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Abstract

The cable-suspended aerial manipulator is a robot consisting of a platform that is fully
actuated with a system of 8 propellers, to which a 7-degrees of freedom manipulator is
attached. It can be used for manipulation tasks at locations that are in great height or
otherwise difficult to access from the ground.
The system can be modeled in different ways, four of which are sketched in this thesis,
before their equivalence is demonstrated. In particular, modeling it as a collection of
rigid bodies subject to Pfaffian constraints is further developed.
Different models of the cable-suspended aerial manipulator providing a variety in com-
plexity and accuracy is presented. Subsequently, experimental data is used to validate
two selected models and show their respective benefits and drawbacks. Furthermore, the
data is used to identify some parameters defining the system’s behavior.
The full state of the system can not be measured using proprioceptive sensors. Therefore,
an observer is extended to be applicable to the system. It runs on exterioceptive sensors’
pose and velocity measurements and provides estimate of the full absolute pose. In
addition to the observer, a position controller is proposed.
The observer and the controller are extensively analyzed using simulations. Finally,
the observers is applied to experimental data to show their applicability to the cable-
suspended aerial manipulator.
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Kurzfassung

Der behandelte, an einem Kabel aufgehängte Roboter besteht aus einer mittels eines
Systems aus 8 Propellern voll aktuierten Plattform, an der ein Manipulator mit 7 Frei-
heitsgraden befestigt ist. Er eignet sich für Manipulationsaufgaben in großen Höhen oder
an anderweitig schwer zugänglichen Orten.
Das System kann auf verschiedene Weisen modelliert werden, von denen vier in dieser
Arbeit angesprochen werden, deren Equivalenz im Anschluss gezeigt wird. Insbesondere
die Modellierung als eine Gruppe von Starrkörpern, die Zwangsbedingungen unterliegen,
wird genauer untersucht.
Unterschiedliche Modelle des kabelaufgehängten Roboters, die in Komplexität, aber auch
Genauigkeit variieren, werden dargestellt. Anschließend werden experimentelle Daten
genutzt, um zwei ausgewählte Modelle zu validieren und deren Vor- und Nachteile zu
zeigen. Weiterhin werden die Daten genutzt, um einige Parameter des Systems zu bes-
timmen.
Der gesamte Zustand des Systems kann nicht vollständig mithilfe propriozeptiver Sen-
sorik ermittelt werden. Deshalb wird ein Zustandsbeobachter so angepasst, dass er auf
das System angewandt werden kann. Er verwendet Lagen- und Geschwindigkeitsmessun-
gen von exteriozeptiven Sensoren und schätzt die absolute Lage des Systems. Zusätzlich
wird eine Positionsregelung vorgestellt, die in Kombination mit dem Beobachter anwend-
bar ist.
Der Beobachter und die Regelung werden auf Basis von Simulationen ausführlich analysiert.
Schließlich wird der Beobachter auf experimentelle Daten angewandt, um zu zeigen, dass
er für die Anwendung auf dem kabelaufgehängten Roboter geeignet ist.
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Chapter 1

Introduction

1.1 The cable-suspended aerial manipulator

Robotic manipulation is a fascinating field. It allows machines to physically and actively
interact with their environment and thus alter reality itself. There are a variety of
different use cases for robotic manipulation, a frequent one however are tasks in hard to
reach areas.
Aerial manipulators are a typical example of robots addressing this use case. In recent
years, different approaches to aerial manipulation have been taken. Unmanned Aerial
Vehicles (UAV)s with attached manipulators as presented in [6, 17, 10, 7, 8] benefit from
an extremely large workspace, as they can self-sufficiently position themselves. They
are used for manipulation tasks of different kinds, including inspection of infrastructural
installations such as power lines, which are generally difficult or dangerous to access.
Some robots have even been equipped with two manipulators see([17, 10]), which addi-
tionally enables them to complete more advanced tasks, such as assembly operations or
grasping of large objects.
Typically, low system weight is desired as it reduces the power required to just keep the
robot in the air. In [8, 7] however, the manipulator itself already weighs around 15 kg,
so the aircraft carrying it is even heavier, but also generally larger scaled.
A different approach to aerial manipulation is suspending robots from cables or ropes.
An interesting example is presented in [19]. There, a gripper module with an internal
propulsion system is suspended on a soft spring that acts as a partial gravity compen-
sation in a given workspace. Thus, much less power is required to maintain a vertical
position, while still a large workspace is preserved.
As another instance of a cable-suspended robot, in [14], the Cable-Suspended Aerial
Manipulator (SAM) was presented. It consists of a base platform equipped on the
bottom with a 7-degrees of freedom (DoF) manipulator. The manipulator is a KUKA
LWR 4: it is comparatively lightweight and features torque sensors in every joint. On
the top of the base platform, three cables are mounted on individual winches which can
control their respective lengths. The cables’ opposite ends are all mounted to one point,
frequently the hook of a crane or similar. In addition to that, the SAM features an array
of 8 propellers. This array is capable of generating an arbitrarily directed wrench on
the SAM. The magnitude of the wrench, of course, is limited and so is the capability of
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2 Chapter 1. Introduction

realizing high-frequency wrenches because the propellers need to spin up first in order
to produce any force.
The SAM is assumed to be mounted to a fixed suspension point. This means its equilib-
rium position is with its center of gravity (CoG) right underneath this suspension point.
After sufficiently long time without any control input, the SAM would settle there.
Of course, multiple disturbance sources exist that will cause the SAM to move away from
this equilibrium point. Examples of these disturbances include wind and movement of
the suspension point.
In addition to external disturbance forces, actuation of the manipulator needs to be re-
spected. Although the entire system’s center of mass (CoM) would not shift horizontally
as there’s no external force in that direction, both the base platform’s and the end effec-
tor’s poses with respect to that CoM will change, and so will their respective absolute
poses.
In [15], a controller to actively counteract oscillations caused by these disturbances is
proposed, which dampens out movements of the platform. Similarily, in [5], an oscil-
lation damping controller is included into a whole-body control framework. There, a
compliance controller is applied on the manipulator end effector. However, this requires
only six of the the SAM’s at least 10 DoF (the number varies with the model used to
describe the SAM, it is 10 assuming a spherical pendulum constraint on the platform).
In the nullspace of the primary task, oscillation damping of the platform is included.
Another example for hierarchical whole-body control on the SAM is given in [4], where
it is applied to teleoperation in a way that allows the operator to select different tasks
and their priorities for the framework to respect. In [11], teleoperation with the SAM is
investigated as well. There, haptic and 3D visual feedback are provided in real-time to
the operator, which enables advanced manipulation such as peg-in-hole insertion.
Of all the referenced previous work, none was aimed at increasing its workspace by
moving further away from directly underneath the suspension point. Instead, the control
approaches applied to the SAM have actively counteracted movements of its platform
away from its natural equilibrium point.
However, this strategy considerably reduces the range of motion of the SAM along with
its reachable workspace. The propulsion system, which has been used to control the
SAM to stay at its natural equilibrium, could be used to shift that equilibrium to a
set of points limited by the propellers’ maximum thrust, the SAM’s weight and the
cable length. In order to unlock a greater workspace, potentially enabling the SAM to
complete a wider variety of tasks, it would be desirable to have a controller stabilizing
a desired equilibrium.
To realize this kind of controller, feedback in the form of the absolute system pose is
required. However, it is hard to measure the absolute pose of the SAM by itself. This is a
direct result of the suspension on cables, whose angles are not measured proprioceptively
(as opposed to, e.g. the joint angles in the lightweight robot (LBR)). This means that
the absolute pose needs to be measured exteroceptively, using sensors that observe the
system’s environment, such as an Inertial Measurement Unit (IMU), a GPS module, or
a camera or a Light Detection and Ranging (LIDAR) system for visual odometry.
One of the major drawbacks of this kind of sensors is often a low measurement frequency,
in most cases lower than the actuation frequency. In addition to that, sometimes faulty
readings might occur, which need to be detected, render the value unusable and further
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increase the time between measurements. During this time, the dynamical system will
most likely not be stationary, but move further along its trajectory.
It is desirable to design an observer that is capable of propagating the system state
while no sensor readings are available. For this reason, an accurate model of the system
dynamics is required to give a good estimation of the state’s trajectory in between
measurements.

1.2 Structure of this thesis

After a review of the mathematical background of the concepts used in this thesis,
multiple methods to model physical systems in general will be presented, compared and
their equivalence will be shown in general and for a specific example. Using one of the
presented methods, which is based on Pfaffian constraints, five different models will be
proposed to be used to model the SAM. These models differ in multiple ways. They
are applicable to different physical setups, in particular regarding the existence of an
intermediary mass, such as a hook. Apart from that, they also can be classified into
rigid and compliant models. The models vary in complexity and accuracy. Next, two of
these models will be experimentally validated. This is done by performing experiments
on the real system and then optimizing simulations to accurately reproduce similar
results. This way, the models will be compared and some of the system’s parameters
will be identified. Following that, an observer based on [13] will be designed. In addition
to the referenced approach, it will take known wrenches acting on the system, as well
as constraints, into account. In addition to that, a position controller will be proposed.
Both the observer and the controller will subsequently be analyzed extensively using
simulations. Finally, the observer will be applied to experimental data to validate it and
show its applicability to the SAM.

1.3 Mathematical prerequisites

Most of this thesis’ system equations will be expressed in the the Special Euclidian Group
(3-dimensional) (SE(3)). The most important properties of this choice of representation
along with some additional mathematical background will be described here.

Notation

We will generally denote positions as r with one bottom right index indicating the point
whose position is being expressed. For instance, rA is the position of A. v is a linear
velocity, and ω is an angular velocity. In case there are two indices on the bottom right,
it denotes a difference between two values. For example, rAB = rB − rA is the vector
pointing from A to B, and vAB = vB − vA is the difference of the velocities of points A
and B. Important examples of these indices include gt for ground truth values, obs for
observer values, m for measured values (in particular IMU for IMU measurements and
cam for camera measurements), and r for reconstructed values.
We will use multiple different coordinate frames. The bottom left index of any symbol
will indicate which frame it is represented in, e.g. Iv will be represented in the I frame,



4 Chapter 1. Introduction

Figure 1.1: The different state descriptors and power ports of the bicycle

which generally denotes the inertial frame. For the I frame in particular, we may omit
this index: v , Iv.
I as an identity matrix and 0 as a zero vector or matrix are used without explicitly spec-
ifying their dimensions throughout this thesis, except when not unambiguously defined
by the context.
In plots showing the orientation of a rigid body, r, p, and y will be used to refer to a
roll-pitch-yaw representation.

1.3.1 Jacobians

Physical systems’ states can be represented in many different ways, a few of which are
described in § 2.
A very simple example would be a fixed-gear bicycle as depicted in Fig. 1.1 going along
a straight line: one could describe its state by the angle its cranks have turned since
starting at a known position (α), which would be a relevant measure when deciding
which pedal to push to keep going. At the same time, one could describe the distance it
has moved since starting (d), which would be more relevant when trying to decide if it
should keep going in the first place.
It is clear that in essence, both these representations describe the same thing. This
suggests that we can find a (possibly invertible) mapping from one measure (y) to another
(x),

x = f(y). (1.1)

In our example, d = 1
nrα, with the gearing ratio n and the wheel radius r. Now we

might also like know how quickly the bicycle moves along the line when we know how
quickly the pedals are spun. Again, it is intuitive that both are inherently related.
This motivates to find a mapping not only between the values themselves, but also their
time derivatives. Knowing a mapping of the form (1.1), we can simply differentiate it to
obtain

ẋ = ∂f(y)
∂y

ẏ = J(y)ẏ∂, (1.2)

where we introduced the Jacobian J(y). Since (1.2) is very general, it demonstrates that
there will always be a linear mapping between the time derivatives if a mapping like
(1.1) exists.
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In our example, we have ḋ = 1
nrα̇. In this special case, J = 1

nr is constant.
Let’s assume that the bike path leads uphill. This means that there is a constant force
pushing the bike backwards. Now we would be interested to find the torque that needs
to be applied to the cranks to counteract this force. This torque could be explicitly
calculated based on the physical system. However, we already know a relationship
between the velocity of the bicycle and the angular velocity of the cranks. Since we
assume the bicycle to be well-maintained and slightly idealized, all the power put into
the cranks will be translated to drive the bicycle.
In general, power, as a scalar, is invariant with respect to its representation, which
implies

xP = yP = P. (1.3)

In our example, the power put into the cranks is the product of their angular velocity
and the applied torque, α̇τ , whereas the power used to drive the bicycle is its velocity
multiplied with the applied force: ḋf . We can see that both powers are linear in the
state variables’ time derivatives.
It is very common that the time derivatives of the values describing a physical system’s
state represent so-called flows ϕ. If this is the case, it directly implies that the Jacobian
maps between those flows like

ϕx = ẋ = J(y)ẏ = J(y)ϕy. (1.4)

These flows could be for example a velocity, a current, or a volumetric flow. What
defines them as flows is that there is a corresponding effort ε, such that for the pair of
flow and effort,

εTϕ = P (1.5)

holds.
Those efforts are typically forces, torques, voltages, or pressures. We call a related pair
of flow and effort power conjugated variables. However, from the definition given here,
it is not clear for a pair which value is the effort and which is the flow. As a result, a
physical force could be a flow, if its conjugated effort is a velocity.
With (1.3), we can now find the Jacobian’s applicability on efforts as

εTx ϕx = εTx J(y)ϕy = P = εTy ϕy (1.6a)
εy = J(y)Tεx. (1.6b)

This shows that the transposed Jacobian can map efforts in the opposite direction to
the Jacobian mapping between flows. In other words, if the Jacobian maps flows from
representation y to representation x, then the transposed Jacobian maps efforts from
representation x to representation y.
Coming back to the bicycle examples, we can now find that the required torque to
counteract gravity is τ = JTf = 1

nrf .
An important remark is that often (1.1) is not invertible, and as a result, neither is the
Jacobian matrix. This is generally a result of the choice of system state variables, which
in turn is usually motivated by the physical system.
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For example, the state of a robot with 6 rotational joints can be represented by the
individual joint angles. There is also a unique mapping from these joint angles to the
end effector position in 3-dimensional space. However, it is not possible to find a unique
inverse mapping from the end effector position to the joint angles. In addition to that,
the Jacobian mapping from joint angular velocities to end effector velocity is rectangular
(J ∈ R6×3) and thus not invertible. In case of rectangular Jacobians, a weighted Moore-
Penrose-Pseudoinverse for the Jacobian,

J†,W,r = W−1JT(JW−1JT)−1, JJ†,W,r = I (1.7a)
J†,W,l = (JTW−1J)−1JTW−1, J†,W,lJ = I, (1.7b)

can be helpful.
The right-sided pseudoinverse J†,W,r is only defined for J ∈ Rm×n,m < n while the
left-sided pseudoinverse J†,W,l is only defined for J ∈ Rm×n,m > n.
In particular for orientations, it is usually nontrivial to map between different representa-
tions. However, the respective Jacobians (mapping between angular velocities) are often
much easier to find. In these cases, the Jacobians are not a result of the differentiation
of a mapping, but rather found directly.

1.3.2 Rigid body pose and velocity representation

For a rigid body, the distance between any two points fixed on it never changes. Its pose
can be fully described by the position (of the origin) and the orientation of a coordinate
frame fixed to the body with respect to an inertial reference frame. The position is
almost always represented as a 3-dimensional vector containing the displacement from
a coordinate system’s origin in its respective directions.
The orientation, however, can be described in a multitude of different ways, including,
but not limited to, Euler angles such as roll-pitch-yaw or Kardan angles, quaternions,
axis-angle pairs or rotation matrices.

Rigid body motion

Let P and Q denote two points on a rigid body. Their velocities are related by

vP = vQ + ω × rQP. (1.8)

Here, v denote linear velocities, whereas ω is the angular velocity of the rigid body. rQP
is a vector pointing from Q to P, as illustrated in § 1.3.2.

Figure 1.2: The velocities of two points on a rigid body
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Rotations in the special orthogonal group

Using rotation matrices, we can map vector representations between differently oriented
frames. For these matrices, their bottom left index can be interpreted as where they
are mapping to, while their bottom right index shows where it’s mapping from. For
example, ARB maps from frame B to frame A, so we can write

Av = ARBBv. (1.9)

Considering that rotations merely provide a different representation of the same vector,
they preserve both the length l of vectors and the angles θ between any two vectors,
that is

l = ‖Av‖2 = ‖Bv‖2 (1.10a)

cos θ = Au
T
Av

‖Au‖2‖Av‖2
= Bu

T
Bv

‖Bu‖2‖Bv‖2
. (1.10b)

Plugging (1.10a) into (1.10b), we obtain Bu
T
Bv = Au

T
Av = Bu

T
AR

T
BARBBv. Since this

holds for any Bv and Bu, we can conclude that AR
T
BARB = I. This means that a rotation

matrix’s transpose equals its inverse,

RTR = RRT = I. (1.11)

This property is called orthogonality.
Naturally, any two rotations, applied one after another (called their composition), can
be expressed as another rotation

ARC = ARB BRC (1.12)

(1.11) tells us that (detR)2 = 1, for all rotation matrices. This means that no rotation
matrix can have a determinant other than −1 or 1. The axis-angle representation of
rotations suggests that every rotation could be decomposed into a composition of two
identical rotations around the same axis, but with only half the angle: R = R

1
2R

1
2 .

Looking at the resulting determinant, we obtain detR = (detR 1
2 )2 = 1 for all rotation

matrices.
A group G is a mathematical set endowed with a binary operation ◦ that satisfies four
conditions:

• (Closedness) The operation maps any two elements of the group to another element
of the group: A,B ∈ G =⇒ A ◦B ∈ G

• (Identity element) There is an identity element. If one of the operands is the
identity element, then the result of the operation is the other operand: ∃I ∈ G :
A ∈ G =⇒ A ◦ I = I ◦A = A

• (Inverse element) Every element has an inverse element, such that the operation
with both as operands returns the identity element: ∀A ∈ G∃A−1 ∈ G : A◦A−1 =
A−1 ◦A = I

• (Associativity) The order in which multiple instances of the operation are executed
does not change the result: A,B,C ∈ G =⇒ A ◦ (B ◦ C) = (A ◦B) ◦ C
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1.12 shows that rotations are closed under matrix multiplication. 1.11 shows the inverse
of rotation matrices. The identity element I3 satisfies the definition of a rotation matrix.
Their matrix structure ensures associativity, and therefore, the rotation matrices form
a group called the Special Orthogonal Group (3-dimensional) (SO(3)).
Taking the time derivative of 1.11, we obtain

RTṘ = −ṘTR = −(RTṘ)T = S. (1.13)

Thus, we showed that rotation matrices generally satisfy Ṙ = RS with a skew-symetric
ST = −S. This differential equation can be solved for constant S using the matrix
exponential

R(t) = exp(St). (1.14)

Since the manifold of all rotation matrices, SO(3) is smooth and differentiable, we call
it a Lie group. As a such, there exists a corresponding Lie algebra, in which S resides.
It is denoted as so(3). The exponential map mapping from so(3) to SO(3) is the matrix
exponential, whereas the logarithmic map, which maps from SO(3) to so(3), turns out
to be the matrix logarithm

S = log(R(t))
t

. (1.15)

Absolute and local time derivatives

Looking at rotating bodies, it becomes quickly clear that we need to distinguish between
local time derivatives and absolute ones. Assume a rigid body with a body frame B with
a fixed origin, but rotating with a certain angular velocity BωB. Let Bx be a point fixed
to this rigid body.
Observing its rate of change from the rigid body (local time derivative), we obtain

d

dt
Bx = 0. (1.16)

This makes sense because the frame of observation rotates along with the rigid body, so
it appears that the point doesn’t move.
Observing its rate of change in the inertial system, we can find its absolute velocity v
(absolute time derivative), which we can also express in the body frame as

Iv = d

dt
Ix = d

dt
IRBBx = IRBISBBx (1.17a)

Bxδt = Bv = BRIIv = ISBBx. (1.17b)

This makes sense because from an absolute perspective, the point does move. In partic-
ular, its velocity can be computed from the rigid body kinematics, respecting that the
body’s origin (denoted O) does not move: vx = vO + ωB × rOx = ωB × x. Expressing
this in the body frame yields

Bv = BωB × Bx. (1.18)
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Equating (1.17b) and (1.18), we finally give meaning to S in

ISB = (BωB)× (1.19a)

IṘB = IRB(BωB)×, (1.19b)

where we used the expression of the cross product as a matrix-vector product (u× v =
u×v, u× ∈ R3×3). More expressions for the time derivative of rotation matrices along
with a slightly different derivation can be found in [20].
Generalizing this idea, we can find the absolute derivative for any value as a function of
its local derivative,

Byδt = BRI
d

dt
Iy = BRI

d

dt
(IRBBy) = BRI(IRB

dBy

dt
+dIRB

dt
By) = d

dt
By+BωB×By. (1.20)

For the angular velocity of the rigid body, the local time derivative is the same as the
absolute one.
For rotation matrices not mapping to an inertial frame, we can find from (1.19b) that

˙ARB = ARIIṘB + AṘIIRB = ARB(BωB)× − (AωA)×ARB = ARB(BωB − AR
T
BAωA)×

= ARB(BωAB)×.
(1.21)

Poses in the special Euclidian group

We will write the pose of a rigid body as a homogeneous matrix as

gB =

RB rB

0 1

 . (1.22)

Here, RB ∈ SO(3) is the rotation matrix rotating from the rigid body’s frame to the
inertial frame, and rB ∈ R3 is the coordinates of the rigid body’s origin, expressed in
the inertial frame.
More general, as shown in Fig. 1.3, we can use these homogeneous matrices to transform
between poses,

AgB =

ARB ArAB

0 1

 , (1.23)

where ARB is the rotation matrix rotating from the rigid body’s frame frame A, and
ArAB is the coordinates of the rigid body’s origin, expressed in frame A. As a result,
ArAB points from frame A’s origin to frame B’s origin, not from the inertial frame’s
origin.
One of the benefits of this notation is that it is really easy to map the representation of
a point or a vector in the rigid body’s coordinate system into another body’s frame. For
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Figure 1.3: The components of a homogeneous transformation matrix: ARB =[
AxB AyB AzB

]
is the rotation between both, and ArAB is the respective transla-

tion.

that purpose, we concatenate a 1 for points and a 0 for vectors as a fourth coordinate
to their 3-dimensional representation. Then, we achieveAu

0

 =

ARBBu

0

 =

ARB ArAB

0 1

Bu
0

 (1.24a)

Ax
1

 =

ARBBx+ ArAB

1

 =

ARB ArAB

0 1

Bx
1

 , (1.24b)

where Yu denotes a vector, whereas Yx denotes a point, each represented in frame Y.
Similarly to rotation matrices, it intuitively makes sense that the application of multiple
pose transformations one after another (again called a composition of pose transforma-
tions) can be represented by another, single pose transformation

AgBBgC =

ARB ArAB

0 1

BRC BrBC

0 1

 =

ARBBRC ArAB + ARBBrBC

0 1


=

ARC ArAC

0 1

 = AgC.

(1.25)

Naturally, the pose transformation from any frame to itself is the identity matrix: There
is no rotation (ARA = I) and no translation (ArAA = 0) between the two frames,
implying AgA = I. If we combine this property with the composition as described in
(1.25), we observe the following: AgBBgA = AgA = I, which defines the inverse of pose
transformations: Ag

−1
B = BgA. This makes sense, as transforming from some frame A to

another frame B and then transforming back from B to A should not change anything.
We can also find a closed form solution for this inverse,

Ag
−1
B = BgA =

BRA BrBA

0 1

 =

ART
B −AR

T
BArAB

0 1

 . (1.26)

From this, it can be easily shown that the homogeneous matrices constructed as in (1.23)
form a group, which is called SE(3). It is closed under matrix multiplication ((1.25)),
has an inverse element ((1.26)) and an identity element (§ 1.3.2), while associativity
is provided by the matrix structure. Another property of SE(3) (which distinguishes
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it from the Euclidian Group (3-dimensional) (E(3))) is that these matrices all have a
determinant of 1.
Taking the time derivative of (1.22), we obtain

ġ =

RB(BωB)× RBBvB

0 0

 =

RB rB

0 1

(BωB)× BvB

0 0

 = g[BVB]∧, (1.27)

where BVB =
[
Bω

T
B Bv

T
B

]T
denotes the body twist of frame B. This variable contains

the absolute (i. e. relative to an inertial frame) angular and linear velocities of the frame
B, expressed in the frame B. Apart from that, we introduced the wedge operator,

[BVB]∧ =

(BωB)× BvB

0 0

 . (1.28)

Of course, there is a corresponding inverse operation, which we call the vee operator,

([BVB]∧)∨ =

(BωB)× BvB

0 0

∨ = BVB. (1.29)

We have thus established that SE(3) is smooth and differentiable. This makes it another
Lie group, and we denote its corresponding Lie algebra se(3).
Analogously to SO(3), we find the solution to (1.27) for constant V using the matrix
exponential, defining the exponential map from se(3) to SE(3) as

g(t) = exp(t[V ]∧). (1.30)

The corresponding logarithmic map from SE(3) to se(3) is again the matrix logarithm,

[V ]∧ = log(g(t))
t

. (1.31)

The logarithmic map can be used to find a representation of a pose in R6 as

γ = [log(g)]∨. (1.32)

According to [16, 2], if ġ = g[V ]∧, this map’s derivative can be computed as

γ̇ = B(γ)V (1.33a)

B(γ) =
inf∑
n=0

(−1)nBn
n! adnγ = I − 1

2adγ + f1(α)ad2
γ + f2(α)ad4

γ , (1.33b)

where γ =
[
αT βT

]T
, f1(α) = 2

‖α‖22
+ ‖α‖2+3 sin ‖α‖2

4‖α‖2(cos ‖α‖2−1) , and f2(α) = 1
‖α‖42

+ ‖α‖2+sin ‖α‖2
4‖α‖32(cos ‖α‖2−1) .
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1.3.3 Adjoints

As explained in § 1.3.2, we can map vectors and points between different frames using
homogeneous matrices. In order to do the same to twists, we use the adjoint operation
which we will refer to as the transformation adjoint. It takes the homogeneous matrix
mapping between the frames as an argument, which we indicate as its bottom right
index,

Adg =

 R 0
r×R R

 . (1.34)

It transforms twists like

AV = AdAgBBV =

 ARB 0
(ArAB)×ARB ARB

Bω
Bv

 =

 ARBBω

ARBBv + (ARBBω)× ArBA

 .
(1.35)

This operation outputs the twist AV in frame A as if A and B were rigidly connected
and frame B moved with the twist BV .
The name "adjoint" is derived from its representation in se(3) [3],

[AV ]∧ = [AdAgBBV ]∧ = AgB[BV ]∧Ag−1
B . (1.36)

This leads to following useful property,

[V ]∧g = gg−1[V ]∧g = g[Adg−1V ]∧. (1.37)

Using power as a frame-invariant value, we can show how the adjoint operation can
also map wrenches between different frames. Let the power computed in frame A be
P = AV

T
Af . The power computed in frame B must be identical: P = BV

T
Bf . We plug

in (1.35) and obtain P = BV
TAdTAgBAf = BV

T
Bf . Since we know this must hold for all

BV , we can conclude

Bf = AdTAgBAf =

BRA −BRA(ArAB)×
0 BRA

Aτ
Aϕ

 =

BRAAτ + BRA(ArBA × Aϕ)

BRAAϕ

 .
(1.38)

This operation outputs the equivalent wrench Bf in frame B to if B and A were rigidly
connected and at frame A, the wrench Af was applied.
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We can show that the composition of two transformation adjoints is not only a trans-
formation adjoint itself, but in particular the transformation adjoint of the composition
of the individual homogeneous transformations,

AdAgBAdBgC =

 ARB 0
(ArAB)×ARB ARB

 BRC 0
(BrBC)×BRC BRC


=

 ARBBRC 0
(ArAB)×ARBBRC + ARB(BrBC)×BRC ARBBRC


=

 ARC 0
(ArAB)×ARBBRC + (ARBBrBC)×ARBBRC ARC


=

 ARC 0
(ArAB + ARBBrBC)×ARC ARC

 =

 ARC 0
(ArAC)×ARC ARC

 = AdAgC .

(1.39)

In the bottom left block, we made use of (2).
(1.39) implies that there should also be a closed form solution to the inverse: AdAgBAdBgA =
AdAgA = AdI = I and AdBgAAdAgB = AdBgB = AdI = I mean Ad−1

AgB = AdBgA .
Thus, we showed that the transformation adjoints are closed under multiplication and
have an inverse element. In addition to that, the identity matrix provides an identity
element and since associativity is given due to the matrix structure, the transformation
adjoints form a group.
Using (1.27) and again (2) for the bottom left block, we can compute the time derivative
of the transformation adjoint to

d

dt
Adg =

 Rω 0
(Rv)×R+ r×Rω Rω

 =

 R 0
r×R R

ω× 0
v× ω×

 = AdgadV . (1.40)

This way, we introduced another type of adjoint that we will refer to as the differential
adjoint. Of course, we can again solve the differential equation for constant V using the
matrix exponential,

Adg(t) = exp(adV t). (1.41)

We have established that the group of transformation adjoints is differentiable. In addi-
tion, it is obtained by a smooth and differentiable mapping from SE(3) onto R6×6, which
makes it a manifold. Overall, this shows that the group of transformation adjoints is
another Lie group.

1.3.4 Rigid body dynamics represented with twists

(1.27) shows how the kinematics of a rigid body can be described using its twist and
pose. Here, we derive an expression for the twist’s time derivative to represent rigid
body dynamics.
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Momenta

The linear momentum of a rigid body is

p = mvCoM. (1.42)

m is the mass of the body, and vCoM is the absolute linear velocity of its CoM.
Analogously, its angular momentum at the center of mass is

LCoM = ΘCoMω. (1.43)

ΘCoM is the mass moment of inertia at the CoM, and ω is the absolute angular velocity
of the body. The upper left index indicates the point of reference.

Laws of motion

Newton’s second law (or Euler’s first law) for a rigid body in 3D space is

pδt = ϕ. (1.44)

Here, ϕ is the sum of all forces acting on the body. The equation holds for an absolute
derivative (see § 1.3.2) of the momentum pδt.
Euler’s second law gives us an analogous expression for rotational dynamics,

Lδt = τ. (1.45)

τ denotes the sum of all torques acting at the reference point of the angular momentum,
including resulting torques of eccentrically acting forces. We will generally choose the
CoM as reference point, in which case we will omit the index. The equation only holds
for an absolute derivative of the momentum Lδt.

Time derivatives of momenta

Since we discuss rigid bodies here, we assume their mass to be constant, which leads
to a simple expression of the linear momentum’s absolute time derivative in the body
frame,

Bpδt = m(Bv̇B + (BωB)×BvB). (1.46)

Here, BvB = BvCoM denotes the velocity of the CoM of the body, expressed in the frame
B which is fixed to the body.
The mass moment of inertia of a rigid body is attached to its orientation. If the body
rotates, the mass moment of inertia rotates with it. This means that locally, relative to
the body frame, it appears constant: d

dtBΘCoM
B = 0.

Differentiating in the inertial frame however, it becomes clear that the absolute time
derivative of ΘCoM is not zero. For an expression of its absolute time derivative, we use
(1.20), finding

(BΘCoM
B )δt = BωB × BΘCoM

B . (1.47)
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Using (1.47), the absolute time derivative of the angular momentum in the body frame
is

BLδt = BΘCoM
B Bω̇B + BωB × BΘCoM

BωB. (1.48)

Equations of motion

Plugging in 1.46 into 1.44 and 1.48 into 1.45, we obtainBLδt
Bpδt

 =

BΘCoM
B Bω̇B + BωB × BΘCoM

BωB

mBv̇ +m(BωB)×Bv


=

BΘCoM
B 0
0 mI

Bω̇B
Bv̇B

+

(BωB)× (BvB)×
0 (BωB)×

BΘCoM
B 0
0 mI

BωB
BvB


= BΛBBV̇B − adTBVBBΛBBVB =

BτB

BϕB

 = BfB ,

(1.49)

where we introduced BΛB = blkdiag(BΘCoM
B ,mI), and BfB =

[
Bτ

T
B Bϕ

T
B

]T
. In addition

to that, we identified the transpose of a differential adjoint.
Any mass moment of inertia that corresponds to a physical body is positive definite, and
thus invertible. Similarly, the mass is positive, and thus Λ is invertible, so we can solve
for the (local) time derivative of the body twist,

BV̇B = Λ−1(adTBVBBΛBBVB + BfB). (1.50)

Multibody systems

Many physical systems consist of multiple bodies. It is trivial to write (1.50) multiple
times in one equation,

SV̇S = SΛ−1
S (F (SVS)TSΛSSVS + SfS). (1.51)

Here, with index S, we denote the system variables, SVS =
[
B1V

T
B1 B2V

T
B2 . . .

]T
,

SΛS = blkdiag(B1ΛB1, B2ΛB2, . . . ), F (SVS) = blkdiag(adB1VB1 , adB2VB2 , . . . ), and SfS =[
B1f

T
B1 B2f

T
B2 . . .

]T
.

Similarly, we can define gS = blkdiag(gB1, gB2, . . . ). Its time derivative is then

ġS = gSG(SVS). (1.52)

We used G(SVS) = blkdiag([B1VB1]∧, [B2VB2]∧, . . . ).
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Chapter 2

Modeling of constrained systems

Many physical systems can be modeled as a system of multiple free-floating bodies
that are coupled through holonomic constraints. For example, a 1-DoF robot with a
rotational joint has the constraint that both bodies coincide in a point on the rotation
axis and that their relative orientation can only change in the direction of this axis.
Constraints inherently lead to a loss of degrees of freedom. For a system with n bodies
and c independent constraints, we can compute the number of DoF,

|DoF| = 6n− c. (2.1)

In this chapter, different approaches to model constrained systems are presented and
demonstrated on the example of a spherical pendulum. Note that the derivations are
formulated for mechanical systems, but the concepts hold for a variety of different do-
mains as well.

2.1 Generalized coordinates

Kinematic constraints of a system and the resulting loss of DoF can be respected already
while modeling the system. This can be done by selecting generalized coordinates q, a
set of variables that can uniquely and unambiguously identify the exact configuration of
the entire system.
In order to model system dynamics, we would like to find a differential equation for the
second time derivatives of the generalized coordinates in the general form

q̈ = f(q, q̇, u), (2.2)

where u denotes the input variable for the system, e. g. motor torques for a robot.

2.1.1 Direct modeling

In many cases, it’s the easiest approach to directly find the differential equations of
a system by analyzing its structure or by comparing it to a similar system. For this
approach, the forward kinematics of the individual bodies are found as a function of q,

Ix = f(q). (2.3)

17
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Ix contains the absolute positions of the individual bodies, allowing to obtain their
absolute velocities using differentiation,

Iv = δ

δq
f(q)q̇ = JT(q)q̇, (2.4)

where we introduced the translational Jacobian. It is used to map the time derivative of
the generalized coordinates to translational velocities in the system. We compute them
in the inertial frame, where the absolute time derivative and the local one are identical.
It is meaningful to also find the rotational forward kinematics, e. g. in terms of a
rotation matrix for each body,

IRB = f(q). (2.5)

Using the time derivative as described in (1.19), we find

(BωB)× = IR
T
BIṘB. (2.6)

Generally, the angular velocity can then also be expressed in the form

Bω = JR(q)q̇, (2.7)

where we used the rotational Jacobian, which maps the time derivative of the generalized
coordinates to angular velocities in the system. We compute the angular velocity in the
body frame, where the mass moment of inertia is locally constant.
It is reasonable to assume that the input of a mechanical system consists of forces (ϕin)
and torques (τin) acting on the involved bodies. In addition to that, the system itself
might involve forces (ϕsys) and torques (τsys), which could depend on the system state.
Those can result from dissipative elements such as dampers or from energy storing
elements such as springs: ϕsys = ϕd + ϕk, τsys = τd + τk.
Once the Jacobians and thus expressions for the translational and the angular velocities
of all bodies in the system are found, the momenta can be computed using their mass
moments of inertia and masses according to (1.42) and (1.43). After taking their time
derivatives, (1.44) and (1.45) can be used to finally obtain the dynamics in a form like
(2.2) for every body,JR(q)

JT(q)

 q̈ =

Θ−1(τin + τsys − (JR(q)q̇)×ΘJR(q)q̇)− J̇R(q)q̇
m−1(ϕin + ϕsys)− J̇T(q)q̇

 . (2.8)

In particular for constrained systems, this system of equations is over-determined because
we have 6n equations for only 6n− c DoF (see (2.1)).

2.1.2 Lagrange formalism

If it is difficult to directly identify the differential equations describing a dynamical
system, but generalized coordinates can be obtained, the Lagrange’s equations of the
second kind provide a helpful procedure.
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First, the kinetic energy of the system is expressed as a function of the generalized
coordinates and their first time derivatives,

Ekin = f(q, q̇). (2.9)

Particularly for mechanical systems, we have

Ekin =
∑
i

1
2miTv

T
i Tvi + 1

2B,iω
T
i B,iΘCoM

i B,iωi, (2.10)

where m is the mass of the body, and ΘCoM is the mass moment of inertia with its CoM
as a reference point. Note that the linear part is calculated in the inertial frame, whereas
the rotational part is calculated in the body frame, where the mass moment is locally
constant.
Similarly, the potential energy is expressed as a function of the generalized coordinates,

Epot = f(q). (2.11)

Finally, non-conservative inputs, including those produced by system components (such
as forces from a damper), are identified. They might act in directions different to the
generalized coordinates. As shown in (1.6), we can use the transposed Jacobians to
transform forces and torques,

PR = q̇Tuτ = Bω
T
Bτ = q̇TJT

R (q)Bτ (2.12a)
uτ = JT

R (q)Bτ, (2.12b)

and

PT = q̇Tuϕ = Iv
T
Iϕ = q̇TJT

T (q)Iϕ (2.13a)
uϕ = JT

T (q)Iϕ. (2.13b)

Then, the nonconservative inputs, in particular for mechanical systems, are

Q = f(q, q̇, u) =
∑
i

JT
T,i(q)QT,i(u, q, q̇) + JT

R,i(q)QR,i(u, q, q̇). (2.14)

Once these three functions are obtained, they are related using

(
δ

δq̇
Ekin

)
δt

− δ

δq
Ekin + δ

δq
Epot = Q. (2.15)

(2.15) directly provides a differential equation of the dynamical system. Differently to
(2.8), we obtain exactly 6n−c equations, which is a minimal representation of the system.
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For mechanical systems, we obtain

(
∑
i

miJ
T
T,iTJT,iq̇ + JT

R,iB,iΘCoM
i JR,iq̇)δt

−(
∑
i

miJ̇
T
T,iTJT,iq̇ + J̇T

R,iB,iΘCoM
i JR,iq̇) + δ

δq
Epot

= (
∑
i

mi(JT
T,iTJT,iq̈ + J̇T

T,iTJT,iq̇ + JT
T,iTJ̇T,iq̇)− (

∑
i

miJ̇
T
T,iTJT,iq̇ + J̇T

R,iB,iΘCoM
i JR,iq̇)

+(JT
R,iB,iΘCoM

i JR,iq̈ + J̇T
R,iB,iΘCoM

i JR,iq̇

+JT
R,iB,iΘCoM

i J̇R,iq̇ + JT
R,iB,i(JR,iq̇)×ΘCoM

i JR,iq̇)) + δ

δq
Epot

= (
∑
i

mi(JT
T,iTJT,iq̈ + JT

T,iTJ̇T,iq̇)

+(JT
R,iB,iΘCoM

i JR,iq̈ + JT
R,iB,iΘCoM

i J̇R,iq̇ + JT
R,iB,i(JR,iq̇)×ΘCoM

i JR,iq̇)) + δ

δq
Epot

=
∑
i

((miJ
T
T,iTJT,i + JT

R,iB,iΘCoM
i JR,i)q̈ +miJ

T
T,iTJ̇T,iq̇

+JT
R,iB,iΘCoM

i J̇R,iq̇ + JT
R,iB,i(JR,iq̇)×ΘCoM

i JR,iq̇) + δ

δq
Epot = Q .

(2.16)

2.2 Constrained bodies

One way to express constraints is using a scalar function of the form

f(x) = 0. (2.17)

Here, x is a vector of state variables. Taking the time derivative of (2.17), we find the
formulation

δf

δx
ẋ = 0. (2.18)

We will denote δf
δx = A(x) as the Pfaffian constraint matrix.

For the case of a single rigid body, we can rewrite (2.18) in terms of the body pose and
the body twist,

AB(gB)BVB = 0. (2.19)

For a system of rigid bodies (see § 1.3.4), it can be formulated as

AS(gS)SVS = 0. (2.20)

AS(gS) can contain entries that couple multiple bodies.
For the sake of legibility, we omit in the following the argument of the constraint matrix:
A = AS(gS) as well as any indices S.



2.2. Constrained bodies 21

2.2.1 Explicit constraint wrenches

It is possible to ensure the constraints are satisfied by explicitly modeling constraint
wrenches fc. Generally, those constraint wrenches must act solely along the directions
of the constraints,

Sfc = AS(gS)Tλc. (2.21)

This can be motivated by the fact that constraint wrenches are passive, which means
they never produce any power, i.e.

Sf
T
c SVS = λTc AS(gS)SVS = 0. (2.22)

If we assume a system of rigid bodies to satisfy an arbitrary Pfaffian constraint, we want
it to satisfy both (2.20) and (1.51). We assume the initial conditions to satisfy (2.20)
and take its time derivative to obtain

ȦV +AV̇ = 0. (2.23)

Plugging in (1.51) with f = fin +ATλc yields

ȦV +AΛ−1(F (V )TΛV + fin +ATλc) = 0. (2.24)

Solving for λc, we get

λc = (AΛ−1AT)−1(AΛ−1(−F (V )TΛV − fin)− ȦV ). (2.25)

Using this result, we can write the dynamics as

V̇ = (I − Λ−1AT(AΛ−1AT)−1A)Λ−1(F (V )TΛV + fin)− Λ−1AT(AΛ−1AT)−1ȦV.

(2.26)

P = I − Λ−1AT(AΛ−1AT)−1A is a projection matrix (PP = P ), which projects the
dynamics into the directions that satisfy the constraints (i.e. are orthogonal to the
constraints): AP = (A−A) = 0. In fact, the only term causing accelerations parallel to
the constraints is ȦV , which is dependent of the constraints’ derivative itself.
If AV = 0, it appears useful to use AV̇ = −ȦV to eliminate Ȧ and obtain

(I − Λ−1AT(AΛ−1AT)−1A)V̇ = (I − Λ−1AT(AΛ−1AT)−1A)Λ−1(F (V )TΛV + fin).
(2.27)

However, in order to obtain this equation, we already assumed AV = 0 instead of
ensuring it, so any V̇ = (F (V )TΛV + fin) solves it. This problem manifests in the
projection matrix not being invertible, which indicates that this equation doesn’t fully
define V̇ .
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2.2.2 Decomposition

As constraints inherently reduce the degrees of freedom of the system they’re applied
to, they allow us to represent the entire system in a reduced space.
For this, we find a decomposition of the system’s velocities SVS as

ν =

ν⊥
ν‖

 =

DT
⊥

DT
‖

V = DTV. (2.28)

Here, ν⊥ contains the portion of the system velocity that is orthogonal to the constraints,
i.e. satisfies the constraints, whereas ν‖ contains the portion parallel to (i.e. violating)
the constraints. D is an orthogonal matrix that decomposes the system velocity into ν‖
and ν⊥.
As we require ν‖ = DT

‖ V = 0, it is reasonable to choose D‖’s columns as linear combi-
nations of the column vectors of AT,

D‖ = ATH‖(A) (2.29)

It is convenient to select a set of orthonormal vectors spanning the image of AT, for
example using the Gram-Schmidt algorithm, as this choice ensures DT

‖D‖ = I.
We can show that in order for D to be invertible, D⊥ must be a linear combination of
the column vectors of I −AT(AAT)−1A, as those are all orthogonal to D‖,

D⊥ = (I −AT(AAT)−1A)H⊥(A). (2.30)

If we again select H⊥(A) to choose a set of orthonormal vectors spanning its image, D
as a whole is orthogonal, which we assume from here.
H⊥(A) ∈ Rn×(n−c) is not square and as such not invertible.
After computing D‖, it is already clear what the image of D⊥ must be in order for D
to be orthogonal. As a result, it is possible to simply complete an orthonormal basis of
R6n for n bodies and use these completing vectors as D⊥’s columns.
To find the dynamics in the decomposed space, we differentiate (2.28) with respect to
time and plug in (1.51) with f = fin +ATλc to obtainν̇⊥

ν̇‖

 = ḊTV +DTV̇ = ḊTV +DTΛ−1(F (V )TΛV + fin +ATλc). (2.31)

In order for the constraint to be respected, we require ν̇‖ = 0. (2.31) gives us the explicit
expression

ν̇‖ = ḊT
‖ V +DT

‖ Λ−1(F (V )TΛV + fin +ATλc) = 0. (2.32)

We solve it for

λc = (DT
‖ Λ−1AT)−1(DT

‖ Λ−1(−F (V )TΛV − fin)− ḊT
‖ V ). (2.33)
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We can then write the reduced dynamics in the orthogonal space, where

ν̇⊥ = ḊT
⊥V +DT

⊥Λ−1(F (V )TΛV + fin +ATλc). (2.34)

Inverting (2.28) and respecting ν‖ = 0, we obtain

V = Dν =
[
D⊥ D‖

] ν⊥
ν‖

 = D⊥ν⊥. (2.35)

2.3 Equivalence of all approaches

Since all the approaches aim to describe the same physical system, the resulting differ-
ential equations must be equivalent.

2.3.1 Equivalence of approaches based on generalized coordinates

In (2.16), we can plug in (2.8) to show it satisfies the same dynamics,∑
i

(miJ
T
T,i(m−1(ϕin,i + ϕsys,i)− J̇T,iq̇) +miJ

T
T,iTJ̇T,iq̇

+JT
R,iB,iΘCoM

i ((B,iΘCoM
i )−1(τin,i + τsys,i − (JR,iq̇)×B,iΘCoM

i JR,iq̇)− J̇R,iq̇)

+JT
R,iB,iΘCoM

i J̇R,iq̇ + JT
R,i(JR,iq̇)×B,iΘCoM

i JR,iq̇) + δ

δq
Epot

=
∑
i

(JT
T,i(ϕin,i + ϕd,i + ϕk,i) + JT

R,i(τin,i + τd,i + τk,i)) + δ

δq
Epot

=
∑
i

JT
T,iQT,i(u, q, q̇) + JT

R,iQR,i(u, q, q̇).

(2.36)

The equation holds if we use∑i(JT
T,iϕk+JT

R,iτk) = − δ
δqEpot and ϕin+ϕd = QT,i(u, q, q̇),

τin + τd = QR,i(u, q, q̇), showing that the potential forces can be expressed as a gradient
of a potential field and that the non-conservative forces result from dissipative elements
and inputs.

2.3.2 Equivalence of approaches based on constrained rigid bodies

We chose D‖’s columns as an orthonormal set of linear combinations of AT, i. e.
D‖ = ATH(A), where H(A) is a full rank mapping (else D‖ couldn’t have orthonor-
mal columns). Plugging this into (2.33), we obtain

λc = (H(A)TAΛ−1AT)−1(H(A)TAΛ−1(−F (V )TΛV − fin)−H(A)TȦV − Ḣ(A)TAV )
= (AΛ−1AT)−1H(A)-TH(A)T(AΛ−1(−F (V )TΛV − fin)− ȦV )
= (AΛ−1AT)−1(AΛ−1(−F (V )TΛV − fin)− ȦV ).

(2.37)

It is clear that this derivation of λ leads to the exact same value as (2.25).
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Taking (2.35)’s time derivative, we obtain an expression for the dynamics in full, non-
reduced space,

V̇ = Ḋν +Dν̇ = −DḊTDν +D⊥Ḋ
T
⊥V +D⊥D

T
⊥Λ−1(F (V )TΛV + fin +ATλc)

= −D‖ḊT
‖ V −D⊥Ḋ

T
⊥V +D⊥Ḋ

T
⊥V +D⊥D

T
⊥Λ−1(F (V )TΛV + fin +ATλc)

= −D‖ḊT
‖ V +D⊥D

T
⊥Λ−1(F (V )TΛV + fin +ATλc)

= Λ−1(F (V )TΛV + fin +ATλc).

(2.38)

This is, as expected, exactly what we used in (2.31). In the last step, we used the identity

(I −D⊥DT
⊥)Λ−1(F (V )TΛV + fin +ATλc)

= D

DT
⊥

DT
‖

 (I −D⊥DT
⊥)((I − Λ−1AT(AΛ−1AT)−1A)Λ−1(F (V )TΛV + fin)

−Λ−1AT(AΛ−1AT)−1ȦV )

= D

 DT
⊥

H(A)TA

 (I −D⊥DT
⊥)((I − Λ−1AT(AΛ−1AT)−1A)Λ−1(F (V )TΛV + fin)

−Λ−1AT(AΛ−1AT)−1ȦV )

= D

 0
−H(A)TȦV

 = −D‖H(A)TȦV = −D‖Ḋ‖V.

(2.39)

This shows that the dynamics can be losslessly represented in the reduced space and, if
needed, be mapped into the system velocities or even the system accelerations.

2.3.3 Equivalence of approaches based on generalized coordinates and
on constrained rigid bodies

Using generalized coordinates, we can write the body twists of every single body in the
system using the Jacobians as

BVB =

BωB
BvB

 =

 JR(q)

BRIJT(q)

 q̇ = JV(q)q̇. (2.40)

We can also find the time derivative of the body twist in terms of q,

d

dt
(JVq̇) = BV̇B =

 J̇Rq̇ + JRq̈

BṘIJTq̇ + BRIJ̇Tq̇ + BRIJRq̈


=

 J̇Rq̇ + Θ−1(τin + τsys − (JRq̇)×ΘJRq̇)− J̇Rq̇
−BRI(IRBJRq̇)×JTq̇ + BRIJ̇Tq̇ + BRIm

−1(ϕin + ϕsys)− BRIJ̇Tq̇


=

 Θ−1(τin + τsys − (JRq̇)×BRIΘJRq̇)
−(JRq̇)×BRIJTq̇ + BRIm

−1(ϕin + ϕsys)


= Λ−1(adJT

V q̇
ΛJVq̇ + Bfu + Bfsys).

(2.41)
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For multi-body systems, we can obtain JS(q) =
[
JV1(q) JV2(q) . . .

]
. The time deriva-

tive of the system twist is then

d

dt
(JSq̇) = SΛ−1

S (FT(JSq̇)SΛSJSq̇ + fu + fsys). (2.42)

Knowing that the system velocities satisfy AJS(q)q̇ = 0 (as the generalized coordinates
have been constructed respecting the constraints), we can derive ȦJS(q)q̇+A d

dt(JSq̇) = 0.
Using this, we take the time derivative of SVS and obtain

d

dt
SVS = d

dt
(JSq̇)

= d

dt
(JSq̇)− Λ−1AT(AΛ−1AT)−1(ȦJSq̇ +A

d

dt
(JSq̇))

= (I − Λ−1AT(AΛ−1AT)−1A) d
dt

(JSq̇)− Λ−1AT(AΛ−1AT)−1ȦJSq̇

= (I − Λ−1AT(AΛ−1AT)−1A)Λ−1(FT(JSq̇)ΛJSq̇ + fu + fsys)
−Λ−1AT(AΛ−1AT)−1ȦJSq̇

= (I − Λ−1AT(AΛ−1AT)−1A)Λ−1(FT(SVS)ΛSVS + fu + fsys)
−Λ−1AT(AΛ−1AT)−1ȦSVS.

(2.43)

Thus, we showed that SVS = JS(q)q̇ satisfies (2.26), with fin = fu + fsys.
Furthermore, In (2.35), we have an expression of the same form as (2.40): SVS =
D⊥(g)ν⊥. It is clear that the body poses solely depend on the generalized coordinates:
g = g(q), because generalized coordinates must be able to describe the entire system’s
configuration (see § 2.1). From that, we have D⊥(g) = D⊥(q). Since we already know
that both D⊥(q) and JS(q) have the same image, we can conclude that there is an
invertible mapping P (q) which satisfies

JS(q) = D⊥(q)P (q). (2.44)

From that, we find an expression for ν⊥ in terms of the generalized coordinates’ time
derivatives,

JSq̇ = D⊥P q̇ = D⊥ν⊥ (2.45a)
ν⊥ = P q̇ (2.45b)

q̇ = P−1ν⊥ (2.45c)
ν̇⊥ = ḊT

⊥V +DT
⊥V̇ = Ṗ q̇ + P q̈. (2.45d)
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Plugging (2.43) into (2.45d) and rearranging, we can find P in

ν̇⊥ = Ṗ q̇ + P q̈ = ḊT
⊥V +DT

⊥V̇

= ḊT
⊥JSq̇ +DT

⊥((I − Λ−1AT(AΛ−1AT)−1A)(J̇Sq̇ + JSq̈)− Λ−1AT(AΛ−1AT)−1ȦJSq̇)
= DT

⊥(I − Λ−1AT(AΛ−1AT)−1A)JSq̈
+(ḊT

⊥JS +DT
⊥J̇S −DT

⊥Λ−1AT(AΛ−1AT)−1AJ̇S −DT
⊥Λ−1AT(AΛ−1AT)−1ȦJS)q̇

= DT
⊥(I − Λ−1AT(AΛ−1AT)−1A)JSq̈

+(ḊT
⊥JS +DT

⊥J̇S −DT
⊥Λ−1AT(AΛ−1AT)−1AJ̇S −DT

⊥Λ−1AT(AΛ−1AT)−1ȦJS

+ d

dt
(DT
⊥Λ−1AT(AΛ−1AT)−1)AJS)q̇

= DT
⊥(I − Λ−1AT(AΛ−1AT)−1A)JSq̈ + d

dt
(DT
⊥(I − Λ−1AT(AΛ−1AT)−1A)JS)q̇

= P q̈ + Ṗ q̇.

(2.46)

However, although we found the explicit expression P = DT
⊥(I−Λ−1AT(AΛ−1AT)−1A)JS,

it does not provide us with an explicit mapping between the Pfaffian constraint matrix
and the system Jacobians as indicated in (2.44) because it depends on those values itself.

2.4 Modeling a spherical pendulum

As an example for the different approaches leading to the same result, we model a
spherical pendulum as shown in Fig. 3.1a, using the proposed approaches. We assume
an arbitrary wrench, expressed in the platform frame, PfPin =

[
Pτ

P
inPϕ

P
in

]T
, acting on the

platform CoM as input.
We will denote the suspension point as S, and the platform CoM as P. The platform’s
mass is mP, and its inertia with the CoM as reference point is ΘCoM

P .

2.4.1 Generalized coordinates

As generalized coordinates, we can choose three angles: α defining a rotation of the
pendulum arm around the inertial frame’s x-axis, β defining a rotation of the arm
around the rotated y-axis, and finally γ defining a rotation around the twice rotated z-
axis (the pendulum arm itself). Together, q =

[
α β γ

]T
unambiguously, however not

quite uniquely (There’s a singularity at the unstable equilibrium point of the pendulum),
define the full configuration of the pendulum.
With these angles we can define the pendulum orientation in the inertial frame to

IRP = Rx(α)Ry(β)Rz(γ) =


1 0 0
0 cosα − sinα
0 sinα cosα




cosβ 0 sin β
0 1 0

− sin β 0 cosβ




cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 .
(2.47)
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Direct modeling

The first step of directly modeling the dynamics is to select a frame where they should
be modeled. In this case, it makes sense to choose a frame fixed to the suspension point
whose orientation is that of the platform. It is clear that this frame is fixed with respect
to the rigid body, as the body itself is fixed to the suspension point.
We find the equivalent mass moment of inertia with the suspension point as reference
point using the parallel axis theorem,

PΘS
P = PΘCoM

P +mP(‖PrSP‖22I − PrSPPr
T
SP) = PΘCoM

P −mP(PrSP)2
×. (2.48)

PΘCoM
P and PrSP being constants makes PΘS

P a constant as well.
Next, we compute PωP as a function of q and q̇,

PωP =


0
0
γ̇

+Rz(γ)T




0
β̇

0

+Ry(β)T


α̇

0
0




=




0 0 0
0 0 0
0 0 1

+Rz(γ)T




0 0 0
0 1 0
0 0 0

+Ry(β)T


1 0 0
0 0 0
0 0 0





α̇

β̇

γ̇



=


cosβ cos γ sin γ 0
− cosβ sin γ cos γ 0

sin β 0 1



α̇

β̇

γ̇

 = JR(q)q̇,

(2.49)

where we found the rotational Jacobian JR(q).
It’s derivative with respect to q is

δ

δt
JR(q) =


cosβ cos γ sin γ 0
− cosβ sin γ cos γ 0

sin β 0 1

 . (2.50)

The angular velocity’s time derivative is

Pω̇P =


− sin β cos γβ̇ − cosβ sin γγ̇ cos γγ̇ 0
sin β sin γβ̇ − cosβ cos γγ̇ − sin γγ̇ 0

cosββ̇ 0 1



α̇

β̇

γ̇



+


cosβ cos γ sin γ 0
− cosβ sin γ cos γ 0

sin β 0 1



α̈

β̈

γ̈


= J̇R(q, q̇)q̇ + JR(q)q̈.

(2.51)
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This allows us to write the absolute time derivative of the pendulum’s angular momentum
as

(PΘS
PPωP)δt = PΘS

PPω̇P + PωP × PΘS
PPωP. (2.52)

Now, we find the equivalent torques caused by Pfin, which acts on the platform as

Pτ
S = Pτ

P
in + PrSP × Pϕ

P
in. (2.53)

Finally, we obtain the dynamics as

(PΘS
PPωP)δt = Pτ

S (2.54a)

Pω̇P = (PΘS
P)−1(PτS − PωP × PΘS

PPωP) (2.54b)
q̈ = J−1

R ((PΘS
P)−1(PτS − (JRq̇)× PΘS

PJRq̇)− J̇Rq̇). (2.54c)

Lagrange 2 formalism

Another way to derive PωP is to make use of (1.19b), yielding

(PωP)× = IR
T
PIṘP

=


0 − sin βα̇− γ̇ − cosβ sin γα̇+ cos γβ̇

sin βα̇+ γ̇ 0 − cosβ cos γα̇− sin γβ̇
cosβ sin γα̇− cos γβ̇ cosβ cos γα̇+ sin γβ̇ 0

 . (2.55)

We also need the linear velocity, IvP. For this, we first define the position of the body
CoM in terms of q as

IrIP = IRPPrIP = IRP


0
0
−l

 =


− sin βl

cosβ sinαl
− cosβ cosαl

 . (2.56)

Taking its derivative, we find the linear velocity of the body CoM,

IvP =


0 − cosβl 0

cosβ cosαl − sin β sinαl 0
cosβ sinαl sin β cosαl 0

 q̇ = JT(q)q̇ = IRP(PrSP)×JR(q)q̇, (2.57)

where we found the translational Jacobian JT(q) along with a useful identity relating it
to the rotational Jacobian.
Using this identity, we can compute the kinetic energy,

Ekin = 1
2mPPv

T
PPvP + 1

2Pω
T
PPΘCoM

P PωP = 1
2 q̇

TJT
RPΘS

PJRq̇. (2.58)

We don’t explicitly consider gravity (it could be expressed in fin, though) or any other
potential field with respect to which there could be potential energy.



2.4. Modeling a spherical pendulum 29

Next, we use the Jacobians to map the forces and torques acting on P into the configu-
ration space, finding

Q = JT
T IRPPϕ

S
in + JT

RPτ
S
in = JT

R ((PrSP)×PϕS
in + τSin) = JT

RPτ
S. (2.59)

Now we can directly transition to differentiating the kinetic energy, first with respect to
q (using δ

δqJR(q)q̇ = J̇R(q)), yielding

δ

δq
Ekin = J̇T

RPΘS
PJRq̇. (2.60)

Next, we differentiate the energy with respect to q̇ and subsequently take the absolute
time derivative,(

δ

δq̇
Ekin

)
δt

= (JT
RPΘS

PJRq̇)δt

= JT
RPΘS

PJRq̈ + J̇T
RPΘS

PJRq̇ + JT
RP(JRq̇)×ΘS

PJRq̇ + JT
RPΘS

PJ̇Rq̇.

(2.61)

Finally, we plug into (2.15) and obtain(
δ

δq̇
Ekin

)
δt

− δ

δq
Ekin = JT

RPΘS
PJRq̈ + JT

RP(JRq̇)×ΘS
PJRq̇ + JT

RPΘS
PJ̇Rq̇ = Q

(2.62a)
q̈ = J -1

R (PΘS
P)−1J -T

R (Q− JT
RP(JRq̇)×ΘS

PJRq̇ − JT
RPΘS

PJ̇Rq̇)
= J -1

R ((PΘS
P)−1(PτS − (JRq̇)×ΘS

PJRq̇)− J̇Rq̇).
(2.62b)

As expected, (2.62b) is identical to (2.54).

2.4.2 Constrained rigid body

For a rigid pendulum, we can consider the entire assembly as one rigid body revolving
around the suspension point, fixing the suspension point itself to the rigid body. As a
result, the suspension point’s position will be constant with respect to any other frame
fixed to the pendulum,

PRSSrSP = SR
T
PSrSP = const. (2.63)

To obtain a Pfaffian constraint matrix, we take its time derivative,

−(PωP)×SRT
PSrSP+SR

T
PSvP = PrSP×PωP+PvP =

[
(PrSP)× I

] PωP
PvP

 = APPVP = 0.

(2.64)

We obtain the rigid body equation as described in (1.8) with SvS = 0. This is reasonable
considering that the constraint formulated in (2.63) was motivated precisely by the
observation that the suspension point (which is an inertial point) is fixed to the pendulum
body. In this case, AP is constant.
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The relationship between PVP and q̇ is given by (2.49) and (2.57) as

PVP =

PωP
PvP

 =

JR(q)
JT(q)

 q̇ =

 I

−(PrSP)×

 JR(q)q̇. (2.65)

Now, it is clear that the velocities computed using the generalized coordinates always
follow the constraints, i. e.

APPVP =
[
(PrSP)× I

]  I

−(PrSP)×

 JR(q)q̇ = ((PrSP)×−(PrSP)×)JR(q)q̇ = 0. (2.66)

Thus, we have shown that (2.43) holds, and therefore the chosen constraints lead to the
same dynamics as (2.54).



Chapter 3

Modeling the cable-suspended
aerial manipulator

Most observers are model-based, at least to an extent. Including known information
about the system properties can dramatically improve performance when compared to
model-free approaches. These improvements, however, strongly depend on the accuracy
of the underlying model and its parameters. Poor selection of these can lead to decreased
performance even to the point of divergence.
In this chapter, we compare five different ways to model the SAM, as shown in Fig. 3.1,
and propose a way to identify their respective parameters.
While the SAM interacts with the environment, its end effector pose with respect to
the environment is fixed and/or known. Through knowledge of the joint angles and the
manipulator’s forward kinematics, this also implies knowledge of the base platform pose
and as such of the whole system. In general, the platform tends to be quasi-stationary
while the manipulator operates, whereas the manipulator tends to be stationary while
the platform is moving. The proposed observer targets the platform pose, which has a
tendency to change only with the manipulator being fixed. This motivates the simplifi-
cation being used throughout this chapter, which regards the entire SAM including its
manipulator and the base as a single rigid body.

3.1 Rigid pendulum

The least complex way to model the SAM is as a spherical pendulum (see Fig. 3.1a).
The respective Pfaffian constraint matrix has been derived in § 2.4.2.
The major benefit of this model is its low complexity. For instance, p× and therefore A
are constant in the body frame.
However, the real system does not always respect (2.64) in its entirety.
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3.2 Rigid double pendulum

When the SAM is operating outdoors, it is usually connected to its carrying device
through a hook which comes with a considerable mass. As a result, the kinematics and
the dynamics of a rigid pendulum fail to accurately represent the real system.
Introducing another mass representing the hook into the model can be done by extending
it to a double pendulum (see Fig. 3.1b). This means that the angular and linear velocities
of the hook are related according to its single pendulum properties. The analogous
relationship for the platform is similar, but needs to respect the linear velocity of the
hook itself, leading the relations

vH = ωH × pH (3.1a)
vP = vH + ωP × rHP. (3.1b)

We can write these relations again using a Pfaffian constraint matrix,

(HpH)× I 0 0
0 −PRH (PrHP)× I



HωH

HvH

PωP

PvP

 = AV = 0. (3.2)

Note that there’s a coupling term (the rotation matrix that is applied to the hook’s linear
velocity) in the constraint matrix. This is a result of the constraints not only acting on
the rigid bodies individually, but also on their relative motion.

3.3 Compliant pendulum

The cables that the SAM is suspended from are not perfectly rigid in reality. To the
contrary, they exhibit stiffness and damping properties. In some cases (see § 4.6.2), these
properties play an important role and the rigid pendulum reaches its limits.
The model proposed here can be seen as a rigid pendulum with soft constraints, see
Fig. 3.1c. Instead of strictly ensuring a set of constraints, it respects them using wrenches
that depend on the violation of the constraints.
In particular, we model the SAM’s suspension to consist of a multidimensional system
consisting of a spring and a parallel damper. We assume those to connect the SAM to an
ideal body that follows the hard constraints and represents the pose at which the spring
is relaxed. We choose the pose of this ideal body as translationally close as possible to
the SAM pose: Both their origins and the suspension point lie on one line. The ideal
body’s origin (pi) lies on that line at a distance matching the suspension’s length (l0).
It’s orientation is chosen such that the z-axis (zi) points towards the suspension point,
satisfying

pi = l0
‖pP‖2

pP (3.3a)

zi = − pP
‖pP‖2

. (3.3b)
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We model the soft constraints’ spring with a linear force pulling the SAM toward the
ideal body, and a torque acting around an axis orthogonal to both z-axes.
For the damping, we only consider those velocities that disobey the hard constraints.
We find those using V‖ = AT(AAT)−1AV .
In summary, this defines the soft constraint wrench acting on the rigid body representing
the SAM to

fc = K

 zP×zi
‖zP×zi‖2∠(zP, zi)

pi − pP

−DAT(AAT)−1AV. (3.4)

Here, K and D are the stiffness and damping gains, respectively. For additional accu-
racy with respect to the real system, we only engage fc once ‖pP‖2 > l, i. e. when
the suspension is under tension. In addition to that, we can also disengage the soft
constraints once its force part acts in the opposite direction than towards the suspension
point, which could happen even when ‖pP‖2 < l for high damping gains.
These considerations might improve accuracy, but they also considerably increase the
complexity and introduce additional nonlinearities.

3.4 Compliant double pendulum

Of course, the nonrigid properties of the cables can also show in the case that the SAM
is mounted to a hook or another intermediary mass, see Fig. 3.1d.
The constraint wrench acting on the SAM is computed identically to what is described
in (3.4). The line between the SAM’s and the intermediary mass’ origins marks the
direction of the ideal body’s z-axis. On this same line lies the ideal body’s origin at a
distance matching the suspension’s length from the intermediary mass.
Since the intermediary mass is suspended from just a single cable, this cable’s compliance
will not cause previously unrespected rotation of the hook, hence we model this cable
simply as a linear spring. Again, this spring connects the hook to an ideal body that
respects the hard constraints.
Effectively, we combine hard and soft constraints for the intermediary mass: There is
a soft constraint on its position along it’s z-axis, and there’s hard constraints on its
angular velocity. The hard constraints can be expressed as

v = ω × p+ vzH . (3.5)

Note that the linear velocity in the body frame’s z-direction is no longer required to be
zero. In fact, since the body frame of the intermediary mass (H) is chosen such that the
z-axis points towards the suspension point, w have HpH =

[
0 0 l(t)

]T
. This directly

implies a way to reduce A to allow for motion along the body z-axis,

[
(HpH)× I

] HωH
HvH

−
 0

HvzH

 =


0 −l(t) 0 1 0 0
l(t) 0 0 0 1 0
0 0 0 0 0 1− 1

V =

Ar

0

V. (3.6)
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Plugging into 2.25, we can see that a soft constraint force in zH-direction does not

influence the hard constraint forces because ArΛ−1fsc = Ar

 0
m−1k(l(t)− l0)

 = 0. With

this, we can finally write the full constraint forces for the system as

fc, P = K


0

pi, H − pH
zP×zi, P
‖zP×zi, P‖2∠(zP, zi, P)

pi, P − pP

−DA
T(AAT)−1AV +

AT
r λc, r

0

 . (3.7)

Note that the velocities to be dampened are found based on the full hard constraints,
not on the reduced constraints.

3.5 Compliant 4-cable suspension

To precisely model exactly what is happening in the real system with very little ab-
straction, we can model every cable individually (as sketched in Fig. 3.1e) as a linear
spring-damper combination that only engages under tension and only produces pulling
forces. Their respective forces are modeled as

l(t) = ‖pB − pA‖2 (3.8a)

l̇(t) = pB − pA
l(t) (vB − vA) (3.8b)

fc, AB = pB − pA
‖pB − pA‖2

max(0, k(l(t)− l0)− l̇(t)). (3.8c)

Here, l0 denotes the relaxed length of the modeled spring.
Denoting the cable mounting points at the SAM as C1, C2, and C3, we can find the
resulting constraint wrench on the CoM as

fc, P = AdTC1gP

 0
fc, C1H

+ AdTC2gP

 0
fc, C2H

+ AdTC3gP

 0
fc, C3H


=

rc, PC1 × fc, C1H + rc, PC2 × fc, C2H + rc, PC3 × fc, C3H
fc, C1H + fc, C2H + fc, C3H

 .
(3.9)

This serves as a good example on how to apply the transposed transformation adjoints
to compute the equivalent wrenches in the CoM.
We assume the intermediary mass to behave like a point mass, with all cable forces
pointing directly at its CoM. Therefore, we don’t consider any torques acting on it. The
resulting force on the intermediary mass is

fc, H = −fc, C1H − fc, C2H − fc, C3H + fc, HS. (3.10)
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3.6 Modeling the entire system

Most robots consist of a serial interconnection of translational and rotational joints.
Looking at these joints, they provide only a single degree of freedom each. This implies
that there are 5-dimensional constraints between any two subsequent bodies of a robot
of that type.
In this section, we find these constraints and a method to construct the differential
equations of motion for a general robot is described.

Rotational joints

For a rotational joint, the translational velocity of the joint itself can be found from
either of the connected links using the rigid body equation (1.8),

vJ1 = vL1 + ωL1 × rL1J1 (3.11a)
vJ1 = vL2 + ωL2 × rL2J1. (3.11b)

This gives us a three-dimensional constraint on the linear velocities. In addition to that,
their angular velocities are related as well, as

ωL2 = ωL1 +RJ1


0
0
q̇1

 . (3.12)

Here, RJ1 is the orientation of the rotational joint, with its z-axis being the axis of
rotation. This equation gives us a two-dimensional constraint on the angular velocities.
We can extract two independent equations by representing them in the joint frame and
omitting the equation in z-direction, which contains the unknown q̇1. For this omitting
operation, we use a selection matrix S, yielding


1 0 0
0 1 0
0 0 0

 L1R
T
J1L1ωL2 =


1 0 0
0 1 0
0 0 0

 L1R
T
J1L1ωL1 +


1 0 0
0 1 0
0 0 0




0
0
q̇1


SL1R

T
J1L1ωL2 = SL1R

T
J1L1ωL1.

(3.13)

If we combine (3.11) with (3.13), the Pfaffian constraint matrix is

Ar =

−(L1rL1J1)× I L1RL2(L2rL2J1)× −L1RL2

SL1R
T
J1 0 −SL1R

T
J1L1RL2 0

 , (3.14)

where L1 and L2 denote the first and second link, respectively, and J1 is the joint between
them.
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Translational joints

For a translational joint, we can directly see that both bodies’ rotational velocities must
be identical, satisfying

ωL2 = ωL1. (3.15)

The relationship between the translational velocities is again based on the rigid body
equation (1.8),

vL2 = vL1 + ωL1 × rL1L2 +RJ1


0
0
q̇1

 . (3.16)

Similar to (3.13), we can extract two independent equations from (3.16),

SL1R
T
J1L1vL2 = SL1R

T
J1L1vL1 + SL1R

T
J1(L1ωL1 × L1rL1L2). (3.17)

Finally, the Pfaffian constraint matrix is

At =

 I 0 −L1RL2 0
−SL1R

T
J1(L1rL1L2)× SL1R

T
J1 0 −SL1R

T
J1L1RL2

 . (3.18)

Constructing equations of motion

Using (3.14) and (3.18), it is possible to construct the equations of motion and those
for the observer directly. For a m-link robot, m rigid bodies are considered. Generally,
their equations of motion are described in (2.26) and (1.52). The constraint matrix can
be constructed from the joints connecting the individual links as

Arobot =



Aj1,7:12 0 0 0 . . .

Aj2 0 0 . . .

0 Aj3 0 . . .

0 0 Aj4 . . .
... . . . . . .


. (3.19)

In the first row, a connection to a inertially fixed body is assumed, hence the first 6
columns of the first joint constraint matrix can be omitted.
The applied wrench fin for each body consists of the two efforts in the preceding and
subsequent joints, along with external wrenches, such as the gravity force. The constraint
forces, which of course also act on the bodies, do not need to be computed explicitly.
This representation is sufficient for any serial robot. Using different constraints, even
parallel robots or different multi-body systems can be represented in this way.
The SAM including its manipulator consists of 8 or 9 bodies depending on the configu-
ration regarding an intermediary mass. The constraints imposed on it are the platform
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constraints (depending on the model), followed by 7 rotational joints. The applied
wrench fin can be computed using IMU measurements to obtain the gravity force, and
the control inputs to obtain the joint torques and the propulsion wrench on the platform.
The current pose can be extended from a single measurement anywhere on the SAM to
the entire system using forward kinematics of the manipulator. In the case of a double
pendulum assumption for the platform, the intermediary mass’s position (and its orien-
tation up to a rotation around its z-axis) can be found as well: We know it’s exactly in
the z-direction of the platform frame at a known distance. For the orientation, we know
that its z-axis points towards the suspension point. We can even determine the distance
between the intermediary mass and the suspension point, which gives us the option to
model this connection as a translationally compliant cable instead of a rigid one, using

rH = rP + lPzP (3.20a)

zH = − rH
‖rH‖2

(3.20b)

lH = ‖rH‖2. (3.20c)

Overall, this shows how the SAM as a whole fits into the framework used throughout
this thesis.
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mP

(a) Rigid pendulum

mP

mH

(b) Rigid double pendulum

mP

(c) Elastic pendulum

mP

mH

(d) Elastic double pendulum

mP

mH

(e) Individual compliant cables

Figure 3.1: Different models of the SAM
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System identification

The SAM is a very complex system. As a result, its exact dynamic characteristics are
difficult to directly compute or measure. In this chapter, we will optimize parameters
to optimally replicate experimental data in simulations.
Both single-mass models presented in § 3 will be optimally fit to data collected from
experiments that are explicitly designed to highlight specific parameters’ effects. After
that has been done, the remaining residuals will be compared.
Finally, a model which provides a good balance between complexity and accuracy of
system representation will be selected as a base for the observer.

4.1 Limited parameter space

In this application, most parameters are physically limited to a subspace of R. In
particular, masses, stiffnesses and damping parameters need to be positive and mass
moments of inertia need to be positive definite. Moreover, rough estimations of the range
for each parameter are often available. By limiting the parameter space accordingly, the
result will be ensured to be reasonable and the optimization will be vastly accelerated.
The parameter ranges can be expressed as

Wmin,i < Wi < Wmax,i (4.1)

The resulting allowed parameter space will be denoted as P.

4.2 Starting values

Good starting values dramatically improve optimization performance. The optimization
approach presented here starts by evaluating the cost function at a given number of
different points randomly sampled from a uniform distribution and selecting the point
with the lowest cost from those. Here, a greater number of points is expensive, so there
is a tradeoff between exceptionally good starting values and execution time. It makes
sense to not choose the number too high, as an optimization will follow anyways to
minimize the remaining cost. With a higher number of parameters to optimize for, it
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becomes more justifiable to invest more time into finding good starting values, as the
optimization itself is more expensive.

4.3 Numerical gradient descent

In the experiments, the absolute pose of the SAM’s platform will be measured. Subse-
quently, simulations will be run to replicate the experimental results. After the simu-
lation has been run, the trajectories of the experimental pose and the simulated pose
will be compared and their mean-square error (MSE) will provide a cost function to
minimize. Explicitly, the cost function is

C =
tend∑
t=0

n∑
i=0
‖(log(g−1

i,gt[t]g̃i[t]))∨‖2, (4.2)

where tend is the experiment duration, and n is the number of involved bodies. ggt are
the ground truth poses, and g̃ are the simulation results.
We don’t take the mathematical difference between the poses, as this is not a meaningful
operation in SE(3), but rather finding the homogeneous transformation from the simu-
lated pose (g̃) to the ground truth pose (ggt). In order to assess the magnitude of this
mapping, we use the logarithmic map to obtain a value in se(3), as this is isomorphic
to R6. Finally we sum the squared norms of the representation in R6 for all measured
bodies for all times.
In order to reduce the cost gradually, gradient descent will be implemented. Due to
the complexity of the cost function, this will be done using numerical gradients, as the
analytical gradient with respect to the parameters W is not easy to obtain, in particular
δ
δW g̃.
The numerical gradients are obtained using the central difference scheme as

d = (∇WC)i(W ) = C(W + hei)− C(W − hei)
2h

(4.3)

Here, for h→ 0, the numerical gradient will be identical with the analytical one, so we
choose a small h that is still numerically stable.
It is clear that obtaining this gradient is expensive, as for every parameter, two eval-
uations of C are required. Recall that every evaluation of C requires a full run of the
simulation. This of course motivates efforts to simplify the simulations as much as
possible, but also to reduce the number of full gradient computations.
Basic gradient descent works by iteratively evaluating the gradient at the current point
in parameter space and then "stepping" a small distance in the opposite direction,

Wk+1 = Wk − α∇WC(Wk). (4.4)

Here, we need to ensure the parameters satisfy (4.1). To this end, we compute the
updated parameters in a more conservative way, using

γ = min( max
(Wk+γl∇WC(Wk))∈P

γl, α)

Wk+1 = Wk − γ∇WC(Wk),
(4.5)
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where (Wk + γl∇WC(Wk)) ∈ P ⇐⇒ Wmin,i < (Wk,i + γl(∇WC(Wk))i) < Wmax,i.
This constraint preserves direction, and it only scales the step size when necessary to
comply with the limitations. This has the drawback of finding local minima at the
parameter limits if the gradient at the limit points toward the limit, as this requires
γ = 0. This special case can be handled by simply ignoring the limiting coordinate of
the gradient and setting it to zero before finding γ and applying the step. The idea of
this approach is that after a few steps, the gradient might point away from the border
again, as we assume that the global minimum is not at the parameter limits.
In general, gradient descent works for small enough α, as the gradient always points into
the direction with the largest gain per distance, so going the opposite way ensures that
the value will decrease until a minimum is found. However, taking very small steps is
essential for this approach, as the gradient is only valid for the exact point it’s evaluated
at.
Taking very small steps, however, means that a lot of steps are required to reach a
minimum, which means a lot of numerical gradient evaluations are necessary.

4.3.1 Line search

One method to dynamically optimize the step size is so called line search (see [18]). For
this, the minimum of the cost function along the direction of the gradient is found. This
is a function f : R → R, so it is comparatively easy to analyze. For instance, finding
the numerical derivative with respect to distance traveled in the gradient direction takes
only 2 function evaluations instead of 2n that a full gradient takes, using

δ

δµ
C = C(W − µ∇WC − h∇WC)− C(W − µ∇WC + h∇WC)

2h . (4.6)

It is clear that there is a minimum where the derivative’s value changes from a negative to
a positive value. We already know that the derivative has a negative value at µ = 0. Note
that there might be multiple minima along the line; we will try to find the minimum
closest to the current point. For this, we gradually increase µ until we encounter a
positive value of the derivative. A quick approach to this is to iteratively multiply µ by
a factor m > 1,

µk+1 = mµk. (4.7)

Once we find a µk with a positive derivative, we know that the minimum must be between
µl = µk−1 and µr = µk. In order to find the exact point, we use bisection.
We iteratively evaluate the derivative in the middle µm = 0.5(µr + µl) between the
right border µr, at which the derivative is positive, and the left border µl, at which it’s
negative. In case the derivative in the middle is positive, it becomes the new right border
(µr = µm), if it’s negative, it becomes the new left border (µl = µm). This way, the
distance between the borders (in between which the minimum must lie) exponentially
decreases: every iteration, it halves.
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Algorithmus 4.1 : Bisection algorithm
Data : µl, µr, ε
Result : µopt

1 begin
2 while |µr − µl| > ε do
3 µm = 0.5(µr + µl)
4 if δ

δµC
∣∣∣
µm

> 0 then

5 µr = µm

6 else
7 µl = µm

8 µopt = µm

4.3.2 Adam

In case of a small number of parameters, line search might be comparatively expensive
in relation to the gradient evaluation. In this case, it can be more efficient to stick closer
to basic gradient descent.
However, a lot of research has been done in this field as it is an important part of deep
learning algorithms. One typically well performing optimization algorithm is Adaptive
Moment Estimation (Adam) as presented in [9].
Here, both moving averages of the gradient (m) and its squared norm (p) are computed
and used for the descent. This leads to the update rules

m[k + 1] = 1
1− β[

1k + 1]
(β1m[k] + (1− β1)∇WC) (4.8a)

v[k + 1] = 2
1− β[

2k + 1]
(β2v[k] + (1− β2)‖∇WC‖22) (4.8b)

W [k + 1] = W [k]− 1√
v[k + 1] + ε

αm[k + 1]. (4.8c)

The major benefit of using the moving average gradients in this application is that it is
more robust against noise in the gradient, which is likely to occur in numerical gradients
based on experimental data.

4.4 Local minima

Although gradient descent will usually converge to a minimum, it is not guaranteed that
this will be the global minimum. In fact, in high-dimensional optimization problems, a
lot of global minima exist, with sometimes dramatically high cost residuals.
In this application, it is undesirable to find a local minimum with high cost, as it doesn’t
perform well at representing the real data. Thus, the optimization algorithm used here
identifies local minima .
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Typically, a local minimum is easy to identify as convergence at a suspiciously high
cost. It makes sense to define this "suspiciously high" cost in terms of the convergence
criteria. For instance, if we are looking for a final cost of Cdesired, it makes sense to
select the threshold to classify a local minimum as useless at any cost higher than
Cthreshold = 1.5Cdesired.
After a local minimum has been identified, it will be classified and stored as such. Then,
new starting parameters will be found to optimize from, with the intention to find a
better minimum.

4.4.1 Restarting the optimization after finding a local minimum

After finding local minima, it is desirable to not reach them again from different starting
values. As such, it is meaningful to keep track of both the starting values and the
respective minima reached from there. Both can subsequently be avoided when selecting
new starting values and while optimizing from there.
It is justifiable to invest a considerable effort in finding a meaningful starting point and in
avoiding previously explored minima. Therefore, we again test multiple possible starting
values, as described in § 4.2.
The cost function however will be extended by potential terms depending on the distance
to previously explored points to push the exploration into a "new" direction,

C =
tend∑
t=0

n∑
i=0
‖(log(g−1

i,gt(t)g̃i(t)))∨‖2 +
m∑
k=0

1
‖W −Wk‖22

θ. (4.9)

θ < 1 is the intensity of the local minima-avoiding potential field. The intention is to
increase the cost around and at local minima that have been explored earlier such that
they don’t appear as local minima anymore, like filling potholes in a damaged street.
For the optimization, the repelling effect for the previous starting points will be disabled,
as it is not meaningful.
Once the optimization starts to converge, this potential field will be entirely disabled.

4.5 Convergence handling

It is useful to detect when convergence takes place. It can be used to engage active
parameter decay, or to restart the optimization if it is at a high-cost local minimum.

4.5.1 Convergence indicators

There are several indicators which suggest that the optimization is approaching a mini-
mum.

Differential quotient

It is useful to identify if the cost or the parameters circle around a certain point over
time, as this can indicate convergence. To this end, the differential quotient of the values
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can be taken over a few iterations. It makes sense to do so over an uneven number r
of iterations, as the values tend to switch between two neighborhoods of values every
iteration as a result of overshoot. Then, the differential quotient is defined as

RDQ[k] = X[k]−X[k − r]
r

, (4.10)

where X can be for example the cost, or the parameter vector. It is meaningful to choose
r comparatively large to reduce the effect of high-frequency changes.
This rate of change itself can already give an idea if the respective value stagnates.
However, it still carries some noise with it. in order to minimize that, we can average
the differential quotient over a couple of iterations. This is equivalent to taking the
differential quotient of the averages, and a meaningful metric, defined as

RADQ = 1
n

n∑
k=n−l

RDQ[k] = 1
n

n∑
k=n−l

X[k]−X[k − r]
r

=
1
n

∑n
k1=n−lX[k1]− 1

n

∑n
k2=n−lX[k2 − r]

r
.

(4.11)

For low values of |RADQ|, it is justified to assume that the respective values orbit in
around a nearly fixed mean. If this is the case for the cost function, it means that there
is no long-term trend to a decrease in its value.

Value differences

While the differential quotient over many iterations can provide information about the
long-term tendency of the respective value, it is also useful to know its high-frequency
behavior. The differences of subsequent values can provide important information in
this regard. It gives an idea of the amplitude for high frequency effects.

Differences sign changes

The frequency of short-term changes in the values is another useful metric. It is directly
correlated to the frequency of sign changes of the value differences.

4.5.2 Reacting to different indicators

The presented metrics contain valuable information about the optimization progress.
Depending on their values, we can make informed decisions about changes and adapta-
tions of the process.

Low average differential quotient

As described earlier, a low value of the differential quotient indicates that no more
meaningful long-term changes are to be expected. First of all, this indicates that the
contraction area of a local minimum is reached. This is a good time to disable the
potential field helping to avoid previously explored minima as presented in § 4.4.1 to



4.6. Experimental data 45

ensure it is an actual minimum of the underlying scalar field. This can be done by simply
setting θ = 0.
If the repelling field of the previous minima has already been disengaged, we can have a
look at the short-term behavior: If there are high-frequency effects with comparatively
high amplitude, this indicates continuous overshoot. This can be tackled by reducing
the step size (α← aα, 0 < a < 1).
If there is no considerable high-frequency effects and the current cost is relatively high,
we can conclude that we have reached a local minimum that is not the global minimum.
in that case, we store the current set of parameters as local minimum coordinates and
restart the optimization from new starting coordinates as explained in § 4.4.1.

High average differential quotient

If the step size is chosen too high, we might experience high-frequency changes in cost
and parameters even without notably stagnating means. If this is the case, the step size
needs to be reduced, as well.

Optimizer performance

The described optimization algorithm has been applied to the 4-dimensional implemen-
tation of the Ackley function as developed in [1], which, similar to the cost functions in
this chapter, has many local minima and one global minimum with a considerably lower
value. The function is defined as

Cack(x) = −20 exp

−0.2

√√√√1
4

4∑
i=1

x2
i

− exp

−0.2

√√√√1
4

4∑
i=1

cos 2πxi

+ 20 + exp (1)

(4.12)

The optimization domain has been chosen to xi ∈ [−32.76832.768). The algorithm’s
behavior is described in Fig. 4.1.

4.6 Experimental data

Experiments with the SAM are essential for the system identification process.

4.6.1 Experimental setup

The experiments have been conducted in a single pendulum configuration of the SAM,
i.e. without any considerable mass placed between the suspension point and the plat-
form. We collected ground truth data using the vision-based Vicon system (see [12] for
performance analysis). The full setup is depicted in Fig. 4.3. Throughout this section,
we will use V to denote the Vicon system’s inertial frame which has been calibrated to
have the z-axis point in the opposite direction of gravitational acceleration, I to denote
an inertial frame whose origin is in the suspension point with the same orientation as V,
L to denote the frame fixed to SAM which is observed by the Vicon system, and B to
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(a) Successful optimization (b) Detailed view

Figure 4.1: The optimizer running on the Ackley function. In Fig. 4.1b, the first 350
iterations are shown in detail. The blue stars mark a reduction of the step size α,
whereas the green stars mark the selection of a new parameter and a restart. In the first
50 iterations, jumps in the cost function take place that indicate overshoot in a larger
scale. These jumps are detected and the step size is reduced. It can be seen that this
improves the issue, but needs to be repeated multiple times. After 1735 iterations, the
value does not decrease anymore, while the minimum step size has been reached. As a
reaction, a restart is initiated. Finally, after finding 5 local minima, the optimization
ends up at the global minimum at (0, 0, 0, 0) and terminates, because it satisfies the
termination condition Cack < 1e− 6.

denote the frame fixed to SAM with its origin in the CoM and with the z-axis pointing
towards the suspension point in the resting state. The different coordinate frames are
illustrated in Fig. 4.2.
Note that the Vicon system provides the transformations from L to V, IgL. We are
generally more interested in the transformations from B to I, IgB, however, which we are
going to extract in the subsequent steps.

4.6.2 Experiment formats

The data collected in the experiments is analyzed to find kinematic and dynamic pa-
rameters of SAM, which are an integral part of the observer.
To this end, multiple experiments with different target values have been conducted.
The experimental data is then used as a ground truth to fit kinematic and dynamic
parameters of the system to. All of the parameters are found through optimization (as
described in this chapter) even if direct algebraic equations for individual datapoints are
available. This is done to avoid overfitting to those individual points and to leverage the
entire dataset available to average out high-frequency noise.

Passive swings

It was not possible to calibrate the Vicon system’s inertial frame to the suspension point
because it was not in the field of view.
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Figure 4.2: The different coordinate frames in the experimental setup: B and L are fixed
to the platform, V and I are inertial.

Figure 4.3: The experimental setup with the SAM swinging. At the top, the Vicon
cameras can be seen.
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In order to identify the suspension point’s coordinates represented in the Vicon inertial
frame, the platform has been excited manually to swing about its suspension point (see
Fig. 4.4).
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(a) Original data from the Vicon system
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(b) Calibrated data

Figure 4.4: Passive swings of the SAM. The calibration has been chosen such that the
swings’ equilibrium point is exactly at 0.

Subsequently, the suspension point has been identified as the point whose distance to the
body-fixed coordinate frame’s origin varies the least. This is motivated by the assump-
tion of the suspending cable’s length being mostly constant throughout this experiment.
The suspension point minimizes the cost function

Csus = var(VPVI − VpVL), (4.13)

where VPVI = const. is the suspension point’s coordinates in the V frame, and VpVL
denotes the L frame’s origin’s position in the V frame, which changes over time.
Using VPVI, we can easily find IgL as

IgV =

I −VPVI

0 1

 (4.14a)

IgL = IgVVgL. (4.14b)

We know that the equilibrium state of SAM requires its CoM to be exactly below its
suspension point, although we don’t know how far below. The oscillations of SAM will
take place around this equilibrium, which indicates that the translation from L to B
(Lg̃B = const.) minimizes

CCoMAx = 1
te

te∑
t=0

∥∥∥∥∥∥∥∥∥


1 0 0
0 1 0
0 0 0

 (IRL[t]Lr̃B + IrIL[t])

∥∥∥∥∥∥∥∥∥
2

2

. (4.15)

This cost function is just the average x and y coordinates of B in I, which we assume to
be 0. Note that the assumption of the equilibrium point being exactly underneath the
suspension point does not provide any information about its position along the B frame’s



4.6. Experimental data 49

z-axis, which leaves (4.15) invariable in this parameter. For this reason, we denote the
transformation used here as Lg̃B instead of LgB.
In addition to the translation, LgB might also contain a constant rotation. In order to
find this rotation, we require the B frame’s z-axis to point towards the suspension point.
The resulting cost function to be minimized by LR̃B is then

CBRot = 1
te

te∑
t=0

∠ (IzB,−IrIB) = 1
te

te∑
t=0

∠

IRL[t]LR̃B


0
0
1

 ,−IrIL − IRL[t]LrLB

 , (4.16)
where IzB denotes the B frame’s z-axis, described in I, and IrIB is the vector from I’s
origin to B’s origin. We would like those to be parallel.
Again, this requirement leaves one degree of freedom for the rotation, which is around
the B frame’s z-axis. In total, with this step, we can find LgB up to translation and
rotation along the B frame’s z-axis as

LgB = Lg̃B


Rz(γ)

0
0

zCoM

0 1

 . (4.17)

Constant and sinusoidal unidirectional force

The second experiment used for system identification consisted of constant and sinusoidal
actuation of the SAM with a force pointing in one known direction (see Fig. 4.5).
This experiment directly provides the missing parameters to fully define γ, which was
missing in 4.17. The optimal γ minimizes the cost function

Cγ = 1
te

te∑
t=0

Iv
T
rotIzI = 1

te

te∑
t=0

(IRL[t]LR̃BRz(γ)Bvrot)T


0
0
1

 , (4.18)

where Rz(γ) denotes a rotation matrix representing a rotation around the z-axis, Bvrot
is the motion’s rotation axis, which we know in the B frame, and zI is the z-axis of the
I frame. The optimal value fitting the experimental data was γ = 12.

Complex dataset for dynamic parameters

One experiment has been performed which combines excitement of the system in multiple
absolute directions. In order to achieve this, a sinusoidal excitement in a constant
direction with respect to the body frame was enabled. Subsequently, the SAM’s yaw
was controlled to arbitrarily changing piecewise constant values. Overall, the exciting
force’s direction was constant with respect to the body frame, whereas the Newton-Euler
equations held in the inertial frame. This led to movement of the SAM in all possible
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(a) Forces in the body frame
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(b) Position in the inertial frame
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(c) Forces in the body frame
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(d) Position in the inertial frame

Figure 4.5: Active swings and holds of the SAM. It is clear that these experiments
emphasize the relative orientation between the inertial and the body frame, as the input
is given in the body frame, but the position readings are obtained in the inertial frame.
In the experiments shown in the top row, a force has been slowly ramped up and down
in one direction, whereas in the bottom row, a sinusoidal force was exerted.

directions. As a result, the data collected from this experiment should contain a lot of
information about the system.
An optimization has been run on sets from all collected data to find the dynamic pa-
rameters of the system, along with the distance of the CoM from the suspension point,
which finally completes LgB. The cost function used was the general one from (4.9). The
parameters to optimize for were

W =



m

λ1Θ
λ2Θ
λ3Θ
ξΘ

l


, (4.19)
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(a) Forces and torques in the body frame
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(b) Orientation in the inertial frame

Figure 4.6: Sinusoidal force applied in changing absolute directions: In the body frame
it’s always in x-direction, the system’s yaw however is being arbitrarily changed over
time which changes the body z-axis’ direction with it.

where the constraints on the inertia matrix Θ (it has to be symmetric and positive
definite) have been respected implicitly, m is the SAM’s mass and l denotes the distance
of the CoM to the suspension point. We define only 6 relevant elements in W and then
construct Θ from them as

RΘ = exp((ξΘ)∧×) (4.20a)

Θ = RT
Θ


λ1(Θ) 0 0

0 λ2(Θ) 0
0 0 λ3(Θ)

RΘ. (4.20b)

As shown in Fig. 4.7, the data collected in the experiments is unfortunately not conclusive
for some of these values. In particular the mass moment of inertia of the system does
not show a strong correlation to the cost function value. This can be explained by the
very long arm of the pendulum with respect to the dimensions of the SAM itself. The
equivalent mass moment of inertia around the suspension point (see (2.48)) is influenced
mostly by the mass and the pendulum arm length at the values considered. Assuming
m = 55 kg, l = 3.5 m and λmax(Θ) = 25 kgm2, the body’s inertia only makes up roughly

λmax(Θ)
ml2+λmax(Θ) = 3.6 % of the equivalent mass moment of inertia.
This effect does not influence the mass moment of inertia around the body z-axis. How-
ever, most of the conducted experiments had a yaw controller enabled that inhibited
any yaw motion. The exception is the dataset described in this section, which features
some controlled, but arbitrary yaw maneuvers. These however are embedded in a set of
very complex movement, so overall it makes up just a small part of the cost function
and therefore is not prioritized in the optimization.
Although it is difficult to optimize the mass moment of inertia around the body z-axis
on the entire dataset, we can still find estimates on it based on individual sections of the
experiments. In particular, the yaw control introduces considerable angular acceleration.
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(b) Influence of the inertia orientation.

40 50 60 70 80 90 100

Mass [kg]

40

50

60

70

80

90

100

110

120

130

C
o

s
t

(c) Influence of the mass.

2.5 3 3.5 4 4.5

Cable length [l]

40

50

60

70

80

90

100

110

120

130

C
o

s
t

(d) Influence of the cable length.

Figure 4.7: The correlation between model parameters and cost function values with
respect to (4.2). Quadratic functions have been fit to the data. They don’t show pro-
nounced minima for the parameters of the mass moment of inertia: it can be concluded
that those do not play a major role in the cost function, whereas the system mass and
cable length each have a considerable influence.

Using data from different occasions where this takes place and applying it to (1.45), we
obtain

Θz = τ

α
(4.21)

as a relationship between the angular acceleration α, torque τ , and the mass moment of
inertia around the z-axis, Θz. We can take the average of this value over a time where
knowingly only τ causes α, in particular at the the times when the controller is turned
on. In Fig. 4.8, the results of matching the angular acceleration to the input torque
using Θz are shown. It shows that taking the numerical second derivative is quite noisy.
However, the noise is rather comparatively frequent, and as such, taking the average
over some time mostly cancels its effects. The resulting value is Θz = 14.33 kgm2. For
reference, that is about the same as a homogeneous cylinder with a mass of 60 kg and a
radius of 0.7 m.
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Figure 4.8: Two instances of the yaw controller being turned on and generating significant
angular accelerations. Both sides of (1.45) are fit to match as closely as possible, despite
noise resulting from numerical differentiation. Outliers are ignored.

Since we can’t properly determine them using the optimization, we set ξΘ = 0 and
λ1(Θ) = λ2(Θ) = 10 kgm2 as well as λ3(Θ) = 14.33 kg. The mass moment of inertia
around the axes orthogonal to the z-axis have been chosen smaller than that around the
z-axis, because the SAM’s platform, which contains most of its mass, is comparatively
flat. Overall, the optimization was thus reduced to two remaining parameters.

Dropping the system

Although the primary model assumed for the SAM is a rigid pendulum, we know that
the cables from which it is suspended are not perfectly rigid, but actually compliant,
with a stiffness k and a damping coefficient d.
A somewhat radical way to collect data that strongly depends on these values is to lift
the system until its weight is no longer supported by its cables and then drop it to
fall into the cables. This way, a trajectory (see Fig. 4.9)that heavily depends on those
parameters can be generated, which in turn can be analyzed to obtain information about
the compliance.
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Figure 4.9: The response of the SAM to dropping into the cables.
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Using the dynamics parameters obtained from earlier optimizations, we can optimize
purely for the damping and stiffness properties of the SAM. The cost function used was
the general one from (4.9). The simulation parameters to optimize for were

W =


kt

kr

dt

dr

 . (4.22)

Here, kt and kr are the translational and rotational stiffnesses, and dt and dr the respec-
tive damping gains. The model to be optimized was § 3.3, with K = blkdiag(krI3, ktI3)
and D = blkdiag(drI3, dtI3). The rotational and translational gains have been assumed
to be multiples of the identity, respectively, as a reasonable simplification that signifi-
cantly aids the optimization.

4.6.3 Optimization results

The remaining two parameters of the rigid model were determined to m = 79.075 kg
and l = 3.4832 m. It is very likely that the optimal mass for the model is not the true
mass of the SAM, as that is assumed to be lower. Nevertheless, it best represented the
collected data, so it is to be expected that it will also perform optimally in the observer.
In this instance, absolute accuracy of the value is not the main priority.
The obtained distance between the suspension point and the CoM of the SAM seems to
be very realistic.
While most experiments could be closely reproduced by the simulations (see Figs. 4.10
to 4.12), the inputs from § 4.6.2 directly exploit a weakness of the approach. Overall,
the simulations could be considered a feedforward-only observer, as they do receive the
wrenches applied to the real system, but not any of the state values. As such, they
are naturally prone too suffer from drift. In most of the experiments, that drift could
never grow to large, because gravity would always pull the system back towards the
equilibrium, and the yaw control fixed the yaw angle. In the optimization, the yaw
controller’s torque was disregarded because so were the disturbances causing the yaw
controller to engage in the first place. In the mentioned experiments however, the yaw
torque plays a major role and as such can not be ignored. These torques, in combination
with a potentially inaccurate value for Θz, are directed in a fully unconstrained direction
with no potential field gradient along it, which means there is no inherent equilibrium
the state would converge to. As a result, the error could grow unboundedly, and as
a consequence, the simulations could not reproduce these experiments accurately (see
Fig. 4.13). For this reason, their respective data will not be considered in the model
comparison.
For the compliant model, the identified values are kt = 54 589 N/m, kr = 1903 N m/rad,
dt = 435.9 N s/m, dr = 69.3 N m s/rad. The reconstructed trajectory for the drop exper-
iments is shown in Fig. 4.14.
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(a) Reproducing the position
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(b) Reproducing the orientation

Figure 4.10: Reproducing the experiments featuring constant forces. In Fig. 4.10b, it is
clear that the yaw angle was changing in the real data, but the simulation modeled no
cause for any rotation around the body z-axis. It is remarkable that even 30 seconds
after the most recent measurement, the simulated position is within a few centimeters
of the experimentally generated trajectory.
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Figure 4.11: Reproducing the experiments featuring sinusoidal forces. Again, in
Fig. 4.11b, it is clear that the yaw angle was changing in the real data, but the simulation
modeled no cause for any movement around the body z-axis.

4.6.4 Model comparison

After all the parameters had been obtained, we compared the different models on how
well they could reconstruct the individual experiments.
We only compare the single mass models here, as those respecting an intermediary mass
would not be meaningful with regards to the experimental setup.
A comparison of remaining cost function values (according to (4.2)) for the two models is
given in § 4.6.4. Here, it is noteworthy that the cost for the varying forces experiment is
especially high, as previously explained. Apart from that, the values are similar with the
exception of the dropping experiment. In Fig. 4.15, a typical trajectory of the difference



56 Chapter 4. System identification

15 16 17 18 19 20 21 22 23 24 25

Time [s]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

P
o
s
it
io

n
 [
m

]
x

gt

y
gt

x
r

y
r

(a) Reproducing the position

15 16 17 18 19 20 21 22 23 24 25

Time [s]

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

P
o
s
it
io

n
 e

rr
o
r 

[r
a
d
]

 x

 y

 z

(b) Error in reproduced position

Figure 4.12: The simulated model seems to have a slightly higher natural frequency than
the real data. This leads to a harmonic amplitude change of the position error, but no
unbounded drift, because the system and the simulation will always move around the
same equilibrium. It should be noted that this is an indicator that the distance between
the suspension point and the CoM has been chosen too long. However, this value best
fits the data and therefore might still be better suited to be used.
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(b) Orientation error

Figure 4.13: Drift in the yaw angle accumulates quickly enough to soon render the
simulated values entirely meaningless.

between the models in the first seconds is shown. However, the cost values of both
models are particularly high on this experiment, meaning that neither can accurately
represent it.
Overall, the rigid pendulum model performed well at reproducing the results from the
experiments. In everyday operation, the SAM is unlikely to violate the rigid pendulum
assumption as extremely as in the drop experiments. As such, it is a reasonable choice
to model the SAM accurately without the need for an unnecessarily complex model.
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Figure 4.14: The reconstructed trajectory of the drop experiments. It is clear that the
reconstruction is not perfect. This indicates that the model is not fully representative of
the real system. For instance, the oscillation frequency does not decrease exponentially
in the real system, which is particularly significant for the orientation. As such, the
parameters can’t perfectly fit the entire timeseries. Instead, the beginning is focused
because it features higher variations, which are especially expensive in the quadratic
cost function. In addition to that, the measurement frequency of 20 Hz of the Vicon
system might be too low to detailedly capture these high frequency oscillations.

Table 4.1: Evaluation of the two models

Experiment Rigid pendulum cost Compliant pendulum cost

Passive Swings 0.0034 0.0045
Constant Force 0.0064 0.0063
Sinusoidal Force 0.0027 0.0024
Dropping the SAM 0.0370 0.0222
(Varying forces (§ 4.6.2) 2.8758 2.8409)
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(b) Orientation difference

Figure 4.15: The difference between both models starts with the compliant model con-
verging to its equilibrium with respect to the soft constraints. This happens because in
the experimental data, slight variances with respect to the pendulum constraints‘ occur,
such that the initial conditions are not guaranteed to be at the compliant model’s equi-
librium. Overall, the difference is considerably lower than that of the individual models
to the experimental data.



Chapter 5

Observer Design

Notation

In this chapter, we will denote values that correspond to an observer with the same
symbols used for the respective values in the observed system, but adding a hat .̂ For
example, V is the twist of the real (observed) system, while V̂ denotes the twist of the
observer.
In particular, B denotes the body frame of the observed system, whereas B̂ is the body
frame of the observer. It is important to consider which frame the values are represented
in in order to ensure that all values of an expression are compatible and the result is
meaningful.
In addition to that, V and g denote the system state as introduced in § 1.3.4, not
necessarily that of just one rigid body.

5.1 A nonlinear observer for free-floating rigid bodies

In [13], an observer is proposed which estimates position and velocity of free-floating
rigid bodies, on which this work is mainly based. In this section, we will sketch its
working principles.

5.1.1 Observed system

We assume that the pose of the body to be observed satisfies

ġ = g · [BV ]∧ , (5.1)

which defines BV as the body velocity as described in (1.27).
The system’s dynamics are

d

dt
ΛBV − adTBV ΛBV = 0 (5.2a)

V̇ b = Λ−1adTBV ΛBV , (5.2b)

the dynamics of a rigid body as described in (1.50) with no wrench acting on it. This is
reasonable because the observer is designed for free-floating bodies, which are assumed
to not have any external wrenches acting on them.

59
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5.1.2 Errors

The approach assumes infrequent measurements of the true pose g. To bridge the time
when no measurements are available, it continuously propagates the estimated pose ĝ.
Of course, this propagated pose might deviate from the true pose of the system.
We call the difference between the estimated and the true pose η and define it as

η = ĝ−1g = B̂ηB . (5.3)

Whenever no new measurements are available, the state propagation without measure-
ments is realized by setting η = I.
η maps from the observed system’s body frame to the estimated body frame. We define
ε = [log(η)]∨ as a vector representation of the pose error. This is useful, as it resides in
R6 ∼= se(3) instead of SE(3).
Similarly to the pose error, we also define a velocity error

BVe = BV −Adη−1 B̂V̂ . (5.4)

The transformation adjoint into the true pose’s frame is applied to the estimated velocity
to enable a meaningful comparison of both velocities in the same frame.

5.1.3 Observer

The observer follows equations of motion similar to those of the observed system itself
in order to be able to accurately predict its motion while no measurements are available.
The estimated pose’s time derivative is chosen to

˙̂g = ĝ[B̂V̂ + AdηKε]∧, (5.5)

where, apart from the expected body velocity, an additional term depending on the
pose error is included. This term drives convergence when measurements are available,
parameterized by a constant gain K. It is clear that while no measurements are available
(i.e. η = I), the kinematics reduce to the exact same form of (5.1), which makes it
suitable for propagating the state while no measurements are available.
The observer dynamics are defined in the true pose’s frame, i. e. the dynamics of
BV̂ = Adη−1 B̂V̂ rather than those of B̂V̂ are described. This is reasonable as it results in
Λ being constant. Taking the time derivative of this transformed body velocity however
generates a term in BVη , which can not be derived from pure pose measurements. For
that reason, the term is disregarded for the observer dynamics by choosing

d

dt
ΛAdη−1 B̂V̂ − adTAdη−1 B̂V̂

ΛAdη−1 B̂V̂ = −adBVηAdη−1 B̂V̂ + Bfobs (5.6a)

˙̂
V b̂ = AdηΛ−1(adTAdη−1 B̂V̂

ΛAdη−1 B̂V̂ + Bfobs). (5.6b)

It is clear that both the observer and the system to be observed have a very similar
structure of their respective dynamics. In addition to that, their respective accelerations
are both formulated in the true body frame.
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5.1.4 Error dynamics

Plugging (5.1) and (5.5) into the derivative of (5.3), we can compute the pose error’s
time derivative as

η̇ = η(BV −Adη−1 B̂V̂ −Kε) = ηVη, (5.7)

where we define Vη as a body velocity-like value for the pose error η.
To help with the stability analysis, in [13], a helpful function C(BVe, BV ) with the
important skew-symmetric property 〈BVe, C(BVe, BV )BVe〉 = 0 is defined as

C(BVe, BV )BVe
= adTBV ΛBV − adT(BV−BVe)Λ(BV − BVe)− ΛadBV BVe.

(5.8)

Next, the time derivative of the velocity error can be obtained as

V̇ b
e = V̇ b −Adη−1

˙̂
V b + adBVηAdη−1 B̂V̂ (5.9a)

V̇ b
e = V̇ b −Adη−1

˙̂
V b − adBV BVe − adKεAdη−1 B̂V̂ . (5.9b)

Plugging (5.2b) and (5.6b) into (5.9b), we obtain

V̇ b
e = Λ−1(adTBV ΛBV )−Adη−1AdηΛ−1(Bfobs + adTAdη−1 B̂V̂

ΛAdη−1 B̂V̂ )

−adBV BVe − adKεAdη−1 B̂V̂ .
(5.10)

Using (5.8), we can simplify (5.10) to

V̇ b
e = Λ−1(−Bfobs + C(BVe, BV )BVe)− adKεAdη−1 B̂V̂ . (5.11)

The observer wrench is chosen to Bfobs = −ΛadKεAdη−1 B̂V̂ + f0. This results in the
compact error dynamics

V̇ b
e = Λ−1(−f0 + C(BVe, BV )BVe). (5.12)

5.1.5 Stability analysis

For the stability analysis, the dynamics of e = [εT, (V b
e )T]T are considered. The analysis

can be found in more detail in [13].
As described in (1.33), the time derivative of ε can be determined to

ε̇ = Br(ε)Vη = Br(ε)BVe −Kε. (5.13)

The Lyapunov candidate function is

W = 1
2e

TPe, (5.14)

with

P =

P1 0
0 P2Λ

 = PT. (5.15)
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P1 = p1I and P2 = blkdiag[p21I3, p22I3] are both chosen positive definite, so W is a
positive definite function.
Then the derivative of the candidate function is

Ẇ = eTP ė

= εTP1(Br(ε)BVe − kε) + (BVe)TP2(−f0 + C(BVe, BV )BVe)
= −kp1||ε||2 + εTP1Br(ε)V b

e − (BVe)TP2f0.

(5.16)

By choosing f0 = P−1
2 BT

r (ε)P1ε, the derivative becomes

Ẇ = −kp1||ε||2 ≤ 0. (5.17)

LaSalle’s invariance principle

The time derivative of the Lyapunov function is negative if and only if ε 6= 0. In order to
apply LaSalle’s invariance principle, we analyze the trajectories in the subspace where
ε = 0 and show that there are no closed trajectories in this subspace outside of the
equilibrium (e = 0). This subspace can be defined as I = {ε ∈ R6 ∼= se(3), V b

e ∈ R6|ε =
0, V b

e 6= 0}.
For any point in I, (5.13) will evaluate to ε̇ = V b

e 6= 0. This in turn will unavoidably
lead to ε 6= 0 immediately after which does not correspond to a point in I. This implies
that any trajectory passing through a point in I will leave I immediately again.
As a result, there are no closed trajectories in I. That means that the only closed
trajectory satisfying V̇ is e(t) = 0,∀t ≥ 0. We can conclude that the equilibrium e = 0
is asymptotically stable.
An important remark is that the convergence radius is limited by the representation of
the orientations, which is discussed in more detail in [13].

5.2 Extending the observer based on pose measurements

A lot of physical systems can not be described as a free floating body or a collection
thereof. Many of them consist of bodies that are constrained or have known wrenches
acting on them. Here, the presented observer will be extended to also apply to those,
more general, systems.

5.2.1 Adding constraints and known wrenches

In order to add the constraints while preserving the structure of the observer, an ap-
proach featuring explicitly computed constraint wrenches fc (as presented in § 2.2.1)
will be applied. In addition to that, we consider known wrenches acting on the system
fin. The updated system dynamics are

d

dt
ΛBV − ad∗BV ΛBV = fc + fin (5.18a)

V̇ b = Λ−1(fc + fin + ad∗BV ΛBV ), (5.18b)
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where fc ensures a constraint of the form A(g)BV = 0.
We can straightforwardly extend the observer dynamics accordingly to

d

dt
ΛAdη−1 B̂V̂ − adTAdη−1 B̂V̂

ΛAdη−1 B̂V̂ = Bfobs + Bf̂c − adBVηAdη−1 B̂V̂ (5.19a)

B̂
˙̂
V = AdηΛ−1(Bfobs + Bf̂c + adTAdη−1 B̂V̂

ΛAdη−1 B̂V̂ ). (5.19b)

This way, we aim to impose ÂB̂V̂ = 0. In order to retain high similarity to the observed
system, we choose Â = A(ĝ).
The observer dynamics are derived in the true pose’s frame B, so we can’t directly apply
(2.25) to obtain the constraint wrench. In addition to that, we require passivity of the
constraint wrench. However, here, Bf̂c and B̂V̂ are not power conjugated, because they
belong to different frames. We need to transform either of them into the other’s frame,
yielding

Bf̂
T
c BV̂ = Bf̂

T
c Adη−1 B̂V̂ = B̂f̂

T
c B̂V̂ = 0. (5.20)

This motivates

Bf̂c = AdTη B̂f̂
T
c = AdTη ÂTλ̂c. (5.21)

Next, we apply the same approach described in § 2.2.1: differentiation of the constraint
equation and solving for λc. With this, we find

d

dt
ÂB̂V̂ = ˙̂

AB̂V̂ + ÂAdηΛ−1(Bfobs + AdTη ÂTλ̂c + ad∗Adη−1 B̂V̂
ΛAdη−1 B̂V̂ ) = 0

(5.22a)

λ̂c = (ÂAdηΛ−1AdTη ÂT)−1(ÂAdηΛ−1(−Bfobs − ad∗Adη−1 B̂V̂
ΛAdη−1 B̂V̂ )− ˙̂

AB̂V̂ ).
(5.22b)

Finally, in order to respect the known input wrenches, we simply consider them in

Bfobs = fin − ΛadKεAdη−1 B̂V̂ + f0. (5.23)

5.2.2 Stability and convergence

The approach shows promising performance in both simulations and experiments (see
§ 5.5 and § 5.6). However, it is difficult to find a Lyapunov function to prove its conver-
gence and the stability of the origin. For this reason, a numerical validation approach
for a wide range of parameters is taken.

Numerical validation

The observer has been shown to converge with 100 uniformly drawn parameter and
starting value points from the set described in Table 5.1. In this case, randomly chosen,
but constant A have been applied. Regarding the mass moment of inertia, it was derived
from the random variables as described in (4.20). The observer initial pose was always I,
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and its initial body velocity was always 0. The observed system’s initial velocities were
chosen in compliance with the constraints. All simulation iterations converged, with the
development of the error values in 5 s depicted in Fig. 5.1. In addition, that the Lya-
punov candidate function described in (5.14) was simulated simultaneously and its time
derivative was always negative (with a tolerance of 1e−10). The observer parameters
were p1 = 100 and p2 = 0.005.
In another validation step, a double pendulum, consisting of two rigid bodies with a
time- and pose-varying constraint matrix, has been observed for another 100 starting
values and parameter points. The parameters were again in accordance with Table 5.1,
with the major difference that the natural equilibrium of the respective double pendulum
were chosen as the observer’s initial poses instead of I. Again, all instances converged.

Table 5.1: Numerical validation parameters

Parameter Value range

masses [1, 100)kg
mass moment of inertia eigenvalues [1, 100)kgm2

exponential coordinates of mass
moment of inertia orientation

[−π, π)

system initial orientation expo-
nential coordinates

[−π, π)

system initial position elements [−1, 1)m
system initial linear velocity elements [−1, 1)m/s
system initial angular velocity elements [−1, 1)rad/s

input wrench

random noise with no frequencies
higher than 5 Hz and an amplitude of
no more than 1 N m and 1 N, respec-
tively (see Table 5.2 for reference)

Constant Pfaffian constraint matrix randomly sampled, then orthogonal-
ized matrix ∈ R3×6

pendulum arm lengths [0.1, 10)m

5.3 Extending the observer using velocity measurements

In some cases, the system velocity and pose might be available, but only infrequently or
even unreliably. In these cases, it makes sense to employ an observer even though both
pose and velocity are being measured.

5.3.1 Measuring constraints

We propose an observer which respects the exact same constraints as the observed sys-
tem, which is assumed to be of the form given in (5.18). We will ensure

ÂB̂V̂ = AAdη−1 B̂V̂ = A(ĝη)Adη−1 B̂V̂ = 0. (5.24)
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The motivation for this choice of Â is that A is applicable on BV , represented in the B
frame. In order to apply A on B̂V̂ , we must first project it into the B frame, which we
can do using the transformation adjoint: BV̂ = Adη−1 B̂V̂ .

The time derivative of Â is

˙̂
A = ȦAdη−1 −AadBVηAdη−1 . (5.25)

This means in particular that it can not be computed without knowledge of the observed
system’s velocity, as it depends on Vη, which in turn depends on V .
The observer dynamics are (5.19). The observer’s constraint wrench, using (5.22b), is

B̂f̂c = ÂT(AΛ−1AT)−1(AΛ−1(−Bfobs − ad∗Adη−1 B̂V̂
ΛAdη−1 B̂V̂ )− ˙̂

AV ) = AdTη−1ATλ̂c.

(5.26)

It is clear that B̂V̂
T
B̂f̂c = B̂V̂

TÂTλ̂c = 0, i. e. the constraint wrench is passive. For the
observer dynamics, we use (5.21) to compute

Bf̂c = AdTη B̂f̂c = ATλ̂c. (5.27)

5.3.2 Stability and convergence

The stability proof is analogous to the one shown in [13]. We define e =
[
εT (V b

e )T
]T

as an observer error state.

Lyapunov’s second (direct) method

An important effect of our choice of Â is that the constraint forces are passive with
respect to the velocity error, i.e.

(BVe)TBfc = (BV −Adη−1 B̂V̂ )TATτ = BV
TATτ − B̂V̂

TÂTτ = 0 (5.28a)
(BVe)TBf̂c = (BV −Adη−1 B̂V̂ )TATτ̂ = BV

TATτ̂ − B̂V̂
TÂTτ̂ = 0 (5.28b)

The Lyapunov candidate function is

W = 1
2e

TPe. (5.29)

with P as

P =

P1 0
0 P2Λ

 = PT. (5.30)

P1 = p1I and P2 = p2I are each multiples of the identity matrix, so W is a positive
definite function.
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Then the derivative of the Lyapunov function is

Ẇ = eTP ė

= εTP1(Br(ε)BVe − kε) + (BVe)TP2(−f0 + C(BVe, BV )BVe + Bfc − Bf̂c)
= −kp1||ε||2 + εTP1Br(ε)V b

e − (BVe)TP2f0.

(5.31)

By choosing f0 = P−1
2 BT

r (ε)P1ε, the derivative reduces to

Ẇ = −kp1||ε||2 ≤ 0. (5.32)

This is exactly the same as (5.17). Additionally, § 5.1.5 holds analogously to complete
the stability proof.

5.4 Complementing the observer with a position controller

A very important application of system state measurements is feedback control. In
this section, a position controller will be proposed which stabilizes a desired constant
equilibrium gd.

5.4.1 Error variable

In this approach, we control the observer state to the desired equilibrium. As such, the
error variable and its representation in R6 are

Ξ = ĝ−1gd (5.33a)
ξ = [log Ξ]∧ . (5.33b)

As we require the desired equilibrium to be constant, we find the error variable’s time
derivatives as

Ξ̇ = dĝ−1

dt
gd = −ĝ−1 ˙̂gĝ−1gd = −

[
B̂V̂ + AdηKε

]∧
Ξ

= −ΞΞ−1
[
B̂V̂ + AdηKε

]∧
Ξ = Ξ

[
−AdΞ−1 B̂V̂ −AdΞ−1AdηKε

]∧ (5.34a)

ξ̇ = Br(ξ)(−AdΞ−1 B̂V̂ −AdΞ−1AdηKε). (5.34b)

5.4.2 Control law

We aim to stabilize Ξ to I. To this end, the proposed control law is

Bfobs = AdTηAdTΞ−1BT
r (ξ)Kctrlξ −D(ε, ξ)Adη−1 B̂V̂ , (5.35)

where Kctrl denotes a constant proportional gain and D(ε, ξ) is an adaptive damping
gain.
In order to realize this control low, we choose fin accordingly, satisfying (5.23), as

fin = Bfobs + ΛadKεAdη−1 B̂V̂ − f0. (5.36)
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It is clear that this is a PD-type controller. However, we use an adaptive dampening
gain D(ε, ξ), which is chosen as

D(ε, ξ) = D0 − I

min( ξ
TKctrlBr(ξ)AdΞ−1AdηKε

‖Adη−1 B̂V̂ ‖2
, 0) V̂ 6= 0

0 else
, (5.37)

where D0 is a constant positive definite damping gain.
When measuring the system velocity, we choose

D(ε, ξ) = D0 − I

min(
ξTKctrlBr(ξ)AdΞ−1AdηKε+B̂V̂

TAdT
η−1ΛadVηAdη−1 B̂V̂

‖Adη−1 B̂V̂ ‖2
, 0) V̂ 6= 0

0 else
.

(5.38)

5.4.3 Stability analysis

Lyapunov’s second method

For the stability analysis, we consider e =
[
ξT B̂V̂

T
]T

. The Lyapunov function candi-
date is the energy of the observer in the controller’s potential field,

W = 1
2e

T

Kctrl 0
0 Λ

 e = 1
2ξ

TKctrlξ + 1
2 B̂V̂

TAdTη−1ΛAdη−1 B̂V̂ . (5.39)

Its time derivative is

Ẇ = ξTKctrlξ̇ + B̂V̂
TAdTη−1ΛAdη−1 B̂

˙̂
V − B̂V̂

TAdTη−1ΛadVηAdη−1 B̂V̂

= −ξTKctrlBr(ξ)AdΞ−1 B̂V̂ − ξ
TKctrlBr(ξ)AdΞ−1AdηKε

+B̂V̂
TAdTη−1ΛAdη−1AdηΛ−1(Bfobs + Bf̂c + ad∗Adη−1 B̂V̂

ΛAdη−1 B̂V̂ )

−B̂V̂
TAdTη−1ΛadVηAdη−1 B̂V̂

= −ξTKctrlBr(ξ)AdΞ−1 B̂V̂ + B̂V̂
TAdTΞ−1BT

r (ξ)Kctrlξ − ξTKctrlBr(ξ)AdΞ−1AdηKε

−B̂V̂
TAdTη−1D(ε, ξ)Adη−1 B̂V̂ − B̂V̂

TAdTη−1ΛadVηAdη−1 B̂
˙̂
V

= −ξTAdΞ−1AdηKε− B̂V̂
TAdTη−1ΛadVηAdη−1 B̂ − B̂V̂

TAdTη−1D(ε, ξ)Adη−1 B̂V̂ V̂ .

‘

(5.40)

If velocity measurements are available and the adaptive dampening gain has been chosen
according to (5.38), we can immediately find Ẇ ≤ B̂V̂

TAdTη−1D0Adη−1 B̂V̂ .
When no velocity measurements are available, we find

Ẇ ≤ −B̂V̂
TAdTη−1(ΛadVη +D0)Adη−1 B̂V̂ . (5.41)

ΛadVη is generally not definite. However, if we assume the involved observer to eventually
converge to Vη = 0, we can find an upper bound for ‖Vη‖2, while Λ is constant anyways.
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This allows us to select a D0 that is ensured to dominate ΛadVη , such that ΛadVη +D0
is positive definite.
If in particular a Lyapunov function that is quadratic in Ve, ε and possibly more values
can be found, then we can find an upper bound for Vη by first finding a relationship
between Ve and the Lyapunov function value as

‖Vη‖22 = V T
η Vη = V T

e Ve − 2V T
e Kε+ εTK2ε =

[
ε Ve . . .

]


K2 −K 0 . . .

−K I 0 . . .

0 0 0 . . .
...

...
... . . .




ε

Ve
...

 =

eTPηe ≤ kW = keTPobse

(5.42a)

eT(Pη − kPobs)e ≤ 0. (5.42b)

We can find a k such that (Pη − kPobs) is negative definite. Then, (5.42b) is satisfied
and we have

‖Vη‖2 ≤
√
kW. (5.43)

With a known starting value of the Lyapunov function or a sufficiently conservative esti-
mate, a constant upper bound for ‖Vη‖2 is then found, because the Lyapunov function’s
value is non-increasing.
To find an upper bound of −B̂V̂

TAdTη−1(ΛadVη)Adη−1 B̂V̂ , we analyze the symmetric part
of ΛadVη . This is useful because its eigenvalues provide a bound of the quadratic form

Q = 1
2(ΛadVη + adTVηΛ) (5.44a)

XTQX ≥ ‖X‖22λmin(Q). (5.44b)

The negative eigenvalue of Q with the largest magnitude is of interest, because it limits.
The spectral norm of S is equal to the square root of the largest eigenvalue of SS, which
is identical to the absolute value of the eigenvalue with the largest magnitude of S. This
makes it a useful lower bound for the eigenvalue of interest,

λmin(Q) ≥ −‖Q‖2. (5.45)

While computing the spectral norm or the eigenvalues of S is not easy symbolically, we
can find an upper bound for this spectral norm using the Frobenius norm. The Frobenius
norm of S can be found using its trace, as

‖Q‖2 ≤ ‖Q‖F =
√
trace(QQ). (5.46)

As shown in § 6.2, this trace can be expressed in the form

trace(QQ) = V T
η F (Λ)Vη. (5.47)
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Since F (Λ) is a constant, and we know upper bounds for ‖Vη‖2, we can finally conclude
an upper bound for the magnitude of the relevant eigenvalue of S,

√
λmax(F (Λ))‖Vη‖2 ≥

√
trace(QQ) ≥ ‖Q‖2 ≥ |λmin|. (5.48)

Choosing D0 with only positive eigenvalues, of which the smallest has a larger magnitude
than the bound found in (5.48) (for example D0 = 2λmax(F (Λ))‖Vη‖22), we can ensure
Ẇ ≤ 0.

LaSalle’s invariance principle

Since there is a set of points with Ẇ = 0 outside of the desired equilibrium, we apply
LaSalle’s invariance principle.
The time derivative of the Lyapunov function is negative if and only if B̂V̂ 6= 0. We
analyze the trajectories in the subspace where B̂V̂ = 0 and show that there are no closed
trajectories in this subspace outside of the equilibrium (e = 0). This subspace can be
defined as I = {ξ ∈ R6 ∼= se(3), B̂V̂ ∈ R6|ξ 6= 0, B̂V̂ = 0}.

For any point in I, (5.35) will evaluate to Bfobs = AdTηAdTΞ−1BT
r (ξ)Kctrlξ 6= 0. The

observer’s dynamics (5.19b) will be

B̂
˙̂
V = AdηΛ−1(I − Pc)Bfobs, (5.49)

where we collected some terms definining the constraint direction in Pc for legibility. It
can be seen that B̂

˙̂
V is zero if and only if (I−Pc)Bfobs = 0, that is, if the control wrench

points directly parallel to the constraints. In this case, a nondesired equilibrium is found.
This can happen if the desired equilibrium is placed outside the reachable workspace
(stable nondesired equilibrium), or if the system is at a singularity with respect to the
otherwise reachable desired equilibrium (unstable nondesired equilibrium).
If no nondesired equilibrium is reached however, the trajectory will immediately leave
I again. The only closed trajectory satisfying B̂V̂ = 0 outside of constraint-caused
nondesired equilibria is e(t) = 0, ∀t ≥ 0. We can conclude that the equilibrium e = 0
is asymptotically stable, however not globally. Depending on the constraints and the
choice of the desired equilibrium, it can or will not be reached.
This controller works on the observer state. The assumption is that the observer works
and thus the observed system will reach the equilibrium. For the presented observers,
this is reasonable because their convergence is independent of the input wrench.

5.5 Simulations

The observers and the controller described in this chapter have been developed and
verified using simulations.
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5.5.1 Observer evaluation

Benefits of the extension

In Fig. 5.2, the results for a simulation of a rigid pendulum with continuous state mea-
surements are shown. The initial configuration and the initial velocity of the system
to be observed have been chosen randomly within the limits of the constraints, while
the initial state of the observer was resting at the origin. A random, low-frequency ac-
tuation wrench along with gravity was applied. The highest frequency appearing in a
Fourier series representation of the input wrench was limited to 5 Hz. The input wrench
is shown in Table 5.2. The inertia parameters were chosen randomly as well. The simu-
lation parameter values can be found in Table 5.2. The simulation has been run with the
input wrench and constraints either disabled or enabled with all possible combinations
considered. In addition to that, the constraints based on measured velocities and poses
have been compared with those based on the estimated state. As to be expected, the
best results are obtained leveraging as much information as possible, that is respecting
both the input wrench and the constraints.
Since gravity is considered in the input wrench, not respecting the constraints leads to
considerable position errors, in particular in the z-coordinate.
Not respecting the input wrench, as well as respecting neither the input wrench nor the
constraints, leads to a phase delay in the observer value, because the forces acting on the
real body are only conveyed indirectly through the pose measurements to the observer.
The measurement-based constraints did not show considerable differences to the observation-
based constraints.
Here, a very low value for p1 has been chosen intentionally to show the differences made
by the extensions to the observer more clearly. A higher value would lead to faster
convergence and smaller errors in all cases.
A very interesting phenomenon can be observed in all the simulations shown in Fig. 5.2:
The observer’s pose does not respect the constraints. The observer initial pose is I,
which corresponds to a pendulum arm length of 0. If it respected this constraint, the
observer could never reach any position other than 0.
The movement violating the constraints is a direct result of the error term in (5.5), as
the observer kinematics are not those of a rigid body with respect to the twist V̂ . That
means that even with V̂ respecting the constraints, ˙̂g might not.
As the results show, this can be very useful as it adds robustness against observer
initial poses that don’t satisfy the same constraints as the real system. In practice, this
robustness is very useful, as errors in this regard are very likely. For instance, when
modeling a pendulum, the arm length might be inaccurate. If the pose would respect
the constraints as well as the velocity, the observer could never converge to the ground
truth, as it’s based on a different model. With the presented observer however, there will
be pose updates that violate the constraints in a way that’s beneficial for convergence.

Low frequency measurements

The observer for a single pendulum as described in Table 5.2 has been run with very
low frequency (2 Hz) measurements. This shows how effective the observer’s internal
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Table 5.2: Simulation parameters

Parameter Value

mass 35.75 kg

mass moment of inertia


43.95 −4.08 −6.47
−4.08 33.02 1.93
−6.47 1.93 29.08

 kgm2

system initial pose


0.621 0 −0.784 2.351
0.754 0.274 0.598 −1.793
0.214 −0.962 0.170 −0.510

0 0 0 1

 (m)

system initial body velocity
[
−0.127 −0.096 0.9195 −0.2883 0.3821 0

]T
(rad/s,m/s)

observer initial pose I

observer initial body velocity 0
p1 5
p2 0.1
input wrench fg + fact

actuation wrench

0 1 2 3 4 5 6 7 8 9 10

Time [s]
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y
 [Nm]
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x
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y
 [N]

f
z
 [N]

desired pose


0.877 0 −0.481 1.442
0.028 0.998 0.051 −0.154
0.480 −0.058 0.875 −2.626

0 0 0 1

 (m)
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state propagation is. In addition to that, it gives a good insight into how the observer
works. It can be seen that at every new measurement, there is a jump of the observer
pose towards the measured pose. In addition to that, there’s an impulse wrench acting
on the observer to push it towards the true pose, which results in a jump in the body
velocity.
It should be noted that in order to achieve convergence at low frequencies, the observer
gains had to be tuned very aggressively (p1 = 10000, p2 = 0.02). This directly compro-
mises its robustness against noisy measurements however.

5.5.2 Controller evaluation

The presented controller has been applied to the single pendulum as described in Ta-
ble 5.2. In addition to that, a random desired pose has been drawn, also to be found in
Table 5.2. Differently to the previous experiments, the input wrench is now given only
by the control input, while gravity is disabled. We compare the proposed controller to
a simple PD controller using measured values, whose control law is

Bfin = Kctrl
[
log g−1gd

]
−D0BV. (5.50)

With continuous measurements, this controller outperforms the proposed observer at
identical constant gains, because it acts directly on the system state, as can be seen in
Fig. 5.4.
At lower measurement frequencies however, the control wrench described in (5.50) can
be updated only rarely. It is reasonable to completely disable it while no measurements
are available, as holding its value could easily drive major instabilities. This could occur
when the system velocity changes while the input wrench stays constant until both point
in the same direction, which would make the control input active, i.e. the system energy
would be increased.
As a result, only short bursts of control input can be realized when relying on direct
measurements. This, of course, causes a need for very high control gains to achieve
convergence in a meaningful time frame.
In Fig. 5.5, simulation results at a measurement rate of 2 Hz with a control input fre-
quency of 1000 Hz are shown. It is clear that the observer estimates provide a meaningful
basis for high-frequency control inputs.

5.5.3 Simulation of some example robots

In addition to the rigid pendulum shown in the previous subsections, we tested a few
multi-body systems to show the wide applicability of this modeling approach along with
the observer and the controller:

• A spherical double pendulum, which can represent the SAM when mounted to
a hook. This model is used to show the robustness against modeling parameter
inaccuracies.

• A manipulator consisting of three translational joints followed by three rotational
joints. This model demonstrates the applicability of the presented controller.
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• The SAM including a rigid pendulum base and a 7-DoF manipulator. This model
shows the applicability of the presented framework as a whole to complex systems
subject to modeling inaccuracies.

Double pendulum

A rigid double pendulum as described in § 3.2 was used to demonstrate the effects of
model parameter inaccuracies. To this end, the observer was provided with a different
inertia matrix Λ̃ than the observed system (Λ). The parameters are listed in Table 5.3.
The difference within the individual parameter values was within 10 %, but still consid-
erable.
In Fig. 5.6, it is clear that although the observer based on the inaccurate parameters
seems to converge and the error values very quickly become bounded, using accurate
parameters greatly improves the performance. However, it is shown that even with
inaccurate parameters, the observer stays within a vicinity of the true system state.
It can be concluded that the observer’s stability is relatively robust against parameter
inaccuracies, although they limit its performance.

Table 5.3: Simulation parameters to evaluate robustness against parameter inaccuracies

Parameter True Value Inaccurate value
mass of body
1

34.07 kg 40.78 kg

mass moment
of inertia of
body 1


90.35 3.84 −8.36
3.84 41.52 −0.78
−8.36 −0.78 43.26

 kgm2


97.84 11.94 −12.90
11.94 44.71 −2.89
−12.90 −2.89 47.13

 kgm2

mass of body
2

87.62 kg 94.86 kg

mass moment
of inertia of
body 2


168.53 −0.25 −12.35
−0.25 145.79 11.70
−12.35 11.70 94.05

 kgm2


148.55 5.71 0.39
5.71 155.69 −18.15
0.39 −18.15 97.91

 kgm2

Manipulator

Using the method described in § 3.6, a model of a relatively simple manipulator was
obtained. The system contains 6 moving rigid bodies and 6 joints, which equates to
6 · 5 = 30 constraints and 6 · 6− 6 · 5 = 6 remaining DoF.
In this instance, the joint wrenches are not computed explicitly. However, the general
control wrenches obtained from the controller will be projected such that only parts
orthogonal to the constraints remain, using

Bfin, filtered = (I −AdTη ÂT(ÂAdηΛ−1AdTη ÂT)−1ÂAdηΛ−1)Bfin. (5.51)

The filtering takes place with respect to the observer constraints, because it is assumed
that no high frequency measurements of the true system state are available.
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This does in theory not make any difference in the performance as the exact same filtering
takes place in the observer dynamics, but especially in real applications it removes a noise
source and reduces strain on the system.
The manipulator was controlled to a random desired equilibrium for its end effector that
changes midway through the simulation. This allows to analyze the step response of the
system twice. Because all 6 DoF of the robot are defined for a given equilibrium of the
end effector, the proportional gain was set to zero for all other bodies.
It is important to note that for different compositions of joints, it might be very likely for
the controller as described here to converge to a local minimum. This is due to the control
wrench acting purely on the end effector body, where it might be fully counteracted
by the constraint forces. In these cases, a transposed Jacobian can be used to find
corresponding joint torques and forces corresponding to the control force. Alternatively,
an inverse kinematics evaluation can give desired poses for all bodies involved which can
be fed into the controller to obtain control wrenches for all bodies.

The cable-suspended aerial manipulator

Similarly to the manipulator used in § 5.5.3, the SAM was modeled according to § 3.6,
with the first rigid body being constrained by (2.63) and the subsequent bodies being
attached to it through in total 7 rotational joints. The number of constraints on the
system sums to 5 · 7 + 3 = 38, which means 8 · 6− 38 = 10 DoF remain.
As in § 5.5.3, the inertia matrices the model runs on are randomly drawn. In addition to
that, the values that are fed to the observer are slightly modified from the true values with
the intent to inspect the effects of system parameter inaccuracies in combination with
the controller operating. Overall, this should make for an overall close representation of
a real application. The parameter choice is shown in Table 5.4

Table 5.4: Simulation parameters for the SAM model

Parameter True Value Inaccurate value
mass of the plat-
form

55 kg 59.31 kg

mass moment of
inertia of the plat-
form


80.19 −0.10 2.74
−0.10 80.05 −1.40
2.74 −1.40 119.76

 kgm2


77.70 0.53 3.16
0.53 67.12 −1.96
3.16 −1.96 124.45

 kgm2

mass of an exem-
plary robot link 2 kg 1.97 kg

mass moment
of an exemplary
robot link


2 0 0
0 2 0
0 0 2

 kgm2


1.72 −0.01 0.02
−0.01 1.82 0
0.02 0 1.95

 kgm2

As in § 5.5.3, the desired equilibrium was defined only for the end effector, leaving 4
degrees of freedom unused. In future work, this could be leveraged for secondary tasks
using whole-body control, such as shown in [4]. In this simulation however, they are not
being used.
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Halfway through the simulation, the desired equilibrium changes as it did in the manip-
ulator scenario.
The parameters for this simulation are only roughly based on the SAM’s structure, but
not an exact representation. Still, the results prove the concept. The simulation results
are shown in Fig. 5.8.
It is clear that the combination of observer and controller presented here is capable of
controlling the SAM model’s end effector to a desired equilibrium.

5.6 Experiments

In order to evaluate the performance of the presented observers on real data, we ap-
plied them on the data collected in the experiments. The controller was not evaluated
experimentally.
We used the rigid pendulum model as described in § 3.1 for the observer because no
intermediary mass was involved and even the rigid model could be shown to successfully
reproduce most reasonable experimental results.

5.6.1 Used sensors

The SAM currently features two exteroceptive sensors that provide meaningful mea-
surements regarding its pose: An IMU and a camera whose data is fed into a visual
Simultaneous Localization and Mapping (SLAM) algorithm. In this case, we are only
interested in its visual odometry results.

Inertial measurement units

The SAM is equipped with an IMU that provides regular measurements of its orientation.
Using the rigid pendulum assumption, we can reconstruct its full pose from this. The
position of the inertial frame in the body frame is constant and known, so we can easily
transform it into the inertial frame once we know the body orientation, which completes
the full pose to

IpIB = −IRBBpBI (5.52a)

IgB =

IRB IpIB

0 1

 (5.52b)

The IMU’s data can contain a noticeable drift mωd = const.. In addition to that, the
reported orientation is offset from the true orientation of the SAM (RP), which might
be due to its mounting or its calibration. Yet another constant rotation ReI can appear
between the inertial frame respected in the IMU and the inertial frame of interest. In
total, the measured orientation Rm satisfies

Rm = ReIRPRe (5.53a)
Ṙm = Rm(mωP + mωd)× (5.53b)

ṘP = RP(PωP)×. (5.53c)
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From this, we can find the time derivative of the orientation error as

Ṙe = RT
PR

T
eIRm(mωP + mωd)× − (PωP)×RT

PR
T
eIRm

= Re(mωd)× +Re(RT
e PωP)× − (PωP)×Re

= Re(mωd)× + (PωP)×Re − (PωP)×Re = Re(mωd)×.
(5.54)

The orientation error can be compensated only once the true orientation and its deriva-
tive have been measured at least once. Assuming that the angular drift velocity is con-
stant, we can integratethe drift from there according to (5.52), although that integration
itself is prone to drift as a result of inaccuracies in the determination of mωd.
In practice, it is possible to initialize the drift compensation while the SAM is hanging
at rest. The true angular velocity is 0 (at least on average over some time), and the true
orientation has its z-axis exactly parallel to the inertial frame’s. This leaves a degree
of freedom, which can be set whenever the SAM leaves the equilibrium and its rotation
axis is known. If there is a time period when the true orientation is known, it is also
possible to run an optimization on the cost function

Cd = 1
n

n∑
k=0
‖[log(Re0(exp mωd∆t)kRT

m[k]RP[k])]∨‖22, (5.55)

where Re0 is the starting value of Re and we discretized (5.54) with a sample time of ∆t.

Camera

The visual odometry system provides a full pose measurement with respect to a starting
pose. Inherently, it lacks knowledge of scale: a camera can not discriminate between an
absolutely small environment that is close to the camera and the same environment in
a larger scale that is further away.
However, the orientation is independent of the scale. If the orientation is known, we can
apply (5.52) to reconstruct the full pose which we can then use to find the correct scale
of the full pose.
Still, it is required to correctly initialize the camera pose. Again, this can be done
similarly to the IMU setup, using data taken from a time period when the system was
known to be at rest or optimizing for a temporarily known pose.

5.6.2 Sensor faults

Apart from inherent problems such as drift and scale ambiguity, the sensors might fail
altogether. This could be caused for example by occlusion of the camera’s field of view.
It is important to identify and to deal with faulty measurements.
The proposed observers are inherently robust against missing measurements, but not as
much against inaccurate measurements. This means that it is preferable to misclassify
accurate measurements as faulty over misclassifying faulty measurements as accurate.
This means that we aim for a high specificity, that is, we try to minimize the portion of
false positives. Of course, this comes at the cost of lower sensitivity, increasing the rate
of false negatives, but those should have a smaller impact on the observer’s performance.



5.6. Experiments 77

We identify faulty measurements primarily by discontinuities. Although those might not
appear in the primary data, we can often find them in the respective derivatives. When
a fault is detected, the corresponding data will not be fed into the observer, and the
observer will continue integrating without new pose measurements.

Visual odometry fault

The visual odometry system can fail, for example in the case of occlusion of previously
tracked points or when the environment in the field of view lacks texture. In these cases,
the system will automatically integrate its pose based on the last available velocity mea-
surement. Since this is done in particular to continue providing as meaningful data
as possible, it is usually hard to identify. In this application however, the pendulum
constraints always accelerate the platform towards the suspension point while it is mov-
ing, which is not considered in the visual odometry’s integration method. This means
that once a fault occurs, soon the provided pose will considerably violate the pendulum
constraints and the fault can be identified. In particular, we compute

v‖ = ‖AVVO‖22
el = |‖rVO‖22 − l|,

(5.56)

where VVO and rVO are the velocity and the position measurements from the visual
odometry system and l is the cable length. These two values can indicate a faulty
measurement if they exceed a certain threshold.

5.6.3 Performance

The observer was run on datasets obtained throughout the experiments. The model
parameters used are the results of the system identification.
In the experiments, gravity as an external wrench was acting on the system. While this
is not an explicitly known force, the observer reconstructs it based on the estimated
pose.
The data collected by the IMU and the camera contained inaccuracies with respect to
the Vicon system. As such, even when the observer converged to the measurements, it
did not necessarily converge to the ground truth.
In Fig. 5.9 and Fig. 5.10, the observer’s performance when fed the pose measurements
from the camera is shown.
In Fig. 5.11, the observer performance when fed the reconstructed (according to (5.52))
pose measurements from the IMU is shown.
In Fig. 5.12, a case is considered where the IMU provides measurements only at 2 Hz.
However, (inaccurate) camera data at 20 Hz is available. For optimal performance, the
observer uses all available measurements at their respective frequencies, considering them
with different gains depending on their trustworthiness and frequency.
Overall, the observer is capable of estimating the measurements accurately and converges
to those. If the measurements coincide with the ground truth, the observer successfully
estimates the absolute pose of the SAM.
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Figure 5.1: The results of the numerical validation. After 5 s, the remaining error has
reduced to a fraction of the original. For the position offset, the distance between
the origins is displayed. For the orientation, the euclidean norm of the exponential
coordinates of the rotation between the frames is displayed. For the velocities, the
euclidean norm of the respective velocity difference is displayed.
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(b) Not respecting constraints, but input
wrench (y-axis is scaled differently)
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(c) Respecting estimated constraints, but
not input wrench
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(d) Respecting measured constraints, but
not input wrench
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(e) Respecting estimated constraints and in-
put wrench
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(f) Respecting measured constraints and in-
put wrench

Figure 5.2: Observing a rigid pendulum at different levels of model consideration. It
is clear that both the constraints and input wrench need to be considered in order to
achieve convergence. It can also be seen that using the measured constraints of the
observed system is almost identical to using the estimated constraints.
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(a) Measured constraints
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(b) Estimated constraints

Figure 5.3: Observing a pendulum at very low frequency. Convergence can be achieved,
but comes at the cost of robustness. Again, there is only marginal differences between
using the measured state or the estimated one to compute the observer constraints.
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(a) Proposed controller without velocity
measurements
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(b) Proposed controller using velocity mea-
surements
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(c) PD controller using measurements

Figure 5.4: Comparing the proposed controller to a direct measurement-based controller
in the continuous case. The control gains were set to Kctrl = 2500 and D0 = 250. The
observer gains were chosen intentionally conservative to p1 = 20, p2 = 0.02, to show that
both the observer and the controller converge simultaneously and independently.
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(a) Proposed controller without velocity
measurements
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(b) Proposed controller using velocity mea-
surements
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(c) PD controller using measurements

Figure 5.5: Comparing the proposed controller to a direct measurement-based at low
frequency (2 Hz) measurements. The control gains were set again to Kctrl = 2500
and D0 = 250. The observer gains were chosen to p1 = 1000, p2 = 0.02. With
the measurement-based controller, the simulation diverges after 3 seconds, whereas the
estimation-based controller continuously reduces the error.
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(a) Position error with inaccurate parame-
ters
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(b) Position error with accurate parameters
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(c) Orientation error with inaccurate param-
eters
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(d) Orientation error with accurate parame-
ters

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-5

-4

-3

-2

-1

0

1

2

P
o

s
it
io

n
 [

m
]

x
gt

y
gt

z
gt

x
obs

y
obs

z
obs

(e) Position tracking with inaccurate param-
eters
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(f) Orientation tracking with inaccurate pa-
rameters

Figure 5.6: The effects of inaccurate system parameters at 10 Hz measurement rate. The
observer gains were chosen to p1 = 1000 and p2 = 0.001. The orientation is presented in
roll(α)-pitch(β)-yaw(γ) formulation, which is why a few jumps from close to 0 to close
to 2π occur. The second body’s behaviour is shown exemplarily, but represents the first
body’s results. The purely pose-based observer was employed for the presented data,
but using velocity measurements produces nearly identical results.
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(a) End effector position
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(b) End effector orientation

Figure 5.7: The performance of the proposed controller and observer combination on a 6-
DoF manipulator. The observer gains were chosen to p1 = 100, p2 = 0.02. The controller
gains were set to kctrl = 1000 and D0 = 100. The end effector is shown exemplarily,
but all bodies’ pose estimates converged to the ground truth. The purely pose-based
combination was employed for the presented data, but using velocity measurements
produces nearly identical results.
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(a) End effector position
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(b) End effector orientation
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(c) Platform position
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(d) Platform orientation

Figure 5.8: The performance of the proposed controller and observer combination on
the SAM under parameter inaccuracies. The observer gains were chosen to p1 = 100,
p2 = 0.001. The controller gains were set to kctrl = 1000 and D0 = 100. The end effector
and the base platform are shown exemplarily, but all bodies’ pose estimates converged
to the ground truth. The purely pose-based combination was employed for the presented
data, but using velocity measurements produces nearly identical results.
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(a) Position tracking
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(b) Position error
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(c) Orientation tracking
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(d) Orientation error

Figure 5.9: In the position tracking for x and y, the observer gets closer to the ground
truth data than to the measurements. This happens because the ground truth data
better fits the underlying model and its constraints. However, there is no asymptotic
convergence because there is an inconsistency between the measured data and the ground
truth. The observer gains in this instance were p1 = 100, p2 = 0.01.
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(a) Position tracking
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(b) Position error
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(c) Orientation tracking
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(d) Orientation error

Figure 5.10: In this instance, the observer converges closer to the measurements. Even
though the error between the measurements and the observer decrease over time, there
is still an error between the observer and the ground truth. The observer gains in this
instance were p1 = 100, p2 = 0.01.
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(a) Position tracking
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(b) Position error
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(c) Orientation tracking
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(d) Orientation error

Figure 5.11: The IMU’s measurements for the passive swings experiments is compara-
tively accurate. The observer could be tuned aggressively to p1 = 1000, p2 = 0.005 to
aid convergence to the measurements, which also lead to a remaining error with respect
to the ground truth of less than 5 cm in position.
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(a) Position error: Using IMU
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(b) Position error: Using camera
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(c) Position error: Using both
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(d) Position tracking: Using both

Figure 5.12: The observer running on either only IMU or only on camera data does not
converge as quickly as both combined. The observer gains for the camera input were
p1 = 20 and p2 = 5, whereas the gains for the (more reliable) IMU input were p1 = 500
and p2 = 0.01.
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Chapter 6

Conclusion

6.1 Main findings

This thesis presented an optimization-based approach to identify the dynamic and kine-
matic parameters of the SAM. Values for the mass, cable length, and spring stiffness
and damping gain, both rotational and translational, have been obtained. Moreover,
it could be shown that the rigid pendulum is an adequate model to represent SAM by
recreating previously recorded trajectories.
An approach to model general multi-body systems obeying Pfaffian constraints has been
described. It has been compared to multiple other methods of modeling those systems,
and the equivalence of all approaches has been shown.
For Pfaffian constraint-based representation, two observer designs have been developed
which are capable of estimating the full state of the system based on very low frequency
measurements. The system equations for multiple different robots have been obtained
based on their constraints using the described approach, and the observer has been shown
to provide valid estimates for all of these instances. In addition to that, the observer
has been applied to experimentally generated data to further validate it.
Furthermore, a position controller to be used with the framework has been proposed.
A lower bound for its constant damping gain has been explained to define its region
of stability. Again, the controller has been applied in combination with the observer
on different simulated robots, and its performance was presented. In particular with
regards to the SAM, the proposed controller might enable a variety of new maneuvers
involving active propulsion away from the natural equilibrium. Examples of this include
increasing the reachable workspace, but also swing-up maneuvers to reach poses that
could not be constantly maintained by the propulsion system.

6.2 Future work

Regarding the system identification, experiments that are more specifically engineered to
emphasize the inertia parameters or generally different approaches could provide results
complementing those found in this work, to overall improve the observer’s performance.
While the observer approach based solely on pose measurements showed promising re-
sults in simulations and experiments, no analytical proof could be provided to support
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its convergence. It would be desirable to find a formal proof to justify its application to
a wider range of systems.
The proposed controller only covers position control, but it would be desirable to also
apply it for nonconstant target trajectories. This could widely improve its applicability
and performance.
Furthermore, the presented observers have been designed to work with multi-body sys-
tems in general, but they have only been applied to one single-body system in reality. In
the future, the simulation results for multi-body systems could be validated with exper-
iments on different real systems. Additionally, experiments showing the performance of
the presented controller in combination with the observer could validate its applicability
and performance.



Appendix

Invariance of the cross product to rotations

Rotations are length and angle preserving. The cross product returns a vector which
is perpendicular to the two operand vectors with its length equaling the area of the
parallelogram spanned by them. If the operand vectors are expressed in a particular
frame, the result will be represented in that same frame.
We propose

R(a× b) = (Ra×Rb). (1)

On the right-hand side (rhs) of (1), the cross product is taken first and then its result is
rotated. On the left-hand side (lhs), the operand vectors are both rotated into a specific
frame prior to taking the cross product, and the resulting vector will be expressed in
that same frame.
We can interpret the rhs as the cross product of a and b, as if they were observed from
a frame rotated by RT. If we rotate the frame of observance only after taking the cross
product, as on the lhs, we still end up with the same final result.
We can reorder (1) to Ra×b = (Ra)×Rb. Since it holds for any b, we can conclude

Ra×R
T = (Ra)×. (2)

The trace of the square the symmetric part of an inertia
matrix times a differential adjoint

For an inertia matrix Λ = blkdiag(Θ,mI) as defined in (1.49) and a twist V , we have

Q = 1
2(ΛadV + adTV Λ) = 1

2

Θω× − ω×Θ −mv×
mv× 0

 (3a)

trace(QQ) = 1
4trace

(Θω× − ω×Θ)2 −m2v2
× −m(Θω× − ω×Θ)v×

mv×(Θω× − ω×Θ) −m2v2
×


= 1

4trace
(
(Θω× − ω×Θ)2 −m2v2

×

)
+ trace

(
−m2v2

×

)
= 1

4trace
(
(Θω× − ω×Θ)2

)
− 1

2trace
(
m2v2

×

)
= ωTf(Θ)ω +m2vTv = V TF (Λ)V,

(3b)
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where

f11(Θ) = 8Θ2
23 + 2((Θ22 −Θ33)2 + Θ2

12 + Θ2
13) (4a)

f22(Θ) = 8Θ2
13 + 2((Θ11 −Θ33)2 + Θ2

12 + Θ2
23) (4b)

f33(Θ) = 8Θ2
12 + 2((Θ11 −Θ22)2 + Θ2

23 + Θ2
13) (4c)

f12(Θ) = −6Θ23Θ13 − 2(Θ22 −Θ33)Θ12 − 2(Θ11 −Θ33)Θ12 (4d)
f13(Θ) = −6Θ23Θ12 + 2(Θ22 −Θ33)Θ13 − 2(Θ11 −Θ22)Θ13 (4e)
f23(Θ) = −6Θ13Θ12 + 2(Θ11 −Θ33)Θ23 + 2(Θ11 −Θ22)Θ23 (4f)

f(Θ) = 1
4


f11(Θ) f12(Θ) f13(Θ)
f12(Θ) f22(Θ) f23(Θ)
f13(Θ) f23(Θ) f33(Θ)

 (4g)

F (Λ) =

f(Θ) 0
0 m2I

 , (4h)

where the bottom right indices denote rows and columns of an element of a matrix.
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