
1.  Introduction
Incomplete understanding of ice nucleation and growth processes constitutes a major obstacle in predicting mi-
crophysical and optical properties of cirrus clouds, hence, their role in global warming (Kärcher, 2017a). Aerosol 
particles with disparate ice nucleation abilities and a wide range of number concentrations affect the evolution of 
ice supersaturation, hence, total cloud ice crystal number concentrations (ICNCs), by competing for supersaturat-
ed water vapor (H2O). In this way, along with radiative transfer and a host of meteorological factors, the formation 
stage impacts cirrus life cycles.

While several studies have addressed the competition between homogeneous and heterogeneous ice nucleation in 
cirrus (DeMott et al., 1997; Haag & Kärcher, 2004; Jensen et al., 2013; Lin et al., 2005; Sassen & Benson, 2000; 
Spice et al., 1999; Spichtinger & Cziczo, 2010), the present work synthesizes theories and observational evidence 
that have emerged recent years regarding small-scale vertical wind fields, supersaturation-dependent deposition 
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coefficients, and deterministic heterogeneous ice nucleation. For the first time, their combined impact on com-
peting ice nucleation is analyzed in detail.

Significant progress has been achieved in quantifying vertical air motion variability due to mesoscale gravity 
waves based on balloon observations (Podglajen et al., 2016) and in formulating molecular-level physical models 
for the uptake of H2O on ice crystal surfaces based on laboratory measurements (Harrington et al., 2019). Climate 
models have made great strides in representing cirrus in their cloud schemes (Bardeen et al., 2013; Muench & 
Lohmann, 2020; Zhu & Penner, 2020). Quantitative evaluation of aerosol-cirrus interactions and man-made cir-
rus thinning requires full understanding of formation of ice crystals from heterogeneous ice nucleating particles 
(INPs), as this affects the performance of the cirrus parameterizations used in these models.

A number of atmospheric aerosol types nucleate ice in cirrus conditions (Hoose & Möhler,  2012; Kanji 
et al., 2017). While ubiquitous supercooled liquid solution (aqueous aerosol) droplets induce homogeneous freez-
ing at high ice supersaturation (defined as s = S − 1, where S is the fractional relative humidity over ice), s > 0.45 
below about 235 K (Koop et al., 2000), INPs may form ice heterogeneously at similar or lower s-values. Field 
observations suggest competition between INPs and solution droplets in the extratropical northern hemisphere 
(Cziczo et al., 2013; Haag et al., 2003; Jensen et al., 2013) and the tropical tropopause layer (TTL; Ueyama 
et al., 2015), as indicated by frequency distributions of ICNCs, in-cloud relative humidities, and residual aerosol 
particle compositions. Heterogeneous ice nucleation may dominate in the polluted Northern Hemisphere (Cziczo 
et al., 2013) and homogeneous freezing may dominate in the cleaner Southern Hemisphere (Gayet et al., 2006). 
Homogeneous ice formation dominates in wave clouds due to large updraft speeds, such that any competition 
for H2O by heterogeneous nucleation is overcome as high cooling rates drive high supersaturations (DeMott 
et al., 1998).

Besides ice-forming aerosol particles, updraft speeds and associated adiabatic cooling rates have long been 
known to be crucial for cirrus (DeMott et  al.,  1997; Heymsfield,  1977; Jensen & Toon,  1994). High-flying 
aircraft and ground-based radar observations pointed to significant enhancements of vertical wind speeds over 
synoptic values (Hoyle et al., 2005; Kärcher & Ström, 2003), but only recently long-duration, quasi-Lagrangian 
balloon measurements quantified mesoscale temperature fluctuations (MTF) induced by gravity waves. This 
enabled the development of an approximate probabilistic model describing the Lagrangian evolution of damped 
MTF at arbitrary latitudes (Kärcher & Podglajen, 2019). This stochastic approach describes background fluctu-
ations away from high-frequency wave sources consistent with observations and is employed here allowing us to 
perform parametric studies with well-defined mean values of the underlying wind speed fluctuations.

How rapidly H2O is incorporated in ice crystals during ice formation events is controlled by the deposition coef-
ficient, α. It is through the impact on supersaturation that INPs may hinder or even suppress homogeneous freez-
ing. The gas-phase diffusion of H2O in air toward ice crystals and molecular processes at their surfaces together 
determine the rate of irreversible vapor uptake in an ice-supersaturated environment. Laboratory measurements 
have shown that deposition coefficients vary with ambient conditions (i.e., ice supersaturation and temperature), 
but discrepancies between laboratory data at cirrus temperatures exist and have not been reconciled (Asakawa 
et al., 2014; Harrington et al., 2019; Nelson, 2001). The development of ice crystal shapes (habits) are caused 
by variations in deposition coefficients across ice crystal surfaces (Chen & Lamb, 1994); variability in α may 
also cause microphysical-dynamical feedbacks in simulations of mixed-phase and cirrus clouds relevant for their 
evolution (Ervens et al., 2011; Kärcher, 2020). Nonetheless, most cloud models resort to constant α in the absence 
of a complete theory of crystal growth from the vapor encompassing the full cirrus regime, from temperatures, 
T, below about 233 K at the boundary to mixed-phase clouds to values prevailing in the TTL (<200 K). Here, 
we follow a hybrid strategy by employing on the one hand variable deposition coefficients that are based on 
laboratory data for T > 220 K (Harrington et al., 2019) and on the other hand assume ice crystals to be spherical.

With regard to the dependency of deposition coefficient or fresh ice crystal habits on the mode of nucleation, 
Bailey and Hallett (2002) showed that ice crystals formed on kaolinite and grown in a static diffusion chamber 
have habits that are quite similar to those observed in the atmosphere, contrary to crystals formed on silver iodide. 
Thus, this study showed that the manner of nucleation can affect the subsequent crystalline habit. Levitation 
diffusion chamber studies also indicate that homogeneously frozen droplets have deposition coefficients that are 
distinctly different from crystals nucleated heterogeneously (Pokrifka et al., 2020). These studies suggest that 
some of the crystals formed from homogeneously frozen drops have deposition coefficients that evolve from high 
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to low values during the experiment. Studies with heterogeneously frozen drops do not show a strong decrease 
of the deposition coefficient as the particle grows, suggesting that the nucleation mechanism played a role in the 
subsequent growth of the crystals.

Recent balloon-borne in situ sampling of cirrus ice crystals, combined with cold-stage electron microscopy, re-
veals that polycrystalline ice crystals (polycrystals) dominate the habit of cirrus ice crystals (Magee et al., 2021). 
Even at small sizes, these crystals are sharply faceted and often with hollowed regions. This indicates that the 
primary growth mechanism most likely was step nucleation near the facet edges, otherwise symmetric hollows 
would not be possible. Moreover, many of the hollow regions are circular, indicating that the step edges are 
strongly roughened. This suggests modeling cirrus ice crystals with step nucleation.

To facilitate process-oriented analyses of cirrus ice formation processes including INPs, we develop a model 
that only considers the most essential variables and processes operating in ice formation events in Section 2. Our 
focus is on investigating how INP-derived ice crystals slow the rate of supersaturation increase in cooling air and 
thereby alter the number of ice crystals produced by homogeneous freezing—a key component in parameteriza-
tions of cirrus ice formation. We also delineate the conditions under which INPs quench rising supersaturation 
and thereby prevent homogeneous freezing. We go one step further than previous approaches and employ both 
variable deposition coefficients and vertical wind speeds. We introduce basic concepts and quantify conditions 
in which INPs modify ICNCs in Section 3. Simulation results are presented and discussed in Section 4. Section 5 
summarizes our main findings and reiterates important discussion points.

2.  Methodology
2.1.  Approach and Approximations

To study INP effects in cirrus clouds, we use an air parcel model framework. Latent heat release due to water 
phase changes is small at temperatures below 233 K in the absence of cloud droplet freezing and growth (Kärch-
er, 2017b). Radiative heating of ice crystals is unimportant on the short time scales of cirrus ice formation events.

Neglecting effects of sedimentation is approximately justified for short simulation times. When INP numbers are 
low causing ice crystals to grow to relatively large sizes and fall out of the nucleation region represented by an 
air parcel (Murphy, 2014), this may lead to an overestimation of INP effects. We investigate INP effects in two 
well-separated temperature regimes, 220–225 K (“warm”) and 200–205 K (“cold”). INPs are known to operate 
in various nucleation modes and exhibit stochastic (time-dependent) and deterministic (time-independent) ice 
nucleation behavior (Vali et al., 2015). Bare (uncoated) INPs, found close to emission sources, nucleate ice de-
terministically. As such INPs age in the atmosphere, they turn into immersion nuclei by chemical processing and 
coagulation. A deterministic description also is appropriate for immersion freezing, as the stochastic component 
does not significantly affect freezing temperatures (Kärcher & Marcolli, 2021). Here, we parameterize associated 
frozen (ice-active) INP fractions, respectively, with a simple analytical function.

In the parcel approach, ice crystal settling is ignored and it is assumed implicitly that INPs cover an entire ice 
supersaturated layer all the time. A model with vertical resolution would be more realistic, but then the problem 
would depend on the vertical profiles of moisture and temperature, as well as on the location of the INPs relative 
to supersaturation maxima. While this approach is suitable for the goal of our study, we may underestimate effects 
of ice crystal settling and vertical supersaturation variability in real cirrus formation events.

It is not necessary to explicitly simulate homogeneous freezing in a population of size-dispersed solution drop-
lets in order to find the conditions in which INPs suppress homogeneous freezing. Monitoring if and when ice 
supersaturation reaches a value where homogeneous freezing takes place in the presence of INPs suffices for 
this purpose. This threshold ice supersaturation depends on the liquid water volume in solution droplets, on air 
temperature, and on the cooling rate. The dependence on cooling rate arises because the rate of supersaturation 
increase grows in proportion to the updraft speed. As measured cirrus ICNCs rarely exceed 1 cm−3, and such 
numbers are most likely caused by homogeneous freezing, the number of fully soluble aerosol particles is not a 
limiting factor in homogeneous freezing.

The competition between INPs and solution droplets in ice formation events is controlled by the uptake of H2O 
on INP-derived ice crystals. We represent a given INP type by classes with different ice-active number concen-
trations belonging to a sequence of ice supersaturation increments. INPs activating at low supersaturation form a 
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cohort of ice crystals that grows ahead of those forming at higher s-values. In this way, we create a size-resolved 
ice crystal spectrum accounting for the possibility that deposition growth of early formed ice crystals changes the 
supersaturation conditions for later nucleation.

We simulate H2O mass uptake during the rather short ice formation stage by assuming a simplified ice growth 
model and approximating the shape of real ice crystals by volume-equivalent spheres (Section 2.4). To date, it 
is not possible to fundamentally resolve the issue of ice growth in view of the complexity of cirrus ice particle 
morphology, complexity, and mesoscopic surface roughness on the one hand (Magee et al., 2021) and due to the 
absence of a consensus on how real-world ice crystal habits can be predicted on the other. However, we drop the 
common assumption of constant ice growth efficiency and use deposition coefficients on ice that depend on ice 
supersaturation and other variables. In view of the lack of measurements constraining H2O uptake models at tem-
peratures below about 220 K, we approach the extrapolation of such models to lower temperatures with caution.

2.2.  Model Equations

We first introduce the basic model equations. Equation 1 describes the dry adiabatic cooling of the air parcel by 
prescribed time series of vertical wind speeds (Section 2.3). Equation 2 tracks the number of H2O molecules per 
ice crystal nucleated in the air parcel determining the mean size of ice crystals in each class. Equation 3 predicts 
the evolution of ice supersaturation, containing a forcing term that is consistent with Equation 1, and a loss term 
due to kinetically corrected H2O diffusion toward, and deposition onto, ice crystals (Section 2.4):

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −Γ𝑤𝑤� (1)

𝑑𝑑𝑑𝑑𝑘𝑘

𝑑𝑑𝑑𝑑
= 4𝜋𝜋𝜋𝜋𝑘𝑘𝐷𝐷𝑘𝑘𝑛𝑛sat𝑠𝑠� (2)

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
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𝐾𝐾
∑
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𝑛𝑛𝑘𝑘
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𝑑𝑑𝑑𝑑𝑘𝑘

𝑑𝑑𝑑𝑑
.� (3)

In the above equations, t is the time and w is the vertical wind speed; Γ = g/cp is the absolute value of the dry 
adiabatic lapse rate with the acceleration of gravity, g, and the isobaric specific heat capacity of dry air, cp; nsat(T) 
is the H2O number concentration at ice saturation taken from Murphy and Koop (2005), valid for T > 200–210 K 
(Nachbar et al., 2019); D is the effective H2O diffusion coefficient in air (see below) modified to account for 
kinetic effects of H2O uptake on ice crystal surfaces. Air pressure, p, follows directly from the adiabatic rela-
tionship, 𝐴𝐴 𝐴𝐴 ∝ 𝑇𝑇

(𝑐𝑐𝑝𝑝∕𝑅𝑅) , with the specific gas constant for air, R. The index k denotes an INP class associated with 
ICNCs, nk, resulting from nucleation of the fraction of INPs that become ice active in a supersaturation interval 
Δsk (Section 2.5), and Nk is the number of H2O molecules per ice crystal derived from INPs in each s-class. We 
infer the corresponding ice crystal radii, rk, from a spherical volume with the INP core at its center:

𝑟𝑟𝑘𝑘 =

(
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with the volume of one H2O molecule in ice, ν. In Equation 4, the radius of the dry aerosol particle core, rc, that 
is, the initial ice crystal radius, is fixed at a typical INP size, 0.2 μm; results are not sensitive to rc. The thermo-
dynamic parameter a describes the production of supersaturation:
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Γ
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where L(T) is the latent heat of sublimation (Murphy & Koop, 2005) and Rv is the specific gas constant for H2O. 
Finally, Dk is given by:
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where Dv(p, T) is the H2O diffusion coefficient in air, ℓ is the H2O jump distance (roughly equal to its mean free 
path), d = 4Dv/v is its diffusion length scale with the mean thermal speed of H2O, v, and αk is the deposition co-
efficient belonging to ice crystals generated within Δsk. All p- and T-dependent variables were taken from Lamb 
and Verlinde (2011).

For αkrk/d ≪ 1, the net uptake rate Equation 2 approaches the Hertz-Knudsen equation, 𝐴𝐴 𝐴𝐴𝐴𝐴𝑘𝑘∕𝑑𝑑𝑑𝑑 = 𝜋𝜋𝜋𝜋
2

𝑘𝑘
𝛼𝛼𝑘𝑘𝑣𝑣𝑣𝑣sat𝑠𝑠 

(free molecular limit). The supersaturation sink term in Equation 3 is proportional to the number concentra-
tion of nucleated ice crystals, nk, diagnosed from s based a time-independent (deterministic) nucleation model 
(Section 2.5).

The system of K + 2 coupled ordinary differential Equations 1–3 is integrated forward in time by means of the 
initial value solver VODE using an implicit method with functional iteration (Brown et al., 1989). We initial-
ize each simulation in cloud-free, ice-saturated air, prescribing Nk,0 = s0 = 0 along with T0 = 205 (225) K and 
p0 = 100 (250) hPa; the actual homogeneous freezing temperatures are approximately 200 (220) K. ICNCs are 
initially zero, nk,0 = 0, and evolve over time depending on the nucleation model.

2.3.  Vertical Air Motions

Updrafts create ice-supersaturated conditions in which aerosol particles nucleate ice. We introduce fundamental 
concepts and illustrate basic processes based on simulations using constant updrafts. We represent vertical air 
motions and associated adiabatic fluctuations in T and s caused by mesoscale gravity waves in simulations with 
more realistic forcings based on a stochastic approach.

To incorporate wave effects, we sample vertical wind speeds, w, from a two-sided exponential distribution (Podg-
lajen et al., 2016), using an autocorrelation time of 2.78 min guided by theoretical arguments to create Lagrangian 
time series, w(t; Kärcher & Podglajen, 2019). The autocorrelation time of the first order autoregressive time 
series is based on an average upper tropospheric buoyancy frequency of 0.012 s−1. Damping of MTF is neglect-
ed owing to the short duration of the time series used here. Important for ice nucleation studies, the time series 
contain contributions from high-frequency waves inducing large cooling/heating rates that are absent in synoptic 
air parcel trajectories.

The probability distribution of w-values is characterized by a mean updraft speed, wm. To study INP effects for 
different forcings, we vary wm and simulate a number of w(t)-trajectories, allowing us to compute frequency 
distributions of nucleated ICNCs.

2.4.  Depositional Growth

Equation 2 represents the capacitance model for vapor-grown spherical ice crystals (Lamb & Verlinde, 2011). 
The deposition coefficient, α, accounts for a suite of kinetic processes (formation of surface steps, partially 
disordered layers, etc.) that control the incorporation of surface H2O molecules into the bulk ice crystal lattice. 
Based on analyses of vapor growth rates encompassing a wide range of droplet properties as well as nucleation 
and environmental conditions, laboratory measurements show that α ranges from about 0.001 to unity (Harring-
ton et al., 2019). In line with recent balloon-borne measurements that show details of cirrus ice crystal surfaces 
(Magee et al., 2021), we model depositional growth of newly nucleated ice crystals with step nucleation.

However, it must be kept in mind that step nucleation is considered the dominant growth mode for larger crystals, 
and especially those that have developed pronounced habit forms (Frank, 1982). Newly nucleated ice crystals 
initially grow by dislocations and then transition to growth by step nucleation (Nelson & Knight, 1998). Indeed, 
Harrington and Pokrifka (2021) model the early growth of frozen solution droplets with a combination of facet 
spreading across the crystal surface and dislocations. Unfortunately, current theories do not provide for a gen-
eral way to model a transition from one growth mode to another. Another complication arises from the fact that 
for real (non-spherical) crystals, although one facet may be growing by step nucleation, another facet could be 
growing by dislocations. It must also be kept in mind that polycrystals, which are often found in cirrus, grow 
by dislocations that propagate away from the grain boundaries (Pedersen et al., 2011) producing faster growing 
facets. Stacking faults are prevalent in ice crystals, and can lead to the enhanced growth of facets.
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As ice crystals grow and evolve, α changes. However, immediately following nucleation, the development of 
facets along the crystal surface (lateral growth) alters the growth rate (Harrington & Pokrifka, 2021; Nelson & 
Swanson, 2019). Lateral growth may be important for the development of complex crystal shapes that occur in 
cirrus, such as scrolls, stacks of sheaths, and trigonal crystals (Nelson & Swanson, 2019), and does not lead to a 
significant increase in the maximum dimension of ice crystals.

Since it is not possible to model the above growth modes in detail, we apply a parameteric model of surface 
processes (Nelson & Baker, 1996):

𝛼𝛼𝑘𝑘 =
1

𝜎𝜎𝑘𝑘

tanh(𝜎𝜎𝑘𝑘), 𝜎𝜎𝑘𝑘 =

(

𝑠𝑠crit

𝑠𝑠sfc

)𝜇𝜇

.� (7)

The critical surface supersaturation, scrit(T), in the hyperbolic tangent controls the transition from inefficient to 
efficient vapor growth, while the parameter μ controls how rapid this transition occurs. The ice supersaturation 
taken directly above the ice crystal surface is given by Lamb and Verlinde (2011):

𝑠𝑠sfc = 𝑠𝑠

(

1 +
𝛼𝛼𝑘𝑘𝑟𝑟𝑘𝑘

𝑑𝑑

)−1

,� (8)

reminiscent of the gas kinetic correction to Dv in Equation 6. Together, these equations mean that αk is determined 
by diffusion of H2O molecules through the air and by surface kinetic processes. We solve Equations 7 + 8 itera-
tively for αk, that is, separately for each ice crystal class, with

𝑠𝑠crit [%] = 3.7955 + 0.10614𝑥𝑥 + 0.0075309𝑥𝑥
2
, 𝑥𝑥 = 𝑇𝑇 [K] − 273.15� (9)

and μ = 10 (Harrington et al., 2019), supported by in situ data (Magee et al., 2021).

Prior work demonstrated that the overall H2O uptake by nonspherical ice crystals is replicated employing a sur-
face-average scrit-value and the spherical approximation in growth calculations (Zhang & Harrington, 2014). We 
emphasize that scrit-values for low cirrus temperatures (<220 K) are estimates; we limit T in Equation 9 to −70°C 
to prevent estimating implausible (too large) α-values. Moreover, as noted above, it is unclear how growth modes 
are linked at low supersaturation. We refer to further discussion in Section 4.3 and do not recommend using this 
formulation for low temperatures at this stage.

2.5.  Heterogeneous Ice Nucleation

Heterogeneous ice nucleation does not occur abruptly at a specific supersaturation, as often assumed in cirrus 
parameterizations and models, but across a range of s-values, δs, around a characteristic value, s⋆. We introduce 
a function, ϕ(s), bounded by 0 and 1, that represents ice-active INP fractions, and associated ICNCs, cumulated 
up to s:

𝑛𝑛 = 𝑛𝑛⋆𝜙𝜙(𝑠𝑠).� (10)

The total INP-derived ICNC, n⋆ is defined here as the maximum concentration determined by the maximum 
ice-active fraction of the INPs that is ever possible. An INP population with a total number concentration ntot 
may only reach a maximum ice-active fraction ϕmax < 1, in which case n⋆ = ntotϕmax. Introducing n⋆ as a common 
scaling factor and at the same time using ϕ bounded by unity allows us to study and compare effects for a range of 
total number concentrations for the various INP types. The latter vary widely in nature. Without loss of generality, 
we neglect a possible explicit dependence of ϕ on T. Here we use:

𝜙𝜙(𝑠𝑠) =
1

2
[tanh(𝑧𝑧) + 1], 𝑧𝑧 =

𝑠𝑠 − 𝑠𝑠⋆

𝛿𝛿𝛿𝛿
.� (11)

The location parameter s⋆ and scale parameter δs have clear physical meanings: s⋆ describes the 50% activation 
point (i.e., ϕ(s⋆) = 0.5) and δs is related to the slope of ϕ at s⋆. These parameters can be varied parametrically 
to represent efficiency and abundance of different INP types. We determine their values to model two INP types 
mimicking the effects of good INP forming ice at low-to-medium s and poor INP forming ice at medium-to-high 
s (relative to shom).
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To motivate the use of Equation 11, we compare it to measurement-constrained parameterizations of ice-active 
fractions for desert dust (Ullrich et al., 2017) and aircraft soot (Marcolli et al., 2021), both taken at 220 K. Fig-
ure 1 shows the parameterization results for monodisperse dust (1 μm, orange curve) and soot (0.4 μm, magenta) 
particles along with our representations of ice-active fractions for good (s⋆ = 0.3, black) and poor (s⋆ = 0.4, blue) 
model INPs. The s⋆-value for good INPs represents the lower part of nucleation thresholds for mid-latitude cirrus 
formation estimated from field data. The s⋆-value for poor INPs is chosen such that ϕ approaches unity right 
before homogeneous freezing would set in. Both cases use δs = 0.03, meaning that ice formation in both INP 
types overlaps only to a small degree and at the same time approximately bracket the monodisperse dust and soot 
curves, which are steeper and flatter that the modeled ϕ-curves, respectively. This lets us clearly distinguish be-
tween good and poor INPs, but some atmospheric INPs may exhibit an activation behavior that is a combination 
of both types (i.e., characterized by large s⋆ and large δs). A similar behavior is mimicked by sea salt/spray par-
ticles when investigated at low temperatures (Patnaude et al., 2021; Wagner et al., 2018). The hyperbolic tangent 
in Equation 11 serves as a reasonable approximation for ice-active fractions once fitted to data. For example, the 
dust curve in Figure 1 is well reproduced setting s⋆ = 0.352 and δs = 0.0175 (Kärcher & Marcolli, 2021). Changes 
in s⋆ and δs occur for both aerosol types when accounting for INP size distributions.

In the numerical simulations, the deterministic INP spectrum, n(s), is divided into various ice supersaturation 
classes. For this purpose, we define an s-grid with spacing Δsk = sk − sk−1, allowing us to calculate the associated, 
partial ice-active number concentrations:

𝑛𝑛𝑘𝑘 = 𝑛𝑛⋆[𝜙𝜙(𝑠𝑠𝑘𝑘) − 𝜙𝜙(𝑠𝑠𝑘𝑘−1)] = 𝑛𝑛⋆Δ𝜙𝜙𝑘𝑘;� (12)

once s > sk−1, INPs turn into ice crystals with ICNCs nk. This allows us to simulate how early nucleating INPs 
affects the development of supersaturation and thereby the activation and growth of later nucleating INPs. To dis-
cretize ϕ, we define a total number of K classes around s⋆ such that Δsk is constant (Δs). The value of K is chosen 
such that the activation curve is represented with high resolution around the central value s⋆, where ϕ rises most 
steeply. We recall that the total INP number concentrations, n⋆, are prescribed at ice saturation, but nucleation 
occurs at s > 0. To work with well-defined n⋆-values during cirrus ice formation, we neglect the small reduction 
of n⋆ due to adiabatic change. Equations 10 and 12 describe deterministic ice nucleation in ice-supersaturated 
conditions.

It is permissible to determine ICNCs based on s-cumulative ice-active fractions, since we focus on a single ice 
formation event that does not require removing INP after nucleation (Kärcher & Marcolli, 2021). We account 
for non-monotonically increasing supersaturation histories, s(t), by ensuring that nk-values do not decrease when 

Figure 1.  Ice-active fractions approximated by a hyperbolic tangent (black and blue curves), representing good and poor 
model INPs, respectively. For comparison, results from parameterizations for large, monodisperse (orange) desert dust and 
(magenta) aircraft soot particles.
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already activated INPs encounter a supersaturation lower than the highest previous value. If simulated air parcels 
get subsaturated, ice crystals that have already formed stay in the parcel at their actual number concentrations, nk, 
according to Equation 12, but the amount of H2O molecules contained in them, Nk, diminishes due to sublimation 
according to Equation 2.

2.6.  Supersaturation for Homogeneous Freezing-Relaxation

We derive a value, shom, where homogeneous freezing of supercooled solution droplets takes place. This value 
should ideally quantify the supersaturation where most of the solution droplets freeze and quench the supersatu-
ration, thereby terminating the homogeneous nucleation event (freezing-relaxation; Kärcher & Lohmann, 2002a).

Homogeneous freezing is a stochastic process, where the number of solution droplets diminishes over time in 
proportion to 𝐴𝐴 exp

(

− ∫ 𝑗𝑗𝑗𝑗𝑗𝑗
)

 . Here j = VJ is the freezing rate, with the liquid water volume of the droplet popu-
lation, V, and the rate coefficient, J, taken from a water activity-based formulation (Koop et al., 2000). As the 
dependence of homogeneous freezing events is insensitive to changes in liquid aerosol particle size distributions 
(Kärcher & Lohmann, 2002a), we assume a log-normal droplet population with modal radius, rm, and geometric 
standard deviation, σ. The kth radial moment of a log-normal distribution is given by 𝐴𝐴 𝐴𝐴𝑘𝑘 = 𝑟𝑟

𝑘𝑘

𝑚𝑚exp(0.5𝑘𝑘
2
ln

2
𝜎𝜎) , 

so that V = 4πM3/3. Solution droplets in cirrus conditions are in equilibrium with ambient H2O (except for large 
droplet sizes in vigorous updrafts), so that J = J(Sw, T), where Sw is the liquid water saturation ratio (fractional 
relative humidity).

Freezing-relaxation unfolds on a timescale τ defined as:

𝜏𝜏
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=
1
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𝑑𝑑𝑑𝑑
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+

𝑑𝑑ln𝐽𝐽

𝑑𝑑𝑑𝑑

|
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|

.� (13)

As water vapor uptake is small due to hygroscopic droplet growth during the freezing event, we neglect the vol-
ume term in Equation 13 and rewrite the remaining contribution to τ as

𝑑𝑑ln𝐽𝐽

𝑑𝑑𝑑𝑑
=

𝑑𝑑ln𝐽𝐽

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

[(

𝜕𝜕ln𝐽𝐽

𝜕𝜕𝜕𝜕𝑤𝑤

)

𝑇𝑇

𝑑𝑑𝑑𝑑𝑤𝑤

𝑑𝑑𝑑𝑑
+

(

𝜕𝜕ln𝐽𝐽

𝜕𝜕𝜕𝜕

)

𝑆𝑆𝑤𝑤

]

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
;� (14)

the first term, when evaluated with the Clausius-Clapeyron equation, is shown to be smaller than the second term, 
leaving us with

𝜏𝜏
−1

≃
|

|

|

|

𝜕𝜕ln𝐽𝐽

𝜕𝜕𝜕𝜕

|

|

|

|

𝑇̇𝑇 = 𝜁𝜁𝑇̇𝑇 𝑇� (15)

with the absolute value of the cooling rate, 𝐴𝐴 𝑇̇𝑇 = |𝑑𝑑𝑑𝑑 ∕𝑑𝑑𝑑𝑑| . We use the analytical fit ζ [K−1] = 304.4 − T(2 − 
0.004T) provided by Ren and Mackenzie (2005) to evaluate τ. For given rm, σ, T, and 𝐴𝐴 𝑇̇𝑇  , the desired values for 
shom follow by iterating the relationship:

∫
𝑗𝑗𝑗𝑗𝑗𝑗 ≈ 𝑉𝑉 𝑉𝑉𝑉𝑉 =

4𝜋𝜋

3
𝑟𝑟
3

𝑚𝑚 exp(4.5ln
2
𝜎𝜎)

𝐽𝐽 (𝑆𝑆𝑤𝑤, 𝑇𝑇 )

𝜁𝜁 (𝑇𝑇 )𝑇̇𝑇
≡ 1,� (16)

where we neglect the volume of soluble or insoluble material in the solution droplet, justified in so far as the total 
volume of solution droplets is much larger than that of their dry particle core.

Equation 16 is a thermodynamic relationship, since the water contents of the solution droplets in a given size 
range are assumed to stay in equilibrium with ambient H2O. It ignores that small solution droplets have a smaller 
liquid water mass fraction, hence water activity and freezing rate, than larger droplets due to the Kelvin effect. 
Recent measurements showed that onset values for homogeneous freezing may be higher than predicted by Koop 
et al. (2000) at TTL temperatures (185–205 K; Schneider et al., 2021), but the effect of associated changes in shom 
on nucleated ICNCs is small. Figure 2 shows shom as a function of updraft speed for selected temperatures and 
monodisperse solution droplets. The threshold shom varies most notably with T and is less sensitive to variations 
in cooling rate and aerosol properties owing to the strong T-dependence of J. Here we apply Equation 16 as a 
function of T and w for rm = 0.25 μm and σ = 1.
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Equation 16 does not capture two kinetic effects: (a) large solution droplets need more time to equilibrate with 
the vapor phase than small droplets due to greater diffusional H2O uptake resistance, which introduces a time lag 
in the freezing rate in the presence of large cooling rates; and (b) vapor depletion by the nucleated ice crystals 
is associated with a characteristic time scale, which may increase the duration of the freezing event and hence 
the nucleated ICNCs. Moreover, the probability of freezing for large droplets is higher than for small droplets; 
depending on their number concentration, early freezing solution droplets grow ahead of the smaller ones and 
thereby modify the evolution of supersaturation and freezing conditions for the late-freezing droplets. For these 
reasons, numerical estimates for shom obtained with aerosol size-resolved, non-equilibrium microphysical models 
may differ slightly from those obtained by means of Equation 16 to the degree these effects come into play. Again, 
the impact of these effects on nucleated ICNCs is small due to the self-terminating nature of freezing-relaxation 
(Kärcher & Lohmann, 2002b).

3.  Basic In Situ Cirrus Formation Concepts
3.1.  Suppression of Homogeneous Freezing by INPs

We introduce the quenching velocity, w↓, based on Equation 3:

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑎𝑎(𝑤𝑤 −𝑤𝑤↓)(𝑠𝑠 + 1) , 𝑤𝑤↓ ≡

1

𝑎𝑎(𝑠𝑠 + 1)

𝐾𝐾
∑

𝑘𝑘=1

𝑛𝑛𝑘𝑘

𝑛𝑛sat

𝑑𝑑𝑑𝑑𝑘𝑘

𝑑𝑑𝑑𝑑
,� (17)

as a measure of the H2O sink due to growing ice crystals derived from INPs (Kärcher et al., 2006). It encapsulates 
the dynamical and microphysical aspects of our problem. We may refer to W = w − w↓ as an effective vertical 
wind speed, the one relevant for homogeneous freezing in the presence of INPs.

Homogeneous freezing takes place when the condition s = shom is reached for W > 0. In the other limit, W (initial-
ly positive) changes sign at some point, causing s to pass through a maximum and never reaching homogeneous 
freezing conditions. The two limits are separated by setting s = shom; for given w, homogeneous freezing occurs 
in the presence of INPs when the condition

𝑤𝑤 𝑤 𝑤𝑤↓ =
4𝜋𝜋

𝑎𝑎

𝑠𝑠

𝑠𝑠 + 1
𝑛𝑛⋆

𝐾𝐾
∑

𝑘𝑘=1

Δ𝜙𝜙𝑘𝑘𝐷𝐷𝑘𝑘𝑟𝑟𝑘𝑘� (18)

is met. Equation 18 reveals that the role INPs play in the competition for supersaturated vapor in an ice forma-
tion event is determined by their intrinsic ice nucleation ability, the mean size of the population of ice crystals 

Figure 2.  Supersaturation at which freezing-relaxation occurs vs. updraft speed for different volume mean radii of 
monodisperse solution droplets and two temperatures in the warm and cold cirrus regimes.
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deriving from them, and the deposition coefficient via H2O volume diffusion 
and surface kinetic processes. However, even in the case of a constant up-
draft, Equation 18 cannot be readily evaluated, since for given s(t), Dk, and rk 
depend on the H2O uptake history.

3.2.  Reduction of Homogeneously Produced Ice Crystal Numbers

To explore the impact of INPs on the number concentration of homogene-
ously nucleated solution droplets, nhom, we employ a cirrus parameteriza-
tion (Kärcher & Lohmann,  2002a) and apply it to monodisperse droplets 
(rm = 0.25 μm) in cases where homogeneous freezing is activated (i.e., at the 

instant where simulated s(t) reaches shom). We update the original nhom-parameterization by using a deposition 
coefficient of 0.7 to represent the homogeneous freezing event (Skrotzki et al., 2013); we use the ice supersat-
uration thresholds from Section 2.6; and we employ a convenient algebraic fit function proposed by Ren and 
Mackenzie (2005) (their Equation 24) to speed up the computation of the analytical solution for nhom.

During the simulations with stochastic wave forcing, it may happen that w changes sign from positive to negative 
when s lies within the small range of values where homogeneous freezing takes place. The reduction of homo-
geneously produced ice crystals in such relatively rare non-persistent cooling events (Dinh et al., 2016; Jensen, 
Ueyama, Pfister, Bui, Alexander, et al., 2016; Kärcher & Jensen, 2017) are not represented in this approach.

3.3.  Regime Definitions

We have already introduced two cirrus regimes categorized by ambient temperature, T, in Section 2.1 and two 
ice activity schemes depending on the activity location parameter s⋆ of INPs in Section 2.5. Furthermore, two 
fundamental ice nucleation regimes, separated by the parameter ω = w  /w, describe the competition between 
heterogeneous ice nucleation and homogeneous freezing in cirrus: the freezing regime (ω < 1) and the quenching 
regime (ω > 1), wherein INP-derived ice crystals either allow or prevent s from reaching shom. The ability of INPs 
to quench s increases as n⋆ increases (increasing H2O uptake rates) and diminishes as T decreases (decreasing 
H2O uptake rates).

Freezing and quenching regimes relate to two distinct factors affecting in situ cirrus formation (Kärcher & 
Ström, 2003): (a) Microphysical factor—ice-forming aerosol particles. The ability of INPs to nucleate ice crystals 
is strong/weak when ice-active fractions increase over a range of s-values (δs) around a low/high characteristic 
value (s⋆). (b) Dynamical factor—small-scale updraft speeds. The ability of INPs to quench s and prevent homo-
geneous freezing is for a given updraft speed (w) strong/weak for high/low total INP number concentrations (n⋆) 
and for high/low temperatures (T).

The presence of INPs may not be consequential when their impact on supersaturation is weak, for example, due 
to low number concentrations or slow depositional growth. In that case, even good INPs are inefficient when they 
are not capable of preventing homogeneous freezing. However, even poor or inefficient INPs may exert a notable 
effect on cirrus microphysical properties, since homogeneous freezing takes place at a lower effective updraft 
speed than in the unperturbed cloud, producing fewer but on average larger ice crystals.

Table 1 summarizes the regimes addressed in our study along with defining parameter values. INPs are regarded 
as efficient when they are abundant enough to quench ice supersaturation before homogeneous freezing occurs, 
depending on the updraft speed for a given set of values {T0, n⋆, s⋆}. Otherwise they are viewed as inefficient. 
Here, we set out and explore the evolution of the vapor-ice system in different regimes.

4.  Results and Discussion
We present and discuss numerical solutions to the K + 2 model Equations 1–3 for representative values of wm and 
n⋆. Most wm-values found in field observations lie in the range 10–20 cm s−1, while individual values may cover a 
broader range (Kärcher & Podglajen, 2019). Total INP number concentrations n⋆ can vary widely, mostly around 
a few 10 L−1 up to 100 L−1 and peak values of several 100 L−1 in anvil cirrus (Prenni et al., 2007). In this section, 

Cirrus Nucleation Ice activity

Cold Warm Freezing Quenching Good Poor

T0 [K] 205 225

ω <1 >1

s⋆ 0.3 0.4

Table 1 
Summary of Regimes and Associated Parameter Ranges
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one set of simulations represents the freezing regime (n⋆ = 1 L−1, inefficient INPs), another set with higher num-
ber concentration (50 L−1, efficient INPs) illustrates the quenching regime.

4.1.  Analysis of Ice Microphysics

We illustrate the microphysical processes in action with constant updraft speeds. Figure 3 shows the temporal 
evolution of s, r, and α for the “good” INP type (s⋆ = 0.3) in both warm (220–225 K) and cold (200–205 K) cirrus 
regimes in a constant updraft (w = 15 cm s−1). We show two sets of curves for r and α, representing Lagrangian 
tracking of ice crystals that formed at early (class k = 10, s10 = 0.25) and late (s30 = 0.35) stages of the evolution; 
the K = 41 individual activation classes are separated by Δs = 0.005). The underlying ice activation curve is 
shown in Figure 1 (black curve). We first discuss the warm cirrus case (top panel in Figure 3). In the freezing 
regime due to low ICNCs up to 1 L−1 (solid curves), ice supersaturation increases approximately linearly up to the 
time where homogeneous freezing relaxation sets in and the simulation is terminated (at t ≃ 45 min, shom ≃ 0.52). 
Ice crystals forming in classes 10 (30) at approximately 23 (31) min, experience different supersaturation condi-
tions during deposition growth and acquire different radii, 38 (33) μm, at the point where homogeneous freezing 
sets in. In both cases, the deposition coefficient peaks close to unity for the very short time where the crystals 
remain small (μm-sized), because s-values exceed the critical supersaturation, scrit. During the growth phase with 
s still increasing, α decreases to values slightly above 0.03 prior to homogeneous freezing.

In the quenching regime with ICNCs up to 50 L−1 (dashed curves), ice crystals derived from the INPs are abun-
dant enough to prevent homogeneous freezing. Ice crystal formation from INPs in the high s-class is slightly 
delayed due to the growth of INPs already active at lower s, compare to solid and dashed green curves. The ice su-
persaturation peaks at about 0.35 and then diminishes due to ongoing ice crystal growth. Deposition coefficients 

Figure 3.  Simulations with good INPs in the two cirrus regimes driven by a constant updraft speed (15 cm s−1). Solid (dashed) curves illustrate the freezing 
(quenching) regime using low (high) total INP number concentrations. Solid curves stop when the homogeneous freezing threshold is reached. Two sets of curves for 
radii and deposition coefficients represent INP-derived ice crystals created successively in two supersaturation classes (orange: early activating, green: late activating).
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of ice crystals from the two s-classes evolve similarly initially owing to comparable supersaturation histories, but 
they reduce to values near 0.01 at 80 min. Deposition growth slows down accordingly; a quasi-steady state of the 
ice-vapor system is not reached as long as deposition coefficients change.

The fact that sizes of INP-derived ice crystals differ depending on the ice supersaturation at which the associat-
ed INPs activate underscores the importance of defining multiple supersaturation classes in order to accurately 
simulate the supersaturation history and, by inference, homogeneous freezing and the competition between the 
various ice nucleation modes. The same holds true for pure homogeneous freezing events, where early freezing 
large solution droplets influence later freezing smaller droplets, ultimately self-terminating the freezing event 
(Kärcher & Lohmann, 2002a). This represents a great challenge for numerical cloud models that are based on 
bulk microphysics, where ice nucleation across a particle size or supersaturation spectrum is parameterized.

We turn to the cold cirrus case (bottom panel). In the freezing regime, the supersaturation history is qualitatively 
similar to the warm case, with three exceptions. The rate of increase is slightly faster and homogeneous freezing 
commences slightly later at a higher supersaturation (t ≃ 40 min, shom ≃ 0.58). Ice crystals remain considerably 
smaller with radii ≈10 μm when homogeneous freezing sets in due to the lower available H2O content in colder 
air. As a result, s peaks at a larger value (≈0.51) in this regime, indicating a smaller supersaturation sink (smaller 
quenching velocity, w↓) compared to warm cirrus. The different initial behavior of the deposition coefficient in 
the early and late activating cases is due to the ice supersaturation. When ice initially forms in the early activation 
case, s-values are low and close to scrit causing low α-values initially; as s rises, α also increases. On the other 
hand, α declines with time in the late activating case, because s is higher when ice forms leading to deposition 
coefficients near unity. The ice supersaturation remains high after ice formation in this case, and therefore does 
not greatly affect α. However, ice crystal size increases with time causing α to decrease. As in the warm case, 
α-values converge for early and late activating INPs due to the combination of decreasing s and increasing r, ap-
proaching a higher value ≈ 0.1 owing to lower T. In the quenching regime, the subsequent evolution of s, r, and 
α is analogous to the warm cirrus regime.

Figure 4 shows results of simulations in the two temperature regimes carried out with good INPs (s⋆ = 0.3) to 
illustrate the evolution of the supersaturation sink represented by w↓. We choose INPs with a total number con-
centration n⋆ = 1 L−1 and prescribe updraft speeds in a range around observed mean values, so that in all cases 
the freezing regime is realized (ω < 1). For both temperatures at the lowest w, w↓ is very close to w; for slightly 
smaller w we would enter the quenching regime. Furthermore, it takes longer for w↓ to become significant as w 
decreases; peak w↓-values increase, since shom is reached later and ice crystals have more time to grow to larger 
sizes.

Figure 5 shows results of simulations in the warm cirrus regime, illustrating the evolution of the ice water content 
(IWC) of the INP-derived ice crystals:

IWC =
4𝜋𝜋

3
𝜚𝜚

∑

𝑘𝑘

𝑛𝑛𝑘𝑘𝑟𝑟
3

𝑘𝑘
,� (19)

where ϱ is the mass density of bulk ice. Two sets of curves illustrate the freezing regime realized for the two total 
INP number concentrations and for good and poor INPs. In the case of high n⋆, ice crystals are efficient vapor 
sinks and IWC increases rapidly to values greater or equal to 28 mg m−3. In the case of low n⋆, deposition growth 
is kinetically limited (IWC stays below 8 mg m−3) and the difference between good and poor INPs is more dis-
cernible. A notable difference between good and poor INP is only visible for the low updraft speed.

While ice crystal sedimentation may modify the above results at low updraft speeds, they suggest that n⋆ is the 
primary control for any heterogeneous INP type, poor INPs in sufficient numbers being as important as good 
INPs. This is relevant, for example, for situations like biomass burning plumes, where the efficiency of INPs 
could be low but enhancements of INP number concentrations are large.

From a fundamental perspective, the frequent use of constant α in models of ice growth from the vapor phase is an 
approximation that is only valid for a small range of conditions. From a practical perspective, this tends to over-
estimate the depositional growth rate, especially for small ice crystals. Relating to this study, doing so may either 
under- or overstate the role of INPs in cirrus formation. As to the consequences of the impact of cirrus on the 
moisture budget or for simulated cirrus properties, a general answer cannot be given, because the consequences 
of the constant-α approximation have to be judged against other cloud-controlling processes. For example, setting 
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α to a constant value is unlikely to cause large discrepancies in simulated IWC when updraft speeds are high, 
because the time available for quenching of supersaturation is minimized.

4.2.  Competing Nucleation

We explore in more detail the impact of INPs on homogeneously nucleated ICNCs. Figure 6 shows total ICNC 
(INP-derived plus homogeneously nucleated) as a function of updraft speed in the warm and cold cirrus regimes 
and for good and poor INPs with low and high number concentrations. The results are taken from a series of 
numerical simulations with prescribed updraft speeds. The ICNCs reflect the ice activation curves of the good 
and poor INP types shown in Figure 1. However, for updraft speeds <0.4–0.75 cm s−1, simulated total ICNCs fall 
off more rapidly than the hyperbolic tangent ice activation curve would indicate (not shown in Figure 6). This 
is an artifact, because the time it takes to activate INPs then exceeds the overall simulation time. Regardless, 
ICNCs increase with updraft speed until a plateau is reached that corresponds to the prescribed total INP number 
concentrations, n⋆. The width of these regions (in terms of w) increases with n⋆ and is somewhat smaller for poor 
INPs (larger s⋆). Up to the end of the plateau regions, any further increase in w merely enhances the growth of 
already nucleated ice crystals preventing s to rise to values where homogeneous freezing sets in. For even higher 
w, homogeneous freezing sets in and ICNCs increase correspondingly to values above n⋆; this happens earlier 
for the poor INPs. For the highest updraft speeds, the ICNC curves converge to the pure homogeneous freezing 
results, which are attained when the deposition sinks get weak enough (w↓ ≪ w). This occurs at much higher up-
draft speeds (50–100 cm s−1) in the high INP number case compared to 5–10 cm s−1 in the low INP number case.

These results demonstrate that competition between INPs and solution droplets can take place across a wide range 
of updraft speeds, depending on n⋆, and even for poor INPs. Importantly, this w-range covers values of some 
10 cm s−1, making competing nucleation atmospherically relevant. While these results are qualitatively compa-
rable to those obtained with the help of a simplified parametrization based on sharp ice nucleation thresholds 

Figure 4.  Temporal evolution of quenching velocities for good INPs in the two cirrus (temperature) regimes for selected 
updraft speeds (see legends). All simulations are based on n⋆ = 1 L−1 and all curves end when the corresponding simulated 
supersaturation crosses the homogeneous freezing threshold (freezing regime).
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(Kärcher et al., 2006), they are based on a more realistic treatment of INP properties, where ice nucleation occurs 
over a range of supersaturation and are thus more accurate.

4.3.  Simulations With Wave-Driven Vertical Wind Speeds

We discuss results from the full simulations with stochastic (mesoscale) temperature forcing. We begin by illus-
trating the temporal evolution of the activation process for one specific stochastic realization of vertical wind 
speeds and resulting fluctuations in T and s based on a mean updraft speed wm = 15 cm s−1. We recall from Sec-
tion 2.3 that the vertical wind speeds are sampled from an exponential distribution and alternate every 2.78 min.

The wave-induced ice supersaturation fluctuations are shown in Figure 7 for different total INP number concen-
trations of good INPs. In the low INP case (n⋆ = 1 L−1), full activation of all available INP occurs and the homo-
geneous freezing limit is reached shortly thereafter at about 460 min. In the high INP case (n⋆ = 50 L−1), partial 
activation of about 5–10 L−1 INPs suffices to quench the supersaturation, visible after 450 min. The final ICNC 
(≈21 L−1) is however insufficient to significantly dampen the wave-induced fluctuations and to bring s close to 
thermodynamic equilibrium, illustrating the potential of the wave forcing to modify supersaturation histories, 
hence, INP effects in cirrus clouds. We also show how the INP number concentrations and quenching velocities 
evolve over time. ICNCs increase rapidly as soon as the simulated supersaturation enters the lower part of the 
prescribed activation range, s⋆ − δs = 0.27, staying constant in periods where s is decreasing. The quenching 
velocities assume on average larger values in the high INP case. In that case, the larger number of INPs prevents 
s from reaching values above about 0.3 for times later than 350 min, in contrast to the low INP number case with 
a weaker deposition sink, where s continues to rise to the homogeneous freezing threshold after full activation 
of the INPs.

The above results point to an important issue. The evolution of supersaturation in the high INP number case 
shown in Figure 7 suggests that s does not rapidly approach zero. Once about 20 L−1 ice crystals have formed, a 
value we may consider rather typical for the polluted background upper troposphere (excluding local INP storms), 

Figure 5.  Temporal evolution of the ice water content due to INP-derived ice crystals in the warm freezing regime for 
selected updraft speeds and two total INP number concentrations as indicated. Solid (dashed) curves represent good (poor) 
INPs.
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it takes almost 3 hr for s to decrease from about 0.15 to 0.05. This effect becomes even more pronounced in the 
cold cirrus regime due to slower growth rates. However, in situ data indicate that in most cirrus, most relative 
humidities measured within cirrus scatter around ice saturation (Krämer et al., 2009). The scatter might be ex-
plained by the presence of wave-driven variability for cirrus with low ICNCs (Kärcher et al., 2014). In our simu-
lations, the long time it takes for s to finally reach zero is tied to the modeling of α by means of Equations 7 + 9. 
These equations imply that growth to the facets is inefficient for s < scrit ≈ 0.19 (0.36) for 220 (200) K according 
to Equation 9. Given the predominance of cirrus observed near equilibrium and that both the value for scrit and 
the physical nature of the underlying surface growth mechanism (embodied in the growth parameter μ) are poorly 
known or unconstrained in the case of cold cirrus, this issue warrants further analysis.

Modeling ice crystals as solid spheres may also be causing this issue, at least in part. For real ice crystals, dep-
osition coefficients can vary substantially over different facets, potentially accelerating overall growth rates. In 
addition, complex polycrystals may be growing by dislocations for a substantial period of time (meaning μ = 1) 
or by stacking defaults (μ = 3). When keeping the parametric growth model (Section 2.4), reducing the values of 
the parameters μ and scrit would allow more substantial H2O uptake. More refined studies consider habit-predict-
ing growth models accounting for habit mixes across a given ice crystal population constrained by observations.

We present results from ensemble simulations of competitive homogeneous freezing and heterogeneous ice nu-
cleation for the low and high total INP number concentration cases in Figure 8. The frequency distributions of to-
tal nucleated ICNCs were obtained for a range of typical wave-driven updraft speeds added to a slow background 
uplift (1 mm s−1) to speed up the simulations. We run the warm cirrus case only because the rather high scrit-values 
predicted by Equation 9 for T < 220 K are only estimates (Section 2.4). All simulations are based on 1,000 reali-
zations of stochastic vertical wind speed time series in each case. We do not show the distributions below 0.1 L−1, 
as they are created only in the weakest updrafts and associated ICNCs are not captured due to runtime limitations. 
A prominent feature in the low INP number concentration case (green curves) is the very broad distribution of 
nucleated ICNCs. While the distributions show a peak at the corresponding ice-activated INP concentration (near 
1 L−1), they extend to much larger values for all mean updraft speeds. The peak is absent in frequency distribu-
tions of ICNCs formed by homogeneous freezing (Kärcher & Ström, 2003). The broad distribution tails toward 

Figure 6.  Total ice crystal number concentrations vs. updraft speed in the (top panel) warm and (bottom) cold temperature 
regime for (black curves) low and (cyan) high total INP number concentrations and (solid) good and (dashed) poor INPs. The 
magenta curves show the pure homogeneous freezing results starting at the updraft speed where this process is first activated 
in the low INP number cases.
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much higher ICNCs are caused by additional homogeneous freezing events in stronger updrafts. As the mean up-
draft speed increases, high values are more likely to occur in the exponential distribution of vertical wind speeds, 
leading to further broadening and a shift of the homogeneous nucleation mode toward greater ICNCs, while at 
the same time the frequency of occurrence of peak ICNCs due to INPs diminishes. Moreover, a shadowing effect 
occurs right above the total INP number that is closely related to the plateau region discussed above by means of 
Figure 6, best visible as a local distribution minimum in the simulations with 25 cm s−1 where updraft speeds are 
insufficient to overcome the deposition sink of the fully activated INP population.

Another salient feature is the cut-off near the prescribed high INP number concentration of 50 L−1 (orange curves). 
Homogeneous freezing does not occur in the 10 and 15 cm s−1 cases due to efficient supersaturation quenching, 
as indicated in Figure 7. However, some homogeneous freezing events are simulated for 25 cm s−1 owing to the 
sampling of updraft speeds that are large enough to overcome the INP deposition sink. The highest ICNCs are 
related to the highest updraft speeds, a phenomenon coined as preferential freezing (Kärcher et al., 2019).

After normalization of the frequency distributions, we analyze the mean ICNC and associated standard devia-
tion for the most representative mean updraft speed (15 cm s−1): 16 ± 30 L−1 for n⋆ = 1 L−1 and 4 ± 10 L−1 for 
n⋆ = 50 L−1 (rounded values), which seems counter-intuitive at first glance. In the low INP case, mean ICNC is 
significantly higher than n⋆ due to the frequently activated homogeneous freezing mode generating significant 
distribution variance. In the high INP case, mean ICNC is significantly lower than n⋆, and here the large variance 
is caused by variability in updraft speeds only along with the characteristic ice activation behavior shown in 
Figure 1. For comparison, we estimate the mean value for pure homogeneous freezing in the presence of waves: 
313 L−1, substantially exceeding the mean values including the INPs. Similar comparisons can be made for the 
other wm-cases.

Figure 7.  Simulations of good INPs in the warm cirrus regime with (top panel) low and (bottom) high total INP number concentrations. The curves show results for 
the temporal evolution of (left column) ice supersaturation, (middle) INP-derived ice crystal number concentrations and (right) quenching velocity based on simulations 
with a stochastic representation of wave-induced vertical wind speed fluctuations (updraft speeds displayed as gray circles).
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The solid magenta curves in Figure 8 represent the simulated ICNC statistics in the case of pure homogeneous 
freezing (n⋆ = 0). The features discussed above are readily confirmed by comparing the curves with n⋆ > 0 to 
these results and confirms that the highest n-values are correlated with the highest updraft speeds; we recall that 
homogeneously nucleated ice numbers increase strongly with increasing w. The dashed curves are analytical 
approximations of the frequency distributions for pure homogeneous freezing discussed in Kärcher et al. (2019); 
while the regions around the mean ice concentrations compare very well with the simulation results, the latter 
show poorer agreement toward the low concentration tails and at the highest ice concentrations. As the agreement 
worsens the higher the mean updraft speed, this is most likely a statistical abberration caused by undersampling 
in the simulations.

The strong reduction of homogeneously nucleated ICNCs for INP concentrations as low as 1 L−1 together with 
the fact that ICNC frequency distributions have been found to extend above values of 100 L−1 even in the TTL 
(Jensen et al., 2013; Jensen, Ueyama, Pfister, Bui, Lawson, et al., 2016), is strong evidence that competing nucle-
ation is the rule rather than the exception in the formation of cirrus clouds. However, our analysis also hints at the 
difficulty of inferring nucleation mechanisms from airborne measurements.

We expect observed frequency distributions to be broader than simulated here toward their low tails and overall 
shifted toward lower ICNCs due mainly to ice crystal sedimentation, in particular for low mean updraft speeds. 
Sedimentation may also produce a local maximum at low concentrations unrelated to n⋆. With full lifecycles of 
cirrus (including sedimentation) included, the contrast between sets of simulated frequency distributions with 
a wide range of INP assumptions are rather subtle (Jensen et al., 2018). Taken together, we caution the reader 
against comparing the frequency distributions of nucleated concentrations, which predict the maximum ICNCs 
for a given cirrus cloud, to measurements capturing the full cirrus life cycles.

5.  Summary and Outlook
We develop a parcel model enabling detailed analyses and enhancing understanding of the impact of INPs on 
the formation of pure ice clouds, including mesoscale gravity wave-driven vertical wind speeds and ice super-
saturation-dependent deposition coefficients. In particular, we isolate and study factors controlling competitive 
homogeneous freezing and heterogeneous ice nucleation in cirrus. Heterogeneous ice nucleation is treated with 

Figure 8.  Frequency distributions of nucleated ice crystal number concentrations resulting from mesoscale gravity wave 
forcing in the warm cirrus regime assuming a (top panel) low, (middle) medium, and (bottom) high mean updraft speed. 
Green (orange) curves are for low (high) prescribed number concentrations of good INPs. The solid and dashed magenta 
curves are for pure homogeneous freezing taken from the numerical simulations and an analytical model, respectively.
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time-independent ice-active fractions which are varied parametrically to cover a wide range of total number 
concentrations and nucleation behavior seen in the laboratory and field. Homogeneous freezing is parameterized 
based on an analytic treatment of the time-dependent ice formation process from supercooled aqueous aerosol 
droplets. Our methodology and findings pave the way for further improvements of cirrus parameterizations used 
in global models.

An important focus of our study is to obtain a lucid conceptual understanding of how ice crystal activation on 
INPs competes with homogeneous freezing of solution droplets in cirrus cloud formation. For this purpose, we 
define three different regimes. The first characterizes the temperatures in which cirrus form, affecting macroscop-
ic cloud properties such as IWC and cloud optical depth. The second divides INPs into good and poor categories 
according to the central value and range of ice supersaturations around this value where most of them activate. 
Most importantly, we define the nucleation regime, wherein INP-derived ice crystals either allow or prevent 
homogeneous freezing, respectively. We introduce the quenching velocity as a key parameter separating the two 
cases.

Reinforcing earlier findings, cirrus formation is to be interpreted on the basis of the underlying dynamical forc-
ing. Knowledge of updrafts speeds and their variability during ice formation is crucial to characterize the nucle-
ation regime. The mean updraft speed determines the probability of occurrence of actual vertical wind speeds 
along Lagrangian air parcel trajectories that eventually leads to a frequency distribution of nucleated ICNCs from 
which respective mean values and variances can be inferred.

For the representative range of wave-driven mean updraft speeds and INP number concentrations considered 
here, homogeneous freezing events dominate distributions of nucleated ice crystal numbers toward large num-
ber concentrations, as seen in field observations. Among the most important finding of this study is the strong 
potential of INPs to lower homogeneously produced ice crystals numbers, and at times suppress homogeneous 
freezing events altogether, even for moderately high mean updraft speeds and rather poor ice activity. Besides 
the mean updraft speed, the next most important variable we need to know in simulations of cirrus formation is 
the total number concentration of potentially ice-active INPs, which we expect to be highly variable in space and 
time at cirrus levels.

Our study lets us dismiss the notion of either pure homogeneous freezing or heterogeneous ice nucleation during 
cirrus formation in many situations. The latter scenarios appear to be rather idealized and only expected to be 
realized in situations with high INP number concentrations, low mean updraft speeds, and low ambient temper-
atures (or combinations thereof). In situ measurements of frequency distributions of ICNCs, if representative for 
cirrus formation events, contain important signatures due to ice nucleation and growth. However, as measure-
ments capture various stages of cirrus cloud development where a number of processes, including sedimentation, 
affect ICNCs, it is not straightforward to make inferences related to the impact of INPs.

To our knowledge, our study is the first to discuss effects of variable deposition coefficients in cirrus formation 
with multiple nucleation pathways. It is desirable to include such effects in models, as the use of constant depo-
sition coefficients lacks basic physics and prevents habit prediction. In a first step, we consider facet growth by 
step nucleation based on spherical ice crystal geometry. While providing meaningful results for cirrus properties 
due to competing nucleation at moderate to high supersaturation (s  =  0.3–0.6), our simulations suggest that 
supersaturation quenching times become very long once ice growth becomes inefficient at low supersaturation. 
This implies that cirrus may not stay close to ice equilibrium as frequently observed, preventing us from recom-
mending the default use of variable α in cirrus simulations, especially for TTL cirrus.

It is currently unclear if the current parameterization of ice crystal growth from the vapor can be modified or 
if the growth theory itself needs to be revised. We have offered pointers to problems that require further study, 
including: the growth mode for complex polycrystals; the transition between various growth mechanisms while 
ice supersaturation increases or declines; and the fact that many of the observed, complex ice crystal features are 
influenced by lateral growth. More research is needed to advance predictive ice growth models for pure ice clouds 
in all temperature regimes.

We hope that our effort to bring together important developments in cirrus research that emerged in recent 
years—stochastic dynamical forcing of ice supersaturation, deterministic heterogeneous ice nucleation, and ice 
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crystal growth from the vapor including surface kinetic effects—helps advance detailed numerical simulations 
and parameterizations of cirrus formation and development.

Data Availability Statement
The data that support the findings of this study are available on Zenodo: https://doi.org/10.5281/zenodo.5806109. 
The solver VODE is a collection of subroutines for the numerical solution of the initial-value problem for systems 
of first-order ordinary differential equations. The source files are publicly available under https://computing.llnl.
gov/projects/odepack/software.
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