
Backbone Seed Loss IOU P* R$ F1

ResNet-18 A 0.40 0.63 0.70 0.86 0.77

ResNet-18 B 0.37 0.65 0.83 0.76 0.79

ResNet-34 A 0.33 0.69 0.79 0.84 0.81

ResNet-34 B 0.36 0.68 0.84 0.77 0.80

ResNet-50 A 0.33 0.69 0.79 0.84 0.82

ResNet-50 B 0.34 0.69 0.84 0.79 0.81

ResNet-101 A 0.37 0.66 0.74 0.85 0.79

ResNet-101 B 0.35 0.68 0.86 0.76 0.81

Predicting PV Areas in Aerial Images with Deep Learning
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There is a need for distributed PV generation location data
Data on distributed PV installations can be difficult to access for researchers. Aerial or 
satellite images are a potential source of data, but manual identification is time 
prohibitive. Computer vision approaches that employ Neural Networks and Deep 
Learning may automate the identification of PV from images.

U-Net Neural Network architecture with pre-trained weights
Classifying pixels within the image is called “semantic segmentation.” U-net is a well 
established Fully Convolutional Neural Network architecture for this task. Starting 
from a network that previously worked for another computer vision task can speed up 
training. We implemented in python using segmentation_models. Four different 
backbones were considered (ResNet-18, -34, -50, -101)

Conclusions and Future Work
Highly accurate PV panel areas were be predicted on aerial images through the 
proposed method. With a large-scale aerial image database, highly resolved PV 
areas could be generated for a large geographic region. Uncertainty estimates mostly 
relate to the labeling uncertainty of the user. Potential future work is possible 
concerning evaluation and usage of this uncertainty to improve labeling and model 
training.

Identification of PV was validated against test set

Error Analysis reveals a few particularly difficult cases

U-net consists of contracting and expanding paths. Convolution increases the field of view during 
the contracting path. The expanding path builds the back to full size to allow pixel-wise prediction.

13,345 Google Earth tiles acquired for region of Oldenburg, 
Germany and surrounding countryside. Manual labelling 
performed for 1,325 found to contain PV (shown in red).
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Manual identification of PV 
polygons in open-source tool 
called labelme. 
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Challenges to manual labeling 
include Solar Thermal and 
Wintergardens (greenhouses)
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Performance of model relative to metrics

* - Precision, $ - Recall

Loss improved over time. Weights for 
the best validation loss were kept.

Training process optimizes the network for the task at hand
Data was split into training, validation and testing sets with a 81%/9%/10% ratio. 
While maintaining frozen weights for the encoder, the model was trained for 350 
epochs keeping only the case with the best validation loss. The loss function used was 
a combination of Binary Cross Entropy and Jaccard losses. 

Method Value

Rotation ± 30˚

Width Shift ± 5%

Height Shift ± 5%

Zoom ± 20%

Data augmentation used to effectively 
increase amount of training data

Overfitting

Methodology exists to compute pixelwise uncertainty
Monte Carlo dropout allows quantification of uncertainty in output of deep neural 
network. Works by considering the weights of the neural network to be random 
variables. We evaluate the network using N=100 different dropout configurations and 
estimate uncertainty of the predictions using the pixelwise standard deviation. 

Two separate seeds used for data splitting 
to ensure that no non-random elements 
of the training set dominated the results.

Uncertainty

Best performance was observed 
for ResNet-50. Metrics indicate 
that ~80% of predicted pixels are 
correct and ~80% of labels are 
identified. Model showed good 
performance overall based on 
qualitative review of results. 
Several aspects of performance 
can guide future development and 
improvement.

Utility scale plant identified well. 
Uncertainty occurs primarily at 
edges. This indicates high 
confidence in predictions of 
primary areas, but that 
identifying the precise location 
of the boundary is more difficult.

Several neighborhood rooftops 
identified correctly, including 
one missed label. Two false 
positives are predicted with high 
confidence. Uncertainty cannot 
universally indicate poor quality 
predictions.

Primary rooftop system 
identified well, but false 
positives on glass rooftop and 
skylights. Uncertainty is high for 
the false positives, indicating 
potential for deeper look at 
uncertain cases.

High False Negative error due to 
erroneously labeled PV system 
through the whole convex hull 
and high reflections on single 
arrays

True Positive

False Positive

False Negative

High False Negative error due 
to shadowing effects of the tree 
and False Positives for similar 
looking structure

Considering some common 
failures may guide improvement.
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