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ABSTRACT

Advancement of additive manufacturing is driving a need for design tools that exploit the increasing fabrica-
tion freedom. Multi-material, 3D printing allows for the fabrication of components from multiple materials with
different thermal, mechanical and “active” behavior that can be spatially arranged in 3D with a resolution on the
order of tens of microns. This can be exploited to incorporate shape changing features into additively manufactured
structures. 3D printing with a downstream shape change in response to an external stimulus such as temperature,
humidity or light is referred to as 4D printing. In this paper, a design methodology to determine the material
layout of 4D printed materials with internal, programmable strains is introduced to create active structures that
undergo large deformation and assume a desired target displacement upon heat activation. A level set approach
together with the extended finite element method (XFEM) is combined with density-based topology optimization to
describe the evolving multi-material design problem in the optimization process. A finite deformation hyperelastic
thermomechanical model is used together with a higher-order XFEM scheme to accurately predict the behavior of
nonlinear slender structures during the design evolution. Examples are presented to demonstrate the unique capa-
bilities of the proposed framework. Numerical predictions of optimized shape-changing structures are compared to
4D printed physical specimen and good agreement is achieved. Overall, a systematic design approach for creating
4D printed active structures with geometrically nonlinear behavior is presented which yields non-intuitive material
layouts and geometries to achieve target deformations of various complexities.
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1 Introduction
Advanced additive manufacturing (AM) technologies like three-dimensional (3D) printing have improved vastly in

recent years in terms of accuracy, material variety and reliability. Recently, the concept of 4D printing was introduced
by [1], where external stimuli are used to trigger shape-changes after a structure is 3D printed. The shape-change over
time is therefore seen as the fourth dimension. In [2] this concept was used to design transforming shape memory polymer
structures utilizing the thermomechanical response of a glassy polymer within an elastomer matrix. A similar material
response was studied in [3] to create active origami structures. Exploiting the shape memory behavior of a 3D printed glassy
polymer, [4] used level set (LS) topology optimization to create printed active composites which assume a target shape after
a thermomechanical training and activation cycle. As stated by [5], the drawback of these traditional approaches of 4D
printing is the fact that a complex thermomechanical training and activation cycle is required through which a shape-change
can be triggered. To alleviate this issue, [5] introduced a novel approach called “direct 4D printing” where no external
training cycle is required before the shape change occurs upon printing. The so called “printing strain” used in this method
for creating a shape change, is an inelastic eigenstrain that is programmed into the 3D printed structure during the printing
process. This strain is compressive, and its magnitude can be designed by controlling the time and intensity of the UV-curing
of photo polymers in the polyjet process. In the current work, two polymers with different magnitudes of eigenstrain and
different glass transition temperatures are used to achieve a desired shape change upon release of the built-in eigenstrain. A
component fabricated in this manner therefore consists of multiple well-bonded polymers with a high-fidelity geometry, and
with each polymer containing a spatially-variable eigenstrain. Upon printing, the component is heated to release the built-in
eigenstrain of the rubbery polymer (active material) by lowering the stiffness of the glassy polymer (passive material). This
is achieved through heating of the printed structure beyond the glass transition temperature of the passive material causing
a permanent shape change. Alternatively, a frontal polymerization process has been proposed by [6] and [7]. This process
uses the change in intensity of photo polymerization to create spatially varying material parameters leading to 4D printed
self-folding origami structures. Shape changes are triggered by a solvent entering a loose polymer matrix which then causes
isotropic swelling. In this work, the direct 4D printing method is employed as a convenient way to incorporate spatially
varying eigenstrains during fabrication of self-actuating plate-like structures. For a more detailed study of the process of
direct 4D printing, the interested reader is referred to [5].

In order to exploit spatially varying inelastic strains to obtain complex target displacements upon activation, an inverse
design problem is formulated and solved. Given a desired target deformation, the optimal geometry and material layout of
active 4D printed components are determined in a systematic manner. In previous works [8] and [9], this has only been
done for 1D rod structures or for simple target shapes [5] where it was possible to pre-determine the optimal material layout
intuitively. A similar approach based on classical origami designs is demonstrated in [10] for self-folding composite struc-
tures. In this paper, a new multi-material topology optimization formulation is used to determine the material arrangement of
shape-changing 4D printed structures undergoing large deformation. The proposed computational design framework accu-
rately captures the physical response of the structure by employing a hyperelastic thermomechanical model combined with
a higher-order extended finite element method (XFEM) formulation. A hybrid approach combining LS-XFEM and density-
based topology optimization is introduced to solve the multi-material design problem. These topology optimization schemes
have each demonstrated individually a wide range of applicability. An overview of LS and density topology optimization
methods is given in [11], [12], and [13] respectively. Some applications of topology optimization can also be found in the
field of design optimization of self-folding structures, for example: [14] used a density-based method to optimize the layout
of monolithic liquid crystal elastomers in order to create folding liquid crystal elastomer actuators. However, a simplified
linear elastic model operating in the small strain regime greatly limits the accuracy of this approach. A different simplified
approach was taken by [15] where shape optimization is employed to determine the optimal layout of cuts to design active
3D origami and kirigami structures using 4D printing. And just recently, [16] applied the concept of moving morphable com-
ponents (MMC) [17] in combination with a genetic algorithm (GA) for topology optimization of post-buckled 3D kirigami
structures. Even though each of these approaches greatly reduces the number of design variables and hence the complexity of
the optimization problem, only a sub-space of all possible designs is explored. To take advantage of the entire design space
while considering a fully nonlinear structural response, a combined LS-XFEM and density topology optimization framework
for designing 4D printed active structures is proposed in this paper.

The design, fabrication and activation process of 4D printed structures as proposed in this work is conceptually shown in
Fig. 1, where target displacement matching is the objective. This can be achieved by either specifying the desired target shape,
i.e. position of points of the structure in the deformed (activated) configuration, or by specifying the required displacement
of certain points of the structure to achieve the desired deformation. In this work, the target displacement of target points
on the domain boundary is specified to achieve target deformations, see Fig. 1 (a). Starting from an initially flat plate (b),
a level set function (LSF) is used to define an initial arrangement of solid and void domains. Within the solid domain, a
fictitious density field is used to interpolate the different properties of an active and a passive material. Both the LSF and the
density distributions are discretized on the XFEM background mesh. The resulting parameter optimization problem is then
solved by a nonlinear programming method. After a final design (i.e. geometry and material distribution) has been found
(c), sub-domains of active and passive material are extracted in a post-processing step (d). Once the flat structure has been

MD-18-1343, Geiss, 2



Fig. 1. Conceptual steps of the design process from (a) the definition of a target displacement to (f) an activated structure using direct 4D
printing.

printed (e), the shape-change is activated through relaxation of the compressive printing strain in the active material in a
65.0◦C hot water bath. This is achieved by heating up the structure above the glass transition temperature of the passive, stiff
material at which its stiffness is significantly reduced. At this state, the eigenstrains of the active material can relax leading
to the desired change in shape. After a subsequent cool-down, the passive material stiffens and a permanently deformed
structure is obtained (f).

The theoretical background of the physical model, the spatial discretization of state and optimization variables, and the
optimization problem along with examples are presented in the remainder of this paper, which is organized as follows: Sec. 2
introduces the continuum model of the nonlinear thermomechanical phenomena. Sec. 3 provides details on the optimization
approach and the XFEM model. Sec. 4 describes the validation of the thermomechanical model, and design optimization
examples are presented in Sec. 5 along with experimental results. A summary of the work is presented in Sec. 6.

2 Hyperelastic Thermomechanical Model
The total design domain Ω0

D is comprised of solid and void sub-domains (i.e. Ω0
S and Ω0

V ), such that Ω0
D = Ω0

S ∪Ω0
V .

Within the solid domain Ω0
S (see Fig. 2 (a)), balance of linear momentum in the undeformed configuration is described by

the static equilibrium. The weak form of the governing equation using a total Lagrangian formulation is stated as:

R =
∫

Ω0
S

(δF : P−δu ρ0B)dV −
∫

Γ0
T̄

δu T̄ dA = 0 (1)

where F = ∂x/∂X is the total deformation gradient tensor with x = u+X defining the relation between spatial coordinates
in the undeformed (X) and deformed (x) configurations Ω0

S and ΩS respectively. The displacements are denoted by u and
δu are the admissible test functions. The first Piola-Kirchhoff stress tensor is denoted by P and B is the prescribed body
force vector in the undeformed configuration. The density is denoted by ρ0 and ū is the prescribed displacement field on
Γ0

ū, see Fig. 2 (a). The prescribed traction vector on Γ0
T̄ is T̄ and the total design domain boundary Γ0 is comprised of

Γ0 = Γ0
T̄ ∪Γ0

ū. A hyperelastic Saint Venant-Kirchhoff constitutive model for isotropic compressible solids is used in the
current work. The hyperelastic Saint Venant-Kirchhoff material model is suitable for large deformations at small strains,
which is the case for the slender structures targeted in this work. The proposed design optimization framework can easily be
extended to operate on nonlinear constitutive models for both compressible and incompressible materials. This is especially
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Fig. 2. (a) Design domain decomposition into solid (Ω0
S) and void (Ω0

V ) sub-domains using LS-XFEM along the interface Γ0
S,V . Within the

solid domain, a further distinction is made between an active material (Ω0
SA

) and a passive material (Ω0
SP

). (b) Multiplicative decomposition
of the total deformation gradient into thermal and mechanical deformation gradient.

relevant for simulating rubbery, nearly-incompressible polymers and therefore should be treated in future work. The Saint
Venant-Kirchhoff material model is defined as:

S̃ = 2µ EM +λ tr(EM)I (2)

where S̃ is the second Piola-Kirchhoff stress tensor in the intermediate configuration (see Fig. 2 (b)) and EM is the Green-
Lagrange strain tensor defined as the deformation of the intermediate configuration to the thermomechanical deformed
configuration. The second order identity tensor is denoted by I. The Lamé constants are denoted by µ and λ which are
related to the Young’s modulus E and Poisson’s ratio ν as follows:

µ =
E

2(1+ν)
and λ =

Eν

(1+ν)(1−2ν)
(3)

In the context of topology optimization using the density method, the Young’s modulus is manipulated as a function of the
design variables whereas the Poisson’s ratio is kept constant. A more detailed discussion of the optimization problem is
presented in Sec. 3.1.

To model the inelastic printing strain built into the elastomer, a residual thermal strain model is used as suggested by [5].
In a finite deformation case, special consideration with respect to the decomposition of the total deformation gradient is re-
quired. As indicated in Fig. 2 (b), a multiplicative decomposition of the total deformation gradient F into an inelastic thermal
deformation gradient FT and an elastic mechanical deformation gradient FM is used. The multiplicative decomposition of
the total deformation gradient can be stated as:

F = FMFT (4)

For the thermal deformation gradient tensor, a linear thermal expansion model is assumed:

FT = (1+αk [T̄ −T0])I (5)

where αk is the linear coefficient of thermal expansion (CTE) of either solid material (k = active or passive) representing
the amount of inelastic expansion. The externally applied temperature is T̄ which is a linear function of pseudo time of the
deformation process and T0 is the reference temperature. Using the previously defined relationships, the Green-Lagrange
strain tensor is defined as:

EM =
1
2
(CM− I) (6)
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Fig. 3. Adaptive load-stepping technique used to solve the nonlinear problem. (a) Temperature load profile, (b) follower load profile and (c)
displacement response over pseudo time.

where the right Cauchy-Green deformation tensor is CM = (FM)T FM .
For integration of the governing equation stated in Eqn. (1) in the undeformed configuration, the second Piola-Kirchhoff

stress tensor S̃ is pulled-back from the intermediate configuration Ω̃S to the undeformed configuration Ω0
S using the Piola-

transform. This transformation is defined as:

S = (FT )
−1S̃(FT )

−T JT (7)

where JT is the Jacobian of the thermal deformation gradient tensor JT = det(FT ). The first Piola-Kirchhoff stress tensor in
the undeformed configuration is finally computed as:

P = F S (8)

2.1 Follower Pressure Load
In order to enforce an end-stiffness constraint on the final, deformed structure, a follower pressure load is introduced

and added to the weak form of the governing equation (1). To this end, a deformation dependent (i.e. follower) Neumann
boundary condition is employed, which is formulated in the deformed configuration and mapped back to the undeformed
configuration. Using Nanson’s formula [18], the relationship between surface areas in the undeformed and deformed con-
figuration is defined. The non-conservative follower pressure can simply be evaluated in the undeformed configuration as
follows:

RΓP =−
∫

Γ0
T̄

δu (F)−T N J P̄ dA (9)

where dA is an infinitesimal surface area in the undeformed configuration, J = det(F) is the determinant of the total defor-
mation gradient and N is the surface normal in the undeformed configuration. The surface pressure scalar reformulated in
the undeformed configuration is denoted by P̄. For simplicity it is assumed that P̄ is not state dependent. A more detailed
discussion of the end-stiffness constraint is presented in Sec. 3.4.

2.2 Adaptive Load-Stepping Approach
To efficiently predict the nonlinear deformation of 4D printed self-deforming structures, an adaptive load-stepping

scheme is used for the XFEM analysis. Schematically, the evolution of the temperature load T (t), applied follower load
P(t) and displacement response u(t) as a function of pseudo time t is depicted in Fig. 3. An adaptive time-stepping scheme
is used such that the initially set time step size ∆t0 is reduced by a factor f in case a Newton-Raphson solve does not con-
verge to an equilibrium solution for a set maximum number of nonlinear iterations. This is, for example, encountered when
domains of intermediate (weak) material dominate the structural response during the topology optimization process. In such
an event, the time step is adaptively reduced until a specified number of (converged) nonlinear solutions are obtained at the
reduced time step. After that, the original time step size is gradually restored. The total number of time steps is adjusted
accordingly to reach the final loading time tLoad . The temperature load T is increased linearly between t0 and tLoad to achieve
a maximum value T̄ while the follower surface pressure load P is zero during this time. Conceptually, this is shown in
Fig. 3 (a) and (b), respectively. The maximum value of T̄ corresponds to the inelastic printing strain. Between tLoad and tPert
the external temperature load is kept constant at T̄ while a constant non-zero follower perturbation load P̄ is applied. The
magnitude of the non-zero follower perturbation load is chosen sufficiently small in order to achieve fast convergence of the
nonlinear solver, ideally in a single iteration. This is valid for enforcing an end-stiffness constraint measuring the change in
total strain energy based on a linear concept.

MD-18-1343, Geiss, 5



3 Multi-Material Topology Optimization
A multi-material topology optimization approach is adopted to determine the geometry and the spatial material arrange-

ment of 4D printed active structures. This approach builds on a LS-XFEM optimization framework previously used to
study problems in structural mechanics [4, 19, 20] and fluid mechanics [21, 22]. This section provides an overview of the
multi-material topology optimization approach, while more details regarding immersed boundary techniques used for design
optimization are provided in [23].

3.1 Combined LS-Density Geometry and Material Description
The three-material problem depicted in Fig. 2 (a) is described by a combined LS-density approach. A nodally discretized

LSF is used to distinguish between a solid and a void domain where negative LS values (φi < 0) represent the solid domain
Ω0

S and positive LS values (φi > 0) represent the void domain Ω0
V . The zero LS iso-contour (φi = 0) represents the phase

boundary Γ0
S,V between the solid and the void domain. Nodal LS values φi are explicitly defined in terms of nodal design

variables sφ

j using a linear filtering scheme as proposed by [24]. This linear filtering technique enhances convergence of the
optimization problem by increasing the zone of influence of each design variable and is formulated as:

φi =
∑

Nn
j=1 wi js

φ

j

∑
Nn
j=1 wi j

, wi j = max(0,rs−|Xi−X j|) (10)

where Nn is the number of finite element (FE) nodes within the smoothing radius, rs, and |Xi−X j| is the Euclidean distance
between node i and j measured in the undeformed configuration (indicated by a superscript 0). Index i denotes the current
node for which the LS value is computed and index j denotes each node within the smoothing radius contributing to the LS
value φi.

Combining the level set method (LSM) with the XFEM, yields a crisp solid-void interface which is naturally suited for
AM reducing the need for post-processing. However, as mentioned in [24] and [12], a strong influence of the final solution
on the initial guess is observed in LS-XFEM topology optimization. Moreover, since LS-XFEM topology optimization
is solely driven by localized sensitivities along the interface, the appearance of new holes within the solid domain is not
possible [4]. One way to mitigate this issue and the dependency of the final design on the initial guess is to use topological
derivatives, as suggested by [25]. In the current work, a sufficiently large number of initial void inclusions is used to mitigate
this dependency.

In addition, a density-based topology optimization approach is used within the solid domain Ω0
S in order to distinguish

between an active material (Ω0
SA

) and a passive material (Ω0
SP

). This combined approach allows for the description of the

multi-material topology optimization problem at hand. Nodally discretized, fictitious density design variables 0 ≤ sρ̃

i ≤ 1
are used to track the material distribution within the solid phase. A standard solid isotropic material with penalization
(SIMP) approach [26] is adopted. Considering an element-wise constant density interpolation, the material property within
an element is defined as:

pe(ρ̂e
i ) = pe

min +(pe
max− pe

min)(ρ̂
e
i )

β (11)

where pe represents any elemental material property like the Young’s modulus, density or CTE. Physical properties corre-
sponding to the active material and passive material are denoted by pe

min and pe
max, respectively and β is the so called SIMP

exponent used to achieve different interpolation behavior. Different SIMP exponents are used for interpolation of differ-
ent material properties. Elementally averaged fictitious density values ρ̃e

j are obtained from nodal fictitious density design

variables sρ̃

i as:

ρ̃
e
j =

∑
Ne

n
i=1 sρ̃

i
Ne

n
(12)

where Ne
n is the number of nodes per element j. A linear elemental filter similar to the one stated in Eqn. (10) is then used

to compute a smoothed fictitious elemental density ρ̄e
i from the elementally averaged fictitious densities ρ̃e

j. In addition, a
smoothed Heaviside projection scheme proposed by [27] is used subsequently to mitigate the blurriness introduced by the
linear filtering scheme. The projection function used to compute the fictitious projected elemental density ρ̂e

i is stated as:

ρ̂
e
i =

tanh(γ(ρ̄e
i −η))+ tanh(γ η)

tanh(γ(1−η))+ tanh(γ η)
(13)
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where γ is the projection sharpness parameter and η is the projection threshold parameter. The projection (13) is applied
through a continuation approach where the projection threshold parameter is gradually increased in the optimization process.
More details regarding this approach are found in the discussion of the results in Sec. 5.

3.2 XFEM Model
The XFEM is used in this work to discretize the weak form of the governing equation (1) on non-conforming sub-

domains. This immersed boundary method is utilized to distinguish between the solid (Ω0
S) and the void (Ω0

V ) sub-domains
along the interface (Γ0

S,V ) defined by the zero LS iso-contour as depicted in Fig. 2 (a). The advantage of this discretization
method is that a high spatial resolution of the interface described by the LSM is retained throughout the optimization process
while operating on a fixed background mesh, thus avoiding the need for re-meshing. The XFEM approach, however, requires
enriching the classical FE approximation spaces with additional shape functions [28] in order to avoid spurious coupling
and load transfer between physically disconnected domains. Note that, in general, enrichment functions are also needed to
capture weak and strong discontinuities across material phases. However, this requirement does not apply here, as the XFEM
is applied to distinguish only between the solid (Ω0

S) and the void (Ω0
V ) phase. Thus, the displacement field only exists

within the solid sub-domain and any element within the void phase can be omitted. A generalized Heaviside enrichment
approach [29] is used where the displacements in the solid phase are approximated by standard FE shape functions. The
nodal displacements ui(X) of node i within the solid domain Ω0

S are approximated as [22]:

ui(X) =
M

∑
m=1

(
H(−φ(X))

Ne
n

∑
k=1

Nk(X)δk
mquk

im

)
(14)

where H is the Heaviside function as a function of the LS value φ(X) defined as:

H(φ) =

{
1 if φ(X)> 0
0 if φ(X)≤ 0

(15)

The maximum number of enrichment levels is denoted by M, Nk(X) is the elemental shape function and δk
mq is the Kronecker

delta which selects the active enrichment level q for node k. δk
mq ensures that displacements at node k are only interpolated by

a single set of degrees of freedom (DOFs) defined at node position X such that the partition of unity principle is satisfied [20].
The Heaviside function H is used to only activate shape functions within the solid phase as displacement solutions in the void
domain would be physically meaningless. For more details about the generalized Heaviside enrichment strategy employed
in this work, the interested reader is referred to [23], [30], and [31].

For stabilization of the XFEM discretization, a geometric preconditioning scheme as proposed by [32] is used. This
geometric preconditioner ensures that DOFs with vanishing zones of influence, which arise when the LS intersection is too
close to a FE node, are re-scaled or eliminated in order to provide numerical stability.

Dirichlet boundary conditions applied to the solid sub-domain Ω0
S are enforced weakly using Nitsche’s method [33]. The

weak form of the governing equation (1) is augmented with the weak boundary condition residual contribution RD
Γ

stated as:

RD
Γ =−

∫
Γ0

ū

[[δu]] P(u) NdA

∓
∫

Γ0
ū

P(δu) N [[u]]dA

+ γD

∫
Γ0

ū

[[δu]] [[u]]dA

(16)

where the jump operator [[•]] is defined as:

[[u]] = u− ū , [[δu]] = δu−δū (17)

The penalty factor to enforce the prescribed Dirichlet boundary condition ū is denoted by γD. The first term in Eqn. (16)
corresponds to the standard consistency term, the second term to the adjoint consistency, and the last term is the Nitsche
penalty term which explicitly controls the accuracy at which the Dirichlet boundary condition is enforced.
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3.3 Selective Structural Springs
To avoid ill-conditioning of the linear system due to rigid body modes (RBM) of disconnected solid sub-domains sur-

rounded by the void phase (see Fig. 2 (a)), selective structural springs are introduced. This approach was initially proposed
by [21] for fluid problems and is extended to nonlinear structural mechanics in this work. To identify disconnected solid
domains “floating” within the void domain, an auxiliary indicator field modeled as a linear diffusion problem is introduced
within the solid domain. Alternatively, globally applied structural springs could be used, as done by [19]. The weak form of
the governing equation for the auxiliary scalar indicator field θ̃ is formulated as:

RAux =
∫

Ω0
S

δ∇θ̃ (κ∇θ̃)+δθ̃ h(θ̃− θ̃re f )dV (18)

where δθ̃ are the admissible test functions and κ denotes the thermal conductivity. The bulk heat transfer coefficient is
denoted by h and θ̃re f is the reference indicator value. The diffusion problem (18) along with the appropriate boundary
conditions will lead to indicator values of close to 0.0 in domains that are connected to where the Dirichlet boundary condition
of θ̃ = 0.0 is applied and indicator values close to 1.0 in disconnected sub-domains. It should be noted that a non-physical
“bulk” convection term in Eqn. (18) prevents ill-conditioning of the linear diffusion system even if disconnected sub-domains
exist. After the auxiliary indicator field solution has been obtained, a smoothed Heaviside projection function is used to
enforce a 0-1 indicator field. The weak form of the governing equation of the nonlinear structural problem (1) is augmented
by the following selective spring stiffness term:

RSpr =
∫

Ω0
S

δuu I r Ek θ̄ dV s (19)

where r is the relative spring stiffness ratio, and Ek is the Young’s modulus of either solid material (k = active or passive).
For more details regarding selective structural springs, the reader is referred to [34].

In summary, the governing equation in weak form is composed of the following terms which have been introduced
above, see (1), (9), (16), (18), and (19):

R̃ = R+RΓP +RD
Γ +RAux +RSpr = 0 (20)

3.4 Formulation of Optimization Problem
The combined LS-XFEM and density approach introduced in Sec. 3.1 describes the geometry and the material distribu-

tion in parameterized form. These parameters define the optimization variables s. The optimization problem considered here
can be written as follows:

min
s

z(s,u) = ztar(s,u)+ zreg(s)

s.t. g j(s,u)≤ 0 j = 1 ... Ng

s ∈Π = {RNs |sL ≤ s≤ sU}
u ∈ RNu

(21)

where the nodal displacements u satisfy the discretized governing equation R̃ = 0 and implicitly depend on the design
variables s. The number of design variables is denoted by Ns and the number of state variables is Nu. The design variables
include both the nodal LS values sφ

i and the fictitious nodal SIMP densities sρ̃

i , such that si = [sφ

i ,s
ρ̃

i ]. The lower and upper
bounds of the optimization variables are denoted by sL and sU , respectively. The number of inequality constraints g j is
denoted by Ng. In this work, a nested analysis and design approach (NAND) [35] is used where the displacements u are
considered dependent variables of s and satisfy the governing equations for a given design. The advantage of this approach
is that different solution algorithms can be utilized for solving the “forward” analysis problem and the optimization problem.

Displacement matching of active structures is the main objective of this work. The first part of the objective func-
tion is therefore formulated as a minimization of the squared difference between the nodal displacements u and the target
displacements utar at a specified target set Γ0

tar ⊂ Γ0:

ztar(s,u) =
∫

Γ0
tar

(u−utar)
2dA (22)
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It should be noted that even though a target displacement is specified a priori, no constraints with respect to the required
geometry and material layout are imposed. The resulting, in general, non-intuitive geometry and material layout required to
achieve a deformation that best matches the target displacements utar is solely a result of solving the optimization problem
of Eqn. (21). Selecting the target set Γ0

tar, which in this work is defined as a subset of the design domain boundary Γ0, is
in general non-trivial and highly dependent on the desired target deformation. Mechanical constraints like self-penetration
or non-uniqueness of geometric mappings of planar structures onto the desired target deformation need to be considered in
order to define a well-posed optimization problem. More details on the target displacements and the corresponding target
sets considered in this work are provided in Sec. 5.

In addition to target displacement matching, a regularization term is added to the objective function in order to avoid
the emergence of irregular geometric artifacts [11]. Here, regularization is introduced through a perimeter penalty that is
formulated as:

zreg(s,u) = γper

∫
Γ0

S,V

dA (23)

where γper is the perimeter penalty factor chosen such that smoothing of the interface geometry is obtained while not allowing
Eqn. (23) to dominate the overall objective.

Besides the objective contributions defined in Eqn. (22) and Eqn. (23) two inequality constraints are imposed. The first
one is a volume constraint bounding the maximum amount of solid phase allowed within the entire design domain:

g1(s,u) =
Ω0

S

(Ω0
S +Ω0

V )
− γv ≤ 0 (24)

where γv controls the maximum allowed solid volume Ω0
S relative to the entire design domain volume Ω0

D = Ω0
S ∪Ω0

V . To
control the stiffness of the structure in the activated state, an end-stiffness constraint is enforced. Following the work initially
proposed by [36], it is formulated as:

g2(s,u) =
(

S ′−S
S

)2

− γs ≤ 0 (25)

where S is the strain energy of the system after activation (with no external load applied) and S ′ is the strain energy after
applying an additional external perturbation load. The limit in relative amount of change in strain energy with and without
the final perturbation load is denoted by γs. The end-stiffness constraint therefore requires a certain stiffness of the structure
in the activated configuration in order to resist the perturbation pressure applied in the opposite direction of the desired
deformation.

3.5 Design Sensitivity Analysis using the Adjoint Method
Due to a large number of design variables, the design sensitivities of objective and constraints are computed using the

adjoint method. Since the mechanical model is static and conservative, the adjoint problem only needs to be solved at the
end of the loading process [37]. When the end-stiffness constraint is enforced, the design sensitivities for the displacement
matching objective need to be evaluated at the load increment tLoad while the sensitivities for the end-stiffness constraint are
evaluated at tPert .

Following the work of [24, 38], the derivative of the objective z with respect to the vector of design variables s for a
quasi-static case is:

dz
ds

=
∂z
∂s

+

(
∂z
∂u

)T du
ds

(26)

where the first term represents explicit dependencies while the second term represents the implicit sensitivities. Considering
the two sets of nodal design variables, sφ and sρ̃, and the filtering and projection relationships defined in Sec. 3.1, the total
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derivative of (26) can be further expanded into:

du
ds

=


∂u
∂φ

dφ

dsφ

∂u
∂ρ̂

e
∂ρ̂

e

∂ρ̄e
∂ρ̄e

∂ρ̃
e

dρ̃
e

dsρ̃

(27)

Satisfying the governing equation (20) for every design, i.e. R̃ = 0, the derivative du/ds can be computed from:

dR̃
ds

=
∂R̃
∂s

+
∂R̃
∂u

du
ds

= 0 (28)

Solving Eqn. (28) for du/ds and combining it with Eqn. (26) yields:

dz
ds

=
∂z
∂s
−
(

∂z
∂u

)T (
∂R̃
∂u

)−1
∂R̃
∂s

(29)

where the following adjoint problem can be identified:

(
∂R̃
∂u

)T

λ =
∂z
∂u

(30)

The adjoint solution is denoted by λ, which is used to finally compute the expression for the design sensitivities as:

dz
ds

=
∂z
∂s
−λ

T ∂R̃
∂s

(31)

It should be noted that in the current work, the explicit contribution ∂z/∂s and the post-multiplication term ∂R̃/∂s are obtained
via finite differences on an elemental level. In a similar fashion as discussed above, the design sensitivities of the constraints
with respect to the design variables can be obtained. For more details regarding the computation of design sensitivities with
the XFEM, the interested reader is referred to [39].

4 Validation of the Hyperelastic Thermomechanical Model
The finite deformation thermomechanical model introduced in Sec. 2 is validated against experimental results and an

analytical beam model to establish confidence in the XFEM model for design optimization. The test specimen for model

Fig. 4. Bi-layer strips with different active material ratios (in %) used for XFEM model validation. The solid-void interface of the strips along
the X1 axis is cut by the XFEM and tetrahedralized for volume integration. (a) Simulation results and (b) experimental results.
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Table 1. XFEM model of bi-layer validation strips.

Dimensions 80.0×5.0×1.0 mm

Mesh Size 80×5×10

Weak BC Penalty γD = 250.0

Prescribed Thermal Load T̄ = 1.0 K

Reference Temperature T0 = 0.0 K

Table 2. Material parameters of Tango+ and Vero.

Young’s Modulus Tango+ ET = 0.6 MPa

Young’s Modulus Vero EV = 8.0 MPa

Printing Strain Tango+ αT = 0.05 1
K

Printing Strain Vero αV = 0.0 1
K

Poisson Ratio of Tango+, Vero νT = νV = 0.4

validation are rectangular, bi-layer strips with different volume ratios of active versus passive material, leading to different
curvature values. The bi-layer composite is made out of Tango+ as the active elastomer in the top layer (Ω0

SA
) and Vero as

the passive glassy polymer in the bottom layer (Ω0
SP

) printed on a Stratasys Keshet J750 multi-material 3D printer, with a
printing layer thickness of 27 µm. The XFEM predictions of the bi-layer strips are shown in Fig. 4 (a) while the printed and
activated specimen are shown in Fig. 4 (b).

The model parameters and the material parameters of the XFEM model are given in Tables 1 and 2 respectively. Only
one quarter of the domain is simulated and mechanical symmetry boundary conditions are applied along the X1 and X2 plane
using the weak boundary condition formulation stated in Eqn. (16). The XFEM is used to describe the solid-void boundary
of the bi-layer strips along the X1 axis as highlighted in the insert in Fig. 4 (a). Note that the void domain is not shown in
Fig. 4 (a) for clarity. This approach replicates a non-conforming mesh for analyzing the solid domain just as it is present
during the subsequent design optimization process. The varying volume fraction of active material (Tango+ represented in
blue in the top layer) and passive material (Vero represented in red in the bottom) is modeled by uniformly changing the
material ratios respectively. The computational mesh consists of 1630 HEX20 XFEM elements of which 400 are intersected
resulting in a total of 26,227 DOFs. HEX20 elements are 20 node hexahedral serendipity elements with a total of 60 DOFs.

The bending behavior of the bi-layer strips due to different thermal expansion of the layers is studied for five distinct
volume fractions of active material. The curvature is measured at the mid-plane of the strips in the X2 symmetry plane. A

Fig. 5. Comparison of mean curvatures obtained by simulations and experiments for different Tango+ volume ratios.
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Table 3. XFEM model parameters for design optimization problems.

Dimensions (Quarter Domain) 80.0×80.0×1.0 mm

Mesh Size (Quarter Domain) 32×32×10

Weak BC Penalty γD = 250.0

Prescribed Thermal Load T̄ = 1.0 K

Reference Temperature T0 = 0.0 K

comparison of the curvature values obtained by the 3D XFEM model, a 1D Timoshenko beam model as outlined in [5] and
physical experiments for different Tango+ volume fractions is presented in Fig. 5. It should be noted that due to a small
sample size of 8 samples per volume fraction, error bars are not meaningful and therefore omitted when plotting the mean
curvature in Fig. 5. Good agreement is achieved between the 3D XFEM model and the physical experiments, whereas the
1D model tends to overestimate the curvature, especially for large volume fractions of Tango+. This is due to assumptions
made by the Timoshenko beam model which do not account for Poisson effect as well as transverse thermal expansion. Both
of those phenomena are, however, present in the physical experiments where a double curvature (i.e. cylindrical bending) is
observed for Tango+ volume fractions greater than 50%. These phenomena are accurately captured in the 3D XFEM model
where the curvature along the X1 direction is in fact reduced due to an increasing effect of curvature along the X2 direction.

5 Design Optimization Examples
The proposed design methodology for finding the optimal design of 4D printed active structures is applied to four

design problems. The LSF and the nodal densities for all design examples are discretized using trilinear shape functions.
The material properties are approximated element-wise constant and are obtained using an elemental average of all nodal
fictitious density values (12) together with the SIMP power law (11). In this work, β = 3.0 is used for interpolating the
Young’s modulus and CTE while β = 1.0 is used for interpolating the physical density. The values of the SIMP exponent β

have been chosen such that a good convergence towards either active or passive material is achieved.
The projection (13) is applied through a continuation approach which represents a trade-off between convergence be-

havior and computational efficiency of the optimization process. Initially, the projection threshold parameter is set to η = 0.5
and the sharpness parameter is γ = 0.01. After a converged initial design is obtained, (e.g. after 100 design iterations), the
sharpness parameter is increased to γ = 3.0 and the end-stiffness constraint is enforced. The projection sharpness parameter
is then doubled every 100 design iterations. This procedure is repeated four times until γ = 48.0 and a sufficient approxima-
tion to a bi-material design within the solid domain is obtained. After the overall geometry has converged to an optimum (e.g.
after 100 design iterations), the LS design variables stay unchanged while the material distribution within the solid domain
is further optimized, to yield a bi-material design with a certain end-stiffness. For both sets of design variables (nodal LS
values sφ

i and nodal fictitious densities sρ̃

i ), a smoothing radius of rs = 4.0 mm is used.
The optimization problem (21) is solved using the gradient-based nonlinear programming scheme Globally Convergent

Fig. 6. Initial design of a quarter of the self-deforming structure with (a) the initial LSF and (b) the mechanical boundary conditions.
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Table 4. Optimization problem parameters.

Perimeter Penalty γper = 5.0 ·10−2

Lower bound for LS design variables sφ

L = -1.25

Upper bound for LS design variables sφ

U = +1.25

Lower bound for density design variables sρ̃

L = 0.0

Upper bound for density design variables sρ̃

U = 1.0

GCMMA initial asymptote adaption parameter 0.5

GCMMA asymptote adaption parameter 0.7

Method of Moving Asymptotes (GCMMA) [40] without inner iterations. The respective parameters of the optimization
problem are listed in Tab. 4. The optimization problem is considered converged once a relative residual norm drop of the
Karush - Kuhn - Tucker (KKT) conditions [41] greater 1.0 ·1010 is achieved and all constraints are satisfied.

For all examples, the initial design is a flat square plate composed of uniform, intermediate material of density sρ̃ =
0.5 in Ω0

S with an initial seeding of square holes representing Ω0
V , see Fig. 6 (b). The size of the cuboid inclusions is

ri = [14.5,14.5,14.5] mm for all examples. Different target displacements are prescribed to certain subsets of the domain
boundary Γ0 in order to achieve target deformations of varying complexities. A design with the desired mechanical response
is found through optimizing the solid-void geometry as well as the active-passive material distribution within the solid
domain by solving the optimization problem outlined in Sec. 3.4. The material properties used for all design examples are
listed in Tab. 2 and parameters specific for each design example are listed in Tab. 5.

For all subsequent design problems, quarter symmetry of the mechanical problem about the X1 and the X2 plane is
exploited by analyzing only one quarter of the design domain and enforcing appropriate mechanical boundary conditions
weakly via Nitsche’s method (16). In addition, for the design problems of Sec. 5.2, Sec. 5.3, and Sec. 5.4, design symmetry
about the X1−X2 diagonal is introduced by assigning a set of independent nodal LS values and nodal fictitious density values
to only one eighth of the total design domain. The initial design used for all design optimization examples along with the
symmetry boundary conditions is depicted in Fig. 6 (b).

The LSF of the initial design is shown in Fig. 6 (a) and computed as a signed-distance function from an array of cuboids
defined as:

φ(X) = 1−min
i

((
X1− X̃1i

r1i

)n

+

(
X2− X̃2i

r2i

)n

+

(
X3− X̃3i

r3i

)n) 1
n

(32)

where i is the number of individual cuboids, ri is the radius of the i-th cuboid, and X̃i is the position of the center of the i-th
cuboid in X1, X2 and X3 direction respectively. The roundness parameter is set to n = 100.0. The parameters of this arbitrary
initial design have been determined through numerical studies to minimize the dependence of the final design on the initial
geometry.

The plane creating the zero LS iso-contour is shown in gray (Fig. 6 (a)) and the corresponding solid-void material layout
is depicted in Fig. 6 (b). It should be noted that LS design variables are only defined on the top surface of the initially flat
plate, such that φ(X1,X2,X3) = φ(X1,X2). The LS values of all nodes which are not on the upper surface are dependent on
the corresponding design variable hosted by the respective node on the top surface. This guarantees to always have a vertical
cut in X3 direction represented by the XFEM (see insert in Fig. 6 (b)) and it prevents the optimizer from locally reducing the
plate thickness during the optimization process.

The target displacements are monitored at target sets Γ0
tar defined at the tips of the structure (along the symmetry

boundaries). To guarantee that these tips are mechanically connected to the base of the structure, the LS field along the
symmetry boundaries is fixed to be negative (see Fig. 6 (a)). This means, strips along the symmetry boundaries are excluded
from the LS-XFEM design domain and remain solid throughout the optimization process. However, regarding the density
optimization, this domain is still considered design domain in which the material distribution can be altered.

The nonlinear thermomechanical model is discretized by quadratic HEX20 XFEM elements. While the in-plane dis-
cretization varies for each example, 10 HEX20 brick elements are used for discretization in thickness direction in order to
accurately capture the bending behavior of the slender structures and to avoid shear locking exhibited by lower-order brick
elements. An iterative Newton-Raphson scheme is used to solve the nonlinear problem that is considered as converged when
a relative nonlinear residual norm drop greater 1.0 ·106 is achieved. Convergence is facilitated by the adaptive load-stepping

MD-18-1343, Geiss, 13



Table 5. Parameters used for each design example.

Twisted Figure-Eight Cylinder Gripper Four-Legged Gripper Elevated Plane

Initial Void Pattern 4×4×1 4×4×1 4×4×1 6×6×1

Volume Constraint γv 0.15 0.20 0.10 0.10

Change in Strain Energy γs 5.0 ·10−5 5.0 ·10−5 1.0 ·10−6 5.0 ·10−5

Perturbation Pressure P̄ 1.0 Pa 0.1 Pa 1.0 Pa 1.0 Pa

GCMMA Step Size 0.04 0.03 0.03 0.03

approach discussed in Sec. 2.2 where the time step reduction factor is set to f = 0.25 and the maximum number of nonlinear
iterations is set to 40. Again, the importance of the adaptive load-stepping scheme with respect to the convergence of the
nonlinear problem during the optimization process should be emphasized. Especially for designs with large amounts of
weak material, i.e. material with intermediate densities, adaptively reducing the load step is crucial in order to facilitate con-
vergence of the Newton-Raphson scheme. The linearized sub-systems are solved using the Multifrontal Massively Parallel
Solver (MUMPS) [42, 43].

To improve the computational efficiency of the optimization approach, the converged nonlinear solution of the state
variables of the previous design is used as an initial guess for analyzing the current design. This approach is well suited for
problems with static conservative mechanical models and incremental design changes where the displacement solution of the
current design only differs slightly from the displacement behavior of the previous design [44]. If the design change and the
resulting change in the displacement response is too large, i.e. no equilibrium configuration is obtained using the converged
solution of the previous design as an initial guess, the design is analyzed by simulating the entire load path.

In order to stabilize disconnected solid sub-domains throughout the optimization process, selective structural springs as
introduced in Sec. 3.3 are used. The thermal conductivity in this auxiliary diffusion problem is set to κ = 10.0, the bulk heat
transfer coefficient is h = 0.01 and the reference indicator value is θ̃re f = 1.0. A uniform initial indicator value of θ̃0 = 1.0
is applied to the entire domain and a relative spring stiffness ratio of r = 1.0 ·10−6 is used. Adiabatic boundary conditions
on the auxiliary indicator field are assumed on boundaries where no displacements are prescribed. To further improve the
numerical stability of the proposed approach, a staggered solution algorithm is employed. First, the linear diffusion problem
of the auxiliary indicator field (18) is solved and subsequently the nonlinear thermomechanical problem (1) is solved in a
one-way coupled manner.

The final design for each example problem is fabricated and activated using the direct 4D printing method introduced
by [5]. As described in Sec. 4, for fabrication of the optimized shape-changing structures, a Stratasys Keshet J750 multi-
material 3D printer is used to deposit the Tango+ and Vero material accurately onto a build tray. The zero LS iso-contour is
used to extract the solid-void boundary of the final design, while an iso-volume created along a fictitious density threshold
of ρ̂

e = 0.5 is extracted to create distinct active and passive material domains. These post-processing steps are performed
in ParaView [45], as it provides a convenient interface between the ExodusII mesh format and many computer-aided design
(CAD) file types. In the current work, a stereo-lithography (STL) mesh file is extracted from the converged optimization
result (provided in ExodusII format by the employed LS-XFEM optimization framework) for each material sub-domain.
The STL file format is commonly supported by 3D printing software and therefore used to import the CAD data into the
Stratasys printing software. In the Stratasys pre-processing environment, Tango+ is assigned to the active material domain
represented by 0 ≤ ρ̂

e < 0.5, while Vero is assigned to the passive material domain corresponding to 0.5 ≤ ρ̂
e ≤ 1. The

active structures are printed in a flat configuration and only deform upon release of the inelastic printing strain in the Tango+
material. This is triggered by submerging the initially flat, bi-material structures into a water bath of 65.0◦C which causes the
stiffer Vero material to soften due to its glass transition temperature at around 53.0◦C. This allows the built-in compressive
printing strain in Tango+ to be released resulting in a shape-change. The deformation is made permanent after the structure
has cooled off to room temperature. A more detailed discussion of the direct 4D printing process as well as the activation
steps can be found in [5].

It should be noted that all experimental results are shown for qualitative comparison only as a quantitative comparison
is beyond the scope of this paper. The experimental verifications show the feasibility of the numerically determined designs
and demonstrate the applicability of the proposed design framework to solving real-world design problems in a systematic
manner.
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Fig. 7. Evolution of (a) normalized objective, (b) volume constraint and (c) end-stiffness constraint for the twisted figure-eight example.

5.1 Twisted Figure-Eight Example
The first example demonstrates the proposed computational design framework with the design of an initially flat

plate that deforms into a twisted figure-eight like structure. The target displacement is tracked at the following target
set Γ0

tar = [X1,X2]; at X1 = [80.0,0.0,0.0] mm the target displacement is set to utar = [−80.0,0.0,+50.0] mm and at
X2 = [0.0,80.0,0.0] mm the target displacement is set to utar = [0.0,−80.0,−50.0] mm (see Fig. 6 (b)). This target dis-
placement corresponds to a structure where two of the target points meet at the top center, and the other two target points
meet at the bottom in the center of the full domain. The dimensions of the (quarter) design space and the mesh size used for
this example are listed in Tab. 3. Representative for the first three design optimization problems, a total number of 47,200
design variables result from the problem setup shown in Fig. 6. The number of DOFs of the XFEM model reduces from
initially about 126,000 to 30,500 at the lowest due to an expanding void phase which is excluded from the XFEM analysis.

The final design, obtained after about 624 design iterations is shown in Fig. 8 (a) in the activated, deformed stage
(Tango+ is shown in blue, Vero is shown in red, void phase is not shown). A clear solid-void interface defined by the zero
iso-contour of the LS field can be seen along with an almost binary material layout within the solid phase. A small fraction of
elements with intermediate fictitious densities remains which is attributed to the finite transition regions between active and
passive material. Using a yet higher projection, smaller filter radius or finer background mesh would help to further reduce
those intermediate density domains, however, their effect on the performance of the final design is negligible. Fig. 8 (b)
shows the corresponding printed and activated structure with good qualitative agreement compared to the XFEM prediction.
Both the numerical XFEM model as well as the physical sample assume the twisted figure-eight target deformation well.

Fig. 8. Final design of the twisted figure-eight example in deformed configuration. (a) XFEM prediction and (b) activated 4D printed sample.
In the printed sample, Tango+ is transparent and Vero is white.
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Fig. 9. Final twisted figure-eight design in undeformed configuration, (a) extracted material phases and (b) printed structure.

A slight overlap of the tips of the four legs is seen in the numerical prediction. This is due to the lack of a self-contact
formulation which is beyond the scope of this work. Intuitively, a perfectly symmetric design is expected in order to meet
the twisted figure-eight target deformation. A slight asymmetry can, however, be observed in Fig. 8, for both the XFEM
simulation and the physical experiment. This is attributed to a local minimum identified by the GCMMA during the design
optimization process. The increasing projection parameter then locks the design into this local minimum as the design space
becomes increasingly more non-convex with a higher projection parameter γ.

The evolution of the normalized objective z/z0, where z0 is the objective value of the initial design, the volume constraint
(24) and the end-stiffness constraint (25) are shown in Fig. 7 for this first design optimization example. A similar behavior
is also observed for all other numerical examples. After initial oscillations in the objective, which are due to the violation of
the volume constraint, a smooth and converging behavior is seen. The slight increase of the objective every 100 iterations
is due to an increasing projection parameter γ which makes the design space increasingly more nonlinear. Therefore, the
optimization algorithm needs a few design iterations to minimize the objective again until convergence is obtained. It is
observed that even though initially the volume constraint is active, it becomes inactive within the first 20 design iterations.
The motivation for the solid strips to become thinner is to reduce the effect of double curvature due to the isotropic inelastic
printing strain which impedes on the primary bending behavior. Therefore, the volume constraint stays inactive for the
remainder of the optimization process. As mentioned before, the end-stiffness constraint is not enabled during the first 100
design iterations. Once enabled, it is initially violated but quickly becomes inactive after about 50 design iterations. Using
the smoothed Heaviside projection in combination with the end-stiffness constraint greatly benefits the final stiffness of the
structure as intermediate material is mitigated with an increasing projection parameter γ.

Fig. 9 (a) shows the final design in the undeformed configuration after two distinct material phases have been extracted
in a post-processing step. In the current and in future examples, Tango+ is printed transparent while Vero is printed in either
white or magenta, see Fig. 9 (b). Overall, this example shows a first application of the proposed method and it demonstrates
that desired target deformations can be achieved upon activation of an initially flat, plate-like structure.

Fig. 10. Final design of the cylinder gripper in deformed configuration. (a) XFEM prediction and (b) activated experiment where Tango+ is
transparent and Vero is white.
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Fig. 11. Final cylinder gripper design in undeformed configuration, (a) extracted material phases, (b) printed specimen.

5.2 Cylinder Gripper Example
A similar design study as performed in Sec. 5.1 is repeated for finding the optimal design of an initially flat structure

which deforms into a gripper enclosing a cylinder as its target. The target displacement of the gripper is monitored at the
target set Γ0

tar which is comprised of X1 = [0 ≤ X1 ≤ 30.0,75.0 ≤ X2 ≤ 80.0,−0.5] mm and X2 = [75.0 ≤ X1 ≤ 80.0, 0 ≤
X2 ≤ 30.0,−0.5] mm spanning the tips of the gripper. The desired deformation of the tips of the structure is described by
a surface of a cylinder aligned with the X3 axis, with radius Rtar = 50.0 mm and a depth of X3tar = −45.0 mm. The XFEM
model parameters listed in Tab. 3 are used. Parameters specific to this example are found in Tab. 5.

A smooth evolution of objective and constraints is observed as discussed before. The convergence history plots are
omitted here for brevity. Fig. 10 shows the final design (a) in the deformed configuration next to (b) the experimental
result for the cylinder gripper. Qualitatively, the structure fabricated and activated through direct 4D printing assumes the
anticipated target deformation well. From the predicted XFEM simulation it can clearly be seen that the optimizer took
advantage of the possibility to use double curvature in order to achieve the cylindrical target deformation. Moreover, a non-
uniform curvature in the outward pointing legs is used to best match the target deformation at the tips of the gripper. The
optimal curvature is controlled by the amount of stiff, passive Vero material along the top of the gripper (shown in red). Pure
Vero is also placed as fillets at the tips of the gripper to control the bending behavior and to also contribute towards a higher
stiffness of the overall structure.

In Fig. 11 the corresponding initial, flat configuration of the optimal design is shown. As before, distinct material phases
were extracted from the final fictitious density field in a post-processing step; see Fig. 11 (a). Fig. 11 (b) shows the printed
physical specimen for the self-deforming cylinder gripper. This example successfully demonstrates that the proposed design
method is not limited to finding the optimal geometry of simple target deformations, but also handles more sophisticated ones.
Non-uniform double curvature is used in the optimized gripper design to obtain the desired deformation upon activation.

Fig. 12. Final design of the four-legged gripper example in deformed configuration. (a) XFEM prediction, (b) activated experiment. In the
printed specimen, Tango+ is transparent and Vero is magenta.
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Fig. 13. Final four-legged gripper design in undeformed configuration, (a) extracted material phases and (b) printed sample.

5.3 Four-Legged Gripper Example
The design of an active four-legged gripper is the aim of the third design optimization example. The target displace-

ment is formulated such that gripping of an object is simulated. In order to achieve this, a target displacement of utar =
[−80.0,0.0,−50.0] mm is defined at X1 = [0.0,80.0,0.0] mm and a similar target displacement of utar = [0.0,−80.0,−50.0] mm
is prescribed at X2 = [80.0,0.0,0.0] mm. This target displacement describes a structure where all four target points coincide
in the center of the design domain below its initial, flat configuration. As in previous examples, the XFEM model parameters
listed in Tab. 3 are used and the parameters specific to this four-legged gripper example are found in Tab. 5.

The optimal design layout in the deformed configuration is depicted in Fig. 12 showing both (a) the XFEM prediction
and (b) the physical sample of the four-legged gripper. Due to the increased complexity of the target deformation, this design
problem exhibits design phenomena previously not observed in Sec. 5.1 and Sec. 5.2. The final design of the gripper consists
of four legs which deform to match the target deformation in a non-intuitive manner. Since an end-stiffness constraint is
enforced, convex-concave curvature sections are created to increase the stiffness of the four legs. These interesting features
demonstrate how geometry features triggered by a mechanical stiffness constraint yield a meaningful, complex active gripper
structure. Due to the finite width of the legs, self-penetration of all four gripper legs is observed at the bottom center of the
structure. This is caused by inability of the XFEM model to account for contact. In the physical experiment, self-penetration
is avoided by overlapping of the four gripper legs at different X3 depths. However, in order to more accurately account for
a behavior like this, contact should be included in future work. Overall, good qualitative agreement between the XFEM
prediction and the direct 4D printed four-legged gripper is observed.

Fig. 13 shows the corresponding initial, undeformed design for the four-legged gripper. The distinct domains of convex-
concave curvature can be identified in both the XFEM model (Fig. 13 (a)) as well as the printed specimen (Fig. 13 (b)) where
the bi-layer beam composition is locally inverted at about the half-way point of each gripper leg.

5.4 Elevated Plane Example
The last example used to demonstrate the capabilities of the proposed multi-material topology optimization framework

is the design of a self-elevating plane. For this design example, the domain size is increased to 120.0×120.0×1.0 mm for
the quarter domain. This increase in in-plane domain size improves the ability to capture double curvature with the given
eigenstrain provided by the active material. A mesh size of 48× 48× 10 elements is used to discretize one quarter of the
design domain, leading to initially 276,000 free DOFs. To achieve self-elevation of the domain in the center of the design
space by 40.0 mm in the X3 direction, a target displacement of utar = [0.0,0.0,+40.0] mm is defined at the center of the
domain spanned by X1 = [0.0≤ X1 ≤ 15.0,0.0≤ X2 ≤ 15.0,0.0] mm. In addition, the out-of-plane displacement is fixed at

Fig. 14. Final design of the self-elevating plane in the deformed configuration. (a) XFEM prediction and (b) direct 4D printed specimen. In
the printed sample, Tango+ is transparent and Vero is magenta.

MD-18-1343, Geiss, 18



Fig. 15. Final elevated plane design in undeformed configuration, (a) extracted material phases and (b) printed sample.

the tips along the symmetry planes defined by X1 = [105.0 ≤ X1 ≤ 120.0,0.0 ≤ X2 ≤ 5.0,0.0] mm and X2 = [0.0 ≤ X1 ≤
5.0,105.0≤ X2 ≤ 120.0,0.0] mm. The remaining XFEM model parameters for this example are listed in Tab. 3 and all other
problem specific parameters are listed in Tab. 5.

The final design of the self-elevating plane in the deformed configuration is shown in Fig. 14. Both, (a) the XFEM
prediction and (b) the direct 4D printed physical specimen are depicted. The target deformation is achieved well in both
simulation and physical experiment. A cross-shaped structure attached to the platform at the center is created. Each member
of the cross exhibits a non-uniform active-passive material layout to yield distinct domains of concave-convex bending upon
activation. This change in curvature is necessary to elevate the center of the structure in X3 direction while introducing no
out-of-plane displacement and rotation at the tips.

Fig. 15 shows the undeformed structures of the elevated plane corresponding to (a) the XFEM simulation and (b) the
printed sample before activation. A thresholding scheme is employed to eliminate any remaining intermediate densities and
to clearly identify active and passive material domains required for direct 4D printing.

6 Conclusions
A topology optimization approach for designing direct 4D printed, shape-changing structures undergoing large defor-

mations was proposed. A combined LS-XFEM and density-based topology optimization approach was introduced in order
to describe the multi-material optimization problem. The LS-XFEM was employed to describe the solid-void domains in
a crisp manner, while the SIMP method was used within the solid domain to distinguish between active and passive ma-
terial sub-domains. The hyperelastic thermomechanical model was discretized by quadratic displacement elements using
an XFEM formulation. The inelastic printing strain introduced through the direct 4D printing process was modeled as a
residual isotropic eigenstrain. Accurate prediction of the behavior of self-deforming structures by the proposed large strain
thermomechanical XFEM model was verified by comparing numerical results against physical experiments and an analytical
beam model.

The capabilities of the proposed design optimization methodology were demonstrated through four example problems.
The objective was to match a given target displacement subject to a volume constraint and an end-stiffness constraint in order
to assure structural integrity of the final design. Optimal designs matching target displacements of a twisted figure-eight
design, a cylinder gripper, a four-legged gripper, and a self-elevating plane were successfully obtained using the proposed
framework. Geometries and material arrangements of increasing complexity were created that take advantage of mechanical
phenomena such as double curvature, locally concave-convex curvatures, and domains of uniform passive material in order
to meet the end-stiffness constraint.

After having demonstrated the design capabilities of the proposed framework, there are a few shortcomings that need to
be addressed in future work. These include the simplifications made with regards to structural instabilities, such as buckling
and snap-through, which are a common phenomenon in slender structures. These structural instabilities have been avoided by
using sufficiently thick structures in the current work, but need to be considered in general, when large compressive stresses
are present in the structure initiated by the active material. Previous works in the field of modeling of slender structures
incorporating eigenstrains include [44] and [46] where especially [46] and [47] consider fully nonlinear behavior including
instabilities. Future work should study the influence of structural instabilities on the optimal design of 4D printed structures
and develop a systematic optimization approach to either leverage them as a desired design feature or to avoid them in order
to increase design robustness.

Moreover, the third example experienced a significant amount of self-penetration in the activation stage due to the lack
of a self-contact formulation within the employed XFEM framework. Incorporating an XFEM contact formulation with
multi-material topology optimization as studied by [20] into the proposed design framework is another topic which needs to
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be addressed in future work.
This paper has presented an initial demonstration of a systematic design approach for 4D printed structures undergoing

large deformations. In addition, design problems with more complex target displacements should be studied in future work.
Physical specimen for all design examples were fabricated using direct 4D printing. Upon activation, qualitatively good

agreement between the XFEM prediction and the physical response was seen. Discrepancies between the numerical results
and the experiments are mainly attributed to minor anisotropy of the material properties with respect to the print direction,
ambient effects like gravity, and viscosity of the water bath on the soft structures during the activation process. None of
those physical effects have been accounted for in this work. However, in order to achieve better agreement between XFEM
simulations and 4D printed specimen, all of those effects should be accounted for in future studies.
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