
Institut für Chemie und Biologie der Meeres (ICBM) & Institut für Vernetzte

Energiesysteme am Deutschen Zentrum für Luft- und Raumfahrt (DLR)

Studiengang Umweltmodellierung M. Sc.

Masterthesis

Pipeline Detection Using

Uncertainty-Driven Machine

Learning

Hendrik-Pieter Tetens

Matrikelnr.: 5906917

10. Dezember 2021

1. Gutachter: Prof. Dr. Carsten Agert

2. Gutachter: Dr. Adam Pluta

1. Betreuer: Dr. Adam Pluta

2. Betreuer: Matthias Zech

Contents

List of Figures I

List of Tables III

1 Introduction 1

1.1 The Process of Building Pipelines . 4

1.2 Satellite Imagery . 4

2 Semantic Image Segmentation 9

3 Deep Learning and Convolutional Neural Networks 12

3.1 The Perceptron . 12

3.2 Multi-Layer Perceptron . 15

3.2.1 Activation Functions . 17

3.2.2 Training of Artificial Neural Networks 20

3.3 Convolutional Layers . 22

3.4 Max-Pooling . 26

3.5 Batch Normalization . 28

3.6 Transposed Convolutions . 28

4 Uncertainty in Deep Learning 30

4.1 Bayesian Deep Learning . 31

4.2 Deep Ensembles . 32

4.3 Active Learning . 33

5 Model and data prerequisites 35

5.1 Choosing a Model Architecture and Encoder-Backbone 36

5.1.1 U-Net . 37

5.1.2 LinkNet . 37

5.1.3 Backbone Architectures . 40

5.1.4 Comparisons . 43

5.2 Revision: The Great Britain and Northern Germany Dataset 47

Contents

5.3 Dataset extension: The Spanish Dataset 50

6 Hypotheses, Evaluation and Results 54

6.1 Hypothesis 1: Model Generalizability 54

6.1.1 Model Generalizability: Training of a GBNEL Deep Ensemble 55

6.1.2 Model Generalizability: Results 57

6.2 Hypothesis 2: E�ciently Estimating Model Uncertainties 63

6.2.1 E�ciently Estimating Model Uncertainties: The Wasserstein

Distance and the KS-Test . 63

6.2.2 E�ciently Estimating Model Uncertainties: Results 65

6.3 Hypothesis 3: Active Learning . 69

6.3.1 Active Learning: Procedure 69

6.3.2 Active Learning: Results . 71

7 Discussion 78

8 Conclusion & Outlook 83

References

List of Figures

1.1 Exemplary output of the model trained by Dasenbrock et al. 2

1.2 Right-of-way during and after the construction of a pipeline 5

1.3 high-resolution Right-of-ways OPAL and NEL near Lubmin 6

1.4 low-resolution right-of-ways of OPAL and NEL pipelines near Lubmin 7

2.1 Image segmentation in 1979 . 9

2.2 Subcategories in Image Segmentation 10

3.1 The perceptron . 13

3.2 Multi-layer perceptron with two layers 15

3.3 Multi-layer perceptron modeling logical XOR 16

3.4 Sigmoid activation function . 17

3.5 Tanh activation function . 18

3.6 ReLU activation function . 19

3.7 Weight update . 21

3.8 Convolution operation at first filter position 23

3.9 Convolution operation at second filter position 24

3.10 Comparison stride=1 and stride=2 25

3.11 Zero padding . 26

3.12 Downsampling with max-pooling . 27

3.13 Max-pooling operation . 27

3.14 Transposed convolution . 29

3.15 Stride and padding in transposed convolutions 29

4.1 Model uncertainties with softmax activation 30

4.2 Active learning: sample e�ciency . 34

5.1 U-Net architecture . 38

5.2 LinkNet architecture . 39

5.3 Google Trends comparison for search entrys tensorflow (red) and py-

torch (blue) . 40

5.4 ResNet building block . 41

I

List of Figures

5.5 Intersection over union score . 44

5.6 Creation of image-mask pairs . 48

5.7 Automatically created image-mask pair 49

5.8 Overview map of Europe . 50

5.9 Available OSM pipeline data in Spain 51

5.10 Landsat 5 imagery download and preparation 52

5.11 Pipeline segments in final dataset . 53

6.1 Exemplary comparison of di↵erent regions 55

6.2 Right-of-way visibility in di↵erent regions 56

6.3 Validation IoU for GBNEL and Spanish test datasets 58

6.4 Boxplots of GBNEL and ES sample variance 59

6.5 Selected model outputs for GBNEL pipeline pathways 60

6.6 Selected model outputs for Spanish pipeline pathways 62

6.7 Cityscape street scenes . 63

6.8 Wasserstein distance in 2-D . 65

6.9 Wasserstein distances of sample uncertainty estimates 66

6.10 Comparison of individual sample uncertainty estimates 67

6.11 Comparison of ensemble validation IoUs 72

6.12 Comparison of sample uncertainty estimates 73

6.13 Comparisons of IoU GBNEL and ES 74

6.14 Low pipeline-background contrasts in GBNEL and ES data 76

6.15 Two uncertainty estimate series for typical GBNEL and problematic

ES data . 77

II

List of Tables

1.1 Landsat 5 bands . 8

3.1 Outputs of perceptron model for logical AND 14

3.2 Outputs of perceptron model for logical OR 14

3.3 Output table of logical XOR . 14

5.1 Architecture-backbone comparisons 45

6.1 GBNEL ensemble member performances 57

III

1 Introduction

Natural gas plays a vital role in the European energy mix (European Parliament,

2017). It is not only the most important energy carrier on the heat market but also

extensively used in other branches like the chemical industry. As a flexibility option

that allows for electricity generation and energy storage, it is regarded as a possible

compensation storage for renewable energies in the future. Compared to other fossil

fuels, it has a lower CO2 footprint making it a sensible energy carrier during the

transition into a carbon-free free economy (Federal Ministry for Economic A↵airs

and Energy, 2019). An extensive pipeline-based gas transmission grid serves as the

backbone of the European gas economy (Carvalho et al., 2009). It is used to import

high gas volumes from, e.g., Russia, Norway, and Algeria (European Parliament,

2017) but also to enable fast transmission of imported and self-produced natural gas

throughout the countries.

Another development emphasizing the importance of the gas transmission grid stems

out of the current unprecedented political and business momentum of hydrogen-

based energy solutions. Molecular hydrogen (H2) promises, inter alia, to be a versa-

tile energy carrier, like natural gas, can be produced by means of renewable energies

and is suitable to be transported in pipelines (IEA, 2019). Currently, a lot of e↵ort

is put into the investigation on how to transport H2 in the existing gas infrastructure

due to the di↵erent properties of H2 in comparison to natural gas. Ideas range from

blending hydrogen with natural gas like in (Isaac, 2019) to a complete reassignment

of pipelines (Cerniauskas, Jose Chavez Junco, Grube, Robinius, & Stolten, 2020).

The importance of the European gas transmission grid and the future challenges

make its modeling to assist profound decisions regarding its development crucial.

Therefore, the three year project SciGRID gas has been initiated in the beginning

of 2018 and was funded by the Federal Ministry for Economic A↵airs and Energy

(Medjroubi, Diettrich, Pluta, & Dasenbrock, 2021). The goal of the project was to

create the first open-source gas transport data model for the European gas infras-

tructure. It provides future users – e.g., researchers in the field of energy system

modeling – with tools and data to generate data models, which can then be used

for solving a wide variety of modeling-, simulation-, and optimization tasks. This

1

1 Introduction

makes SciGRID gas an important addition to the zoo of models and tools aimed

at the German and European energy transition towards a renewable energy-based

system.

Within the project novel data collection techniques were explored. One of these

techniques was the use of modern machine learning algorithms on historical satellite

imagery to detect pipeline pathways. The results were published in (Dasenbrock,

Pluta, Zech, & Medjroubi, 2021). The authors showed that the method detects

pipelines in an adequate manner in order to eventually extract the precise location

of individual pipeline segments, which is important to the modeling of the Euro-

pean gas transmission infrastructure. Because this was a proof-of-concept study,

the trained machine learning algorithm was only trained on and applied to selected

pipeline pathways in Great Britain and Northern Germany (Dasenbrock et al., 2021).

Figure 1.1 shows an example output of the trained model.

Figure 1.1 Exemplary output of the model trained by Dasenbrock et al.

(a) shows the 64 px ⇥ 64 px satellite image provided to the model. (b)
depicts the ground truth where the actual pipeline path is marked in yel-
low. (c) is the model output segmenting the input into pipeline (yellow)
and background (dark purple). Pictures from (Dasenbrock et al., 2021).

The aim of this master thesis is to further develop the approach in order to make

it potentially applicable in an e�cient and reliable manner to the entirety of Europe.

Therefore, the following research questions have been prepared:

• Is a model, respectively, deep learning algorithm trained on satellite imagery

from Great Britain and Northern Germany able to su�ciently detect pipeline

pathways in other regions that feature di↵erent vegetational and geographic

properties?

• Can an active learning approach that uses estimated sample uncertainties to

actively choose training samples of high curiosity to the model benefit the

adaption of the model to other regions? The benefits include a more sampleef-

ficient training of the model and a better pipeline detection accuracy overall.

2

1 Introduction

• Because an active learning approach will make use of so-called deep ensembles

that combine the output of multiple member neural networks, it is essential to

find an e�cient model architecture and a su�cient number of model members.

It is asked if there is a more suited model architecture than used in (Dasenbrock

et al., 2021) and how many ensemble members are needed to provide high-

quality uncertainty estimates.

Along with the research questions, additional insights, for example, sources of error

related to particular satellite image features, are analyzed. Answering these ques-

tions will likely provide a profound basis for a subsequent deployment of the model

to progressively detect pipeline pathways in Europe.

The thesis is structured as follows: First, in order to understand the general ap-

proach of detecting pipeline pathways on satellite imagery, the process of building

pipelines and satellite imagery as a data source is explained. Next, the task at

hand is located within the field of computer vision. As we will see, modern deep

learning algorithms and especially convolutional neural networks are the state-of-

the-art solution to this kind of problem. Therefore, the theory behind these models

is presented: From a simple one unit perceptron toward a multi-layer perceptron – a

type of neural network – and its training, convolutional neural networks and di↵er-

ent techniques within these networks are introduced. Prepared with the theoretical

foundations, the topic of model uncertainties and their estimation is derived, provid-

ing the theoretical groundwork for the active learning approach, which is described

afterward. The selection of an appropriate model architecture and the process of

generating training and test data for Great Britain, Northern Germany, and Spain

are presented in the next chapter. This covers all prerequisites to be able to answer

the research questions of this thesis. Each question is represented by a derived hy-

pothesis, the specific approach on how to evaluate each hypothesis is described, and

the consequent results are presented. Next, the obtained results are discussed. The

work ends with a conclusion and an outlook illustrating possible working packages

in order to deploy the developed model in future projects.

3

1 Introduction

1.1 The Process of Building Pipelines

A key challenge of detecting European onshore transmission pipelines origins out of

the fact that their vast majority runs underground (Diettrich, Pluta, & Medjroubi,

2021). The burial of pipelines has several advantages: The pipeline is better pro-

tected against damage – be it through single incidents or long term factors like tough

weather conditions –, the temperature in the ground is more stable and the land-

scape can in areas with low tree cover mostly recover to its original state after the

pipeline has been constructed (Alkazraji, 2008). In order to overcome the challenge

of detecting underground pipelines and to introduce the approach followed in this

work, the pipeline construction process is briefly outlined.

Given that the pipes themselves are already produced and available for installation,

the soil where the final pipeline will be buried has to be prepared. Therefore, a work-

ing corridor – the so-called right-of-way (ROW) – is established. The right-of-way

needs to be of su�cient width – usually 9 to 46 meters (Johnson, Gagnolet, Ralls, &

Stevens, 2011) – to allow for an easy access of construction machinery. Additionally,

it has to leave enough space for the stringing of the single pipes along the ROW

(Menon, 1978). It is cleared from all obstacles like trees, fences, and other entities

and the topsoil is stripped. The trench that will contain the final pipeline is exca-

vated. The individual pipeline segments are then welded together and transferred

into the trench. Afterward the removed soil is backfilled and the topsoil replaced

(Alkazraji, 2008). The right-of-way is maintained even after the construction of the

pipeline. This is done to enable prolonged access to the pathway to provide pipeline

maintenance and to protect it from damages which can, for example, be caused

by tree roots (Menon, 1978). Figure 1.2 shows a right-of-way during and after the

construction of a pipeline in a densely forested area.

1.2 Satellite Imagery

The previously described process of constructing a pipeline creates several options to

detect pipeline pathways on satellite imagery. One option is to use high-resolution

satellite images where the right-of-way can, in many cases, easily be identified even

years after the pipeline construction itself. Figure 1.3 provides the current Google

earth high-resolution image consisting of satellite imagery from 08.06.2018 and newer

(Gorelick et al., 2017). The image is located near Lubmin – the location where the

Nordstream pipelines are entering Germany – and depicts the point where the OPAL

pipeline, which is in operation since 2011 (EUGAL, 2021), and the NEL pipeline,

which is in operation since 2012 (NEL, 2013), split. Both right-of-ways are easily

4

1 Introduction

Figure 1.2 Right-of-way during and after the construction of a pipeline

The left image shows the ROW during the construction of the pipeline.
The topsoil has been stripped, and individual pipe segments lie along
the ROW to be welded together. In the right picture, the environment
starts to recover after the pipeline has been installed. Reforestation is not
possible in order to maintain easy access to the pipeline and to protect
it from growing tree roots. Picture from (Orhan Degermenci, 2019).

identifiable even years after their establishment. In forested areas, the ROWs are

even more exposed due to the necessary deforestation along their path.

Even though the use of high-resolution imagery possibly allows for a reliable detec-

tion of pipeline pathways, it has the disadvantage of not providing additional meta

information like the year of construction for pipelines that have been built before

the deployment of the respective satellite. However, this information can be of high

interest for future projects where further pipeline specifics could be derived from

their year of construction. Therefore the use of historical low-resolution satellite

imagery has been evaluated in (Dasenbrock et al., 2021). Figure 1.4a shows a low-

resolution image also from 2018 depicting approximately the same area as Figure 1.3.

Neither the ROW of the OPAL nor the NEL pipeline is identifiable. Figure 1.4b

shows another low-resolution image of the same location but shot closely after the

construction of the NEL pipeline in 2011. The right-of-way is clearly visible and

most likely to be detected by sophisticated machine learning algorithms.

(Dasenbrock et al., 2021) proved that low-resolution imagery is su�cient to detect

pipeline pathways if it shows the right-of-way during or shortly after the construc-

5

1 Introduction

Figure 1.3 high-resolution Right-of-ways OPAL and NEL near Lubmin

Current Google earth satellite image at location 54°06’08”N 13°36’34”E
(WGS 84). The satellite imagery is from 08.06.018 or newer and pro-
vided by GeoBasis-DE/BKG(Gorelick et al., 2017). The Right-of-ways
are framed by red lines. The ROW running from north to south-west is
the NEL pipeline. The pipeline running from north to south is the OPAL
pipeline.

tion of a pipeline. For the evaluation, they used imagery taken by the Landsat

5 satellite, whose mission lasted from 1984 to 2013 (USGS, 2021e). Thus, it po-

tentially captured the construction of many European pipelines over a span of 29

years. Additionally, the Landsat 5 data is easily accessible and publicly available for

example through EarthExplorer (USGS, 2021a) or Google Earth Engine

(Gorelick et al., 2017). Another advantage of using this data is that its low reso-

lution decreases the computational demand compared to the use of high-resolution

data. This is because fewer image pixels have to be analyzed by a machine learning

algorithm per unit area. For these reasons Landsat 5 satellite imagery is also used

in this work.

To better understand the Landsat 5 data, it is described in more detail: With

6

1 Introduction

Figure 1.4 low-resolution right-of-ways of OPAL and NEL pipelines near Lubmin

(a) shows an image taken on 11.10.2018 by the Landsat 8 satellite with a
resolution of 30 m px-1 (USGS, 2021c). Compared to the high-resolution
image Figure 1.3 depicting roughly the same area, no ROWs can be
identified. (b) shows a satellite image from the Landsat 5 mission with a
resolution of 30 m px-1 (USGS, 2021e) shot closely after the construction
of the NEL pipeline (22.04.2011). The ROW is clearly visible.

29 years of service, Landsat 5 set the Guinness World record for Longest Operating

Earth Observation Satellite. It travels at an altitude of 705 km and circles the earth

every 99 minutes resulting in 150,000 earth revolutions during its lifetime. The

repeat cycle is 16 days (USGS, 2021e), meaning that the satellite is always traveling

along the same path and will be at the initial position again after 16 days (Liew,

2001). Overall over 2.9 million satellite images were captured using the Worldwide

Reference System-2 path/row system.

The Landsat 5 satellite was equipped with two sensors: The Multispectral Scanner

(MSS) and the Thematic Mapper (TM). In this work, only the TM-generated images

are considered because of the drastically lower resolution of the MSS sensor of 57 ⇥
79 m px-1 and its only four bands (green, red, and two near-infrared bands). The

Thematic Mapper failed in 2011 so there is no data available past 2011. The imagery

captured by the TM sensor provides the bands and resolutions specified in Table 1.1

(USGS, 2021e):

In order to keep the pixel sizes consistent, only the bands 1–5 and 7 are considered

for the rest of this work. It is estimated that thermal images with a resolution of

1202 m px-1 do not benefit a model used to detect pipeline pathways. Looking back

on Figure 1.4b, where only the bands 3 (red), 2 (green), and 1 (blue) were used to

generate an image that follows the human intuition of color, the adopted bands 1–5

and 7 should be su�cient to detect pipeline pathways reliably. This was also shown

7

1 Introduction

Table 1.1 Landsat 5 bands

Band Wavelength [µm] Spectrum Resolution [m px
-1
]

1 0.45 - 0.52 blue 302

2 0.52 - 0.60 green 302

3 0.63 - 0.69 red 302

4 0.76 - 0.90 near-infrared 302

5 1.55 - 1.75 near-infrared 302

6 10.40 - 12.50 thermal 1202

7 2.08 - 2.35 mid-infrared 302

in (Dasenbrock et al., 2021). Of particular importance could be the interaction

between bands 3 and 4 that are also used to calculate the so-called normalized dif-

ference vegetation index (NDVI). The NDVI is used to quantify the density of living

greens in a certain area such as a pixel of an image (Weier & Herring, 2000). There-

fore bands 3 and 4 could be of particular interest when discriminating between a

newly established right-of-way and its surroundings on a satellite image. The overall

impact of each band on the detection of pipeline pathways is not further elaborated

in this work but left implicit in the trained machine learning models themselves.

The available Landsat 5 data is deviated into di↵erent datasets depending on the

data quality and applied preprocessing steps. In this work, only the Landsat 5 TM

Collection 1 Tier 1 calibrated top-of-atmosphere (TOA) reflectance dataset is used.

Tier 1 represents the highest quality of imagery that can also be used for time-series

analysis because of its high image-to-image consistency regarding the pixel locations

(USGS, 2021d).

This concludes the brief chapter on the process of building pipelines and satellite

imagery. The following chapters will introduce the theory associated with neural

networks that will guide the methods used to pursue the goals of this work.

8

2 Semantic Image Segmentation

Inside of machine learning, the task at hand – detecting pixels classified as pipeline

in an input image – belongs to the category of image segmentation. In comparison

to image classification, image segmentation does not provide a single class label for

the whole image – e.g., cat or dog but pixel-wise class labels. Therefore, image

segmentation is capable of detecting objects on an image and locates them within

the provided image. Today the field of image segmentation is looking back on a

rather long history, starting with the first algorithms developed in 1979 (Minaee

et al., 2020). The algorithm segments simple grayscale images by finding optimal

thresholds for gray levels, maximizing the separability between the di↵erent levels

(Otsu, 1979). Figure 2.1 shows a result from 1979, segmenting an input image into

two classes.

Figure 2.1 Image segmentation in 1979

An input image (left) is segmented into two classes (right) by finding an
optimally discriminating threshold for grayscale values (Otsu, 1979).

Until today plenty of other approaches – many related to the field of classic ma-

chine learning – have been proposed and deployed, like k-means clustering, active

contours, and sparsity-based methods(Minaee et al., 2020).

On a more granular level, the topic of image segmentation can be further divided into

the following three subcategories (Kirillov, He, Girshick, Rother, & Dollár, 2019):

• Semantic Image Segmentation

The task in semantic image segmentation is to map each pixel in an input

9

2 Semantic Image Segmentation

image towards distinct object classes (Liu, Deng, & Yang, 2018) like, for ex-

ample, car, tree, or pedestrian (see Figure 2.2b). There is no di↵erentiation

between single entities of an object class.

• Instance-level Segmentation

Instance-level segmentation can be viewed as an extension of semantic image

segmentation and discriminates between single instances of an object class,

making them countable (Z. Zhang, Fidler, & Urtasun, 2016). See Figure 2.2c

for an instance segmentation of the cars and pedestrians seen in Figure 2.2a.

• Panoptic Segmentation

The last subcategory is panoptic segmentation, a combined approach of both

the beforehand discussed subcategories. Instead of marking each pixel with

either an object class or object instance, it provides each pixel with a class

label and an instance id (Kirillov et al., 2019).

Figure 2.2 Subcategories in Image Segmentation

The original street scenery (a) as model input which is either segmented
into the di↵erent object classes (b), segmented into di↵erent instances of
an object class (c), or provided with both – the object class labels and
instance-level ids (d) (Kirillov et al., 2019).

In the last three decades, the development and advancements of Convolutional

Neural Networks (CNN) have been of special importance. This led to a substantial

performance increase in the field of computer vision regarding classification and

segmentation tasks (Sultana, Sufian, & Dutta, 2020). Nowadays, the application of

these modern neural network architectures ranges over a wide variety of use cases

like medical image analysis, self-driving cars, and video surveillance (Minaee et al.,

10

2 Semantic Image Segmentation

2020).

The detection of pipelines as approached in this master thesis belongs into the

category of semantic image segmentation. Because of the great success of deep

learning models, especially CNNs, in this category, the model used for the later

detection of pipelines will also ground on a CNN. In order to provide a deeper

understanding of the later proposed and compared deep learning architectures for

the task at hand, the following chapter 3 will address the most important concepts

that are extensively used in those architectures.

11

3 Deep Learning and Convolutional

Neural Networks

This chapter will cover the most relevant concepts and ideas in deep learning that

are required to understand the later discussed implementations of deep neural net-

works used in semantic image segmentation.

Therefore, an elementary neural network unit will be elaborated: The perceptron.

Next, perceptrons will be accumulated into a stack of multiple layers called multi-

layer perceptron, and the importance of non-linear activation functions will be dis-

cussed. Later the training process is described in detail. This serves as a start-

ing point for the subsequent explanation of convolutional layers, which led to a

breakthrough in computer vision in 2012 (Yamashita, Nishio, Do, & Togashi, 2018).

Thereafter, the concepts max-pooling, batch normalization, and transposed convo-

lutions, which have all been developed to increase model performances in di↵erent

ways, will be presented.

In the following, a consistent denomination for scalar values (a), vectors (~a), matrices

(A), and tensors (A) is used.

3.1 The Perceptron

The perceptron was introduced by Frank Rosenblatt in his work The Perceptron:

A probabilistic model for information storage and organization in the brain in 1958

(Rosenblatt, 1958) and is a simple artificial neural network (Spektrum, 2017). Fig-

ure 3.1 shows the basic structure of a single perceptron. In literature, the term

perceptron is used in two di↵erent ways: In some sources, it is already used for

one single element like it is depicted in Figure 3.1, e.g. (Kramer, 2020), and in

other sources, e.g. (Géron, 2019), the single element is called an threshold logic unit

(TLU) and the arrangement of multiple TLUs in parallel sharing the same inputs

is called a perceptron. In this work, everything from 1 up to n artificial neurons in

parallel will be referred to as perceptron. Many scholars also use the terms neuron

and perceptron interchangeably.

12

3 Deep Learning and Convolutional Neural Networks

Figure 3.1 The perceptron

An input vector ~x is mapped from IR3 to IR by the means of calculating
the weighted sum ~xT ~w + b and passing it through an activation function
�. Figure inspired by (Géron, 2019).

A single unit perceptron takes in an input vector ~x of dimension d, calculates the

dot product of this input with a weight vector ~w of dimension d, and usually adds

a bias term b, which is scalar. In the case of a perceptron with multiple units, the

weight vector ~w becomes a weight matrix W , and the bias becomes a bias vector ~b

containing a bias term for every single unit. The weighted sum, given by ~xT ~w+ b, is

then fed into an activation function �, calculating the final output. The motivation

behind activation functions will be discussed further in section 3.2.

An easy practical example for using a perceptron is the modeling of the logical

components AND and OR with two inputs. A logical AND can be modeled by

setting the weights w1 and w2 for each input to 0. 5. The bias will be set to �0. 6. As
activation function, a Heaviside step function given by the following term is chosen:

x 7!

8
<

:
0 : ~xT ~w + b < 0

1 : ~xT ~w + b � 0
(3.1)

This way an input vector ~x =

x1

x2

!
=

1

0

!
will result in

~xT ~w + b =
⇣
1 0

⌘
⇥

0. 5

0. 5

!
� 0. 6 = �0. 1 , (3.2)

which is < 0 and the result will be 0. Table 3.1 depicts the results of all input

combinations, showing that this model perfectly reproduces a logical AND.

13

3 Deep Learning and Convolutional Neural Networks

Table 3.1 Outputs of perceptron model for logical AND

x1

0 1

x2
0 0 0
1 0 1

To model a logical OR we only need to adjust the bias term to �0. 1, yielding the

results given in Table 3.2.

Table 3.2 Outputs of perceptron model for logical OR

x1

0 1

x2
0 0 1
1 1 1

The above example shows the capability to model di↵erent underlying functions

using a simple one-unit perceptron. Another use case of a single perceptron could be

the classification of iris flowers using only their pental length and width. Although

the method works great in linearly separable classes, it fails at other simple tasks like

modeling an Exclusive OR (XOR), which is not linearly separable (Table 3.3) and

will be elaborated in section 3.2. This was stated by Marvin Minsky and Seymour

Papert in 1969 and has led to a harsh decrease in fundings for research activities

related to neural networks (Géron, 2019). Some sources like (Wikipedia, 2020) refer

to this period as the first AI winter, meaning research fundings were cut drastically

for years only until new discoveries and methods have been made/developed that

gathered new interest.

Table 3.3 Output table of logical XOR

x1

0 1

x2
0 0 1
1 1 0

Later, it has been shown that theXOR problem can be solved by stacking multiple

layers of perceptrons on top of each other, leading to the introduction of a new class of

artificial neural networks: The Multi-Layer Perceptron (Géron, 2019). This concept

will be elaborated in the following.

14

3 Deep Learning and Convolutional Neural Networks

3.2 Multi-Layer Perceptron

The stacking of multiple layers of perceptrons with multiple units is called a multi-

layer perceptron (MLP). In its most basic form, it consists of an input layer X, one

hidden layer H, and an output layer O (A. Zhang, Lipton, Li, & Smola, 2021).

Figure 3.2 depicts a MLP with three input units, four hidden units in the hidden

layer, and two output units in the output layer. A setup like this is referred to as a

Figure 3.2 Multi-layer perceptron with two layers

An MLP with three input units [x1,x2,x3], a hidden layer H with four
hidden units [h1,. . . ,h4] and an output layer O with two output units
[o1,o2].

two-layer MLP because only two layers – namely the hidden layer and output layer

– do any calculations. Note that all neurons in the hidden layer are connected to

all neurons of the previous layer (input) – such layers are also called dense layers or

fully connected layers (Géron, 2019). The same applies to the output layer. If we

neglect the activation functions in all the neurons, adding hidden layers, respectively,

stacking multiple layers does not enable the model to depict non-linear relationships.

The reason is that the hidden units in H are only an a�ne function of its inputs

given by ~h = ~xW1 + ~b1, and the outputs are only an a�ne function of the hidden

units ~o = ~hW2 + ~b2. Therefore we can rewrite the mapping from ~x to ~o in the

following way:

~o = (~xW1 + ~b1)W2 + ~b2 = ~xW1W2 + ~b1W2 + ~b2 = ~xW +~b (3.3)

This is again a simple linear single layer model, and we gained nothing with the

introduction of additional layers. (A. Zhang et al., 2021)

To introduce non-linearity to the model, a non-linear activation function � – e.g., the

Heaviside step function – is reapplied elementwise to each neuron in the hidden layer

15

3 Deep Learning and Convolutional Neural Networks

H. The output of our simple MLP is now given by ~h = �(~xW1+~b1) and ~o = ~hW2+~b2

which cannot be reformulated back into a simple one-layer linear model. The model

can now depict non-linear functions like the logical XOR (Géron, 2019). Figure 3.3

shows a possible MLP architecture to solve the XOR problem.

Figure 3.3 Multi-layer perceptron modeling logical XOR

Activation function � is given by the Heaviside step function (Equa-
tion 3.1). Logical inputs are denoted with x1,x2, and bias b. Grey con-
nections are associated with a weight of 1. Red connections are associated
with di↵erent weights shown next to them. Table 3.3 depicts all outputs
for all input combinations. Figure inspired by (Géron, 2019)

MLPs are universal approximators, meaning that, in theory, a single-hidden-layer

model with enough nodes can represent any possible function (A. Zhang et al., 2021).

Practitioners and theorists refer to the addition of more hidden layers as making an

artificial neural network deeper. The term deep learning, therefore, refers to neural

networks with a large number of hidden layers (Goodfellow, Bengio, & Courville,

2016). A specific number of hidden layers that discriminates between deep learning

and traditional neural networks is not defined.

This will finish the explanations on the di↵erent kinds of perceptrons. The following

subsection 3.2.1 will introduce some of the most common activation functions in

deep learning.

16

3 Deep Learning and Convolutional Neural Networks

3.2.1 Activation Functions

To better understand activation functions, which provide the non-linearity in neural

networks, and their di↵erent characteristics, a few of them which are popular in

machine learning will be briefly described in a listed fashion. The most important

one is the ReLU function for its broad usage and convenient properties. For example,

the later architecture that will be used for the prediction of pipelines is exclusively

using activations calculated with the ReLU function (Chaurasia & Culurciello, 2017).

The softmax function that is often applied to the output neurons to yield the final

prediction scores of a model will take up the last part of this section.

• Sigmoid function

From a historical perspective, the motivation behind the first neural networks

was to resemble biological neurons, which either fire or not fire. This en-

couraged thresholding functions like the Heaviside step function, which can be

designed to output either true (fire) or false (not fire). Later, ”when at-

tention shifted to gradient-based learning, the sigmoid function was a natural

choice because it is a smooth, di↵erentiable approximation to a thresholding

unit” (A. Zhang et al., 2021). In short, the gradient-based learning approach

di↵erentiates the model errors in respect to every weight and propagates the

obtained gradients back through the network to update its weights. This will

be described in the following subsection 3.2.2 in far more detail. However, it

is important to understand the idea behind back-propagation to then under-

stand the problem of vanishing gradients, which is a drawback of the sigmoid

function as an activation function (Nwankpa, Ijomah, Gachagan, & Marshall,

2018).

Figure 3.4 Sigmoid activation function

The sigmoid activation function, as shown in (A. Zhang et al., 2021).

17

3 Deep Learning and Convolutional Neural Networks

The sigmoid function is given by

�(x) =
1

1 + exp(�x) (3.4)

(Goodfellow et al., 2016). It maps inputs from the space of real numbers IR to

numbers between 0 and 1 and is centered at 0. 5. Figure 3.4 shows that large

positive and negative inputs return numbers close to 0 or 1 with gradients

approaching 0. This means that only very small numbers, prone to numeri-

cal errors, will be propagated back to preceding layers of the network. These

numbers are also often getting increasingly lower as the back-propagation algo-

rithm reaches the lower layers, which results in neglectable weight updates and

no convergence to good model solutions, describing the heart of the vanishing

gradients problem (Géron, 2019).

• Tanh function

The Tanh function maps its inputs in a similar fashion to the sigmoid function

by compressing the input which comes from the space of real numbers IR into

a range between �1 and 1 (Figure 3.5) (A. Zhang et al., 2021). Furthermore,

it is also smooth, di↵erentiable, and an approximation of a thresholding unit.

It is given by

Tanh(x) =
1� exp(�2x)
1 + exp(�2x) (3.5)

(A. Zhang et al., 2021).

Figure 3.5 Tanh activation function

The tanh activation function, as shown in (A. Zhang et al., 2021).

It di↵ers from the sigmoid function in its centering at 0 and its wider output

range, which comparatively improves the training of multi-layer neural net-

works. Therefore, it is preferred as an activation function but also su↵ers from

the problem of vanishing gradients (Nwankpa et al., 2018).

18

3 Deep Learning and Convolutional Neural Networks

• ReLU function

ReLU stands for rectified linear unit and is given by

ReLU(x) = max(0,x) (3.6)

(Kramer, 2020). Figure 3.6 shows a plot of this simple nonlinear transforma-

tion. It is easy and fast to compute. In comparison to the Sigmoid and Tanh

activation functions, it has the advantage that the gradients are well behaved

because for all output values > 0, the derivative is 1, and for all output values

< 0, the derivative is 0, which mitigates the problem of vanishing gradients.

Figure 3.6 ReLU activation function

The ReLU activation function, as shown in (A. Zhang et al., 2021).

In the special case of ReLU(x) = 0, which is not di↵erentiable, the gradient

defaults to 0. These properties – fast and easy computation and mitigation of

vanishing gradients – make ReLU the most popular activation function in the

field of machine learning (A. Zhang et al., 2021). There are further activation

functions closely related to ReLU, like, for example, leaky ReLU and ELU,

(Géron, 2019), just to mention a few.

• Softmax function

The softmax function is only used in classification problems and applied to

the output of the final layer of an artificial neural network. It transforms the

output of the last C neurons, where C equals the number of possible classes,

into a range between 0 and 1 with the property that the values of all classes

combined add up to 1. Thus, it can be interpreted as the probability for each

class (Nwankpa et al., 2018). Its formula is given by

softmax(xi) =
exp(xi)P
j exp(xj)

, (3.7)

19

3 Deep Learning and Convolutional Neural Networks

where xi represents the output of a single neuron in the output layer and
P

j exp(xj) the sum over the exponentials of all outputs in the final layer

(Goodfellow et al., 2016).

3.2.2 Training of Artificial Neural Networks

The goal of training neural networks in the field of semantic image segmentation

is to minimize the divergence between the prediction of a neural network and the

ground truth on a pixel-wise level (A. Zhang et al., 2021). The ground truth in-

cludes the labels, respectively, classification for all pixels and inputs in the training

and test data set like pipeline and background or road, building, car and pedestrian.

Often the ground truth is generated by hand, which is laborious work (A. Zhang et

al., 2021). In some cases, automated methods can be applied, for example, when

pipeline courses are provided as shapefiles and only have to be merged with the

respective satellite data. Of course, the quality of the shapefiles has to be inspected

beforehand.

The divergence between a model’s prediction and the the ground truth can be quan-

tified with a loss function L. A common loss function in classification problems is

the cross-entropy loss given by

L(~x,class) = � log

✓
exp(~x[class])P

j exp(~x[j])

◆
. (3.8)

It is a function of input ~x, which are the unnormalized scores for each class coming

from the neural network, and its respective true class index, which is between [0,C�
1], where C is the number of possible classes (Torch Contributors, 2019). If the model

outputs a high score for the true class and small scores for the wrong classes, the

ratio between the numerator and denominator of exp(~x[class])/
P

j exp(~x[j]) tends

towards 1, which results in a L value close to 0. Given that the model predicts the

wrong class label – meaning high scores for wrong classes and a low score for the

true class – the fraction will tend towards 0 resulting in a high L value.

Training a neural network now means that we adapt its weights ~w to minimize L.

The most popular method for this is to perform gradient descent on ~w with respect

to L. The gradients rL(~w) have the following form:

rL(~w) =

0

BBBB@

@L(~w)

@w1
@L(~w)

@w2
...

@L(~w)

@wk

1

CCCCA
, (3.9)

20

3 Deep Learning and Convolutional Neural Networks

where k is the number of all weights (Kramer, 2020). The calculation of the gradi-

ents is done using the back-propagation algorithm. It very e�ciently computes the

chain rule for a computational graph, like a neural network, which is needed to de-

termine the gradient of each weight in regard to all following nodes. The algorithm

is called back-propagation because it propagates the calculated loss back through

the network to calculate the derivates, respectively, gradients in contrast to forward

propagation, which is performed when the model evaluates an input (Goodfellow et

al., 2016). The calculated gradients are then applied in a weight update to ~w with
~w0 = ~w + �~w. �~w is given by �⌘rL(~w), where ⌘ is the learning rate (Kramer,

2020), which is an important hyperparameter determining the training characteris-

tics. Figure 3.7 provides a visual explanation of why the weight update is directed

against the gradient (�⌘).

Figure 3.7 Weight update

The gradient at ~w is indicated by the red arrow and is going downwards
(negative). In order to make a sensible weight update, we have to move
the weights against the gradient in the positive direction, implemented
by the addition of the minus sign in �⌘rL(~w).

The above-explained gradient descent method is often referred to as vanilla gradi-

ent descent. A well-established and powerful update to this method is Adam. Adam

stands for Adaptive momentum estimation and was introduced in 2014 by Diederik

P. Kingma and Jimmy Ba. Instead of only taking rL(~w) into consideration when

updating the weights of a neural network, Adam makes use of adaptive estimates of

lower-order moments (Kingma & Ba, 2017), redefining � ~wi for each weight as

� ~wi = �
⌘m0

ip
v0i + ✏

. (3.10)

m0 is an approximation of the first-moment estimate of gradients and given by m0 =

�1 + (1� �1)rL(~w). Analyzing the formula, we see that Adam includes the present

rL(~w) and takes advantage of past gradients multiplied with exponential decay rate

21

3 Deep Learning and Convolutional Neural Networks

�1, making the updates more stable. v0 is calculated by v0 = �2 + (1 � �2)rL2(~w)

including the uncentered variance (second moment) of rL(~w). The decay rate �2

is by recommendation set close to 1, limiting the impact of past gradient variances

strongly. ✏ 2 IR+ is introduced to avoid divisions by 0 (Kramer, 2020).

To conclude this section, the terms epoch, stochastic gradient descent, and mini-

batch are introduced: An epoch represents the presentation of all training samples

in a training dataset to a neural network. In order to converge, models have to be

trained for multiple epochs, meaning each sample is presented multiple times. In

the past, some training strategies only performed weight updates after each epoch

resulting in a prolonged but stable convergence of the models. Contrasting this

practice, the stochastic gradient descent performs weight updates after each training

sample. This results in e�cient training routines (Goodfellow et al., 2016). An often

used compromise is the mini-batch mode, where the model parameters are updated

after the presentation of every e.g., 32 or 64 training samples. An exact number of

how many samples a mini-batch should consist of is not available and depends on

the individual application. Mini-batch has numerous advantages over the other two

approaches because it is fast, stable, and can also be used to optimize memory and

computational e�ciency (Io↵e & Szegedy, 2015).

3.3 Convolutional Layers

As mentioned beforehand, it is possible to represent every function with a single

layer MLP. However, this approach would be extremely costly in terms of memory

and computation requirements. To counteract this problem, it is sensible to take

advantage of the domain knowledge we have about the functions we are trying to

capture with our models: In the field of computer vision the subject of matter are

exclusively images. This has led to the development of so-called convolutional lay-

ers, which were first successfully applied in (LeCun et al., 1989). They provided a

breakthrough in computer vision (Kramer, 2020) due to their high gains in predic-

tion performance and parameter e�ciency compared to traditional neural networks

(Krizhevsky, Sutskever, & Hinton, 2012). To the author’s knowledge, every modern

state-of-the-art architecture aimed at vision tasks makes extensive use of convolu-

tional layers.

Convolutional layers are translation invariant feature detectors, meaning that their

output does not change regardless of the position/shift of an image feature, like

for example a human eye. They are applied in a sliding window fashion (see Fig-

ure 3.8 and Figure 3.9) across an entire input volume (Kramer, 2020) of dimensions

22

3 Deep Learning and Convolutional Neural Networks

H 0⇥W 0⇥C 0, where H 0 is the height in px, W 0 the width in px, and C 0 the number

of channels. An RGB image would, for example, have 3 channels in the first layer.

Figure 3.8 Convolution operation at first filter position

The red square represents the filter position (i,j) = (1,1) over the input
volume. Input values and weights are are depicted by the numbers inside
the squares. The output of the convolutional process at the current filter
position is depicted in dark green on the right.

A convolutional layer, therefore, maps an inputX 2 IRH
0⇥W

0⇥C
0
= [X1,X2, . . . ,XC0

]

to an output A 2 IRH⇥W⇥C = [A1,A2, . . . ,AC], which is then referred to as feature

maps. This is done by using C filter kernels W . Each filter kernel [W 1,W 2, . . . ,W C]

consists of C 0 weight matrices W c = [W 1

c ,W
2

c , . . . ,W
C0
c] where each matrix W s

c is a

two dimensional kernel in case of 2D convolution. The activations of a single output

Ac is given by

Ac = W c ⇤X =
C0X

s=1

W s
c ⇤Xs (3.11)

and ⇤ being the convolutional operation

ac(i,j) =
mX

k=1

mX

l=1

ws
c(k,l)⇥ xs(i+ k � 1,j + l � 1) (3.12)

23

3 Deep Learning and Convolutional Neural Networks

Figure 3.9 Convolution operation at second filter position

The red square represents the filter position (i,j) = (2,1) over the input
volume. Input values and weights are are depicted by the numbers inside
the squares. The final output of the whole convolutional process is de-
picted in green on the right for completeness. The result of the current
convolutional process is marked with dark green.

with the m ⇥ m filter kernel W c(Kramer, 2020). To better understand the con-

volutional operation, the examples in Figure 3.8 and Figure 3.9 are provided. To

calculate the first entry of the output feature map marked with dark green (ac(1,1))

in Figure 3.8, we have to calculate the dot product of the flattened input array at the

position covered by the filter kernel and the flattened filter kernel itself to get the re-

sult 15. Note that the dot product is equal to
Pm

k=1

Pm
l=1

ws
c(k,l)⇥xs(i+k�1,j+l�1)

if the input matrices get flattened. Next, we calculate the second entry (ac(1,2)) of

the output feature map shown in Figure 3.9 by sliding the filter kernel one step to

the right and performing the same operation. This gets repeated until the whole

output feature map Ac is calculated. The addition of further filter kernels would

create additional output feature maps.

Typically, the number of filter kernels is doubled in each convolutional layer. For

example, an input with dimensions (28,28,128) would be transformed into an output

24

3 Deep Learning and Convolutional Neural Networks

of (26,26,256). This results in a decrease in spatial resolution of the input image

but an increase in feature space, allowing the model to capture more complex image

features.

Two important hyper parameters when performing convolutions are stride and

padding. Stride determines by how many elements or pixels a filter is shifted af-

ter each operation and can be split up into vertical and horizontal stride. If only

one number is given, the horizontal and vertical stride are the same. Figure 3.10

provides a visual example. Usually, the stride is set to 1, meaning the filters are only

shifted by one unit at a time, which works well in practice. Using a bigger stride

allows the model to create spatially smaller output volumes (Stanford CS231, 2021)

and shrinks the number of computational operations needed in the following layers.

Some architectures use this technique as an alternative to pooling layers, which will

be explained in the next section.

Figure 3.10 Comparison stride=1 and stride=2

The second mentioned hyper parameter, padding, is used to determine the number

25

3 Deep Learning and Convolutional Neural Networks

of pixels added around the borders of an input (see Figure 3.11). This counteracts

the decrease in spatial output size and loss of information at the borders of an image

when applying a convolutional filter to a volume. For example, when making use of

3 ⇥ 3 convolutions, it can be advantageous to add a pixel with value 0 – which is

called zero padding with padding = 1 – around the borders of an image, resulting

in the same input and output size (Stanford CS231, 2021).

Figure 3.11 Zero padding

Left picture shows the input image with no padding and right picture
shows the same input image with padding equal to 1 in grey.

The following sections will introduce additional concepts heavily used in artificial

neural network and especially in convolutional neural networks.

3.4 Max-Pooling

In order to progressively decrease the spatial size of an input volume – which reduces

the number of parameters needed in a network and counteracts the problem of

overfitting to the training data – many modern deep learning architectures make

use of pooling operators.

These operators take an input I with dimensions W1 ⇥ H1 ⇥ C, where W is

the width, H the height, and C the number of channels, and downsample it to

W2 ⇥ H2 ⇥ C (Figure 3.12). Comparably to convolutional filter kernels, a pooling

layer applies an n⇥n filter in a sliding window fashion with stride s to the input I.

In the case of max-pooling, this filter then only extracts the highest value inside its

scope to output it to the next layer. The dimensions of the downsampled input are

given by W2 = (W1 � n)/s + 1 and H2 = (H1 � n)/s + 1. The number of channels

26

3 Deep Learning and Convolutional Neural Networks

Figure 3.12 Downsampling with max-pooling

An input I of dimensions W1⇥H1⇥C = 224⇥224⇥64 is downsampled
to W2 ⇥H2 ⇥ C = 112⇥ 112⇥ 64, quartering the number of inputs to
the next layer. As shown in (Stanford CS231, 2021).

C stays unchanged. In many practical cases, n will be set to 2 and the stride s to

2, as shown in Figure 3.13 (Stanford CS231, 2021).

Figure 3.13 Max-pooling operation

A 2⇥ 2 max-pooling filter with stride 2 is applied to a 4⇥ 4 input. The
output dimensions are given by W2 = (W1�n)/s+1 = (4�2)/2+1 = 2
and H2 = (H1 � n)/s + 1 = (4 � 2)/2 + 1 = 2. As shown in (Stanford
CS231, 2021).

Another pooling operation would be the average pooling which computes the av-

erage of all values in the scope of the pooling filter.

Regarding the process of back-propagation, the maximum activation indices gen-

erated in the forward passes are kept to then route the gradients back to their

respective weights during training (Stanford CS231, 2021).

27

3 Deep Learning and Convolutional Neural Networks

3.5 Batch Normalization

Batch normalization was introduced by Sergey Io↵e and Christian Szegedy in 2015.

Their paper was aimed at the problems that arise out of the changing input dis-

tributions of each layer during training ”as the parameters of the previous layers

change” – namely low learning rates and careful parameter initialization resulting

in longer training times (Io↵e & Szegedy, 2015). Their strategy was to implement

a normalization step preceding all hidden layers that takes in all activations over a

mini-batch yi, calculates their mean µy and standard deviation �2 to then determine

the normalized yi, which is denoted as y0i:

y0i =
yi � µyp
�2 + ✏

. (3.13)

✏ is some small positive error term. The obtained activations will be scaled by

� 2 IR+ and shifted with � 2 IR, which are both learned during training. The final

result of the batch normalization is given by

y00i = � ⇥ y0i + � . (3.14)

This stabilizes the layer inputs and aids the training process. A positive side e↵ect of

the strategy is that due to the shifting, the biases can be neglected, resulting in fewer

network parameters (Kramer, 2020). It was also shown that batch normalization

regularizes the model and mitigates the problem of overfitting to training data,

which would otherwise result in deteriorated generalization capabilities toward the

test data (Io↵e & Szegedy, 2015).

3.6 Transposed Convolutions

The last concept discussed in this section is tightly entangled to the field of image

segmentation and is a special case of the convolutional operation: the transposed

convolution (A. Zhang et al., 2021). It is used to upsample feature maps back from

feature space to the original or close to the original image resolution to get the final

segmented output. Many papers refer to transposed convolutions as up-convolutions.

After describing the convolutional process in detail in section 3.3, Figure 3.14 should

be su�cient to understand the process of transposed convolution.

Like in the normal convolution operation, it is also possible to set the parameters

stride and padding, which will determine the output size of the transposed convo-

lution. Figure 3.15 shows an example of a 2⇥ 2 input upsampled with stride 2 and

28

3 Deep Learning and Convolutional Neural Networks

Figure 3.14 Transposed convolution

A transposed convolution with padding 2 and stride 1 is performed on
a 2⇥ 2 input (blue) with a 3⇥ 3 filter kernel (grey), resulting in a 4⇥ 4
output (green). As shown in (Dumoulin & Visin, 2018).

padding 2.

Figure 3.15 Stride and padding in transposed convolutions

A transposed convolution with padding 2 and stride 2 is performed on
a 2⇥ 2 input (blue) with a 3⇥ 3 filter kernel (grey), resulting in a 5⇥ 5
output (green). Note that the stride is conceptually not applied to the
filter but to the input creating space between all input pixels. As shown
in (Dumoulin & Visin, 2018).

29

4 Uncertainty in Deep Learning

Due to the fast advancements and vast successes of deep learning algorithms in

various fields of application, they are increasingly used in real-life systems. Common

examples in the literature are autonomous vehicles (Kuutti, Bowden, Jin, Barber,

& Fallah, 2021), the detection of cancerous cells (Shen et al., 2019), and high-

frequency trading (Arévalo, Niño, Hernández, & Sandoval, 2016). A challenging

problem connected to this development is the lack of said algorithms to capture

model uncertainty, providing overconfident predictions for unknown data domains.

This is especially crucial in safety-critical applications (Gal & Ghahramani, 2016).

Figure 4.1 provides a toy example of this problem.

Figure 4.1 Model uncertainties with softmax activation

A model is trained on an arbitrary function f(x) to discriminate be-
tween two classes (0 and 1) with training data provided between the
grey dashed lines. Function uncertainty is given by the shaded area. x*

denotes a single point outside of the training data. The softmax out-
put �(f(x)) predicts x* to be of class 1 with probability 1 ignoring the
function uncertainty. The model therefore extrapolates with unreason-
able high confidence outside the scope of its training data. Passing the
distribution, respectively, function uncertainty through the softmax func-
tion � would yield better estimates of the real model uncertainty (Gal &
Ghahramani, 2016).

Often in deep learning, a distinction between aleatoric (statistical) and epistemic

(systematic) uncertainty is introduced:

• Aleatoric Uncertainty

Aleatoric uncertainty corresponds to the naturally existing randomness or

30

4 Uncertainty in Deep Learning

noise arising from the fundamental variability of all experiments, measure-

ments, etc. (Hüllermeier & Waegeman, 2021). This means that the provision

of more data does not decrease the aleatoric uncertainty (Gal, 2016). In the

case of image segmentation tasks, this kind of uncertainty is explicitly made

available. By means of a Softmax function, the models output a categorical

distribution over all classes. In cases where the input is inherently ambiguous,

the Softmax outputs are more evenly distributed over several classes. This rep-

resents low model confidence in its prediction and high aleatoric uncertainty

(Gustafsson, Danelljan, & Schon, 2020).

• Epistemic Uncertainty

Epistemic uncertainty stems from the lack of knowledge about a system (Bjarnadottir,

Li, & Stewart, 2019), which in the case of an artificial neural network would be

its parameters ✓ (Gustafsson et al., 2020). By increasing the available training

data and, therefore, the amount of information about an underlying function,

the epistemic uncertainty can be reduced (Hüllermeier & Waegeman, 2021).

Each model parameter realization, respectively, function stems from a distri-

bution of possible parameter realizations, respectively, functions and has a

certain probability. Therefore, it is possible to estimate the epistemic uncer-

tainty by extracting the variance between multiple function realizations (Gal,

2016).

This chapter covers two approaches to extract epistemic model uncertainty in deep

learning: Bayesian Deep Learning and Deep Ensembles. Both approaches have al-

ready been used and tested extensively, with Bayesian Deep Learning being the

more popular one in the current scientific literature. The chapter ends with the

introduction of active learning, which takes advantage of available model uncertain-

ties to minimize future e↵orts when creating additional training datasets. This can

be advantageous when increasing the scope of the pipeline detection model to new

geographical regions.

4.1 Bayesian Deep Learning

Instead of regarding the parameters of a NN to be single-point estimates, Bayesian

deep learning considers the weights of a NN to be distributions of possible parameter

realizations, which is used to express its epistemic uncertainty. According to Bayes’

31

4 Uncertainty in Deep Learning

theorem, the posterior distribution is given by

p(✓|D) =
p(D|✓)p(✓)

p(D)
, (4.1)

where D is the available data and ✓ the model parameters. The distribution is

characterized by the data likelihood p(D|✓) and the chosen prior p(✓) and updated

when new data is available: This is called Bayesian inference. The uncertainty of the

model parameters is then marginalized out, which results in the predictive posterior

distribution:

p(y*|x*,D) =

Z
p(y*|x*,✓)p(✓|D)d✓ , (4.2)

where y* and x* represent a single output and input sample. The integral is in-

tractable, and sampling from the true posterior distribution is practically not pos-

sible. Therefore, di↵erent methods to approximate the true posterior distribution

have been developed (Gustafsson et al., 2020). A very e�cient one was introduced

by Gal et al. in (Gal & Ghahramani, 2016). Their work has proven that the use

of Monte Carlo dropout is a valid approximation of the true posterior distribution.

Monte Carlo dropout describes the method of setting each single weight in each

layer to 0 in each forward pass through a NN with probability p at evaluation time.

The output of a NN using Monte Carlo dropout is obtained by passing a single

sample multiple times through the network and calculating the average over all

forward passes. The uncertainty estimates can, for example, be derived from the

standard deviation � of the outputs of all forward passes like in (Zech & Ranalli,

2020), or their variance �2 like in (Hartmann et al., 2021). Monte Carlo dropout

can also be understood as the combination and averaging over di↵erent NNs who

share their parameters (Lakshminarayanan, Pritzel, & Blundell, 2016). This leads

to an alternative approach to Monte Carlo dropout: Deep ensembles.

4.2 Deep Ensembles

The idea of using deep ensembles to quantify epistemic model uncertainty was in-

troduced in (Lakshminarayanan et al., 2016). Before, deep ensembles had only been

used to boost the predictive performance of NN architectures. Their motivation

was to develop a method to estimate predictive model uncertainty in a simple and

scalable way. By running multiple realizations of the same point estimate NN archi-

tecture in parallel, they extracted state-of-the-art epistemic uncertainty estimates,

which can be – given enough memory – scaled easily. Multiple di↵erent realizations

of the same point estimate NN architecture are created by starting the training of

32

4 Uncertainty in Deep Learning

every single network with a random initialization of its weights and the shu✏ing

of the training dataset. This way, the networks – also called ensemble members –

are converging onto di↵erent local minima of the underlying function. The final

prediction of an ensemble is given by its mean prediction

p(y|~x) = M�1

MX

m=1

p✓m(y|~x,✓m) , (4.3)

where p(y|~x) is the probability of y given the input ~x, M the number of ensemble

members, and ✓m the parameters of each specific model m. The epistemic uncer-

tainty of the prediction is then approximated by the variance �2 between the di↵erent

model outputs p✓m(y|~x,✓m) (Lakshminarayanan et al., 2016).

In their work, the authors explicitly state that their approach is a non-Bayesian

solution to the problem of uncertainty quantification in deep learning. (Gustafsson

et al., 2020) compared deep ensembles to Bayesian approaches and argued that the

di↵erent realizations of NNs used in ensembles could be interpreted as samples from

the true posterior distribution. This would make deep ensembles also a Bayesian ap-

proach. Their experiments between deep ensembles and Bayesian dropout in terms

of the quality of uncertainty quantifications and ease of implementation suggest

that the use of deep ensembles is superior to Monte Carlo dropout. Therefore, deep

ensembles will be used to estimate model uncertainties in this work.

4.3 Active Learning

The concept of active learning in deep learning is closely tied to the possibilities

that arise out of the extraction of epistemic model uncertainty estimates with the

above-described techniques. Because of the comparably high costs of labeling satel-

lite imagery for image segmentation tasks, the idea of active learning can potentially

decrease the e↵orts that have to be put into manually labeling new datasets for new

regions.

Active learning – sometimes also referred to as optimal experimental design – de-

scribes the process of letting a model choose its training samples in order to optimize

the training procedure and its outcomes. This is contrasted by the default approach

in which a large number of samples in no particular order or composition is pre-

sented to the network. This is advantageous in cases where the amount of available,

unlabeled data is high and the labeling itself is very costly – be it in time or money

(Settles, 2009).

Thus, active learning enables the minimization of manual dataset labeling since only

33

4 Uncertainty in Deep Learning

samples of high curiosity to the model have to be labeled by the practitioner. Thus,

the reduction of systematic model uncertainty is more sample e�cient. A sensible

measure to discriminate between samples that should be labeled and vice versa is

the model uncertainty in regard to each sample. Like already described, deep en-

sembles will be used to estimate uncertainties in this work. Figure 4.2 demonstrates

the performance enhancements due to an active learning approach compared to a

randomly generated training dataset.

Figure 4.2 Active learning: sample e�ciency

(a) A toy dataset with 400 samples from 2 classes sampled from gaussian
distributions. (b) The suboptimal decision boundary (blue) gained with
logistic regression on 30 randomly drawn labeled samples. (c) The deci-
sion boundary of a logistic regression model fitted on 30 actively chosen
training samples using uncertainty sampling showing a high sample e�-
ciency (Settles, 2009).

34

5 Model and data prerequisites

The preceding section 4.3 concludes the theoretical foundations of this work. In the

following, the necessary model and data prerequisites in order to pursue the goals

of this thesis are discussed. As a quick reminder: This work aims to reexamine

the generalizability of a model trained on data from Great Britain and Northern

Germany to other more heterogeneous European regions. Additionally, the poten-

tial of an active learning approach shall be studied to enable a more e�cient model

transfer to other regions. Questions that are related to these topics, like finding a

su�cient number of deep ensemble members for high-quality uncertainty estimates

and identifying geographical properties that deteriorate the model performance, are

also investigated.

First, a suitable model architecture that serves as the basis for the deep ensembles

needs to be selected. Therefore, two di↵erent model architectures – the U-Net and

LinkNet architectures – are described and tested with a variety of so-called backbone

architectures. All technical terms, architectures, and implementational details are

explained in their respective section. The di↵erent entities are compared in sev-

eral relevant quantities. Next, the revision of the data generated in the work of

(Dasenbrock et al., 2021), which contains satellite images of pipeline pathways in

Great Britain and Northern Germany, is presented. This is followed by the extension

of the dataset with satellite imagery from Spain in order to set up the experiments

on an active learning approach.

35

5 Model and data prerequisites

5.1 Choosing a Model Architecture and

Encoder-Backbone

The chapter at hand focuses on the evaluation of di↵erent model architectures for

deep learning ensembles. Each candidate model consists of a base architecture and a

backbone. The base architecture has to account for a variety of challenges related to

the task of detecting pipeline pathways. These include small training datasets, high

input noise because of low-resolution satellite imagery, and intensive computational

and memory requirements due to the usage of deep ensembles. The following two

base architectures, which have low training sample requirements – also on noisy

input data – and feature manageable hardware requirements, have been selected:

• U-Net

The U-Net architecture is a well-proven CNN architecture originally engineered

for the segmentation of medical imagery (Ronneberger, Fischer, & Brox, 2015).

It has already been used in the master thesis of Jan Dasenbrock, which was

the basis for the paper (Dasenbrock et al., 2021). Other examples that are

related to the topic of the thesis at hand, are the works of Matthias Zech

and Joseph Ranalli on the detection of photovoltaic areas in satellite data

(Zech & Ranalli, 2020) and a paper from (Hartmann et al., 2021) with the

title Bayesian U-Net for Segmenting Glaciers in SAR Imagery. All use cases

featured small, sometimes noisy training datasets. This makes U-Net a valid

candidate solution for the base architecture.

• LinkNet

Tests on di↵erent neural network architectures in my internship preceding this

master thesis have shown that LinkNet architectures provide segmentation

accuracies comparable to U-Net architectures while being slightly faster in

training and evaluation time. This will also be shown in 5.1.4. Considering

that the use of deep learning ensembles is intensive in memory consumption

and computations, this property makes LinkNet a possible candidate for the

use as base architecture.

Both architectures – U-Net and LinkNet – can be combined with di↵erent backbone

architectures to improve the model performance. A more detailed explanation of

both base architectures and the backbone architectures will be the topic of the

following sections 5.1.1, 5.1.2, and 5.1.3. This chapter will close with the comparison

of all possible architecture-backbone combinations.

36

5 Model and data prerequisites

5.1.1 U-Net

The U-Net architecture has its origins in the field of biomedical image segmentation

and was proposed by Olaf Ronneberger, Philipp Fischer, and Thomas Brox from the

University of Freiburg in 2015 (Ronneberger et al., 2015). It belongs in the cate-

gory of encoder-decoder-based models and has become a widely spread architecture

also outside of medical and biomedical image segmentation (Minaee et al., 2020).

The aim of the 2015 published paper U-Net: Convolutional Networks for Biomedical

Image Segmentation was to create an architecture that can be trained very sample

e�cient by means of strong data augmentation. The model has won two challenges

at the International Symposium on Biomedical Imaging 2015 (Olaf Ronneberger,

2015).

U-Net is a fully convolutional neural network which means that the network does

not rely on any fully connected layers. It consists of two paths: The contracting

path – also-called encoder – on the left side of the network compresses the input

image via a series of convolutions and max-pooling operations to transform the

high-resolution euclidean space into a high dimensional feature space. The opposite

path – called decoder or expansive path – transforms the high dimensional feature

space back to a high-resolution euclidean space to extract an output segmentation

map. This back-transformation is done by upsampling the feature maps from the

previous layer. The received upsampled feature maps are then concatenated with

resolution-wise matching feature maps of the encoder path to localize the upsampled

feature maps. Subsequently, a convolution layer will halve the number of feature

maps and be trained to create a more precise output based on these concatenated

inputs (Olaf Ronneberger, 2015). This architecture consisting of the encoder and

decoder can be depicted as a roughly symmetrical network forming a U-shape, as

shown in Figure 5.1.

5.1.2 LinkNet

The LinkNet architecture was proposed by Abhishek Chaurasia and Eugenio Culur-

ciello (2017) in their publication LinkNet: Exploiting Encoder Representations for

E�cient Semantic Segmentation. Their goal was to increase the parameter e�ciency

of neural networks, meaning they wanted to lower the computational complexity and

increase the training and evaluation speed while maintaining state-of-the-art accu-

racies on typical benchmark datasets. Like U-Net, LinkNet is tailored toward use

cases in the field of image segmentation and uses an encoder-decoder architecture

37

5 Model and data prerequisites

Figure 5.1 U-Net architecture

A 572x572 greyscale image is – by means of several 3x3 convolutions and
max-poolings – encoded into 1024 28x28 feature maps. Subsequently, the
decoder path maps these feature maps – concatenated with the matching
cropped feature maps of the encoder path – through 2x2 up-convolutions
and 3x3 convolutions to the initial spacial resolution. Due to the multiple
convolutional operations, there is a loss of information at the border of
the image. The output has the dimensions of 2x388x388 because the
architecture at hand segments into two categories (Ronneberger et al.,
2015).

(Chaurasia & Culurciello, 2017).

The novelty of LinkNet lies in the way the neural network connects the encoder

to the decoder path. Instead of e.g., saving the max-pooling indices in the down-

sampling process or concatenating the output of encoder blocks with the input of

a decoder block (like in U-Net), LinkNet bypasses the output of an encoder block

directly to the corresponding decoder block (see Figure 5.2). The information is

then added onto the output of the previous decoder block. This way, the decoder

can benefit from the learned representations in the encoder without a need for ad-

ditional trainable parameters. This makes the operation computationally e�cient

while maintaining spatial information (Chaurasia & Culurciello, 2017).

Di↵erent benchmark tests in the original paper from 2017 have shown that the

proposed concept works as intended. It has been shown that LinkNet reaches equal

38

5 Model and data prerequisites

Figure 5.2 LinkNet architecture

Preceding the encoder, the input image is downsampled twice by a factor
of 2 (denoted by ’/2’) through a 7x7 convolution layer and a 3x3 max-
pooling operation. This is followed up by four encoder blocks from which
the output of the first three encoder blocks is passed directly to the
decoder and added to the output of the corresponding preceding decoder
block. After the decoder, the outputs are getting upsampled twice by a
factor of 2 (denoted by ’*2’) (Chaurasia & Culurciello, 2017).

or even higher benchmark scores compared to baseline models with a 10-fold higher

number of parameters. These properties make the architecture a promising candi-

date for this master thesis with respect to the approach of deep learning ensembles.

39

5 Model and data prerequisites

5.1.3 Backbone Architectures

Encoder-decoder-based neural networks for semantic image segmentation can be

combined with di↵erent so-called backbone architectures on the encoder path. Com-

pared to implementing an encoder path from scratch, the use of a backbone has

the advantage that we can use a proven pre-trained network architecture, like VGG

or ResNet models, as a feature-extractor to increase accuracy and reduce training

time. The chosen backbone architecture in the encoder path has just to be matched

with a fitting decoder path to re-transform the input image. There are di↵erent

python libraries that fulfill this purpose. One of them is the Segmentation Models

library, which is available as a TensorFlow implementation (Yakubovskiy, 2019)

and a PyTorch implementation (Yakubovskiy, 2020). Due to the steady increase

in popularity since its release in 2016, which is depicted in Figure 5.3, and a more

extensive selection of backbone architectures in the Segmentation Models library,

the PyTorch implementation is used in this work.

Figure 5.3 Google Trends comparison for search entrys tensorflow (red) and py-
torch (blue)

The graph shows the relative search interest in a weekly resolution from
17.07.2016 – 12.06.2021. The highest value of 100 is the peak in search
frequency for either of the compared terms. All other frequencies are de-
picted relative to this value, meaning that a value of 50 represents half of
the search requests compared to the peak in a given week (Trends, 2021).
The interest in PyTorch is following a steadily increasing trend while
it is apparently gaining market-share.

Out of the variety of available backbone architectures in the Segmentation Mod-

els library, seven are picked for later comparisons. An exhaustive list of all back-

bone architectures can be found on Segmentation Models’ GitHub repository in

(Yakubovskiy, 2020). Each backbone architecture is available in di↵erent versions,

meaning they can di↵er in network depth and width but make use of the same core

elements and same principles. In two of five cases, only the backbone version with

the lowest amount of parameters was chosen because of the benefits in regard to

training time and memory usage. Following the deep learning ensembles approach,

40

5 Model and data prerequisites

this will minimize the overall time used for training and evaluation. The following

list gives an overview of the picked backbones and a brief explanation of the key

properties and motivations issued by the authors of the papers where each architec-

ture was originally introduced.

• ResNet-18 and ResNet-34

In the 2015 published paper Deep Residual Learning for Image Recognition,

the authors tackled the problem that by adding more layers to a deep neural

network its accuracy eventually starts to saturate until it drops rapidly. This

e↵ect is called degradation and is not linked to overfitting (He, Zhang, Ren, &

Sun, 2015) but to the vanishing gradient problem (Kramer, 2020), which was

already discussed in subsection 3.2.1. Intuitively, added layers to a network

should not decrease the accuracy of an output but rather learn an identity

mapping if the added layers do not add any benefits. ResNet modules – which

are most often a stack of layers – add their input back to the output, which is

called an identity shortcut (see Figure 5.4).

Figure 5.4 ResNet building block

The identity x, which is the input to two subsequent weight layers, is also
bypassed to be later added to the output of said weight layers. Inspired
by (He et al., 2015)

This makes the problem of learning the underlying mapping H(x) a problem

of learning the residual mapping F (x) := H(x) � x, which means that the

original function becomes H(x) := F (x) + x. The authors have shown that

this is an e↵ective strategy counteracting the problem of degradation. It allows

for deeper architectures with increasing accuracy scores compared to their

plane counterparts without identity shortcuts (He et al., 2015). The number

attached to ResNet (e.g., 18 in ’ResNet-18’) refers to the number of layers in

the model architecture.

41

5 Model and data prerequisites

• MobileNetV2

The motivation behind MobileNet was to create a small and fast model ar-

chitecture that is tailored towards the usage in mobile and embedded systems

for visual tasks. This was archived by using depthwise separable convolutions,

meaning that a conventional convolution is factorized into two operations:

A depthwise convolution and a 1 ⇥ 1 pointwise convolution. This leads to

a massive decrease in parameters and number of computations while caus-

ing – keeping the intended use case in mind – a reasonable loss in accuracy

(Howard et al., 2017). MobileNetV2 added further features resulting in a bet-

ter performance of the MobileNet neural network family (Sandler, Howard,

Zhu, Zhmoginov, & Chen, 2019).

• VGG11 and VGG16

The main focus of the 2015 published paper Very Deep Convolutional Networks

for Large-Scale Image Recognition was to analyze the dependence between the

depth and the accuracy of deep neural networks. The authors used up to 19

layers of 3x3 convolutions and have shown that an increase in network depth

is beneficial for the network performance in terms of prediction accuracy. The

number attached to VGG (e.g., 16 in ’VGG16’) represents the number of layers

used in the specific model. In 2014 it was one of the winners at the ImageNet

Large Scale Visual Recognition Challenge (Simonyan & Zisserman, 2015) and

is still widely available in standard deep learning libraries today.

• DenseNet121

The DenseNet architecture can be seen as an extension of the idea behind

ResNet. According to the authors, ”DenseNets have several compelling ad-

vantages: they alleviate the vanishing-gradient problem, strengthen feature

propagation, encourage feature reuse, and substantially reduce the number of

parameters” (Huang, Liu, van der Maaten, & Weinberger, 2018). Instead of

providing identity shortcuts just from the input of a block to its output (like

in ResNet), DenseNets provide the output of each layer to all its subsequent

layers inside of a dense block – so-called dense connections. Furthermore,

the bypassed output is not simply added to the input of another layer but

concatenated. DenseNets have shown state-of-the-art results while needing a

substantially lower parameter-count and being less computationally taxing.

• E�cientNet-B0

The purpose of the paper E�cientNet: Rethinking Model Scaling for Convolu-

tional Neural Networks was to study how models can be scaled in depth, width,

42

5 Model and data prerequisites

and resolution to obtain an optimized model performance at a given amount

of resource budget. The authors developed a whole family of networks called

E�cientsNets, which reached state-of-the-art performances. E�cientNet-B0

was developed as a baseline network which was then scaled in depth, width,

and resolution to create its descendants E�cientNet-B1, E�cientNet-B2, . . . ,

E�cientNet-B7 (Tan & Le, 2020).

5.1.4 Comparisons

In the following, the di↵erent architecture-backbone combinations are tested. For

the approach of deep learning ensembles, it is important to find a solution that pro-

vides a good balance between prediction accuracy, the number of parameters needed,

and the training time. A focus on just one of these aspects would make the model

most likely unfeasible for later deployment.

In order to make the comparisons as meaningful as possible while keeping the evalua-

tion and training times at a reasonable level, all architecture-backbone combinations

have been trained the same way. Additionally, each test run inherited 50 epochs to

account for the variance in runtime between single epochs and was only performed

once, meaning that no further statistics like a mean runtime or variance have been

captured. Hence, the following numbers have to be regarded only as indicators for

the model performances. In regard to finding a fitting architecture-backbone com-

bination this should serve the purpose well.

Adam was used as the optimizer with the learning rate set to 1E-3 and a batch size

of 1. The loss function was given by

loss(x,class) = �x[class] + log(
X

j

exp(x[j])) , (5.1)

the standard cross entropy loss provided by PyTorch (Torch Contributors, 2019).

The dataset included all samples created in the work of (Dasenbrock et al., 2021)

augmented with horizontal and vertical flipping applied with a probability of p =

0. 5. This resulted in 430 training samples and 108 validation samples. Each sample

has a dimension of 64⇥64⇥6 (width ⇥ height ⇥ channels), showing that all available

bands with a resolution of 302 m px-1 from Landsat 5 have been used. All test runs

were like already mentioned run for 50 epochs. To evaluate the model performances,

the Intersection over Union (IoU) score – also referred to as Jaccard index – was

used, which is given by

J(A,B) =
|A \B|
|A [B| (5.2)

43

5 Model and data prerequisites

(A. Zhang et al., 2021). A can, for example, refer to the pixels labeled as pipeline in

the ground truth, and B represents the pixels classified as pipeline in the prediction.

The IoU can have values between 0, meaning there is no similarity between the

ground truth and prediction, and 1, representing a perfect prediction. Figure 5.5

provides a graphical representation of the Jaccard index.

Figure 5.5 Intersection over union score

As shown in (Rosebrock, 2016).

Table 5.1 sums up all test results. Due to the di↵erent design choices and

goals of U-Net and LinkNet, it is expected that all backbone-LinkNet combinations

should use fewer parameters and shorter training time than their U-Net counter-

part. This expectation was met for all architecture-backbone combinations. The

shortest training time was reached by the combination LinkNet+ResNet-18 back-

bone. This combination was also the setup used in the initial paper in 2017 with

which the LinkNet architecture scored state-of-the-art results in well-known bench-

mark datasets (Chaurasia & Culurciello, 2017). With a validation-IoU-score of 0.60,

LinkNet+ResNet-18 is the third most accurate model tested and is only surpassed

by VGG16 combinations, which needed more than double the amount of training

time. The U-Net counterpart for the ResNet-18 backbone reached a slightly worse

validation-IoU-score while taking 28.2 % longer to train.

Most architecture-backbone combinations with a smaller amount of trainable pa-

rameters showed significantly lower validation-IoU scores making them less viable

for a reliable detection of pipelines. The E�cientNet-0 backbone tests resulted in

very long training times despite their comparatively low parameter counts. This

makes them unfeasible for the deep learning ensembles strategy followed in this

work. The same applies to the implementations of DenseNet121 and ResNet-34.

The U-Net+MobileNetV2 combination showed the highest training-IoU-score. This

does not have a direct influence on the selection of the right architecture-backbone

combination because after 50 epochs of training, almost all combinations showed

such high numbers. This means the models are strongly overfitting to the training

44

5 Model and data prerequisites

Table 5.1 Architecture-backbone comparisons

Architecture /

Backbone
Parameters Training time (*) Train-IoU (**) Val.-IoU

U-Net /
ResNet-18

14.3M 44m 22s 0.67 0.59

LinkNet /
ResNet-18

11.7M 34m 36s 0.72 0.60

U-Net /
ResNet-34

24.4M 80m 0s 0.69 0.57

LinkNet /
ResNet-34

21.8M 65m 54s 0.65 0.55

U-Net /
MobileNetV2

6.6M 51m 16s 0.93 0.56

LinkNet /
MobileNetV2

4.3M 47m 5s 0.68 0.51

U-Net /
VGG11

18.3M 63m 9s 0.72 0.59

LinkNet /
VGG11

10.5M 44m 18s 0.71 0.60

U-Net /
VGG16

23.8M 95m 6s 0.70 0.63

LinkNet /
VGG16

16.0M 85m 35s 0.69 0.62

U-Net /
DenseNet121

13.6M 115m 55s 0.72 0.56

LinkNet /
DenseNet121

10.4M 129m 25s 0.70 0.58

U-net /
E�cientNet-B0

6.3M 149m 10s 0.81 0.58

LinkNet /
E�cientNet-B0

4.2M 134m 16s 0.69 0.53

* Training time has been determined on a 2020 Apple M1 Chip. 8 GB of RAM,
python 3.9.4, pytorch 1.8.0, and segmentation-models-pytorch 0.1.3.
Each training run was performed on 50 epochs with 430 training samples, 108
validation samples, Adam optimizer with a learning rate of 1E-3, and a batchsize
of 1.

** Training-IoU depicts the Training-IoU reached in the epoch with highest
Validation-IoU

data and are becoming worse at generalization, meaning the validation-IoU-scores

are decreasing. On the other hand, this is a good indicator for the capability of

the tested models to depict the detection of pipeline construction sites on satellite

45

5 Model and data prerequisites

imagery.

In conclusion, the choice of a fitting architecture-backbone combination is a trade-

o↵ between the number of parameters, which taxes the computational memory, the

training time, which is a good indicator for the computational complexity, and the

model accuracy, making a statement about its usefulness and reliability when de-

ployed. Additionally, a lower amount of parameters reduces the parameter space and

consequently decreases the overall model uncertainty, given that the model is able

to capture the underlying function. All things considered, the LinkNet+ResNet-18

model shows a fast training time, uses a manageable number of parameters, and

provides good accuracy scores. It is therefore selected as the basis for the deep

learning ensembles.

46

5 Model and data prerequisites

5.2 Revision: The Great Britain and Northern

Germany Dataset

The Great Britain and Northern Germany dataset stems from the proof-of-concept

study conducted by (Dasenbrock et al., 2021) and includes di↵erent pipeline seg-

ments from the gas transmission network of Great Britain (GB) and the NEL

pipeline in Northern Germany (NEL). In the following, its denomination is abbrevi-

ated as GBNEL. It will serve as the data basis for an initially trained deep ensemble.

The respective deep ensemble will be used to test its ability to generalize to other

regions in Europe.

To create the original GBNEL dataset, (Dasenbrock et al., 2021) firstly filtered

OpenStreeMap (OSM) data with the esy-osmfilter (Pluta & Lünsdorf, 2020)

for pipelines in GB and Northern Germany. The esy-osmfilter is an open-source

Python library that reads and filters OSM data to then output Python dictionaries

or JSON files. OSM itself is a project that collects and provides free geographic data

of the world. This includes a variety of objects like streets, hiking and bicycle trails

but also the energy and gas infrastructure (OpenStreetMap, 2020). The filtered OSM

data was then loaded into Google Earth Engine (GEE) (GoogleEarthEngine,

2021), which is an extensive catalog for satellite imagery and geospatial data with

analytical capabilities on a planetary scale. Furthermore, tools, like the GEE code

editor that allows interaction with the catalog, are provided. The authors used the

GEE code editor to load Landsat 5 Tier 1 Surface Reflectance imagery that covers

the area of interest given by the OSM pipeline data. Because satellite data often

spatially exceeds the area of interest, it had to be cropped accordingly. The cropped

data was then downloaded and afterward sliced into 64 px ⇥ 64 px tiles. The ground

truth masks were created by projecting the pipeline course onto all-black (value: 0)

64 px ⇥ 64 px TIFF files that are matched with the corresponding 64 px ⇥ 64 px

Landsat 5 image tiles. Pixels on the mask files that lie within the range of 30 m

of the pipeline course were set to white (value: 1). This provides a classification of

background and pipeline. Figure 5.6 depicts this process. Only image-mask pairs

that contain more than 50 pixels of pipeline were kept and considered for the training

of the model.

Initially, the data was divided into the GB and the NEL data set, and a model was

trained exclusively on the GB data and validated on the German NEL data. This

approach was chosen to test if the model is able to generalize to other regions and

was confirmed by high validation scores on the NEL pipeline imagery (Dasenbrock

et al., 2021).

47

5 Model and data prerequisites

Figure 5.6 Creation of image-mask pairs

Left side shows the downloaded Landsat 5 Tier 1 Surface Reflectance
imagery divided into 64 px ⇥ 64 px tiles, and the right side shows the
corresponding masks (Dasenbrock et al., 2021).

The thesis at hand takes advantage of the preprocessed satellite imagery from the

work of (Dasenbrock et al., 2021) but does not make use of the created masks nor

di↵ers between GB and NEL data. The matching of satellite imagery with OSM

data to create the ground truth masks requires very high accuracy of the OSM

data. This is not always the case for pipeline data, like seen in Figure 5.7, resulting

in data noise that possibly deteriorates the model performance. Additionally, the

process of labeling all pixels that are within a range of 30 m to the OSM pipelines as

pipeline can result in thicker pathways than necessary. A strategy that counteracts

this problem is a manual data labeling process. This means that for each image, the

mask is created by a human using an input device like a computer mouse to label

each pixel individually. This work makes use of the online data labeling platform

APEER provided by Carl Zeiss AG (Carl Zeiss Microscopy GmbH, 2021). All 64 px

⇥ 64 px image tiles have been relabeled in a manual fashion.

In total, the revised GBNEL dataset consists of 357 samples, of which 34 are from

the NEL pipeline and 323 from the GB gas transmission network. Each sample has

the dimensions 64⇥ 64⇥ 6 (width⇥ height⇥ c), where c is the number of channels.

The channels include the Landsat 5 bands TM1, TM2, TM3, TM4, TM5, and TM7.

The thermal TM6 band with a resolution of 1202 m px-1 is neglected to ensure data

consistency. In order to use the dataset to train deep ensembles, it was split into

48

5 Model and data prerequisites

Figure 5.7 Automatically created image-mask pair

An image-mask pair created by applying OSM data (b) to a satellite
image (a). In this case, the mismatch arises most likely out of the fact
that the right-of-way (bright yellow/green) has not been created at the
time the satellite image has been taken.

a training and a test dataset with a ratio of 80 to 20. The training data was then

augmented with horizontal and verticals flips with a probability of p =. 5 to increase

the number of samples available for training. This resulted in 409 training images

and 73 test images. The final training and test datasets were saved to be later

reloaded, ensuring a consistent database.

49

5 Model and data prerequisites

5.3 Dataset extension: The Spanish Dataset

To test the active learning and the generalization capabilities of the ensemble, re-

spectively, its members, a second dataset was created: The Spain dataset (ES). It

can serve as a stand-alone dataset or extend the GBNEL data. Spain was the re-

gion of choice because of its substantial di↵erence in geographical and vegetational

features compared to the GBNEL data, like seen in Figure 5.8.

Figure 5.8 Overview map of Europe

Picture downloaded from (geojson.io, 2021).

Additionally, the OSM data availability proves to be very reliable (Figure 5.9),

and the Spanish gas transmission system operator Enagás provides helpful pipeline

data, like the year of construction and the connected locations (Enagás, 2021). This

benefits the process of creating new training and validation data greatly.

The process of generating individual samples of satellite imagery for Spain follows

a di↵erent approach in comparison to the data generation process of the UKNEL

samples. Using GEE, a location consisting of a latitude and longitude is generated

on the map. The generation of a location can, for example, be done with a mouse

click or in other ways, like the provision of multiple locations in a table that is loaded

into GEE. A JavaScript script loads Landsat 5 Tier 1 Surface Reflectance images

– a so-called collection – at the location in a given space of time. Ideally, the time

50

5 Model and data prerequisites

Figure 5.9 Available OSM pipeline data in Spain

Pipelines are shown in black. Data was extracted with esy-osmfilter
(Pluta & Lünsdorf, 2020) and visualized with (geojson.io, 2021).

window is chosen close after the construction date of the pipeline to detect. The

downloaded collection is then sorted by the parameter CLOUD COVER, and only

the image with the lowest amount of clouds is considered for the subsequent steps

(Figure 5.10a). A rectangle is then drawn around the chosen location that covers

a region of roughly 50 px in each direction, depicting an area of approximately 9

km2 (Figure 5.10b). The satellite data covered by the rectangle is then clipped and

downloaded (Figure 5.10c). In a post-processing step, the downloaded image data

is trimmed to the final dimensions of 64⇥ 64⇥ 6 (width⇥height⇥ c) using a simple

python script (Figure 5.10d).

This method can be used to automate the download of relevant satellite imagery

of very specific sites from which the detection of pipeline pathways can be started.

Model runtimes, download times, and memory requirements are minimized. The

SciGRID gas data set provides a variety of sites that would serve as sensible starting

points – like geolocated compressor stations – for an automated pipeline detection

tool.

The labeling of the data was done manually with APEER. In total, 247 samples from

9 pipeline segments have been generated. The samples are randomly distributed over

the pipeline segments shown in Figure 5.11. All samples contain the Landsat 5 TM1,

TM2, TM3, TM4, TM5 and TM7, bands. The samples were then randomly split

51

5 Model and data prerequisites

Figure 5.10 Landsat 5 imagery download and preparation

(a) A single Landsat 5 image from Northern Spain with the lowest
CLOUD COVER available between 01.03.1998 and 31.10.1998. The
chosen location is indicated in yellow. (b) A rectangle is drawn around
the location. The width and length of the rectangle depend on the lon-
gitude and latitude of the location of the rectangle. Because of the way
the shape of a rectangle is estimated in the script, rectangles closer to-
wards the equator become wider, while rectangles closer to the poles
become longer. (c) The downloaded image (156 ⇥ 101 ⇥ 6 channels)
clipped from the rectangle created in (b). (d) Final image trimmed to
final dimensions of (64 ⇥ 64 ⇥ 6 channels).

into a training and test dataset with a ratio of 80 to 20. Additionally, random data

augmentations – in particular horizontal and vertical flips of the input images – were

applied to the training data with a probability of p = 0. 5. This resulted in the final

ES dataset consisting of 291 training samples and 43 test samples. The dataset is

saved to be available for later experiments. This provides a consistent data basis.

52

5 Model and data prerequisites

Figure 5.11 Pipeline segments in final dataset

The pipeline segments used as the source for the training and test
dataset are indicated in red. Map created with (geojson.io, 2021) and
pipeline data extracted from (OpenStreetMap, 2020) with esy-osmfilter
(Pluta & Lünsdorf, 2020).

53

6 Hypotheses, Evaluation and

Results

After obtaining the prerequisites – a sensible deep ensemble model-backbone archi-

tecture and the respective datasets – the three hypotheses of this work, their evalu-

ation methods, and the results are presented. The approach on how each hypothesis

is evaluated di↵ers greatly. Additionally, the works and results on a hypothesis al-

ways impact its subsequent hypothesis: The deep ensemble trained on the GBNEL

data used to test the model generalizability to other regions serves as the basis for

determining a su�cient amount of ensemble members for high-quality uncertainty

estimates in the next hypothesis. The results will then be used to potentially de-

crease the number of ensemble members needed for the active learning experiments.

The outputs of a resulting deep ensemble will be analyzed in regard to influenc-

ing factors that systematically deteriorate model accuracies. Hence, this chapter

is structured along the hypotheses. Each section consists of a derived hypothe-

sis, the methods and experimental setup to evaluate it, and the concluding results.

Hypothesis-specific statistical tests and metrics are introduced in their respective

section for better comprehensibility.

6.1 Hypothesis 1: Model Generalizability

The work of (Dasenbrock et al., 2021) has shown that a model trained on data from

Great Britain is able to generalize to other regions like Northern Germany (NEL

pipeline) with high evaluation IoU scores. This also suggests that the data from GB

and NEL is very similar regarding its properties and originates from closely related

basic distributions. Looking at Figure 6.1, it becomes apparent that both regions

located within the two white dashed lines have rather similar vegetation and, in

some areas, a comparable topography.

The properties of Spain between the dashed orange lines are substantially di↵erent

and likely make up a di↵erent basic distribution in regard to the task of predicting

pipeline pathways. For example, the contrast between the right-of-way and its sur-

54

6 Hypotheses, Evaluation and Results

Figure 6.1 Exemplary comparison of di↵erent regions

The white dashed lines indicate most of the area in which the GBNEL
data is located. The orange dashed lines encapsulate Spain. The two
Regions substantially di↵er in their properties regarding the vegetation
and topography. Picture extracted from (geojson.io, 2021).

roundings is higher in areas with high vegetation (GB and Northern Germany) in

comparison to sandy soils with low vegetation (Spain). This is depicted in Figure 6.2.

Additionally, other image features that can potentially a↵ect model predictions, like

the presence of roads and mountain ridges, can di↵er in their frequencies and prop-

erties.

It is therefore hypothesized that a model respectively deep ensemble trained on GB-

NEL data is not able to generalize well to other, more heterogeneous regions like

Spain. This should show in low IoU scores and high model uncertainties on ES test

images from Spanish right-of-ways.

6.1.1 Model Generalizability: Training of a GBNEL Deep

Ensemble

To evaluate the model generalizability to the ES data in terms of IoU scores and

model uncertainties, a deep ensemble is trained on the GBNEL data.

55

6 Hypotheses, Evaluation and Results

Figure 6.2 Right-of-way visibility in di↵erent regions

(a) A right-of-way in UK going from the bottom-left to the right. (b) A
right-of-way in Spain going from the top-left to the bottom-right.

As elaborated in subsection 5.1.4, the tests on di↵erent architectures and backbones

suggest that the combination of a LinkNet architecture with a ResNet-18 backbone

is a sensible choice for the deep ensemble. Like in subsection 5.1.4, the GBNEL

models were implemented and trained with PyTorch and the Segmentation Mod-

els library. The previously created 409 training samples and 73 test samples from

the GBNEL dataset were loaded.

In total, 32 models were trained, from which only 16 were considered for the ensem-

ble. The comparisons between deep ensembles and Bayesian dropout in (Gustafsson

et al., 2020) suggest that the added benefits in terms of uncertainty quantification

and IoU scores stagnate with more than 16 ensemble members. The metric used to

discriminate between models chosen for the final ensemble is the IoU score reached

on the validation data. All 32 models were initialized with random weights but

shared the same hyperparameters:

• Optimizer: Adam

• Learning rate: 1E-3

• Batch size: 32

• Loss function: Cross entropy loss

The training dataset was shu✏ed after each epoch to satisfy the requirements for

training a deep ensemble, as stated in (Lakshminarayanan et al., 2016). The training

for each model was stopped after 50 epochs or earlier if the validation loss did not

decrease anymore for ten consecutive epochs. No model has reached the maximum

possible number of epochs. The model and optimizer states – which represent the

parameter realizations at a given training step – with the best validation loss were

56

6 Hypotheses, Evaluation and Results

then saved to be available for future usage. The training and validation IoU scores

for the 16 best-performing models are shown in Table 6.1.

Table 6.1 GBNEL ensemble member performances

Model Training-IoU (*) Validation-IoU

1 0.77 0.57
2 0.73 0.59
3 0.71 0.59
4 0.77 0.59
5 0.69 0.58
6 0.72 0.60
7 0.70 0.57
8 0.72 0.57
9 0.70 0.58
10 0.65 0.57
11 0.72 0.56
12 0.68 0.59
13 0.80 0.57
14 0.77 0.57
15 0.76 0.60
16 0.70 0.58

* Training data IoU at training step
with lowest validation loss

The best validation IoU for a single ensemble member is 0.60, and the average

model validation IoU is 0.58. The average model validation IoU is not to be mistaken

for the ensemble prediction that averages the predictions of all ensemble members

for each sample and classifies based on this mean prediction. The validation IoU

of the whole deep ensemble is 0.63, which confirms that ensembles can outperform

their individual members, as stated in (Lakshminarayanan et al., 2016).

6.1.2 Model Generalizability: Results

To evaluate if the deep ensemble trained on the UKNEL data is able to generalize

to Spanish regions, the deep ensemble is applied to the ES test data. This resulted

in an IoU score of 0.12 (Figure 6.3). Because the ES training data has also not

been presented to the ensemble, it can also provide valid assumptions about the

generalizability of the GBNEL trained ensemble. The validation IoU on the ES

training data is also 0.12. These scores show that the deep ensemble is not able to

reliably detect pipeline pathways in Spain. It is therefore not able to generalize to

other, more heterogeneous regions in a satisfying manner.

57

6 Hypotheses, Evaluation and Results

Figure 6.3 Validation IoU for GBNEL and Spanish test datasets

Validation IoUs were calculated using the complete deep ensemble with
its 16 members trained on the GBNEL data.

Further evaluations on the estimated uncertainties, represented by the variance

between the ensemble members, show an average uncertainty for GBNEL samples

of 8.79 and an average uncertainty for ES samples of 20.22. The average uncertainty

was calculated by summing up all pixel variances for all samples of each region

and dividing them by the number of samples of each region. Figure 6.4 also shows

that the spread of sample variances in Spain is a lot higher than for GBNEL data.

This is expected after observing low validation IoUs because epistemic uncertainty

estimates provide an approach to discriminate between in and out of distribution

samples. Naturally, an ensemble should perform worse on out-of-distribution sam-

ples because they stem from a di↵erent basic distribution that was not part of the

training data. As described in chapter 4, the epistemic uncertainty can be decreased

by presenting more samples to a model. The deep ensemble was only trained with

a variety of GBNEL data samples, which resulted in lower uncertainty estimates for

the respective validation dataset compared to the Spanish data. The high spread

of sample variances in Figure 6.4 for the Spanish validation data also suggests that

some image samples are very closely related to the GBNEL data while others are

significantly dissimilar. Both datasets, therefore, originate from di↵erent basis dis-

tributions.

To get a better understanding of the di↵erences between satellite imagery of

pipeline pathways in GBNEL and Spain, Figure 6.5 and Figure 6.6 are provided.

Figure 6.5a depicts a typical well-segmented satellite image. The prediction (a3)

is almost identical to the ground truth shown in (a2). Aside from some pixels

58

6 Hypotheses, Evaluation and Results

Figure 6.4 Boxplots of GBNEL and ES sample variance

The sample variance is given by the summation of all pixel variances
for an input image derived from the complete deep ensemble with its 16
members.

.

at the top of the image, the deep ensemble only expresses relevant uncertainty at

the border pixels of the pipeline pathway. This is owed to the circumstance that

pixel values only represent the average values of their underlying ground truth. At

low-resolutions like 302 m px-1, the actual pipeline pathways can not be depicted

with su�cient sharpness of separation. This specific uncertainty source is mostly

aleatoric because it depends on the noise of the measuring method, respectively, its

subsequent data processing. Additional training data will not decrease this source

of uncertainty.

Figure 6.5b is a similar example but with an increase in uncertainty estimates close

to a field with apparently low vegetation. Figure 6.5c, d, and e exemplarily depict

the main source of uncertainty in the GBNEL data. Structures that have a certain

similarity to pipeline construction sides, like dirt roads, field borders, and river banks

(c1), deteriorate the model performance and show high uncertainty estimates.

Figure 6.5f is an example where a low image contrast due to cloud cover hinders the

ensemble from detecting any pipeline pixels. The high uncertainty estimates (f4)

show that the deep ensemble is in principle able to recognize that the area of the

pipeline pathway is of special interest.

59

6 Hypotheses, Evaluation and Results

Figure 6.5 Selected model outputs for GBNEL pipeline pathways

Left column shows the inputs in true color. Second and third column de-
pict the ground truth, respectively, the ensemble prediction (M=16) with
black (0) referring to the class background and white (1) being pipeline.
Last column shows the model uncertainty approximated by the ensemble
variance.

60

6 Hypotheses, Evaluation and Results

As seen in Figure 6.6a3–f3, it becomes apparent that the ensemble performance

is deteriorated for Spanish imagery in comparison to the GBNEL data. The model

mainly fails to capture pipeline pathways instead of outputting false positive predic-

tions. To the human eye, Spanish images provide less contrast between the right-of-

ways and the background, which can have an impact on the model performance itself.

It is also observed that the background serves as a source of high model uncertainty

estimates – especially on sandy soils or rocky grounds – like seen in Figure 6.6a4 and

Figure 6.6e4. The GBNEL model outputs had minimal high background uncertainty

estimates except for pipeline pathway-like structures. This fortifies the statement

that the two datasets originate from di↵erent basic distributions.

Concluding this section, the ensemble trained on GBNEL data is not able to satis-

fyingly generalize to Spanish satellite imagery. Nevertheless, the estimated model

uncertainties give confidence that with additional training data from Spain, the

model performance will increase drastically. Figure 6.6b4–f4 show high ensemble

member variances at the actual pipeline pathways. This epistemic uncertainty will

most likely be reduced with an increase in available information, respectively, Span-

ish training data, which will benefit the model performance.

61

6 Hypotheses, Evaluation and Results

Figure 6.6 Selected model outputs for Spanish pipeline pathways

The left column shows the inputs in true color. Second and third column
depict the ground truth and the ensemble prediction (M=16) with black
(0) referring to the class background and white (1) being pipeline. The
last column shows the model uncertainty approximated by the ensemble
variance.

62

6 Hypotheses, Evaluation and Results

6.2 Hypothesis 2: E�ciently Estimating Model

Uncertainties

As mentioned before, in their comparisons between deep ensembles and Monte Carlo

dropout, (Gustafsson et al., 2020) showed that 16 deep ensemble members proved

to be a good number of models to estimate model uncertainties. With more than

16 members, the quality gains in uncertainty estimates stagnated. Of course, the

results are highly dependent on the data the uncertainty is estimated on. In this

case, the Cityscapes dataset (Cordts et al., 2016), in which urban street scenes,

mostly from Germany, are segmented and annotated, was used (Figure 6.7). The

authors trained an ensemble to label 19 di↵erent classes (road, sidewalk, car, etc.).

The Cityscapes scenes presented to the ensemble and the task of labeling 19 classes

is assumedly more complex than the segmentation of pipeline pathways. It is there-

fore hypothesized that a smaller number of ensemble members is su�cient to obtain

reasonable uncertainty estimates. A confirmation of this hypothesis and the associ-

ated possible decrease in ensemble members would benefit the future training and

evaluation e↵orts, computation times, and memory requirements.

Figure 6.7 Cityscape street scenes

A typical street scene segmented into road, sidewalk, pedestrian, etc. Im-
age from (Cityscapes Dataset, 2021)

6.2.1 E�ciently Estimating Model Uncertainties: The

Wasserstein Distance and the KS-Test

The test on whether it is possible to use a lower number of ensemble members (<16)

while maintaining high-quality uncertainty estimates is carried out in a two-step ap-

proach. First, the sample uncertainty distributions for each number of possible GB-

NEL ensemble members (2-15) are compared to the sample uncertainty distribution

obtained with all 16 ensemble members. TheWasserstein distance is introduced and

63

6 Hypotheses, Evaluation and Results

used for this. A sensible solution would be one where the addition of more ensemble

members would not yield a significant increase in similarity towards the uncertainty

estimates of the full GBNEL ensemble. A Kolmogorov-Smirno↵-test (KS-test) will

then be used to calculate a p-value making a statement about whether the uncer-

tainty estimates produced by an ensemble with a lower number of members and the

uncertainty estimates of the full ensemble are drawn from the same distribution.

In order to promote a good understanding of the used approach, the Wasserstein

distance and the KS-test are introduced in more detail:

• Wasserstein distance

The Wasserstein distance calculates the minimum amount of work required to

transform a distribution u into a target distribution v. The two distributions

are often depicted as two piles of earth where one pile is transformed into the

second one. The amount of soil and the distance it has to be moved represents

the Wasserstein distance. It is therefore also-called the Earth Mover’s Distance

(EMD) (Panaretos & Zemel, 2019). Its formula for two 1-D distributions is

given by

Wp(u,v) = inf
⇡2�(u,v)

Z

R⇥R
|x� y|d⇡(x,y) , (6.1)

where �(u,v) is the set of all probability distributions on R⇥R whose marginals

are u and v. Speaking in the earth moving analogy, �(u,v) represents all

possible ways on how to move soil from u to transform it into v. |x� y| is the
distance between two points of u and v that are transformed into each other.

d⇡(x,y) is the respective mass, respectively, joint probability that is associated

with these points. The infimum of all possible �(u,v) integrals over all points x

and y is the Wasserstein distance Wp(u,v) (Ramdas, Trillos, & Cuturi, 2017).

See Figure 6.8 for an illustrative example of the Wasserstein distance in 2-D.

• KS-test

The KS-test tests if a sample distribution is su�ciently adjusted to a given

basic distribution. Its null hypothesis H0 is that the two distributions tested

are equal, and consequently, the alternative hypothesis HA states that they

are di↵erent. In this experiment, the sample distribution is generated by the

ensembles with only a portion of ensemble members. The basic distribution

is provided by the full ensemble sample uncertainty estimates. The KS-test

works independently from the assumed underlying distribution and returns

valid results also for small sample sizes. It can be applied to continuous and

discrete distributions. Its statistic is calculated by determining the absolute

frequencies E presuming H0. This allows for the calculation of the cumulative

64

6 Hypotheses, Evaluation and Results

Figure 6.8 Wasserstein distance in 2-D

The distribution (a) is transformed into the distribution (c). (b) shows
the optimal solution on how to move each point from (a) that minimizes
the amount of work needed to transform it into (c). The Wasserstein
distance is the sum over all lengths of the depicted vectors in (b) times
their associated weight. In this example, all weights are equal. Illustra-
tion from (Panaretos & Zemel, 2019).

frequencies FE. The same is done for the sample distribution, which results in

FB. The absolute biggest di↵erence of FB and FE divided by the number of

samples represents the test statistic D:

D =
max |FB � FE|

n
(6.2)

A p-value can be obtained with the help of a lookup table for di↵erent sample

sizes and significance levels (Sachs, 2004).

6.2.2 E�ciently Estimating Model Uncertainties: Results

The Wasserstein distances between the sample uncertainty estimates of the full

ensemble trained on the GBNEL data and the ensembles with only a portion of

ensemble members are depicted in Figure 6.9. They were calculated using the im-

plementation from the Python library SciPy (The SciPy community, 2021b).

65

6 Hypotheses, Evaluation and Results

Figure 6.9 Wasserstein distances of sample uncertainty estimates

The blue graph depicts the Wasserstein distances between the sample
uncertainty estimates of deep ensembles with only M members and the
full deep ensemble with 16 members trained on the GBNEL data on the
GBNEL test data. The orange graph depicts the distances on the ES test
data.

The graph for the GBNEL test data shows that the sample uncertainty distribu-

tion obtained with only six ensemble members has already converged towards the

estimates of the full ensemble. The addition of more members does not significantly

increase the quality of uncertainty estimates. For the Spanish test data, an ensem-

ble member count of 13 represents the uncertainty estimates of the full ensemble

reasonably well. Figure 6.10 compares each individual sample uncertainty estimate

of the Spanish test data obtained with M = 5 (blue) and M = 13 (orange) ensem-

ble members to the full ensemble estimate. If the Wasserstein distance were 0, all

samples would be located on the red line, meaning that the distributions are the

same. It is observed that the sample uncertainty estimates of the ensemble with

five members deviate significantly from the red line. It underestimates uncertainties

of low magnitude and overestimates sample uncertainties of higher magnitude. An

ensemble with 13 members diverges only slightly from an optimal fit with seemingly

no systematic tendencies of under- or overestimating sample uncertainties in com-

parison to the full ensemble.

66

6 Hypotheses, Evaluation and Results

Figure 6.10 Comparison of individual sample uncertainty estimates

Sample variances obtained with M = 5 (blue) and M = 13 (orange)
ensemble members over the sample variances obtained with the full en-
semble. The red line depicts the location of sample variances if the
distributions are identical.

Because the Wasserstein metric is not bound to a specific interval, the level of

Wasserstein distances due to the di↵erent properties of the GBNEL and ES data

in Figure 6.9 is substantially lower for the GBNEL test data than for the ES test

data. This is because the uncertainty estimates for the GBNEL test data are low

in comparison to the ES test data (see Figure 6.4), keeping the distances between

the sample variances low in the first place. Figure 6.9 also gives reason to believe

that the addition of more ensemble members is more beneficial in cases where there

is high epistemic uncertainty. Increasing the information presented to the model

decreases the epistemic uncertainty and possibly decreases the number of ensemble

members needed in a progressing active learning approach. Examining this potential

connection would be an interesting working hypothesis of another work.

As mentioned, a KS-test is used to determine whether the uncertainty sample dis-

tribution obtained with 13 ensemble members is su�ciently adjusted to the uncer-

tainty sample distribution obtained with all 16 ensemble members. The calculation

of the KS statistics was implemented with the Python library SciPy (The SciPy

community, 2021a). For the GBNEL test data, the KS statistic was 0.0485 with a

p-value of 0.9998 and for the Spanish test data 0.0548 with a p-value of 0.9999. The

null hypothesis is therefore not rejected, meaning that both 13 member ensemble

67

6 Hypotheses, Evaluation and Results

uncertainty estimates are su�ciently adjusted to their respective full ensemble un-

certainty estimates.

It is argued that the uncertainty estimates in Figure 6.4 on the GBNEL data can

serve as an approximation of the lower uncertainty bound of the mixed GBNEL and

ES data for the active learning approach in the following section. The uncertainty

estimates on the ES data can be interpreted as an upper uncertainty bound of the

mixed data. These assumptions are made because a robust ensemble trained on the

GBNEL data will likely not become remarkably more certain about its predictions

on GBNEL test data without the provision of more GBNEL training samples. The

experiments in section 6.1 have also shown that the Spanish data stems from a dif-

ferent basic distribution. This suggests that the presentation of Spanish training

data will likely have a rather low impact on the ensemble uncertainty estimates on

GBNEL test data. Retraining an ensemble with the GBNEL and ES training data

will, on the other hand, most likely decrease the epistemic model uncertainty on the

ES test data.

This line of argument is not entirely sound. The blending of GBNEL and ES data

will result in a di↵erent data distribution which leads to a di↵erent model, respec-

tively, deep ensemble. It will output di↵erent uncertainty estimates. Nevertheless,

the uncertainty estimates of the GBNEL trained ensemble should still serve as an

adequate approximation of the maximum and minimum uncertainties observed on

a mixed dataset. Therefore, it is sensible to only consider 13 ensemble members for

the subsequent tasks without deteriorating the uncertainty estimates significantly.

This will also have the advantage of lower training and evaluation times. A test

on evaluation speed of the whole ensemble on the Spanish test data resulted in the

following figures:

• 13 ensemble members: 14.8 s ± 538 ms per loop (mean ± std. dev. of 7 runs,

20 loops each)

• 16 ensemble members: 20.2 s ± 647 ms per loop (mean ± std. dev. of 7 runs,

20 loops each)

As in previous tests, a 2020 Apple M1 Macbook with 8GB of RAM was used.

An adaption of the ensemble size from 16 to 13 decreases the evaluation time by

26.7% while retaining a high quality of uncertainty estimates. Therefore, only 13

deep ensemble members are considered for the following experiments on the active

learning approach.

68

6 Hypotheses, Evaluation and Results

6.3 Hypothesis 3: Active Learning

The third hypothesis tries to answer the question of whether the training process

and the ensemble performance itself can be improved by following an active learn-

ing approach. As suggested in section 4.3, it is hypothesized that the selection of

samples with high model uncertainty for the next training step allows for higher

sample e�ciency. This relationship should manifest in higher prediction accuracies

stemming from a model trained with curated samples in comparison to a randomly

trained model with an equal number of samples.

In hypothesis 1, it was shown that the overall uncertainty estimates are lower for

data that stems from the basic distribution the model was trained on than for other

data (Figure 6.4).This also suggests that the model uncertainty estimates on the

validation data will decrease with each iteration of the active learning procedure.

According to (Settles, 2009) an active learning approach is also advantageous when

searching for the optimal decision boundary between classes. Hence, the model

performance in terms of validation IoU scores should be superior compared to an

ensemble trained with random sample selection.

6.3.1 Active Learning: Procedure

In order to test the above-stated hypotheses, two di↵erent deep ensembles are

trained. The first deep ensemble is trained following an active learning approach

meaning that the samples presented to the models are actively chosen. The esti-

mated sample uncertainty, represented by the variance between the di↵erent ensem-

ble member outputs, is used as a metric to discriminate between samples that are

selected respectively not selected for the training. The training of the second deep

ensemble follows the traditional approach of using random samples.

The results in section 6.2 have stated that the use of only 13 ensemble members is

su�cient in order to obtain high-quality uncertainty estimates. Both deep ensem-

bles used in this section, therefore, consist of 13 ensemble members. Each ensemble

member is initialized with random weights, and the sample order is altered for each

epoch. The Adam optimizer with a learning rate of 1E-3 is used. The batch size is

set to 16, and the cross entropy loss serves as the loss function. The experiment was

carried out in the following way:

First, the previously created GBNEL and ES datasets were loaded, merged, and

randomly shu✏ed. This resulted in 700 training images and 116 test samples. A

seed dataset is then derived, which only inherits 25% of the samples from the original

69

6 Hypotheses, Evaluation and Results

dataset. The seed dataset has the purpose of providing a data basis for the training of

an initial ensemble. The size of the seed dataset was chosen to be 25% of the original

dataset because 175 samples should provide an adequate amount of information for

a LinkNet architecture to provide sensible outputs for the task of detecting pipeline

pathways. Additionally, this leaves a profound data basis of 525 samples left to be

used for an uncertainty-driven training setup.

The initial ensemble, respectively, seed ensemble is used to estimate the sample

uncertainties of the remaining 75% of data in order to initiate the active learning

process. The trained seed ensemble is saved and copied. This way, both deep

ensembles – the one trained with an active learning approach (AL) and the one

trained with random samples (RAND) – make use of the same underlying models in

the beginning and therefore share a starting point. This ensures the comparability

of the two ensembles. The continued training of the deep ensembles di↵ers in the

way new samples are acquired for the next training step. Algorithm 1 shows the

pseudocode for the training of the ensembles on a high level.

Algorithm 1 Progressive training

Require: seed data, seed ensemble, test data, remaining training data, batch size,
epochs
training data seed data
data remaining training data
test data test data
n batch size
while len(data) > 0 do

ensemble load(best modelst-1) . Seed ensemble in first iteration t = 0
sample uncertainties ensemble.estimate uncertainties(data) . Only AL
data.sort(key = sample uncertainties, reverse = True) . Only AL
training data.extend(data[:n]) . Extend training data with new samples
data data[n:] . remove new samples from remaining data
for model in ensemble do . Train all ensemble members

for i in range(epochs) do

model.train(training data)
if Loss(modeli.eval(test data)) < Loss(modeli-1.eval(test data)) then

modeli.save(best model) . Save best model for future use
else

Continue

The batch size, which represents the number of new samples added to the training

dataset after each training iteration, was chosen to be 70. An exception is the last

iteration, where 105 samples (15% of the total data) were added. Thus, the two deep

ensembles were progressively trained on 25%, 35%, 45%, 55%, 65%, 75%, 85%, and

100% of the available GBNEL & ES data. The batch size of 70 was chosen because it

70

6 Hypotheses, Evaluation and Results

provides a variety of training checkpoints to compare both ensembles while keeping

the invested time and e↵ort put into the training at a manageable amount.

6.3.2 Active Learning: Results

The main results of the previously described method are depicted in Figure 6.11. It is

observed that both ensembles increase their performance in regard to the validation

IoU at an almost equal rate for the first three training iterations. The validation

IoUs for the seed ensembles are obviously identical because they share the same

ensemble members. The performances of the AL and RAND approaches start to

diverge between the training iterations, where 45% and 55% of all available samples

are presented to the NNs. It is therefore conjectured that the minimum amount of

training data required for the ensembles to su�ciently grasp the task of detecting

pipeline pathways for the GBNEL and ES data is somewhere between 45% and 55%

of all available samples. It is also observed that the di↵erences between individual

ensemble member IoU scores decrease between these two iterations. This is indi-

cated by the shaded areas around the solid lines where the lower bound represents

the worst-performing ensemble member and the upper bound the best-performing

member. The IoU scores with 55% of available training data are 0.487 for the AL

ensemble and 0.477 for the RAND ensemble. In the following two training iterations

(65% and 75% of data), the performance of the RAND ensemble does not increase.

The actively trained ensemble shows slight improvements in prediction accuracies,

increasing its validation IoU to 0.500. The ensemble already converged with only

75% of the available samples. The randomly trained ensemble still improves when

adding another 70 samples converging at a validation IoU score of 0.496. The val-

idation scores for both ensembles trained on 100% of the data are 0.505 (AL) and

0.498 (RAND). Although the di↵erences in ensemble performances are small, Fig-

ure 6.11 also shows that past the 45% mark, the worst- and best-performing AL

members outperform their RAND counterparts in almost all iterations. Therefore,

it is confirmed that in this case the active learning approach is more sample e�cient

and outperforms the randomly trained ensemble.

It was also hypothesized that the model uncertainty estimates on the validation data

would decrease with each iteration of the active learning procedure. This will be

answered using the results shown in Figure 6.12. Indeed, except for the iteration

from 45% to 55% of available data, the median uncertainty estimates are continu-

ously decreasing with each iteration of the training procedure. This not only holds

true for the actively trained ensemble but also for the randomly trained ensem-

ble. Because the epistemic uncertainty is likely to decrease with more information

71

6 Hypotheses, Evaluation and Results

Figure 6.11 Comparison of ensemble validation IoUs

Solid lines show the validation IoUs of the respective ensemble pre-
dictions for each training iteration. The shaded areas are bound by
the worst and best-performing ensemble members in respect to the IoU
score.

presented to the model, this was expected. The fact that the level of uncertainty

estimates of the RAND ensemble is consistently slightly lower than that of the AL

ensemble was, on the other hand, not expected. Even though the interquartile range

(IQR) is smaller for the AL ensemble after converging at 75% of available training

data – meaning that the uncertainty estimates are gathering closer around the me-

dian – its median sample uncertainty is still higher. A closer examination of the

circumstances did not provide su�cient insight to extract an educated explanation

for the observations. Further experiments are required to gather more information

regarding the subject. This will not be covered in this thesis but can serve as an

interesting working hypothesis of another work.

72

6 Hypotheses, Evaluation and Results

Figure 6.12 Comparison of sample uncertainty estimates

Besides the hypotheses in question, a lot of curiosity stems from the fact that the

highest IoU score of the active learning ensemble trained on the merged GBNEL

& ES data performs worse than the GBNEL ensemble from section 6.1 on their re-

73

6 Hypotheses, Evaluation and Results

spective validation dataset. Therefore, Figure 6.13 compares the AL ensemble IoU

scores on the separated GBNEL and ES datasets. It is observed that the AL model

Figure 6.13 Comparisons of IoU GBNEL and ES

The highest IoU score of the AL ensemble on the GBNEL validation
data is 0.638 and 0.284 on the ES data.

performs even better than the GBNEL ensemble on the GBNEL validation data

(0.64 vs. 0.63). The ostensible deterioration of the model performance originates

exclusively from the ES data, where only an IoU score of 0.28 is reached. A qualita-

tive analysis of the uncertainty estimates for each training iteration provides further

insights:

• The bulk of the 70 samples with the highest uncertainty estimates provided

from the seed ensemble are from Spain. With each training iteration, the ra-

tio between ES and GBNEL data selected for the next batch shifts towards

more GBNEL samples. The last batch of 105 samples consists of mostly GB-

NEL data. This is a clear indicator for the circumstance that the model is

significantly more uncertain when predicting Spanish pipeline pathways.

• The model performance seems to su↵er from low contrasts between the back-

ground and the right-of-way. These low contrasts are mainly present on Span-

ish satellite images (see Figure 6.6).

Additionally, a third test was conducted to rule out the possibility that a model

trained on merged GBNEL and ES data performs significantly worse on ES test

74

6 Hypotheses, Evaluation and Results

data than a model trained exclusively on ES data. A single LinkNet+ResNet-18

model was trained only considering the ES training data. The batch size was set to

16, and all other parameters were kept the same as in the previous training setups

in this work. The best validation IoU score was 0.30, meaning that the model is also

not able to satisfyingly detect pipeline pathways in Spain when exclusively trained

on ES data.

The previously made statement in section 6.1 that the model performance will likely

drastically increase for detecting Spanish pipeline pathways when provided with

more ES data has to be revised. Even though there is a significant improvement

from a validation IoU of 0.12 (GBNEL trained ensemble) to 0.28, the ensembles are

still not performing satisfyingly well on ES data. Further qualitative analysis show

that the main sources of error in this regard are false negative model predictions.

Problems often arise out of low contrasts between the right-of-way and its surround-

ings. In the GBNEL regions, low contrasts are especially abundant when the pipeline

pathway is close to arable land or other areal structures like towns and industrial

sites Figure 6.14a. In Spain, on the other hand, low contrasts between the pipeline

pathway and its background are often omnipresent because of sandy and rocky soils

Figure 6.14b. Uncertainty estimate series produced by the active learning ensemble

over all training iterations provide further insights into the problem of low contrasts

in the input images. As shown in Figure 6.15a1, the seed ensemble initially produces

some significant uncertainties around pipeline-like structures for a typical GBNEL

sample. Additional background uncertainty noise is present. With each training

iteration, the model uncertainty and especially the background uncertainties are de-

creasing. The ensemble ends up with only small uncertainty estimates around the

actual pipeline pathway and at right-of-way-like structures (Figure 6.15a8). The

final prediction of the ensemble (Figure 6.15ap) is very good.

The bottom example, Figure 6.15b, provides an uncertainty estimate series for an

input image that su↵ers from a low contrast between the right-of-way and its back-

ground. The seed ensemble expresses high uncertainty estimates around a wide

corridor spanning from the mid-left to the mid-right of the image (b1). With each

training iteration, this corridor narrows down (b2 – b8). The bulk of shown uncer-

tainties are not related to the pipeline pathway itself. The ensemble is consequently

not able to detect pipeline pixels (bp) but su↵ers from background noise that has

similar spectral properties as pipeline construction sites. This problem is frequently

observed for satellite imagery of pipeline pathways in Spain, which ultimately dete-

riorates the overall model performance on ES data significantly.

This concludes the chapter on the hypotheses and results of this work. A variety of

75

6 Hypotheses, Evaluation and Results

Figure 6.14 Low pipeline-background contrasts in GBNEL and ES data

The red squares indicate the region of interest for each pipeline path.
The model input (a1) shows a typical error source generating false nega-
tive predictions for GBNEL data due to low image contrasts. The model
output is depicted in (a2). The area of low contrast is bound to a small
subarea within the satellite image. (b1) represents a characteristic clas-
sification error on the Spanish test dataset. As seen in b2, the ensemble
is not able to detect any true pipeline pixels at all. The area of low
contrast extends to the whole input image because of the sandy/rocky
soils with low vegetation that are present in many parts of Spain.

valuable insights and implications regarding the initially stated research questions

have been provided. These will be discussed in the following chapter 7.

76

6 Hypotheses, Evaluation and Results

Figure 6.15 Two uncertainty estimate series for typical GBNEL and problematic

ES data

The top example represents a typical GBNEL sample, while the bot-
tom one su↵ers from low right-of-way-background contrasts. The model
inputs, ground truths, and final predictions of the ensemble actively
trained with 100% of available GBNEL & ES training data are depicted
in the respective top row. Subplots a1–a8 and b1–b8 show the estimated
model uncertainties for each training iteration, where the percentage
represents the proportion of total training data used.

77

7 Discussion

The first insights of this work have been provided by the comparisons of the di↵er-

ent model architecture and encoder-backbone combinations. Various state-of-the-art

backbones and two model architectures – U-Net and LinkNet – have been consid-

ered, described, and tested. In hindsight, the decision to carry out the comparisons

proved to be of great influence for all subsequent tasks. The usage of the default

architecture-backbone combination in the Segmentation Models library – namely

an U-Net architecture with a VGG16 backbone – would have resulted in an al-

most threefold increase in training time compared to the used LinkNet-ResNet-18

combination (Table 5.1). Additionally, the number of parameters would have been

doubled, resulting in higher memory requirements. Especially when using deep en-

sembles where multiple realizations of the same model architecture are used, this

would have been critical. The prediction accuracy of the subsequently used LinkNet-

ResNet-18 model, represented by the IoU on the validation data, only slightly de-

teriorated in comparison to the U-Net-VGG16 model that performed best in this

regard. This has been proven to be neglectable. If a model to detect pipeline path-

ways is deployed in future projects, the use of a LinkNet-ResNet-18 architecture is

recommended. Additional work should be put into the tuning of the model hyper-

parameters like the chosen optimizer, the learning rate, and the training batch size.

This was outside the scope of this thesis but could improve the model performance

further.

The pipeline detection model developed in (Dasenbrock et al., 2021) has proven

to be capable of generalizing well from training data originating from Great Britain

to Northern Germany. The thesis at hand used a similar model but applied it to a

more di↵ering and heterogeneous region compared to the training data in order to

test its generalizability: Spain. Insu�cient IoU scores showed that the model is not

able to satisfyingly detect pipeline pathways in Spain. It will be of great importance

when applying the model to new regions that it is also specifically trained for the

new regions. While the model is permanently applied to new regions and conse-

quently more training data is added, the need for new training data will diminish

78

7 Discussion

with time. This is because the knowledge of the model will become broader, and

the di↵erences between new regions and the regions already shown to the model will

likely decrease. To speed up this process and to train more sample e�cient, the

potential of an active learning approach was investigated.

The experiments related to the active learning approach have shown that it is ad-

vantageous to actively choose training samples. This not only allows for an e�cient

adaption of the trained models to other regions because only small e↵orts have to be

put into the labeling of new training data. It also increases the model performances

overall. In order to keep the training times within a manageable magnitude, the

number of samples added for the next training iteration was set to 70. This batch

size proved to be a reasonable amount of samples for the evaluation of whether an

active learning approach is feasible at all. When deploying the active learning ap-

proach in the context of a project creating dependable European gas pipeline maps

– like SciGRID gas – the batch size should be adjusted. The reasoning for this is

threefold:

• It is supposed that more training iterations with smaller added training sample

sizes allow for a better and faster adjustment of the decision boundary between

di↵erent classes (pipeline and background). This is because large batch sizes

could overestimate the importance of the expressed model uncertainties of a

single training iteration in regard to the overall training process. This can be

interpreted as temporal overfitting of the model towards its current uncertainty

estimates. Thus, the training process becomes less e�cient, and the model

possibly does not capitalize on its full potential.

• Closely related to the reasoning of the previous bullet point is the fact that

exposing a model to new samples alters its epistemic uncertainty in regard to

the remaining samples. The sample uncertainty rankings vary, influencing the

order in which samples are presented to the model and if they are presented

at all.

• The use of high batch sizes increases the e↵ort that needs to be put into

manual dataset labeling for each training iteration drastically. This is due to

the reasons stated above but also because a convergence of the model can only

be observed time- respectively sample-delayed.

Due to the low-tier hardware used for this work, the possible additional needs in

training time due to smaller added batch sizes can easily be coped with by adding

more computational resources.

79

7 Discussion

Another influencing factor that is related to the deployment of an active learning

approach considers the development of an active learning workflow. It should an-

swer the questions on how and at which point of the training process unlabeled

samples are generated and possibly labeled. The method used for the download of

Spanish satellite imagery described in section 5.3 can serve as a valid starting point:

A location consisting of a latitude and longitude and a period of time is chosen by

the practitioner. The respective satellite imagery is downloaded and preprocessed

to obtain the final image dimensions. Afterward, the specific sample uncertainty

can be estimated by a deep ensemble determining whether the sample needs manual

labeling. When reaching a certain threshold of new labeled samples, the ensemble

will be retrained. This process is continuous.

In subsection 6.2.2, it was observed that the uncertainty estimates, represented by

the variance of the ensemble member outputs, converge earlier with fewer members

when the epistemic uncertainty is low. This observation needs further verification

but hints and the possibility of removing single ensemble members with a progress-

ing active learning approach. This would benefit computation and memory require-

ments and therefore make the deployment of the model more e�cient. The use of

the Wasserstein distance and a KS-test proved to be valuable in order to sensibly

decrease the number of ensemble members.

Another key insight of this work is provided by the deteriorated model perfor-

mance on satellite imagery from Spanish pipeline pathways. This holds true for

all deep ensembles and models trained regardless of their training dataset compo-

sition. It is estimated that there is no necessity to train multiple di↵erent models

for di↵erent regions but su�cient to develop one general deep ensemble that can be

applied to the whole of Europe. Implied that the detection of pipeline right-of-ways

in one specific region is closely related to the detection of pipeline pathways in other

regions, knowledge gained through samples from other regions should improve the

model performance for that respective region. This statement is an example of the

well-established transfer learning approach where the knowledge of a model trained

in one setting is exploited to improve the prediction accuracies in another setting

(Goodfellow et al., 2016).

Analyses of the unsatisfactory model performance on the ES data suggest that low

right-of-way to background contrasts are the main source of error. This is backed

by the model outputs and the uncertainty estimates provided by the ensembles.

The Spain dataset has proven to be more heterogeneous than the GBNEL dataset.

80

7 Discussion

The ES data includes a variety of low contrast images. For example, some show

a sandy, respectively, rocky soil, and others depict a comparably higher amount of

vegetation. If we consider these two examples as di↵erent subclasses of ES images,

each subclass only possesses a very small sample size. The individual sample sizes

are too low to train a model in a reliable manner. The amount of samples has to

be increased substantially to cover each subclass su�ciently. An active learning

technique should prove to be very useful here. Another approach could be addi-

tional preprocessing steps for images stemming from regions with said low contrast

characteristics. Contrast and color adjustments can, for example, benefit the image

quality (Aimi Salihah, Mashor, Harun, Abdullah, & Rosline, 2010) and maybe im-

prove the visibility of pipeline right-of-ways to the model. Because the adjustments

would impact the data distribution itself, the model needs to be retrained with the

adjusted images. Images that would be provided to the model to predict pipeline

pathways have to be adjusted in the same way as well.

A di↵erent take on the low ensemble performance on Spanish satellite imagery

would be to neglect Spain as a whole. As seen in Figure 5.9, the OSM data density

proves to be very high, probably depicting all Spanish gas transmission pipelines.

Additionally, the Spanish TSO Enagás provides the build years for all pipelines on

its website. Therefore, the detection of pipeline pathways in Spain to create an accu-

rate data model of the region might not be required at all. A focus on other regions

can be much more fruitful. The SciGRID gas project has shown that the OSM data

availability is substantially lower for Eastern and South-Eastern Europe (Diettrich

et al., 2021). The majority of regions in these parts of Europe demonstrate higher

vegetation than Spain, as seen in Figure 5.8. The comparisons between GBNEL

and ES data has shown that this increases the contrast between a newly established

right-of-way and its surroundings. It is therefore claimed that the trained models

will likely perform well in eastern and south-eastern Europe. This has to be fur-

ther elaborated when deploying a model to detect all pipeline pathways in Europe.

Minor deteriorations in model performances for these regions can be counteracted

quickly by the use of the earlier discussed active learning approach. The downside of

simply dodging the problem of low contrast images, like they are occurring in Spain,

is that this also applies to other regions where the OSM data is sparse. Examples

are some parts of Italy and Greece. The elegant solution would be to increase the

amount of low ROW-background contrast training data to decrease the epistemic

model uncertainties and increase the model performance in the regions of question.

81

7 Discussion

Another noticeable source of error that resulted in false positive pipeline predic-

tions were pipeline pathway-like structures. A visual inspection of the model outputs

and uncertainty estimates reveals that especially dirt roads and field boundaries seem

to be problematic. This implies that further preprocessing steps have to be estab-

lished to improve the model performance for future usage. The mentioned pipeline

pathway-like structures can be filtered out before an image is presented to the model.

Another option would be that the location of these structures could be fed into the

ensemble as an input. Either way, OpenStreetMap provides a profound database

that is recommended to be used for the preceding filtering of roads and potentially

other available structures.

At last, the satellite data source is addressed. The Landsat 5 mission ended in

2013. Obviously, there is no Landsat 5 data available for pipelines that were built

after the ending of the mission. An alternative could have been the Landsat 7 mis-

sion. It started in 1999 and provides, among others, the same relevant bands and

resolutions as the Landsat 5 mission. The problem is that the Scan Line Corrector

of Landsat 7 failed in 2003, resulting in significant data gaps for all satellite images.

This makes them most likely impractical to the trained ensembles. Further infor-

mation can be found in (USGS, 2021b). Another option – the Landsat 8 satellite,

which is on duty since 2013 – could prove to be a valid alternative to the Landsat

5 data. The di�culty here lies in its sensor Operational Land Imager (OLI) that

deviates in the bandwidths compared to the Landsat 5 Thermal Mapper but shares

the same resolutions (USGS, 2021c). The trained ensembles need to be reevaluated

on the Landsat 8 data in order to make valid statements about its usefulness. If

the two di↵erent data sources prove to be incompatible, the ensemble trained on

the Landsat 5 data likely provides an advantageous starting point to retrain it to

be applied to Landsat 8 data. This is in line with the previously mentioned transfer

learning approach.

The next chapter will cover the conclusion of this work and provide a brief outlook

on the necessary steps to potentially apply the model to the entire European gas

transmission network.

82

8 Conclusion & Outlook

The main motivation behind this work was it to further develop the approach from

(Dasenbrock et al., 2021) of combining remote sensing and modern machine learning

algorithms to detect gas transmission pipelines in Europe. The general concept of the

method has been proven in the said study and confirmed in this master thesis. How-

ever, in order to put the method to use, for example, to create an open-source data

model of the European gas transmission grid, like attempted in the SciGRID gas

project, further studies on the subject had to be conducted. This included the

testing of the initial model, trained on satellite imagery from Great Britain and

Northern Germany, in other, more heterogeneous European regions. The thesis at

hand used the Spanish gas transmission grid for this purpose. It has been shown

that it is necessary to specifically adapt the model to currently unknown regions to

obtain reliable pipeline detections. Therefore, additional training data needs to be

generated in regions expressing poor model performances. Because the generation

of new training samples used to train the model turned out to be a laborious task,

this work introduced the active learning approach. By means of deep ensembles,

the model uncertainties – represented by the variance between the member model

outputs – have been estimated. These epistemic uncertainty estimates were used to

not randomly pick samples for the training of the model but to actively choose par-

ticular samples that are of high curiosity to the model, respectively, deep ensemble.

The active learning approach allowed the deep ensembles to more e�ciently adapt to

a new region by using fewer samples while showing better prediction performance.

Therefore, it is highly recommended to follow this approach when deploying the

model in the future to detect pipeline pathways in Europe. Additionally, a sensible

number of deep ensemble members has been derived by the comparison of di↵erent

sample uncertainty estimate distributions. This decreased the memory and compu-

tational requirements when using deep ensembles.

This work not only reveals valuable insights into ways on how to more e�ciently

train and improve the model but also tested a variety of architecture-backbone com-

binations to provide further e�ciency gains: The use of a LinkNet+ResNet-18 model

proved to cut the training time of each model member by more than 63% and halved

83

8 Conclusion & Outlook

the number of parameters needed in comparison to the model used in (Dasenbrock

et al., 2021). This is especially vital when using deep ensembles for uncertainty

estimates.

The uncertainty estimates also gave a good intuition for the main sources of misclas-

sification. Particularly low contrasts between the right-of-way and its surroundings,

which mainly occurred on Spanish satellite data, resulted in unsatisfying model per-

formance. Subsequent projects can take advantage of the generated Great Britain,

Northern Germany, and Spain datasets and further train the model to also be able

to detect pipelines in low right-of-way-background contrast settings. Contrast and

color adjustments could prove to be useful.

According to the authors’ assessment, the next steps in regard to the further devel-

opment of the method concern the following three major working packages:

• Establishing an active learning workflow

To put the developed method to use in an e�cient manner, it is recommended

to develop a mostly automated active learning workflow. It should be capable

of downloading satellite imagery at a beforehand specified location and period

of time, preprocessing it, evaluating its uncertainties, and providing it to the

practitioner if manual labeling is required. After requiring a certain threshold

of new samples, the model is retrained. This way, the method can be applied

to the European gas transmission grid as a whole in a progressing and e�cient

manner.

• Including additional satellite data sources

The generation of new Landsat 5 data ended with the malfunction of its The-

matic Mapper in 2011. Therefore, a new source of satellite imagery needs to

be included for the detection of more recent pipeline pathways. The Landsat

8 mission appears to be a valid replacement solution. The model needs to

be adapted accordingly, and additional tests have to be carried out to eval-

uate whether a single model is su�cient to capture pipeline right-of-ways on

Landsat 5 and Landsat 8 data.

• Providing auxiliary preprocessing steps to the satellite imagery

It has been shown that the main factors deteriorating the model performance

are twofold. Pipeline pathway-like structures, like roads and field borders,

sometimes lead to false positive predictions. This can be counteracted by

using, e.g., OSM data of said structures as another input to the model and

should be implemented in following the projects. False negative predictions

are particularly bound to low contrasts between the right-of-way and its sur-

84

8 Conclusion & Outlook

roundings. Tests on whether this can be solved by altering the contrast and

colors of the input images need to be carried out and eventually be applied

by default. The addition of further measurements, like other bands from new

satellite missions, can also prove to be helpful.

Following the above-stated working steps will likely result in a tool of great value

to the creation of high-quality data models of the European gas transmission grid.

These models can support profound political and societal decisions and eventually

help overcome the challenges that arise out of the transition of the current European

energy system toward a CO2-neutral energy system.

85

References

Aimi Salihah, A., Mashor, M., Harun, N. H., Abdullah, A. A., & Rosline, H.

(2010). Improving colour image segmentation on acute myelogenous leukaemia

images using contrast enhancement techniques. In 2010 ieee embs con-

ference on biomedical engineering and sciences (iecbes) (p. 246-251). doi:

10.1109/IECBES.2010.5742237

Alkazraji, D. (2008). A quick guide to pipeline engineering.

Arévalo, A., Niño, J., Hernández, G., & Sandoval, J. (2016). High-frequency trad-

ing strategy based on deep neural networks. In International conference on

intelligent computing (pp. 424–436).

Bjarnadottir, S., Li, Y., & Stewart, M. G. (2019). Chapter nine - climate adapta-

tion for housing in hurricane regions. In E. Bastidas-Arteaga & M. G. Stewar

(Eds.), Climate adaptation engineering (p. 271-299). Butterworth-Heinemann.

Retrieved from https://www.sciencedirect.com/science/article/pii/

B9780128167823000097 doi: https://doi.org/10.1016/B978-0-12-816782-3

.00009-7

Carl Zeiss Microscopy GmbH. (2021). Apeer anotate. Retrieved 16.07.2021, from

https://www.apeer.com/home

Carvalho, R., Buzna, L., Bono, F., Gutiérrez, E., Just, W., & Arrowsmith, D.

(2009, 08). Robustness of trans-european gas networks. Physical review. E,

Statistical, nonlinear, and soft matter physics , 80 , 016106. doi: 10.1103/

PhysRevE.80.016106

Cerniauskas, S., Jose Chavez Junco, A., Grube, T., Robinius, M., & Stolten, D.

(2020). Options of natural gas pipeline reassignment for hydrogen: Cost as-

sessment for a germany case study. International Journal of Hydrogen Energy ,

45 (21), 12095-12107. Retrieved from https://www.sciencedirect.com/

science/article/pii/S0360319920307023 doi: https://doi.org/10.1016/

j.ijhydene.2020.02.121

Chaurasia, A., & Culurciello, E. (2017, Dec). Linknet: Exploiting encoder repre-

sentations for e�cient semantic segmentation. 2017 IEEE Visual Communi-

cations and Image Processing (VCIP). Retrieved from http://dx.doi.org/

10.1109/VCIP.2017.8305148 doi: 10.1109/vcip.2017.8305148

Cityscapes Dataset. (2021). Dataset overview - type of annotations. Re-

trieved 06.12.2021, from https://www.cityscapes-dataset.com/dataset

-overview/

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,

. . . Schiele, B. (2016). The cityscapes dataset for semantic urban scene un-

https://www.sciencedirect.com/science/article/pii/B9780128167823000097
https://www.sciencedirect.com/science/article/pii/B9780128167823000097
https://www.apeer.com/home
https://www.sciencedirect.com/science/article/pii/S0360319920307023
https://www.sciencedirect.com/science/article/pii/S0360319920307023
http://dx.doi.org/10.1109/VCIP.2017.8305148
http://dx.doi.org/10.1109/VCIP.2017.8305148
https://www.cityscapes-dataset.com/dataset-overview/
https://www.cityscapes-dataset.com/dataset-overview/

derstanding. In Proc. of the ieee conference on computer vision and pattern

recognition (cvpr).

Dasenbrock, J., Pluta, A., Zech, M., & Medjroubi, W. (2021). Detecting pipeline

pathways in landsat 5 satellite images with deep learning.

Diettrich, J., Pluta, A., & Medjroubi, W. (2021, May). Scigrid gas iggielgn. Zenodo.

doi: 10.5281/zenodo.4767098

Dumoulin, V., & Visin, F. (2018). A guide to convolution arithmetic for deep

learning.

Enagás. (2021). Transmission network - gas pipelines. Retrieved

27.10.2021, from https://www.enagas.es/enagas/en/Transporte_de_gas/

Red_de_transporte/Gasoductos

EUGAL. (2021). Von der deutschen ostsee bis nach tschechien. Retrieved 03.12.2021,

from https://www.eugal.de/eugal-pipeline/trassenverlauf

European Parliament. (2017). Gasversorgungssicherheit in europa. Retrieved

08.12.2021, from https://www.europarl.europa.eu/news/de/headlines/

economy/20170911STO83502/infografik-gasversorgungssicherheit-in

-europa

Federal Ministry for Economic A↵airs and Energy. (2019). Erdgasversorgung in

deutschland. Retrieved 08.12.2021, from https://www.bmwi.de/Redaktion/

DE/Artikel/Energie/gas-erdgasversorgung-in-deutschland.html

Gal, Y. (2016). Uncertainty in deep learning.

Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning. In international conference on

machine learning (pp. 1050–1059).

geojson.io. (2021). Worldmap. Retrieved 25.10.2021, from https://geojson.io/

#map=5/49.067/-0.483

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

(http://www.deeplearningbook.org)

GoogleEarthEngine. (2021). A planetary-scale platform for earth science data and

analysis. Retrieved 25.10.2021, from https://earthengine.google.com/

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R.

(2017). Google earth engine: Planetary-scale geospatial analysis for everyone.

Remote Sensing of Environment . Retrieved from https://doi.org/10.1016/

j.rse.2017.06.031 doi: 10.1016/j.rse.2017.06.031

Gustafsson, F. K., Danelljan, M., & Schon, T. B. (2020). Evaluating scalable

bayesian deep learning methods for robust computer vision. In Proceedings of

the ieee/cvf conference on computer vision and pattern recognition workshops

https://www.enagas.es/enagas/en/Transporte_de_gas/Red_de_transporte/Gasoductos
https://www.enagas.es/enagas/en/Transporte_de_gas/Red_de_transporte/Gasoductos
https://www.eugal.de/eugal-pipeline/trassenverlauf
https://www.europarl.europa.eu/news/de/headlines/economy/20170911STO83502/infografik-gasversorgungssicherheit-in-europa
https://www.europarl.europa.eu/news/de/headlines/economy/20170911STO83502/infografik-gasversorgungssicherheit-in-europa
https://www.europarl.europa.eu/news/de/headlines/economy/20170911STO83502/infografik-gasversorgungssicherheit-in-europa
https://www.bmwi.de/Redaktion/DE/Artikel/Energie/gas-erdgasversorgung-in-deutschland.html
https://www.bmwi.de/Redaktion/DE/Artikel/Energie/gas-erdgasversorgung-in-deutschland.html
https://geojson.io/#map=5/49.067/-0.483
https://geojson.io/#map=5/49.067/-0.483
http://www.deeplearningbook.org
https://earthengine.google.com/
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031

(pp. 318–319).

Géron, A. (2019). The perceptron. In A. Géron (Ed.), Hands-on machine learning

with scikit-learn, keras, and tensorflow (2nd Edition ed., p. 282–282). O’Reilly

Media, Inc.

Hartmann, A., Davari, A., Seehaus, T., Braun, M., Maier, A., & Christlein, V.

(2021). Bayesian u-net for segmenting glaciers in sar imagery.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image

recognition.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., . . .

Adam, H. (2017). Mobilenets: E�cient convolutional neural networks for

mobile vision applications.

Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2018). Densely

connected convolutional networks.

Hüllermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty

in machine learning: An introduction to concepts and methods. Machine

Learning , 110 (3), 457–506.

IEA. (2019). The future of hydrogen. Retrieved from https://www.iea.org/

reports/the-future-of-hydrogen

Io↵e, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift.

Isaac, T. (2019, 05). HyDeploy: The UK’s First Hydrogen Blending Deployment

Project. Clean Energy , 3 (2), 114-125. Retrieved from https://doi.org/

10.1093/ce/zkz006 doi: 10.1093/ce/zkz006

Johnson, N., Gagnolet, T., Ralls, R., & Stevens, J. (2011). Natural gas pipelines.

Nature. org , 1–9.

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochastic optimization.

Kirillov, A., He, K., Girshick, R., Rother, C., & Dollár, P. (2019). Panoptic seg-

mentation.

Kramer, O. (2020). Lecture Notes: Deep Learning, Carl von Ossietzky Universität

Oldenburg.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. Advances in neural information processing

systems , 25 , 1097–1105.

Kuutti, S., Bowden, R., Jin, Y., Barber, P., & Fallah, S. (2021). A survey of deep

learning applications to autonomous vehicle control. IEEE Transactions on

Intelligent Transportation Systems , 22 (2), 712-733. doi: 10.1109/TITS.2019

.2962338

https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://doi.org/10.1093/ce/zkz006
https://doi.org/10.1093/ce/zkz006

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2016). Simple and scal-

able predictive uncertainty estimation using deep ensembles. arXiv preprint

arXiv:1612.01474 .

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,

& Jackel, L. D. (1989). Backpropagation applied to handwritten zip code

recognition. Neural computation, 1 (4), 541–551.

Liew, S. C. (2001). Principles of remote sensing - satellite orbits. Re-

trieved 03.12.2021, from https://crisp.nus.edu.sg/~research/tutorial/

spacebrn.htm

Liu, X., Deng, Z., & Yang, Y. (2018, Jun). Recent progress in semantic image

segmentation. Artificial Intelligence Review , 52 (2), 1089–1106. Retrieved from

http://dx.doi.org/10.1007/s10462-018-9641-3 doi: 10.1007/s10462-018

-9641-3

Medjroubi, W., Diettrich, J., Pluta, A., & Dasenbrock, J. (2021). Gerneral informa-

tion: Welcome to the scigrid gas project webpage. Retrieved 30.04.2021, from

https://gas.scigrid.de

Menon, E. S. (1978). Pipeline planning and construction field manual. Gulf Profes-

sional Publishing.

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D.

(2020). Image segmentation using deep learning: A survey.

NEL. (2013). Letztes nel-teilstück kurz vor der fertigstellung. Retrieved

03.12.2021, from https://www.nel-gastransport.de/index.php?id=

826&L=54&tx_news_pi1[news]=107&tx_news_pi1[controller]=News&tx

_news_pi1[action]=detail&cHash=00e416f04a21720e4db4e89e0744e9a8

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation func-

tions: Comparison of trends in practice and research for deep learning.

Olaf Ronneberger. (2015). Our u-net wins two challenges at isbi 2015.

Retrieved 08.07.2021, from https://lmb.informatik.uni-freiburg.de/

people/ronneber/isbi2015/

OpenStreetMap. (2020). Main page — openstreetmap wiki,. Re-

trieved from https://wiki.openstreetmap.org/w/index.php?title=Main

_Page&oldid=2013332 ([Online; accessed 25-Oktober-2021])

Orhan Degermenci. (2019). Design of pipeline systems - right of

way. Retrieved from https://www.piping-world.com/design-of-pipeline

-systems-right-of-way

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE

Transactions on Systems, Man, and Cybernetics , 9 (1), 62-66. doi: 10.1109/

https://crisp.nus.edu.sg/~research/tutorial/spacebrn.htm
https://crisp.nus.edu.sg/~research/tutorial/spacebrn.htm
http://dx.doi.org/10.1007/s10462-018-9641-3
https://gas.scigrid.de
https://www.nel-gastransport.de/index.php?id=826&L=54&tx_news_pi1%5Bnews%5D=107&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=00e416f04a21720e4db4e89e0744e9a8
https://www.nel-gastransport.de/index.php?id=826&L=54&tx_news_pi1%5Bnews%5D=107&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=00e416f04a21720e4db4e89e0744e9a8
https://www.nel-gastransport.de/index.php?id=826&L=54&tx_news_pi1%5Bnews%5D=107&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=00e416f04a21720e4db4e89e0744e9a8
https://lmb.informatik.uni-freiburg.de/people/ronneber/isbi2015/
https://lmb.informatik.uni-freiburg.de/people/ronneber/isbi2015/
https://wiki.openstreetmap.org/w/index.php?title=Main_Page&oldid=2013332
https://wiki.openstreetmap.org/w/index.php?title=Main_Page&oldid=2013332
https://www.piping-world.com/design-of-pipeline-systems-right-of-way
https://www.piping-world.com/design-of-pipeline-systems-right-of-way

TSMC.1979.4310076

Panaretos, V. M., & Zemel, Y. (2019). Statistical aspects of wasserstein distances.

Annual Review of Statistics and Its Application, 6 (1), 405-431. Retrieved

from https://doi.org/10.1146/annurev-statistics-030718-104938 doi:

10.1146/annurev-statistics-030718-104938

Pluta, A., & Lünsdorf, O. (2020). Pb esy-osmfilter – a python library to e�ciently

extract openstreetmap data. Journal of Open Research Software, 8 . doi:

10.5334/jors.317

Ramdas, A., Trillos, N. G., & Cuturi, M. (2017). On wasserstein two-sample testing

and related families of nonparametric tests. Entropy , 19 (2). Retrieved from

https://www.mdpi.com/1099-4300/19/2/47 doi: 10.3390/e19020047

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for

biomedical image segmentation.

Rosebrock, A. (2016). Intersection over union (iou) for object detection.

Retrieved 01.11.2021, from https://www.pyimagesearch.com/2016/11/07/

intersection-over-union-iou-for-object-detection/

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review , 65 (6), 386.

Sachs, L. (2004). Angewandte statistik : Anwendung statistischer methoden (Elfte,

überarbeitete und aktualisierte Auflage ed.).

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2019). Mo-

bilenetv2: Inverted residuals and linear bottlenecks.

Settles, B. (2009). Active learning literature survey.

Shen, L., Margolies, L. R., Rothstein, J. H., Fluder, E., McBride, R., & Sieh, W.

(2019). Deep learning to improve breast cancer detection on screening mam-

mography. Scientific reports , 9 (1), 1–12.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-

scale image recognition.

Spektrum. (2017). Lexikon der mathematik - perceptron. Retrieved from https://

www.spektrum.de/lexikon/mathematik/perceptron/7763 ([Online; Stand

30. August 2021])

Stanford CS231. (2021). Pooling layer. Retrieved 06.08.2021, from https://cs231n

.github.io/convolutional-networks/#pool

Sultana, F., Sufian, A., & Dutta, P. (2020, Aug). Evolution of image segmenta-

tion using deep convolutional neural network: A survey. Knowledge-Based

Systems , 201-202 , 106062. Retrieved from http://dx.doi.org/10.1016/

j.knosys.2020.106062 doi: 10.1016/j.knosys.2020.106062

https://doi.org/10.1146/annurev-statistics-030718-104938
https://www.mdpi.com/1099-4300/19/2/47
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.spektrum.de/lexikon/mathematik/perceptron/7763
https://www.spektrum.de/lexikon/mathematik/perceptron/7763
https://cs231n.github.io/convolutional-networks/#pool
https://cs231n.github.io/convolutional-networks/#pool
http://dx.doi.org/10.1016/j.knosys.2020.106062
http://dx.doi.org/10.1016/j.knosys.2020.106062

Tan, M., & Le, Q. V. (2020). E�cientnet: Rethinking model scaling for convolutional

neural networks.

The SciPy community. (2021a). scipy.stats.kstest. Retrieved 19.11.2021,

from https://docs.scipy.org/doc/scipy/reference/generated/

scipy.stats.kstest.html

The SciPy community. (2021b). Scipy stats wasserstein distance. Re-

trieved 23.11.2021, from https://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.wasserstein_distance.html

Torch Contributors. (2019). Crossentropyloss. Retrieved 12.07.2021, from https://

pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss

.html

Trends, G. (2021). Interesse im zeitlichen verlauf. Retrieved 12.06.2021,

from https://trends.google.de/trends/explore?date=today%205-y&q=

pytorch,tensorflow

USGS. (2021a). Earthexplorer. Retrieved 03.12.2021, from https://earthexplorer

.usgs.gov/

USGS. (2021b). Landsat 7. Retrieved 04.12.2021, from https://www.usgs.gov/

core-science-systems/nli/landsat/landsat-7?qt-science_support

_page_related_con=0#qt-science_support_page_related_con

USGS. (2021c). Landsat 8: Landsat 8 instruments. Retrieved 03.12.2021,

from https://www.usgs.gov/core-science-systems/nli/landsat/

landsat-8?qt-science_support_page_related_con=0#qt-science

_support_page_related_con

USGS. (2021d). Landsat collection 1. Retrieved 04.12.2021, from

https://www.usgs.gov/core-science-systems/nli/landsat/landsat

-collection-1?qt-science_support_page_related_con=1#qt-science

_support_page_related_con

USGS. (2021e). Pb landsat 5: Landsat 5 instruments. Retrieved 03.12.2021,

from https://www.usgs.gov/core-science-systems/nli/landsat/

landsat-5?qt-science_support_page_related_con=0#qt-science

_support_page_related_con

Weier, J., & Herring, D. (2000). Measuring vegetation (ndvi and evi). Re-

trieved 03.12.2021, from https://earthobservatory.nasa.gov/features/

MeasuringVegetation

Wikipedia. (2020). Ki-winter — wikipedia, die freie enzyklopädie. Retrieved

from https://de.wikipedia.org/w/index.php?title=KI-Winter&oldid=

202118393 ([Online; Stand 27. Juli 2021])

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://trends.google.de/trends/explore?date=today%205-y&q=pytorch,tensorflow
https://trends.google.de/trends/explore?date=today%205-y&q=pytorch,tensorflow
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-1?qt-science_support_page_related_con=1#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-1?qt-science_support_page_related_con=1#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-1?qt-science_support_page_related_con=1#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-5?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-5?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-5?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://earthobservatory.nasa.gov/features/MeasuringVegetation
https://earthobservatory.nasa.gov/features/MeasuringVegetation
https://de.wikipedia.org/w/index.php?title=KI-Winter&oldid=202118393
https://de.wikipedia.org/w/index.php?title=KI-Winter&oldid=202118393

Yakubovskiy, P. (2019). Segmentation models. https://github.com/qubvel/

segmentation_models. GitHub.

Yakubovskiy, P. (2020). Segmentation models pytorch. https://github.com/

qubvel/segmentation_models.pytorch. GitHub.

Yamashita, R., Nishio, M., Do, R., & Togashi, K. (2018, 06). Convolutional neural

networks: an overview and application in radiology. Insights into Imaging , 9 .

doi: 10.1007/s13244-018-0639-9

Zech, M., & Ranalli, J. (2020, 06). Predicting pv areas on aerial images with deep

learning.. doi: 10.1109/PVSC45281.2020.9300636

Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2021). Dive into deep learning.

arXiv preprint arXiv:2106.11342 .

Zhang, Z., Fidler, S., & Urtasun, R. (2016). Instance-level segmentation for au-

tonomous driving with deep densely connected mrfs.

https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch

Danksagung

Ein besonderer Dank gilt meinen Betreuern Adam und Matthias, die mir stets mit

Rat und Tag zu Seite standen. Sowohl die fachlichen als auch persönlichen Gespräche

waren sehr wertvoll in den letzten Monaten. Darüber hinaus möchte ich auch den

anderen Kolleginnen und Kollegen am DLR für die interessante und sehr kollegiale

Zusammenarbeit danken.

Die wichtigste Person während des Studiums und vor allem in dieser Schlussphase

der Masterarbeit ist Julia. Sie hat mir jederzeit den Rücken freigehalten und stand

mir immer unterstützend und ermutigend zu Seite. Dafür danke ich ihr von ganzem

Herzen.

	List of Figures
	List of Tables
	Introduction
	The Process of Building Pipelines
	Satellite Imagery

	Semantic Image Segmentation
	Deep Learning and Convolutional Neural Networks
	The Perceptron
	Multi-Layer Perceptron
	Activation Functions
	Training of Artificial Neural Networks

	Convolutional Layers
	Max-Pooling
	Batch Normalization
	Transposed Convolutions

	Uncertainty in Deep Learning
	Bayesian Deep Learning
	Deep Ensembles
	Active Learning

	Model and data prerequisites
	Choosing a Model Architecture and Encoder-Backbone
	U-Net
	LinkNet
	Backbone Architectures
	Comparisons

	Revision: The Great Britain and Northern Germany Dataset
	Dataset extension: The Spanish Dataset

	Hypotheses, Evaluation and Results
	Hypothesis 1: Model Generalizability
	Model Generalizability: Training of a GBNEL Deep Ensemble
	Model Generalizability: Results

	Hypothesis 2: Efficiently Estimating Model Uncertainties
	Efficiently Estimating Model Uncertainties: The Wasserstein Distance and the KS-Test
	Efficiently Estimating Model Uncertainties: Results

	Hypothesis 3: Active Learning
	Active Learning: Procedure
	Active Learning: Results

	Discussion
	Conclusion & Outlook
	References

