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Abstract
We provide an analytical proof of universality for bound states in one-dimensional systems of
two and three particles, valid for short-range interactions with negative or vanishing integral
over space. The proof is performed in the limit of weak pair-interactions and covers both
binding energies and wave functions. Moreover, in this limit the results are formally shown to
converge to the respective ones found in the case of the zero-range contact interaction.

Keywords: proof, universality, one-dimensional, few-body, anisotropic interactions, bound
states

1. Introduction

In contrast to purely attractive potentials, which are ubiqui-
tous in quantum physics, interactions whose attractive and
repulsive parts cancel each other are only scarcely discussed.
Nevertheless, the latter allow for bound states [1], and inter-
est in such potentials ramped up within the last years with
the ability to realize them in systems of ultracold dipoles [2].
This is supported by recent analysis for these potentials on the
formation of few- and many-body bound states in arrays of
one-dimensional tubes [3] or in terms of beyond-mean-field
contributions in reduced dimensions [4]. In two spatial dimen-
sions the scattering properties [5, 6] have been studied as well
as the universality of weakly-bound two-body states [6–8] in
the experimentally relevant weakly-interacting regime. Here,
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universality means that the bound states become independent
of the details of the interparticle interaction.

In this letter we study a two- and three-body system of two
components, confined to one spatial dimension. We consider
only short-range interactions v(ξ) ≡ v0 f (ξ) with magnitude
v0 and shape f (ξ) between distinguishable particles, and none
between identical ones. Within these systems we are interested
in the universal behavior [9, 10] and consider the weakly-
interacting limit v0 → 0, which implies [1, 11] a weakly-bound
two-body ground state. Moreover, we allow for anisotropic
features in the interactions which are often present in physical
systems.

Within an analytical calculation we prove that in this
weakly-interacting limit, interactions of both negative (type I),∫

dξv(ξ) < 0, and vanishing (type II),
∫

dξ f (ξ) = 0, integral
over space lead to the same universal behavior. Our proof is
performed for two- and three-body systems alike, by employ-
ing the corresponding integral equations in momentum space.
The demonstrated universality is not restricted to the bind-
ing energies alone, but also includes the corresponding wave
functions which carry the full information about the few-body

0953-4075/21/21LT01+6$33.00 1 © 2021 The Author(s). Published by IOP Publishing Ltd Printed in the UK

https://doi.org/10.1088/1361-6455/ac3b3f
https://orcid.org/0000-0002-3893-279X
https://orcid.org/0000-0001-6395-9663
mailto:lucas.happ@uni-ulm.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/ac3b3f&domain=pdf&date_stamp=2021-12-8
https://creativecommons.org/licenses/by/4.0/


J. Phys. B: At. Mol. Opt. Phys. 54 (2021) 21LT01

system. In particular, we show that the universal limits are
those obtained for a zero-range contact interaction. The ener-
gies E0,n of three-body bound states can then approximately be
expressed as

E0,n � ε�n

∣∣∣E (2)
0

∣∣∣ . (1)

Here, E (2)
0 is the energy of the two-body ground state in the

potential v(ξ), and ε�n are the universal energy ratios obtained
for the contact interaction. These energy ratios depend only on
the intercomponent mass ratio and are presented for several
experimentally relevant situations in reference [12].

This letter is organized as follows. In section 2 we introduce
the two types (type I and II) of pair-interactions and present our
approach to discuss universality in the two-body domain. We
then turn in section 3 to the three-body system where we apply
a similar approach as for the two-body case in order to prove
universality for both types of two-body interactions. Finally,
we conclude by summarizing our results and by presenting an
outlook in section 4.

2. Two interacting particles

In this section we first introduce the one-dimensional two-
body system and the relevant quantities to describe it. Then we
define two different types of interactions whose weakly-bound
ground state is discussed in terms of its universality.

2.1. The two-body system

In the following, we focus on a two-body system composed of
a heavy and a light particle of masses M and m � M, respec-
tively, all constrained to one spatial dimension. The interaction
between both particles is described by a potential

v(ξ) ≡ v0 f (ξ) (2)

of amplitude v0 and shape f . Here, the relative coordinate
between the two particles is denoted by ξ in units of the poten-
tial range ξ0, while the amplitude of interaction is given in
units of the characteristic energy h̄2/(μξ2

0), with the reduced
mass μ ≡ mM/(m + M) and the Planck constant h̄. The pair-
interaction is assumed to be real, short-ranged (ξ2v(ξ) → 0, as
|ξ| →∞), and to support a bound state.

Moreover, we require that the weakly-interacting limit,
v0 → 0, leads to an even-wave resonance, that is the symmet-
ric part of the two-body ground state wave function becomes
dominant compared to the antisymmetric part. We assume that
this is the usual case for the ground state of distinguishable
particles. There exists of course the counter-example of the
odd-wave pseudopotential [13], however this is a highly non-
analytic model-potential, designed to describe the antisymmet-
ric ground state of two non-distinguishable fermions. Finally,
we want to emphasize that this requirement is not identical
with constraining our analysis to symmetric potentials only. In
particular, we allow for anisotropic features of the potential.

In this letter we are only interested in bound states,
hence this system is governed by the homogeneous Lipp-

mann–Schwinger equation [14, 15]

φ(2)(p) =
v0

E (2) − p2/2

∫
dp′

2π
F(p− p′)φ(2)(p′) (3)

for the two-body wave function φ(2)(p) in momentum repre-
sentation. Here

F(p) ≡
∫

dξ e−ipξ f (ξ) (4)

denotes the potential shape f in momentum representation and
E (2) < 0 is the total energy of the two-body system in units of
h̄2/(μξ2

0).
In the following, we consider the weakly-interacting

regime, v0 → 0, which in 1D leads to a weakly-bound ground
state [1, 11] with energy E (2)

0 . In order to simplify the analysis
we introduce the scaled momentum P ≡ p/q0 with

q0 ≡
√

2
∣∣∣E (2)

0

∣∣∣. (5)

The corresponding integral equation (3) then reads

φ(2)(P) = − 1
1 + P2

v0

q0

∫
dP′

π
F
[
q0(P − P′)

]
φ(2)(P′). (6)

2.2. Proof of two-body universality

Now we prove that in the limit of a vanishing binding energy
E (2)

0 of the heavy-light ground state, short-range potentials with
both negative (v0F(0) < 0) and vanishing (F(0) = 0) integral
over space yield the same universal solutions for the two-body
ground state as for the contact interaction. This universality is
shown not only for the binding energy, but also for the corre-
sponding wave function. While this result might not be com-
pletely unexpected, the presentation of our approach serves as
basis for the subsequent proof of universality in the three-body
system (section 3) which is performed in an analogous way.

2.2.1. Contact interaction. First, we discuss the case of the
zero-range contact interaction of shape fδ(ξ) ≡ δ(ξ), corre-
sponding to Fδ(p) = 1. Moreover, for this potential the relation

q0 = −v0 (7)

remains exact for all values of v0 and q0 [1]. Hence, in this case
the integral equation (6) takes the form

φ(2)(P) =
1

1 + P2

∫
dP′

π
φ(2)(P′). (8)

It is independent of q0 and equivalently independent of E (2)
0 ,

reflecting the scale-invariant property of the delta potential.
The solution to this integral equation in the original variable
p then takes the form of a Lorentzian

φ(2)
δ (p) =

2q3/2
0

q2
0 + p2

(9)

2
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normalized with respect to

∫
dp
2π

[
φ(2)(p)

]2
= 1. (10)

2.2.2. Type-I potentials: v0F(0) < 0. Next, we discuss the
potentials with v0F(0) < 0, that is with overall negative inte-
gral over space, see equation (4), which we define as type-I
potentials. The requirements for the potentials presented in the
beginning of section 2 still hold. According to reference [1],
we have

q0 = −v0F(0) + O(v2
0) (11)

as v0 → 0. Hence, in this limit also q0 → 0, and the lowest
order Taylor expansion F

[
q0(P − P′)

]
� F(0) can be used

inside the integral in equation (6). Thus, by using this approxi-
mation together with equation (11), we obtain for equation (6)
the same form as equation (8), that is the same integral
equation as for the contact interaction. Consequently, in this
limit the normalized wave function φ(2) converges to the cor-
responding one φ(2)

δ , equation (9), obtained for the contact
interaction.

Effectively, we have used here the fact that in momentum
space the potential is more slowly varying around p′ = 0 com-
pared to the wave function, which becomes more localized
as E (2) → 0−, or q0 → 0 accordingly. This argument is equiv-
alent to the picture in coordinate representation that in the
limit E (2) → 0−, the bound state wave function becomes more
extended with respect to the fixed range of the potential.

2.2.3. Type-II potentials: F(0) = 0. Now we analyze poten-
tials for which the integral over space vanishes, that is for
which F(0) = 0, as of equation (4). We denote them as poten-
tials of type II. Here, we additionally require

|F(p)|2

p2
< ∞ as p→ 0, (12)

which is always fulfilled for an analytic and smooth poten-
tial shape. For these type-II potentials, the linear relation (11)
between q0 and v0F(0) does not hold. Instead, reference [1]
derived the quadratic dependence

q0 �
v2

0

π

∫
dp

|F(p)|2

p2
, (13)

as v0 → 0.
In order to prove that in the limit q0 → 0 also for the type-II

potentials the same solutions as for the contact interactions are
retrieved, we iterate equation (6) once and obtain

φ(2)(P) =
1

1 + P2

v2
0

q2
0

∫
dP′

π

F
[
q0(P − P′)

]
1 + P′2

×
∫

dP′′

π
F
[
q0(P′ − P′′)

]
φ(2)(P′′) (14)

or

φ(2)(P) =
1

1 + P2

v2
0

q0

∫
dP′′

π
φ(2)(P′′)

×
∫

dp′

π

F
(
q0P − p′

)
F
(

p′ − q0P′′)
q2

0 + p′2 , (15)

where we have rescaled the integration variable P′ ≡ p′/q0.
In order to perform the limit q0 → 0 in the integral over

p′, we have to separately discuss the case p′ = 0. Due to
equation (12), the integrand

F (q0P) F
(
−q0P′′)

q2
0

< ∞ (16)

remains finite. For all p′ �= 0, the limit q0 → 0 can be per-
formed straightforwardly. Hence, due to equation (16) we
can replace the full integral over p′ in equation (15) by the
zero-order Taylor expansion term∫

dp′

π

F
(
−p′

)
F
(

p′
)

p′2 . (17)

As a result, we obtain for q0 → 0 the integral equation

φ(2)(P) =
4

1 + P2

v2
0

q0

∫
dp′

2π
|F(p′)|2

p′2

∫
dP′′

2π
φ(2)(P′′), (18)

where we have made use of the fact that F(−p) = [F(p)]∗.
Application of equation (13) in equation (18) then leads to the
same integral equation (8) as for the contact interaction. Thus,
in the weakly-interacting limit also the type-II potentials yield
solutions φ(2) which converge to the same limit functions φ(2)

δ ,
equation (9), as for the contact interaction.

This concludes the proof of universality in the two-body
system for the potentials of type I and II. This universality is
equivalent to the statement that in the unitary limit, E (2)

0 → 0−,
the corresponding two-body pseudopotential is the delta-
potential, even though this delta potential does not feature the
property of a vanishing integral over space.

3. Three interacting particles

In this section we first introduce the one-dimensional three-
body system which is at the focus of this article. Next, we
present a proof of three-body universality that is valid for both
type-I and type-II potentials in the weakly-interacting regime.

3.1. The three-body system

We now add a third particle to the two-body system, also con-
strained to 1D and identical to the other heavy particle of mass
M. We assume the same interaction between the light parti-
cle and each heavy one, as introduced in section 2, but no
interaction between the two heavy ones.

3
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The homogeneous Lippmann–Schwinger equation [14, 15]
governing the bound states in this system can be formulated in
representation-free form

|Φ〉 = G(0)
ε (V31 + V12)|Φ〉. (19)

The differences to the two-body case are that (i) the Green
function G(0)

ε contains information about two independent rel-
ative motions, and (ii) that there are two interaction terms,
V31 and V12. Each interaction term describes an interaction
of the light particle (particle 1) with one of the two heavy
ones (particles 2 and 3). Moreover, they describe interparti-
cle two-body interactions as introduced in section 2, and the
indices denote the interacting particles. As the two heavy par-
ticles are assumed to be identical, the same holds true for the
interactions, which therefore have the same form, equation (2),
in coordinate representation. In momentum representation,
equation (19) can be formulated as

Φ(P, K) =
v0

q0
G(0)

ε (P, K)
∫

dP′

π
F[q0(P − P′)]

×
[
Φ

(
P′, K− P−P′

2

)
+Φ

(
P′, K+

P−P′

2

)]
, (20)

where Φ(P, K) ≡ 〈P, K|Φ〉 is the three-body wave function of
the two relative motions.

The momenta P ≡ p/q0 and K ≡ k/q0, which are scaled
accordingly by q0, equation (5), describe the two relative
motions. Indeed, k denotes the relative Jacobi-momentum
between the two heavy particles. On the other hand, p is the
Jacobi-momentum of the light particle relative to the cen-
ter of mass of the two heavy ones. We have introduced the
free-particle three-body Green function

G(0)
ε (P, K) =

1
ε− αpP2 − αkK2

(21)

with the coefficients αp ≡ (1 + 2α)/[2(1 + α)] and αk ≡
2/(1 + α) depending only on the mass ratio α = M/m. More-
over, the three-body binding energy in units of the energy of
the ground state in the heavy-light subsystems is denoted by

ε ≡ E∣∣∣E (2)
0

∣∣∣ . (22)

As we only discuss three-body bound states, we restrict the
three-body energy and therefore ε to negative values.

We are interested in the universal [9, 10], that is interaction-
independent behavior of this three-body system in the weakly-
interacting limit v0 → 0. In particular, we analyze universality
of the three-body bound states in terms of the energy spectrum
and the corresponding wave functions.

3.2. Proof of three-body universality

For the type-I potentials an analytic proof of universal-
ity performed in coordinate-representation has already been
presented in reference [12]. This proof however cannot be
performed in the same way for type-II potentials. In this sub-
section we therefore first revisit the original proof [12] of
universality for type-I potentials, but in this case using the
momentum representation. For this we consider the cases of
the contact interaction and any interaction of type I. Next, we
extend the proof to type-II potentials.

3.2.1. Contact interaction. We start with considering the case
of the contact interaction fδ(ξ) = δ(ξ). In this case Fδ(p) = 1
and the three-body integral equation (20) then simplifies with
the help of equation (7) to the form

Φ(P, K) = −G(0)
ε (P, K)

∫
dP′

π

×
[
Φ

(
P′, K− P−P′

2

)
+Φ

(
P′, K+

P−P′

2

)]
. (23)

Here, ε enters only as a parameter in the Green function G(0)
ε .

We denote the solutions of equation (23) for the bound-state
energy spectrum and the corresponding wave functions by ε�n
and Φ�

n, respectively. We emphasize that equation (23) is inde-
pendent of q0 and E (2)

0 , therefore the solutions ε�n and Φ�
n are

scale-invariant for all values of the two-body binding energy. A
more detailed analysis, as well as a table of these energy ratios
for a selection of experimentally relevant mass ratios, together
with a representation of the full three-body wave functions can
be found in reference [12].

3.2.2. Type-I potentials: v0F(0) < 0. Now we discuss the
type-I potentials. According to equation (11), the expres-
sion v0F[q0(P − P′)]/q0 present in equation (20) still con-
verges to −1, as q0 → 0. Thus, in this limit we obtain for
equation (20) the same integral equation (23) as for the contact
interaction.

Consequently, as q0 → 0, the solutions ε0,n and Φ0,n,
denoting the three-body energy spectrum and the three-
body wave functions for all type-I potentials, converge to
the corresponding ones ε�n and Φ�

n, obtained for the contact
interaction.

3.2.3. Type-II potentials: F(0) = 0. Next, we present a proof
of three-body universality for the type-II potentials. Since in
this case q0 is proportional to the second order of v0 and F, as
summarized by equation (13), we iterate equation (20) once to
the next order in v0 and F. In the same spirit as for the two-body
system presented in section 2, this then allows us to perform
the limit q0 → 0.

4
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Indeed, after iteration, equation (20) takes the form

Φ(P, K) =
v2

0

q0
G(0)

ε (P, K)
∫

dP′′

π
[I1 + I2 + I3 + I4] (24)

with

I1 ≡ Φ

(
P′′, K− P − P′′

2

)∫
dP′

π
A−(P, K, P′, P′′)

I2 ≡
∫

dP′

π
Φ

(
P′′, K− P + P′′

2
+ P′

)
A−(P, K, P′, P′′)

I3 ≡
∫

dP′

π
Φ

(
P′′, K+

P + P′′

2
− P′

)
A+(P, K, P′, P′′)

I4 ≡ Φ

(
P′′, K +

P − P′′

2

)∫
dP′

π
A+(P, K, P′, P′′),

(25)

and

A±(P, K, P′, P′′) ≡ F[q0(P − P′)]F[q0(P′ − P′′)]
q0

× G(0)
ε

(
P′, K ± P − P′

2

)
. (26)

We now analyze the expressions I j, j = 1, 2, 3, 4. First, we
note that in I1 and I4 the argument ofΦ is independent of P′. On
the other hand, in I2 and I3 the wave function still depends on
P′ and therefore remains inside the integral. The dependence
of the I j on q0 can be brought out more clearly by scaling the
integration variable P′ ≡ p′/q0. The expression

A±

(
P, K, p′

q0
, P′′

)
q0

=
F(q0P − p′)F(p′ − q0P′′)

q2
0ε− αpp′2 − αk

[
q0K ± 1

4 (q0P − p′)
]2

(27)

then appears in each integral of I j. For p′ = 0 this expression
takes on the value

A±(P, K, 0, P′′)
q0

=
F(q0P)F(−q0P′′)

q2
0

[
ε− αk(K ± P/2)2

] (28)

and remains finite also in the limit q0 → 0, due to
equation (12).

First, we discuss the integrals I1 and I4. Since A± is not
singular at p′ = 0, we can replace in I1 and I4 the full integral
over p′ by the zero-order Taylor expansion term

∫
dP′

π
A±(P, K, P′, P′′) →−

∫
dp′

π

|F(p′)|2

p′2
(29)

as q0 → 0. Here we have used the identity αp + αk/4 = 1,
and F(−p) = [F(p)]∗, as of equation (4). Hence, in the limit

q0 → 0, I1 and I4 are given by

I1 →−Φ

(
P′′, K − P − P′′

2

)∫
dp′

π

|F(p′)|2

p′2
(30)

and

I4 →−Φ

(
P′′, K +

P − P′′

2

)∫
dp′

π

|F(p′)|2

p′2
. (31)

Next, we discuss the integrals I2 and I3. Inside the inte-
gration over p′, there exists the additional factor Φ(P′′, K ±
(P + P′′)/2 ∓ p′/q0), which eliminates any contribution of
the integrand for |p′| > q0, as q0 → 0. This is because we
only discuss normalizable bound states that vanish at infinity,
Φ(P, K →∞) → 0. Hence, only the integration in the domain
|p′| � q0 remains. Since according to equations (28) and (29),
A± is finite therein, we can approximate

|I2| � |C|
∫ q0

−q0

dp′

π

∣∣∣∣Φ
(

P′′, K − P + P′′

2
+

p′

q0

)∣∣∣∣ (32)

with |C| being the maximum value of |A±| inside this inte-
gration domain. In order to ensure a finite normalization, the
integral

∫∫
dpdk|Φ(p, k)|2/(4π2) can have at most a finite con-

tribution from the interval |p| < q0, hence we deduce that the
right-hand side of equation (32), where |Φ| enters only linearly,
vanishes for q0 → 0. Equivalent arguments can be made also
for I3, thus in this limit I2 → 0 and I3 → 0.

In total, equation (24) reduces to

Φ(P, K) = −G(0)
ε (P, K)

v2
0

q0

∫
dp′

π

|F(p′)|2

p′2

∫
dP′′

π

×
[
Φ

(
P′′, K− P−P′′

2

)
+ Φ

(
P′′, K+

P−P′′

2

)]
. (33)

Application of equation (13) in this equation then finally
leads to the same integral equation (23) as for the contact
interaction, which concludes the proof.

As a consequence, in the weakly-interacting limit v0 → 0,
also for type-II potentials the solutions ε0,n and Φ0,n for the
three-body energy spectrum and wave functions converge to
the corresponding ones ε�n and Φ�

n, obtained for the contact
interaction.

4. Conclusion and outlook

In the present letter we have discussed universality of bind-
ing energies and wave functions in both the two-body and
three-body domain. While in the former the concept of uni-
versality for the ground state is often assumed, we have
provided here an approach to prove it formally. Application of

5
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the same approach to the three-body system has then allowed
us to prove universality of the binding energies and wave func-
tions of three-body bound states. In particular, they are shown
to converge to the corresponding results for the contact inter-
action, provided the pair-interactions are tuned to support a
weakly-bound two-body ground state. The presented proof of
two- and three-body universality is valid for attractive poten-
tials of negative (type I) and vanishing (type II) integral over
space alike.

As a result, we can provide approximate expressions for the
three-body binding energies

E0,n �

⎧⎪⎪⎨
⎪⎪⎩
−ε�n v

2
0 [F(0)]2 (type I)

−ε�n v
4
0

[∫
dp
π

|F(p)|2

p2

]2

(type II)
(34)

valid in the case of small potential magnitude v0, that is
when the pair-interactions are tuned to support a weakly-bound
ground state in the heavy-light subsystems.

The universality of energies and wave functions of three-
body bound states for finite-range interactions that are tuned
to support a weakly-bound excited state in the heavy-light
subsystems has been demonstrated numerically in reference
[16]. An analytical proof as presented in this work would
be desirable and might explain the reported [16] differences
and similarities compared to the situation of a weakly-bound
heavy-light ground state.
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