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Robust Multi-Seasonal Ice Classification from
High-Resolution X-Band SAR

Karl Kortum, Student Member, IEEE, Suman Singha, Member, IEEE, Gunnar Spreen, Member, IEEE

Abstract—Automated solutions for sea ice type classification
from synthetic aperture (SAR) imagery offer an opportunity to
monitor sea ice, unimpeded by cloud cover or the arctic night.
However, there is a common struggle to obtain accurate classifica-
tions year round; particularly in the melt and freeze-up seasons.
During these seasons, the radar backscatter signal is affected
by wet snow cover, obscuring information about underlying ice
types. By using additional spatiotemporal contextual data and
a combination of convolutional neural networks and a dense
conditional random field, we can mitigate these problems and
obtain a single classifier which is able to classify accurately at 3.5
m spatial resolution for five different classes of sea ice surface
from October to May. During the near year-long drift of the
MOSAiC expedition we collected satellite scenes of the same
patch of Arctic pack ice with X-Band SAR with a revisit-time of
less than a day on average. Combined with in-situ observations
of the local ice properties this offers up the unprecedented
opportunity to perform a detailed and quantitative assessment
of the robustness of our classifier for level, deformed and heavily
deformed ice. For these three classes, we can perform accurate
classification with a probability > 95% and calculate a lower
bound for the robustness between 85% and 88%.

I. INTRODUCTION

SYNTHETIC Aperture Radar (SAR) enables the moni-
toring of sea ice, unimpeded by cloud cover, weather

effects or the absence of sunlight. To this day operational ice
charting from SAR scenes is still largely carried out manually.
This places a restriction on the resolution, and frequency of
updates. A solution to finding suitable automatic counterparts
has obvious advantages, in both time investment and detail
of classification. It is not feasible for a human to segment
pixel by pixel, whilst this poses no problem to an autonomous
algorithm. Such autonomous solutions have been proposed as
early as 1986 [1]. Early algorithms were based mainly on
extracting texture and polarimetric features from the image
and then performing classifications using look up tables [2]
or Bayes classifiers [3]. In parallel the idea of using neural
networks for the same task was also investigated [4]. Similar
data driven algorithms are since becoming more attractive,
as the volume of available data and the computational power
are steadily increasing. Algorithms vary from simpler artificial
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neural networks using initially computed texture features [5],
[6], [7], [8] or unsupervised segmentation, with manual seg-
ment selection [9], [10] to convolutional neural network and
deep learning techniques [11]. Historically these approaches
have yielded good results for winter and spring seasons [12],
[13], where the pack ice is largely dry and changes in ice
characteristics are usually minimal. During freeze up and melt
periods, however, classification becomes increasingly difficult.
Main challenges here are wet snow lowering radar penetration
depth, snow metamorphism and increased ice dynamics [14].
We observe increased backscatter in those transitional seasons
and a general downwards trend in radar response after freeze-
up (fig. 1). However, the warmer seasons also bring a loss of
contrast between the ice types.

Due to the decreased penetration depth, the SAR texture fea-
tures, essential to most to autonomous classification, become
decreasingly reliable as the backscatter signal becomes more
uniform across the different ice types. A possible approach to
tackling this is the inclusion of more contextual image data,
for example with larger sliding windows around the ice to
be classified. Then using automated feature extraction and
classification with a convolutional neural network (CNN) is
especially helpful, because the neural network can learn to
relate all the information in the window to only the centre
pixel one is trying to classify. Thus it handles large contex-
tual windows better than texture feature based classification.
Recently, it has for example been successfully employed for
C-Band Sentinel 1 imagery [11] with good results at lower
resolution. In this work, we further develop such a classifier,
to be able to deal with high resolution X-Band data.

C- and L-Band SAR have historically been preferred for
sea ice classification. Not only is there greater coverage,
with large satellite missions such as Sentinel-1 and Radarsat,
longer wavelengths also offer bigger penetration depths [15]
and make it easier to discriminate between ice classes from
backscatter and texture features alone. Classification from X-
Band SAR consequently has more to gain from the inclusion
of additional contextual image data and can provide ice types
at high resolution.

We propose a scheme that allows to classify pixel-wise
at high accuracy by using context windows at various zoom
levels. In a post-processing step we reintroduce some spatial
awareness by using a dense conditional random field (DCRF).
This concept of adding spatially aware boundary refinement
has been implemented in image segmentation as early as 2014
[16]. Random fields have been used successfully in the past for
automatic ice charting [17] and have shown promise as a post
processing step with sparse labels in image processing [18].
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The combination of a CNN and conditional random field has
also recently been shown to be successful for ice concentration
mapping [19].

A central challenge in producing a robust classifier lies
in the absence of comprehensive ground truth data. Despite
large amounts of satellite data being collected daily, in situ
observations are rare. Some approaches have used manually
labelled operational ice chart data as ground truth, but the
polygon size of ice classes is quite large, so the effective
resolution is low and it is known that the same patches of
ice are therefore sometimes labelled inconsistently in different
scenes. This problem is discussed in [11], where a 50x50
pixel patch of Sentinel 1 imagery is classified using a CNN.
At such patch size the effects of the rough labelling are still
manageable, but when classifying smaller patches, it becomes
increasingly impactful. Classification at high resolution thus
relies on manually labelled data. Here, however, due to the
dediousness of the labelling process, there is naturally less
data. Thus, it often struggles to capture the span of possible
backscatter across different ice types - especially across dif-
ferent seasons.

To truly obtain a measure of robustness of a classifier, one
has to show continuity in the classification of overlapping and
near coincident SAR scenes, which demonstrate that a patch
of pack ice is predicted to be of the same class across different
scenes. For large lower resolution scenes this is feasible, but
even here most research (e.g. [20]) has been focused only on
few such overlapping scenes and robustness across a greater
range of conditions is still a challenge. At high resolution
coverage is small, thus it is an even more complex task to
image a small region of pack ice for an extended time. Not
only does the drift of the ice have to be tracked, it also
needs to be predicted, due to the delay of the ordering and
the capturing of a scene. Over the course of MOSAiC, this

Fig. 1: Chart showing the mean sigma nought calibrated
backscatter for the HH band, for level ice (LI) and deformed
ice (DI) from October through May. The data is extracted from
52 manually labelled TerraSAR-X scenes.

task has been tackled by a variety of spaceborne SAR sensors
and coordinated by the authors. In this investigation we use
such a dataset captured by the TerraSAR-X satellite in Dual-
pol StripMap (HH, VV) mode. It presents the opportunity to
validate the robustness of a classifier over an extended time
period and a large number of scenes.

Whilst this research stands alone as to the applicability
of deep learning techniques for high resolution SAR ice
classification, it also serves as a preliminary study for further
investigations using quantitative in-situ data collected during
the MOSAiC mission, which is currently being processed and
quality checked [21] The aim is to use the robust techniques
described in this paper in further research with high resolution
airborne measurements [22].

II. DATA

The training and test data sets used in this paper are comprised
of 44 and 8 TerraSAR-X Dual-pol StripMap scenes respec-
tively. The test scenes contain one randomly chosen scene
from every month of the drift. The data points extracted from
the 44 training scenes were split into two disjoint training
and validation sets, with a size ratio of 9 : 1. The classifier
is trained on the training set, whilst performance on the
validation data set is used for to stop the training in time
to prevent overfitting. The data used for robustness analysis
is made up of 162 scenes. We will henceforth refer to it as
the robustness evaluation dataset. The scenes were acquired
between September 2019 and May 2020 over or near the
Polarstern vessel, during its drift with the Arctic pack ice.
The two channels acquired are the HH and VV polarisations,
respectively. The images have a row and coloumn spacing of
3.5 m, and are typically around 16000 pixels by 4000 pixels
in size. This corresponds to 56 km by 14 km.

label meaning colour
OW open water blue
TI thin ice green
LI level ice magenta
DI deformed ice yellow

HDI heavily deformed ice red

TABLE I: Table showing class definitions and labels.

Labelling was done by hand on the basis of the X-band SAR
data for five classes chosen to be in line with qualitative in situ
observations made by members of the MOSAiC expedition.
First, we found suitable classes and respective areas to be
labelled, using the in-situ observations as a guide. Then the
established logic was extrapolated to the rest of the areas
manually, using the SAR data only. The five classes are shown
in table I. The colour coding used can be found there as well.

All scenes in the robustness analysis data set entirely contain
the immediate area around Polarstern (a 3 km by 3 km square).
To keep similar time-spacing between scenes, not more than
one scene was used per day.

Due to the drift with the Arctic pack ice, the RV Polarstern
entered very high latitudes in the beginning of 2020. In figure
2a, we see that in this time the SAR images were consistently
taken outside of full performance range, which is between
20◦ to 45◦ for StripMap images. The SAR measurements for
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(a) Incidence angle θ (b) Temperature T

Fig. 2: a) Average incidence angle the scenes were acquired at.
The red line at 45◦ indicates the limit of the full performance
range of the satellite sensor. Figure b) shows the mean ambient
temperature measured on the Polarstern vessel over the time
period.

such high incidence angles have significantly lower signal to
noise ratios, making it increasingly difficult to differentiate
ice types. Weather conditions varied throughout the mission,
including events such as storms and warming periods (fig. 2b).
Their effects in regard to this study are constrained to the
contribution to increased ice dynamics, as the radar signal is
not susceptible to atmospheric conditions at X-band.

III. METHODOLOGY

First we will give an overview to the general approach and
then the individual parts are described in detail. The core of the
classifier is a convolutional neural network (CNN). For added
robustness a discriminator and a dense conditional random
field (DCRF) are used as further processing. The algorithm
assigns one of five classes (tab. I) to a given 5x5 pixel patch
of a SAR imagery.

Fig. 3: Flowchart showing the pipeline for the proposed ice
classification algorithm.

Figure 3 depicts the classification pipeline for the algorithm
used. After pre-processing, features of varying scope and
resolution (zoom levels) are supplied along with each 5x5
image slice that is to be classified (tab. II). A CNN is fed
these features and makes an initial prediction for that patch
(see figure 10 in the appendix for details). The predictions are

then checked by a second discriminating network that removes
some labels, deemed to be misclassifications. Finally, a dense
conditional random field smooths over the labels by relating
spatial context of the labelled data and the underlying image.
This also fills the missing values left by the discrimination
step.

1) Pre-Processing: In the initial step of data pre-
processing, the original dual polarised SAR scene is calibrated
to slant range (β0) and a false colour composition of the data
is constructed. The composition consists of four channels: HH,
VV, HH-VV, HH/VV. The difference and ratio are common for
manual ice charting and visualisation of SAR scenes, as they
promote contrast across ice types and open water. Additionally
they have been shown to be useful for classification in the
past [23]. The raw backscatter channels HH and VV are
rescaled with a tanh function. The composite features HH-
VV and HH/VV are also scaled with a tanh function and an
additional offset. The exact parameters are manually selected
to give good contrast. Whilst the network is in principle able
to learn these features, feeding them directly alleviates some
of the workload of the network and gave improved results in
preliminary testing.

2) Convolutional Neural Network: The core of our classif-
cation approach is a Convolutional Neural Network (CNN)
(see figure 10). It predicts one of five classes for each 5
x 5 pixel patch of the SAR scene. These patches (’local
features’) are appended by some additional information of the
surroundings. The first of these additional features is a 16 x
16 pixel patch (‘superlocal feature’) of the surrounding area,
that is taken from the SAR scene rescaled by a factor of five.
Thus, moving to the right one 5 x 5 patch in the original
image moves one pixel to the right in the rescaled product
the superlocal patch is taken from. This patch gives some
insight into the surrounding area, allowing the algorithm to
take advantage of surface features nearby, such as ridges or
leads, to gain some spatial context. For example, the CNN
might learn that heavily deformed ice is more likely to occur
with well-defined edges, like the edge of a multi year ice
floe, in the surrounding area. The patch sizes of 5 x 5 and
16 x 16 were established empirically. In general both of these
are compromises of resolution and accuracy: The larger the
windows will get, the better the accuracy will become (as
there is more information in the image to use). However, the
more difficult it also becomes for the classifier to relate all this
information to only the data in the center of the patch. This
leads to a lack of effective resolution in the classified product.

To give a more complete picture, the entire scene (or the
largest possible near quadratic slice of it) is additionally re-
sized to 64x64 pixels and input to the model (‘global feature’).
The StripMap data used here is captured in rectangular strips,
typically around four times longer than wide. In such a case we
split the scene into four near quadratic slices along the azimuth
axis (the long axis). The global input feature allows some
insight into large scale features, such the general brightness
of the scene, interfaces between ice masses or (not important
for this data set) the ice-water edge. These can then be related
to the high resolution features and particularly helped with
classification of scenes that had very high backscatter (eg. melt
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onset) or low radar response (eg. high incidence angle). As
we parse the entire range domain of the scene here, it is no
longer possible to ensure that the region to be classified lies in
the centre of the image. Consequently, a fourth input (‘extra
feature’) consisting of four parameters is provided, containing
the position of the region to be classified in the larger 64x64
input. It also contains the incidence angle of the patch and the
time at which the product was acquired. A summary of these
input features is included in table II.

The training data set consists of 44 scenes. Most often, the
scenes are split into four near quadratic slices for the global
feature. Thus, the number of different inputs for that feature
is only ≈ 44 × 4 = 176 . Herein lies a substantial risk that
the algorithm overfits to the training data. It might memorise
where in each scene which ice class is located, rather than de-
duce the ice class from a combination of the inputs. To combat
this potential problem, some data augmentation techniques are
applied [24]. Specifically, we use random crops, rotations and
flips.

The effect of the incidence angle on radar backscatter is
well researched and thus its inclusion in the model is easy
to motivate. Incidence angle normalisation to σ0 has been
shown to be useful in the past, but this does not account for
different gradients across the ice classes, which are reported
for example by [25] and [26]. In our study we included the
incidence angle as an input to the classifier. This gives the
model the opportunity to learn these differing incidence angle
dependencies of the sea ice backscatter, similar to the classifier
in [26], provided the range of incidence angles is covered well
enough by the training data. However, as we do not force the
network to make use of the incidence angle information, this
is only done implicitly. Because our classifier spans multiple
seasons that have strong correlations to ice type distribution
and the radar response, including the acquisition time also
proved to be a helpful parameter for the model. As we only
have 44 different acquisition times, we applied strong artificial
noise to reduce the risk of overfitting. The random noise added
is sampled from a normal distribution with a standard deviation
of one week.

The exact details of parameters of our network are largely
based on heuristics and our own experiments. The 3 x 3
kernel size has proven most useful, as our input features
are not that large themselves. We found more success in
downsampling with convolutions with step size 2, instead
of maxpooling layers - in tests it seems the network lost a
little information upon in the maxpool layer that was still
useful for classification. We apply LeakyRelu as an activation
function, which introduces some necessary non-linearity and
does not suffer from the problem of vanishing gradients. The
latter property is especially useful for deeper networks. We
used strong regularisation with multiple dropout layers with a
dropout rate of 0.3, as our data is still quite sparse in contrast
to the scope of possible backscatter signatures from sea ice and
thus overfitting is a concern. Additionally we opted for small
spatial dimensions after convolutions (before flattening) and
lower number of neurons to force the network to parametrise
the input features - which lead to better extrapolation to unseen
data. Batch normalisation in the early layers slightly sped up

the convergence of our network. The adam optimizer was used
to update weights during training.

input name dimensions contents
local 5x5x4 4 channels, rrel = 1
superlocal 16x16x4 4 channels, rrel = 1/5
global 64x64x4 4 channels, rrel ≈ 1/64
extra 4 xglobal, yglobal, θinc, t

TABLE II: Table showing input features and their content. The
resolution rrel is is given relative to the full resolution product.
The four channels used are (HH, VV, HH-VV, HH/VV). The
coordinates xglobal, yglobal are the normalised pixel coordi-
nates of the region to be classified in the rescaled global patch.

The network uses a categorical crossentropy loss appended
by an additional term from the FESTA loss [18], specifically
the distance of the softmax outputs. The additional term
encourages separation of labels independent of correct classi-
fication, which helped with the convergence of our classifier.

Additionally, we make use of smoothed labels. Instead of
feeding a one hot vector as a label - where the correct label
is denoted as 1 all others as 0 -, uncertainties are integrated
into the labelling in a rudimentary way. The idea is to treat the
label vector as a set of probabilities rather than as a boolean
vector. This is particularly useful for the ice classes where the
manual labelling is most error prone. In our case distinguishing
deformed and level ice benefitted most of this treatment,
because it is partially non-local property. Explicitly, ice has
varying deformations across larger regions, so that individual
pixel sized areas might be smooth, but it is apparent from
the surrounding ice that the area is deformed. We found that
including uncertainties only minimally lowered the accuracy.
However, it leads to significantly increased robustness, which
we preferred in this case. This is in line with observations
made in [27]. To smooth the labels, we sample a random
number from a uniform distribution in a given interval that
conveys the uncertainties. The intervals used across the differ-
ent classes are listed in table III and were chosen qualitatively
through testing and in line with experience of which areas are
difficult to label. Note that after random sampling each output
vector is normalised.

ow ti li di hdi
ow U[0.7,1] 0 U[0,0.3] 0 0
ti 0 1 0 0 0
li 0 0 U[0.9,1] U[0,0.1] 0
di 0 0 U[0,0.3] U[0.7,1] 0

hdi 0 0 0 0 1

TABLE III: Table shows the label smoothing parameters used.
U[a,b] denotes a random sample from a uniform distribution
from the interval [a, b]. The label vectors were normalised after
random sampling.

The network was implemented using the tensorflow library
for python [28]. On a an Intel i7-9850H, a commercially
available mid range CPU, inference for an an entire scene
consisting of ≈ 2.5 ∗ 106 classifications takes around 8.5
minutes.

3) Discriminator: The discriminator model has near identi-
cal structure to the classifier (fig. 11), except for the additional
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input layer containing a proposed label and the output being
one dimensional. It’s task is to check if the proposed label
is correct or not. This binary classification is fundamentally
easier than predicting one of five classes and can correct
for some systematic errors the classifier makes. The discrim-
inator is trained on randomly mislabelled data as ground
truth for mislabelled patches, which performed better than a
discriminator trained specifically on the correctly labelled and
mislabelled data of the classifier. We suspect this to be the
case, because specific training promotes an overfit to training
data. This step particularly helps with mitigating open water
and thin ice misclassifications.

4) Conditional Random Field: The pixels deemed to be
wrongly classified by the discriminator are removed from the
classified product. Then a dense conditional random field is
applied, that has a bilateral kernel next to the unary potential.
This fills the missing values as well as clearing up some
noise-like mislabels, like single pixels classified differently
than all their surrounding pixels. The application of the dense
conditional random field (DCRF) is straightforward, using a
Python implementation [29] for an algorithm published in [30].
A bilateral approach is used, with the energy function given
by a unary φu and a bilateral term φb, such that for N feature
vectors yi and labels xi

E =

N∑
i

φu(xi, yi) +

N∑
i,j

µ(xi, xj)φb(yi, yj). (1)

The label compatibilty function µ is learned and describes the
relationship of how likely labels are to occur next to each other.
Thus incompatible labels close to one another are penalised
by the energy function. In this case, the features consist of
a vector of colour intensities ~I = (Ir, Ig, Ib) across the RGB
channels of a colour composite image as well as the position of
the pixel ~P . The RGB channels in the colour composite image
are VV, HH-VV and HH/VV, appropriately scaled to capture
the relevant dynamic range. The unary potential is given as the
logarithm of the probability p(xi|yi) of label xi given feature
yi. It is modelled by the softmax output of our classifier. The
bilateral term consists of weighted differences in position and
colour. Thus the energy function can be expressed as

E =

N∑
i

log p(xi|yi) +
N∑
i 6=j

[
‖~Pi − ~Pj‖

sxy
+
‖~Ii − ~Ij‖

sc

]
, (2)

where ‖. . .‖ denotes the euclidian norm. The weights sxy
and sc were adjusted manually to balance smoothness and
classification accuracy.

A. Evaluation

As was mentioned in the introduction, we have a large
number of scenes to test the robustness of our classifier across
8 months of different conditions in the arctic ice. The idea is
to test the ice distribution of the same patch of sea ice over
this entire time period and investigate how it changes over this
timeframe. This should give some insight into how stable the
classifier performs at high resolution. Given the positioning of
the RV Polarstern, there is no pack ice which we can track

more accurately than the ice around the research vessel itself.
Thus, this is the region we will use. We evaluate all scenes in
the robustness analysis set and then calculate the probability
of pixels not changing class, which we can use as a measure
of robustness. The window chosen is approximately 3 km by
3 km in size. Of course we do not expect the ice to stay
static over the entire time period; ice dynamics and new ice
growth will change the ice type distribution. Rapid change in
ice type is constrained to the open water and thin ice classes.
Change due to shifting of the floe is easily spotted by looking
at the individual images and thus can be taken into account
qualitatively during the evaluation of our model. It should also
be noted that care was taken not to label the area used for
robustness analysis in the training set, so the classifier has not
’seen’ these regions. Using the ships GPS information, we can
correct for the drift of the ice using a coordinate transformation
to local ship coordinates [31] and identify same area for each
scene.

To obtain a quantitative measurement of robustness, we
define a robustness criterion for our analysis. We will deem
a (pixel-sized) area of ice to be classified robustly in one
scene, if the same prediction is made for the previous and
the following scene. As we want to define this criterion for
a single scene, note that the computed probability P 3

i (c) of
finding the same class c at the same spot for a scene i and its
two nearest neighbours is a product of the probabilities Pi(c)
of having robustly classified in each of the scenes.

P 3
i (c) = Pi−1(c)Pi(c)Pi+1(c) (3)

With the assumption that Pi(c) ≈ Pi+1(c), we will approx-
imate the probability Pi(c) of having classified robustly for
scene i and class c as

Pi(c) =
(
P 3
i (c)

) 1
3 (4)

The regions of ice we use to test this are the pixels in the
stabilised images, such as seen in figure (7). In the following
analysis we make statements based on the assumption, that
the same pixel over three scenes actually maps to the same
physical area of ice for three consecutive scenes. However, we
note that this is not universally true, as the stabilisation we use
is not perfect and ice dynamics are entirely neglected in this
assumption. We treat these phenomenons as some underlying
noise in the analysis and must hence satisfy ourselves with
computing a lower bound for the robustness.

IV. RESULTS

The classifier was trained on 44 scenes and tested on 8,
which do not contribute to training data. The 8 scenes that
make up the test set are randomly selected scene from each
month of October through May. We will be looking at the
performance of the classifier across the two datasets. As a
comparison we also use a simple VGG16 [32] inspired archi-
tecture as an alternative classifier (see figure 12 in the appendix
for details), that classifies based on only the superlocal 16 x 16
input data. The classifiers’ performances are shown in tables
IV, V for the training set and tables VI, VII for the test set.
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OW TI LI DI HDI
OW 90.89% 1.85% 7.21% 0.04% 0.01%
TI 0.1% 78.84% 11.34% 6.25% 3.46%
LI 0.8% 6.48% 89.14% 3.5% 0.08%
DI 0.04% 6.82% 17.22% 75.1% 0.82%

HDI 0.01% 1.82% 0.24% 0.62% 97.85%

TABLE IV: Confusion matrix showing the percentage of the
VGG16’s predicted classes (cols) for all ground truth labels
(rows) on the training data. Classes are open water (OW), thin
ice (TI), level ice (LI), deformed ice (DI) and heavily deformed
ice (HDI).

OW TI LI DI HDI
OW 99.29% 0.11% 0.38% 0.21% 0%
TI 0.28% 93.72% 1.36% 4.11% 0.53%
LI 0.16% 0.54% 97.38% 1.89% 0.02%
DI 0% 0.58% 1.47% 97.84% 0.1%

HDI 0% 0.11% 0% 0.62% 99.26%

TABLE V: Confusion matrix showing the percentage of our
network’s predicted classes (columns) for all ground truth
labels (rows) on the training data. For example 0.11% of data
points of OW were incorrectly predicted to be TI. Classes are
open water (OW), thin ice (TI), level ice (LI), deformed ice
(DI) and heavily deformed ice (HDI).

The two classes on which our and the VGG16 style classifier
perform worst are open water and thin ice. The classification
across the other three ice classes are more accurate, par-
ticularly for our classifier. Heavily deformed ice stands out
as being especially easy to classify accurately. Open water
and young ice examples are scarcest in the training and test
scenes. Despite balancing the amount of samples per class
upon training, this means the data set is a lot less diverse for
these samples. In other words the number of regions with open
water or thin ice is significantly lower than that of the other

OW TI LI DI HDI
OW 80.89% 4.6% 14.23% 0.27% 0.01%
TI 2.4% 54.48% 17.42% 15.36% 10.34%
LI 0.54% 11.15% 81.85% 6.44% 0.02%
DI 0.17% 6.95% 13.64% 78.78% 0.46%

HDI .010% 1.36% 0.21% 0.4% 98.02%

TABLE VI: Confusion matrix showing the percentage of
the (used for comparison) VGG16 style network’s predicted
classes (cols) for all ground truth labels (rows) on the test
data. Classes are open water (OW), thin ice (TI), level ice
(LI), deformed ice (DI) and heavily deformed ice (HDI).

OW TI LI DI HDI
OW 74.86% 8.12% 16.4% 0.61% 0%
TI 5.05% 71.07% 7.03% 14.32% 2.52%
LI 0.49% 0.62% 95.51% 3.38% 0%
DI 0.02% 0.55% 2% 97.37% 0.05%

HDI 0% 0.02% 0% 0.92% 99.06%

TABLE VII: Confusion matrix showing the percentage of our
networks’ predicted classes (cols) for all ground truth labels
(rows) on the test data. For example 8.12% of data points
of OW were incorrectly predicted to be TI. Classes are open
water (OW), thin ice (TI), level ice (LI), deformed ice (DI)
and heavily deformed ice (HDI).

classes. This can be seen (albeit at a smaller scale) in figure
5.

To illustrate the entire process of assessing our classifier, we
give an example with two consecutive scenes from the 13th
and the 14th of December 2019 in figure 4. In the first step,
the StripMap scene is cropped along the longer range axis to
a near quadratic slice, which is needed for the global input
feature (II). This slice is then labelled using the classifier and
checked by the discriminator. The results of this step are shown
in figure 4a and 4b. The next step is to apply the DCRF to
refine labels and fill missing values left by the discriminator.
The results of the DCRF for the two example scenes are shown
in figure 4c and 4d. Finally the image is rotated and cropped
to the surroundings of the RV Polarstern, allowing us to image
the same region of ice continuously. For the two scenes from
December used as an example the cropped images are shown
in figure 4e and 4f.

By executing the procedure illustrated in figure 4 for all
scenes from October through May, we have the data necessary
to perform quantitative robustness analysis. Figure 5 shows
the evolution of the predicted ice type distribution over the
investigated time span.

The distribution chart allows some insight into the per-
formance of the classifier over large timescales and shows
lower stability especially in the discrimination of level and
deformed ice. Spikes of open water and thin ice are generally
tied to some ice dynamics. To gain some additional insight
into the variance of these classes, we compute the relative
standard deviation of the ice type fraction for every scene ad
its four nearest neighbours (fig. 6). When interpreting this as
a deviation of the classification, we implicitly assume the real
ice type distribution to be stable over five neighbouring scenes,
which neglects physical changes of the surface. Specifically
we cannot include the OW and TI classes, which are rare and
only present in case of strong sea ice dynamics such as leads
forming, and thereby not able to be analysed in this way, as
we cannot assume these classes to be stable over time.

The chart of the standard errors reveals three time periods
with heightened error. In fact the one stable period around
the beginning of January stands out. Here conditions are
optimal, as ice dynamics are minimal and the incidence angle
is inside full performance range. Whilst the early and later
periods of increased variance can likely be explained by
snow metamorphism, wet snow or increased ice dynamics in
melt and freeze seasons, the increased uncertainties from mid
January to early March can be rationalised with the increased
incidence angle during this time period (see fig.2a). It is also
apparent that this cause of error plays a role in the increased
uncertainties observed during melt season.

To qualitatively gauge the performance of the classifier in
these three periods with increased error, we highlight three
pairs of scenes (fig. 7) from those time spans, specifically late
November, late February and finally early May.

The scenes from the end of November are only three days
apart yet drastically different due to ice dynamics. In the earlier
scene (7a) one can see some freshly frozen over leads with
thin ice cover and in the later scene (7b), the leads have
closed up again and all signs of young ice have disappeared.
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(a) 2019/12/13, θinc = 45.69◦ (b) 2019/12/14, θinc = 49.55◦

(c) 2019/12/13, θinc = 45.69◦ (d) 2019/12/14, θinc = 49.55◦

(e) 2019/12/13, θinc = 45.69◦ (f) 2019/12/14, θinc = 49.55◦

Fig. 4: Illustration of robustness analysis for two consecutive days in December 2019. Pictures (a, b) show the subscenes after
classification and discrimination. In (c, d) the dense conditional random field has been applied and (e, f) show the scenes
cropped and rotated to the region of interest. The false colour compositions are using (VV, HH-VV, HH/VV) in the (R, G, B)
channels respectively. The top two rows additionally show the area used for robustness analysis, that is cropped to in the final
row.

These pictures document the most drastic of these events, were
the central floe split; however, most of the strong ice type
deviations in early winter can be attributed to such events and
are thus real changes of the surface. The pair of scenes from
late February (7c, 7d) are both taken at very high incidence
angles, far above full the performance range of 20−45 degrees.
It is evident from the images, that the signal is significantly
weaker. At this angle we see an overestimation of the deformed
ice class in the second image. This is especially notable in the
top left quarter of the patch, which was dominated by a level
ice surface, but is classified as almost entirely deformed ice

in the scene from the first of March. At such high incidence
angles, the classification seems to become more volatile. Two
scenes from early May (7e, 7f) give insight into how both
ice dynamics and incidence angle changes are responsible for
high variance in the scenes from early May.

Most of the high variances in ice class distribution change
can be attributed either to ice dynamics or to struggles with
high incidence angles. The classifier seems robust in the
discrimination of classes with larger area, but the transitional
areas between classes are seemingly classified less robustly
(see the extend of the level ice on the left of the image
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Fig. 5: Chart showing the predicted ice distribution in the 3 km
by 3 km area surrounding the Polarstern vessel from October
through May.

Fig. 6: Relative standard deviation of the distribution of level,
deformed and heavily deformed ice at each date and the four
nearest scenes.

7e versus 7f)). This effect is particularly evident at high
incidence angles.

In figure 8, we can observe the development of robust classi-
fication across the analysed time span. This was smoothed over
by a moving average, weighted with a quadratic function and
averaging over five scenes. Note that the dip in the beginning is
due to strong ice dynamics. In figure 9 we show a comparison
of our model with the VGG16 inspired classifier for two
months. We also compute an average robust classifications
probability over the entire time span. Results are shown in
table VIII.

We now propose a probability Prc(c) of robust and correct
classification as the product of the two, i. e.

Prc(c) = Pr(c)Pc(c). (5)

(a) 2019/11/22, θinc = 40.71◦ (b) 2019/11/25, θinc = 43.33◦

(c) 2020/02/29, θinc = 57.36◦ (d) 2020/03/01, θinc = 54.27◦

(e) 2020/05/02, θinc = 36.90◦ (f) 2019/05/03, θinc = 50.82◦

Fig. 7: Pairs of classified scenes from time intervals with low
robustness. The left parts show the cropped classified image
and the right parts are false colour compositions.

Fig. 8: Chart showing a moving average of the probability
Pr(c) of robust classification for three ice classes: level ice,
deformed ice, heavily deformed ice. We compute Pr(c) as the
percentage of robustly classified pixels of class c per scene.

LI DI HDI
Pr 88.34% 88.62% 85.34%

TABLE VIII: Table showing the average probability Pr(c)
of robust classification for LI, DI and HDI across the entire
dataset
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(a) Our classifier (fig. 3) (b) VGG16 inspired CNN (fig 12)

Fig. 9: Charts showing a moving average of the probability
Pr(c) of robust classification for three ice classes LI, DI, HDI,
for our classifier and a VGG16 inspired model.

Prc(c)
LI 84.09% < Prc(LI) < 95.19%
DI 86.71% < Prc(DI) < 97.84%

HDI 84.71% < Prc(HDI) < 99.26%

TABLE IX: Table showing the bounds of robust and correct
classification for LI, DI and HDI of the classifier.

With classification probabilities Pc from table VII and the
lower bounds of Pr from VIII, we can compute the bounds
of probabilities of robust and correct classification Prc for the
three solid ice classes. Results are shown in table IX.

V. DISCUSSION

Before turning to the advantages of our approach we will
mention some limitations and challenges. First let us discuss
the data itself – the foundation of any machine learning
approach. The training data set of 44 scenes is of course not
comprehensive enough to capture all the intricacies of different
backscatter from varying ice types, which makes it difficult
to classify robustly. Leads freezing over are a good example
for one of these regions. Not only is their occurrence sparse
in the data set, the dynamics during initial freeze-over have
a great effects on radar response and are fast relative to the
revisit time of the satellite. This makes it difficult to capture
enough samples in the training set for the classifier to correctly
interpret the entire space of possible radar backscatter. We can
observe this struggle in some scenes where the radar response
of a frozen lead is so bright, it becomes very similar to
heavily deformed ice backscatter. This can for example occur
when frost flowers form atop the lead, leading to high volume
scattering. Here the classifier struggles to differentiate the two
classes.

The open water classification also proved to be a challenge
for this data set. Traditionally the polarisation ratio proves very
useful in distinguishing this class. We can observe, that at high
incidence angles the radar response becomes very similar to
that of young smooth ice and the discrimination between the
two suffers.

Manual labelling is definitely the greatest source of underly-
ing error and bias. Despite having mitigated the effect of errors
with the use of smooth labels, there are some biases arising

from manual labels, that smooth labelling cannot compensate.
This bias is not merely a case of being more likely to mislabel
a certain class - this can be kept minimal by only labelling
classes which are discernible with certainty - it is rather that
the choice of labelled regions is already filtered by a human
selection process. For example there is a tendency not to
label a region with small area as it would make the labelling
process very tedious. This translates to the classifier which
struggles with smaller regions of one class, often wrongfully
mislabelling them to be the same as the surrounding ice class.
Additionally when manually selecting polygons, labels at the
boundaries between classes are naturally much sparser than
labels in the center of ice classes, which leads to increased
difficulty of classification in these transitional areas between
ice classes. When viewing the classified robustness analysis
data, this effect was most obvious as the boundaries between
classes were shifting, whilst pixels in the center of same-
ice regions appear robust. This bias could be eliminated by
deriving ground truth data from in-situ measurements.

The discrimination of deformed and level ice relies on
non local features and hence suffers most from the above
mentioned boundary problem. Deformed ice is not always
identified by a higher brightness and lower polarisation ratio
for each individual pixel, but also by the density of brighter
pixels in the surrounding area. Here it is especially difficult
to define hard boundaries between classes, as the transitional
areas between level and deformed ice are not boundaries but a
continuum. Hence it is difficult to define a hard boundary when
labelling data manually. Generally the rule when labelling
manually, is to only label areas, where one is confident
in the label. Therefore these transitional areas are not only
difficult to classify but also sparse in the training data set,
which culminates in misclassifcation in the transitional areas
of deformed and level ice classes, especially at high incidence
angles, where the signal to noise ratio suffers (fig. 7).

The success of the algorithm is self evident in the discrimi-
nation of ice classes at high accuracy in multiple seasons and
becomes increasingly apparent in contrast to the VGG16 (see
fig. 9, tab. IV - VII). Furthermore the areas of lower robustness
can be seen to occur at high incidence angles, well outside of
the full performance range of the radar instrument.

Weather effects contribute significantly to snow wetness,
metamorphism and increased ice dynamics. The most notable
of these is the seasonal warming and freezing, which leads
to decreased robustness in our analysis (fig. 8). However,
our robustness criterion also fails to take into account these
weather induced changes and we have less training data
available in these time periods as they are at the very beginning
and end of the study period. Thus, it is difficult to isolate and
make statements about the effect of weather events on the
performance of classification.

We have tested this classification approach on Sentinel-1
scenes and obtained comparable results. We found that the
most important parameters to tune, when applying these ideas
to different sensors, are the sizes of the contextual windows
(’local’ and ’superlocal’ features). On large scale images the
inclusion of the ’global’ feature was particularly successful in
ice and open water discrimination in the marginal ice zone,
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where the ice water edge could be detected.

VI. CONCLUSION

We have used accurate geolocation and drift correction
to construct a dataset that enabled testing for robustness of
SAR ice type classification quantitatively and we are able
to show that our proposed classification method performs
accurately and robustly for three surface ice classes: level,
deformed and heavily deformed ice. Open water and thin ice
classes have proven harder to classify. However, it needs to
be noted, that these classes are also sparser in the dataset
and have also been more difficult to identify in some scenes,
especially at higher incidence angles. Due to their dynamic
nature, we are not able to perform robustness analysis for these
two ice types. We could also identify regions of increased
classification inaccuracy and lack of robustness, that coincide
with shortcomings of a manual labelling process. Already
now our ice type dataset can provide helpful information fir
upscaling other MOSAiC in-situ data to a regional context,
like sea ice physical and chemical properties or ecological
samples, which all vary by ice type.

As was mentioned in the introduction, this work serves
partially as a preliminary study to using these classification
methods in analysis with fused measurements, such as airborne
laser scanner (ALS) data, e.g. from MOSAiC [21]. Here, we
can derive ground truth labels from the ALS data without any
human interaction and thus eliminate the greatest source of
bias in the underlying data set.
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APPENDIX
NETWORK ARCHITECTURES
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Fig. 10: Illustration of the CNN architecture used in the proposed classifier. Wherever the spatial dimensions in the convolutional
bloacks are downsampled (decrease by more than a factor of .5), a stride of 2 was used. Not included in the Image are the
batch normalisation layers after the first convolutional layers for each input and the dropout layers used for regularisation
during training. The parameters xg and yg denote the coordinates of the location of the local patch in the global patch, θ is
the incidence angle and t the acquisition time. Parameter count = 120421.

Fig. 11: Illustration of the CNN discriminator architecture used in the proposed classifier.
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Fig. 12: Illustration of the VGG16 inspired network architecture used as comparison. Parameter count = 9889605.


