one,
which might follow in a steady state context. In the following, we give a brief overview on some related
works.

Related works In the 3D case, we refer to [61], where the mathematical foundation of the symmetric
FEM-BEM coupling for an e-based eddy-current model is provided. Moreover, a numerical validation for the
symmetric and the indirect non-symmetric coupling with a vector potential formulation is furnished, e.g., in
[71] for both the eddy-current and the magnetostatic case. For the latter, a direct coupling approach with
a reduced magnetic potential can also be employed as in [14], for instance. The introduction of auxiliary
quantities such as magnetic potentials is a widely considered approach to deal with magnetostatic problems.
For instance, [52, 57, 101] are based on a total and/or reduced scalar magnetic potential. However, the
stability of these methods depends on the considered permeability of the materials, and may deteriorate in
some cases. This drawback was fixed in [74], where an alternative approach that consists in the consider-
ation of a vector potential formulation for the FEM part, along with a total scalar magnetic potential in the
exterior BEM domain was proposed. Nevertheless, this method is only valid for simply-connected domains.
For more general topologies, a reduced scalar magnetic potential for the BEM part instead of the total one
relaxes the topology assumption, see [95]. In the context of electromechanical energy converters, FEM-BEM
couplings reveal to be promising alternatives, see, e.g., [75, 78, 81]. In the 2D case, we refer to [41, 56, 82,
106] and the references cited therein in the magnetoquasistatic regime, and to [6, 42, 46, 108], for instance,
for the magnetostatic case. In the same context, [86] used the isogeometric FEM-BEM coupling with a collo-
cation based discretization for magneto-mechanical problems in two dimensions. Moreover, see [77] for an
application of FEM-BEM coupling on a watch stepping motor.
Regarding the mathematical foundation of IGA, we refer the reader to [24, 25] and [21, 119], where the
approximation properties of B-Splines and their trace spaces are studied in the context of Maxwell’s equations.
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In the next section we describe the goals of this treatise and give an overview on its structure along with the
content of each chapter.

1.3 Goal and structure of this treatise

In the preceding sections, we introduced the physical background and the numerical method that we con-
sider in this work, respectively. Our main goal is to provide a rigorous mathematical analysis of direct non-
symmetric FEM-BEM couplings for the simulation of electromechanical devices in the isogeometric frame-
work. Moreover, we aim to verify the established theoretical findings numerically to highlight the practical
relevance of the proposed method.
In the presence of symmetries, the physical problem can be reduced from 3D space to a 2D one. The gov-
erning equations of the obtained model problems are structurally different: in the 3D case, we deal with
curl curl equations, whereas diffusion problems arise in the 2D one. Both cases are addressed in this thesis,
which is organized as follows:

• Chapter 2 is dedicated to the introduction of the mathematical framework that is needed for a suitable
formulation of the physical problems at hand. First, we address briefly the notion of connectedness,
smoothness, and regularity. We follow up with the relevant Sobolev spaces in bounded domains and on
the boundary as well as the corresponding Bochner spaces. Afterwards, we present the main theorems
on monotone equations, which are crucial to show well-posedness of our non-linear problems. Then,
we introduce the energy spaces and discuss their relations with respect to the differential operators
for trivial and non-trivial topologies. Last, and in the same context, we give the corresponding trace
spaces, the Green’s identities, and some further fundamental results.

• In Chapter 3, we derive a vector potential formulation of the eddy-current model in interior and exterior
domains separately. Then, we address the basics of Boundary Element Methods (BEMs). We introduce
the considered representation formulae, we discuss the Boundary Integral Operators (BIOs) and their
properties, and present the corresponding Boundary Integral Equations (BIEs). An essential tool in our
analysis resides in estimating the double-layer operators by means of the Steklov-Poincaré operators.
The chapter is concluded with an introduction to the isogeometric paradigm, where we also present
the relevant discrete spaces for our method.

• Chapter 4 is devoted to the analysis of the non-symmetric coupling. We start it with the elliptic-elliptic
interface problem, which arises, e.g., from the magnetostatic model in two dimensions. We estab-
lish well-posedness and provide a stability result for a specific type of practice-oriented non-linearities.
Moreover, we state well-posedness of the discrete problem, and derive an a priori estimate with respect
to h-refinements for an approximation via B-Spline spaces. Then, we use these results to extend the
analysis to the parabolic-elliptic interface problem. With similar tools, we further analyze an additional
class of Boundary Value Problems (BVPs) that are topologically similar to electromechanical devices,
such as the PMSM of Figure 1.4. Besides well-posedness and stability, we also address the possible su-
perconvergence of the solution when evaluated in the BEM domain. In other words, due to the integral
nature of BEM, the convergence rates are ameliorated and may double under some circumstances. In
the last section of this chapter, we analyze the 3D magnetostatic case, and provide analogous results as
for the previous 2D problems.
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• In the penultimate Chapter 5, we validate the theoretical results numerically by means of several aca-
demical but yet representative examples. Furthermore, we address the explicit computation of forces
and torques, which play the role of the coupling quantities of the electrical and mechanical systems.

• We end the thesis in Chapter 6 with a conclusion on the proposed method. We address possible ex-
tensions and improvements that would contribute to the consolidation of the isogeometric FEM-BEM
coupling as an attractive alternative for the simulation of electromechanical energy converters.

15





2 Mathematical framework

As any human activity needs goals,
mathematical research needs problems.

D. Hilbert

In Remark 1.3, we evoked that the smoothness of vector fields in a componentwise sense is incompatible with
an interface problem. Besides, if the bounded domain Ω is not globally smooth, the existence of a normal
vector is not guaranteed in every point of its boundary. Hence, the specification of the domain’s regularity
is primordial. To cope with this, the problem has to be formulated in an appropriate mathematical setting.
This represents the content of this chapter. Obviously, the fields have to be set in so called energy spaces,
which are the standard Hilbert spaces for Maxwell-based Boundary Value Problems (BVPs), see [11, 60], for
instance. For the time-dependent problem, we also introduce a class of Bochner spaces, which we define as a
time-parameterized collection of energy spaces. In addition, the notion of quotient spaces turns out to be use-
ful in the three-dimensional (3D) case, such that the problem can be formalized in the sense of equivalence
classes [76]. The issue in the 3D case stems from the infinite-dimensional kernel of the curl operator. In
other words, the uniqueness of a potential field can only be guaranteed up to a gradient. Furthermore, going
to a boundary formulation requires the definition of suitable trace spaces. We use the results of [20], where
a characterization of the relevant trace spaces is specified, along with the required trace and differential op-
erators. The validity of the setting also includes Lipschitz domains. Moreover, we present some fundamental
results such as Green’s identities that are needed for the derivation of Boundary Integral Equations (BIEs).
More details can be found, e.g., in [17, 22, 58, 109]. The chapter is organized as follows: In Subsection 2.1.1,
we first clarify the meaning of connectedness, regularity and smoothness. Moreover, we define some relevant
spaces that play a central role in the study of Partial Differential Equations (PDEs), and give an overview on
the used notations. Then, we end the section with some fundamental results related to non-linear operators
in Subsection 2.1.2. In Section 2.2, we introduce suitable Hilbert spaces endowed with graph norms that ren-
der the application of corresponding differential operators Lebesgue integrable, and discuss the elements of
the de Rham complex, whose structure depends on the topological properties of the domain. In Section 2.3,
we proceed similarly to introduce and characterize the corresponding trace spaces, along with the needed
tangential differential operators and evidently the trace operators.

2.1 Fundamentals

This section consists of two parts. First, we first introduce the considered geometries, and briefly recall the no-
tions of smoothness and regularity. Then, we introduce the spaces of test functions and distributions. Last, we
provide a short introduction to Sobolev and Bochner spaces. As we go along, the notational conventions that
we use will be highlighted. The content of the first part of this section consists of well-established definitions
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Γ0

Γ1 Γ2

Ωr

ΓC2ΓC1

(a) a two-dimensional (2D) domain Ωr with two
holes. Γr = Γ0∪Γ1∪Γ2 denotes the boundary of
Ωr and ΓC = ΓC1 ∪ ΓC2 consists of the “cut” seg-
ments.

ΓC

(b) a 3D domain Ωt with one hole. ΓC is the red “cut”
surface.

Figure 2.1: Examples of non simply-connected 2D and 3D domains.

and results in the field of functional analysis. We rely for this mostly on [1, 34, 87, 109], for instance. Sec-
ond, we introduce the main theorems on monotone operators, which are central in our analysis to prove well-
posedness of the coupled problem. We refer to [122] for more details.

2.1.1 Preliminaries and notational conventions

Geometry Let Ω ⊂ Rd with d = 2, 3 be a bounded domain, and let Γ denote its boundary. Unless specified,
a domain Ω is implied to be open and connected, and Γ is assumed to consist of NΓ connected components.
For example, we illustrate in Figure 2.1a such a domain Ωr with d = 2 and a boundary Γr = Γ0∪Γ1∪Γ2, i.e.,
with NΓ = 3. Obviously, Ωr is connected but not simply-connected1. Nevertheless, Ωr can be made simply-
connected by “cutting” it along ΓC1 and ΓC2 . The necessary number of “cuts”, which we denote throughout
the thesis by NC, can be determined in this case from the number of connected components of Γ by NC =
NΓ − 1 = 2.
In the 3D case, a similar (but more involved) approach can be considered to gain a simply-connected domain
from one that is only connected. For instance, the torus domain in Figure 2.1b, which we labelΩt is connected
but obviously not simply-connected, however Ωt\ΓC is, as stated in [34, Section 5.2]. This idea will be
formalized in Subsection 2.2.3.

Smoothness and Lipschitz continuity Let D ∈ {Rd,Ω,Γ} and k ∈ N0, we denote by Ck(D) the space of
k-times continuously differentiable functions over D, and by C∞(D) the space of smooth functions, which
consists of indefinitely continuously differentiable functions. To express the smoothness of a vector field

1We refer the reader, e.g., to [59, Chapter 1] and [64] for a formal definition of simply-connected domains.
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v = (v1, . . . , vd) over a domain D, we use Ck(D) and C∞(D), which have to be understood in a componen-
twise sense.

Furthermore, we say that a domain Ω is smooth, if its boundary Γ is represented by a family of smooth
parametrizations. In other words, let us assume that there exists a regular tessellation ofΓ, such that

Γ =

Nτ⋃
i=1

τ i,

and for all i, j = 1, . . . , Nτ , τ i ∩ τ j is either empty, reduces to a single vertex, or consists of a whole common
edge. Thereby, every boundary segment τi can be represented via a local parametrization

τi = {x ∈ Rd, ξ ∈ τ̂ : x = p̂i(ξ)}, (2.1)

where τ̂ ⊂ Rd−1 is an open parameter domain. With this, we say that Ω is smooth if all functions p̂i : τ̂ → τi
are of class C∞(Γ). However, the smoothness assumption is too restrictive so that only a small class of ge-
ometries can be considered.

A more general concept of continuity can be reached by means of Hölder continuous parametrizations. For
k ∈ N0 and 0 < ι < 1, we introduce the corresponding space

Ck,ι(D) := {v : v ∈ Ck(D), |v|0,ι <∞}.

Thereby, |v|0,ι is a semi-norm defined by

|v|0,ι =
∑
|α|=k

sup
x,y∈D,x6=y

|∂αx v(x)− ∂αy v(y)|
|x− y|ι

. (2.2)

The vectorial counterpart is defined analogously, and is denoted by Ck,ι(D). In particular, for k = 0 and
ι = 1, we obtain the spaces C0,1(D) and C0,1(D) of Lipschitz continuous functions and vector fields over D,
respectively.

Analogously to the smooth case, we label a domain Ω Lipschitz, if Γ is represented by a family of Lipschitz
continuous parametrizations, i.e., functions of class C0,1(Γ).

Lp-regularity The regularity of a function can be described by differentiability and integrability in the sense
of Lebesgue integrals. For this, we introduce Banach spaces of equivalence classes containing µ-measurable
functions over a domain D ∈ {Rd,Ω,Γ}, d = 2, 3. Thereby, two functions are considered equal, if they differ
only in a zeromeasure set, see [1] for instance. For p ≥ 1, we define them by

Lp(D) = {v is µ-measurable : ‖v‖Lp(D) <∞},

where µ is a Hausdorffmeasure and ‖·‖Lp(D) is theLp-norm, which is computed for v ∈ Lp(D) by

‖v‖Lp(D) =

(∫
D
|v(x)|p dx

) 1
p

for 1 ≤ p <∞,
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‖v‖L∞(D) = ess sup
x∈D

|v(x)| = inf
K⊂D,µ(K)=0

sup
x∈D\K

|v(x)| for p = ∞.

For convenience, we write as integral measure generically dx instead of dµ. However, note that the inter-
pretation of dx depends on the dimension of the considered manifold. For further reading we refer to [116,
Section 2.3] and the literature cited therein. For 1 < p <∞, choosing q as the Hölder conjugate (or adjoint)
of p, i.e.,

1

p
+

1

q
= 1

yields the Hölder’s inequality, namely, for u ∈ Lp(D) and v ∈ Lq(D), we have∫
D
|u(x)v(x)|dx ≤ ‖u‖Lp(D)‖v‖Lq(D), (2.4)

and we say that Lq(D) is dual to Lp(D). In addition, we can express the norm of the dual space by means of
the operator norm as

‖v‖Lq(D) = sup
u∈Lp(D),u6=0

|〈u, v〉D|
‖u‖Lp(D)

, v ∈ Lq(D),

where the notation 〈·, ·〉D is called duality pairing that is evaluated over the domain D. It is computed for
u ∈ Lp(D) and v ∈ Lq(D), with Lq(D) dual to Lp(D) by

〈u, v〉D =

∫
D
u(x)v(x)dx.

For more details, and especially for the Banach dual spaces of L1(D) and L∞(D), we refer to [1, Chapter 2].
Of particular interest for our purpose is the space of square integrable functions, which arises for p = 2. The
space L2(D) is self dual, and it satisfies the Cauchy-Schwarz’ inequality, which follows merely from (2.4) for
p = q = 2 ∫

D
|u(x)v(x)|dx ≤ ‖u‖L2(D)‖v‖L2(D). (2.5)

Furthermore, it is endowed with an inner product

(u, v)D =

∫
D
u(x)v(x)dx,

which induces the norm
‖v‖L2(D) =

√
(v, v)D.

Hence, it follows that L2(D) is a Hilbert space. Conform to our notation, we useLp(D) to denote the space of
equivalence classes of Lebesgue measurable vector fields v overD with respect to the Lp-norm. Note that the
previous definitions and results transfer accordingly fromLp(D) toLp(D).

Test function spaces and distributions Let D ⊆ Rd with d = 2, 3. We denote by D(D) the space of test
functions, which consists of infinitely smooth functions with compact support in D, formally we define it
by

D(D) := {ϕ ∈ C∞(D) : suppϕ ⊂ D compact} with suppϕ = {x ∈ D : ϕ(x) 6= 0},

see [117, Definition V.1.9]. Note that D(D) is a vector space that is additionally equipped with a topology,
which defines uniform convergence of sequences. We refer the reader to [117, Satz VIII.5.2] and [87] for
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more details.

We call a linear map V : D(D) → C a distribution, if for all compact sets K ⊂ D, there exists a constant
C = C(K) > 0 and k ∈ N0, which may depend on K such that

∀ϕ ∈ D(D), suppϕ ⊂ K : |V (ϕ)| ≤ C
∑
|α|≤k

sup
x∈K

|∂αxϕ(x)| (2.6)

withα = (α1, . . . , αd) ∈ Nd0 being amulti-index. That is, forx = (x1, . . . , xd)we have

|α| =
d∑
i=1

αi and ∂αxϕ(x) =
∂|α|ϕ(x)

∂α1x1 . . . ∂αdxd
.

The evaluation of a distribution V on a test functionϕ ∈ D(D) is also denoted by angular brackets, namely,

V (ϕ) = 〈V, ϕ〉D.

We collect distributions that are applied to a test function ϕ ∈ D(D) in D(D)′. Note that the space of distri-
butions D(D)′ corresponds to the dual space of D(D).

In particular, we see in the following that a function v ∈ L2(D) can be identified with a distribution V ∈
D(D)′. For an arbitrary compact subset K ⊂ D, and an arbitrary ϕ ∈ D(D) with suppϕ ⊂ K, we obtain by
applying the Cauchy-Schwarz’s inequality (2.5) that

| (v, ϕ)D | ≤ ‖v‖L2(D)‖ϕ‖L2(D) ≤ |K|‖v‖L2(D) sup
x∈K

|ϕ(x)|.

Hence, the identification holds by (2.6), and we may write

〈V, ϕ〉D = (v, ϕ)D ∀ϕ ∈ D(D). (2.7)

A distribution V that satisfies the representation (2.7) is called regular. Otherwise we call V singular, e.g., a
Dirac distribution, which is defined by

δx(ϕ) = 〈δx, ϕ〉D = ϕ(x) ∀ϕ ∈ D(D). (2.8)

Given a distribution V ∈ D(D)′, differentiation in a distributional sense is computed by [88, Equation 3.1]

〈∂αV, ϕ〉D = (−1)|α|〈V, ∂αϕ〉D ∀ϕ ∈ D(D). (2.9)

This allows to find a weak derivative for a function that would be non-differentiable in a strong sense.
In addition, sincewe also need spaces for truncated test functions, we define

D(Ω) :={ϕ : ϕ = ψ|Ω, ψ ∈ D(Rd)}.

In order to stick to our notational convention, we denote by ϕ and V a vector that contains test functions
and distributions as components, respectively. Moreover, in the same componentwise sense, the space of
test vector fields ϕ is designated by D(D) and its dual by D(D)′, where D can be replaced by Rd, Ω, or
Ω.
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Sobolev spaces The next step towards an appropriate mathematical setting for our purpose is delivered
by Sobolev spaces. Indeed, they are Banach spaces, i.e., they are complete and normed; additionally, the
corresponding norm allows themeasurement of a function’s or vector field’s magnitude as well as its regularity
by measuring the associated derivatives up to a given order. The latter are understood in a weak sense.
Sobolev spaces can be defined in different ways. In this work, we present a standard definition which is
based on weak derivatives, and refer to [1, Chapter 3], [87, Chapter 3] for more details. With p ≥ 1, α a
multi-index, and k ∈ N0, we denote by

W k,p(Ω) = {v ∈ Lp(Ω) : ∂αv ∈ Lp(Ω), ∀|α| ≤ k}

a Sobolev space defined overΩ. It can be equippedwith the following norms

‖v‖Wk,p(Ω) =

∑
|α|≤k

‖∂αv‖pLp(Ω)

 1
p

for 1 ≤ p <∞,

‖v‖Wk,∞(Ω) = max
|α|≤k

‖∂αv‖L∞(Ω).

This definition can be extended to non-integer coefficients [87, Chapter 3]. Let s = k+ι, where ι ∈ (0, 1) ⊂ R.
Moreover, k is the same as above, and d = 2, 3. For 1 ≤ p < ∞, we introduce the Slobodeckiǐ semi-
norm

|v|W s,p(Ω) =

∑
|α|=k

∫
Ω

∫
Ω

|∂αx v(x)− ∂αy v(y)|p

|x− y|d+pι
dxdy

 1
p

.

The semi-norm turns out to be the usual Hölder semi-norm as given in (2.2) for p = ∞. With this, we endow
the Sobolev space of fractional orderW s,p(Ω) with the norm

‖v‖W s,p(Ω) =
(
‖v‖p

Wk,p(Ω)
+ |v|pW s,p(Ω)

) 1
p for 1 ≤ p ≤ ∞,

which renders it a Banach space.
In particular, we are interested in the case where p = 2. Indeed, similarly to the Lp-spaces, W s,2(Ω) is a
Hilbert space. We adopt therefore the notation Hs(Ω) for W s,2(Ω). Note that this notation stems from a
second definition of Hilbert spaces, which is based on the Fourier transform of distributions [87, Chapter 3].
For Lipschitz domains, we know from [109, Theorem 2.16] that both definitions are equivalent for all s > 0.
As previously, a Hilbert space is equipped with an inner product structure. It is expressed for u, v ∈ Hk(Ω)
and k ∈ N0 by

(u, v)Hk(Ω) =
∑
|α|≤k

(∂αu, ∂αv)Ω,

and for a fractional order s = k + ι, with ι ∈ (0, 1) ⊂ R by

(u, v)Hs(Ω) = (u, v)Hk(Ω) +
∑
|α|=k

∫
Ω

∫
Ω

(
∂αx u(x)− ∂αy u(y)

) (
∂αx v(x)− ∂αy v(y)

)
|x− y|d+2ι

dxdy.

Consequently, the following norm is induced for s > 0 and v ∈ Hs(Ω),

‖v‖Hs(Ω) =
√
(v, v)Hs(Ω).
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For s = 0, H0(Ω) reduces to the space of square integrable functions, i.e., L2(Ω).

In addition, we introduce Sobolev spaces, which are defined as the closure ofD(Ω) as follows

Hs
0(Ω) = D(Ω)

‖·‖Hs(Ω)
. (2.11)

For k ∈ N0,Hk
0 (Ω) can be understood as a Sobolev spaceHk(Ω) with k weak derivatives in L2(Ω) that vanish

at the boundary of Ω. We will come back to this in the next subsection.

By setting s > 0, we define the Sobolev space H−s(Ω) with negative exponents as the dual space of Hs
0(Ω),

and endow it with the dual norm

‖u‖H−s(Ω) = sup
v∈Hs

0(Ω),v 6=0

|〈u, v〉Ω|
‖v‖Hs

0(Ω)
.

Similarly, the dual space ofHs(Ω) corresponds toH−s
0 (Ω), cf. [109, Section 2.2]. Furthermore, letΩe = Rd\Ω

be an unbounded exterior domain. We need functions with local behavior. We collect them in

Hs
loc(Ω

e) := {v : Ωe → R : v|K ∈ Hs(K), ∀K ⊂ Ωe compact}, (2.12)

where v|K stands for the restriction of v to the set K. Note that for s = 0, the space of functions with local
L2-behavior is denoted by L2

loc(Ω
e).

Furthermore, we need Sobolev spaces on the boundary Γ. We recall here that Γ is Lipschitz. The construction
of such spaces depends on the specific local parameterizations p̂i and the partition of Γ as introduced in (2.1).
However, the corresponding norms are equivalent. For amore explicit explanation, see [109, Section 2.5]. We
denote the Sobolev space defined over the boundary byHs(Γ). Note that for Lipschitz boundaries, the depen-
dence on the parametrization limits the choice of s to s ∈ [−1, 1]. In the following, we provide a definition for
Hs(Γ) for completeness but refer the reader, e.g., to [109, Section 2.5] for more details. First, we introduce
the corresponding Slobodeckiǐ semi-norm, which reads for s ∈ (0, 1)

|v|Hs(Γ) =

(∫
Γ

∫
Γ

|v(x)− v(y)|2

|x− y|d−1+2s
dxdy

) 1
2

.

Then, Hs(Γ) is a Banach space when equipped with the norm

‖v‖Hs(Γ) =
(
‖v‖2L2(Γ) + |v|2Hs(Γ)

) 1
2
,

where we usedH0(Γ) = L2(Γ). With this, the Sobolev spaceHs(Γ) can be defined as the closure of the space
of smooth functions in the Sobolev-Slobodeckiǐ norm ‖·‖Hs(Γ), formally, wewrite

Hs(Γ) = C∞(Γ)
‖·‖Hs(Γ)

.

Moreover, the dual space ofHs(Γ) is denoted byH−s(Γ). Similarly to the domain spaces,H−s(Γ) is obtained
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by the duality relation

‖u‖H−s(Γ) = sup
v∈Hs(Γ),v 6=0

|〈u, v〉Γ|
‖v‖Hs(Γ)

.

As an alternative notation, we also designate by H(D)′ the dual space of some Banach space H(D) defined
over D.
Concerning vector-valued Sobolev spaces, i.e., spaces that contain vector fields, they are expressed as usual
with a bold font, namely, we writeH±s(D)with s > 0 andD ∈ {Ω,Γ}, andL2

loc(Ω
e), Hs

loc(Ω
e) for the spaces

with local behavior defined over an unbounded domain. Note that vector-valued Sobolev spaces have to be
understood in a componentwise sense.

In this treatise, we also encounter spaces of functions that are defined over a time interval, whose instan-
taneous values consist of functions that lie in some Banach space H. Such spaces are known as Bochner
spaces [48, Section 5.2.9]. We denote them here by using the following convention: For a specific time in-
terval T = [0, tmax], tmax > 0, and a space of instantaneous values H(D), which is defined over a domain
D ∈ {Ω,Γ}, the corresponding Bochner space is expressed for p ≥ 1 by

Lp(T ;H(D)) := {v ∈ Lp(T ) : v(t) ∈ H(D), ∀t ∈ T}.

In particular, we focus on the case p = 2. For v ∈ L2(T ; H(D)) with an instantaneous value v(t) ∈ H(D) for
t ∈ T , the Bochner spaceL2(T ; H(D)) can be equippedwith its natural norm

‖v‖L2(T ;H(D)) =

(∫ tmax

0
‖v(t)‖2H(D) dt

) 1
2

. (2.13)

The dual space of a Bochner space that relates to H(D) is understood as the time-parametrized collection of
the dual spaces of H(D), since L2(D) is self-dual. Concretely, we have

L2(T ; H(D)′) := {v ∈ L2(T ) : v(t) ∈ H(D)′, ∀t ∈ T}

as the dual space ofL2(T ; H(D)). In the sense that the above defined Sobolev normsmeasure the spatial regu-
larity of a function, we define a generic time-parameterized Sobolev space

L2(∂t, T ; H(D)) := {v ∈ L2(T ; H(D)) : ∂tv ∈ L2(T ; H(D)′)}, (2.14)

and endow it with the norm

‖v‖L2(∂t,T ;H(D)) =
√
‖v‖2

L2(T ;H(D))
+ ‖∂tv‖2L2(T ;H(D)′)

(2.15)

to allow the measurement of temporal regularity. Analogously to the weak derivatives in space, ∂tv exists
in a weak sense. Note that we restrict ourselves here to the first time derivative, since it is sufficient for our
purpose.
For consistency, Bochner spaces of a vector-valued Banach spaceH(D) are denoted by L2(T ; H(D)). In ad-
dition, the vector-valued counterpart of L2(∂t, T ; H(D)) is L2(∂t, T ; H(D)). The definitions can be adapted
accordingly.

The next part is dedicated to the definition of quotient spaces, along with some important results for Hilbert
spaces. In the following, letH denote a Hilbert space, and letU ⊂ H be closed.
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Theorem 2.1 (Best approximation in Hilbert spaces, [88, Theorem 2.7]). For H and U as defined above, we
have

∀v ∈ H, ∃!u ∈ U : ‖v − u‖H = inf
w∈U

{‖v − w‖H}. (2.16)

As a consequence, a direct sum decomposition can be stated. Two functions are said to be orthogonal in H,
if for u, v ∈ H their inner product vanishes, i.e., (u, v)H = 0.

Theorem 2.2 (Projection theorem, [88, Theorem 2.9]). For H and U as mentioned above, the orthogonal
decomposition

H = U ⊕ U⊥

holds. Thereby, U⊥ is called the orthogonal complement of U in H. In other terms, we have

∀v ∈ H, ∃!u ∈ U and u⊥ ∈ U⊥ : v = u+ u⊥.

In particular, this result plays a central role to provide a characterization of quotient spaces, and in the
Helmholtz decomposition, which we will encounter in the next section.

Definition 2.3 (Quotient space). A quotient space [H] := H/U consists of the equivalence class

[v] := {v − w : w ∈ U}, v ∈ H.

Equipped with the best approximation norm (2.16), namely,

‖[v]‖[H] := inf
w∈U

{‖v − w‖H}

the quotient space [H] turns into a Banach space. Due to the uniqueness of the representation, which is stated in
Theorem 2.1, and for ease of notation, we write v := [v] ∈ [H]. The interpretation of the elements of a quotient
space should be clear from the context.

Corollary 2.4. The quotient space [H] := H/U can be identified with U⊥, the orthogonal complement of U in
H.

Proof. By using the direct sum decomposition of Theorem 2.2 we define a canonical isomorphism ι : [H] →
U⊥, v 7→ v − u, u ∈ U , which is well-defined and unique because of Theorem 2.1. Moreover, the same holds
for the inverse mapping ι−1 : U⊥ → [H], u⊥ 7→ u⊥ + u, u ∈ U .

For instance, let d : H → V be a differential operator with a non-trivial kernel ker(d). Thus, d is clearly
not injective. As a workaround, we expect a representation in quotient spaces with respect to ker(d), i.e.,
H/ ker(d) to enforce the injectivity of d by selecting representatives from the orthogonal complement space
of ker(d), i.e., ker(d)⊥.
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2.1.2 Main theorems on monotone operators and evolution equations

Motivated by the physical problem introduced in Chapter 1, non-linear problems, which are formulated ei-
ther by elliptic or parabolic equations play a central role in this thesis. Fortunately, there is a standard
theoretical framework that allows us to show well-posedness for such operator equations. This is provided
in [122, Chapter 25 & 30], for instance. Here, we only state the main results that are relevant for our purpose.

Throughout this subsection, letH be a Hilbert space, andH ′ be its dual. First, letA : H → H ′ be a non-linear
operator, which is Lipschitz continuous and stronglymonotone, i.e., for all u, v ∈ H

∃CA
L > 0 : ‖Au−Av‖H′ ≤ CA

L ‖u− v‖H (Lipschitz continuity), (2.17a)
∃CA

M > 0 : 〈Au−Av, u− v〉≥ CA
M‖u− v‖2H (strong monotonicity). (2.17b)

First, we state the main theorem on strongly monotone operators, which goes back to Zarantonello [120]. In
particular, this is a crucial result for the study of non-linear elliptic equations.

Theorem 2.5 (Well-posedness, [122, Theorem 25.B]). Let f ∈ H ′, and let A be a non-linear operator that
satisfies (2.17). Then, the operator equation Au = f with f ∈ H ′ admits a unique solution u ∈ H, which
depends continuously on the right-hand side f .

Remark 2.6. Note that if we were only interested in well-posedness, then strict monotonicity instead of (2.17b)
is sufficient to guarantee the existence and uniqueness of a solution [6, Remark 3]. The definition of strict
monotonicity is provided in Appendix A, for convenience.

Second, we consider the first order evolution equation

∂tu(t) +A(t)u(t) = f(t). (2.18)

Let V be defined as the pivot space of H and its dual H ′, i.e., such that (H,V,H ′) form a Gelfand triple
with H ⊆ V ⊆ H ′, see [118, Theorem 17.3]. Moreover, for the non-linear operator A(t) : H → H ′, let the
following properties hold:

1. For each t ∈ (0, tmax), the operator A(t) is monotone, coercive, and hemicontinuous, see Appendix A
for the corresponding definitions.

2. A(t) satisfies the following growth condition: There exists a non-negative function C1(t) and C2 > 0
such that

‖A(t)v(t)‖H′ ≤ C1(t) + C2‖v‖H . (2.19)

3. The function t 7→ 〈A(t)v(t), w(t)〉 is measurable on (0, tmax) for all v(t), w(t) ∈ H.

For more details, we refer to [122, Section 30.2].

Themain theorem onmonotone first order evolution equations can be stated.

Theorem 2.7 (Well-posedness, [122, Theorem 30.A]). In the framework given above by the properties 1-3,
the operator equation (2.18) supplemented by an initial condition u(0) = u0 ∈ V , and for a right-hand side
f ∈ L2(T ; H ′), admits a unique solution u ∈ L2(∂t, T ; H).
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Remark 2.8. Note that the initial condition u(0) = u0 ∈ V is meaningful, since L2(∂t, T ; H) is continuously
embedded in C(T ;H), see [121, Proposition 23.23] for more details.

In particular, we will consider u0 = 0 throughout this thesis for simplicity. Nevertheless, our analysis can be
adapted to non-homogeneous initial conditions without complications.

Lemma 2.9. Provided A(t) is strongly monotone, Lipschitz continuous, and hemicontinuous, then Theorem 2.7
applies.

Proof. First, monotonicity and coercivity follow from the strong monotonicity, see Lemma A.3 for the latter.
Then, the Lipschitz continuity induces a bound for A(t) in the sense of (2.19). In particular, for v(0) = 0,
which is the concrete case we will consider, this can be established as follows

‖A(t)v(t)‖H′ = ‖A(t)v(t)−A(0)v(0) +A(0)v(0)‖H′

≤ ‖A(t)v(t)−A(0)v(0)‖H′ + ‖A(0)v(0)‖H′

≤ CA
L ‖v(t)− v(0)‖H + ‖A(0)v(0)‖H′ (with (2.17a))

≤ CG
(
1 + CA

L ‖v(t)‖H
)

with CG = max (1, ‖A(0)v(0)‖H′).

Remark 2.10. In practice, i.e., with non-linear reluctivities given by an admissible B-H curve according to
Definition 1.1, weak differentiability of the corresponding operator has been established, see [91, 99], for instance.
In this regard, note that a Gâteaux (weak) differentiable operator is hemicontinuous. Indeed, provided it exists,
the Gâteaux derivative of some functional g reads

dg(t)τ = lim
ε→0

g(t+ ετ)− g(t)

ε
.

In particular, we see that lim
ε→0

g(t + ετ) = g(t) is guaranteed. That is, g(t) is hemicontinuous. In addition, it
is per definition strongly monotone and Lipschitz continuous. Therefore, choosing an admissible B-H curve in
the sense of Definition 1.1 automatically covers the theoretical prerequisites of Lemma 2.9 and per extension of
Theorem 2.7 as well as those of Theorem 2.5.

Remark 2.11. Although the setting of Lemma 2.9 is less general than that of Theorem 2.7, it is more convenien-
t/simple from a practical point of view because of Remark 2.10 as well as from an analysis perspective, since it
allows us a straightforward transfer of results from elliptic to parabolic problems.

In the next section, we introduce and address the properties of the natural spaces that arise in the context of
Maxwell’s equations.

2.2 Energy spaces and de Rham complex

Energy spaces provide a suitable functional setting for BVPs that are based on Maxwell’s equations. In fact,
they can be physically interpreted as spaces of potentials and fields with finite energies, which are measured
by means of graph norms that are in turn induced by inner products. The first part is dedicated to their
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introduction. Moreover, we give explicit integration by parts formulae. Indeed, they play a central role in the
derivation and study of variational problems.
A fundamental feature of energy spaces consists in the fact that they form a sequence with respect to the
appropriate differential operators, also known as de Rham complex. The structure of the sequence depends
however on the topological properties of the domain. We start by considering an interior domain with a trivial
topology. Then, we generalize the characterization of the spaces to a more general geometrical setting. We
finish the subsection by discussing additional related spaces, namely, energy spaces with local behavior, and
the time-parameterized counterparts.

2.2.1 Energy spaces

We recall that Ω is a bounded Lipschitz domain, and that Γ is its boundary. In particular, we consider Ω ∈ R3.
Analogously to (2.9), we first define the differential operators∇, curl, and div in a distributional sense. Then,
we introduce spaces that contain square integrable functions (vector fields) with weak derivatives in Ω, and
give some fundamental characterizations and results.

Similarly to (2.7), we have:

• For V ∈ D(Ω)′ and v ∈ L2(Ω),

〈∇V,ϕ〉Ω = −〈V,divϕ〉Ω = (∇v,ϕ)Ω = −(v,divϕ)Ω ∀ϕ ∈ D(Ω). (2.20)

• For U ∈ D(Ω)′ and u ∈ L2(Ω),

〈curlU ,ϕ〉Ω = 〈U , curlϕ〉Ω = (curlu,ϕ)Ω = (u, curlϕ)Ω ∀ϕ ∈ D(Ω). (2.21)

• For V ∈ D(Ω)′ and v ∈ L2(Ω),

〈divV , ϕ〉Ω = −〈V ,∇ϕ〉Ω = (divv, ϕ)Ω = −(v,∇ϕ)Ω ∀ϕ ∈ D(Ω). (2.22)

With this, we introduce the following energy spaces as in [35, Section IX.A.§1.2]

H(∇,Ω) := {v ∈ L2(Ω) : ∇v ∈ L2(Ω)},
H(curl,Ω) := {v ∈ L2(Ω) : curlv ∈ L2(Ω)},
H(div,Ω) := {v ∈ L2(Ω) : divv ∈ L2(Ω)},

where the differential operators ∇, curl, and div are understood in a weak sense as defined in (2.20),
(2.21), and (2.22), respectively. Energy spaces are Hilbert spaces when equipped with the inner prod-
ucts

u, v ∈ H(∇,Ω) : (u, v)H(∇,Ω) := (u,v)Ω + (∇u,∇v)Ω,

u,v ∈H(curl,Ω) : (u,v)H(curl,Ω) := (u,v)Ω + (curlu, curlv)Ω,

u,v ∈H(div,Ω) : (u,v)H(div,Ω) := (u,v)Ω + (divu,divv)Ω,
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which induce the graph norms

v ∈ H(∇,Ω) : ‖v‖H(∇,Ω) :=
√
(v, v)H(∇,Ω),

v ∈H(curl,Ω) : ‖v‖H(curl,Ω) :=
√
(v,v)H(curl,Ω),

v ∈H(div,Ω) : ‖v‖H(div,Ω) :=
√
(v,v)H(div,Ω),

respectively. Therefore, they turn into Banach spaces with respect to these norms. An important result that
is provided by the Riesz representation theorem allows us to identify the dual of a Hilbert space H, denoted
by H ′, with itself. Hence, writing a duality pairing 〈V, v〉 with V ∈ H ′ and v ∈ H, as an inner product (u, v)
with u, v ∈ H is meaningful, see [87, Theorem 2.30].
For notational consistency, note that we changed the notation of H1(Ω) to H(∇,Ω).

The following density results play a central role in the study of energy spaces.

Lemma 2.12 ([27, Lemma 1 & 2]). The following properties hold:

• D(Ω) is dense in H(∇,Ω).

• D(Ω) is dense inH(div,Ω) andH(curl,Ω).

With this, an assertion can be first proved for smooth functions, then extended continuously by density to
energy spaces.

As motivated in Section 1.1, the model problems that we will consider in this thesis may involve non-linear
operators. To take this into account in our analysis, we characterize in the following the considered class of
non-linear operators.

Assumption 2.13 (Lipschitz continuous and strongly monotone operators). Let U : L2(Ω) → L2(Ω) be a
possibly non-linear operator. We assume U to be Lipschitz continuous and strongly monotone:

• Lipschitz continuity:

∃CU
L > 0 : ‖Uv − Uw‖L2(Ω) ≤ CU

L ‖v −w‖L2(Ω) ∀v,w ∈ L2(Ω). (2.23)

• Strong monotonicity:

∃CU
M > 0 : (Uv − Uw,v −w)Ω ≥ CU

M‖v −w‖2L2(Ω) ∀v,w ∈ L2(Ω). (2.24)

In the process of deriving weak formulations, integration by parts represents a crucial tool. For this, we
first define the corresponding trace operators that map domain functions or vector fields to the boundary, cf.
[116].
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Definition 2.14 (Trace operators). Let Ω be a Lipschitz domain with a connected boundary Γ. Moreover, we
denote by n(x) an outward pointing normal vector with respect to Ω that is evaluated at x ∈ Γ, and assume
that n(x) exists almost everywhere (a.e.) on Γ. Then, we define the space of tangential vector fields

L2
t (Γ) = {v ∈ L2(Γ) : v · n = 0, a.e. on Γ}, (2.25)

and the trace operators:

• Standard trace: γ0 : D(Ω) → L2(Γ)

ϕ(x) 7→ lim
Ω3y→x

ϕ(y).

• Conormal derivative: γU1 : D(Ω) → L2(Γ)

ϕ(x) 7→ lim
Ω3y→x

U∇ϕ(y) · n(x).

• Vector restriction trace: γ0 : D(Ω) → L2(Γ)

ϕ(x) 7→ lim
Ω3y→x

ϕ(y).

• Normal trace: γn : D(Ω) → L2(Γ)

ϕ(x) 7→ lim
Ω3y→x

ϕ(y) · n(x).

• Tangential trace 2: γ× : D(Ω) → L2
t (Γ)

ϕ(x) 7→ lim
Ω3y→x

ϕ(y)× n(x).

• Dirichlet trace 3: γD : D(Ω) → L2
t (Γ)

ϕ(x) 7→ lim
Ω3y→x

n(x)× (ϕ(y)× n(x)) .

• Neumann trace: γU
N : D(Ω) → L2

t (Γ)

ϕ(x) 7→ lim
Ω3y→x

U curlϕ(y)× n(x).

Thereby, U is a possibly non-linear operator according to Assumption 2.13. To simplify the notation, if U = Id
we write γN and γ1 instead of γU

N and γU1 , respectively.

Then, the following characterizations for generalized integration by parts formulae can be stated.

Theorem 2.15 (Integration by parts). Let Ω be a bounded Lipschitz domain with a connected boundary Γ, and
let v ∈H(curl,Ω) and w ∈H(div,Ω). Then, there exist unique distributions γ× vδΓ and γnwδΓ such that〈

γ× vδΓ,ϕ
〉
Γ
= (v, curlϕ)Ω − (curlv,ϕ)Ω, (2.26a)

〈γnwδΓ, ϕ〉Γ = (divw, ϕ)Ω + (w,∇ϕ)Ω (2.26b)

2also known as rotated tangential trace.
3if γ× is labeled rotated tangential trace, then γD is usually called tangential trace.
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hold for all ϕ ∈ D(Ω) and ϕ ∈ D(Ω). Thereby, δΓ denotes a Dirac distribution with support Γ, cf. (2.8). For
instance,

〈γnwδΓ, ϕ〉Γ =
〈
γnw, ϕ|Γ

〉
Γ
.

Proof. First, we derive the formulae for distributions. The divergence theorem, see [88, Theorem 3.19] is
our starting point for the proof. For convenience, it states that for u ∈ C1(Ω),∫

Ω
divudx =

∫
Γ
u|Γ · ndx. (2.27)

It is obvious that this result holds also for u ∈ D(Ω). With this, (2.26b) follows by choosing u := wϕ. For
(2.26a), we set u := v ×ϕ and use the vector identity div(v ×ϕ) = ϕ · curlv − v · curlϕ.
Then, by applying Cauchy-Schwarz’s inequality to the right-hand sides of (2.26a) and (2.26b), respectively,
we can merely establish well-posedness of the distributions γ× vδΓ and γnwδΓ in the sense of (2.6). Now
using the density results of Lemma 2.12 closes the proof. For more details and explicit proofs, we refer to
[116] and [35, Section IX.A.§1.2].

Remark 2.16. By using similar arguments as for (2.26b) but for a fixed w ∈ H(div,Ω), the existence of the
standard trace γ0w can be established for w ∈ H(∇,Ω), see [116, Section 2.5].

In the following, we further derive two spaces that contain the solutions of the curl curl and the Laplace
equations.

H(curl curl,Ω) := {v ∈ L2(Ω) : curl curlv ∈ L2(Ω)},
H(∆,Ω) := {v ∈ L2(Ω) : ∆v ∈ L2(Ω)},

where ∆ = div∇ denotes the Laplace operator. Similar to the energy spaces defined above, the spaces
H(curl curl,Ω) andH(∆,Ω) turn to Hilbert spaces when equippedwith the inner products

u,v ∈H(curl curl,Ω) : (u,v)H(curl curl,Ω) := (u,v)Ω + (curl curlu, curl curlv)Ω,

u, v ∈ H(∆,Ω) : (u, v)H(∆,Ω) := (u, v)Ω + (∆u,∆v)Ω,

which induce the norms

v ∈H(curl curl,Ω) : ‖v‖H(curl curl,Ω) :=
√
(v,v)H(curl curl,Ω),

v ∈ H(∆,Ω) : ‖v‖H(∆,Ω) :=
√
(v, v)H(∆,Ω),

respectively. For these spaces, we also find appropriate integration by parts formulae.

Corollary 2.17. Let Ω be a bounded Lipschitz domain with a connected boundary Γ, and U a possibly non-linear
operator according to Assumption 2.13. Then, there exist unique distributions γU1 wδΓ and γU

NwδΓ such that:

• For w ∈ H(∆,Ω), it holds

(divU∇w,ψ)Ω + (U∇w,∇ψ)Ω =
〈
γU1 wδΓ, ψ

〉
Γ

∀ψ ∈ D(Ω). (2.28)
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• For w ∈H(curl curl,Ω), it holds

(U curlw, curlϕ)Ω − (curlU curlw,ϕ)Ω =
〈
γU
NwδΓ,ϕ

〉
Γ

∀ϕ ∈ D(Ω). (2.29)

Proof. The first assertion (2.28) follows similarly to (2.26b) by setting w := U∇w with w ∈ H(∆,Ω).
Analogously, the second assertion arises by choosing v := U curlw in (2.26a), which yields (2.29) for
w ∈H(curl curl,Ω).

By taking boundary conditions into account, we introduce the subspaces

Hλ(∇,Ω) := {v ∈ H(∇,Ω) : γ0v = λ}, (2.30a)
Hλ(curl,Ω) := {v ∈H(curl,Ω) : γ× v = λ}, (2.30b)
Hλ(div,Ω) := {v ∈H(div,Ω) : γnv = λ}. (2.30c)

The mapping properties of the trace operators applied to elements fromH(∇,Ω),H(curl,Ω), andH(div,Ω)
will be specified explicitly in the Section 2.3. Nevertheless, we already know from Theorem 2.15 and Re-
mark 2.16 that they exist. In particular, we can define energy spaces with homogeneous boundary conditions,
i.e., H0(∇,Ω),H0(curl,Ω), andH0(div,Ω) similarly to (2.11) by

H0(∇,Ω) = D(Ω)
‖·‖H(∇,Ω)

, H0(curl,Ω) = D(Ω)
‖·‖H(curl,Ω)

, H0(div,Ω) = D(Ω)
‖·‖H(div,Ω)

,

see [88, Theorem 3.25 & Theorem 3.33]. Furthermore, in case we have a boundary with several connected
components, it is convenient to specify the part of the boundary, on which a boundary condition is assigned.
With Γi denoting some connected subset of Γ, we write

Hλ(∇,Ω,Γi) := {v ∈ H(∇,Ω) : γ0v = λ on Γi}, (2.31a)
Hλ(curl,Ω,Γi) := {v ∈H(curl,Ω) : γ× v = λ on Γi}, (2.31b)
Hλ(div,Ω,Γi) := {v ∈H(div,Ω) : γnv = λ on Γi}. (2.31c)

The spaces H(∇,Ω), H(curl,Ω), and H(div,Ω) are related by the differential operators ∇, curl, and div,
such that they form a sequence

H(∇,Ω) ∇−→H(curl,Ω) curl−→H(div,Ω) div−→ L2(Ω).

The structure of the sequence depends on the topological properties of Ω. Hence, we distinguish in the fol-
lowing between simply-connected domains, and connected ones that (sloppily speaking) may possess holes,
which we will specify later and refer to as topologically non-trivial. We refer, e.g., to [3, 12, 55, 60] for more
reading.

2.2.2 De Rham complex for trivial topologies

A trivial topology can be represented by a simply-connected domain Ω ⊂ R3 with a connected boundary Γ,
see [11, Section 5.1.4]. In other words, the domain Ω has a trivial topology if it is contractible to a point.

In Figure 2.2, we visualize the structure of the de Rham complex, where the mentioned spaces form an exact
sequence. It is the case when Ω has a trivial topology, see [4, 11]. The rectangles schematize a splitting of
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Figure 2.2: De Rham complex for a topologically trivial domain.

the function domains on which the differential operators ∇, curl, and div act: The green areas R0
q, R1

q, and
R2

q represent each the domain’s elements that map to a non-zero element in the kernel of the succeeding
operator in the sequence, which we illustrate with the blue areas R0

k, R
1
k, and R

2
k, respectively. This gives rise

to the closed subspaces

H(∇0,Ω) := {v ∈ H(∇,Ω) : ∇v = 0},
H(curl0,Ω) := {v ∈H(curl,Ω) : curlv = 0},
H(div 0,Ω) := {v ∈H(div,Ω) : divv = 0},

and we say that the elements of H(∇0,Ω), H(curl0,Ω), and H(div 0,Ω) are closed. Obviously, we also
notice that the image of each differential operator coincides with the kernel of the next one in the sequence.
In other words, we have

R = ker(∇), (2.33a)
Im(∇) = ker(curl), (2.33b)

Im(curl) = ker(div), (2.33c)
Im(div) = L2(Ω), (2.33d)

where Im(·) denotes the image and ker(·) the kernel of an operator. In terms of spaces, the relations in (2.33)
translate to

R = H(∇0,Ω), (2.34a)
∇(H(∇,Ω)) =H(curl0,Ω), (2.34b)

curl(H(curl,Ω)) =H(div 0,Ω), (2.34c)
div(H(div,Ω)) = L2(Ω). (2.34d)

As a direct consequence, we present the following result, which establishes the existence of potentials.
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Theorem 2.18 (Existence of potentials). For a bounded topologically trivial Lipschitz domain Ω, we have,

v ∈H(curl,Ω) : curlv = 0 ⇒ ∃ϕ ∈ H(∇,Ω) : v = ∇ϕ, (2.35a)
v ∈H(div,Ω) : divv = 0 ⇒ ∃w ∈H(curl,Ω) : v = curlw. (2.35b)

We call a function ϕ and a vector field w that are obtained as above a scalar potential and vector potential,
respectively.

Proof. The result is standard and can be found, e.g., in [55] and [115, Theorem 2.19].

It is evident that the potentials defined above are not unique. Indeed, because of (2.33), there exists a
whole class of scalar potentials of the form ϕ := ψ + C, with ψ ∈ H(∇,Ω) and C ∈ R that satisfy the
right-hand side of (2.35a). Similarly, all vector potentials of the form w := u + ∇ϕ, with u ∈ H(curl,Ω),
ϕ ∈ H(∇,Ω) are possible representations of divergence free fields. In order to guarantee the uniqueness
of potentials, further conditions have to be prescribed for a specific choice of the constant C. We present
for instance one possible choice of unique potentials, and refer, e.g., to [3, 55], for more extensive re-
sults.

Corollary 2.19. For a bounded topologically trivial Lipschitz domain Ω, it follows that

v ∈H(curl0,Ω) ⇒ ∃!ϕ ∈ H(∇,Ω) : v = ∇ϕ with (ϕ, 1)Ω = 0, (2.36a)
v ∈H(div 0,Ω) ⇒ ∃!w ∈H(curl,Ω) ∩H(div,Ω) : v = curlw with divw = 0 and γnw = 0. (2.36b)

Conditions that fix the choice of potentials are called gauge conditions.

Proof. The relation (2.36a) is straightforward, because the condition (ϕ, 1)Ω = 0 yields a potential that is
orthogonal to the constants. Hence, the kernel is removed by definition. The proof of (2.36b) can be obtained,
e.g., by adapting the more general result of [88, Theorem 3.38] for topologically trivial domains.

For convenience, we define the space of divergence free vector fields with vanishing normal traces

H0(div 0,Ω) := {v ∈H(div 0,Ω) : γnv = 0}, (2.37)

and note that w as given in (2.36b) is an element of H(curl,Ω) ∩H0(div 0,Ω). The subspaces H(∇0,Ω),
H(curl0,Ω), andH(div 0,Ω) are closed subsets of Hilbert spaces. Hence, Theorem 2.2 applies. We denote
the corresponding quotient spaces by

[H(∇,Ω)] := H(∇,Ω)/H(∇0,Ω) = H(∇,Ω)/R,
[H(curl,Ω)] :=H(curl,Ω)/H(curl0,Ω) =H(curl,Ω)/∇(H(∇,Ω)),
[H(div,Ω)] := H(div,Ω)/H(div 0,Ω) =H(div,Ω)/ curl(H(curl,Ω)).

For visualization, the quotient spaces [H(∇,Ω)], [H(curl,Ω)], and [H(div,Ω)] correspond to the regions R0
q,

R1
q, andR2

q in Figure 2.2. With this, Corollary 2.19 can be rewritten in terms of quotient spaces.

Corollary 2.20. For a bounded topologically trivial Lipschitz domain Ω, it results that

v ∈H(curl0,Ω) ⇒ ∃!ϕ ∈ [H(∇,Ω)] : v = ∇ϕ, (2.38a)
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v ∈H(div 0,Ω) ⇒ ∃!w ∈ [H(curl,Ω)] : v = curlw. (2.38b)

Proof. It is sufficient to show that these formulations and the ones in Corollary 2.19 are equivalent. First, by
Corollary 2.4, we identify [H(∇,Ω)] with H(∇0,Ω)⊥, and [H(curl,Ω)] with H(curl0,Ω)⊥. Per definition
of the orthogonal complement, there holds

∀ϕ ∈ H(∇0,Ω)⊥ and C ∈ H(∇0,Ω) = R, (ϕ,C)Ω = 0, (2.39)

which coincides with the gauge condition in (2.36a).
Then, for the second equivalence, we know from (2.35a) that for w0 ∈ H(curl0,Ω) there exists a ϕ ∈
H(∇,Ω) such that w0 = ∇ϕ. With this, orthogonality of w ∈H(curl0,Ω)⊥ and ∇ϕ ∈H(curl0,Ω) means

(w,∇ϕ)Ω = 0. (2.40)

The integration by parts (2.26b) extends by continuity to ϕ ∈ H(∇,Ω) because of the density of D(Ω) in
H(∇,Ω), see Lemma 2.12 and Remark 2.16. Then, we see from

(w,∇ϕ)Ω = 〈γnw, γ0ϕ〉Γ − (divw, ϕ)Ω

that for w to be an element of the orthogonal complementH(curl0,Ω) in L2(Ω), it has to satisfy divw = 0
and γnw = 0. Hence, H(curl0,Ω)⊥ ⊆ H(curl,Ω) ∩H0(div 0,Ω). Similarly, the reverse inclusion follows
merely by means of integration by parts. Therefore,H(curl0,Ω)⊥, thus [H(curl,Ω)], can be identified with
H(curl,Ω) ∩H0(div 0,Ω).

A similar de Rham complex can also be derived for energy spaces with homogeneous boundary conditions,
see [27, Theorem 7].

2.2.3 De Rham complex for non-trivial topologies

The general type of de Rham complex arises when Ω has a more general topology. In particular, we consider
Ω ⊂ R3 to be connected but not simply-connected, for instance, as visualized in Figure 2.1. First, let us intro-
duce the notion of pseudo-Lipschitz domains, and refer to [3, 88] formore details.

Definition 2.21 (Pseudo-Lipschitz, [3, Definition 3.1]). LetBd(x0; r) denote the d-dimensional ball with center
x0 and radius r. We consider d = 2, 3. A domain Ω is pseudo-Lipschitz, if we have

∀x ∈ ∂Ω, ∃nx ∈ {1, 2}, ∃ r0 > 0 : ∀ 0 < ρ < r0, Ω ∩Bd(x; ρ) = {ωk}nx
k=1 with ωk connected and Lipschitz.

Until now, we assumed the existence of a set of NC connected surfaces {ΓCk}
NC
k=1 that render a connected

domain simply-connected. In the following, we formalize this idea and specify the requirements that should
be fulfilled to account as an admissible interior cut.

Definition 2.22 (Interior cuts, [88, Section 3.7]). We call ΓCk with k = 1, . . . , NC, interior cuts of Ω if the
following properties are satisfied for all k = 1, . . . , NC:

• ΓCk are open parts of smooth surfaces.

• ∂ΓCk ⊂ ∂Ω.
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G0

G1 G2

G3

R3

R H(∇,Ω) H(curl,Ω) H(div,Ω) L2(Ω) {0}∇ curl div 0Id

Figure 2.3: De Rham complex for a topologically non-trivial domain with cohomology (in red).

• All surfaces ΓCk are disjoint.

• Ω\
NC⋃
k=1

ΓCk is simply-connected and pseudo-Lipschitz.

Remark 2.23 ([3, Remark 3.2]). Definition 2.21 on pseudo-Lipschitz domains allows the consideration of cuts in
multiply-connected Lipschitz domains. Let us consider a domain Ω with boundary Γ. Then, in the neighborhood
of x ∈ Γ, which is specified by a d-dimensional ball with positive radius and center x, nx = 1 arises if the
considered intersection of the neighborhood of x with Ω lies completely on one side of Γ, whereas nx = 2 means
that the latter lies on both sides. For an illustration, see Figure 2.1a, where we find nx = 1, e.g., for x ∈ Γ0 and
nx = 2 on ΓC1 . Note also that pseudo-Lipschitz domains possess the cone property.

As highlighted in Figure 2.3, we see that additional partitions arise in this case comparing to Figure 2.2. The
corresponding subspaces of G0, G1, and G2 contribute as well to the kernels of ∇, curl and div in H(∇,Ω),
H(curl,Ω) andH(div,Ω), respectively. Moreover, the div operator maps the elements ofH(div,Ω) to a sub-
space of L2(Ω) denoted by R3. The orthogonal complement of R3 in L2(Ω) is represented by G3. From [27,
Theorem 7], we know indeed that the equalities in (2.33) change to inclusions, i.e.,

R ⊆ ker(∇),

Im(∇) ⊆ ker(curl),
Im(curl) ⊆ ker(div),
Im(div) ⊆ L2(Ω).

Moreover, the images of the differential operators on left-hand sides form closed subsets in the corresponding
kernels [35, Section IX.A.§1.3]. In particular, ker(curl) and ker(div) being closed can be expressed by means
of Theorem 2.2, which leads to

H(curl0,Ω) = ker(curl) = ∇H(∇,Ω)⊕ (∇H(∇,Ω))⊥,0, (2.42a)
H(div 0,Ω) = ker(div) = curlH(curl,Ω)⊕ (curlH(curl,Ω))⊥,0. (2.42b)
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Thereby, orthogonality is understood in the H(curl,Ω), and H(div,Ω) sense, respectively. Note that
the subspaces (∇H(∇,Ω))⊥,0 and (curlH(curl,Ω))⊥,0 are the orthogonal complements of ∇H(∇,Ω) and
curlH(curl,Ω) in the corresponding null-spacesH(curl0,Ω) andH(div 0,Ω), respectively. Hence, to avoid
a notational conflict with the orthogonal decomposition in the whole spaces H(curl,Ω) and H(div,Ω), we
used the notation (·)⊥,0 instead of (·)⊥.
The spaces (∇H(∇,Ω))⊥,0 and (curlH(curl,Ω))⊥,0 are isomorphic to the first and second de Rham coho-
mology spaces (or groups), respectively. We label them

H1(Ω) := (∇H(∇,Ω))⊥,0, (2.43a)
H2(Ω) := (curlH(curl,Ω))⊥,0. (2.43b)

In addition toH0(div 0,Ω), which we defined in (2.37), we introduce

H0(curl0,Ω) := {v ∈H(curl0,Ω) : γ× v = 0}.

The spacesH0(div 0,Ω) andH0(curl0,Ω) correspond to the orthogonal complements of (∇H(∇,Ω))⊥ and
(curlH(curl,Ω))⊥ inH(curl,Ω) andH(div,Ω), respectively. This can be established similarly to the proof
of Corollary 2.20 by a direct application of the integration by parts formulae of Theorem 2.15 and by us-
ing the density arguments of Lemma 2.12 to extend the assertion to the corresponding energy spaces. For
convenience, we write

H0(curl0,Ω) = (curlH(curl,Ω))⊥,
H0(div 0,Ω) = (∇H(∇,Ω))⊥.

Therefore, the cohomology spacesH1(Ω) andH2(Ω) can be further characterized as follows

H1(Ω) =H(curl0,Ω) ∩H0(div 0,Ω), (2.45a)
H2(Ω) =H0(curl0,Ω) ∩H(div 0,Ω). (2.45b)

We refer to [27, Definition 2.4] and [60] for more details about the cohomology spaces, and in addition
to [35, Section IX.A.§1.3] for a more concrete characterization of the corresponding spaces associated to
the regions in Figure 2.3. Therefrom, we also know that H1(Ω) and H2(Ω) contain harmonic Neumann and
Dirichlet vector fields, respectively. Moreover, their dimensions are finite, and match with the first and second
Betti numbers of Ω, i.e.,

dimH1(Ω) = β1(Ω),

dimH2(Ω) = β2(Ω).

Betti numbers are topological invariants that are defined as the dimensions of the respective cohomology
spaces. In our connected 3D case, β1(Ω) and β2(Ω) correspond toNC as in Definition 2.22 and to the number
of connected boundaries NΓ minus one, respectively, cf. [88, Theorem 3.42 & 3.43]. Informally, β1(Ω) can
be interpreted as the number of one-dimensional (1D) or “circular” holes, and β2(Ω) as the number of 2D or
“surface” holes. Note that β0(Ω) and β3(Ω) can also be defined: β0(Ω) designates the number of connected
components of Ω, thus, β0(Ω) = 1, whereas β3(Ω) = 0, see [4].

The last pieces of the puzzle reside in the characterization of the orthogonal complements of H(curl0,Ω)
andH(div 0,Ω) inH(curl,Ω) andH(div,Ω), respectively. They arise when inspecting the properties of the
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H1(Ω)

∇H(∇,Ω)

HC
0 (div 0,Ω)

H2(Ω)

HΓ(div 0,Ω)

∇H0(∇,Ω)

H0(div 0,Ω)

H(curl0,Ω)

H0(curl0,Ω)

H(div 0,Ω)

H(curl,Ω) H(div,Ω)curl

Figure 2.4: Orthogonal decompositions of H(curl,Ω) and H(div,Ω). The curl isomorphism (2.48) is
represented by the arrows.

curl-operator. LetHC
0 (div 0,Ω) andHΓ(div 0,Ω) denote the subspaces ofH(div 0,Ω) with vanishing fluxes

through the individual cuts and boundary pieces, respectively, i.e.,

HC
0 (div 0,Ω) := {v ∈H(div 0,Ω) : 〈γnv, 1〉ΓCk

= 0 ∀ k = 1, . . . , NC},

HΓ(div 0,Ω) := {v ∈H(div 0,Ω) : 〈γnv, 1〉Γk
= 0 ∀ k = 1, . . . , NΓ}.

Theorem 2.24 (Isomorphisms of the curl-operator, cf. [12, Theorem 1 & 2]). LetH(curl,Ω)∩HC
0 (div 0,Ω)

andHΓ(div 0,Ω) be endowed with theH(curl,Ω) and L2(Ω) norms, respectively. Then, the operator

curl : H(curl,Ω) ∩HC
0 (div 0,Ω) →HΓ(div 0,Ω) (2.48)

is a homeomorphism. Furthermore, the same property holds also with

curl : H0(curl,Ω) ∩HΓ(div 0,Ω) →HC
0 (div 0,Ω). (2.49)

Interestingly, notice the apparent correspondence (symmetry) of the structures of the spaces in (2.48) and
(2.49). In fact, as explained in [12, Section 3.3], (2.49) is an isomorphism in a dual structure of the de Rham
complex, which can be represented, e.g., as the sequence of energy spaces with homogeneous boundary
conditions. In Figures 2.4 and 2.5, we illustrate the above mentioned observation along with the relevant
orthogonal subspaces of H(curl,Ω) and H(div,Ω) on one hand, and H0(curl,Ω) and H0(div,Ω) on the
other hand. We refer, e.g., to [88] for more details on the decomposition of spaces with homogeneous
boundary conditions.

As a consequence of Theorem 2.24, we state the following result.

Corollary 2.25. For v ∈HΓ(div 0,Ω), there exists a unique w ∈H(curl,Ω) ∩HC
0 (div 0,Ω) with v = curlw.

Moreover, there exists C1 > 0 such that

‖v‖H(curl,Ω) ≤ C1‖curlw‖L2(Ω).
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H2(Ω)

∇H0(∇,Ω)

HΓ(div 0,Ω)

H1(Ω)

HC
0 (div 0,Ω)

∇H(∇,Ω)

H(div 0,Ω)

H0(curl0,Ω)

H(curl0,Ω)

H0(div 0,Ω)

H0(curl,Ω) H0(div,Ω)
curl

Figure 2.5: Orthogonal decompositions of H0(curl,Ω) and H0(div,Ω). The curl isomorphism (2.49)
is represented by the arrows.

Reversely, a vector field w ∈H(curl,Ω) ∩HC
0 (div 0,Ω) implies that v is an element ofHΓ(div 0,Ω), and there

exists C2 > 0 such that
‖curlw‖L2(Ω) ≤ C2‖v‖H(curl,Ω).

In addition, similar results hold for v ∈HC
0 (div 0,Ω) and w ∈H0(curl,Ω) ∩HΓ(div 0,Ω).

Proof. The assertions are a direct consequence of Theorem 2.24. For instance, the results can also be obtained
from [3, Theorem 3.12 & 3.17] or as a special case of the more general setting in [50, Lemma 3.1].

Altogether, we come to thewell-knownHelmholtz (Hodge) decompositions.

Theorem 2.26 (Helmholtz decompositions). Every vector field u ∈ L2(Ω) admits the following orthogonal
decomposition,

u = curlv +∇ϕ+ η1 (2.50)

with unique ϕ ∈ H(∇,Ω) (up to a constant), η1 ∈ H1(Ω), and v ∈H0(curl,Ω) ∩HΓ(div 0,Ω). Alternatively,
it holds for any u ∈ L2(Ω) that

u = curlv +∇ϕ+ η2 (2.51)

with unique ϕ ∈ H0(∇,Ω), η2 ∈ H2(Ω), and v ∈H(curl,Ω) ∩HC
0 (div 0,Ω).

Proof. The decompositions are readily obtained by using Theorem 2.24 together with the orthogonal decom-
positions illustrated in Figure 2.4 and its “dual” in Figure 2.5. For convenience, we also refer, e.g, to [88,
Theorem 3.45, Remark 3.46] and [35, Corollary IX.A.§1.6].

Remark 2.27. For a topologically trivial domain Ω, the Helmholtz decompositions given above reduce to

∀u ∈ L2(Ω),∃!ϕ ∈ H(∇,Ω) and v ∈H0(curl,Ω) ∩H(div 0,Ω) : u = curlv +∇ϕ,
∀u ∈ L2(Ω),∃!ϕ ∈ H0(∇,Ω) and v ∈H(curl,Ω) ∩H0(div 0,Ω) : u = curlv +∇ϕ.

Note that in the first statement, ϕ is unique up to a constant.
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In addition, the orthogonal decompositions

H(curl,Ω) =H(curl0,Ω)⊕ (H(curl,Ω) ∩HC
0 (div 0,Ω)),

H0(curl,Ω) =H0(curl0,Ω)⊕ (H0(curl,Ω) ∩HΓ(div 0,Ω))

motivate the consideration of quotient spaces for analysis purposes. By Corollary 2.4, we obtain the identifi-
cations

[H(curl,Ω)] ∼=H(curl,Ω) ∩HC
0 (div 0,Ω), (2.52a)

[H0(curl,Ω)] ∼=H0(curl,Ω) ∩HΓ(div 0,Ω). (2.52b)

With this, we close the discussion about the existence and uniqueness of potentials in dependence of the
topology. For more details, and more exhaustive contents, we refer the interested reader to [3, 27, 35, 55,
60]. Similar results for spaces with mixed and non-homogeneous boundary conditions are provided in [49]
and [50].

In this work, Ωe may be bounded or unbounded. For the latter case, we recall the definition of Hs
loc(Ω

e) in
(2.12). With s = 1, we refer to this space as the local H1(Ωe) space, i.e., H1(K) for every compact subset K
of Ωe. Accordingly to the notation used for the energy spaces, we write Hloc(∇,Ωe) instead of H1

loc(Ω
e). In

the same sense, we introduce

H loc(div,Ωe) := {ve ∈ L2
loc(Ω

e) : divve ∈ L2
loc(Ω

e)},
H loc(curl,Ωe) := {ve ∈ L2

loc(Ω
e) : curlve ∈ L2

loc(Ω
e)},

Hloc(∆,Ω
e) := {ve ∈ L2

loc(Ω
e) : ∆ve ∈ L2

loc(Ω
e)},

H loc(curl curl,Ωe) := {ve ∈ L2
loc(Ω

e) : curl curlve ∈ L2
loc(Ω

e)},

which are Hilbert spaces that inherit the structure of the corresponding L2
loc(Ω

e) or L2
loc(Ω

e) space. For
convenience, we also give the notation of Bochner spaces that take instantaneous values in energy spaces.
They are defined equivalently to (2.14), i.e.,

L2(∂t, T ; H(∇,Ω)) := {v ∈ L2(T ; H(∇,Ω)) : ∂tv ∈ L2(T ; H(∇,Ω))}, (2.53a)
L2(∂t, T ; H(curl,Ω)) := {v ∈ L2(T ; H(curl,Ω)) : ∂tv ∈ L2(T ; H(curl,Ω))}, (2.53b)
L2(∂t, T ; H(div,Ω)) := {v ∈ L2(T ; H(div,Ω)) : ∂tv ∈ L2(T ; H(div,Ω))}, (2.53c)

where T = [0, tmax], tmax > 0 is again a specific time interval. Furthermore, the Bochner spaces associated to
H(∆,Ω) and H(curl curl,Ω) can be defined in complete analogy. We denote them by L2(∂t, T ; H(∆,Ω)),
L2(∂t, T ; H(curl curl,Ω)), respectively. In addition, Bochner spaces that take values in quotient spaces are
defined by

L2(∂t, T ; [H(∇,Ω)]) := {v ∈ L2(T ; [H(∇,Ω)]) : ∂tv ∈ L2(T ; [H(∇,Ω)])}, (2.54a)
L2(∂t, T ; [H(curl,Ω)]) := {v ∈ L2(T ; [H(curl,Ω)]) : ∂tv ∈ L2(T ; [H(curl,Ω)])}, (2.54b)
L2(∂t, T ; [H(div,Ω)]) := {v ∈ L2(T ; [H(div,Ω)]) : ∂tv ∈ L2(T ; [H(div,Ω)])}. (2.54c)

Eventually, boundary conditions are incorporated in the spaces with a similar notation as in (2.30) and (2.31).
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In the next section we focus on the formulation of the problem on the boundary, and introduce the setting
that will lead to BIEs. For instance, suitable trace spaces have to be characterized. The latter arise by
application of the trace operators from Definition 2.14 to energy spaces. For this, specifying the ranges of the
trace operators such that we obtain continuous and surjective operators is necessary. Moreover, a de Rham
complex that relates energy spaces to their traces summarizes the setting.

2.3 Trace spaces

In the Maxwell framework presented in Section 1.1, we saw for instance that boundary conditions are for-
mulated in terms of tangential and normal components of the fields. Hence, a straightforward applica-
tion of Gauß’s divergence theorem, cf. (2.27), to an interface problem suggests that an appropriate trace
space should satisfy weak normal continuity on the boundary. Similarly, the Stokes theorem, cf. [88, Corol-
lary 3.21], points out the need of spaces that guarantee tangential continuity. Before introducing such spaces,
we motivate briefly our requirement that Γ, which is the boundary of a domain Ω, should be Lipschitz. First
of all, this choice is general enough to cover most technical geometries. Second, Lebesgue integrals make
sense for Lipschitz boundaries, and we know from the Rademacher theorem [103, Theorem 2.7.1] that nor-
mal vectors (outward pointing) exist a.e. on Γ, and are bounded. Last, the theory of Sobolev spaces on the
boundary is well-established, see, e.g., [87, 103, 109]. Even though finding trace spaces forH(curl,Ω) de-
fined over Lipschitz domains was a missing piece in the theory, it no longer poses a restriction thanks to the
results provided by Buffa, Costabel, and Sheen [20].

Following the procedure of the last section, we first define tangential differential operators. First, let ϕ ∈
H1(Γ). We denote by ϕ̃ ∈ D(Ω) an extension ofϕ into the domainΩ such that

ϕ = γ0ϕ̃.

Then, the surface gradient operator ∇Γ, and the vectorial surface curl-operator can be defined as traces of
the gradient ∇ as follows

∇Γϕ = γD(∇ϕ̃), (2.55a)
curlΓ ϕ = γ×(∇ϕ̃). (2.55b)

Their adjoint operators are called surface divergence and scalar surface curl-operator. They are denoted by
divΓ and curlΓ, respectively. Formally, they are computed by duality

〈divΓϕ, ϕ〉Γ = −〈ϕ,∇Γϕ〉Γ, (2.56a)
〈curlΓϕ, ϕ〉Γ = 〈ϕ, curlΓ ϕ〉Γ, (2.56b)

where ϕ ∈ L2
t (Γ). We refer to [20, Section 3] for a intrinsic construction of the above mentioned tangential

differential operators for Lipschitz domains. Beside the Sobolev space H
1
2 (Γ) and its dual H− 1

2 (Γ), we re-
quire traces for H(curl,Ω). A characterization for Lipschitz domains is furnished in [20, Section 4]. In the
following, we present some related results for convenience, and refer the reader to the cited paper, and e.g.,
[22], for more details.
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Let γ0 : H1(Ω) → H
1
2 (Γ) be the vector restriction trace [20, Section 2]. Similarly to the derivation of

tangential differential operators, applying the traces γ× and γD toH1(Ω) yields the Hilbert spacesH
1
2
×(Γ) :=

γ×(H
1(Ω)) andH

1
2
D(Γ) := γD(H

1(Ω)). For convenience, let ξ̃ ∈H1(Ω) be defined such that γ0ξ̃ = ξ. Then,

we equipH
1
2
×(Γ) andH

1
2
D(Γ) with the norms

‖ψ‖
H

1
2
×(Γ)

:= inf
ξ∈H

1
2 (Γ)

{‖ξ‖
H

1
2 (Γ)

with γ× ξ̃ = ψ},

‖ψ‖
H

1
2
D (Γ)

:= inf
ξ∈H

1
2 (Γ)

{‖ξ‖
H

1
2 (Γ)

with γD ξ̃ = ψ},

which assure the continuity of the operators γ× and γD, see [20, Definition 2.2]. In other words, along an

edge, a function inH
1
2
D(Γ) exhibits a weak tangential continuity, whereas the normal component of a function

in H
1
2
×(Γ) is continuous in a weak sense. Moreover, we designate by H− 1

2
× (Γ) and H− 1

2
D (Γ) the dual spaces

ofH
1
2
×(Γ) andH

1
2
D(Γ), respectively.

Remark 2.28. For a smooth Γ, the spacesH
1
2
×(Γ) andH

1
2
D(Γ) coincide, and they can be identified with the space

of tangential vector fields of regularity 1
2 , namely,

H
1
2
t (Γ) := {ψ ∈H

1
2 (Γ) : ψ · n = 0}.

Similarly,H− 1
2

× (Γ) =H
− 1

2
D (Γ) =H

− 1
2

t (Γ), whereH− 1
2

t (Γ) denotes the dual space ofH
1
2
t (Γ), see [20, Section 2].

Altogether, the trace spaces ofH(curl,Ω) for Lipschitz domains are specified as

H− 1
2 (divΓ,Γ) := {ψ ∈H− 1

2
× (Γ) : divΓψ ∈ H− 1

2 (Γ)},

H− 1
2 (curlΓ,Γ) := {ψ ∈H− 1

2
D (Γ) : curlΓψ ∈ H− 1

2 (Γ)}.

They are endowed with the graph norms

ψ ∈H− 1
2 (divΓ,Γ), ‖ψ‖

H− 1
2 (divΓ,Γ)

:=
√

‖ψ‖2
H

− 1
2

× (Γ)
+ ‖divΓψ‖2

H− 1
2 (Γ)

, (2.57a)

ψ ∈H− 1
2 (curlΓ,Γ), ‖ψ‖

H− 1
2 (curlΓ,Γ)

:=
√
‖ψ‖2

H
− 1

2
D (Γ)

+ ‖curlΓψ‖2
H− 1

2 (Γ)
. (2.57b)

The next result concerns the mapping properties of the trace operators that are employed to map the energy
spaces to their traces, building up to a de Rham sequence on the boundary, which we depict in Figure 2.6,
and will discuss subsequently.

Theorem 2.29 (Mapping properties of trace operators). The following trace operators can be extended to linear,
continuous, and surjective operators:

• The standard trace is uniquely extended to γ0 : H(∇,Ω) → H
1
2 (Γ), and there exists C0 > 0 such that

‖γ0v‖
H

1
2 (Γ)

≤ C0‖v‖H(∇,Ω) ∀v ∈ H(∇,Ω). (2.58)

42



R H(∇,Ω) H(curl,Ω) H(div,Ω) L2(Ω)

H− 1
2 (curlΓ,Γ)

H
1
2 (Γ) H− 1

2 (Γ)

H− 1
2 (divΓ,Γ)

Id ∇

γ0

curl

γD

γ×

div

γn

curlΓ

×n

∇Γ

curlΓ divΓ

Figure 2.6: Commutative de Rham complex relating energy spaces to their traces.

• The tangential trace is uniquely extended to γ× : H(curl,Ω) → H− 1
2 (divΓ,Γ), and there exists C× > 0

such that ∥∥γ× v
∥∥
H− 1

2 (divΓ,Γ)
≤ C×‖v‖H(curl,Ω) ∀v ∈H(curl,Ω). (2.59)

• The Dirichlet trace is uniquely extended to γD : H(curl,Ω) → H− 1
2 (curlΓ,Γ), and there exists CD > 0

such that
‖γD v‖H− 1

2 (curlΓ,Γ)
≤ CD‖v‖H(curl,Ω) ∀v ∈H(curl,Ω). (2.60)

• The normal trace is uniquely extended to γn :H(div,Ω) → H− 1
2 (Γ), and there exists Cn > 0 such that

‖γnv‖
H− 1

2 (Γ)
≤ Cn‖v‖H(div,Ω) ∀v ∈H(div,Ω). (2.61)

Moreover, γ0, γ×, γD, and γn are surjective with continuous right inverses.

Proof. The assertions are obtained by density arguments. For instance, the extension and properties of γ0
and γn are provided in [87, Theorem 3.37] and [88, Theorem 3.24], respectively. For the results of γ× and
γD, we further refer to [20, Theorem 4.1].

By recalling the expressions of γ× and γD in Definition 2.14, we notice that they are connected geometri-
cally by means of the rotation operator ×n : L2

t → L2
t (or its adjoint n×). As stated in the next theo-

rem, this yields a definition of a duality pairing for H− 1
2 (divΓ,Γ) and H− 1

2 (curlΓ,Γ) with L2
t (Γ) as a pivot

space.

Theorem 2.30 (Extrinsic relation of H− 1
2 (divΓ,Γ) and H− 1

2 (curlΓ,Γ)). The rotation operator ×n and its
adjoint n× can be extended to linear and continuous isomorphisms:

• The operator ×n is uniquely extended to ×n : H− 1
2 (curlΓ,Γ) →H− 1

2 (divΓ,Γ), such that

ψ ∈H− 1
2 (curlΓ,Γ), ∃!ξ ∈H− 1

2 (divΓ,Γ) : 〈ψ × n,ϕ〉Γ = 〈ξ,ϕ〉Γ ∀ϕ ∈H− 1
2 (curlΓ,Γ).
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• The operator n× is uniquely extended to n× : H− 1
2 (divΓ,Γ) →H− 1

2 (curlΓ,Γ), such that

ψ ∈H− 1
2 (divΓ,Γ), ∃!ξ ∈H− 1

2 (curlΓ,Γ) : 〈ϕ,n×ψ〉Γ = 〈ϕ, ξ〉Γ ∀ϕ ∈H− 1
2 (divΓ,Γ).

Proof. The essence of the result is demonstrated in [20, Section 2], and phrased in [116, Theorem 2.5.4],
for instance.

Corollary 2.31. The conormal derivative γ1 and the Neumann trace γN, with U = Id, can be extended accord-
ingly such that

γ1 : H(∆,Ω) → H− 1
2 (Γ), (2.62)

γN :H(curl curl,Ω) →H− 1
2 (divΓ,Γ) (2.63)

are linear, continuous, and surjective. Therefore, there exists C1 > 0, CN > 0 such that

‖γ1w‖
H− 1

2 (Γ)
≤ C1‖v‖H(∆,Ω) ∀w ∈ H(∆,Ω),

‖γNw‖
H− 1

2 (divΓ,Γ)
≤ CN‖v‖H(curl curl,Ω) ∀w ∈H(curl curl,Ω).

Proof. The extensions follow from Theorem 2.29, in particular from the properties of γn and γ×, respectively.
Namely, the assertions arise by choosing v = ∇w, with w ∈ H(∆,Ω), in (2.61), and by setting v = curlw in
(2.59).

With the aid of Figure 2.6, the tangential differential operators ∇Γ, curlΓ as well as their adjoint opera-
tors, i.e., divΓ and curlΓ, respectively, can be extended to linear and continuous operators such that the
de Rham complex commutes. For instance, the following mapping properties are proposed in [20, Proposi-
tion 3.6]

∇Γ : H
1
2 (Γ) −→H

− 1
2

× (Γ),

curlΓ : H
1
2 (Γ) −→H

− 1
2

D (Γ),

divΓ : H
1
2
×(Γ) −→H− 1

2 (Γ),

curlΓ : H
1
2
D(Γ) −→H− 1

2 (Γ).

Similarly to Figure 2.2 and Figure 2.3 the structure of the de Rham sequence on the boundary depends as
well on the topological properties of Ω and Γ. Hence, we write

R ⊆ ker(∇Γ), (2.64a)
R ⊆ ker(curlΓ), (2.64b)

Im(∇Γ) ⊆ ker(curlΓ) ∩H
− 1

2
× (Γ), (2.64c)

Im(curlΓ) ⊆ ker(divΓ) ∩H
− 1

2
D (Γ), (2.64d)

and define the null-spaces by

ker(curlΓ) :=H− 1
2 (curlΓ 0,Γ) = {ψ ∈H− 1

2 (curlΓ,Γ) : curlΓψ = 0},
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ker(divΓ) :=H− 1
2 (divΓ 0,Γ) = {ψ ∈H− 1

2 (divΓ,Γ) : divΓψ = 0}.

The subspaceH− 1
2 (divΓ 0,Γ)will be of particular interest in the formulation of the 3D problem in the exterior

domain. Similarly to the de Rham complex for energy spaces, the inclusions in (2.64) might be strict for gen-
eral topologies. This is due to the fact that harmonic fields contribute also to the kernel. Such fields live in the
following space, which is isomorphic to the first surface cohomology space, namely,

H1(Γ) = {ψ ∈ L2
t (Γ) : curlΓψ = 0, divΓψ = 0}.

Hence, the dimension of H1(Γ) is determined by means of the first Betti number associated to the boundary
Γ. Note that H1(Γ) consists of the direct sum of tangential traces of the cohomology spaces associated to Ω
and Ωe, see [23, Remark 3.5] and [15, Corollary 1] for more details. Hence, the dimension of H1(Γ) given
by β1(Γ) can be determined as follows

β1(Γ) = β1(Ω) + β1(Ω
e).

With this, we can further characterize the null-space H− 1
2 (divΓ 0,Γ) via a direct orthogonal decompo-

sition into the space of surface stream functions and H1(Γ), which contains surface cohomology vector
fields.

Theorem 2.32 (Direct decomposition forH− 1
2 (divΓ 0,Γ), [23, Equation 3.3]). Let Γ be a Lipschitz boundary

of some domain Ω. Then, the spaceH− 1
2 (divΓ 0,Γ) admits an orthogonal decomposition

H− 1
2 (divΓ 0,Γ) = curlΓH

1
2 (Γ)⊕H1(Γ)

with dimH1(Γ) = β1(Γ).

Remark 2.33. For a simply-connected Γ, the non-strict inclusions ⊆ in (2.64) turn into equalities. For a proof,
we refer to [20, Corollary 3.7, Theorem 5.1, Corollary 5.3]. In particular, it clearly follows that

H− 1
2 (divΓ 0,Γ) = curlΓH

1
2 (Γ),

since β1(Γ) = 0.

With this, we present a fundamental result that delivers a characterization ofH− 1
2 (divΓ,Γ). Indeed, it can be

perceived as the boundary counterpart of Helmholtz decompositions of Theorem 2.26 and Remark 2.27.

Theorem 2.34 (Hodge decomposition, [18, Theorem 5.5]). Let Γ be a Lipschitz boundary of some domain Ω,
and let

H(∆Γ,Γ) := {ϕ ∈ H1(Γ) : ∆Γϕ ∈ H− 1
2 (Γ)}

denote the boundary counterpart of H(∆,Ω), where ∆Γ = divΓ∇Γ = − curlΓ curlΓ is known as the Laplace-
Beltrami operator. Then, the following direct decomposition holds

H− 1
2 (divΓ,Γ) = ∇ΓH(∆Γ,Γ)⊕H− 1

2 (divΓ 0,Γ),

whereH− 1
2 (divΓ 0,Γ) admits the decomposition of Theorem 2.32.
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Note that the same type of decomposition holds also forH− 1
2 (curlΓ,Γ), see e.g., [15, Theorem 3], where the

decomposition of H− 1
2 (curlΓ,Γ) is valid for Lipschitz polyhedra. An extension to Lipschitz domains can be

conducted as in [20, Theorem 5.5].
The following theorem is a continuation of Corollary 2.17. In particular, it showcases besides the de facto
duality of H

1
2 (Γ) and H− 1

2 (Γ), the correspondence

H− 1
2 (divΓ,Γ)

′
=H− 1

2 (curlΓ,Γ), H− 1
2 (curlΓ,Γ)

′
=H− 1

2 (divΓ,Γ).

Moreover, the integration by parts introduced therein, whichwe also call first Green’s identities, plays a central
role in the derivation of our variational formulations in interior domains.

Theorem 2.35 (First Green’s identities). Let Ω, Γ, and U be defined as in Corollary 2.17. The following
integration by parts formulae can be stated.

• For w ∈ H(∆,Ω), it holds

(divU∇w, v)Ω + (U∇w,∇v)Ω =
〈
γU1 w, γ0v

〉
Γ

∀v ∈ H(∇,Ω). (2.65)

• For w ∈H(curl curl,Ω), it holds

(U curlw, curlv)Ω − (curlU curlw,v)Ω =
〈
γU
Nw,γD v

〉
Γ

∀v ∈H(curl,Ω). (2.66)

Proof. The extension of (2.26a) to

(w, curlv)Ω − (curlw,v)Ω =
〈
γ×w,γD v

〉
Γ

(2.67)

for all w, v ∈ H(curl,Ω) is demonstrated in [17]. With this, the proof follows from Corollary 2.17. The
same holds true for (2.65) by using [109, Equation 4.3].

As in the previous section, we introduce according to Definition 2.3 some relevant quotient spaces on the
boundary by

[H
1
2 (Γ)] := H

1
2 (Γ)/R, (2.68a)

[H− 1
2 (curlΓ,Γ)] :=H− 1

2 (curlΓ,Γ)/H− 1
2 (curlΓ 0,Γ) ∩H

− 1
2

× (Γ). (2.68b)

In addition, as an analogon4 to H− 1
2 (divΓ 0,Γ) for the scalar setting, we define the following subspace of

H− 1
2 (Γ)

H
− 1

2
? (Γ) = {ψ ∈ H− 1

2 (Γ) : 〈ψ, 1〉Γ = 0}. (2.69)

In this setting, we can prove in complete analogy to [20, Corollary 5.4] that the restrictions

∇Γ : [H
1
2 (Γ)] −→H

− 1
2

× (Γ),

curlΓ : [H
1
2 (Γ)] −→H

− 1
2

D (Γ)

4The condition divΓψ = 0, which holds for all ψ ∈ H− 1
2 (divΓ 0,Γ), leads also to 〈ψ,∇Γψ〉Γ = 0 for all ψ ∈ H

1
2 (Γ). Hence,

H− 1
2 (divΓ 0,Γ) contains vector fields that are orthogonal to the gradient fields. In complete analogy, the scalar counterpart should

satisfy orthogonality with respect to the constants.
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yield continuous and normally solvable ∇Γ and curlΓ. Consequently, their adjoint operators divΓ and curlΓ
are continuous and surjective with respect to the mappings

divΓ :H
1
2
×(Γ) −→ H

− 1
2

? (Γ),

curlΓ :H
1
2
D(Γ) −→ H

− 1
2

? (Γ),

see [19].

Starting from the eddy-current approximation (1.2), and by using themathematical framework of this section,
we introduce in the next chapter the considered model problems, and the tools needed for a coupling of the
Finite Element Method (FEM) with Boundary Element Methods (BEMs).
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3 Modelling and discrete setting

Physics is mathematical not because we know
so much about the physical world, but
because we know so little; it is only its
mathematical properties that we can discover.

B. Russell

This chapter is devoted to pave the way to the concrete model problems that will be addressed in the
next chapter, and which are aimed to be solved by using non-symmetric couplings of the Finite Element
Method (FEM) and the direct Boundary Element Method (BEM) in an isogeometric context. First, we de-
rive the necessary equations for a vector potential formulation in bounded domains starting from the eddy-
current approximation discussed in Section 1.1. In addition, the linear and static cases for both bounded
and unbounded domains are addressed. We recall that non-linear Partial Differential Equations (PDEs) are
exclusively intended to be handled with FEM, whereas BEM is considered for model problems that are formu-
lated in a static regime and in domains that are filled with linear materials (either bounded or unbounded).
In order to use BEM, additional tools such as Boundary Layer Potentials (BLPs) and Boundary Integral Op-
erators (BIOs) are required. Their definitions and properties are furnished in Subsection 3.2.1 along with
the involved Boundary Integral Equations (BIEs) and Steklov-Poincaré operators both for the scalar and vec-
torial case. In particular, we present contractivity estimates for the double-layer operators by means of the
corresponding interior Steklov-Poincaré operator. In the last section of this chapter, we introduce the tools
of the isogeometric framework, i.e., we define the B-Spline and Non-Uniform Rational B-Splines (NURBS)
basis functions that are employed in the design step [65, 94] in most Computer Aided Design (CAD) soft-
ware. Additionally, they are used as the building blocks for the discretization of the de Rham sequence and
its traces. Thereby, we refer mostly to [21, 33, 119]. If not stated otherwise, the operators and equations in
this chapter are understood in a weak sense.

3.1 Vector potential formulations

Throughout this section, the domain Ω is assumed to be bounded, Lipschitz and connected. Hence, it
may have holes, and its boundary Γ consists in general of NΓ connected components, i.e., we assume Γ =⋃NΓ−1
k=0 Γk.

Let us first recall the governing equations of the eddy-current approximation as introduced in Section 1.1:
For x ∈ Ω and t ∈ T := [0, tmax], tmax > 0, we have

curl e(x, t) = − ∂

∂t
b(x, t), (3.1a)
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curlh(x, t) = j(x, t), (3.1b)
div b(x, t) = 0, (3.1c)
h(x, t) = ν(|b(x, t)|)b(x, t), (3.1d)
j(x, t) = κe(x, t) + js(x, t). (3.1e)

Thereby, κ > 0 is a constant in the whole domain Ω. Note that the constitutive law (3.1d) is defined for soft
magnetic materials but can merely be replaced by (1.3) and (1.4) for linear and hard magnetic materials,
respectively.
In the presence of an interface Γk between two domains Ω1 and Ω2, i.e., Γk = Ω1 ∩ Ω2, the following jump
conditions have to be satisfied by the vector fields on Γk,

(b1(x, t)− b2(x, t)) · n(x) = 0, (3.2a)
(j1(x, t)− j2(x, t)) · n(x) = 0, (3.2b)

(h1(x, t)− h2(x, t))× n(x) = k(x, t), (3.2c)
(e1(x, t)− e2(x, t))× n(x) = 0, (3.2d)

where the subscripts ·1 and ·2 indicate a corresponding field defined on Ω1 and Ω2, respectively, and n is
a normal vector on Γk directed from Ω1 to Ω2. Obviously, if there are no surface currents on Γk, k(x, t) in
(3.2c) should be set to zero.

To solve the eddy-current model (3.1), the equations have to be supplemented by suitable Boundary Condi-
tions (BCs), whichmay naturally arise for some concrete physical problem from (3.2). For instance, by assum-
ing thatΩ1 is a Perfect Electric Conductor (PEC), it is usual to set e2(x, t)×n(x) = 0 and b2(x, t)·n(x) = 0 on
the interface. Hence, (3.2a) reduces to b(x, t) ·n(x) = 0 and e(x, t)×n(x) = 0 with b(x, t) := b1(x, t) and
e(x, t) := e1(x, t). Typically, the derivation of the corresponding vector potential formulation involves the
assumption that the periods of b and of e+∂ta vanish, which is (topologically) stronger than local Maxwell’s
equations. These assumptions have a physical background, namely, they mean that the flux through any
closed surface vanishes (absence of magnetic monopoles) and that except for magnetic induction, no loop
voltage exists that could drive a current through a closed conducting loop (energy conservation).

In the following, we rather propose a mathematical approach using the framework of Section 2.2 to derive
vector potential formulations from the above equations. Concretely, we consider two cases, which are known
in the physical literature as electric wall (or PEC) and magnetic wall (or Perfect Magnetic Conductor (PMC))
cases. Both derivations are completely analogous but yield as expected different vector potentials. Hence,
we present here only the latter, and refer to Appendix B for the former.

In the sequel, to simplify the notation, we omit to specify the function’s arguments whenever they are clear
from the context, i.e., a function or vector field in a Bochner space depends on x and t, whereas an element
of a Hilbert space depends only on x.

For every t ∈ T , (3.1c) and (3.2a) suggest that b ∈H(div 0,Ω). As illustrated in Figure 2.4, the decomposi-
tion

b = bΓ + η2

with bΓ ∈ HΓ(div 0,Ω) and η2 ∈ H2(Ω) is readily obtained. By using Corollary 2.25, there exists a unique
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vector potential a ∈H(curl,Ω) ∩HC
0 (div 0,Ω), such that

b = curla+ η2. (3.3)

In addition, the vector fields involved in (3.1) are time dependent. In particular, we have a first order time
derivative in (3.1a). Then it is natural to set a ∈ L2(∂t, T ; H(curl,Ω) ∩HC

0 (div 0,Ω)), which is for conve-
nience defined in (2.54b).
Now, from Faraday’s law (3.1a), and the jump condition (3.2d), we infer that the electric field e is an element
of L2(T ; H(curl,Ω)). Inserting (3.3) in (3.1a) yields

curl(e+ ∂ta) = −∂tη2 = 0. (3.4)

This can be explained as follows: for every t ∈ T , we know that curl(e + ∂ta) ∈ HΓ(div 0,Ω). Moreover,
HΓ(div 0,Ω) is orthogonal to H2(Ω), i.e.,HΓ(div 0,Ω) ∩H2(Ω) = {0}. Therefore, ∂tη2 = 0.
As a consequence of (3.4), for all t ∈ T , it follows that (e+ ∂ta) ∈H(curl0,Ω). Then, by the decomposition
(2.42a) together with (2.43a), there exists a unique scalar potential ϕ ∈ L2(T ; H(∇,Ω)) (up to a constant)
and η1 ∈ L2(T ; H1(Ω)), such that

e+ ∂ta = −∇ϕ+ η1. (3.5)

Note that the minus sign on the right-hand side is motivated by the physical interpretation of −∇ϕ, namely,
an electric field. In this case, it is a convention to introduce the gradient of the scalar potential with a negative
sign. By inserting e from (3.5) into (3.1e), we arrive at

j = js + κ(−∂ta+ η1 −∇ϕ), (3.6)

which gives us a representation of the right-hand side of Ampère’s law (3.1b). Moreover, with divη1 = 0 we
obtain a continuity condition

div(js − κ∇ϕ) = div(κ∂ta) = 0.

In this magnetic wall case, in addition to Ampère’s law, we prescribe zero tangential magnetic field, thus, we
have that h ∈ L2(T ; H0(curl,Ω)). With this, we see from Ampère’s law (3.1b) that j ∈ HC

0 (div 0,Ω), see
Figure 2.4. Note that j is in the same constrained divergence space as the one of a, which yields consistency.
Using the constitutive law (3.1d), which relates the magnetic field strength h to the magnetic flux density b
leads with curlη2 = 0 to

curl ν(|curla+ η2|) curla+ κ∂ta− κη1 = −κ∇ϕ+ js. (3.7)

Thereby, we have the vector potential a ∈ L2(∂t, T ; [H(curl,Ω)]), a scalar potential ϕ ∈ L2(T ; H(∇,Ω)),
and cohomology vector fields η1 ∈ L2(T ; H1(Ω)) and η2 ∈ L2(T ; H2(Ω)). Moreover, we used (2.52a), i.e.,
the identificationH(curl,Ω) ∩HC

0 (div 0,Ω) ∼= [H(curl,Ω)].
By assuming that∇ϕ is known, e.g., computed a priori with suitable boundary conditions, then it can be con-
sidered as an additional source term. Thus, wemay define j in = −κ∇ϕ+js ∈ L2(T ; HC

0 (div 0,Ω)).

Remark 3.1. The topological terms η1 and η2 are linked in the setting of (3.7) to the electric field e and to
the magnetic flux density b, respectively. To eliminate the topological effects of the domain on the vector po-
tential formulation, suitable additional boundary conditions can be prescribed. Indeed, it can be shown by
following and adapting the steps from the derivation of (3.7) that this can be achieved by restricting (b, e)
to L2(T ; HΓ(div 0,Ω)) × L2(∂t, T ; [H(curl,Ω)]). Physically, these spaces correspond to the assumptions that
there is no flux through closed surfaces and that no loop voltage exists that could drive a current through a closed
conducting loop.
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Keeping the aimed numerical methods in mind, namely, couplings of FEM and BEMs, we may need mixed
boundary conditions. For simplicity of notation, we prescribe the same boundary condition to all connected

parts of ΓFEM =

NFEM⋃
k=1

ΓFEM,k with NFEM denoting the number of all interior boundaries, and similarly to

ΓBEM =

NBEM⋃
k=1

ΓBEM,k, where NBEM = NΓ − NFEM are the interfaces that separate a FEM and a BEM domain.

Note thatNΓ is again the total number of boundary components, as introduced in the beginning of the section.
For instance, with respect to Figure 2.1a, we may set ΓFEM = Γ1 ∪ Γ2 and ΓBEM = Γ0. For convenience, we
refer the reader to (2.31) for the definition of energy spaces that are endowed with BCs assigned only on a
boundary part.
An extension of the presented theory to mixed and non-homogeneous boundary conditions is furnished in
the magnetostatic regime in [50, Section 3.1]. An adaptation to the eddy-current model is straightforward.
Then, we can arrive at a vector potential formulation of the eddy-current problem (electric wall case) in a
bounded domain Ω that reads:

Find a ∈ L2(∂t, T ; H0(curl,Ω,ΓFEM) ∩HΓ(div 0,Ω)) ∼= L2(∂t, T ; [H0(curl,Ω,ΓFEM)]) such that

curl ν(|curla|) curla+ κ∂ta = j in in Ω× T\{0}, (3.8a)
γU
N a = φ0 on ΓBEM × T\{0}, (3.8b)
γ× a = u0 on ΓBEM × T\{0}, (3.8c)
a = 0 in Ω× {0} (3.8d)

with j in ∈ L2(T ; HΓ(div 0,Ω)), φ0 ∈ L2(T ; H− 1
2 (divΓ,Γ)), and u0 ∈ L2(T ; H− 1

2 (divΓ,Γ)).

Thereby, U should be adapted depending on the magnetic properties of the material, i.e., Uu := ν(|u|)u
for soft magnetic materials, and Uu := νu if the dependence is linear, see Section 1.1. Moreover, note that
Equations (3.8b) and (3.8c) stem from the jump conditions (3.2c) and (3.2a), respectively, when the value
of the field coming from the other side of the boundary is supposed to be known. More details on φ0 and u0

will be given in Section 3.2. Furthermore, the initial condition (3.8d) is necessary to determine the solution
at the initial step, here supposed to be t = 0, see Remark 2.8. For convenience, we restrict ourselves to the
special case of zero initial field.
Note that for the magnetic wall case, a similar initial Boundary Value Problem (BVP) follows with a ∈
L2(∂t, T ; [H(curl,Ω,ΓFEM)]) and j in ∈ L2(T ; HC

0 (div 0,Ω)).

Remark 3.2. For a FEM only approach, assuming γ× a 6= 0 on the boundary of the virtual computational
domain would be in practice difficult to build from γnb 6= 0, cf. [50, Section 3.1]. Therefore, the restriction
γ× a = 0 is a convenient modelling choice, which also agrees with the physical laws, in particular with the
divergence-free property of the magnetic flux density. In our case, the FEM and BEM domains are coupled via
the boundary data, and particularly, via their jump relation across the interface. Hence, it is more suitable to
assume non-homogeneous boundary conditions, as will be made clear in the next subsection.
The condition γνNa 6= 0makes sense from a physical perspective, even in the FEM only approach. It would suggest
the existence of surface currents on the considered boundary, because it is directly related to (3.2c).

In addition to vector potential formulations for eddy-currents in three dimensions, some other particular cases
are also relevant to our study. Independently of the additional BCs prescribed for b and e, see Remarks 3.1
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and B.1, if Ω is filled with an insulator, i.e., a non-conducting material with κ = 0, the topological term that is
related to κ in (3.6) and (B.3), i.e., either η1 or η2 (depending on the magnetic or electric BCs) vanishes, as
well as the scalar potential gradient and the non-stationary term of a. This gives rise with the restriction on
either b or e as in Remarks 3.1 and B.1 to the equations of magnetostatics:

Find a ∈ [H0(curl,Ω,ΓFEM)] (or a ∈ [H(curl,Ω,ΓFEM)]) such that

curl ν(|curla|) curla = js in Ω, (3.9a)
γνNa = φ0 on ΓBEM, (3.9b)
γ× a = u0 on ΓBEM (3.9c)

with js ∈HΓ(div 0,Ω) (or js ∈HC
0 (div 0,Ω)), φ0 ∈H− 1

2 (divΓ,Γ), and u0 ∈ [H− 1
2 (curlΓ,Γ)].

As motivated by Figure 1.4, we are also interested in the two-dimensional (2D) case. Let Ω ⊂ R3 be repre-
sented in a local Cartesian coordinate system (x1, x2, x3). There, the vector potential reads a = (a1, a2, a3).
Considering a symmetry along the x3-axis reduces the problem to find a3 in the x1-x2 hyperplane. Then, it
can be shown that a de Rham complex with similar structure as Figure 2.6 (the boundary part) arises, i.e., we
can define two curl-operators. The first one takes a scalar as input and can be defined as a rotated gradient in
the x1-x2 hyperplane, i.e., c̃url = Ĩd(∇×n), with Ĩd : R3 → R2 is the augmented identity matrix Ĩd = (Id|0),
and n = (0, 0, 1)>. Formally, we write c̃url a = (∂x2a,−∂x1a). The second one takes a planar vector from
the x1-x2 hyperplane as input. It can be computed for u = (u1, u2) by curlu := (curl ũ) ·n = ∂x1u2 − ∂x2u1,
where ũ = (u1, u2, α) and α is an arbitrary differentiable scalar function, see [113, Section 1.4], for instance.
It can be shown, e.g., by a direct computation of curl c̃url that the curl curl-operator in three dimensions turns
into a Laplace operator (with negative sign) in the 2D case. Similarly, curlU c̃url transforms to divU∇, cf.
[113, Chapter 3]. Moreover, we can also verify that

∣∣∣c̃url a∣∣∣ = |∇a|. With this, we state equivalent problems to
(3.8) and (3.9) forΩ ⊂ R2. In themagnetoquasistationary regime, we obtain:

Find a ∈ L2(∂t, T ; H0(∇,Ω,ΓFEM)) such that

−div ν(|∇a|)∇a+ κ∂ta = j in Ω× T\{0}, (3.10a)
γν1a = φ0 on ΓBEM × T\{0}, (3.10b)
γ0a = u0 on ΓBEM × T\{0}, (3.10c)
a = 0 in Ω× {0} (3.10d)

with j ∈ L2(T ; H(∇,Ω)′), φ0 ∈ L2(T ; H− 1
2 (Γ)), and u0 ∈ L2(T ; H

1
2 (Γ)).

In the magnetostatic case, the problem above reduces to:

Find a ∈ H0(∇,Ω,ΓFEM) such that

−div ν(|∇a|)∇a = j in Ω, (3.11a)
γν1a = φ0 on ΓBEM, (3.11b)
γ0a = u0 on ΓBEM (3.11c)

with j ∈ H(∇,Ω)′, φ0 ∈ H− 1
2 (Γ), and u0 ∈ H

1
2 (Γ).
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The boundary conditions can easily be derived from [113, Equation 3.10]. Note that we did not require a
special gauging in the above formulation. The kernel of the gradient operator contains the set of real num-
bers, by ruling them out, e.g., by prescribing suitable boundary conditions to fix the constant, the interior
problem can be uniquely solved.

In the next section, we consider the exterior problem, and introduce the needed tools for a boundary integral
formulation.

3.2 Boundary integral equations and Steklov-Poincaré operators

Let us first clarify our interpretation of some terms. Under boundary data we understand functions or vector
fields that are defined over the boundary. In particular, we call Cauchy data the set of boundary data that are
obtained via an application of appropriate trace operators, andwhich render the solution of the corresponding
BVP or Initial Value Problem (IVP) unique, or at least ensure its existence. For instance, the sets of Cauchy
data that we will encounter in this work are either

(
γ0v, γ

U
1 v
)
for scalar BVPs, or

(
γD v, γ

U
N v (, γnv)

)
for

vectorial ones. They correspond to Dirichlet and Neumann boundary conditions. At this point, we also have
to distinguish between traces that approach the boundary from the interior and from the exterior side of the
domain that it encloses. Instead of Ω in Definition 2.14, considering Ωe yields the exterior trace operators,
which we differentiate from the interior ones by a superscript ·e. In particular, because in our context exterior
domains are only filled with linear materials, e.g., U = Id, the exterior counterparts of γU1 and γU

N are denoted
by γe1 and γe

N, respectively. Moreover, the extension results hold accordingly for the exterior traces with self-
evident notational adaptations; for example, Ωe instead of Ω and Hloc(Ω

e) instead of H(Ωe) for a generic
space H(Ωe), if Ωe is unbounded. A last remark is due, an exterior domain is not necessarily unbounded in
this work, we rather mean a domain, where BEM is applied. Hence, we may use the terms exterior domain
and BEM-domain interchangeably.

3.2.1 Boundary integral equations

The model problems for the exterior domain derive from the magnetostatic case with linear reluctivity. In
particular, we assume ν = Id for simplicity throughout this work. Note that this can be achieved by a suitable
normalization from ν = ν0Id, with ν0 being the vacuum reluctivity. Moreover, no source current is supported
in the exterior domain. Hence, the corresponding equations are homogeneous. Therefore, the topological
terms are clearly eliminated from the explicit equations independently of the considered BCs on b and e.
This can be seen by setting to zero the term of (3.6) in (3.7) and a linear ν.
If Ωe is unbounded, we additionally require a decay condition that describes the behavior of the field or func-
tion at infinity. For the vector potential, this follows from the decay condition of the magnetic field (1.12).
However, it does not hold in general for 2D problems. Therefore, we first assume a logarithmic decay, which
is a standard choice for unbounded Laplacian interface problems [87, Theorem 8.9]. This choice will be
addressed again later.

We start with the following problems (in a weak sense): Let ae ∈ H loc(curl,Ωe) ∩H loc(div,Ωe) and ae ∈
Hloc(∇,Ωe). In three-dimensional (3D), we have a curl curl-equation

curl curlae = 0 in Ωe, (3.12a)
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divae = 0 in Ωe, (3.12b)
ae = O

(
|x|−1

)
for |x| → ∞, (3.12c)

and in 2D a Laplace equation

−∆ae = 0 in Ωe, (3.13a)
ae = C∞ log(|x|) +O

(
|x|−1

)
for |x| → ∞. (3.13b)

For now, we leave C∞ unspecified. For convenience, it is a constant in the static regime and a time-dependent
function in the quasistationary one, which can be computed from the solution. Furthermore, ifΩe is bounded,
there is no need to prescribe a decay condition, and the local behavior of the spaces may be dropped.

The core of boundary integral formulations is based on linear operators, known as potential operators, that
map boundary data to smooth functions off the boundary. For this, an operator equation should possess a
fundamental solution. We refer to [48, Section 6] for a rigorous introduction, and more details about the
subject. For instance, the fundamental solution of the Laplace equation reads for x, y ∈ Rd and x 6= y

u∗(x,y) =

{
−1
2π log (|x− y|) , d = 2,
1
4π

1
|x−y| , d = 3,

(3.14)

see e.g. [109, Section 5.1] for a detailed computation. We consider in this work two types of potential
operators that can be associated to Dirichlet and Neumann BCs, which we call single-layer and double-layer
potentials, respectively. Moreover, for each type we distinguish between potentials that take scalar functions
and vector fields as input. This gives rise to the subsequent four potentials.

Definition 3.3 (Potentials). Let Γ be a Lipschitz boundary of Ω ⊂ Rd, d = 2, 3. For x ∈ Rd\Γ, and for smooth
enough inputs, we define the following potentials:

• The scalar Single-Layer Potential (SLP)

ΨSL(ϕ)(x) =

∫
Γ
u∗(x,y)ϕ(y)dσy. (3.15)

• The vectorial SLP (d = 3)
ΨSL(ϕ)(x) =

∫
Γ
u∗(x,y)ϕ(y)dσy. (3.16)

• The scalar Double-Layer Potential (DLP)

ΨDL(v)(x) =

∫
Γ
(∇yu∗(x,y) · n(y)) v(y)dσy. (3.17)

• The vectorial DLP, also known as Maxwell DLP (d = 3)

ΨDL(v)(x) = curlxΨSL (v × n) (x) = curlx
∫
Γ
u∗(x,y) (v(y)× n(y)) dσy. (3.18)
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The above potentials can be extended to continuous mappings as follows.

Lemma 3.4 (Boundary Layer Potentials). Let d = 2, 3. The potentials of Definition 3.3 can be uniquely extended
to linear operators such that

ΨSL :H
− 1

2 (Γ) → Hloc(∇, Rd),

ΨSL :H
− 1

2 (divΓ,Γ) →H loc(curl, R3),

ΨDL :H
1
2 (Γ) → Hloc(∇, Rd\Γ),

ΨDL :H
− 1

2 (curlΓ,Γ) →H loc(curl, R3\Γ) ∩H loc(div0, R3\Γ)

are bounded.

Proof. We refer to [31, Theorem 1] for the scalar potentials, and to [61, Section 5] for the vectorial ones.

With this, representation formulae can be derived, which allow the computation of a scalar function or a vector
field evaluated in Ω or Ωe solely through the corresponding Cauchy data.

Theorem 3.5 (Representation formulae). Scalar functions a ∈ H(∇,Ω) and ae ∈ Hloc(∇,Ωe) that solve (3.13)
in a weak sense in the interior and exterior domain, respectively, can be represented as

a(x) = ΨSL(γ1 a)(x)−ΨDL(γ0a)(x) for x ∈ Ω, (3.19a)
ae(x) = ΨDL(γ

e
0a

e)(x)−ΨSL(γ
e
1 a

e)(x) for x ∈ Ωe. (3.19b)

Moreover, vector fields a ∈H(curl,Ω) and ae ∈H loc(curl,Ωe) that solve (3.12) in a weak sense in the interior
and exterior domain, respectively, can be represented as

a(x) = ΨSL(γN a)(x) +ΨDL(γD a)(x) +∇ΨSL(γna)(x) for x ∈ Ω, (3.20a)
ae(x) = −ΨSL(γ

e
N a

e)(x)−ΨDL(γ
e
D a

e)(x)−∇ΨSL(γ
e
na

e)(x) for x ∈ Ωe. (3.20b)

Proof. The representation formulae for the scalar case follow from [87, Theorems 7.12 & 7.15]. The result
for our vector fields is given in [62, Section 3], for instance.

The next step is to introduce the corresponding BIOs. They arise by taking the traces of the BLPs. Note that
the potentials are not necessarily continuous across the boundary. Hence, possible discontinuities should
be taken into account. This motivates the definition of BIOs as averages of the corresponding potential
traces.

Definition 3.6. Let {γ} := 1
2(γ

e + γ) denote the average of some exterior and interior trace operator γ. We
define the following BIOs:

• single-layer: V0 := {γ0} ◦ΨSL,

• double-layer: K0 := {γ0} ◦ΨDL,

• adjoint double-layer: K′
0 := {γ1} ◦ΨSL,

• hyper-singular: W0 := {γ1} ◦ΨDL
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as well as:

• vectorial single-layer: A0 := {γD} ◦ΨSL,

• Maxwell double-layer: C0 := {γD} ◦ΨDL,

• adjoint Maxwell double-layer: B0 := {γN} ◦ΨSL,

• vectorial hyper-singular: N 0 := {γN} ◦ΨDL.

Concretely, the jump relations of the potential operators are specified below.

Theorem 3.7 (Jump relations). Let JγΨKΓ := γΨ−γeΨ denote the jump of some function Ψ across a boundary
Γ. The BLPs involved in the representation formulae of Theorem 3.5 satisfy the following jump relations:

Jγ0ΨSLKΓ = 0, JγDΨSLKΓ = 0,

Jγ0ΨDLKΓ = −Id, JγDΨDLKΓ = −Id,
Jγ1ΨSLKΓ = Id, JγNΨSLKΓ = −Id,
Jγ1ΨDLKΓ = 0, JγNΨDLKΓ = 0.

Proof. We refer, e.g., to [87, Theorem 6.11] for the jump relations of the scalar potentials ΨSL, ΨDL, and to
[61, Section 5] and [62, Theorem 3.4] for those of ΨSL, ΨDL.

Then, we give some properties of the newly introduced BIOs.

Theorem 3.8 (Mapping properties of BIOs). The boundary integral operators

V0 : H
− 1

2 (Γ) → H
1
2 (Γ), K0 : H

1
2 (Γ) → H

1
2 (Γ),

K′
0 : H

− 1
2 (Γ) → H− 1

2 (Γ), W0 : H
1
2 (Γ) → H− 1

2 (Γ)

as well as

A0 :H
− 1

2 (divΓ,Γ) →H− 1
2 (curlΓ,Γ), C0 :H

− 1
2 (curlΓ,Γ) →H− 1

2 (curlΓ,Γ),

B0 :H
− 1

2 (divΓ,Γ) →H− 1
2 (divΓ,Γ), N 0 :H

− 1
2 (curlΓ,Γ) →H− 1

2 (divΓ,Γ)

define continuous and linear mappings.

Proof. See [87, Theorem 6.11] and [61, Section 5].

Theorem 3.9 (Properties of V0 and W0). The BIOs V0 and W0 are symmetric, i.e., for all ϕ, ψ ∈ H− 1
2 (Γ) and

u, v ∈ H
1
2 (Γ) we have

〈ψ,V0ϕ〉Γ = 〈ϕ,V0ψ〉Γ, 〈W0u, v〉Γ = 〈W0v, u〉Γ. (3.21)

Moreover, let Ω ⊂ Rd. The single-layer operator V0 is H− 1
2 (Γ)-elliptic (but under a condition on Ω when d = 2),

i.e., there exists CV0 = CV0(Γ) > 0 such that

〈ϕ,V0ϕ〉Γ ≥ CV0‖ϕ‖
2

H− 1
2 (Γ)

for d = 3, (3.22)
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〈ϕ,V0ϕ〉Γ ≥ CV0‖ϕ‖
2

H− 1
2 (Γ)

for d = 2, if diamΩ < 1. (3.23)

The hyper-singular operator W0 is positive definite on H
1
2 (Γ) and elliptic on [H

1
2 (Γ)], i.e., there exists CW0 =

CW0(Γ) > 0 such that

〈W0u, u〉Γ ≥ 0 for all u ∈ H
1
2 (Γ), (3.24)

〈W0u, u〉Γ ≥ CW0‖u‖
2

H
1
2 (Γ)

for all u ∈ [H
1
2 (Γ)]. (3.25)

Proof. The symmetry is provided, e.g., in [87, Chapter 7]. For the ellipticity results we refer to [109, The-
orem 22 & 23] for the single-layer operator, and to [109, Theorem 24] for the hyper-singular operator,
for instance. Obviously, the latter proof is also valid in the quotient space formulation because of Corol-
lary 2.4.

Remark 3.10. Note that the requirement diamΩ < 1 to ensure a H− 1
2 (Γ)-elliptic single-layer operator is in

practice not restrictive. Indeed, it can be merely achieved by scaling the domain or the fundamental solution.

Analogously, we find similar results for the vectorial single-layer and hyper-singular operators.

Theorem 3.11 (Properties ofA0 andN 0). The Boundary Integral Operators (BIOs)A0 andN 0 are symmetric,
i.e., for all ϕ, ψ ∈H− 1

2 (divΓ,Γ) and u, v ∈H− 1
2 (curlΓ,Γ) we have

〈ψ,A0ϕ〉Γ = 〈ϕ,A0ψ〉Γ, 〈N 0u,v〉Γ = 〈N 0v,u〉Γ. (3.26)

The vectorial single-layer operator A0 isH− 1
2 (divΓ 0,Γ)-elliptic1, i.e., there exists CA0 = CA0(Γ) > 0 such that

〈ϕ,A0ϕ〉Γ ≥ CA0‖ϕ‖
2

H− 1
2 (divΓ,Γ)

for all ϕ ∈H− 1
2 (divΓ 0,Γ). (3.27)

The vectorial hyper-singular operator N 0 is positive definite onH− 1
2 (curlΓ,Γ) and elliptic on [H− 1

2 (curlΓ,Γ)],
i.e., there exists CN 0 = CN 0(Γ) > 0 such that

〈N 0u,u〉Γ ≥ 0 for all u ∈H− 1
2 (curlΓ,Γ), (3.28)

〈N 0u,u〉Γ ≥ CN 0‖u‖
2

H− 1
2 (curlΓ,Γ)

for all u ∈ [H− 1
2 (curlΓ,Γ)]. (3.29)

Proof. The symmetry and H− 1
2 (divΓ 0,Γ)-ellipticity of A0 follows from [62, Theorem 4.4 with κ = 0]. For

the hyper-singular operator, an alternative representation, which can be found in [44, Remark 4.26 with
κ = 0], for instance, makes the proof of the related assertions straightforward, namely,

〈N 0u,u〉Γ = 〈curlΓ u,V0 curlΓ u〉Γ for all u ∈H− 1
2 (curlΓ,Γ). (3.30)

Then, by using (3.22), namely, the H− 1
2 (Γ)-ellipticity of V0, and the inclusion (2.64c), we obtain

〈N 0u,u〉Γ = 〈curlΓ u,V0 curlΓ u〉Γ ≥ 0 for all u ∈H− 1
2 (curlΓ,Γ). (3.31)

1Note that A0 is even elliptic on the whole spaceH− 1
2 (divΓ,Γ), see [19, 31].
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However, by using the same argument for representatives in [H− 1
2 (curlΓ,Γ)], we establish the ellipticity of

N 0, i.e., there exists CN 0 > 0 such that

〈N 0u,u〉Γ ≥ CN 0‖u‖
2

H− 1
2 (curlΓ,Γ)

(3.32)

for all u ∈ [H− 1
2 (curlΓ,Γ)].

Moreover, the Maxwell double-layer C0 and the adjoint Maxwell double-layer B0 are related in the following
sense: for ϕ ∈H− 1

2 (divΓ,Γ) and u ∈H− 1
2 (curlΓ,Γ) it holds that

〈ϕ,C0u〉Γ = −〈B0ϕ,u〉Γ, (3.33)

cf. [61, Theorem 3.9 with κ = 0].

Corollary 3.12 (Equivalent norms). For ψ ∈ H− 1
2 (Γ) and ψ ∈ H− 1

2 (divΓ 0,Γ), the following norm equiva-
lences

‖ψ‖V0
:=
√
〈ψ,V0ψ〉Γ ∼= ‖ψ‖

H− 1
2 (Γ)

, (3.34)

‖ψ‖A0
:=
√
〈ψ,A0ψ〉Γ ∼= ‖ψ‖

H− 1
2 (divΓ,Γ)

(3.35)

hold.

Proof. The assertions follow merely from the properties of V0 and A0, in particular, from the H− 1
2 (Γ)-

ellipticity of V0, and theH− 1
2 (divΓ 0,Γ)-ellipticity of A0, see (3.23) and (3.27), respectively.

For implementation, a concrete representation of the BIOs is necessary. Indeed, provided the inputs are
smooth enough, they admit an integral representation. Subsequently, we only state those that are relevant
for actual implementation.

Lemma 3.13 (Integral representations). The following representations hold:

ϕ ∈ L∞(Γ), 〈ϕ,V0ψ〉Γ =

∫
Γ

∫
Γ
u∗(x,y)ϕ(x)ψ(y)dσy dσx ∀ψ ∈ L∞(Γ),

v ∈ L∞(Γ), 〈v,K0w〉Γ =

∫
Γ

∫
Γ
∇yu∗(x,y) · n(y)v(x)w(y)dσy dσx ∀w ∈ L∞(Γ),

ϕ ∈ L∞(Γ), 〈ϕ,A0ψ〉Γ =

∫
Γ

∫
Γ
u∗(x,y)ϕ(x) ·ψ(y)dσy dσx ∀ψ ∈ L∞(Γ),

v ∈ L∞(Γ), 〈v,C0w〉Γ =

∫
Γ

∫
Γ
∇yu∗(x,y)(v(x)×w(y))dσy dσx ∀w ∈ L∞(Γ).

Proof. cf. [109, Section 6] and [22, Section 5].

Remark 3.14. Note that the integrals above are singular when x → y. Hence, they have to be understood as
improper integrals, if the corresponding kernel is weakly singular (O(|x− y|−1)), and as a Cauchy principal
value if it is strongly singular (O(|x− y|−2)).
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By taking the corresponding traces of the representation formulae of Theorem 3.5, and by considering the
jump relations of Theorem 3.7, we obtain two BIEs per representation formula. On one hand, we arrive for
the scalar case at

γ0a = (
1

2
−K0)γ0a+ V0 γ1 a, γ1 a =W0γ0a+ (

1

2
+K′

0) γ1 a, (3.37a)

γe0a
e = (

1

2
+K0)γ

e
0a

e − V0 γ
e
1 a

e, γe1 a
e =−W0γ

e
0a

e + (
1

2
−K′

0) γ
e
1 a

e, (3.37b)

which for convenience can be rewritten as(
γ0a
γ1 a

)
=

(
1

2
Id+ Ps

)(
γ0a
γ1 a

)
,

(
γe0a

e

γe1 a
e

)
=

(
1

2
Id− Ps

)(
γe0a

e

γe1 a
e

)
with Ps =

(
−K0 V0

W0 K′
0

)
.

The operators 1
2 Id ± Ps are known as interior and exterior Calderón projectors, respectively, see [109, Sec-

tion 6.6], for instance. However, the arising BIEs for the vectorial case are

γD a = A0 γN a+ (
1

2
+ C0)γD a+∇ΓV0(γna), (3.38a)

γN a = (
1

2
+B0)γN a+N 0 γD a (3.38b)

for the interior problem, and

γe
D a

e = −A0 γ
e
N a

e + (
1

2
− C0)γ

e
D a

e −∇ΓV0(γ
e
na

e), (3.39a)

γe
N a

e = (
1

2
−B0)γ

e
N a

e −N 0 γ
e
D a

e (3.39b)

for the exterior one. Hence, an analogous extraction of Calderón projectors is not possible in this case due
the presence of the terms including the normal trace. Getting rid of this term is also convenient for the
definition of Steklov-Poincaré operators, which are crucial for our analysis of the coupled problem. We in-
troduce them below in Subsection 3.2.2. Therefore, in accordance to the vector potential formulation in the
interior domain, cf. Section 3.1, and similarly to [43], we project (3.38a) and (3.39a) onto [H− 1

2 (curlΓ,Γ)].
Moreover, by taking the commutativity of the de Rham complex into account, see Figure 2.6, the iden-
tity

divΓ γ×w = γn curlw

holds for allw ∈H(curl,Ω) (orw ∈H loc(curl,Ωe)). In particular, if we choosew = curlv ∈H(curl curl,Ω)
(orw = curlv ∈H loc(curl curl,Ωe)) such that the curl curl-equation (3.12a) is satisfied, we obtain

divΓ γN v = γn curl curlv = 0.

Therefore, (3.38b) and (3.39b) have to be set in H− 1
2 (divΓ 0,Γ). In the following, we show that the du-

ality pairing defined by H− 1
2 (curlΓ,Γ) and H− 1

2 (divΓ,Γ) transfers to the quotient space [H− 1
2 (curlΓ,Γ)]

and the subspace H− 1
2 (divΓ 0,Γ). The proof follows the same idea as for the duality of H− 1

2 (curlΓ,Γ) and
H− 1

2 (divΓ,Γ), which can be found in [20, Lemma 5.6] for simply-connected boundaries. An alternative proof
is furnished in [43, Proposition 3.2].

Lemma 3.15. Let Γ be simply- or multiply-connected. The quotient space [H− 1
2 (curlΓ,Γ)] and the subspace

H− 1
2 (divΓ 0,Γ) define a duality pairing with L2

t (Γ) as pivot space.
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Proof. Let u ∈H− 1
2 (divΓ 0,Γ) and v ∈ [H− 1

2 (curlΓ,Γ)]. By Theorem 2.32, we know that there exists unique
β ∈ H

1
2 (Γ) and η ∈ H1(Γ), such that u = curlΓ β+η. Moreover, using Corollary 2.4 and [20, Theorem 5.5],

there exists a unique α ∈ H(∆Γ,Γ) such that v = curlΓ α. Note that the latter representation is independent
of the topology. Now, let {βn}n∈N0 ⊆ H1(Γ) such that βn → β. Then, for un = curlΓ βn + η ∈ L2

t (Γ) and
v ∈ L2

t (Γ) we have
〈un,v〉 = −〈∆Γα, βn〉,

where we used (2.56b), curlΓ η = 0, and curlΓ curlΓ α = −∆Γ. By taking the limiting case n→ ∞, we arrive
at a well-defined duality pairing in the sense of [H− 1

2 (curlΓ,Γ)] and H− 1
2 (divΓ 0,Γ) with L2

t (Γ) as a pivot
space.

3.2.2 Steklov-Poincaré operators and contractivity results

In the following, we introduce Dirichlet-to-Neumann maps, which are given by Steklov-Poincaré operators.
Let us first focus on the scalar case. By rearranging the first BIEs of (3.37a) and (3.37b), and by using the
H− 1

2 (Γ)-ellipticity of V0, we arrive at

γ1 a = V0
−1(

1

2
+K0)γ0a, (3.40a)

γe1 a
e = −V0

−1(
1

2
−K0)γ

e
0a

e, (3.40b)

and define the interior and exterior Steklov-Poincaré operators S int, Sext : H
1
2 (Γ) → H− 1

2 (Γ)with

S int = V0
−1(

1

2
+K0), (3.41a)

Sext = V0
−1(

1

2
−K0). (3.41b)

Moreover, inserting the Dirichlet-to-Neumann maps defined above in the second equations of (3.37a) and
(3.37b) yields an equivalent representation of the Steklov-Poincaré operators,

S int = W0 + (
1

2
+K′

0)V0
−1(

1

2
+K0), (3.42a)

Sext = W0 + (
1

2
−K′

0)V0
−1(

1

2
−K0). (3.42b)

Obviously, the representation above is symmetric because of the symmetry of V0 and W0. Moreover, we can
also see that the ellipticity of Steklov-Poincaré operators is inherited from the ellipticity of W0. In particular,
it follows that S int and Sext are [H

1
2 (Γ)]-elliptic2, see (3.25). For further reading, we refer to [31, 109], for

instance.

Our analysis requires the ellipticity of the Steklov-Poincaré operators, which is with respect to S int only
guaranteed for Dirichlet data that are in [H

1
2 (Γ)], as we saw above. Now the question that arises in this case

is where do the corresponding Neumann data live? In other words, the dual space of [H
1
2 (Γ)] needs to be

specified.

2Note that Sext is even elliptic on the whole space H
1
2 (Γ), see [26].
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Lemma 3.16. The dual space of [H
1
2 (Γ)] can be identified with H− 1

2
? (Γ).

Proof. Let a ∈ H(∇,Ω) satisfy∆a = 0 inΩ. Then, with γ0a ∈ H
1
2 (Γ), γ1a ∈ H− 1

2 (Γ), and V0
−1K0 = K0

′V0
−1,

see [109, Corollary 6.19], we note that

〈γ1a, 1〉Γ =
〈
V0γ1a,V0

−11
〉
Γ
=

〈
(
1

2
+K0)γ0a,V0

−11

〉
Γ

=

〈
γ0a, (

1

2
+K0

′)V0
−11

〉
Γ

=

〈
γ0a,V0

−1(
1

2
+K0)1

〉
Γ

= 0.

Hence, γ1a ∈ H
− 1

2
? (Γ) with H− 1

2
? (Γ) being the subspace of H− 1

2 (Γ) with zero average elements, see (2.69).
With this, and by the duality of H

1
2 (Γ) and H− 1

2 (Γ), we obtain a well-defined duality pairing 〈u, v〉Γ with
u ∈ [H

1
2 (Γ)] and v ∈ H

− 1
2

? (Γ).

Similar operators can be defined for the vectorial case in our new setting, namely, [H− 1
2 (curlΓ,Γ)] and

H− 1
2 (divΓ 0,Γ) instead of the whole trace spaces. Before proceeding to their introduction, some remarks

are due:

Remark 3.17. By using integration by parts and the definitions of the trace operators γD and γN, we can verify
that their mapping properties transfer to the setting given by [H− 1

2 (curlΓ,Γ)] and H− 1
2 (divΓ 0,Γ) with self-

evident adaptation. In addition, together with Definition 3.3 and Lemma 3.4 it follows that the BIOs obtained
by Definition 3.6 inherit the properties and relations that were established in the previous subsection.

By using theH− 1
2 (divΓ 0,Γ)-ellipticity ofA0, we define analogously the interior and exterior vectorial Steklov-

Poincaré operatorsS int, Sext :H− 1
2 (curlΓ,Γ) →H− 1

2 (divΓ 0,Γ) from (3.38a) and (3.39a) by

γN u = A0
−1(

1

2
− C0)γD u := S int γD u, (3.43a)

γe
N u

e := −A0
−1(

1

2
+ C0)γ

e
D u

e := −Sext γe
D u

e. (3.43b)

Furthermore, inserting the above definitions of S int and Sext in (3.38b) and (3.39b) leads to a symmetric
representation of the Steklov-Poincaré operators:

S int =

(
1

2
+B0

)
A0

−1

(
1

2
− C0

)
+N 0, (3.44a)

Sext =

(
1

2
−B0

)
A0

−1

(
1

2
+ C0

)
+N 0. (3.44b)

An analogous observation as in the scalar case allows us to establish the symmetry of S int and Sext, and
to relate the properties of the vectorial Steklov-Poincaré operators to those of the vectorial hyper-singular
operator N 0. In particular, we notice that S int, Sext are only positive semi-definite if we consider the entire
spaceH− 1

2 (curlΓ,Γ), but elliptic in the quotient space [H− 1
2 (curlΓ,Γ)], see (3.32).

For analysis purposes, the subsequent contractivity results for the double-layer operators play an important
role.
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Lemma 3.18 (Contractivity of K0, [110]). Let S int : H
1
2 (Γ) → H− 1

2 (Γ) be the scalar interior Steklov-Poincaré
operator as defined in (3.41a). There exists a contraction constant CK0 := 1

2 +
√

1
4 − CV0CW0 ∈ [12 , 1) such that

∥∥∥∥(1

2
+K0

)
ψ

∥∥∥∥2
V0

−1

≤ CK0

〈
S intψ,ψ

〉
Γ
, ψ ∈ H

1
2 (Γ).

Thereby, CV0 and CW0 are the ellipticity constants given in Theorem 3.9, and ‖·‖V0
−1 =

〈
V0

−1·, ·
〉 1

2
Γ
.

In the 3D vectorial case, we prove the existence of a similar result.

Lemma 3.19 (Contractivity of C0, [43]). Let S int : [H− 1
2 (curlΓ,Γ)] →H− 1

2 (divΓ 0,Γ) be the vectorial interior
Steklov-Poincaré operator as defined in (3.43a). There exists a contraction constantCC0 := 1

2+
√

1
4 − CA0CN 0 ∈

[12 , 1) such that

(1− CC0)‖ψ‖A0
−1 ≤

∥∥∥∥(1

2
− C0

)
ψ

∥∥∥∥
A0

−1

≤ CC0‖ψ‖A0
−1 , ψ ∈ [H− 1

2 (curlΓ,Γ)],

and ∥∥∥∥(1

2
− C0

)
ψ

∥∥∥∥2
A0

−1

≤ CC0

〈
S intψ,ψ

〉
Γ
, ψ ∈ [H− 1

2 (curlΓ,Γ)].

Thereby, CA0 and CN 0 are the ellipticity constants given in Theorem 3.11, and ‖·‖A0
−1 =

〈
A0

−1·, ·
〉 1

2

Γ
.

Proof. The first assertion follows analogously to the scalar case in [110]. Using the symmetric representation
of the interior Steklov-Poincaré operator, given in (3.44a), together with theH− 1

2 (divΓ 0,Γ)-ellipticity ofA0,
it holds ∥∥∥∥(1

2
− C0

)
ψ

∥∥∥∥2
A0

−1

=

〈
A0

−1

(
1

2
− C0

)
ψ,

(
1

2
− C0

)
ψ

〉
Γ

=
〈
S intψ,ψ

〉
Γ
− 〈N 0ψ,ψ〉Γ.

(3.45)

Using the same argumentation as in [110, Proposition 5.4], we rely on [100, Theorem 12.33], which states
that there exists a self-adjoint square root A0

1
2 of A0, which is also invertible, since A0 is a self-adjoint, and

invertible operator in H− 1
2 (divΓ 0,Γ). We denote the inverse of the square root operator by A0

− 1
2 . As a

consequence, it follows that A0
− 1

2 = A0
1
2A0

−1 and
∥∥∥A0

− 1
2v
∥∥∥
L2(Γ)

= ‖v‖A0
−1 . With this, and following the

steps of [110, Theorem 5.1], we get for the first term of the right-hand side of (3.45)〈
S intψ,ψ

〉
Γ
=
〈
A0

− 1
2A0S intψ,A0

− 1
2ψ
〉
Γ

≤
∥∥∥∥(1

2
− C0

)
ψ

∥∥∥∥
A0

−1

‖ψ‖A0
−1 ,

(3.46)

where we used the first identity of S int given in (3.43a). For the second term, we need the following result

CA0

〈
A0

−1ψ,ψ
〉
Γ
≤ ‖ψ‖2

H− 1
2 (curlΓ,Γ)

,
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which can be derived as in [110, Proposition 5.2] by a duality argument, and by making use of the bijectivity
of A0 inH− 1

2 (divΓ 0,Γ). Then, it follows from the [H− 1
2 (curlΓ,Γ)]-ellipticity of N 0 (3.32) that

〈N 0ψ,ψ〉Γ ≥ CN 0CA0

〈
A0

−1ψ,ψ
〉
Γ

= CN 0CA0‖ψ‖
2
A0

−1 .
(3.47)

Inserting (3.46) and (3.47) in (3.45), yields∥∥∥∥(1

2
− C0

)
ψ

∥∥∥∥2
A0

−1

≤
∥∥∥∥(1

2
− C0

)
ψ

∥∥∥∥
A0

−1

‖ψ‖A0
−1 − CN 0CA0‖ψ‖

2
A0

−1 .

Therefore, solving the second order inequality leads to the assertion

(1− CC0)‖ψ‖A0
−1 ≤

∥∥∥∥(1

2
− C0

)
ψ

∥∥∥∥
A0

−1

≤ CC0‖ψ‖A0
−1

with CC0 := 1
2 +

√
1
4 − CA0CN 0 . Moreover, it follows clearly that CC0 lies in [12 , 1).

The second assertion follows similarly to [90, Lemma 2.1]. Equation (3.45) reads〈
S intψ,ψ

〉
Γ
=

∥∥∥∥(1

2
− C0

)
ψ

∥∥∥∥2
A0

−1

+ 〈N 0ψ,ψ〉Γ. (3.48)

The second term of the right-hand side can be estimated by (3.47) and the first assertion. Hence

〈N 0ψ,ψ〉Γ ≥ CA0CN 0

C2
C0

∥∥∥∥(1

2
− C0

)
ψ

∥∥∥∥2
A0

−1

.

By observing that CA0CN 0 = CC0(1− CC0), the assertion follows merely.

Until now, we introduced the targeted types of model problems that we aim to consider in the interior (Sec-
tion 3.1) as well as in the exterior domain. The coupling, variational formulations, and analysis of the coupled
system is postponed to the next chapters. In the next section, we give an overview on the framework of the
discrete setting.

3.3 The isogeometric framework

The goal of this section is providing a discrete counterpart for the energy and trace spaces that are involved
in the de Rham complex given in Figure 2.6. For this, we use the framework of Isogeometric Analysis (IGA),
which allows the linkage of design to numerical analysis, such that simulations are conducted on the exact
geometry, see [32, 65]. Obviously, this avoids meshing errors. In particular, the geometry is not altered by
h-refinements, as it can occur for standard finite elements. Moreover, the definition of the basis functions in
IGA offers a straightforward way to perform p-refinements, which stands for a refinement with respect to the
basis functions’ degree. Usually, these basis functions are represented by B-Splines or some of their exten-
sions, such as NURBS, T-Splines etc. In this thesis, we use B-Splines for discretization purposes, and NURBS
for geometrical modelling. We refer to [94] for a more extensive introduction to B-Splines, and to [21, 33,
119] for the mathematical analysis and approximation properties of B-Spline spaces that are involved in the
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discretization of the de Rham complex.

B-Splines of a specific degree are defined over a parametric domain. In contrast to classical finite elements,
the parametric domain is intrinsic to the definition. Hence, refinements and evaluations are performed in
there, then mapped to the physical domain. In one dimension, parametric domains can be characterized
by a so called knot vector, which is a collection of knots Ξ := {ξ0, . . . , ξm} for a certain m ∈ N giving
rise to a non-decreasing sequence of numbers. In the following, we define a specific type of knot vec-
tors.

Definition 3.20 (p-open knot vector, [33, Section 2]). Let p ∈ N be the aimed at degree of the B-Splines. Given
m ≥ 2p+ 1, the knot vector Ξ := {ξ0, . . . , ξm} is said to be p-open if

0 = ξ0 = . . . = ξp < ξp+1 ≤ . . . ≤ ξm−p−1 < ξm−p = . . . = ξm = 1.

Throughout this thesis, we assume that all knot vectors are p-open.
With this, we define B-Splines in one-dimensional (1D) parametric domains.

Definition 3.21 (B-Splines, [33, Section 2]). Given a knot vector Ξ := {ξ0, . . . , ξm}, let k := m − p, with m
and p defined as above. Then, the corresponding B-Splines can be computed recursively using the Cox-de-Boor
formula, which starts for p = 0 with a piecewise constant function

b0i (x) =

{
1 if ξi ≤ x ≤ ξi+1

0 otherwise
,

and proceeds for p ≥ 1 by

bpi (x) =
x− ξi
ξi+p − ξi

bp−1
i (x) +

ξi+p+1 − x

ξi+p+1 − ξi+1
bp−1
i+1 (x)

for all i = 0 . . . k − 1. Moreover, note that k := m− p, which gives the number of B-Splines, can also be readily
obtained from the corresponding knot vector.

Some further remarks are due:

• Let 0 ≤ i ≤ m and let mi denote the multiplicity of a knot ξi. The regularity ri of the B-Splines at ξi is
readily obtained from the corresponding multiplicitymi, and the degree p, namely, ri = p−mi. Hence,
as the name suggests, a p-open knot vector gives rise to B-Splines with ri = −1 at the extremities ξ0
and ξm, i.e., discontinuous. Therefore, by assuming a p-open knot vector, the basis function’s degree
can be merely determined from the multiplicity of ξ0 or ξm.

• In the context of IGA, one h-refinement step can be in general interpreted as the insertion of a distinct
knot in the knot vector Ξ, whereas p-refinement can be reached by elevating the multiplicity of ξ0 or
ξm by one. This is showcased for p = 1 and p = 2 in Figures 3.1a and 3.1c at an h-refinement’s level
` = 0, and in Figures 3.1b and 3.1d at ` = 1.

The Definition 3.21 of 1D B-Splines can be merely extended to a d-dimensional domain, in particular to
d = 2, 3. For this, let Ξ = Ξ1 × · · · ×Ξd denote a multidimensional knot vector, which is given by a Cartesian
product of p-open knot vectors. Analogously to the 1D case, Ξ induces a vector p ∈ Nd that contains the
degrees {pi}i=1...d in every parametric direction, and a vector k ∈ Nd with the corresponding dimensions
{ki}i=1...d of the space.
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(a) Knot vector Ξ = (0, 0, 1, 1), p = 1, ` = 0
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(b) Refined knot vector Ξ = (0, 0, 12 , 1, 1), p = 1, ` = 1
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(c) Knot vector Ξ = (0, 0, 0, 1, 1, 1), p = 2, ` = 0
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(d) Refined knot vector Ξ = (0, 0, 0, 12 , 1, 1, 1), p = 2, ` = 1

Figure 3.1: Examples of B-Splines in a 1D parametric domain with degrees p = 1 and p = 2, respec-
tively. Thereby, ` = 0 and ` = 1 denote the corresponding refinement level.

Definition 3.22 (B-Spline space in the parametric domain). A B-Spline space on a d-dimensional parametric
domain can be defined as

Sp(Ξ) = span {bpi },

where bpi :=
∏d
j=1{b

pj
ij
}ij=0...kj−1.

To shorten the notation, we associate to Ξ = Ξ1 × · · · × Ξd, p = {pi}i=1...d, and k = {ki}i=1...d a multi-
index i ∈ I := {i = (i1, . . . , id) : ij = 0, . . . , kj − 1 with j = 1, . . . , d}, which is interpreted in the sense of
Definition 3.22. With this we define NURBS basis functions as follows

rpi (x) :=
wib

p
i (x)∑

j∈I wjb
p
j (x)

, (3.49)

where i ∈ I, and wi is a set of weighting functions. For more details about NURBS, we refer to [32, 94].
In this thesis, NURBS are only utilized for design purposes. The reason behind this choice will be explained
below.
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Next, we introduce the derivative of a B-Spline space. Let x = {xi}i=1,...,d ∈ Rd. We know from [33,
Section 5.2] that the derivative of Sp(Ξ) with respect to xi consists of B-Splines with a reduced knot vector
in the i-th component in the following sense,

∂

∂xi
Sp(Ξ) =

∂

∂xi
S(p1,...,pi,...,pd)(Ξ1, . . . ,Ξi, . . . ,Ξd) = S(p1,...,pi−1,...,pd)(Ξ1, . . . ,Ξ

′
i, . . . ,Ξd),

where Ξ′
i = {ξ1, . . . , ξm−1}. LetΞ represent a 3D parametric domain. Again from [33, Section 5.2], we know

that the following B-Spline spaces

S0p(Ξ) = S(p1,p2,p3)(Ξ1,Ξ2,Ξ3),

S1p(Ξ) = S(p1−1,p2,p3)(Ξ
′
1,Ξ2,Ξ3)× S(p1,p2−1,p3)(Ξ1,Ξ

′
2,Ξ3)× S(p1,p2,p3−1)(Ξ1,Ξ2,Ξ

′
3),

S2p(Ξ) = S(p1,p2−1,p3−1)(Ξ1,Ξ
′
2,Ξ

′
3)× S(p1−1,p2,p3−1)(Ξ

′
1,Ξ2,Ξ

′
3)× S(p1−1,p2−1,p3)(Ξ

′
1,Ξ

′
2,Ξ3),

S3p(Ξ) = S(p1−1,p2−1,p3−1)(Ξ
′
1,Ξ

′
2,Ξ

′
3)

(3.50)

form a sequence with respect to the differential operators ∇, curl, and div, which is analogous to the contin-
uous case, namely,

S0p(Ξ)
∇−→ S1p(Ξ)

curl−−→ S2p(Ξ)
div−−→ S3p(Ξ). (3.51)

For the spaces to be relevant for numerical methods, it is necessary to find suitable invertible mappings that
permit the transfer of the basis functions from the parameter to the physical domain, and vice versa. These
are known as pull-backs and push-forwards. Before we get to a concrete characterization, let us first specify
the representation in the physical space. We focus on the 3D case, and note that an analogous representation
holds for 2D problems with self-evident adaptations.

Definition 3.23 (Multipatch domain). LetK be a compact, orientable manifold of dimension d = 1, 2, 3, which
is embedded in a 3D Euclidean space. Moreover, let us assume that there exists a regular tessellation

K =

Nκ−1⋃
l=0

κl

with κl open, such that for all l1, l2 = 0, . . . , Nκ− 1, l1 6= l2, κl1 ∩ κl2 is empty, and that {κl}l=0,...,Nκ−1 is given
by a family of diffeomorphisms {f l : [0, 1]d → κl}l=0,...,Nκ−1. In this case, we call κl a patch. Furthermore, at
all patch interfaces, i.e., for all l1 6= l2 with ∂κl1 ∩ ∂κl2 6= ∅, we require the corresponding parametrizations
to coincide (up to orientation). This yields p and Ξ to coincide on every patch interface, which either consists
of a common surface or edge, or reduces to a single common point. Under these considerations, K is called a
multipatch domain.

Definition 3.24 (Elements and mesh size). Let Ξ = {ξ0, . . . , ξm} be a p-open knot vector. A patch element in
the parameter domain is defined as [ξi, ξi+1] for some 0 ≤ i < m that satisfies ξi 6= ξi+1. The local mesh size
is defined as the length of an element, i.e., hi = ξi+1 − ξi. Furthermore, we denote by hp = max

0≤i<m
hi the global

mesh size of a single patch. Equivalently, h denotes the largest local mesh size of all patches for a multipatch
domain.

Assumption 3.25. Henceforth, we assume the following:
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(a) Control polygon (black lines) linking the control
points (red dots).

(b) The patches and the elements in each patch are de-
limited by the bold and thin lines, respectively.

Figure 3.2: An example of a 2D multipatch NURBS representation of a geometry using eight patches,
each described by the knot vector Ξ = {0, 0, 0, 12 , 1, 1, 1} × {0, 0, 0, 12 , 1, 1, 1} .

• All knot vectors are locally quasi-uniform, i.e., for all non-empty elements [ξi1 , ξi1+1] and [ξi2 , ξi2+1], there
exists Cθ ≥ 1, such that

C−1
θ ≤ hi1h

−1
i2

≤ Cθ.

• The multipatch geometry of Ω is generated by a family of regular, smooth parameterizations.

In the context of IGA, the parametrizations {f l}l=0,...,Nκ−1 from the previous definition are given in terms
of B-Spline basis functions (or an extension of B-Splines, e.g., NURBS). For instance, we formally have

f l(x) =
∑
i∈Il

cib
p
i (x), (3.52)

where I l denotes the set of multi-indices corresponding to the patch with index l, and ci ∈ R3 are elements of
a set of control points, which have to be specified by the user to obtain a certain form, see [94] for more details
about the concrete computation of the suitable control points. That is, changing the position of a control point
affects the shape of the geometry locally. Nevertheless, conic sections cannot be represented exactly when
using B-Splines as basis functions. A remedy to this is provided, e.g., by NURBS [94]. Formally, to obtain a
NURBS parametrization, we replace bpi (x) in (3.52) by rpi (x). As an example, let us consider Figure 3.2. To
reach the represented geometry, we chose a set of control points, which form a control polygon, as depicted
in Figure 3.2a. In addition, we employed NURBS basis functions of degree p = {2, 2} at a level of refinement
` = 1, i.e., withΞ = {0, 0, 0, 12 , 1, 1, 1}×{0, 0, 0, 12 , 1, 1, 1} in each of the eight patches visualized in Figure 3.2b
by the bold lines. Besides the control points, a NURBS parametrization allows more control on the local shape
than a parametrization with B-Splines due to the additional degrees of freedom consisting in the weighting
functions. For this reason, NURBS parametrizations are widely considered in common CAD softwares for
the modelling of free-form and sculptured surfaces; in short, most technical geometries. In the underlined
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example, the weighting functions in each patch read wj = {1, 14(2+
√
2), 14(2+

√
2), 1}×{1, 14(2+

√
2), 14(2+√

2), 1}. However, because of these weighting functions in the denominator
∑
j∈I wjb

p
j (x), multivariate

NURBS spaces cannot be simply constructed by means of tensor products, which is a central property used
for the definition of our ansatz spaces. This explains the motivation behind resorting to B-Spline spaces for
the discretization of the de Rham complex.

Remark 3.26. Using B-Splines for discretization and NURBS for design violates one of main claims of IGA,
which consists in using the same basis functions in both steps. Nevertheless, by observing the definition of NURBS
(3.49), we see that B-Splines can be interpreted as NURBS, which are defined on the hyperplane corresponding
to (wi)i=0,...,k−1 = 1. This can be seen from the fact that B-Splines form a partition of unity, see [94]. Therefore,
we choose to keep labeling the presented couplings isogeometric.

The required parametricmappings are given by the following push-forwards

ι−1
0 (f l)(v) := v ◦ f−1

l , (3.53a)
ι−1
1 (f l)(v) := (df>

l )
−1(v ◦ f−1

l ), (3.53b)

ι−1
2 (f l)(v) :=

(df l)(v ◦ f−1
l )

det(df l)
, (3.53c)

ι−1
3 (f l)(v) :=

v ◦ f−1
l

det(df l)
, (3.53d)

where df l denotes the Jacobian of f l, and ιj , j = 0, 1, 2, 3, are the corresponding inverse mappings, called
pull-backs. Indeed, the application of ι0, ι1, and ι2 preserves the differential operators ∇, curl, and div,
respectively, see [33, Section 5.1]. With this, the equivalent B-Spline spaces on a particular patch Ωl can be
merely defined by,

S0p(Ωl) = {v : v = ι−1
0 (f l)(u), u ∈ S0p(Ξ)}, (3.54a)

S1p(Ωl) = {v : v = ι−1
1 (f l)(u),u ∈ S1p(Ξ)}, (3.54b)

S2p(Ωl) = {v : v = ι−1
2 (f l)(u),u ∈ S2p(Ξ)}, (3.54c)

S3p(Ωl) = {v : v = ι−1
3 (f l)(u), u ∈ S3p(Ξ)}. (3.54d)

Due to the properties of the pull-backs, we obtain a commutative diagram relating the B-Spline spaces in the
parametric domains to the ones above with respect to the pull-backs, see [60, Section 2.2].
Then, we address the above discrete spaces in amultipatch setting. In accordance to Definition 3.23, we define
the following global B-Spline spaces in a physical domainK = Ω ⊂ R3 by

S0p(Ω) = {v ∈ H(∇,Ω) : v|κl ∈ S0p(κl), ∀ 0 ≤ l < Nκ},
S1p(Ω) = {v ∈H(curl,Ω) : v|κl ∈ S1p(κl), ∀ 0 ≤ l < Nκ},
S2p(Ω) = {v ∈H(div,Ω) : v|κl ∈ S2p(κl), ∀ 0 ≤ l < Nκ},
S3p(Ω) = {v ∈ L2(Ω) : v|κl ∈ S3p(κl), ∀ 0 ≤ l < Nκ},

(3.55)

where Ωl denotes a patch, and Nκ the number of patches. With this definition, the sequence (3.51) holds.

If we consider K = ∂Ω := Γ to be a 2D manifold, which is constructed according to Definition 3.23, a
first possibility to obtain the corresponding global B-Spline spaces can be reached by squeezing the third
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dimension in (3.50), i.e., by removing Ξ3 and the corresponding dimension p3, together with the third terms
in S1p(Ξ) and S2p(Ξ). Henceforth, we denote by p̃ and Ξ̃ the reduced vector of degrees and the reduced knot
vector, respectively. This way, we obtain

S0p̃(Ξ̃) = S(p1,p2)(Ξ1,Ξ2),

S1,‖p̃ (Ξ̃) = S(p1−1,p2)(Ξ
′
1,Ξ2)× S(p1,p2−1)(Ξ1,Ξ

′
2),

S1,⊥p̃ (Ξ̃) = S(p1,p2−1)(Ξ1,Ξ
′
2)× S(p1−1,p2)(Ξ

′
1,Ξ2),

S2p̃(Ξ̃) = S(p1−1,p2−1)(Ξ
′
1,Ξ

′
2).

(3.56)

For some boundary patch κl ⊂ Γ, applying the corresponding push-forwards (3.53) to (3.56) yields S0p̃(κl),
S1,‖p̃ (κl), S1,⊥p̃ (κl), and S2p̃(κl) equivalently to (3.54). In a multipatch setting in the sense of Definition 3.23,
we define with K = Γ

S0p̃(Γ) = {ψ ∈ H
1
2 (Γ) : ψ|κl ∈ S0p̃(κl), ∀ 0 ≤ l < Nκ},

S1,‖p̃ (Γ) = {ψ ∈H− 1
2 (curlΓ,Γ) : ψ|κl ∈ S1,‖p̃ (κl), ∀ 0 ≤ l < Nκ},

S1,⊥p̃ (Γ) = {ψ ∈H− 1
2 (divΓ,Γ) : ψ|κl ∈ S1,⊥p̃ (κl), ∀ 0 ≤ l < Nκ},

S2p̃(Γ) = {ψ ∈ H− 1
2 (Γ) : ψ|κl ∈ S2p̃(κl), ∀ 0 ≤ l < Nκ},

(3.57)

see [21, 119].

Remark 3.27. An alternative definition can be obtained via the application of the appropriate trace opera-
tors to (3.55), namely, γ0 : H(∇,Ω) → H

1
2 (Γ), γD : H(curl,Ω) → H− 1

2 (curlΓ,Γ), γ× : H(curl,Ω) →
H− 1

2 (divΓ,Γ), and γn : H(div,Ω) → H− 1
2 (Γ), which we defined in Section 2.3. We note that both cases yield

equivalent spaces [21, 119].

Thereby, note that S1,‖p̃ (Γ) and S1,⊥p̃ (Γ) are both trace spaces of S1p(Ω). This follows from the fact that the trace
operators γ× and γD act both on vector fields inH(curl,Ω). It is shown in [21, 119] that the B-Spline spaces
given above are also related with respect to the surface differential operators and form a sequence, which is
understood similarly to the continuous case, illustrated with Figure 2.6. Altogether, a full discretization of
the de Rham complex using conforming B-Spline spaces is depicted in Figure 3.3. Of particular interest is the
definition of a discrete counterpart of H− 1

2 (divΓ 0,Γ). Let S1,⊥p̃,0 (Γ) be the subspace of S1,⊥p̃ (Γ) that contains
solenoidal surface divergence conforming B-Splines, i.e.,

S1,⊥p̃,0 (Γ) = {ψ ∈ S1,⊥p̃ (Γ) : divΓψ = 0}.

Similarly to [61] and in complete analogy to the continuous setting, see Theorem 2.32, this subspace can
be characterized by exploiting the properties of the discrete de Rham complex. This yields the following
orthogonal decomposition

S1,⊥p̃,0 (Γ) = curlΓ S0p̃(Γ) +H1,`(Γ), dimH1,` = β1(Γ), (3.58)

where H1,`(Γ) is the discrete first surface cohomology space, whose dimension β1(Γ) corresponds to the first
Betti number of Γ, and ` ≥ 0 is the refinement level. We refer the reader to [63] for a concrete construction
of the needed bases for H1,`(Γ).
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∇

γ0

curl

γD

γ×

div

γn

curlΓ

×n

∇Γ

curlΓ divΓ

Figure 3.3: Conforming discretization of the de Rham complex of Figure 2.6 using B-Spline spaces.

Remark 3.28. In the case of a trivial topology, the characterization (3.58) reduces to S1,⊥p̃,0 (Γ) = curlΓ S0p̃(Γ).

Analogously, a similar complex as in Figure 3.3 starting from a 2D domain can be derived. We refer the inter-
ested reader, e.g., to [21, 119] and the literature cited therein. In this thesis, we need only a discretization
of H(∇,Ω) and H− 1

2 (Γ) in 2D problems. For convenience, they read

S0p(Ω) = {v ∈ H(∇,Ω) : v|κl ∈ S0p(κl), ∀ 0 ≤ l < Nκ}, (3.59a)

S2p̃(Γ) = {ψ ∈ H− 1
2 (Γ) : ψ|κl ∈ S2p̃(κl), ∀ 0 ≤ l < Nκ}. (3.59b)

Thereby, and in accordance to the 3D case, p̃ = p − 1. Moreover, note that κ refers to a domain patch in
(3.59a), and to a boundary patch in (3.59b), i.e., with K from Definition 3.23 corresponding to Ω and Γ,
respectively.

With this, we close the section as well as the chapter. In the next one, we proceed to the derivation and
analysis of the Johnson-Nédélec coupling for some relevant model problems in the continuous and discrete
Galerkin setting in the isogeometric context.
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4 The direct non-symmetric couplings

The only way to learn mathematics is to do
mathematics.

P. Halmos

Starting from the equations given in Chapter 3, we can readily derive several interface problems. As men-
tioned throughout this thesis, we consider a coupling of the Finite Element Method (FEM) with a Boundary
Element Method (BEM). The weak formulations with respect to the interior domains, which are associated
to possibly non-linear Partial Differential Equations (PDEs) are obtained in a standard way by testing the
equation, integrating, and applying a suitable Green’s identity. For exterior domains, which are exclusively
filled with linear materials, the corresponding equations in the domain are transferred onto the interface and
represented via some Boundary Integral Equations (BIEs), according to Subsection 3.2.1. The choice of the
BIEs depends on the specific coupling strategy. On one hand, we differentiate between symmetric and non-
symmetric couplings. The former utilize both BIEs, whereas the latter employ only one. On the other hand,
we have direct and indirect approaches. The unknowns in the direct formulation correspond to the Cauchy
data, thus, they have a physical interpretation and can be used directly to compute derived quantities. How-
ever, indirect approaches rely on a potential ansatz, which requires the resolution of an additional system to
obtain physically meaningful quantities. We refer to [9, 30, 69] for the original papers, and for instance to
[6] for an overview on the mentioned coupling techniques and a historical development of their mathemati-
cal background. For completeness, we also refer the reader to [45] for an additional strategy, known as the
three field coupling. In this thesis, we opt for a direct non-symmetric coupling, which is also named after
the authors of [69] the Johnson-Nédélec coupling. In contrast to (direct) symmetric couplings, the approach
of Johnson and Nédélec uses only one BIE, which involves two Boundary Integral Operators (BIOs) versus
four when both BIEs are considered. Moreover, by keeping in mind the application’s field of our method,
namely, a multi-physics problem, which is coupled to a mechanical subsystem via forces or torques, it is more
reasonable to favor a direct method over indirect ones. Note that a complete mathematical analysis on Lips-
chitz domains for the Johnson-Nédélec coupling has only been known for about ten years, starting with the
seminal work of Sayas [104].
In this chapter, we study some relevant and standard model problems. A good starting point is the Laplacian
interface problem. In Section 4.1, we show the well-posedness by extending the results of [46] to non-linear
operators. In particular, we consider the framework of Lipschitz continuous and strongly monotone opera-
tors, as employed in [6]. The theory behind this framework is provided extensively in [122]. Moreover, we
provide a stability result for a specific practice-oriented type of non-linear materials, see Definition 1.1. The
problem is discretized by means of suitable B-Spline spaces with a conforming Galerkin method, such that
well-posedness can be transmitted to the discrete setting, and that a Céa-type quasi-optimality can be merely
stated. Based on this, we derive a priori error estimates with respect to h-refinements. Thereby, we use the
approximation results for B-Spline spaces and their traces that are furnished in [21, 33]. The content of
this section is already published in [42]. These results facilitate an extension of the analysis to the parabolic
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case. In the linear case, a complete analysis of the non-symmetric FEM-BEM coupling is provided in [41].
To adapt these results to our non-linear case, we consider the framework of monotone equations, see [122].
This is the subject of Section 4.2. As a more concrete model problem for the simulation of electric machines,
see Figure 1.4, for instance, we derive in Section 4.3 an adapted variational formulation for this purpose,
and analyze the direct non-symmetric coupling by using similar tools. Furthermore, we study the behavior
of the solution in the BEM domain, and notice an amelioration of the convergence rates, which may double
under certain circumstances. This behavior is known as super-convergence, and it is indeed advantageous
considering the fact that forces and torques are evaluated in this domain. This has also been published in
[42]. As a last model problem, we address the three-dimensional (3D) case in Section 4.4. In particular,
we restrict ourselves to the magnetostatic regime for convenience. Note however that an extension to the
parabolic case or to a similar Boundary Value Problem (BVP) for the simulation of electric machines can be
conducted similarly to Section 4.2 and Section 4.3, respectively. We formulate the 3D problem in suitable
quotient spaces to rule out the difficulty caused by the infinite dimensional kernel of the curl operator, then
proceed analogously to the two-dimensional (2D) case. This is made possible by the contractivity result of
Lemma 3.19, and a Friedrichs’ inequality, which provides an equivalent norm inH(curl,Ω). The latter can be
found in [88], for instance, in a slightly different form, which is however easily adapted to the quotient space
formulation. The results of Section 4.4 are already published in [43].

4.1 The two-dimensional (2D) elliptic-elliptic interface problem

Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary Γ = ∂Ω, and let Ωe := R2\Ω be the corre-
sponding exterior domain. Furthermore, motivated by Theorem 3.9, we assume that diam (Ω) < 1 to ensure
the H− 1

2 (Γ)-ellipticity of the boundary integral operator V0. A suitable model problem can be obtained by
coupling the corresponding equations of the interior and exterior problems, which are given by (3.11) and
(3.13), respectively. As pointed out in Chapter 3, the coupling is performed via the jump conditions of the
Cauchy data (Jγ0uKΓ, JγU1 uKΓ).

We consider the following interface problem (in a weak sense):

Problem 4.1 (Classical problem). Find (u, ue) ∈ H(∇,Ω)×Hloc(∇,Ωe) such that

−div (U∇u) = f in Ω, (4.1a)
−∆ue = 0 in Ωe, (4.1b)

Jγ0uKΓ := γ0u− γe0u
e = û on Γ, (4.1c)

JγU1 uKΓ := γU1 u− γe1 u
e = φ̂ on Γ, (4.1d)
ue = C∞ log |x|+O

(
|x|−1

)
for |x| → ∞ (4.1e)

with (f, û, φ̂) ∈ H(∇,Ω)′ ×H
1
2 (Γ)×H− 1

2 (Γ).

Furthermore, the following remarks are due:

• For the sake of a more general analysis, we allow both û 6= 0 and φ̂ 6= 0. Moreover, if not stated
otherwise, the non-linear operator U is assumed to be strongly monotone and Lipschitz continuous
according to Assumption 2.13 .
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• In contrast to (3.11), we seek for u ∈ H(∇,Ω) instead of the subspace H0(∇,Ω). There, we recall that
the homogeneous boundary condition was needed to fix the constants, which correspond to the kernel
of the gradient operator. However, in this case, this role is taken over by the exterior problem (3.13),
in particular, by the decay condition (4.1e).

• The constant C∞ in (4.1e) follows from the corresponding representation formula. It reads C∞ :=
1
2π 〈γ

e
1 u

e, 1〉Γ. From the weak formulation below, we find the equivalent representation

C∞ := − 1

2π

(
〈f, 1〉Ω +

〈
φ̂, 1
〉
Γ

)
.

Hence, (4.1e) can be replaced by

ue = O
(
|x|−1

)
for |x| → ∞

with a further compatibility condition on the data

〈f, 1〉Ω +
〈
φ̂, 1
〉
Γ
= 0.

4.1.1 Well-posedness and stability

The derivation of a variational formulation for the non-symmetric coupling follows a standard procedure: For
the interior part, we test (4.1a) with v ∈ H(∇,Ω), apply the integration by parts (2.65), then use the jump
condition (4.1d) to introduce γe1 ue in the weak form of the interior problem. For the exterior part, the weak
formulation follows similarly by testing the first BIE in (3.37b) with ψ ∈ H− 1

2 (Γ), and inserting the jump
condition (4.1c), such that the exterior problem is coupled with the interior one via γ0u.
Formally, bywriting φ = γe1 u

e, the weak formulation of the non-symmetric coupling of Problem 4.1 reads:

Find u := (u, φ) ∈ H(∇,Ω)×H− 1
2 (Γ) such that

(U∇u,∇v)Ω − 〈φ, γ0v〉Γ = 〈f, v〉Ω +
〈
φ̂, γ0v

〉
Γ
,〈

ψ,

(
1

2
−K0

)
γ0u

〉
Γ

+ 〈ψ,V0φ〉Γ =

〈
ψ,

(
1

2
−K0

)
û

〉
Γ

hold ∀v := (v, ψ) ∈ H(∇,Ω)×H− 1
2 (Γ).

For convenience, we write the variational form above in a compact form. For this, we introduce the product
space H := H(∇,Ω)×H− 1

2 (Γ), and endow it with the norm

‖v‖H :=

√
‖v‖2H(∇,Ω) + ‖ψ‖2

H− 1
2 (Γ)

for v = (v, ψ) ∈ H. (4.2)

Problem 4.2 (Compact form). Find u ∈ H := H(∇,Ω)×H− 1
2 (Γ) such that a(u, v) = `(v) holds ∀v ∈ H with

the linear form (linear in the second argument) a : H×H → R

a(u, v) := (U∇u,∇v)Ω − 〈φ, γ0v〉Γ +

〈
ψ,

(
1

2
−K0

)
γ0u

〉
Γ

+ 〈ψ,V0φ〉Γ, (4.3)
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and the linear functional ` on H,

`(v) := 〈f, v〉Ω +
〈
φ̂, γ0v

〉
Γ
+

〈
ψ,

(
1

2
−K0

)
û

〉
Γ

. (4.4)

It is easy to find a counterexample to show that a(v, v) is not elliptic, we mention v = (1, 0), for instance. To
prove well-posedness of Problem 4.2, we proceed as in [6] by considering an equivalent stabilized problem
that is amenable to analysis. We mean by equivalent that a solution of the original problem is also a solution
of the stabilized one and vice versa. Provided this is the case, this approach is called implicit stabilization.
The proposed stabilized problem reads:

Problem 4.3 (Stabilized problem, [6]). Find u ∈ H such that ã(u, v) = ˜̀(v) holds ∀v := (v, ψ) ∈ H, where
we define with

s(v) :=
〈
1,

(
1

2
−K0

)
γ0v

〉
Γ

+ 〈1,V0ψ〉Γ

the stabilized linear form
ã(u, v) := a(u, v) + s(u)s(v),

and the functional ˜̀(v) := `(v) +
〈
1,

(
1

2
−K0

)
û

〉
Γ

s(v).

The equivalence is stated in the following.

Lemma 4.4 (Equivalence of the formulations, [6]). The original and the stabilized formulations are equivalent,
i.e., u ∈ H solves Problem 4.2 if and only if it solves Problem 4.3, and vice versa.

Therefore, the analysis can be performed with the aid of the stabilized form. In particular, Lemma 4.4 im-
plies that well-posedness of the stabilized problem transfers to the original one. However, for implementation
purposes, we still use the original one for simplicity.

According to Theorem 2.5, well-posedness follows, provided the considered operator is Lipschitz continuous
and strongly monotone. First, let H′ denote the dual space of H. Then, we define the induced non-linear
operator Ã : H → H′ by 〈

Ã(u), v
〉
:= ã(u, v) ∀u, v ∈ H. (4.5)

The following result establishes the needed properties of Ã.

Theorem 4.5 (Lipschitz continuity and strong monotonicity). Let us consider the non-linear operator Ã : H →
H′ defined in (4.5) with H = H(∇,Ω)×H− 1

2 (Γ). We state the following three assertions.

1. Ã is Lipschitz continuous, i.e., there exists CL > 0 such that∥∥∥Ã(u)− Ã(v)
∥∥∥
H′

≤ CL‖u− v‖H

for all u, v ∈ H.

76



2. If CU
M > 1

4 then〈
Ã(u)− Ã(v),u− v

〉
≥ Cstab

(
‖∇u−∇v‖2L2(Ω) + ‖φ− ψ‖2V0

+ s(u− v)2
)

(4.6)

for all u = (u, φ) ∈ H, v = (v, ψ) ∈ H with the norm ‖ψ‖2V0
:= 〈ψ, V0ψ〉Γ and with

Cstab = min
{
1,

1

2

(
1 + CU

M −
√(

CU
M − 1

)2
+ 1

)}
.

3. If CU
M > 1

4 then Ã is strongly monotone, i.e., there exists CM > 0 such that〈
Ã(u)− Ã(v),u− v

〉
≥ CM‖u− v‖2H

for all u, v ∈ H.

Proof. The Lipschitz continuity of Ã follows from the Lipschitz continuity of U , and the continuity of the
integral operators.
The proof of the second assertion follows the lines of [46, Theorem 1] for β = 1. We replace the coerciv-
ity estimate of the bilinear form (U∇u,∇v)Ω considered in [46] for a linear U by the strong monotonicity
property of U , i.e,

(U∇u− U∇v,∇u−∇v)Ω ≥ CU
M ‖∇u−∇v‖2L2(Ω).

The restriction CU
M > 1

4 is a direct result of the use of the contractivity result for the double-layer operator K0

of Lemma 3.18, where we use the worst case of CK0 = 1 in the statement, see also [89, Lemma 2.1].
For the last assertion we note the norm equivalence (3.34), and by a Rellich compactness argument it can be
shown [6, Lemma 10] that

|||v|||2 := ‖∇v‖2L2(Ω) + ‖ψ‖2V0
+ s(v)2

defines an equivalent norm in H for all v := (v, ψ) ∈ H. Together with (4.6) this leads to the last assertion
with CU

M > 1
4 , which is required for (4.6).

Remark 4.6. The constantsCL andCM in Theorem 4.5 depend on various other constants, namely, the continuity
constants of the boundary integral operators V0 and K0, the ellipticity constant of V0, CU

L , CU
M and C0, in

particular on Ω and Γ. Thereby, C0 > 0 is the constant from the trace inequality (2.58) .

With this, we state the main result of this section.

Theorem 4.7 (Well-posedness). Provided that CU
M > 1

4 , there exists a unique solution u := (u, φ) ∈ H of the
variational Problem 4.2 for any (f, û, φ̂) ∈ H(∇,Ω)′ ×H

1
2 (Γ)×H− 1

2 (Γ).

Proof. From Theorem 4.5, it follows that the induced operator Ã of ã(·, ·) is strongly monotone and Lipschitz
continuous for CU

M > 1
4 . Hence, by using Theorem 2.5, there exists a unique solution u := (u, φ) ∈ H of the

variational Problem 4.3 for any (f, û, φ̂) ∈ H(∇,Ω)′ ×H
1
2 (Γ) ×H− 1

2 (Γ). Thanks to the equivalence stated
in Lemma 4.4, this is also the unique solution of Problem 4.2.
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In the context of electromechanical energy converters, it is usual to consider U∇u := ν(|∇u|)∇u in the
sense of Definition 1.1. For this particular type of non-linearity, we can establish the following stability
result.

Lemma 4.8. Let CU
M > 1

4 and let the non-linear operator U be of the form U∇u := ν(|∇u|)∇u with a non-linear
function ν : R → R induced by an admissible B-H curve according to Definition 1.1. Then, for the solution
u := (u, φ) ∈ H of Problem 4.2, we have the stability result

‖u‖H ≤ C

(
‖f‖H(∇,Ω)′ + ‖û‖

H
1
2 (Γ)

+
∥∥∥φ̂∥∥∥

H− 1
2 (Γ)

)
with C > 0.

Proof. Let v ∈ H be arbitrary. We know from the strong monotonicity of Ã that

CM‖u− v‖2H ≤
〈
Ã(u)− Ã(v),u− v

〉
.

Without loss of generality, we choose v := (0, 0) and note that U∇v = 0. Thanks to Lemma 4.4 u := (u, φ) is
also the unique solution of the Problem 4.3. Thus, we conclude that

CM‖u‖2H ≤
〈
Ã(u),u

〉
= ˜̀(u),

= 〈f, u〉Ω +
〈
φ̂, γ0u

〉
Γ
+

〈
φ,

(
1

2
−K0

)
û

〉
Γ

+

〈
1,

(
1

2
−K0

)
û

〉
Γ

s(u)

with s(u) :=
〈
1,
(
1
2 −K0

)
γ0u
〉
Γ
+ 〈1,V0φ〉Γ. Next, we use the Cauchy-Schwarz inequality along with the

boundedness of K0 and V0, and the trace inequality Equation (2.58). Then, rearranging the terms yields

CM‖u‖2H ≤

(
‖f‖H(∇,Ω)′ + C0

∥∥∥φ̂∥∥∥
H− 1

2 (Γ)
+ ‖1‖

H− 1
2 (Γ)

(
1

2
+ CK0

)2

C0‖û‖
H

1
2 (Γ)

)
‖u‖H(∇,Ω)

+ ‖1‖
H− 1

2 (Γ)

((
1

2
+ CK0

)(
1 + CV0

)
‖û‖

H
1
2 (Γ)

)
‖φ‖

H− 1
2 (Γ)

,

where CK0 , CV0 > 0 are continuity constants of the boundary integral operators K0 and V0, respectively,
which arise from Theorem 3.8. From this follows the assertion with a constant C > 0 that depends on
CK0 , CV0 , C0, CM and Γ.

The next subsection is dedicated to the discretization of the original Problem 4.2 via a Galerkin approximation.
Recall that this allowed by the equivalence stated in Lemma 4.4.

4.1.2 Galerkin discretization

Let V` ⊂ H(∇,Ω) and X` ⊂ H− 1
2 (Γ) be some finite dimensional subspaces, where the index ` expresses

a refinement level, see Section 3.3. In order to be able to transfer the implicit stabilization to the discrete
problem, we need to make the following assumption.
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Assumption 4.9. The discrete space X` contains the constants, i.e.,

∃ξ ∈
⋂
`∈N0

X` such that 〈ξ, 1〉Γ 6= 0.

The discrete problem is then obtained by replacing the spaces H(∇,Ω) and H− 1
2 (Γ) in Problem 4.2 with

V` and X`, respectively. We consider a conforming Galerkin discretization of the Problem 4.2. By de-
noting the discrete product space by H` := V` × X`, the discrete problem can be written in a compact
form.

Problem 4.10 (Discrete problem). Find u` = (u`, φ`) ∈ H` = V` × X` such that a(u`, v`) = `(v`) holds
∀v` = (v`, ψ`) ∈ H`. The linear form a(·, ·) and the linear functional ` are defined in (4.3) and (4.4), respectively.

Note that we consider a conforming Galerkin discretization. Provided that Assumption 4.9 is satisfied, the
analysis for Problem 4.10 is done analogously to the continuous Problem 4.2 since the discrete spaces are con-
forming. In other words, all the above results including the introduction of a stabilized form and Lemma 4.4
also apply for the subspaces.

Corollary 4.11 (Well-posedness). Let u ∈ H be the solution of Problem 4.2. The solution u` ∈ H` of Prob-
lem 4.10 exists, converges to u such that lim

`→∞
u` = u, and is unique.

Proof. The assertion follows with Theorem 4.7, and by taking into account the conforming Galerkin dis-
cretization, see [122, Corollary 25.7].

In the same context, we can establish a quasi-optimality result in the sense of a Céa-type lemma. This is
a central result for a priori error estimates of the non-symmetric coupling, as will be addressed in the next
subsection.

Theorem 4.12 (Quasi-optimality). Let Assumption 4.9 hold, and CU
M > 1

4 . Moreover, let u := (u, φ) ∈ H be
the unique solution of Problem 4.2, and u` := (u`, φ`) ∈ H` the solution of its discrete counterpart Problem 4.10.
Then

‖u− u`‖H(∇,Ω) + ‖φ− φ`‖
H− 1

2 (Γ)
≤ CCéa min

v`∈V`,ψ`∈X`

(
‖u− v`‖H(∇,Ω) + ‖φ− ψ`‖

H− 1
2 (Γ)

)
with CCéa =

CL
CM

.

Proof. The assertion follows as a result of the main theorem on strongly monotone operators, Theorem 2.5.
That means with v` = (v`, ψ`), as a consequence to Lemma 4.4, the strong monotonicity, Galerkin orthogo-
nality, Cauchy-Schwarz inequality, and the Lipschitz continuity we get

CM‖u− u`‖2H ≤
〈
Ã(u)− Ã(u`),u− u`

〉
=
〈
Ã(u)− Ã(u`),u− v`

〉
≤
∥∥∥Ã(u)− Ã(u`)

∥∥∥
H′

‖u− v`‖H
≤ CL‖u− u`‖H‖u− v`‖H,

where the assertion follows directly.
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4.1.3 A priori error estimates

Let the assumptions of Section 4.1 on Ω hold. We consider the discrete Problem 4.10 with V` = S0p(Ω) and
X` = S2p̃(Γ), with p = (p, p) and p̃ = p − 1, cf. (3.59), and let H` := S0p(Ω) × S2p̃(Γ). Note that with this
particular choice the degrees of the B-Spline spaces are solely fixed by one parameter p > 0. Hence, we say
that H` is of degree p.

In the following, we need to define regularity in a patchwise sense.

Definition 4.13. Let K ∈ {Ω,Γ} be a multipatch domain with Nκ patches. For some s ∈ R, we define the space
of patchwise regularity by

Hs
pw(K) = {u ∈ L2(K) : ‖u‖Hs

pw(K) <∞},

where

‖u‖2Hs
pw(K) =

∑
0≤l<Nκ

∥∥u|κl∥∥2Hs(K)
. (4.7)

For an a priori error estimate for the non-symmetric isogeometric FEM-BEM coupling, we first recall a result on
the approximation properties of the considered B-Spline spaces inH(∇,Ω) andH− 1

2 (Γ).

Lemma 4.14 (Approximation properties). Let u ∈ H(∇,Ω)∩H1+s
pw (Ω) and φ ∈ H− 1

2 (Γ)∩H− 1
2
+s

pw (Γ). Consider
S0p(Ω) and S2p̃(Γ) as given above. There exists C1, C2 > 0 depending only on p and Cθ from Assumption 3.25
such that

inf
u`∈S0p(Ω)

‖u− u`‖H(∇,Ω) ≤ C1 h
s‖u‖H1+s

pw (Ω), 0 ≤ s ≤ p,

inf
φ`∈S2p̃(Γ)

‖φ− φ`‖
H− 1

2 (Γ)
≤ C2 h

s‖φ‖
H

− 1
2+s

pw (Γ)
,

1

2
≤ s ≤ p+

1

2
.

Proof. The first estimate is given in [21, Corollary 2], and the second one follows from [21, Corollary 4].

With this, we state the following result.

Theorem 4.15 (A priori estimate). We assume CU
M > 1

4 . Let (u, φ) ∈ H be the solution of Problem 4.2
and let (u`, φ`) ∈ H` = S0p(Ω) × S2p̃(Γ) be the solution of the discrete Problem 4.10. Then, for 0 ≤ s ≤ 1

2 ,
u ∈ H(∇,Ω) ∩H1+s

pw (Ω), and φ ∈ H− 1
2 (Γ) ∩H0

pw(Γ)

‖u− u`‖H(∇,Ω) + ‖φ− φ`‖
H− 1

2 (Γ)
≤ C hs

(
‖u‖H1+s

pw (Ω) + ‖φ‖H0
pw(Γ)

)
.

For 1
2 ≤ s ≤ p, u ∈ H(∇,Ω) ∩H1+s

pw (Ω), and φ ∈ H− 1
2 (Γ) ∩H− 1

2
+s

pw (Γ) we have

‖u− u`‖H(∇,Ω) + ‖φ− φ`‖
H− 1

2 (Γ)
≤ C hs

(
‖u‖H1+s

pw (Ω) + ‖φ‖
H

− 1
2+s

pw (Γ)

)
with a constant C = C(CCéa, p, Cθ) > 0, which is in particular independent of h.
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Proof. From [21] we know that S0p(Ω) and S2p̃(Γ) are closed subspaces of H(∇,Ω) and H− 1
2 (Γ), respectively.

Moreover, Assumption 4.9 is fulfilled per construction of the B-Spline spaces. Hence, the usual analysis for
a conforming Galerkin discretization of a non-symmetric FEM-BEM coupling can also be considered in the
isogeometric context. Now, using Lemma 4.14 and the quasi-optimality stated in Theorem 4.12 yields the
assertion.

Remark 4.16. Throughout this section, we required for the analysis that CU
M > 1

4 . However, this assumption is
sufficient for the solvability of the Johnson-Nédélec coupling, but not necessary. See also [6] and [46, Remark
10], where numerical experiments still converge although the condition is violated.

4.2 The two-dimensional (2D) parabolic-elliptic interface problem

Let us consider the same configuration as in the previous section, namely, an interface problem with a
bounded domain Ω ⊂ R2 with Lipschitz boundary Γ = ∂Ω. The unbounded exterior domain is denoted
by Ωe := R2\Ω. For the same reason as previously, we assume that diam (Ω) < 1. In this section, we study
a non-linear evolution problem of first order. The model problem stems, e.g., from the 2D magnetoquasista-
tionary case, and can be obtained by coupling (3.10) (instead of (3.11)) with (3.13).

The following Initial Value Problem (IVP) has to be understood in aweak sense:

Problem 4.17 (Classical problem). Find (u, ue) ∈ L2(∂t, T ; H(∇,Ω))× L2(T ; Hloc(∇,Ωe)) such that

−div (U∇u) + κ∂tu = f in Ω× T\{0}, (4.8a)
−∆ue = 0 in Ωe × T\{0}, (4.8b)
Jγ0uKΓ = û on Γ× T\{0}, (4.8c)

JγU1 uKΓ = φ̂ on Γ× T\{0}, (4.8d)
u = 0 in Ω× {0}, (4.8e)
ue = C∞ log |x|+O

(
|x|−1

)
for |x| → ∞ and T\{0} (4.8f)

with (f, û, φ̂) ∈ L2(T ; H(∇,Ω)′)× L2(T ; H
1
2 (Γ))× L2(T ; H− 1

2 (Γ)), T = [0, tmax], and κ > 0.

Similar arguments and remarks to the ones that led to Problem 4.1 can be employed here with the following
adaptation:

• In addition to Assumption 2.13, we require the non-linear operator U := U(t) to be hemicontinuous.

• Note that the term C∞ in (4.8f) reads C∞(t) := 1
2π 〈γ

e
1 u

e(t), 1〉Γ.

In complete analogy with the previous section, we derive a variational formulation for the non-symmetric
coupling. With φ := γe1 u

e we obtain:

Find u := (u, φ) ∈ L2(∂t, T ; H(∇,Ω))× L2(T ; H− 1
2 (Γ)) such that u(0) = 0 and

(U∇u,∇v)Ω + κ (∂tu, v)Ω − 〈φ, γ0v〉Γ = 〈f, v〉Ω +
〈
φ̂, γ0v

〉
Γ
,
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〈
ψ,

(
1

2
−K0

)
γ0u

〉
Γ

+ 〈ψ,V0φ〉Γ =

〈
ψ,

(
1

2
−K0

)
û

〉
Γ

hold ∀v := (v, ψ) ∈ H := H(∇,Ω)×H− 1
2 (Γ) and almost everywhere (a.e.) on T̊ := (0, tmax).

We denote byHT := L2(∂t, T ; H(∇,Ω))×L2(T ; H− 1
2 (Γ)) the Bochner product space, and endow it with the

norm

‖v‖2HT
:=‖v‖2L2(∂t,T ;H(∇,Ω)) + ‖ψ‖2

L2(T ;H− 1
2 (Γ))

=‖v‖2L2(T ;H(∇,Ω)) + ‖∂tv‖2L2(T ;H(∇,Ω)′) + ‖ψ‖2
L2(T ;H− 1

2 (Γ))
,

where v := (v, ψ). Thereby, we used the definition of ‖·‖L2(∂t,T ;H(∇,Ω)) according to (2.15). For convenience,
we also recall that ‖·‖L2(T ;H) is defined for some generic space H in (2.13).

With this, the variational formulation above can bewritten in compact form.

Problem 4.18 (Compact form). Find u := (u, φ) ∈ HT such that aT(u, v) = `(v) holds ∀v := (v, ψ) ∈ H with
the linear form (linear in the second argument) aT : HT ×H → R,

aT(u, v) := κ (∂tu, v)Ω + a(u, v). (4.9)

Thereby, a(·, ·) and the linear functional `(·) are defined in Problem 4.2.

To analyze the problem above, we proceed similarly to [41, Remark 10] by considering an implicit stabiliza-
tion in order to profit from the results of Section 4.1.

Remark 4.19. Note that [41] proposes in the first place a more general approach based on energy estimates
without resorting to a stabilized problem. That is, the analysis of [41] could also be adapted for our problem
independently of the non-linearity in the interior domain.

Problem 4.20 (Stabilized problem). Find u := (u, φ) ∈ HT such that ãT(u, v) = ˜̀(v) holds ∀v := (v, ψ) ∈ H
with the linear form (linear in the second argument) ãT : HT ×H → R,

ãT(u, v) := κ (∂tu, v)Ω + ã(u, v). (4.10)

Thereby, ã(·, ·) and the linear functional ˜̀(·) are defined in Problem 4.3.

Lemma 4.21 (Equivalence of the formulations). The original and the stabilized problems are equivalent, i.e.,
u ∈ HT solves Problem 4.18 if and only if it solves Problem 4.20, and vice versa.

Proof. The equivalence carries out verbatim from the linear case in [41], since the argument used therein is
based on the choice of a test function, such that ãT(u, v) is expressed only in boundary terms.

Let Ã(t) : H → H′ be as in (4.5). The following result establishes the needed properties of Ã(t).
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Lemma 4.22 (Properties of Ã(t)). Let us consider the non-linear operator Ã(t) : H → H′ withH = H(∇,Ω)×
H− 1

2 (Γ). We state the following assertions.

1. Ã(t) is Lipschitz continuous.

2. If CU
M > 1

4 then Ã(t) is strongly monotone.

3. Ã(t) is hemicontinuous.

Proof. The first and second assertions are proved in Theorem 4.5. Recall that for u(t), v(t) ∈ H〈
Ã(t)(u(t)), v(t)

〉
= (U∇u(t),∇v(t))Ω−〈φ(t), γ0v(t)〉Γ

+

〈
ψ(t),

(
1

2
−K0

)
γ0u(t)

〉
Γ

+ 〈ψ(t),V0φ(t)〉Γ + s(u(t))s(v(t))

with s(·) as defined in Problem 4.3. The hemicontinuity of Ã(t) is clearly inherited from the properties
of (U∇u(t),∇v(t))Ω, because the second term is bilinear and bounded, and all other boundary terms are
continuous due to the continuity of BIOs, see Subsection 3.2.1. The hemicontinuity of Ã(t) is a result of the
hemicontinuity of U(t), and [73, Theorem 2.1.6].

By using themain theorem onmonotone operators, we establishwell-posedness of Problem 4.18.

Theorem 4.23 (Well-posedness). Provided that CU
M > 1

4 , there exists a unique solution u ∈ HT of the varia-
tional Problem 4.18, for any (f, û, φ̂) ∈ L2(T ; H(∇,Ω)′)× L2(T ; H

1
2 (Γ))× L2(T ; H− 1

2 (Γ)).

Proof. The assertion results from Lemma 4.22, Theorem 2.7, Lemma 2.9, and the equivalence of the stabilized
problem with the original one, which follows from Lemma 4.21.

Similarly to the previous section, if we consider U(t)∇u(t) := ν(|∇u(t)|)∇u(t) to be defined in the sense of
Definition 1.1, the following stability result can be established.

Lemma 4.24. Let CU
M > 1

4 and let the non-linear operator U be of the form U(t)∇u(t) := ν(|∇u(t)|)∇u(t)
with ν : R → R being a non-linear reluctivity ν : R → R induced by an admissible B-H curve according to
Definition 1.1. Then, for the solution u := (u, φ) ∈ HT of Problem 4.18, we have the stability result

‖u‖HT
≤ C

(
‖f‖L2(T ;H(∇,Ω)′) + ‖û‖

L2(T ;H
1
2 (Γ))

+
∥∥∥φ̂∥∥∥

L2(T ;H− 1
2 (Γ))

)
, C > 0.

Proof. By profiting from the linearity of the integral, the HT-norm Section 4.2 can be written as

‖u‖2HT =

∫ tmax

0
‖u(t)‖2H + ‖∂tu(t)‖2H(∇,Ω)′ dt,
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where ‖ · ‖H is defined as in (4.2). First, the approximation for ‖u(t)‖2H is given in Lemma 4.8. Second, the
estimate for ‖∂tu(t)‖2H(∇,Ω)′

is provided in several works and manuscripts, e.g., [48, Part II. Section 7.1.2].
In [41, Lemma 11] an estimate with the aid of the dual norm leads to

‖∂tu(t)‖H(∇,Ω)′ ≤ Ct

(
‖f(t)‖H(∇,Ω)′ + ‖u(t)‖H +

∥∥∥φ̂(t)∥∥∥
H− 1

2 (Γ)

)
, Ct > 0.

Therefore, combining both results, integrating over the time interval T , and taking into account that u(0) = 0
yields the assertion with a constant Ct > 0, which has the same dependence as C in Lemma 4.8.

In a semi-discrete setting, namely, by using a Galerkin approach as in Subsection 4.1.2, existence and unique-
ness of a discrete solution are direct consequences of [122, Theorem 30.A]. Moreover, we can show quasi-
optimality in the sense of a Céa-type lemma by adapting the proof of [41, Theorem 12].

Remark 4.25. In this thesis, we do not address a concrete time discretization, and refer to [41] for the anal-
ysis of the fully discretized problem, where no duality argument is used (which is in general not available for
non-symmetric systems). Furthermore, a variant of a classical implicit Euler scheme is considered for the time
discretization with the advantage of avoiding time regularity assumptions. The classical implicit Euler, which is
the scheme that we will consider for simplicity in our related numerical experiments, arises therefrom as a special
case. By introducing a regular subdivision of the time interval T , we arrive at an ordinary differential equation
with implicit components in the algebraic part, and a stiff differential part. This explains the choice of an implicit
approach, since it avoids the numerical stability problems that arise for explicit schemes.
In addition, note that higher order time discretizations are without doubt expected to be more advantageous for
our isogeometric approach. For the analysis of a full discretization with a higher order time discretization, a Tay-
lor expansion technique as demonstrated in [47] can be adapted with the drawback of the usual higher regularity
assumptions in the time component. An investigation in this respect in future works would be beneficial.

4.3 A possible extension for the simulation of electric machines

In this section, we go back to the static case of Section 4.1 for convenience, but extend the geometrical con-
figuration such that the arrangement of domains mimics a typical type of electrical machines, such as the one
visualized in Figure 1.4.

Let Ω1,Ω
e,Ω2 ⊂ R2 be bounded Lipschitz domains with diam (Ωe) < 1, see Figure 4.1, and let Ω ⊂ Ω1

be a Lipschitz inclusion with boundary Γ0,1. We denote by Γe = Γ1 ∪ Γ2 the boundary of Ωe and associate
Γ0,1 and Γ0,2, which correspond to the “interior” and “exterior” boundary of Ω1 and Ω2, respectively, with
homogeneous Dirichlet BCs.

For the sake of clarity, we use throughout this section a different notation for the Cauchy data of some
w ∈ H(∇,Ωk,Γk): We write w|Γk

to denote the standard interior trace of w on the boundary part Γk of Ωk,
and Uk∇w|Γk

· nk for the corresponding interior conormal trace. Thereby, nk is as usual the outer normal
vector of Ωk on Γk. Note that a formal definition can be made by adapting Definition 2.14. The exterior
traces follow similarly. For convenience, we refer to (2.31a) for the definition of spaces with BCs.
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ΩeΩ1 Ω2

Γ0,1 Γ0,2Γ1

Γ2

n1ne

nen2

Figure 4.1: A possible multi-domain arrangement that is, e.g., topologically equivalent to Figure 1.4.
Ω1 and Ω2 are filled with possibly non-linear materials, whereas Ωe contains air. Γ0,1 and
Γ0,2 are associated with homogeneous Boundary Conditions (BCs).

We consider the following boundary value problem (in a weak sense):

Problem 4.26 (Classical problem). Find (u1, u2, u
e) ∈ H0(∇,Ω1,Γ0,1)×H0(∇,Ω2,Γ0,2)×H(∇,Ωe) such that

−div (Ui∇ui) = fi in Ωi, i = 1, 2, (4.11a)
−∆ue = 0 in Ωe, (4.11b)

ue|Γi
− ui|Γi

= ûi on Γi, i = 1, 2, (4.11c)

Ui∇ui|Γi
· ni +∇ue|Γi

· ne = φ̂i on Γi, i = 1, 2, (4.11d)
ui|Γ0,i

= 0 on Γ0,i, i = 1, 2 (4.11e)

with (fi, ûi, φ̂i) ∈ H0(∇,Ωi)′ × H
1
2 (Γi) × H− 1

2 (Γi) for i = 1, 2, and ne being the outer normal vector with
respect to Ωe on Γe.

The non-linear operators Ui are assumed to be strongly monotone and Lipschitz continuous. Note here that
the exterior domain Ωe is bounded. Therefore, we replaced the decay condition with the homogeneous BCs.
A similar analysis follows merely with non-zero constant BCs.

4.3.1 Well-posedness and stability

To derive a weak formulation for Equation (4.11), we first derive a weak formulation in Ω1 and Ω2. For
this, we multiply (4.11a) with test functions vi and apply the first Green’s identity (2.65) in each part to get
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(Ui∇ui,∇vi)Ωi
−
〈
Ui∇ui|Γi

· ni, vi|Γi

〉
Γi

= 〈fi, vi〉Ωi
(4.12)

for i = 1, 2. We used thereby the BCs ui = 0 on Γ0,i with i = 1, 2. In Ωe the Laplace equation is represented
by the interior BIE (3.37a)

V0φ =

(
1

2
+K0

)
ue|Γe (4.13)

with φ := ∇ue|Γe · ne. From Lemma 3.16, we choose the Neumann data with φ ∈ H
− 1

2
? (Γe). Consequently,

we set φ̂i ∈ H
− 1

2
? (Γi), i = 1, 2. The choice of the corresponding space for Dirichlet data will be discussed

below.

Furthermore, similarly to Section 4.1 we introduce the product space

H0 := H0(∇,Ω1,Γ0,1)×H0(∇,Ω2,Γ0,2)×H
− 1

2
? (Γe), (4.14)

and endow it with the norm

‖v‖H0
:=

√
‖v1‖2H(∇,Ω1)

+ ‖v2‖2H(∇,Ω2)
+ ‖ψ‖2

H− 1
2 (Γe)

for v = (v1, v2, ψ) ∈ H0.

Using Γe = Γ1∪Γ2 and inserting the corresponding jump conditions (4.11c) and (4.11d) in (4.13) and (4.12),
respectively, yields the following weak formulation for Problem 4.26:

Find u := (u1, u2, φ) ∈ H0 := H0(∇,Ω1,Γ0,1)×H0(∇,Ω2,Γ0,2)×H
− 1

2
? (Γe) such that

(U1∇u1,∇v1)Ω1
+
〈
φ|Γ1

, v1|Γ1

〉
Γ1

= 〈f1, v1〉Ω1
+
〈
φ̂1, v1|Γ1

〉
Γ1

,

(U2∇u2,∇v2)Ω2
+
〈
φ|Γ2

, v2|Γ2

〉
Γ2

= 〈f2, v2〉Ω2
+
〈
φ̂2, v2|Γ2

〉
Γ2

,

〈ψ,V0φ〉Γe −
2∑
i=1

〈
ψ,

(
1

2
+K0

)
ui|Γi

〉
Γe

=
2∑
i=1

〈
ψ,

(
1

2
+K0

)
ûi

〉
Γe

hold ∀v := (v1, v2, ψ) ∈ H0.

Because of
(
1
2 +K0

)
1Γi = 0 with i = 1, 2, the Dirichlet data ûi can be considered in the corresponding whole

spaceH
1
2 (Γi) instead of [H

1
2 (Γi)]. With this, we first write the problem in a compact form.

Problem 4.27. Find u := (u1, u2, φ) ∈ H0 such that b(u, v) = ι(v) holds ∀v := (v1, v2, ψ) ∈ H0.

Thereby,

b(u, v) :=
2∑
i=1

(
(Ui∇ui,∇vi)Ωi

+
〈
φ|Γi

, vi|Γi

〉
Γi

−
〈
ψ,

(
1

2
+K0

)
ui|Γi

〉
Γe

)
+ 〈ψ,V0φ〉Γe ,

and

ι(v) :=
2∑
i=1

(
〈fi, vi〉Ωi

+
〈
φ̂i, vi|Γi

〉
Γi

+

〈
ψ,

(
1

2
+K0

)
ûi

〉
Γe

)
.
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In this case no stabilization is needed, because the Dirichlet BCs clearly allow the application of the Friedrichs’
inequality, which establishes a norm in interior domains. Therefore, we prove directly the strong mono-
tonicity of b(·, ·). Analogously to (4.5), the form b(·, ·) induces a non-linear operator B : H0 → H′

0 with

〈B(u), v〉 := b(u, v) ∀u, v ∈ H0. (4.15)

The next theorem establishes the strong monotonicity of the method for the extended BVP. It is based on the
idea used for a stability estimate for an interior Dirichlet BVP of a diffusion equation with a hard inclusion,
see [90]. The key idea therein is to estimate the energy of the bounded finite element domains with the
energy of some related problem in the exterior domain. Let λ > 0 be the minimal eigenvalue of the related
exterior problem. If both corresponding Steklov-Poincaré operators are H

1
2 (Γ)-elliptic, then we have that

λ
〈
Sextv, v

〉
≤
〈
S intv, v

〉
, for all v ∈ H

1
2 (Γ), (4.16)

where Sext and S int are the Steklov-Poincaré operators of the exterior and the interior domain, respec-
tively, cf. [90]. The constants in the following theorem have similar dependencies as described in Re-
mark 4.6.

Theorem 4.28. Let us consider the non-linear operator B : H0 → H′
0 defined in (4.15) with H0 being the

product space introduced in (4.14). Furthermore, λ1, λ2 > 0 are the eigenvalues in (4.16) with respect to the
domains Ω1 and Ω2. We state the following three assertions:

1. B is Lipschitz continuous, i.e., there exists CL > 0 such that

‖B(u)− B(v)‖H′
0
≤ CL‖u− v‖H0

(4.17)

for all u, v ∈ H0.

2. If CUi
M > 1

4λi
for i = 1, 2, then

〈B(u)− B(v),u− v〉 ≥ Cstab

(
‖∇u1 −∇v1‖2L2(Ω1)

+ ‖∇u2 −∇v2‖2L2(Ω2)
+ ‖φ− ψ‖2V0

)
(4.18)

for all u := (u1, u2, φ) ∈ H0, v := (v1, v2, ψ) ∈ H0 with

Cstab = min
{
1,

1

2

(
1 + CU1

M −
√(

CU1
M − 1

)2
+

1

λ1

)
,
1

2

(
1 + CU2

M −
√(

CU2
M − 1

)2
+

1

λ2

)}
.

3. If CUi
M > 1

4λi
for i = 1, 2, then B is strongly monotone, i.e., there exists CM > 0 such that

〈B(u)− B(v),u− v〉 ≥ CM‖u− v‖2H0
(4.19)

for all u, v ∈ H0.

Proof. The Lipschitz continuity follows merely from the Lipschitz continuity of U1 and U2 and the continuity
of the boundary integral operators.
The stability estimate follows strongly the steps of the proofs of [90, Theorem 2.2.ii.] and [90, Section 5.1].
Since we are dealing with a different BVP and non-linear material tensors, we sketch the main steps of the
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proof, for convenience.
For ease of notation, let w := (w1, w2, ξ) = u− v = (u1 − v1, u2 − v2, φ− ψ) ∈ H0. From (4.15), we get

〈B(u)− B(v),w〉 :=
2∑
i=1

(
(Ui∇ui − Ui∇vi,∇wi)Ωi

+

〈
ξ,

(
1

2
−K0

)
wi|Γi

〉
Γe

)
+ 〈ξ,V0ξ〉Γe . (4.20)

First, we start with the domain parts. Provided Ui with i = 1, 2 are strongly monotone, then it holds

(Ui∇ui − Ui∇vi,∇wi)Ωi
≥ CUi

M ‖∇wi‖2L2(Ωi)
.

For wi ∈ H0(∇,Ωi,Γ0,i), we now consider the splitting wi = wi + w0,i, where wi is the harmonic extension
of wi|Γi

and w0,i ∈ H0(∇,Ωi, ∂Ωi); see, e.g., [46]. From this follows

‖∇wi‖2L2(Ωi)
= ‖∇w0,i‖2L2(Ωi)

+
〈
S int
i wi|Γi

, wi|Γi

〉
Γi

,

where S int
i with i = 1, 2 denote the interior Steklov-Poincaré operators of the bounded domains Ω1 and Ω2,

respectively. Hence,

(Ui∇ui − Ui∇vi,∇wi)Ωi
≥ CUi

M

(
‖∇w0,i‖2L2(Ωi)

+
〈
S int
i wi|Γi

, wi|Γi

〉
Γi

)
. (4.21)

Next, by using a contractivity-based result for K0 with respect to Sext
i , as given in [90, Lemma 2.1], as well

as the invertibility of V0, we obtain〈
ξ,

(
1

2
−K0

)
wi|Γi

〉
Γe

≤ ‖ξ‖V0

√〈
Sext
i wi|Γi

, wi|Γi

〉
Γe , i = 1, 2,

where Sext
i : H

1
2 (Γe) → H− 1

2 (Γe) are the Steklov-Poincaré operators associated to the corresponding exterior
eigenvalue problem, see [90, Section 2.2]. Note that we considered in the above estimate the worst case
CK0 = 1 with the same constant as in Lemma 3.18. Similarly, we assume the following spectral equivalence〈

Sext
i wi|Γi

, wi|Γi

〉
Γi

≤ 1

λi

〈
S int
i wi|Γi

, wi|Γi

〉
Γi

for all wi ∈ H0(∇,Ωi,Γ0,i),

where λi, i = 1, 2 are characterized as minimal eigenvalues of the related problem, respectively. Thus,〈
ξ,

(
1

2
−K0

)
wi|Γi

〉
Γe

≤ ‖ξ‖V0

√
1

λi

〈
S int
i wi|Γi

, wi|Γi

〉
Γi
, i = 1, 2. (4.22)

Inserting (4.21) and (4.22) in (4.20) leads with 〈ξ,V0ξ〉Γe = ‖ξ‖2V0
and some manipulations as in the proof

of [46, Theorem 1] to the assertion.
To prove the last claim we consider v := (v1, v2, ψ) ∈ H0. Note that v1 = 0 on Γ0,1 and v2 = 0 on Γ0,2 with
|Γ0,1|, |Γ0,2| > 0. Due to Friedrichs’ inequality and (3.34) it follows that ‖∇v1‖2L2(Ω1)

+ ‖∇v2‖2L2(Ω2)
+ ‖ψ‖2V0

is an equivalent norm on H0. Thus, (4.19) follows directly from (4.18).

With this follows well-posedness of the extended problem.

Theorem 4.29 (Well-posedness). Provided thatCU
M > 1

4 , there exists a unique solution u := (u1, u2, φ) ∈ H0 :=
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H0(∇,Ω1,Γ0,1)×H0(∇,Ω2,Γ0,2)×H
− 1

2
? (Γe) of Problem 4.27 for any

(
fi, ûi, φ̂i

)
∈ H0(∇,Ωi)′×H

1
2 (Γi)× φ̂i ∈

H
− 1

2
? (Γi) with i = 1, 2.

Proof. The assertion is an immediate consequence of Theorem 4.28 and Theorem 2.5.

The non-linear operators Ui, i = 1, 2 are now considered to have the form Ui∇u := νi(|∇u|)∇u with non-
linear functions νi : R → R that are admissible in the sense of Definition 1.1. Similarly to the interface
problem, we state the following stability result.

Lemma 4.30. Let CUi
M > 1

4λi
, i = 1, 2, with λi as in Theorem 4.28. Furthermore, the non-linear operators

Ui, i = 1, 2, shall have the form Ui∇u := νi(|∇u|)∇u with admissible non-linear functions νi : R → R in
the sense of Definition 1.1. Moreover, let u ∈ H0 be the unique solution of Problem 4.27 and

(
fi, ûi, φ̂i

)
∈

H0(∇,Ωi)′ ×H
1
2 (Γi)×H− 1

2 (Γi) with i = 1, 2, being some inputs. Then, there exists C > 0 such that

‖u‖H0
≤ C

2∑
i=1

(
‖fi‖H(∇,Ωi)

′ + ‖ui,0‖
H

1
2 (Γi)

+ ‖φi,0‖
H− 1

2 (Γi)

)
.

Proof. We know from the strong monotonicity of B that

CM‖u− v‖2H0
≤ 〈B(u)− B(v),u− v〉

holds for all u, v ∈ H0. Without loss of generality, we choose v = (0, 0, 0) and note that Ui∇vi = 0, i = 1, 2,
for our specific non-linearity. Since u := (u1, u2, φ) is the unique solution of the problem, we conclude that

CM‖u‖2H0
≤ 〈B(u),u〉 = ι(u)

=

2∑
i=1

(
〈fi, ui〉Ωi

+
〈
φ̂i, ui|Γi

〉
Γi

+

〈
φ,

(
1

2
+K0

)
ûi

〉
Γe

)
.

Using the trace inequality (2.58), along with the boundedness of K0 and V0, and rearranging the terms
provides the assertion.

4.3.2 A priori error estimates and super-convergence

Let us consider the same conforming isogeometric Galerkin discretization as in Section 4.1. Namely, the dis-
crete problem is obtained by replacing u := (u1, u2, φ) ∈ H0 := H0(∇,Ω1,Γ0,1)×H0(∇,Ω2,Γ0,2)×H

− 1
2

? (Γe)
in Problem 4.27 with u` := (u1,`, u2,`, φ`) ∈ H0,` := S0p(Ω1,Γ0,1)×S0p(Ω2,Γ0,2)×S2p̃(Γ

e). Note that accordingly
to the notation in the continuous setting, S0p(Ω,Γ) denotes the B-Spline space S0p(Ω) of order pwith a Dirichlet
BC on Γ ⊆ ∂Ω, and S2p̃(Γ

e) is of order p̃ = p− 1, see Subsection 4.1.3.

Problem 4.31 (Discrete problem). Find u` := (u1,`, u2,`, φ`) ∈ H0,` := S0p(Ω1,Γ0,1) × S0p(Ω2,Γ0,2) × S2p̃(Γ
e)

such that b(u`, v`) = ι(v`) holds for all v` := (v1,`, v2,`, ψ`) ∈ H0,`.
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In complete analogy to the interface problem, we state in the following theorem the quasi-optimality in
the sense of a Céa-type lemma of the discrete Problem, as well as an a priori error estimate for the intro-
duced B-Spline discretization. For convenience, let us introduce a piecewise defined product space s ≥ 0
with

Hs
pw :=

(
H(∇,Ω1) ∩H1+s

pw (Ω1)
)
×
(
H(∇,Ω2) ∩H1+s

pw (Ω2)
)
×
(
H

− 1
2

? (Γe) ∩H− 1
2
+s

pw (Γe)
)
, (4.23)

and equip it with the norm ‖ · ‖Hs
pw , which is defined as in (4.7). Then, we can establish the following

results.

Theorem 4.32. For i = 1, 2, let CUi
M > 1

4λi
, with λi as in Theorem 4.28. Moreover, let u ∈ H0 be the solution

of Problem 4.27 and u` ∈ H0,` be the discrete solution of Problem 4.31. Then we have the following results:

• Quasi-optimality:
‖u− u`‖H0 ≤ CCéa min

v`∈H0,`

‖u− v`‖H0 , (4.24)

where CCéa =
CL
CM

.

• A priori estimate: For 1
2 ≤ s ≤ p and u ∈ Hs

pw,

‖u− u`‖H0 ≤ C hs‖u‖Hs
pw

with a constant C = C(CCéa, p, Cθ) > 0, which is independent of h. For 0 ≤ s ≤ 1
2 , we get a similar result

as stated in Theorem 4.15 with φ ∈ H
− 1

2
? (Γe) ∩H0

pw(Γ
e).

Proof. Quasi-optimality follows from the strong monotonicity and Lipschitz continuity stated in Theo-
rem 4.28, by following the lines of Theorem 4.12. The a priori estimate follows from the quasi-optimality
and Lemma 4.14, as is done in Theorem 4.15 for the interface problem.

In many practical applications, we might not be directly interested in the solution (u1, u2, φ) of Problem 4.27
rather than in some derived physical entities, which are, for example, evaluated in the exterior/air gap do-
main. As it can be observed for standalone BEM applications, estimating the error in functionals of the
solution may lead to so called super-convergence, i.e., linear functionals of the solution may converge better
than the solution in the energy norm, see [103, Section 4.2.5]. With enough regularity the convergence rate
doubles.
In the following, this behavior is also shown for the coupled problem. For this, we use the following Aubin-
Nitsche argument, similar to [103, Theorem 4.2.14].

Theorem 4.33. Let F ∈ H′
0 be a continuous and linear functional. Moreover, let u := (u1, u2, φ) ∈ H0 :=

H0(∇,Ω1,Γ0,1)×H0(∇,Ω2,Γ0,2)×H
− 1

2
? (Γe) be the solution of Problem 4.27 and u` := (u1,`, u2,`, φ`) ∈ H0,`

be the discrete solution of Problem 4.31. By assuming that w ∈ H0 is the unique solution of the dual problem

b(v,w) = F(v) (4.25)

for all v ∈ H0, there exists a constant C1 = C1(CL) > 0 such that

|F(u)− F(u`)| ≤ C1 ‖u− v`‖H0‖w− z`‖H0 (4.26)
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for arbitrary v` ∈ H0,`, z` ∈ H0,`. Furthermore, let 1
2 ≤ s, t ≤ p and recall the product space defined in (4.23).

Provided u and w are additionally inHs
pw andHt

pw, respectively, there exists a constant C2 = C2(CL, p, Cθ) > 0
such that

|F(u)− F(u`)| ≤ C2 h
s+t‖u‖Hs

pw‖w‖Ht
pw
. (4.27)

Proof. The proof follows strongly the lines in [103, Theorem 4.2.14]. Since we allow non-linearities, we give
a brief sketch. First of all, we note that Theorem 4.28 holds for arbitrary vector fields in H0. Thus, well-
posedness, and hence the existence of a unique solution can be established for the dual problem (4.25) as
well. Furthermore, the dual problem (4.25), the Galerkin orthogonality b(u − u`, z`) = 0 for all z` ∈ H0,`,
and the Lipschitz continuity of the form b(·, ·) provide

|F(u)− F(u`)| = |F(u− u`)| = |b(u− u`,w− z`)| ≤ C1‖u− u`‖H0‖w− z`‖H0

for arbitrary z` = (z1,`, z2,`, ϕ`) ∈ H0,`.

With (4.24) we get the claim (4.26). Since Lemma 4.14 holds for arbitrary u, (4.27) follows from (4.26).

Remark 4.34. In practice the functional of Theorem 4.33 may be, e.g., the representation formula of the exterior
BEM part Ωe, see (3.19b), i.e., for u = (u1, u2, φ) ∈ H0

ue(x) = F(u) :=
2∑
i=1

(∫
Γi

u∗(x,y)φ|Γi
(y)dσy −

∫
Γi

∇yu∗(x,y) · n(y)(ui|Γi
+ ûi)(y)dσy

)
.

Next, let us assume the regularity u ∈ Hp
pw for the solution of Problem 4.27 and w ∈ Hp

pw of its dual prob-
lem (4.25), where the spaces are defined in (4.23). Then, with the discrete solution u` ∈ H0,` of Problem 4.31
and (4.27) we calculate the pointwise error in Ωe as

|ue(x)− ue`(x)| = |F(u)(x)− F(u`)(x)| ≤ Ch2p, (4.28)

which is the maximal possible super-convergence. Since the constant C depends on ‖u‖Hp
pw

and ‖w‖Hp
pw
, a

possible estimate of these norms would probably involve their right-hand sides. The right-hand side of the dual
problem (4.25) is the functional F(u). Thus, the constant C might include a factor like

2∑
i=1

(
‖u∗(x, ·)‖

H
1
2+p(Γi)

+ ‖∇u∗(x, ·) · n(·)‖
H− 1

2+p(Γi)

)
. (4.29)

Note that this term is finite for all x ∈ R2\Γe and p ≥ 0. However, because of the singularity of the kernels,
(4.29) tends to infinity when approaching the boundaries. Thus, also C from (4.28) might tend to infinity. It
should be noted however that this effect can be avoided or reduced by employing suitable integration techniques.
This will be discussed and illustrated numerically in Subsection 5.1.1. Finally, we mention that the regularity
assumptions might hold only for smooth surfaces.

Remark 4.35. As stated in (1.19), the computation of forces and torques requires the knowledge of the magnetic
flux density be. If we interpret ue as the magnetic vector potential, we know that for x = (x1, x2), we have
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be(x) = c̃urlue(x), see Section 3.1. Then, the functional F on u can be chosen such that

be(x) = F(u) :=
2∑
i=1

( ∫
Γi
∂x2u

∗(x,y)φ|Γi
(y)dσy −

∫
Γi
∂x2(∇yu∗(x,y) · n(y))(ui|Γi

+ ûi)(y)dσy
−
∫
Γi
∂x1u

∗(x,y)φ|Γi
(y)dσy +

∫
Γi
∂x1(∇yu∗(x,y) · n(y))(ui|Γi

+ ûi)(y)dσy

)
.

We can easily check analogously to the previous remark that the constant C, which arises in this case depends on
a higher degree of singularity because of the additional derivatives. Hence, it might tend more rapidly towards
infinity, when approaching the boundaries.

Remark 4.36. In the linear case, the dual problem to Problem 4.2 or Problem 4.27 is the corresponding Bielak-
MacCamy coupling [6]. Hence, the same approximation properties hold for the dual problem, see [6].

Remark 4.37. Note that similar results as in Theorem 4.33 and in Remark 4.34 for the extended Problem 4.27
can be gained for the interface Problem 4.2 and analogously for the parabolic Problem 4.18.

4.4 The three-dimensional (3D) magnetostatic case

Let Ω ⊂ R3 be a Lipschitz bounded domain with a boundary Γ = ΓFEM ∪ ΓBEM as defined in Section 3.1,
and let Ωe := R3\Ω denote the exterior domain. In this section, we study the equations of magnetostatics as
given in Chapter 3 in the 3D case. Thereby, we observed that the model problem depends on the topology
and on the specific BCs. We derived for instance two types of vector potentials. In the interior domain, the
first one lies in [H0(curl,Ω,ΓFEM)] (electric wall) and the second in [H(curl,Ω,ΓFEM)] (magnetic wall). In
this respect, the right-hand side is either inHΓ(div 0,Ω) orHC

0 (div 0,Ω). Basically, the subsequent analysis
works for both cases with self-evident modifications. The crucial point for the interior part is the existence
of a Friedrichs’ inequality, which can indeed be derived for both types of spaces, cf. [88, Corollary 3.51].
Therefore, we conduct the analysis with the latter mentioned spaces, namely the couple [H(curl,Ω,ΓFEM)]
and HC

0 (div 0,Ω). With a slight abuse of notation, we drop the explicit mention of ΓFEM in the definition of
the energy spaces, and write Γ as an argument of the trace spaces but mean ΓBEM instead.

The concrete interface problem derives from the coupling of (3.9) and (3.12) via the jump conditions. In a
weak sense, it reads:

Problem 4.38 (Classical problem). Find u ∈ [H(curl,Ω)] and ue ∈H loc(curl,Ωe) ∩H loc(div,Ωe) such that

curl (U curlu) = f in Ω, (4.30a)
curl curlue = 0 in Ωe, (4.30b)

divue = 0 in Ωe, (4.30c)
γD u− γe

D u
e = û on Γ, (4.30d)

γU
N u− γe

N u
e = φ̂ on Γ, (4.30e)
ue = O

(∣∣x−1
∣∣) for |x| → ∞ (4.30f)

with (f , û, φ̂) ∈
(
HC

0 (div 0,Ω), [H− 1
2 (curlΓ,Γ)],H− 1

2 (divΓ 0,Γ)
)
.
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4.4.1 Well-posedness and stability

Let us consider Problem 4.38. Testing (4.30a) with v ∈ [H(curl,Ω)], applying the Green’s identity (2.66),
and inserting (4.30e) leads to

(U curlu, curlv)Ω − 〈γe
N u

e,γD v〉Γ = (f ,v)Ω +
〈
φ̂,γD v

〉
Γ
. (4.31)

The equations of the exterior domain are modeled by the BIE (3.39). By taking into account that γe
N u

e ∈
H− 1

2 (divΓ 0,Γ), see Subsection 3.2.1, inserting (4.30d) in (3.39) yields together with (4.31) to the following
variational formulation:

Find u := (u,φ := γe
N u

e) ∈ Hv := [H(curl,Ω)]×H− 1
2 (divΓ 0,Γ) such that

(U curlu, curlv)Ω − 〈φ,γD v〉Γ = (f ,v)Ω +
〈
φ̂,γD v

〉
Γ
,

〈ψ,A0φ〉Γ +

〈
ψ, (

1

2
+ C0)γD u

〉
Γ

=

〈
ψ, (

1

2
+ C0)û

〉
Γ

for all v := (v,ψ) ∈ Hv, and
(
f , û, φ̂

)
∈
(
HC

0 (div 0,Ω)× [H− 1
2 (curlΓ,Γ)]×H− 1

2 (divΓ 0,Γ)
)
.

For convenience, we equip the product space Hv := [H(curl,Ω)]×H− 1
2 (divΓ 0,Γ) with the following norm

‖v‖Hv
:=

√
‖v‖2H(curl,Ω) + ‖ψ‖2

H− 1
2 (divΓ,Γ)

for v := (v,ψ) ∈ Hv, (4.32)

and write the variational formulation derived above in a compact form:

Problem 4.39 (Compact form). Find u := (u,φ) ∈ Hv such that b(u, v) = `(v) for all v := (v,ψ) ∈ Hv.
Thereby,

b(u, v) := (U curlu, curlv)Ω − 〈φ,γD v〉Γ + 〈ψ,A0φ〉Γ +

〈
ψ, (

1

2
+ C0)γD u

〉
Γ

is a linear form (linear in the second argument), and

`(v) := (f ,v)Ω +
〈
φ̂,γD v

〉
Γ
+

〈
ψ, (

1

2
+ C0)û

〉
Γ

is a linear functional.

In the subsequent analysis, we employ similar arguments as in the previous sections. This can be done with
Lemma 3.19. Let Hv

′ denote the dual space of Hv and let B̃ : Hv → Hv
′ be the induced non-linear operator〈

B̃(u), v
〉
= b(u, v) ∀u, v ∈ Hv. (4.33)

Then, we establish Lipschitz continuity and strongmonotonicity of the non-linear operator B̃.

Theorem 4.40 (Lipschitz continuity and strong monotonicity). Let B̃ : Hv → Hv
′ be defined as in (4.33)

with Hv := [H(curl,Ω)]×H− 1
2 (divΓ 0,Γ). Then, it holds for all u, v ∈ Hv that:
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• B̃ is Lipschitz continuous, i.e., there exists a constant CL > 0 such that∥∥∥B̃(u)− B̃(v)
∥∥∥
Hv′

≤ CL‖u− v‖Hv
.

• If CU
M > 1

4CC0 , then B̃ is strongly monotone, i.e., there exists a constant CM > 0 such that〈
B̃(u)− B̃(v),u− v

〉
≥ CM‖u− v‖2Hv

.

Proof. The Lipschitz continuity of B̃ follows from the Lipschitz continuity of the operator U , and the continuity
of the boundary integral operators.
The second assertion follows the same approach as in the scalar case. Let w = (w, ξ) := u− v ∈ Hv. Then,〈

B̃(u)− B̃(v),w
〉
= (U curlu− U curlv,w)Ω︸ ︷︷ ︸

(I)

−
〈
ξ, (

1

2
− C0)γDw

〉
Γ︸ ︷︷ ︸

(II)

+〈ξ,A0ξ〉Γ.

First, the strong monotonicity of U yields the estimate

(U curlu− U curlv,w)Ω ≥ CU
M‖curlw‖2L2(Ω),

which holds for all u,v ∈ H(curl,Ω). Hence, it remains true for any representatives in [H(curl,Ω)]. Next,
we consider for a representative w ∈ [H(curl,Ω)] the splitting w = wΓ + w̃ with w̃ ∈ [H0(curl,Ω)], and
wΓ being the solution of the following BVP

curl curlwΓ = 0 in Ω,

γDwΓ = γDw on Γ.

Applying (2.66) (with U = Id) to the BVP leads to

(curlwΓ, curlwΓ)Ω = 〈γNwΓ,γDwΓ〉Γ =
〈
S int γDwΓ,γDwΓ

〉
Γ
,

where S int is the interior Steklov-Poincaré operator. Since by construction (curlwΓ, curl w̃)Ω = 0 for all
w̃ ∈ [H0(curl,Ω)], we have

‖curlw‖2L2(Ω) = ‖curl w̃‖2L2(Ω) + ‖curlwΓ‖2L2(Ω)

= ‖curl w̃‖2L2(Ω) +
〈
S int γDwΓ,γDwΓ

〉
Γ
.

(4.34)

Hence, (I) can be estimated by

(U curlu− U curlv,w)Ω ≥ CU
M‖curl w̃‖2L2(Ω) + CU

M

〈
S int γDwΓ,γDwΓ

〉
Γ
.

To estimate (II) we have that〈
ξ, (

1

2
− C0)γDw

〉
Γ

=

〈
A0ξ,A0

−1(
1

2
− C0)γDw

〉
Γ
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≤ ‖ξ‖A0

∥∥∥∥(12 − C0)γDw

∥∥∥∥
A0

−1

≤ ‖ξ‖A0

√
CC0

〈
S int γDwΓ,γDwΓ

〉
Γ
,

where we used Lemma 3.19 in the last step. Altogether,〈
B̃(u)− B̃(v),w

〉
≥ CU

M‖curl w̃‖2L2(Ω) + CU
M

〈
S int γDwΓ,γDwΓ

〉
Γ

− ‖ξ‖A0

√
CC0

〈
S int γDwΓ,γDwΓ

〉
Γ
+ ‖ξ‖2A0

,

which can be written in quadratic form as〈
B̃(u)− B̃(v),w

〉
≥ CU

M‖curl w̃‖2L2(Ω) +

〈(
CU

M −1
2

√
CC0

−1
2

√
CC0 1

)
x, x
〉

with x =
(√〈

S int γDwΓ,γDwΓ

〉
Γ
, ‖ξ‖A0

)>
. We see that positive definiteness of the quadratic form is

guaranteed, if CU
M > 1

4CC0 holds. By using the smallest eigenvalue of the matrix, we reach with Cstab =

min
{
CU

M,
1
2

(
CU

M + 1−
√(

CU
M − 1

)2
+ CC0

)}
the estimate

〈
B̃(u)− B̃(v),w

〉
≥ Cstab

(
‖curl w̃‖2L2(Ω) +

〈
S int γDwΓ,γDwΓ

〉
Γ
+ ‖ξ‖2A0

)
(4.34)
= Cstab

(
‖curlw‖2L2(Ω) + ‖ξ‖2A0

)
.

(4.35)

The remaining step consists in showing that
√
‖curlw‖2L2(Ω) + ‖ξ‖2A0

defines an equivalent norm to ‖w‖Hv
.

FromCorollary 3.12, we know that ‖ξ‖A0
defines an equivalent norm of ‖ξ‖

H− 1
2 (divΓ,Γ)

for ξ ∈H− 1
2 (divΓ 0,Γ).

This reduces the problem to the proof that ‖curlw‖L2(Ω) is an equivalent norm to ‖w‖H(curl,Ω) for the rep-
resentatives in [H(curl,Ω)]. From the definition of [H(curl,Ω)], we can show the validity of the Friedrichs’
inequality [88, Corollary 3.51]. Whence, by using γnv = 0 on Γ, there exists CF > 0 such that

‖v‖L2(Ω) ≤ CF‖curlv‖L2(Ω).

Therefore, inserting

‖w‖H(curl,Ω) ≤ (1 + CF)‖curlw‖L2(Ω) with w ∈ [H(curl,Ω)]

in the estimate (4.35) establishes together with the norm equivalence of ‖ξ‖A0
and ‖ξ‖

H− 1
2 (divΓ,Γ)

for ξ ∈

H− 1
2 (divΓ 0,Γ), the strong monotonicity of the non-linear operator B̃.

Finally, we state the main result of this section.

Theorem 4.41 (Well-posedness). Let B̃ : Hv → Hv
′ be as defined in (4.33), and let CU

M > 1
4CC0 . Then,

for B̃ Lipschitz continuous and strongly monotone, Problem 4.39 admits a unique solution, for any (f , û, φ̂) ∈
HC

0 (div 0,Ω)× [H− 1
2 (curlΓ,Γ)]×H− 1

2 (divΓ 0,Γ).
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Proof. The result is a consequence of the main theorem on strongly monotone operator equations, see The-
orem 2.5, together with the assertions of Theorem 4.40.

In complete analogy with the previous sections, we arrive at a stability result for non-linear operators U that
take the form Uw := ν(|w|)w with ν : R → R defined in the sense of Definition 1.1. In this special case, a
stability result can further be obtained.

Lemma 4.42. Let the non-linear operator U be of the form Uw := ν(|w|)w with ν : R → R being a non-linear
reluctivity, which is induced by an admissible B-H curve according to Definition 1.1. Moreover, we assume that
CU

M > 1
4CC0 . Then, for the solution u ∈ Hv of Problem 4.39, and the right-hand sides (f , û, φ̂) ∈HC

0 (div 0,Ω)×
[H− 1

2 (curlΓ,Γ)]×H− 1
2 (divΓ 0,Γ), there exists C > 0 such that

‖u‖Hv
≤ C

(
‖f‖[H(curl,Ω)]′ + ‖û‖

H− 1
2 (curlΓ,Γ)

+
∥∥∥φ̂∥∥∥

H− 1
2 (divΓ,Γ)

)
.

Proof. Theorem 4.40 states that B̃ is strongly monotone for CU
M > 1

4CC0 . Moreover, the boundary integral
operator C0 : [H− 1

2 (curlΓ,Γ)] → [H− 1
2 (curlΓ,Γ)] is a continuous operator, see Theorem 3.8. Hence, there

exists CC0 > 0, such that ‖C0ψ‖
H− 1

2 (curlΓ,Γ)
≤ CC0‖ψ‖

H− 1
2 (curlΓ,Γ)

, ψ ∈ [H− 1
2 (curlΓ,Γ)]. By Theorem 2.29,

there exists a CD > 0, such that ‖γD v‖H− 1
2 (curlΓ,Γ)

≤ CD‖v‖H(curl,Ω) holds for all v ∈ H(curl,Ω). There-
fore, it holds also for representatives in v ∈ [H(curl,Ω)]. With this, the proof can be done analogously to
Lemma 4.8, when removing the stabilization term.

The next section is devoted to the discretization framework intended to the approximation of the variational
formulation given in Problem 4.39.

4.4.2 Galerkin discretization

Similarly to the previous sections, we also consider here a conforming discretization, such that the results of
the continuous setting can be transferred to the discrete one.

Let V ` ⊂ H(curl,Ω), and X` ⊂ H− 1
2 (divΓ,Γ) be some finite dimensional subspaces with refinement level

`, and let

V 0,` := {v` ∈ V ` : curlv` = 0},
X0,` := {ψ` ∈X` : divψ` = 0}

be the discrete counterparts of the subspaces H(curl0,Ω) and H− 1
2 (divΓ 0,Γ), respectively. Equivalently

to the continuous setting, we define the discrete quotient space [V `] := V `/V 0,`. Note that by considering
an orthogonal projection P` : V ` → V ⊥

0,`, where V ⊥
0,` denotes the orthogonal complement of V 0,` in V `,

representatives can be chosen from V ⊥
0,`.

Replacing Hv := [H(curl,Ω)] ×H− 1
2 (divΓ 0,Γ) by Hv,` := [V `] ×X0,` in Problem 4.39 yields a discrete

variational formulation.
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Problem 4.43 (Discrete problem). Find u` := (u`,φ`) ∈ Hv,` such that

(U curlu`, curlv`)Ω − 〈φ`,γD v`〉Γ = (f ,v`)Ω +
〈
φ̂,γD v`

〉
Γ
,

〈ψ`,A0φ`〉Γ +

〈
ψ`, (

1

2
+ C0)γD u`

〉
Γ

=

〈
ψ`, (

1

2
+ C0)û

〉
Γ

for all v` := (v`,ψ`) ∈ Hv,`.

Due to the conforming discretization, Theorem 4.41 applies. Consequently, there exists a unique u` :=
(u`,φ`) ∈ Hv,` := [V `]×X0,` that solves Problem 4.43 under the same conditions, namely, Lipschitz conti-
nuity and strong monotonicity of U with CU

M > 1
4CC0 , see Corollary 4.11.

Theorem 4.44 (Quasi-optimality). Let Assumption 4.9 hold, andCU
M > 1

4 . Moreover, let u = (u,φ) ∈ Hv be the
unique solution of Problem 4.39, and u` := (u`,φ`) ∈ Hv,` the solution of its discrete counterpart Problem 4.43.
Then, there exists CCéa =

CL
CM

such that

‖u− u`‖H(curl,Ω) + ‖φ− φ`‖H− 1
2 (divΓ,Γ)

≤ CCéa min
v`∈V `,ψ`∈X0,`

(
‖u− v`‖H(curl,Ω)

+ ‖φ−ψ`‖H− 1
2 (divΓ,Γ)

)
.

(4.36)

Proof. The assertion follows analogously to Theorem 4.12.

4.4.3 A priori error estimates and super-convergence

Now we set V ` = S1p(Ω) andX` = S1,⊥p̃ (Γ). We refer to Section 3.3 for the definition of the B-Spline spaces.
Moreover, we set X0,` = S1,⊥p̃,0 (Γ) as a suitable discrete space for the Neumann data. We refer to (3.58) and
Remark 3.28 for its definition.

In addition, let us define the kernel of the curl operator in S1p(Ω) by

S1p(curl0,Ω) = {v` ∈ S1p(Ω) : curlv` = 0}.

As for the scalar case, we need to define spaces of patchwise regularity.

Definition 4.45. Let K ∈ {Ω,Γ} be a multipatch domain with Nκ patches, and let d be some differential
operator. For some s ∈ R, we define the space of patchwise regularity endowed with the norm

‖u‖2Hs
pw(d,K) =

∑
0≤l<Nκ

∥∥u|κl
∥∥2
Hs(d,K)

by
Hs

pw(d,K) = {u ∈ L2(K) : ‖u‖Hs
pw(d,K) <∞}.

Thereby,Hs(d,K) denotes an energy space of regularity s, formally,

Hs(d,K) := {v ∈Hs(K) : dv ∈Hs(K)}.
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The approximation properties of B-Spline spaces and their trace spaces for the discretization of the de Rham
complex in Figure 2.6, see Figure 3.3, are provided in [33] and [21] for multipatch domains, respectively. In
particular, for S1p(Ω) and S1,⊥p̃ (Γ), we state the following results.

Lemma 4.46. Let u ∈ H(curl,Ω) ∩ Hs
pw(curl,Ω) and φ ∈ H− 1

2 (divΓ,Γ) ∩ Hs
pw(divΓ,Γ). There exists

C0, C1,1, C1,2 > 0 such that

inf
u`∈S1p(Ω)

‖u− u`‖H(curl,Ω) ≤ C0 h
s‖u‖Hs

pw(curl,Ω) 2 < s ≤ p, (4.37a)

inf
φ`∈S

1,⊥
p̃

(Γ)
‖φ− φ`‖H− 1

2 (divΓ,Γ)
≤ C1,1 h

s‖φ‖
H− 1

2+s(divΓ,Γ)
0 ≤ s ≤ 1

2
, (4.37b)

inf
φ`∈S

1,⊥
p̃

(Γ)
‖φ− φ`‖H− 1

2 (divΓ,Γ)
≤ C1,2 h

s‖φ‖
H

− 1
2+s

pw (divΓ,Γ)

1

2
≤ s ≤ p+

1

2
. (4.37c)

Proof. The first estimate inH(curl,Ω) is given in [21, Corollary 5]. TheH− 1
2 (divΓ,Γ) estimates are proved

in [21, Theorem 3].

Theorem 4.47 (A priori estimate). Let CU
E > 1

4CC0 . Moreover, let (u,φ) ∈ Hv be the solution of Problem 4.39
and let (u`,φ`) ∈ Hv,` = S1p(Ω) × S1,⊥p̃,0 (Γ) be the solution of Problem 4.43. Then, for 0 ≤ s ≤ 1

2 , there holds
with u ∈H(curl,Ω) ∩H2

pw(curl,Ω) and φ ∈H− 1
2 (divΓ,Γ) ∩H− 1

2
+s(divΓ,Γ)

‖u− u`‖H(curl,Ω) + ‖φ− φ`‖H− 1
2 (divΓ,Γ)

≤ Chs
(
‖u‖H2

pw(curl,Ω) + ‖φ‖
H− 1

2+s(divΓ,Γ)

)
.

For 1
2 ≤ s ≤ 2, there holds with u ∈H(curl,Ω) ∩H2

pw(curl,Ω) and φ ∈H− 1
2 (divΓ,Γ) ∩H

− 1
2
+s

pw (divΓ,Γ)

‖u− u`‖H(curl,Ω) + ‖φ− φ`‖H− 1
2 (divΓ,Γ)

≤ Chs
(
‖u‖H2

pw(curl,Ω) + ‖φ‖
H

− 1
2+s

pw (divΓ,Γ)

)
.

For 2 < s ≤ p, there holds with u ∈H(curl,Ω) ∩Hs
pw(curl,Ω) and φ ∈H− 1

2 (divΓ,Γ) ∩H
− 1

2
+s

pw (divΓ,Γ)

‖u− u`‖H(curl,Ω) + ‖φ− φ`‖H− 1
2 (divΓ,Γ)

≤ Chs
(
‖u‖Hs

pw(curl,Ω) + ‖φ‖
H

− 1
2+s

pw (divΓ,Γ)

)
with a constant C > 0.

Proof. Due to Theorem 4.41, Problem 4.39 possesses a unique solution in [H(curl,Ω)] ×H− 1
2 (divΓ 0,Γ).

Moreover, well-posedness of the discrete Problem 4.43 follows analogously to Corollary 4.11. Indeed, let
u ∈ H(curl,Ω). We know from [21, Appendix A] that there exists a projection Π : H(curl,Ω) → S1p(Ω),
which commutes with the respective differential operator, namely, Π ◦ curl = curl ◦Π.
Let P : H(curl,Ω) → (H(curl0,Ω))⊥ ⊂ H(curl,Ω) be an orthogonal projection, which is defined analo-
gously to the one used in the proof of [43, Proposition 3.2]. Then, Π1 := Π ◦ P : H(curl,Ω) → [S1p(Ω)] ∼=
(S1p(curl0,Ω))⊥ ⊂ S1p(Ω) defines a projection, which retains the same convergence rates with respect to h-
refinement as the ones given by Π, due to the optimality of orthogonal projections.
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Furthermore, for smooth enough functions, the commutativity of the de Rham complex leads to

γn ◦ curl = divΓ ◦γ× .

Hence, by using γN = γ× ◦ curl, we obtain for u` := Π curlv = curlΠv

divΓ γN v` = γn curl curlv` = 0 with v` := Πv.

Therefore, ψ` := γN v` ∈ S1,⊥p̃ (Γ) satisfies divΓψ` = 0, i.e., ψ` ∈ S1,⊥p̃,0 (Γ).
With this, the approximation results of Lemma 4.46 and Theorem 4.44 may be utilized, which leads merely
to the asserted a priori estimates.

In the following, we give an adaptation of Theorem 4.33 and Remark 4.34 to the 3D case, where the possible
super-convergence of the solution of the scalar problem in the BEM domain was discussed. For notational
simplicity, let

Hs
v,pw := (H(curl,Ω) ∩Hs

pw(curl,Ω))× (H− 1
2 (divΓ,Γ) ∩Hs

pw(divΓ,Γ))

be a product space of patchwise regularity. Its corresponding norm, denoted by ‖·‖Hs
v,pw

, is defined accord-
ingly to Definition 4.45.

Theorem 4.48. Let F ∈ H′
v,` be a continuous and linear functional. We denote by u := (u,φ) ∈ Hv :=

[H(curl,Ω)] ×H− 1
2 (divΓ 0,Γ) the solution of the continuous problem 4.39, and by u` := (u`,φ`) ∈ Hv,` :=

S1p(Ω) × S1,⊥p̃,0 (Γ) the solution of the discrete problem 4.43. Moreover, let w ∈ Hv be the unique solution of the
dual problem

b(v,w) = F(v), (4.38)

for all v ∈ Hv. Then, there exists a constant C1 > 0 such that

|F(u)− F(u`)| ≤ C1 ‖u− v`‖Hv‖w− z`‖Hv (4.39)

for arbitrary v` ∈ Hv,`, z` ∈ Hv,`. Furthermore, provided u ∈ Hs
v,pw and w ∈ Hv

t
pw, with 2 < s, t ≤ p, there

exists a constant C2 > 0 such that

|F(u)− F(u`)| ≤ C2 h
s+t‖u‖Hs

v,pw‖w‖Hvtpw
. (4.40)

Proof. The assertions can be shown analogously to Theorem 4.33.

Remark 4.49. In particular, the functional of Theorem 4.48 may be, e.g., the representation formula of the
exterior domain (3.20b). Assuming a maximal regularity for u and w in (4.40), i.e., u ∈ Hv

p
pw and w ∈ Hv

p
pw

yields the following pointwise error: For x ∈ Ωe, it holds

|ue(x)− ue
`(x)| = |F(ue)(x)− F(ue

`)(x)| ≤ Ch2p, C > 0. (4.41)

This suggests that under some regularity assumptions, the convergence rate may double. This behavior is called
super-convergence. Analogously to Remark 4.34, the constant C in (4.41) depends in particular on the fun-
damental solution u∗(x,y). Hence, it tends to infinity, when approaching the boundary. However, suitable
numerical schemes similar to [107] may be considered to reduce this non-desirable effect, and profit from the
faster convergence.
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5 Numerical validation and results

The greatest mathematicians, as Archimedes,
Newton, and Gauß, always united theory and
applications in equal measure.

F. Klein

This chapter consists of two parts. We start in Section 5.1 by validating the theoretical results that we es-
tablished in the previous chapter. For this, we consider three examples that correspond to Sections 4.1, 4.3
and 4.4, respectively. In the first one, we study the optimal convergence behavior using a standard academic
problem, for which we prescribe a smooth solution, and calculate the input data accordingly. Besides the con-
vergence rates in the interior domain, we address the pointwise error associated with the exterior domain to
verify the predicted possible super-convergence. For this reason, by considering a linear material we ensure
a concrete characterization of the dual problem. Therefore, we expect a doubling of the convergence rates,
see Remarks 4.36 and 4.37. Moreover, as mentioned in Remark 4.34, we discuss the effects of numerical
integration and the position of the evaluation path on the super-convergence. The second example involves
a multiply-connected domain with non-linear materials. Via this experiment, we highlight the advantages of
the isogeometric coupling of Finite Element Method (FEM) and Boundary Element Methods (BEMs), which
consists in particular in the super-convergence of the solution in a thin air gap, which separates two domains
that are filled with non-linear materials. This can be thought of as a simplified 2-pole synchronous machine.
To showcase the effects of the field on a non-linear material, we show its saturation effects, which can be
given by the magnetic reluctivity. The third example is dedicated to the proof-of-concept of the method in
the three-dimensional (3D) case. For simplicity, we restrict ourselves to a simply-connected domain and a
uniform magnetization, which leads to a linear system. However, as expected from our theoretical results,
our method is also suitable for general applications involving multiply-connected domains with non-linear
behavior, as for the two-dimensional (2D) case. Surely, the implementation for the 3D case is more involved,
and subjects such as preconditioning, and advanced software engineering techniques have to be set in the
foreground. For this, we refer to [61, 62, 71, 72, 111], for instance.
The second part of the chapter, i.e., Section 5.2 is devoted to the coupled discrete electromechanical problem,
which we solve as illustrated in Figure 1.3. For this, we consider our non-symmetric FEM-BEM coupling’s
formulations for parabolic and elliptic problems, according to Sections 4.1 and 4.2. Throughout the section,
we employ an isogeometric discretization in space, and use a classical implicit Euler method in the time
domain. In particular, we consider three experiments to highlight the following aspects: In the first one,
we address practice-oriented non-linear materials. There, the B-H curve is reconstructed from experimen-
tal data such that the physical prerequisites of Definition 1.1 are fulfilled. To verify our approach for force
computations with the Maxwell Stress Tensor (MST) method, we utilize for benchmarking the commercial
software JMAG [68]. In the second experiment, we consider an electromechanical problem that is coupled
via the mechanical torque, and for which a reference solution for the trajectory can be gained from the com-
puter algebra system Wolfram Mathematica [83]. The last experiment is an extension to the previous one to
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discuss the effects of conductors in the electrical system.

All results for the 2D problems are obtained by means of an implementation inMATLAB/Octave [40, 84]. For
this, we used several structures and functionalities from the open-source package GeoPDEs, which provides
a framework for the implementation of isogeometric methods, see [37, 114]. In particular, this involves
all the necessary tools to define the appropriate B-Spline basis functions, e.g., parametrizations, h- and p-
refinements etc. For geometrical modelling, we use the NURBS toolbox, which is included in GeoPDEs, to find
multipatch representations of domains via Non-Uniform Rational B-Splines (NURBS) mappings. An example
is given in Figure 3.2. The implementation of the FEM part is rather standard, and we use classical assembling
techniques for the stiffness and mass matrices. For efficiency purposes, the code is vectorized. Concerning
the Boundary Integral Operators (BIOs), we use the integral representations as given in Lemma 3.13, which
obviously hold for the B-Splines basis functions. Due to the singularities that may occur during the assembly
of the matrices, see Remark 3.14, special integration techniques have to be adopted. For instance, we follow
the approach of [7, Section 4.3], where Duffy-type transformations have been considered for identical and
neighboring elements. For the single-layer BIO, we further employ for the singular parts a combination
of logarithmic and Gaussian quadrature. Otherwise, for regular contributions, we use a standard Gauss-
Legendre quadrature. In the 3D case, the only difference is that we use BEMBEL, which is a freely available
C++ library, see [38], for an efficient assembly of BIOs in the isogeometric framework.
We employ throughout this chapter only uniform h-refinement, thus the first assumption in Assumption 3.25
is clearly fulfilled. Furthermore, non-linear problems are solved by using a standard Picard iteration method
[93].

5.1 Numerical validation of the isogeometric approach

This section is devoted to the numerical validation of the theoretical results of the previous chapter. Therefore,
we will consider the following subsections, three complementary examples. In each one of them, we set the
emphasis on different specific aspects, which may require for the purpose some simplifications or adaptation.
The results and figures of the first two sections have already been published in [42], and those of the last one
in [43].

5.1.1 Mexican hat

To verify the convergence rates in the interior domain, an exact solution is needed. Moreover, in order to
validate the super-convergence behavior in the exterior domain, concrete knowledge about the dual problem
is required. Therefore, let us consider the following academic problem; see [46]: Let Ω := (0.25, 0.25)2 be
a square domain with boundary Γ. Obviously, the second assumption in Assumption 3.25 is satisfied by a
single patch representation.

We consider Problem 4.1 with a linear material. For simplicity, let U = Id. Similar to [46], we prescribe the
exact solutions

u(x) =
(
1− 100x21 − 100x22

)
e−50(x21+x

2
2), x ∈ Ω,

ue(x) = log(
√
x21 + x22), x ∈ Ωe,
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Figure 5.1: Example of Subsection 5.1.1: Solution
(
u`, u

e
`

)
∈ S0p(Ω) × S0p(Ωe

e) with degree p = 2 and an
h-refinement level ` = 20. The exterior solution is represented in Ωe

e := (−0.5, 0.5) \Ω, and
is obtained by the evaluation of 25 points in each of the four exterior patches [42].

where x = (x1, x2). Therefrom, the right-hand side f and the jump data û and φ̂ follow by direct computa-
tion. The discrete variational problem corresponds to Problem 4.10 with H` = S0p(Ω) × S2p̃(Γ). Remember
that p = (p, p) and p̃ = p− 1. By solving the discrete problem, we obtain the solution in the interior domain,
from which the interior Dirichlet data γ0u` can be extracted, together with the exterior conormal derivative
φ` := γe1 u

e
` . These Cauchy data together with (4.1c), namely (γe0u

e
` = γ0u` − û, φ`), allow the computation

of the solution at any point of the exterior domain using the representation formula (3.19b). For instance,
we show in Figure 5.1 the solution of the above discrete problem with p = 2 and a level of h-refinement
` = 20. The exterior domain is unbounded, thus, for convenience, we plot the exterior solution only in
Ωe

e := (−0.5, 0.5)\Ω, which consists of 4 patches. There, the depicted solution is obtained from the evalua-
tion of 25 points in each patch.
Next, we want to validate numerically the a priori estimates of Theorem 4.15. Because the norm ‖ · ‖

H− 1
2 (Γ)

is not computable, we consider the equivalent operator norm ‖·‖V0
instead, see (3.34). Hence, the error is

measured with respect to the norm
√
‖u− u`‖2H(∇,Ω) + ‖φ− φ`‖2V0

. Due to the smoothness of the prescribed
solution, we expect an optimal convergence order, i.e., equal to the degree of the considered discrete space
H`. In Figure 5.2, the results of the simulations for B-Spline spaces of degree p = 1, 2, 3, 4, respectively, con-
firm this behavior. With the same configuration, let us discuss in the following the possible super-convergence
behavior that results in the BEM domain, see Remarks 4.34 and 4.35, and Remark 4.37. With U = Id, we can
easily check that the dual of the bilinear form a(u, v), see (4.3), coincides with the bilinear form that arises by
a Bielak-MacCamy FEM-BEM coupling of Problem 4.1, see [6]. Then, following the same steps as in our anal-
ysis guarantees the same a priori estimates of Theorem 4.15. Together with the smoothness of the prescribed
solution, the latter consideration should yield a doubling of the convergence rates in the pointwise error. We
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Figure 5.2: Example of Subsection 5.1.1: Convergence of discrete solution (u`, φ`) ∈ H` to the solution
(u, φ) ∈ H. The considered B-Spline spaces have the degrees p = 1, 2, 3, 4, respectively,
and the error is presented in the norm

√
‖·‖2H(∇,Ω) + ‖·‖2V0

, which is equivalent to the stan-

dard H = H(∇,Ω)×H− 1
2 (Γ) norm [42].

verify this by using similar functionals to Remarks 4.34 and 4.35, namely,

ue(x) = F(u) :=
∫
Γ
u∗(x,y)φ(y)dσy −

∫
Γ
∇xu∗(x,y) · n(y)(γ0u+ û)(y)dσy,

and

be(x) = Fb(u) :=
(
−
∫
Γ ∂x2u

∗(x,y)φ(y)dσy +
∫
Γ ∂x2(∇xu

∗(x,y) · n(y))(γ0u+ û)(y)dσy∫
Γ ∂x1u

∗(x,y)φ(y)dσy −
∫
Γ ∂x1(∇xu

∗(x,y) · n(y))(γ0u+ û)(y)dσy

)
,

which evaluate the exterior solution ue and be = c̃urlue at some point x = (x1, x2) ∈ Ωe. In particular,
we set N = 20 uniformly distributed points on the evaluation path Γe, which we choose as the boundary of
(−0.35, 0.35)2, and compute the pointwise errors for ue and be by

errora = max
i=1,...,N

|ue(xi)− ue`(xi)|, errorb = max
i=1,...,N

|be(xi)− be`(xi)|,

respectively. In Figure 5.3, the expected behavior is confirmed. Moreover, we also readily notice the effect of
the leading constant, which depends on the order of singularity related to the kernel u∗(x, ·), see the discus-
sion in Remarks 4.34 and 4.35. For instance, by comparing the convergence for p = 4 in both Figure 5.3a and
Figure 5.3b, which correspond to errora and errorb, respectively, we see that machine precision is reached for
the former at a significantly smaller refinement level compared to the latter. Furthermore, we investigate
the effects of position and quality of integration on the constant C of Remark 4.34. We repeat the experiment
above with p = 3, and evaluate the exterior solution on three evaluation paths, namely, Γe,1 = ∂(−1, 1)2,
Γe,2 = ∂(−0.35, 0.35)2, and Γe,3 = ∂(−0.26, 0.26)2. Thereby, the notation ∂D denotes the boundary of D.
The results are plotted in Figure 5.4a, where we observe the expected behavior. The evaluation on Γe,1 even
reaches machine precision. The closer we get to the boundary of Ω, the bigger the super-convergence’s con-
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(a) Convergence of the exterior solution with respect
to errora = maxi=1,...,N |ue(xi) − ue`(xi)|. For p = 4
the error even achieves machine precision [42].
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(b) Convergence of the c̃url of the exterior solution
with respect to errorb = maxi=1,...,N |be(xi) −
be`(xi)|.

Figure 5.3: Example of Subsection 5.1.1: Super-convergence of the example in Subsection 5.1.1. The
errors are calculated with N = 20 evaluations points on Γe, which is the boundary of
(−0.35, 0.35)2. The considered B-Spline spaces have the degrees p = 1, 2, 3, 4, respectively.

stant is. For the closest path Γe,3, we notice that the quality of the computation deteriorates. This is made
clearer in Figure 5.4b, where we compare the evaluation on Γe,3 with different numbers of Gaussian quadra-
ture points NG = 25, 50, 100. For NG = 25, there is practically no improvement of the convergence rates in
the BEM domain. We call this observation a saturation effect. It is caused by the approximation of a nearly
singular integral by means of Gauss-Legendre quadrature. By increasing the number of quadrature points,
we can improve and even restore the optimal super-convergence. However, this has two apparent drawbacks:
On one hand, increasing the number of quadrature points is time-consuming. On the other hand, the sat-
uration effects can not be circumvented in the asymptotic area. However, note that there are better-suited
alternatives to these types of applications. For instance, [107] proposes special extraction techniques, which
avoid or reduce the issue substantially.

In the next section, wewant to investigate the super-convergence for amore complicated problem.

5.1.2 A two-pole synchronous machine

In this subsection, the example that we consider can be modeled by Problem 4.26. In particular, we define
Ω1 and Ω2 analogously to Figure 4.1 but over circular domains. Moreover, Ωe is the bounded domain that
separates Ω1 and Ω2. We call it the air gap. Concretely, let B ((x1, x2); r) denote a circular domain with mid-
point (x1, x2) and radius r. Then, Ω1 = B ((0, 0); 0.39) \B ((0, 0); 0.1) and Ω2 = B ((0, 0); 0.6) \B ((0, 0); 0.4).
The air gap is then defined formally by Ωe = B ((0, 0); 0.4) \B ((0, 0); 0.39). In contrast to the previous ex-
ample, there exists no regular parametrization that can represent Ω1 and Ω2 by a single patch. Nevertheless,
a multipatch approach similar to Figure 3.2 is straightforward. An exact representation can be obtained by
NURBS of degree p = 2. A possible representation is depicted in Figure 5.5.
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(b) Dependence on the number of Gaussian points NG.
The evaluation path is thereby Γe,3. We observe an
amelioration of the undesirable saturation with in-
creasing NG. For NG = 100, the expected super-
convergence is restored to some extent.

Figure 5.4: Example of Subsection 5.1.1: Dependence of the super-convergence on the position of the
evaluation points and the number of quadrature points. We use N = 20 evaluation points
to calculate the errora = maxi=1,...,N |ue(xi)−ue`(xi)|, and choose the paths Γe,1 = ∂(−1, 1)2,
Γe,2 = ∂(−0.35, 0.35)2, and Γe,3 = ∂(−0.26, 0.26)2. The considered B-Spline spaces are of
degree p = 3 [42].

This example is interesting both from a theoretical and a practical point of view. Indeed, the eigenvalues
λ1 and λ2 of CUi

ell >
1

4λi
in Theorems 4.28 and 4.32 are in general not explicitly known. However, we know

for circular domains that the values are λ1 = λ2 = 1, see [90, Section 3] for more details. This allows
us to test the validity of the coupling beyond the above mentioned restriction on CUi

ell , which seems to be
a theoretical one, cf. Remark 4.16. Moreover, it can be thought of as a simplified two-pole synchronous
machine [75, Section 5.2]. Domain Ω1 can then be labeled the rotor and Ω2 the stator. Typically, these
devices are mainly made of ferromagnetic materials, which interact non-linearly with the magnetic field. In
practice, the corresponding B-H curve needs to be constructed from experimental data. We postpone this
technicality to the next section. Here, we choose the following model for the non-linear material tensors

Ui∇ui := g(|∇ui|)∇ui, i = 1, 2, with g(s) =


hc
bs

for s = 0,
hc
s tanh−1( sbs ) for 0 < s ≤ sc := bs − ε,

1 + β exp(−αs) for s > sc,

(5.1)

and specify the parameters such that the correspondingB-H curve is admissible in the sense of Definition 1.1,
and such that it is realistic from a physical perspective. In the model above, the parameters hc and bs depend
on the material. Moreover, ε > 0 can be chosen arbitrarily to fulfill g(s) < 1, for all 0 < s ≤ sc, whereas α, β
are expansion coefficients that can be computed by

α =
g′(sc)

1− g(sc)
, β = (g(sc)− 1) exp(αsc).
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Figure 5.5: A possible multipatch representation for the example of Subsection 5.1.2 with four
patches per domain. The interfaces between the patches and boundaries are highlighted
by bold lines.

With this, it can be easily verified that g is globally continuously differentiable and strongly monotone in its
domain of definition. Concretely, we choose ε = 10−2, hc = 3 ·10−3, and bs = 3

2 . In the following, this specific
choice is discussed.

Remark 5.1. On the one hand, note that the non-linear material tensor (5.1) in this particular setting leads to
CUi

ell =
hc
bs

= 2 · 10−3, which clearly violates the condition CUi

ell >
1
4 . On the other hand, choosing hc and bs such

that hcbs >
1
4 holds is not realistic in the context of electric machines. With such particular applications in mind,

it is primordial to test the numerical validity of the method beyond this theoretical restriction.

Now, let us prescribe the following input data:

f1(x) = 0 for x := (x1, x2) ∈ Ω1,

f2(x) = 100 sin(ϕ) for x := (x1, x2) ∈ Ω2,

where ϕ is the standard angle in a polar coordinate system. In addition, we set the jump conditions to zero,
i.e., ûi = 0 and φ̂i = 0, i = 1, 2.
To solve the non-linear discrete Problem 4.31, we use a classical Picard iteration. For a discrete product space
H0,` with B-Splines of degree p = 3 and at a level of refinement ` = 28, we required 35 iterations to reach the
stopping criterion 10−10. The obtained solutions u1 and u2 in the interior domains Ω1 and Ω2, respectively,
are visualized in Figure 5.6a. In the context of electric machines, ui, i = 1, 2 can be interpreted as the
axial component of the magnetic vector potential. Hence, the equipotential lines, i.e., the thick continuous
black lines in Figure 5.6a are the magnetic field lines. In a post-processing step, we compute the magnetic
reluctivity, which is given by the function g(|∇ui|), i = 1, 2, in (5.1), to highlight the non-linear behavior of
the material. This is depicted in Figure 5.6b.
The next computation is dedicated to the numerical verification of Remark 4.49. For this, we choose the
parametrized circle Γe := ∂B(0; 0.395) to be our evaluation path. Similar to the previous subsection, the
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(a) The solutions u1 and u2 in the interior domains Ω1

and Ω2.
(b) Saturation effects caused by the non-linear mate-

rial tensors. The color-bar and the thin lines repre-
sent the levels of the magnetic reluctivity, which is
given by g(|∇ui|) for i = 1, 2.

Figure 5.6: Example of Subsection 5.1.2: A simulation of a two-pole synchronous machine with B-
Splines of degree p = 3, at a refinement level ` = 28. The thick equipotential lines show
the magnetic field [42].

evaluation of the solution in a point of Γe is performed by means of the functional of Remark 4.34. An
analytical solution for our model problem is however not known. Hence, to verify the convergence order,
we follow a standard procedure: The mesh of the current solution is successively refined three times. Then,
we calculate the corresponding discrete solutions, and apply the Aitkin’s ∆2-extrapolation to this sequence
of discrete solutions [5]. This extrapolated value is considered as the reference solution ue(xi) in error =
max

i=1,...,N
|ue(xi) − ue`(xi)| with N = 20 evaluations points, and where ue`(xi) is the discrete solution at a

refinement level `, which can be computed by means of the obtained Cauchy data and the representation
formula, see Remark 4.34. This error is visualized in Figure 5.7 for ansatz spaces of degree p = 2 and p = 3,
where we observe an amelioration of the convergence rates. Note that this improvement depends on the
quality of the numerical integration, as showcased in Figure 5.4b. For this example, noticeable ameliorations
of the convergence rates were only observable for a high number of Gaussian quadrature points. Concretely,
we considered NG = 400 points for the assembling of the BEM matrices, which is very time-consuming. As
mentioned in the previous subsection, the dominance of the quadrature error for this type of evaluation can
be tackled by using special extraction techniques. Moreover, efficient assembly of the BEM matrices based
on B-Spline tailored quadrature rules, as given in [2], together with suitable compression methods, see
e.g., [39], would accelerate the computation considerably. However, this investigation is beyond the scope of
this work.
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Figure 5.7: Example of Subsection 5.1.2: Convergence of the solution on the evaluation path Γe =
∂B(0; 0.395) in the air gap Ωe. Thereby, error = max

i=1,...,N
|ue(xi) − ue`(xi)| is calculated with

N = 20 evaluations points [42].

5.1.3 Uniformly magnetized ball

In this subsection, we aim to verify the optimal super-convergence behavior of the isogeometric non-symmetric
FEM-BEM coupling in the 3D case with the aid of an academic problem, for which an exact solution can be
computed.

The bounded domain Ω is a 3-dimensional ball B3(0 ;R), i.e., with radius R and a center that coincides with
the origin of the coordinate system. Moreover, we embed a permanentmagnetization intoΩ. The treatment of
suchmaterials follows the discussion illustrated by Figure 1.2a. A sufficiently good approximation can then be
obtained by replacing the constitutive law (1.3) by (1.4), which can bewritten as

h = νb− hc,

where hc denotes a coercive field, h the magnetic field strength, and b the magnetic flux density. More-
over, the reluctivity ν > 0 is a scalar constant, hence the constitutive law is linear and isotropic. With
this consideration and in the absence of an impressed electric current density, we may replace (4.30a) by

curl ν curla = curlhc in Ω, (5.2)

where a is the magnetic vector potential. For simplicity, we choose a normalized reluctivity, i.e., ν = 11. In
the exterior domain Ωe := R3\Ω, the magnetic vector potential ae satisfies (4.30b). By taking into account
the jump conditions (3.2a) and (3.2c), we know that the normal component of b is continuous, whereas a dis-
continuity is expected in the tangential part of h due to the contribution of the magnetization on the surface.
To see this, let hc represent a uniform unidirectional magnetization. In particular, we choose hc = (0, 0, hc)

>,

1Approximately, the model could be seen as NdFeB magnet, where µr is often taken as µr = 1.05 ≈ 1.
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with hc 6= 0, similar to [67, Chapter 5.10]. There, an analytical solution in terms of magnetic vector potentials
in spherical coordinates is provided for both the interior and exterior domains. In our Cartesian coordinate
system and for x = (x1, x2, x3) ∈ R3, the solutions transform to

a(x) =
hc
3

(−x2, x1, 0)> for x ∈ Ω, (5.3a)

ae(x) =
hc
3

(
R

r(x)

)3

(−x2, x1, 0)> for x ∈ Ωe, (5.3b)

where r(x) =
√
x21 + x22 + x23. Moreover, the magnetic flux densities read

b(x) = curla(x) =
2

3
hc for x ∈ Ω, (5.4a)

be(x) = curlae(x)=
hc
3

R3

r(x)5
(
3x1x3, 3x2x3, 2x

2
3 − x21 − x22

)>
=

(
R

r(x)

)3(hcx3
r(x)

n(x)− 1

3
hc

)
for x ∈ Ωe. (5.4b)

Thereby, n(x) = 1
r(x)(x1, x2, x3)

>. Let Γ denote the boundary of Ω. From the expressions above, we can
readily verify that γna = γna

e = 0, JγD aKΓ = 0, and diva = divae = 0, which is in accordance with
the physical constraints and the Coulomb gauge (continuity of the normal components and divergence-free
property). In addition, we have JγnbKΓ = 0, and JγN aKΓ = n(x)× hc, for all x ∈ Γ. This corresponds to an
effective magnetic surface charge density. More details can be found in [67, Chapter 5.10].

To simulate the physical problem described above, we consider the model Problem 4.38 with the adaptation
(5.2) to incorporate the permanent magnetization. By applying a direct non-symmetric FEM-BEM coupling,
we arrive at a variational formulation according to Problem 4.39. Then, an isogeometric Galerkin discretiza-
tion yields Problem 4.43 with u` := (u`,φ`) ∈ Hv,` := S1p(Ω) × S1,⊥p̃,0 (Γ). The obtained system of linear
equations is singular, due to the infinite-dimensional kernel of the curl-operator in the FEM-domain. How-
ever, by considering a consistent right-hand side, i.e., divergence-free also on the discrete level, an iterative
Conjugate Gradient (CG)-based solver converges properly. A correction of the data can be applied to ensure
the discrete consistency, if it is not provided, see [70], for instance. Moreover, the introduction of Lagrange
multipliers may be necessary to enforce gauge conditions in the interior domain, see, e.g., [74]. Neverthe-
less, as demonstrated in the proof of Theorem 4.47, the commutativity of the discrete de Rham complex
guarantees that φ` ∈ S1,⊥p̃,0 (Γ). Hence, together with the mapping properties of the involved Boundary Layer
Potentials (BLPs), the representation formula

F(u`)(x) := ae`(x) = − (ΨSL(φ`)(x) +ΨDL(γD u` − û`)(x)) , x ∈ Ωe (5.5)

yields a unique exterior solution, which is expected to enjoy a super-convergence behavior, for the same
reasons as in Subsection 5.1.1, see also Remark 4.49. In the following experiment, we prescribe (5.3a) and
(5.3b) for the interior and exterior problems, respectively. This translates to f = 0, û = 0, and φ̂ = n(x)×hc,
for all x ∈ Γ, as right-hand sides. Note that by f = 0 we mean that there is no impressed current density
and that the volume contribution of the magnetization vanishes, i.e., curlhc = 0. Moreover, without loss of
generality, we choose hc = 1 and R = 1. A multipatch representation of the considered ball B3(0; 1) using
seven regular NURBS patches is illustrated in Figure 5.8.
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(a) A front view of the sphere. (b) A cross-section to highlight the interior patch
(grey).

Figure 5.8: Multipatch representation of the ball B3(0 ; 1) from Subsection 5.1.3. It consists of seven
volume patches that are glued at interfaces. The patches with a boundary side have the
same shape.

To verify the convergence of the magnetic vector potential and the magnetic flux density in the exterior
domain, we perform a uniform h-refinement for polynomial degrees p = 1, 2. In every refinement level ` ≥ 0,
the element size h is equal 2−`, where h is the length of a univariate element in the parametric domain. The
numerical solution is achieved with a solver’s tolerance of 10−6. We used thereby the BiCGSTAB solver of
MATLAB/Octave [40, 84]. In Figure 5.9, we show the obtained interior solution with a polynomial degree
p = 2 at a refinement level ` = 3.
For the evaluation of the exterior magnetic vector potential ae` and the magnetic flux density be` , we choose
N = 20 equally distributed points on the boundary ∂B3(0 ; 1.5). Besides (5.5), the evaluation involves the
following functional

Fb(u`)(x) := curlae`(x),

which can be derived analogously to the functional of Remark 4.35. With the exact solutions (5.3b) and
(5.4b), the pointwise error is then computed by

errora = max
i=1,...,N

|ae(xi)− ae`(xi)|,

errorb = max
i=1,...,N

|be(xi)− be`(xi)|,

respectively. In Figure 5.10, we observe a doubling of the convergence rate, as expected from the discussion
in Remark 4.49.

The next section is devoted to the electromechanical problem, namely, we inspect the coupled system with
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0 0.35

Figure 5.9: Example of Subsection 5.1.3: An interior solution depicted on the boundary ofB3(0; 1). The
arrows encode the solution u, and the color bar encodes its magnitude. The considered
B-Spline space has the degree p = 1, and a refinement level ` = 3.

different magnetic model problems, and address the computation of forces and torques, which represent the
coupling of physical quantities.

5.2 The electromechanical problem

In this last section, we address the full discrete coupled system as illustrated in Figure 1.3. The magnetic
part may be time-dependent. Then, the model problems follow either Section 4.1 or Section 4.2. In both
cases the mechanical problem is given by an ordinary differential equation, see (1.16). We employ a classical
implicit Euler method for all time discretizations. In the same spirit of the previous section, we consider three
examples and emphasize some specific aspects with each one of them.

5.2.1 Iron plates versus magnet

In this example, we verify our implementation with respect to the computation of forces. In addition, we
discuss a standard approach that allows the construction of admissible B-H curves from experimental data.
To achieve this, we follow [91]. Recall that we characterized two types of non-linear materials that are rele-
vant for our purpose, which can be classified as either hard or soft magnetic materials, see Subsection 1.1.1.
We consider a non-symmetric isogeometric FEM-BEM coupling to solve Problem 4.1 with a domain Ω with
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(a) Convergence of the exterior magnetic vector po-
tential. Thereby, errora = max
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|ae(xi)− ae
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(b) Convergence of the exterior magnetic flux density.
Thereby, errorb = max

i=1,...,N
|be(xi)− be`(xi)|.

Figure 5.10: Example of Subsection 5.1.3: Super-convergence of the exterior solution corresponding
to the magnetic vector potential and the magnetic flux density. The considered B-Spline
spaces have the degrees p = 1, 2, respectively. The evaluation is performed with N = 20
points on ∂B3(0; 1.5).

several disjoint simply-connected parts.

ΩNdFeB

ΩFe,u

ΩFe,d

d

d

fu

fd

Figure 5.11: Illustration of the domainΩ = ΩNdFeB ∪ΩFe,u ∪ΩFe,d of Subsection 5.2.1, whereΩNdFeB is as-
sociated to a Neodymium permanent magnet, and ΩFe,u and ΩFe,d to iron plates. Thereby,
d denotes the distance between the iron plates and the magnet, and fu, fd are the corre-
sponding attractive forces.
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In Figure 5.11, we illustrate the arrangement of the connected parts of Ω = ΩNdFeB ∪ ΩFe,u ∪ ΩFe,d with
ΩNdFeB = [−20, 20]× [−10, 10], ΩFe,d = [−35, 35]× [−35,−20], and ΩFe,u = [−35, 35]× [20, 35]. The previous
dimensions are given in cm. Moreover, note that similar to a FEM (or BEM) only approach, using appropriate
Boundary Conditions (BCs) to reduce the considered domain in the presence of symmetries is also possible
in the context of FEM-BEM couplings, see [81, Section 3.2.2] and [75, Section 3.4.3], for instance.
On the one hand, we associate ΩNdFeB with an NdFeB permanent magnet, which is made of an alloy of
Neodymium, iron, and boron. It is the most frequently used strong magnet in electrical machines. Evidently,
it is considered as a hard magnetic material, whose hysteresis follows Figure 1.2a. Hence, the constitutive
law (1.4) is a good and widely used approximation. For instance, (3.9a) can be linearized in the following
sense

curl ν curla = curlhc + js,

where ν is a constant magnetic reluctivity, and hc is a coercive field. In our 2D case, the interior problem
reads

div ν grad a = curlhc + j in ΩNdFeB. (5.6)

We choose here the coercive field to be of the form hc = (0, 1)>, and ν = ν0νNdFeB = ν0
µNdFeB

with νNdFeB = 1.05.
Note that (0, 1)> means a magnetization in the vertical direction.
On the other hand, ΩFe,u and ΩFe,d are filled with iron. In this case, iron can be considered as a soft magnetic
material, whose magnetic behavior follows the magnetization curve of Figure 1.2b. Hence, the non-linearity
is handled as in Subsection 5.1.2, if the B-H curve is available in an analytic form. However, this is usually
not the case as information is mostly provided by a set of experimentally measured data, from which a closed
form for the B-H curve should be gained for simulation purposes. The approach that we consider in our
calculations is standard. We refer to [91, Section 3.1] and the literature cited therein. It involves a cubic
spline interpolation and an extrapolation as in (5.1). The quality of such an approach depends on that of the
measured data, which we assume here to be good enough, for convenience. See the previously cited reference
for a possible workaround in case of noisy data, and also [92], for instance. Under this assumption, the used
interpolation and extrapolation approaches guarantee an admissibleB-H curve in the sense of Definition 1.1.
With a sample provided in [91, Table B.1], we illustrate the interpolation process in Figure 5.12.

First, we use the non-linear reluctivity of Figure 5.12b, which follows easily from the corresponding B-H
curve, and the permanent magnetization as described in (5.6) for the magnet part to solve Problem 4.1 using
a non-symmetric isogeometric FEM-BEM coupling with ansatz spaces of degree p = 1 and at a refinement
level ` = 15. We consider in this experiment different distances d between the permanent magnet and
the iron plates, see Figure 5.11, and compute the attractive force. For convenience, we depict the solution,
i.e., the magnetic vector potential, for d = 5 cm in Figure 5.13. By symmetry, we know that the attractive
forces fu, fd are equal in magnitude and oppositely directed. In this context, the force is unidirectional,
namely, there is only one non-zero component in the vertical direction. Moreover, no forces are exerted
on the permanent magnet. To verify our implementation of forces using the Maxwell Stress Tensor (MST)
method, see (1.19), we may choose as contour Γe every closed curve that encloses the considered Region Of
Interest (ROI). In this case, our ROI corresponds to ΩFe,u. Then we integrate numerically following (1.20).
As pointed out in Subsection 1.1.2, all points of Γe should be contained in the air region. Even though taking
the boundary as an integration path is possible, see [77, 81], for instance, it would be counterproductive
as the method would not profit from the super-convergence of BEM. Whenever it is possible, choosing a
2π-periodic contour and solving the intergral by the trapezoidal rule is more advantageous, since it is known
to yield exponential convergence. Otherwise, we apply standard Gaussian quadrature. We compute the
attractive force for d = 10, 5, 2.5 cm, respectively, and compare our result with a benchmark solution, which
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Figure 5.12: Example of Subsection 5.2.1: Interpolation using a cubic spline of the sample data from
[91, Table B.1].

(a) The magnetic vector potential at d = 5 cm.
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Figure 5.13: Example of Subsection 5.2.1: Result of the simulation with an ansatz space of degree
p = 1 and at a refinement level ` = 15.

we compute by using the commercial software JMAG [68]. The comparison shown in Figure 5.13b confirms
our implementation.

115



0 1 2 3

·10−3

5

10

15

20

25

30

t in s

f
v u
in

kN

(a) Vertical component of the force fvu per time.

0 1 2 3

·10−3

4

6

8

10

t in s

d
in

cm
(b) Total distance per time.

Figure 5.14: Example of Subsection 5.2.1: The dynamics of the electromechanical problem over a time
interval T = [0, 3.3]ms and a time step ∆t = 0.1ms .

Second, supplementing the problem above with the mechanical system described by the equations of motion
(1.16) leads to a movement of the iron plates due to the attractive forces towards the fixed permanent mag-
net. Because the force is unidirectional, namely, the movement is a pure translation in the vertical direction,
we can use the simplified version of Newton’s law (1.17). The ordinary differential equation is solved by a
classical implicit Euler method. We compute for a time interval T = [0, 3.3]ms with a time step ∆t = 0.1ms,
and a mass mFe = 1 kg for convenience. The resulting dynamics of the system is plotted in Figure 5.14.
In Figure 5.14a, we observe that in the first steps the force increases more rapidly, and sort of stabilizes its
growth rate after ≈ 4 steps. The material reacts immediately to a change in the external field. However,
the non-linear behavior affects its dynamics. This latency can then be interpreted as the time needed for
the material to reach its saturated state. Upon saturation, iron is fully magnetized. In other words it reacts
linearly, and produces the expected dynamics. In Figure 5.14b, we depict the corresponding total distance
per time, starting from a gap of d = 10cm between the iron plates and the magnet. Note that the discussion
in Remark 4.34, and its illustration in Subsection 5.1.1 about the quality of integration for close evaluation
paths is also relevant in this case.

In the next subsection, we proceed analogously with an example involving themechanical torque as a coupling
quantity of the electromechanical system.

5.2.2 Magnetic pendulum

In electrical and mechanical systems with only one degree of freedom with respect to movement, the cou-
pling quantity is usually either the force, as we saw in the previous subsection, or the mechanical torque.
In the following, we give an example to highlight the latter option. In addition, we extend it by including
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(a) A possible multipatch representation.
The patches are delimited with the thick
lines.

x2

x1

Ωr

Ωs

ϕ

ϑ

α

ψ

(b) ϕ represents the angle in a fixed polar coordinate system, α :=
α(t) is attached to the rotating field’s axis in the stator Ωs :=
B (0; 0.5) \B (0; 0.4), and ψ := ψ(t) to magnetization direction
in the rotor Ωr := B (0; 0.38). We also denote the phase shift
between ψ and α by ϑ := ψ − α.

Figure 5.15: An illustration of a multipatch representation of the magnetic pendulum of Subsec-
tion 5.2.2, and the considered coordinate systems to describe its dynamics.

conductive regions to test problems of the parabolic type that can be modeled according to Problem 4.17.
Both examples have been studied in [75, Section 5.2] with a classical FEM-BEM coupling.

As a starting point, we consider a simplified version of a 2-pole synchronous machine, and assume a per-
manent magnetization in the rotor Ωr := B (0; 0.34). Thereby and throughout this section, all geometry
dimensions are given in meter. The permanent magnetization can be incorporated into the Partial Differen-
tial Equation (PDE) as in (5.6). Furthermore, we impose a rotating current density in the stator, which we
define as Ωs := B (0; 0.5) \B (0; 0.4). These adaptations allow the interpretation of the problem as analogon
to a physical pendulum, for which an approximation of the solution can be obtained by a Taylor series ex-
pansion. In Figure 5.15, we illustrate the problem’s geometry, introduce the used coordinate systems, and
furnish a possible NURBS representation of the domains. Concretely, for t ≥ 0, we prescribe the rotating
current density

j = j0 sin(ϕ− α(t)) with α(t) = ωt

in the stator domain Ωs, and the magnetization

hc = hc(cosψ(t), sinψ(t))>,

in the rotor domain Ωr. Thereby, ω is a constant angular velocity, ϕ is a coordinate in a standard polar
coordinate system, whereas α(t) and ψ(t) designate the rotation field’s axis in the stator and the rotor angles,
respectively; see Figure 5.15b for an illustration. Let ϑ(t) = ψ(t)−α(t), t ≥ 0 denote the phase shift between
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the direction of magnetization and the rotating field, cf. Figure 5.15b. The phase shift ϑ := ϑ(t) is the solution
of the following Initial Value Problem (IVP) [75, Appendix E]:

T 2ϑ̈+ sinϑ = 0 for t > 0, (5.7)
ϑ = 0 for t = 0, (5.8)
ϑ̇ = −ω for t = 0, (5.9)

where T is the time constant of the oscillation. The initial conditions above follow from our initial configu-
ration, which we assume to be

ψ = 0 for t = 0,

ψ̇ = 0 for t = 0.

The solution of the IVP (5.7) can be approximated by utilizing the computer algebra system Wolfram Math-
ematica [83], for instance. Therefrom stems our reference solution for ψ.

For an actual calculation, we need to specify the following parameters: the amplitude of the imposed current
density j0, the time constant T , the angular velocity ω, the amplitude of magnetization hc, and the moment of
inertia θ. Thereby, the subsequent relations have to be taken into account,

T 2 =
2θ

hcπr2j0d
, Tω < 2, θ =

1

2
mr2,

see [75, Section 5.2.1] for more details. In the relations above, r denotes the radius of the rotor, m its
mass, and d the width of the stator. Henceforth, we choose T = 10−3 s, ω = 103 rad s−1, m = 0.1 kg, and
j0 = 4.82

√
2Am−1. Note that r and d are readily obtained from the definition of the domains, and that hc

and θ follow from the relations above. For the computation of the torque with the MST method, we consider
the contour Γe = ∂B (0; 0.37) and integrate using the trapezoidal rule. Furthermore, time discretization is
again performed by an implicit Euler method over the time interval [0, 30]ms with 300 time steps.
For the magnetic part of the problem, we consider Problem 4.10 with an ansatz space of degree p = 2, which
is sufficient for an exact NURBS representation for circular domains. In addition, we choose a refinement
level ` = 15. We present our solution of the rotor’s position in Figure 5.16, and depict the magnetic vector
potential at different time stamps t = 1.7, 3.4, 5.1ms in Figure 5.17. The results are in concordance with the
expectations. In particular, our numerical solution for the position of the rotor coincides with [75, Figure 5.7],
and with the selected reference solutions, as shown in Figure 5.16b. As mentioned above, the trajectories
that we obtained are characteristic to the undamped case of a physical pendulum. Indeed, the results can be
interpreted as follows: At the beginning, i.e., at t = 0, the magnetization’s direction and the rotating field
created in the stator are in phase, i.e., ϑ(t) = ψ(t)− α(t) = 0. Hence, there are no tangential forces and the
mechanical torque is also equal to zero. This changes however as soon as α(t) > 0. In this case, i.e., when
ϑ(t) < 0, the mechanical torque is positive and increases accordingly to the phase shift. This induces an
accelerated rotational movement of the rotor, which continues until reaching alignment, i.e., ϑ = 0. Because
of the inertia of the rotor, the magnetization’s direction outruns the rotating field of the stator, which triggers
a deceleration process. The deceleration comes with an increase of the torque in the opposite direction until
ϑ = 0 and trails back for the same reason. That is, both processes alternate to give rise to the obtained
dynamics.

Let us now consider an extension of the model problem that includes conductive materials, and see how it
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Figure 5.16: Example of Subsection 5.2.2: Dynamics of the magnetic pendulum computed with a time
step of 0.1ms. The discrete problem corresponds to Problem 4.2 with an ansatz space of
degree p = 2 and at a level of refinement ` = 15.

ϑ

(a) At t = 1.7ms and ϑ ≈ −54°.

ϑ

(b) At t = 3.4ms and ϑ ≈ −12°.

ϑ

(c) At t = 5.1ms and ϑ ≈ 65°.

Figure 5.17: Example of Subsection 5.2.2: The solution at different time stamps of the discrete Prob-
lem 4.10 with an ansatz space of degree p = 2 and at a level of refinement ` = 15. The
solution is computed over the time interval [0, 30]ms with 300 time steps.

affects the system’s dynamics. As depicted in Figure 5.18, we supplement the rotor with 8 damper rods, which
will be associated with the conductive materials. We distribute them uniformly along the boundary. Their
dimensions can be taken from Figure 5.18b. Moreover, we keep the notation and the coordinate systems
of Figure 5.15b. To apply our isogeometric approach, we need to find a new multipatch representation
for the rotor. In Figure 5.18a, we propose a possible representation of the rotor’s domain that obviously
guarantees the parametrizations’ regularity, see Definition 3.23. Note that no changes have been made for
the stator, and that the underlying equations of the magnetic part of the system correspond now to the
parabolic Problem 4.17.

119



(a) A possible multipatch representation. The
patches are delimited with the thick lines.
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taken from Figure 5.15b.

Figure 5.18: An illustration of a multipatch representation of the magnetic pendulum of Subsec-
tion 5.2.2 with eight uniformly distributed damper rods (in gold).
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Figure 5.19: Example of Subsection 5.2.2: Dynamics of the magnetic pendulum supplemented by
damper rods with electrical conductivity κ = 104 Sm−1, and κ = 5·104 Sm−1. The discrete
eddy-current problem corresponds to Problem 4.18 with an ansatz space of degree p = 2
and at a level of refinement ` = 15.

In the moving conductive rods, we know from the Faraday’s law (1.1c) that a current is induced in the pres-
ence of the rotating magnetic field. This leads to losses that damp the movement of the rotor, which gives rise
to damped oscillations. Depending on the material properties and the chosen configuration, this may lead
the magnetization and the rotating field from the stator to be synchronous after a few oscillations. In the
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Figure 5.20: Example of Subsection 5.2.2: Vector potential of the magnetic pendulum with the elec-
trical conductivity κ = 5 · 104 Sm−1 with damper rods at t = 10.1ms and ϑ = 0, namely,
ψ = α = 10.1 rad.

following, we test this effect with electrical conductivities κ = 104, 5 · 104 Sm−1, a contour Γe = ∂B(0; 0.39),
and otherwise keep the same configuration from the previous experiment.
The expected dynamics of the magnetic pendulum with conductive rods is shown in Figure 5.19. In Fig-
ure 5.19a, we see a decrease in the mechanical torque with increasing time. The damping is clearly more
noticeable for the bigger electrical conductivity κ = 5 · 104 Sm−1. Correspondingly, the phase shift between
the magnetization and the rotating magnetic field in the stator reduces proportionally inverse to the torque
until reaching a synchronous state starting from t = 10.1ms for κ = 5 · 104 Sm−1. This is depicted in Fig-
ure 5.19b. For convenience, we show the solution of the eddy-current problem at t = 10.1ms for an electrical
conductivity κ = 5 · 104 Sm−1 in Figure 5.20, where the rotor’s magnetization and the stator’s rotating field
are synchronous.

In the next and last chapter, we summarize and comment the main findings of this thesis, and discuss further
possibilities to extend and consolidate the presented method, namely, the direct non-symmetric isogeometric
FEM-BEM coupling for the simulation of electromechanical energy converters.
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6 Summary and prospects for future research

If... the past may be no Rule for the future, all
Experience becomes useless and can give rise
to no Inferences or Conclusions.

D. Hume

For the simulation of electromechanical energy converters, we considered a direct non-symmetric coupling
of the Finite Element Method (FEM) and the Boundary Element Method (BEM) in an isogeometric setting
for several model problems. This turns out to be a promising alternative to classical approaches. Indeed, the
coupling combines the advantages of the numerical methods in a complementary way: FEM allows the con-
sideration of non-linear Partial Differential Equations (PDEs) defined over bounded domains, the direct BEM
solves problems in unbounded or thin domains, which exhibit linear material behavior, and the isogeometric
framework avoids additional approximation errors due to the geometry representation and offers a straight-
forward h- and p-refinement procedure. Moreover, the coupling facilitates the incorporation of movements
without the need of remeshing by allowing the different subdomains to be modeled separately. In addition,
the convergence rates in the BEM domain are ameliorated if the dual problem is well-defined and its solution
is smooth enough, which is advantageous for the computation of forces and torques using the Maxwell Stress
Tensor (MST) method.

To arrive at themodel problems for domains with a general topology, we proposed amathematical approach to
derive a vector potential formulation of the eddy-current model, where we considered two types of Boundary
Conditions (BCs), which coincide with the electric and magnetic wall BC, respectively. By using results re-
lated to the de Rham complex, we obtained the well-known A-formulations from physics and engineering
literature. In the three-dimensional (3D) case, the unknown magnetic vector potential is sought for in ap-
propriate quotient spaces, which leads to solutions that have to be understood in the sense of equivalence
classes.
To apply Boundary Element Methods, suitable representation formulae have been introduced, which lead to
so called Boundary Integral Equations (BIEs) that are defined over the boundaries. An important tool in our
analysis consists in estimating the energy of interior domains (FEM domains) in terms of Boundary Integral
Operators (BIOs). This can be achieved in the scalar case by using the contractivity of (a shifted version of)
the double-layer operator, which is a known result [110]. Analogously, we proved a similar estimate for the
Maxwell double-layer operator.

Our analysis is based on the framework of Lipschitz continuous and strongly monotone operators. First, we
addressed a two-dimensional (2D) Laplacian interface problem, which arises for instance in the magneto-
static regime. We extended the analysis of [46] to our non-linear setting, and established well-posedness by
using an implicit stabilization that yields an equivalent problem, which is proved to be strongly monotone and
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Lipschitz continuous. For a particular type of non-linear materials, which are relevant in our applications, we
demonstrated the stability of the problem. Moreover, we showed quasi-optimality of the method with respect
to a Galerkin discretization. Therefrom, we derived a priori error estimates for conforming B-Spline spaces,
by using their approximation properties, which are provided in [21, 25].
Second, we considered an evolution problem in the 2D case. Such problems model the magnetoquasista-
tionary case in a 2D setting. We showed that the properties established for the previous interface problem
together with hemicontinuity are sufficient to prove well-posedness. However, note that for the parabolic
case, well-posedness can be established without resorting to an implicit stabilization, see [41]. In addition,
we provided a stability result analogously to [41].
Third, we studied a possible extension of a Laplacian interface problem to a Boundary Value Problem (BVP)
that is suitable to model typical cross sections of electric machines, i.e., the domain consists of two disjoint
nested subdomains, separated by an air gap. The model problem involves additionally homogeneous BCs in
the outermost and the innermost boundary, respectively, see Figure 4.1 for a visualization. The central idea
for the proof of strong monotonicity consisted in expressing the energies of the bounded domains in terms
of energies that are related to unbounded problems. For this, auxiliary exterior eigenvalue problems can be
defined as in [90]. Furthermore, we addressed the possible amelioration of the convergence rates in the BEM
domain, and underlined the conditions that need to be fulfilled to reach super-convergence. The argument
involves the dual problem, which arises by using an Aubin-Nitsche argument.
As a last model problem, we considered the magnetostatic case in three dimensions. The steps of the anal-
ysis are analogous to the 2D interface problem. However, due to the infinite-dimensional kernel of the curl
operator consisting of gradient fields, we opted for a formulation of the coupled variational problem in the
product space consisting of the quotient space [H(curl,Ω)] and its dual, which we characterized as a space
of divergence-free vector fields with additional constraints depending on the topology and the considered BCs.

The above mentioned theoretical findings were confirmed by several numerical examples. The first part of the
experiments was dedicated to the validation of the isogeometric approach. We verified the optimal behavior
of the convergence rates in interior domains as well as the rates of the corresponding Cauchy data and the
super-convergence of the solution in the BEM domains. Moreover, we discussed factors that may deteriorate
a theoretically possible super-convergence, namely, the position of the evaluation points and in particular the
quality of the numerical integration. The second part concerned the coupled electromechanical problem. For
illustration purposes, we coupled the magnetic and the mechanical subsystems weakly, and applied a classical
implicit Euler scheme for the discretization of time derivatives. The considered examples showcased both the
calculation of forces and torques as coupling quantities by using the MST method. Moreover, the underlying
equations covered both elliptic and parabolic cases.

Outlook To consolidate isogeometric FEM-BEM couplings for the simulation of electromechanical energy
converters, several aspects could be investigated and implemented in futureworks.

• An analysis of the fully discretized parabolic problem with a higher time order discretization in both
2D and 3D domains is still missing. For this, the results of [47] can be adapted and extended to the
non-linear setting with the drawback of the usual higher regularity assumptions in the time component.
Alternatively to the method of lines and time-stepping methods, an isogeometric space-time discretiza-
tion could also be investigated, see, e.g., [80].

• The development and analysis of adaptive isogeoemtric FEM-BEM couplings is to my knowledge still
an open problem.
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• The development of efficient preconditioning techniques that are tailored for the isogeometric frame-
work would help to make the method more efficient from a practical point of view.

• The optimization and extension of the software implementation is required. From a Technology Readi-
ness Level (TRL) perspective, the developed implementation is around TRL 4, see [28]. Nevertheless,
it provides a great starting point to investigate real-world problems and it highlights the benefits of the
isogeometric FEM-BEM coupling as a promising alternative for realistic production problems, since it
circumvents several practical difficulties encountered with classical approaches.

We also note that a particularly elegant and concise alternative to formulate Maxwell-based 2D and 3D prob-
lems can also be achieved by using the language of differential forms. We refer for instance to [76].
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A Monotone operators

We provide in this appendix a concise overview on some useful properties of monotone operators. For a more
general survey, we refer to [51, 122]. In particular, the different types of continuity and monotonicity are
compared in [51, Lemma 6.2] and [51, Lemma 6.4], respectively.

Let H be some Banach space, and let H ′ be its dual. We denote by 〈·, ·〉 the corresponding duality prod-
uct.

Definition A.1 (Monotone operators, [122]). The operator A : H → H ′ is called

• monotone, if and only if
〈Au−Av, u− v〉 ≥ 0 ∀u, v ∈ H.

• strictly monotone, if and only if

〈Au−Av, u− v〉 > 0 ∀u, v ∈ H and u 6= v.

• uniformly monotone, if and only if

∃CA
UM(‖u− v‖H) : 〈Au−Av, u− v〉 ≥ CA

UM(‖u− v‖H)‖u− v‖H ∀u, v ∈ H

with CA
UM : R+ → R+ being an increasing function that satisfy CUM(0) = 0.

• strongly monotone, if and only if

∃CA
M > 0 : 〈Au−Av, u− v〉 ≥ CA

M‖u− v‖2H ∀u, v ∈ H.

Definition A.2 (Coercive operators, [122]). The operator A : H → H ′ is coercive if

lim
‖u‖H→∞

〈Au, u〉
‖u‖H

→ ∞.

Lemma A.3. Provided A : H → H ′ is strongly monotone, then it is also coercive.

Proof. First, it is obvious that a strongly monotone operator is also uniformly monotone. For instance, choose
CA

UM(‖u − v‖H) = CA
M‖u − v‖H . Then, we refer to [53, Lemma 6] for a proof that uniformly monotone

operators are also coercive.

Definition A.4 (Continuous operators, [122]). The operator A : H → H ′ is called
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• hemicontinuous, if for all u, v, w ∈ H
ε 7→ 〈A(u+ εv), w〉

is continuous on [0, 1].

• Lipschitz continuous, if for all u, v ∈ H

∃CA
L > 0 : ‖Au−Av‖H′ ≤ CA

L ‖u− v‖H .
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B Vector potential formulation for the electric wall
case

For completeness, we present in the following the analogous vector potential formulation to Section 3.1 in
the case of an eddy-current model problem supplemented by an electric wall BC.

For every t ∈ T , b ∈ H(div 0,Ω) and e ∈ H(curl0,Ω). As illustrated in Figure 2.4, the decomposi-
tion

b = bC + η1

with bC ∈ HC
0 (div 0,Ω) and η1 ∈ H1(Ω) is readily obtained. By using Corollary 2.25, there exists a unique

vector potential a ∈H0(curl,Ω) ∩HΓ(div 0,Ω), such that

b = curla+ η1. (B.1)

In addition, due to the time dependence of the vector fields in (3.1a), for instance, a is an element of the
Bochner space L2(∂t, T ; H0(curl,Ω) ∩HΓ(div 0,Ω)).
Now, inserting (B.1) in (3.1a) yields

curl(e+ ∂ta) = −∂tη1 = 0.

Thereby, we used that for every t ∈ T , curl(e + ∂ta) ∈ HC
0 (div 0,Ω). Since HC

0 (div 0,Ω) is orthogonal to
H1(Ω), i.e.,HC

0 (div 0,Ω) ∩H1(Ω) = {0}, it follows that ∂tη1 = 0.
As a consequence, for all t ∈ T , it follows that (e + ∂ta) ∈ H0(curl0,Ω). Then, by the decomposition
(2.42a) together with (2.43a), there exists a unique scalar potential ϕ ∈ L2(T ; H(∇,Ω)) (up to a constant)
and η2 ∈ L2(T ; H2(Ω)), such that

e+ ∂ta = −∇ϕ+ η2. (B.2)

By inserting e from (B.2) into (3.1e), we arrive at

j = js + κ(−∂ta+ η2 −∇ϕ), (B.3)

which gives us a representation of the right-hand side of Ampère’s law (3.1b). Moreover, with divη2 = 0 we
obtain a continuity condition

div(js − κ∇ϕ) = div(κ∂ta) = 0.

With this, and for the sake of consistency with Ampère’s law, we set j ∈HΓ(div 0,Ω).
Using the constitutive law (3.1d) leads with curlη1 = 0 to

curl ν(|curla+ η1|) curla+ κ∂ta− κη2 = −κ∇ϕ+ js, (B.4)

129



which is formulated in terms of the vector potential a ∈ L2(∂t, T ; [H0(curl,Ω)]), a scalar potential ϕ ∈
L2(T ; H(∇,Ω)) and cohomology vector fields η1 ∈ L2(T ; H1(Ω)) and η2 ∈ L2(T ; H2(Ω)). Thereby, we used
(2.52a), i.e., the identificationH(curl,Ω)∩HΓ(div 0,Ω) ∼= [H0(curl,Ω)]. Similarly to themagnetic wall case
of Section 3.1, we may define j in = −κ∇ϕ+ js ∈ L2(T ; HΓ(div 0,Ω)).

Remark B.1. The topological terms η1 and η2 are can be eliminated analogously to Remark 3.1 by restricting
(b, e) to L2(T ; HC

0 (div 0,Ω))×L2(∂t, T ; [H0(curl,Ω)]).
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List of acronyms

1D one-dimensional
2D two-dimensional
3D three-dimensional
a.e. almost everywhere
AC Alternating Current
BC Boundary Condition
BEM Boundary Element Method
BIE Boundary Integral Equation
BIO Boundary Integral Operator
BLP Boundary Layer Potential
BVP Boundary Value Problem
CAD Computer Aided Design
CG Conjugate Gradient
DC Direct Current
DLP Double-Layer Potential
FEM Finite Element Method
IGA Isogeometric Analysis
IVP Initial Value Problem
MST Maxwell Stress Tensor
NURBS Non-Uniform Rational B-Splines
PDE Partial Differential Equation
PEC Perfect Electric Conductor
PM Permanent Magnet
PMC Perfect Magnetic Conductor
PMSM Permanent Magnet Synchronous Machine
ROI Region Of Interest
SLP Single-Layer Potential
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List of symbols

General
Symbol Meaning Page
R the set of real numbers 2
R+
0 the set of non-negative real numbers 5

× cross product, Cartesian product 9
N0 the set of non-negative integers 19
〈·, ·〉D duality product on D 20
(·, ·)D inner product on D 20
α multi-index 21
∀ for all 21
∃ there exists 25
∃! there exists a unique 25
‖[v]‖[H] quotient norm with [v] ∈ [H] 25
ker(·) kernel 33
Im(·) image 33
·⊥ orthogonal complement 35
·⊥,0 orthogonal complement in the corresponding null-space 36
∼= isomorphic 40
J·KΓ jump from the interior to exterior trace with respect to Γ 57
N the set of natural numbers 65
det determinant 69

Physical entities
Symbol Meaning Page
d(x, t) electric flux density 2
%(x, t) electric charge distribution 2
b(x, t) magnetic flux density 2
e(x, t) electric field 2
h(x, t) magnetic field 2
j(x, t) electric current density 2
ε electric permittivity 3
µ magnetic permeability 3
µ0 vacuum permeability 3
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µr relative magnetic permeability 3
H oriented magnitude of h(x, t) 3
B oriented magnitude of b(x, t) 3
bs magnetic saturation 3
hc magnetic coercivity 3
br magnetic remanence 4
br remanent magnetic flux density 4
hc coercive field 4
ν magnetic reluctivity 6
ν0 vacuum reluctivity 6
κ electrical conductivity 6
js imposed electric current density 6
k(x, t) surface current density 6
(x, ẋ, ẍ, . . .) kinematic variables (position, velocity, acceleration, . . .) 8
ωl angular velocity 8
m mass 9
Θ inertia tensor 9
fM total force 9
τM total torque 9
fM total force (unidirectional) 9
τM total torque (unidirectional) 9
θ moment of inertia 9
TM Maxwell stress tensor 9
a magnetic vector potential 51
ϕ magnetic scalar potential 51
η1, η2 cohomology vector fields 51
j in −κ∇ϕ+ js 52

Geometric entities
Symbol Meaning Page
x an element of the Euclidean space 2
Σl Lagrangian reference frame 8
xl coordinates in Σl 8
Σe Eulerian reference frame 8
xe coordinates in Σe 8
x0
e coordinates in Σe 8

Ψ,Θ,Φ Eulerian angles 8
T (t) orthogonal transformation 8
d dimension of the Euclidean space 18
Ω a bounded Lipschitz domain in Rd 18
Γ the boundary of Ω 18
NΓ the number of connected boundary parts in Γ 18
NC the number of cuts needed to render a connected domain simply-

connected
18
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D a placeholder that may refer to {Rd,Ω,Ω,Γ} 18
τi a boundary segment Γ 19
p̂i a local parametrization of Γ 19
ΓCk

interior cut 35
βi(Ω) Betti-numbers associated with Ω with i = 0, . . . , 3 for d = 3 37
Ωe Ωe = Rd\Ω (if unbounded) 40
β1(Γ) Betti-number associated with Γ 45
ΓFEM union of connected parts of Γ that are associated with the FEM

domain
53

ΓBEM union of connected parts of Γ that are associated with the BEM
boundary

53

Ξ (Ξ) univariate (multivariate) knot vector 65
p (p) degree of a univariate (multivariate) B-Spline basis function 65
bpi (b

p
i ) univariate (multivariate) B-Spline basis function 65

rpi (r
p
i ) univariate (multivariate) Non-Uniform Rational B-Spline basis

function
66

wi (wi) set of univariate (multivariate) weighting functions 66
κl a single patch domain 67
f l a regular parametrization from [0, 1]d → κl 67
Nκ number of patches 68
K a multipatch representation of either Ω or Γ 67
h global mesh size 67
ci control points 68
Ξ̃ (Ξ̃) reduced univariate (multivariate) knot vector 70
p̃ (p̃) reduced degree of a univariate (multivariate) B-Spline basis func-

tion
70

Operators, functions, and functionals
Symbol Meaning Page
∂t partial derivative with respect to time t 2
div divergence operator 2
curl curl operator 2
g a non-linear function describing an admissibleB-H curve with Lip-

schitz continuity constantCgL and strongmonotonicity constantCgM
5

∂x partial derivative with respect to x 21
δx Dirac distribution with support x 21
A a non-linear operator with Lipschitz continuity constant CA

L and
strong monotonicity constant CA

M

26

∇ gradient operator 28
U a non-linear operator with Lipschitz continuity constant CU

L and
strong monotonicity constant CU

M

29

γ0 standard trace operator with continuity constant C0 30
γU1 conormal derivative with continuity constant C1 30

135



γn normal trace operator with continuity constant Cn 30
γ× tangential trace operator with continuity constant C× 30
γD Dirichlet trace operator with continuity constant CD 30
γU
N Neumann trace operator with continuity constant CN 30

Id identity operator 30
δΓ Dirac distribution with support Γ 30
∆ Laplace operator ∆ = div∇ 31
∇Γ surface gradient operator 41
curlΓ surface curl operator 41
curlΓ scalar surface curl operator 41
divΓ surface divergence operator 42
×n (n×) rotation operator (its adjoint) 43
Ĩd augmented identity matrix 53
c̃url 2D curl operator 53
curl 2D scalar curl operator 53
u∗(·, ·) fundamental solution of the Laplace equation 55
ΨSL (ΨSL) single-layer potential (vectorial) 55
ΨDL (ΨDL) double-layer potential (vectorial) 55
V0 (A0) single-layer boundary integral operator (vectorial) with ellipticity

constant CV0 (CA0)
57

K0 (C0) double-layer boundary integral operator (vectorial) with contrac-
tion constant CK0 (CC0)

57

K′
0 (B0) adjoint double-layer boundary integral operator (Maxwell) 57

W0 (N 0) hyper-singular boundary integral operator (vectorial) with elliptic-
ity constant CW0 (CN 0)

57

S int (Sext) interior (exterior) Steklov-Poincaré operator 61
S int (Sext) interior (exterior) vectorial Steklov-Poincaré operator 62
F a continuous and linear functional 90

Spaces
Symbol Meaning Page
Ck(D) (Ck(D)) space of k-times continuously differentiable functions (vector

fields)
19

C∞(D) (C∞(D)) space of smooth functions (vector fields) 19
Ck,ι(D) (Ck,ι(D)) space of Hölder continuous functions (vector fields) 19
C0,1(D) (C0,1(D)) space of Lipschitz continuous functions (vector fields) 19
L2(D) (L2(D)) space of square integrable functions 20
D(D) (D′(D)) space of test functions (distributions) 21
D(D) (D′(D)) space of test vector fields (distributions) 21
W k,p(Ω) Sobolov space, p ≥ 1, k ≥ 0 22
Hs(Ω) (Hs(Ω)) Hilbert space for functions (vector fields), s ∈ R+ 22
Hs

loc(R
d\Ω) space with local Hs-behavior 23

L2
loc(R

d\Ω) space with local L2-behavior 23
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Hs(Γ) Hilbert space on a Lipschitz boundary, s ∈ [−1, 1] 23
L2(Γ) H0(Γ) 23
L2(T ; H(D)) Bochner space with instantaneous values in H(D) 24
L2(T ; H(D)) Bochner space with instantaneous values inH(D) 24
L2(∂t, T ; H(D)) Bochner space with continuous weak time derivative (functions) 24
L2(∂t, T ; H(D)) Bochner space with continuous weak time derivative (vector fields) 24
[H] quotient space for a generic Hilbert space H 25
H(∇,Ω) energy space with respect to ∇ 28
H(curl,Ω) energy space with respect to curl 28
H(div,Ω) energy space with respect to div 28
Hλ(∇,Ω) {v ∈ H(∇,Ω) : γ0v = λ} 32
Hλ(curl,Ω) {v ∈H(curl,Ω) : γ× v = λ} 32
Hλ(div,Ω) {v ∈H(div,Ω) : γnv = λ} 32
Hλ(∇,Ω,Γi) {v ∈ H(∇,Ω) : γ0v = λ on Γi} 32
Hλ(curl,Ω,Γi) {v ∈H(curl,Ω) : γ× v = λ on Γi} 32
Hλ(div,Ω,Γi) {v ∈H(div,Ω) : γnv = λ on Γi} 32
H(∇0,Ω) {v ∈ H(∇,Ω) : ∇v = 0} 33
H(curl0,Ω) {v ∈H(curl,Ω) : curlv = 0} 33
H(div 0,Ω) {v ∈H(div,Ω) : divv = 0} 33
H0(div 0,Ω) {v ∈H(div 0,Ω) : γnv = 0} 34
[H(∇,Ω)] H(∇,Ω)/R 34
[H(curl,Ω)] H(curl,Ω)/∇(H(∇,Ω)) 34
[H(div,Ω)] H(div,Ω)/ curl(H(curl,Ω)) 34
H0(curl0,Ω) {v ∈H(curl0,Ω) : γ× v = 0} 37
H1(Ω) first de Rham cohomology space associated with Ω 37
H2(Ω) second de Rham cohomology space associated with Ω 37
HC

0 (div 0,Ω) {v ∈H(div 0,Ω) : 〈γnv, 1〉ΓCk
= 0 ∀ k = 1, . . . , NC} 38

HΓ(div 0,Ω) {v ∈H(div 0,Ω) : 〈γnv, 1〉Γk
= 0 ∀ k = 1, . . . , NΓ} 38

H
1
2
D(Γ) γD(H

1(Ω)) 42
H

1
2
×(Γ) γ×(H

1(Ω)) 42
H

1
2
t (Γ) space of tangential fields with regularity 1

2 42
H− 1

2 (curlΓ,Γ) {ψ ∈H− 1
2

D (Γ) : curlΓψ ∈ H− 1
2 (Γ)} 42

H− 1
2 (divΓ,Γ) {ψ ∈H− 1

2
× (Γ) : divΓψ ∈ H− 1

2 (Γ)} 42
H− 1

2 (curlΓ 0,Γ) {ψ ∈H− 1
2 (curlΓ,Γ) : curlΓψ = 0} 44

H− 1
2 (divΓ 0,Γ) {ψ ∈H− 1

2 (divΓ,Γ) : divΓψ = 0} 45
H1(Γ) first de Rham cohomology space associated with Γ 45
H

− 1
2

? (Γ) {ψ ∈ H− 1
2 (Γ) : 〈ψ, 1〉Γ = 0} 46

[H− 1
2 (Γ)] H− 1

2 (Γ)/R 46
[H− 1

2 (curlΓ,Γ)] H− 1
2 (curlΓ,Γ)/H− 1

2 (curlΓ 0,Γ) ∩H
1
2
×(Γ) 46

S0p(Ω) H(∇,Ω) conforming B-Spline space 69
S1p(Ω) H(curl,Ω) conforming B-Spline space 69
S2p(Ω) H(div,Ω) conforming B-Spline space 69
S3p(Ω) L2(Ω) conforming B-Spline space 69
S0p̃(Γ) H

1
2 (Γ) conforming B-Spline space 70
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S1,‖p̃ (Γ) H− 1
2 (curlΓ,Γ) conforming B-Spline space 70

S1,⊥p̃ (Γ) H− 1
2 (divΓ,Γ) conforming B-Spline space 70

S2p̃(Γ) H− 1
2 (Γ) conforming B-Spline space 70

S1,⊥p̃,0 (Γ) {ψ ∈ S1,⊥p̃ (Γ) : divΓψ = 0} 70
H H(∇,Ω)×H− 1

2 (Γ) 75
HT L2(∂t, T ; H(∇,Ω))× L2(T ; H− 1

2 (Γ)) 82
H0 H0(∇,Ω1,Γ0,1)×H0(∇,Ω2,Γ0,2)×H

− 1
2

? (Γ) 86
Hv [H(curl,Ω)]×H− 1

2 (divΓ 0,Γ) 93
S1p(curl0,Ω) {v` ∈ S1p(Ω) : curlv` = 0} 97
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