

on the basis of a decision by the German Bundestag FKZ: 03EI1010A

Backtesting the open source electricity market model AMIRIS by simulating the Austrian day-ahead market

Felix Nitsch¹, Christoph Schimeczek¹

17th EnInnov Conference February 2022

Acknowledgements: Kristina Nienhaus and the AMIRIS team Sebastian Wehrle

¹ Department of Energy Systems Analysis Institute of Networked Energy Systems German Aerospace Center (DLR) Curiestraße 4, 70563 Stuttgart, Germany

Wissen für Morgen

Motivation for agent-based modelling

Background

- Transformation of electricity system
 - Rising shares of renewable energies
 - Growing demand for flexibility
- Electricity systems are complex systems
 - Interdependencies of players
 - Emergence and non-linearity

Aim

 Understanding market interactions of renewable energies and flexibility options, and their accompanying market effects

Method

- Agent-based modelling of electricity markets using AMIRIS
 - Modelling the German (and European) electricity markets
 - Agents decision rules can be of various model types (optimization, simulation, etc.)

Simulating electricity markets with AMIRIS

The model

Agent-based Market model for the Investigation of Renewable and Integrated energy Systems

Development

- 10+ years at German Aerospace Center
- 5-10 developers
- Open source since 2021
- German market, expanded in recent projects

Strengths

- Individual decision-making
- Many paradigms
- Explicit policy modelling
- Simulating energy system not in equilibrium
- Explorative and evolutionary nature

Published open source under Apache 2 license See also: https://gitlab.com/dlr-ve/esv/amiris

Main agent types in AMIRIS

Input

- RE feed-in
- Load
- Power plant park
- Efficiencies
- Plant availabilities
- Fuel & CO₂ costs

Output

- Electricity prices
- Power plant dispatch
- Storage dispatch
- Market values
- Emissions
- System costs

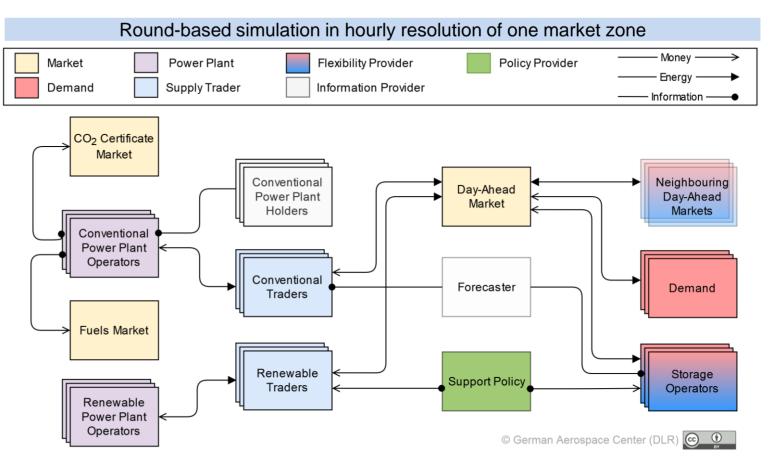


Figure 1: AMIRIS architecture

AMIRIS parameterization for Austria

Idea

- Proof-of concept for originally German electricity market model
- Starting point for further analysis

Methodology

- Collecting open data*
- Parameterization of agents

Outcome

- Fully open model parameterization for Austria in year 2019
- Backtesting against historical prices
- Published under CC-BY-4.0 license <u>https://gitlab.com/dlr-ve/esy/amiris/examples</u>

* Sources: <u>SMARD Strommarktdaten</u>, <u>E-CONTROL</u>, <u>APG</u>, <u>EEX</u>, <u>Destatis</u>

Table 1: AMIRIS input data

	Parameter	Value	Unit
Demand	Electric load	time series	MWh/h
Imports/Exports	Electric load	time series	MWh/h
Emission allowances	CO ₂	time series	EUR/t
Fuel prices	Gas	time series	EUR/MWh _{th}
	Coal	5	EUR/MWh _{th}
	Oil	40	EUR/MWh _{th}
Capacities	Coal	264	MW
	Gas Turbine	1,208	MW
	Gas CC	3,260	MW
	Biomass	500	MW
	Oil	178	MW
	Pumped Hydro Storage	3,400	MW
Feed-in	Hydro Reservoir	time series	MWh/h
	Run-of-river	time series	MWh/h
	Waste	time series	MWh/h
	PV	time series	MWh/h
	Wind	time series	MWh/h
Specific emissions	Gas	0.201	tCO ₂ /MWh _{th}
	Coal	0.354	tCO ₂ /MWh _{th}
	Oil	0.264	tCO ₂ /MWh _{th}
Availabilities	Gas	97	%
	Coal	98	%
	Oil	93	%
Minimum and maximum	Gas	30 - 60	%
efficiencies	Coal	40	%
	Oil	35	%

Results: price-duration curve

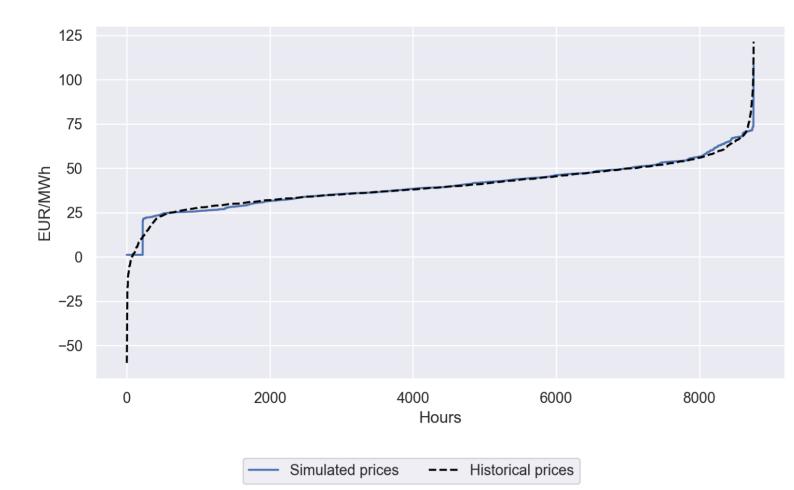


Table 2: Comparison of price time series in EUR/MWh

	Simulated	Historical
Mean	40.20	40.06
Std. Deviation	12.88	13.09
Minimum	1.20	-59.78
25%	32.21	32.92
50%	39.34	39.21
75%	48.51	47.98
Maximum	107.89	121.46

Figure 2: Price duration curve comparing simulated and historical day-ahead prices for the Austrian day-ahead market 2019

Results: November 2019

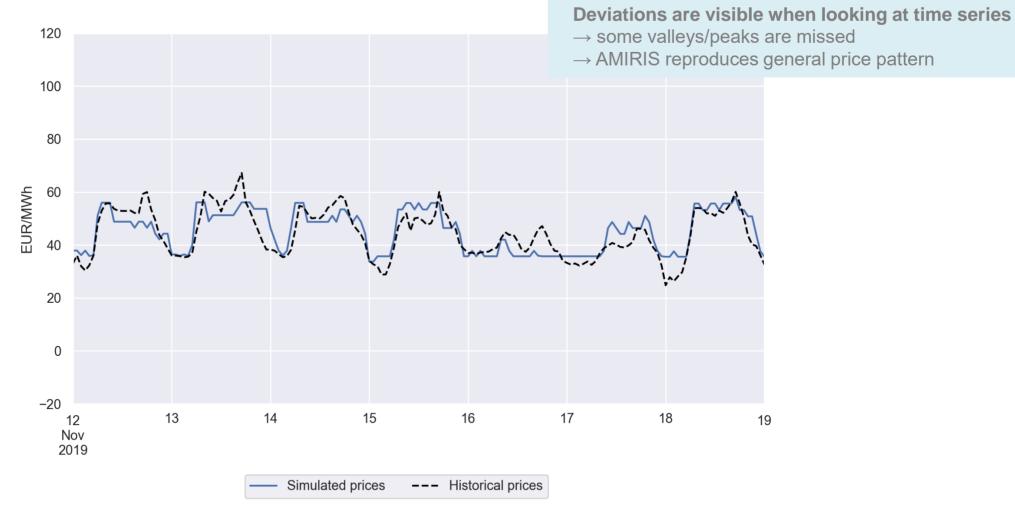


Figure 3: Simulated and historical day-ahead prices for the Austrian day-ahead market in November 2019

Results: January 2019

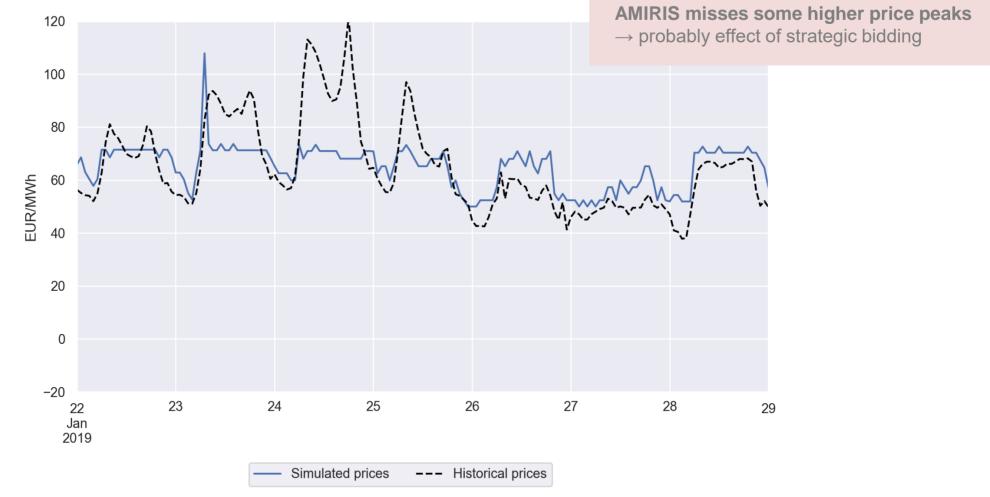


Figure 4: Simulated and historical day-ahead prices for the Austrian day-ahead market in January 2019

Results: April 2019

Figure 5: Simulated and historical day-ahead prices for the Austrian day-ahead market in April 2019

* to be published soon

Results: April 2019 with profit-maximizing storage strategy*

Figure 6: Simulated and historical day-ahead prices for the Austrian day-ahead market in April 2019 with profit-maiximising storage agent

Conclusion

Parameterization of the open source model AMIRIS and publication of model configuration

Simulation and comparison of price time series with Austrian day-ahead prices in 2019

Results show a decent position for further research

Outlook

Applying AMIRIS in various research projects, e.g.:

- Assessment of different EE remuneration schemes
- Modelling competition among flexibility options
- Investigating effects of market coupling
- Analyzing emergence phenomena due to prosumers

Building an active open source community!

Contact: Felix Nitsch <u>felix.nitsch@dlr.de</u>

German Aerospace Center | Institute of Networked Energy Systems | Energy Systems Analysis

on the basis of a decision by the German Bundestag FKZ: 03El1010A

Appendix

Wissen für Morgen

Link collection

AMIRIS source codehttps://gitlab.com/dlr-ve/esy/amiris/amirisAMIRIS exampleshttps://gitlab.com/dlr-ve/esy/amiris/examplesAMIRIS websitehttps://dlr-ve.gitlab.io/esy/amiris/homeAMIRIS wikihttps://gitlab.com/dlr-ve/esy/amiris/amiris/-wikis/homeAMIRIS openmod Forumhttps://forum.openmod.org/tag/amiris

FAME framework <u>https://gitlab.com/fame-framework</u>

