
 

EXPLORATION OF AERIAL FIREFIGHTING FLEET EFFECTIVENESS 
AND COST BY SYSTEM OF SYSTEMS SIMULATIONS 

Prajwal Shiva Prakasha1, Nabih Naeem1, Nazlican Cigal1, Patrick Ratei1 & Björn Nagel1 

1German Aerospace Center (DLR), Institute of System Architectures in Aeronautics, Hamburg, Germany 

 
Abstract 

Wildfires are becoming a more frequent and devastating phenomena across the globe. The suppression of 

these wildfires is a dangerous and complex activity considering the vast systems that need to operate together 

to monitor, mitigate, and suppress the fire. In addition, the required cooperation spans multiple institutes in 

different capacities. Thus, the recognition of the wildfire suppression scenario as a System of Systems (SoS) 

is valid. Due to the dangers associated with firefighting and the increased occurrence, there is scope for the 

design of unmanned aerial vehicles for wildfire suppression. In this work, a SoS driven aircraft design, cost, 

and fleet assessment methodology is utilized together with a wildfire simulation to investigate several 

sensitivities relating to design and operational parameters. Further, this paper investigates their impacts on the 

measures of effectiveness, i.e. burnt area and operating cost. These two parameters enable the identification 

of optimal fleet size for wildfire suppression for a given scenario and aircraft definition.  
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1. Introduction 

The size and number of severe wildfires have been increasing in the northern hemisphere with the 

impact of its rapid warming rate combined with drought and extreme fire-conducive weather. Fire-

prone areas are expected to increase by 200% in Europe by the end of the 21st century [1] with the 

exacerbating anthropogenic climate change increasing the hazard of wildfires [2]. Even though the 

developments in wildfire protection plans are accelerated, the wildfires get larger and fire seasons 

get longer with more uncertainties in ecosystem responses. Every single fire incident causes an 

increase in the greenhouse effect, air pollution, and fire suppression expenditures. Furthermore, it 

reduces the capacity of forest regeneration with coupling impacts of drought and temperature 

increase. Therefore, it is required to have evolved fire suppression tactics including use of various 

systems in different geographical locations to fight wildfires and prevent the resulting damages. The 

evolved fire suppression tactics can be comprised of various systems by making use of ground, air, 

and space vehicles such as bulldozers, helicopters, and satellites. Developing such a system 

provides a more effective fire suppression method by combining and managing independent 

agencies. The need of such a system can be disposed of using a System of Systems (SoS) approach 

according to the Maier criteria [3]. Therefore, the optimal firefighting mission effectiveness is not 

guaranteed by solely focusing on a single constituent system or aircraft, but requires a SoS driven 

aircraft design approach. 

The ground-based systems face several limitations and do not offer an optimal solution while fighting 

with large wildfires and they require assistance of air-based systems. During firefighting, the 

collaborative work done by air and ground-based systems have a substantial effect on obtaining 

optimal coverage of wildfire [4] by increasing the efficiency of reducing fire intensity and fire spread 

rate and the effectiveness by providing safe fire-line construction [5]. The assistance can be through 

detecting, monitoring, and suppressing the fire.  

While Unmanned Aerial Vehicles (UAVs) are commonly considered for monitoring and detecting fires 

in the literature, the available research is very limited with fire suppression by UAVs [6]. According 

to [7], there is a vast exploration need in the literature to determine the viability of UAVs in fire 

suppression and its expenditures. However, the on-going development of electric Vertical Take-Off 
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and Landing (eVTOL) aircraft might also benefit the deployment of such aircraft for firefighting [8]. 

The developments regarding artificial intelligence and autonomous operations will enable quick 

deployment of aerial firefighting fleets in harsh unsafe environments. Currently, no such advanced 

aircraft are utilized for aerial firefighting. 

This research aims to fill the abovementioned gap in the literature by providing a large-scale SoS 

simulation framework to execute suppression of wildfires using eVTOL UAVs. We have presented 

the general framework at a previous conference [9], where initial investigations on the aerial 

firefighting effectiveness have been conducted. In this paper, the framework is extended by a cost 

model in order to find not only effective, but also cost efficient aircraft architectures and fleets for 

wildfire suppression. For this purpose, an initial Measure of Effectiveness (MoE) that involves aerial 

firefighting effectiveness and cost is established and investigated. 

2. Literature Review on Fire Models 

There have been many attempts to model and simulate the complex phenomenon of fire propagation 

in natural environments. The fire spread can be expressed in myriad ways and categorized using 

different approaches. The classification of fire propagation can be done considering deterministic 

and stochastic modeling approaches and/or, a vector-based approach with an adaption of Huygens’ 

wave principle and grid-based (raster-based) approach with cell automata or bond percolation [10]. 

However, there is no strict distinction between models with the existing fire modeling systems and 

hybrid fire modeling systems include multi-fire models for different cases. For an instance, a 

commonly used software for wildfire, FARSITE [11] uses different mathematical models for surface 

fire spread, spotting fires, or fuel moisture modeling and uses a vector-based approach for portraying 

fire front. Similarly, a deterministic fire simulator, Prometheus [12] is a vector-based simulator that 

uses physics-based differential equations with Huygens’ wave principle.  

Even though there are various ways to classify fire propagation simulators, it is possible to combine 

the available simulators under three main categories as empirical-semi empirical, physical-semi 

physical, and simulation and mathematical models based on the comprehensive study done by 

Sullivan [10,13,14]. The physics-based models use physics and/or chemical-based differential 

equations with numerical solutions for expressing fire spread. These models consider limited areas 

with laboratory scales and they are computationally expensive due to their complex nature. In 

addition, even though they are proven to give more accurate results than empirical models for some 

studies [15,16]; once the complexity increases, the prediction accuracy becomes questionable due 

to the non-linear nature of fire spread. Empirical-semi empirical models rely on experimental statistics 

based on observation to model fire behavior. Semi-empirical models follow the physical laws while 

obtaining the statistical correlation. Due to their nature, they can be easily implemented and require 

lower computational power compared to the physics-based models. However, they are limited with 

experimental data and they are not flexible to extend for different fire behaviors and they include 

substantial approximations. Lastly, the simulation and mathematical analogous model rely on 

mathematical concepts that express the fire spread based on coincidental similarities.  

For simulation models, there are two common approaches as grid-based and vector-based for 

modeling a fire spread as shown in Figure 1. While the grid-based approach uses square or 

hexagonal cell interactions to represent fire spread, the vector-based approach uses continuous 

moving with polygonal expanding in time and space to approximate the fire front. The raster-based 

approaches are relatively easy to implement and computationally less expensive. In addition, the 

raster-based models are more adaptable to heterogeneity in vegetation, topography, and weather 

conditions. Cell Automata (CA) models are one of the most widespread uses of the raster-based 

approach in recent years. CA models do have not only simple structure and low computational 

complexity, but also are flexible with coupling other models. For example, the fire spread time 

accuracy is easily improved by implementing the time correction model to the CA model in Rui et 

al. [17]. Similarly, the CA model is improved for detecting fire spotting by implementing a relation 

considering wind and fire interaction to allow a fire to spread to nonadjacent cells [18]. Even though 
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Figure 1 – Grid-based model using equally sized cells with Moore neighbor directions (left) [19] and 
vector-based fire spread model expanding both space and time (right) [11]. 

most of the recent studies include vegetation type, topography, and weather conditions for 

characterizing the cells, the relations between adjacent cells may slightly differ while estimating the 

rate of spread. The rate of spread is can be calculated stochastically by assigning the fire spread 

probability factor to each cell as described in [18,20] by using an elliptical distribution scheme to 

generate new ellipses each time step in each new cell as in [21] or by formulating the relationship 

between physical, statistical, and empirical data mentioned as in [17,19]. 

Even though raster-based and vector-based are commonly used in fire spread models, there exist 

different approaches in the literature. FireCast [22] uses a deep learning approach to predict future 

fire growth provided by topography and weather conditions data. The method is computationally less 

expensive and easy to implement and offers fire spread predictions in high-risk areas. Another use 

of machine learning to predict the fire spread is shown by implementing a deep reinforcement 

learning algorithm to an online wildfire simulator presented in [23]. The study shows that 

reinforcement learning methods can outperform physics-based models as long as enough data is 

provided to the algorithm. WIFIRE [24] introduces a different approach by providing a software 

infrastructure real-time simulation driven by satellite and sensor data to predict the fire spread. Even 

though the high accuracy and near real-time response availability are great advantages for predicting 

the fire spread, the complexity of structure and computational cost bring disadvantages to the model. 

3. System of Systems Aerial Firefighting Framework 

The design of the SoS framework and its components, namely aircraft design, simulation, and cost, 

are expanded upon in this chapter. 

3.1 Framework Definition 

In order to structure the SoS design, a framework is developed to establish the key variables of the 

design, construct the SoS model, execute the simulations, and analyze the output data to constrain 

the design space (see Figure 2). 

The concept of operations of current firefighting and tactics, as described by firefighting handbooks, 

is implemented in the Multi-Agent-Based Simulation (MABS) with an approach where properties of 

the fire-model trigger predefined containment and suppression actions. Figure 2 depicts the vision 

of the fire fighting vehicle design and fleeting where the simulation drives the process. For various 

scenarios spanning multiple regions, environmental conditions and infrastructure distributions, 

simulations can be performed to identify the most efficient and robust fleet, aircraft design, and the 

SoS and System of Interest (SoI) level parameters that respectively constitute them. SoS parameters 

such as the fleet size, combinations, and distribution and their impact on the wildfire suppression can 

be investigated by this framework. The wildfire spread model is a medium fidelity model which 

considers the vegetation index, wind speed & direction, humidity and terrain.   
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Figure 2 – Framework for system of systems driven wildfire fighting aircraft design. 

At the SoI/aircraft level, parameters such as velocity, payload capacity, range, and configuration 

architecture can be varied and their impacts on the MoE analyzed. Furthermore, the framework can 

also be used to investigate at the sub system level varying battery parameters and water retrieval 

and dropping system parameters. For wildfire suppression, multiple heterogeneous fleet of vehicles 

need to be designed for optimal combined operations. The simulation acts as the testbed on which 

different homogenous and heterogenous fleets can be analyzed and evaluated. As a simple example 

of what the simulation could help answer: the question of whether a large fleet of small agile aircraft 

or a small fleet of large aircraft would perform better at wildfire suppression. Moreover, simulations 

can help find the ideal balance between the multiple architectures within a fleet and help in driving 

the design of the vehicle or fleet.  

3.2 Aircraft Design 

Generally, the aircraft design methodology and operational considerations for wildfire suppression 

have been presented in [9] and are summarized in this section. 

Applying the aircraft design methodology by Brown and Harris [25] allows for fast first order 

conceptual eVTOL aircraft design. Here, different eVTOL aircraft configurations or architectures, 

namely multirotor, compound helicopter, lift + cruise, and tiltrotor, are sized and evaluated for their 

performance in hover and cruise flight state. The underlying methods consist of momentum theory 

for hover and steady level flight equations for cruise segments. The Maximum Takeoff Mass (MTOM) 

of the electric aircraft simply consists of payload mass, battery mass, and empty mass. At that, the 

payload is a mission requirement, the battery is sized according to the mission performance, and the 

empty mass is determined by an assumed empty mass fraction for each eVTOL aircraft architecture. 

For aerodynamics and performance computations, the maximum disk loading and lift-to-drag ratio of 

the respective architecture are assumed. The aforementioned eVTOL aircraft architectures are 

modeled with their respective performance characteristics as utilized by [25]. This is a simple 

approach to conceptually design eVTOL UAVs for wildfire suppression and to propagate the design 

performance of one vehicle to the fleet level. The design process will be updated in future work. In 

fact, we have presented an extended approach in [26], where the eVTOL aircraft design methodology 

was refined. 

The sizing mission requirements are based on the underlying wildfire suppression scenario. 

Accordingly, a short-range cruise mission of 30 km and a mid-range cruise mission of 60 km are 

considered. Regarding the battery technology level, an advanced battery pack specific energy of 

300 Wh/kg is assumed, where the maximum depth of discharge is limited to 80%. Even though it 

might not be required for non-urban operations of UAVs, the sizing mission also contains a 20-minute 

loiter for battery energy reserves. Regarding the payload requirement, two payload masses, 250 kg 

and 500 kg, are taken into consideration. Finally, the UAVs are expected to operate fully automated 

or autonomously and are monitored by a remote pilot.  
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3.3 Multi-Agent-Based Simulation 

While the MABS for the wildfire fighting case study will be explained in the following, the detailed 

work on the underlying simulation toolkit has been extensively described in [27]. 

The simulation model has four major components, which will be explained in the following. The 

components are namely: 

1) Wildfire model 

2) Agent model 

3) Wildfire suppressant drop model 

4) Aircraft performance and energy model 

3.3.1 Wildfire and Suppression Drop Model 

In the Agent-Based Simulation, a medium-fidelity CA wildfire spread model of Rui et al. [17] is 

incorporated [9,27]. This CA-based fire model was chosen because of its ability to model the 

influence of combustibles, temperature, humidity, wind and terrain in physical time steps. The use of 

physical time steps is necessary in order to allow coupling with the firefighting agents. Moreover, the 

ability to model the temperature, humidity, and wind enables the representation of the reduced 

intensities of wildfires at night. The agent’s attack the wildfire by suppressant drops of which the 

dimensions are governed by the suppression drop model. The Suppression drop model was 

developed using a regression based on data generated by USDA Forest Service during real-scale 

water drop tests [28] relating the suppressant patch dimensions to payload and suppressant flow 

rate. Further details on the implementation is given in [9]. 

3.3.2 Agent Model 

The agent model is composed of the fire fighting vehicles which actively fight the fire using the logic 

in Figure 3 as also implemented in previous studies [9].  

 

 
Figure 3 – Firefighting agent logic. 

At the current stage, fire detection is only modelled through an imposed time delay termed as the 

response time. Once the fire is ignited in the simulation, the agents are made to hold until the 

response time has elapsed. Afterwards, the agents select an initial fire position based on proximity. 

After the initial fire front is selected, the agents begin their approach to the chosen fire front while 

tracking the fire front. The fire front is tracked in each step of the agent by considering a neighborhood 

around the chosen fire front and updating the chosen fire front to the point of maximum value within 

that neighborhood considering the fire spread rate and the proximity to priority locations.  
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By this way, the agents attempt to suppress the wildfire at the points of highest important or the 

simply the highest spread if the priority locations are disabled. In the case that the targeted fire 

position is suppressed by a different agent or is burnt out, the agent selects a new fire front based 

on the aforementioned criteria. After a successful attack on the fire front, each agent then evaluates 

whether or not it has sufficient endurance to perform another suppression attack. If possible, the 

agent selects the closest point to resupply either at a base or a water source, if not possible the 

agent returns to the base to refuel. 

3.3.3 Aircraft Performance and Energy Model 

The Agent-Based Simulation employs an energy model to track and update the energy available to 

the aircraft considering its flight state and payload in each iteration of the simulation. The maximum 

battery energy is reduced by the usable energy fraction and the reserve energy where the remainder 

is made available to the agent. The power consumption data for each state of flight and payload 

configuration is provided to the MABS through the aircraft sizing tool. In the simulation, the agents 

can recharge for subsequent missions at the bases.  

3.4 Cost Model 

The total operating cost is calculated on a mission basis combining both operating and capital 

expenses. The operating expenses consist of direct and indirect operating costs. The direct operating 

cost is divided into remote pilot cost, maintenance cost, and energy cost while the indirect operating 

cost is estimated as a fixed fraction of direct operating cost. The capital expenses only consider the 

aircraft depreciation cost per mission. To calculate the depreciation cost, the acquisition cost of 

aircraft is included as an intermediate step in the cost model. The acquisition cost includes airframe, 

avionics, and battery costs.  

3.4.1 Acquisition Cost 

Airframe cost depends on the maximum take-off mass, the airframe price per unit mass, and the 

mass fraction of the airframe, which differs from one aircraft architecture to another [25].  

𝐴𝑖𝑟𝑓𝑟𝑎𝑚𝑒 𝑚𝑎𝑠𝑠 =  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑎𝑘𝑒𝑜𝑓𝑓 𝑚𝑎𝑠𝑠 ∗ 𝐸𝑚𝑝𝑡𝑦 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

𝐴𝑖𝑟𝑓𝑟𝑎𝑚𝑒 𝑃𝑟𝑖𝑐𝑒 = 𝐴𝑖𝑟𝑓𝑟𝑎𝑚𝑒 𝑝𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑚𝑎𝑠𝑠 [
$

𝑘𝑔
]  ∗ 𝐴𝑖𝑟𝑓𝑟𝑎𝑚𝑒 𝑚𝑎𝑠𝑠 [𝑘𝑔]  

The avionics cost is approximated as a fixed value shown in Table 1. The cost of avionics depends 

on the autonomy and technology readiness level of unmanned aircraft systems. Autonomous aircraft 

has a higher avionics cost compared to piloted aircraft, however, it doesn’t require the installation of 

passenger entertainment systems. 

The battery cost depends on the required number of batteries and battery lifetime for a single aircraft. 

Since the lifetime of a battery is less or equal to the lifetime of an aircraft, the required number of 

batteries must be estimated based on the aircraft usage. The required number of batteries can be 

estimated by relating the number of missions required from an aircraft during its lifetime and the 

number of missions available per unit battery. Therefore, the battery cost is calculated using the 

relations in [29]. 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑚𝑎𝑠𝑠 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑎𝑘𝑒𝑜𝑓𝑓 𝑚𝑎𝑠𝑠[𝑘𝑔] ∗ 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑀𝑎𝑠𝑠 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑚𝑎𝑠𝑠[𝑘𝑔] ∗ 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 [
𝑘𝑊ℎ

𝑘𝑔
] 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑒𝑟 𝐿𝑖𝑓𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑌𝑒𝑎𝑟 ∗ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑖𝑓𝑒 𝑇𝑖𝑚𝑒 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑝𝑒𝑟 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 =  
𝐿𝑖𝑓𝑒 𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝐵𝑎𝑡𝑡𝑒𝑟𝑦

𝐶𝑦𝑐𝑙𝑒 𝑝𝑒𝑟 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 
 

𝐶𝑦𝑐𝑙𝑒 𝑝𝑒𝑟 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐸𝑛𝑒𝑟𝑔𝑦

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑔𝑒𝑛𝑡𝑠
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑒𝑟 𝐿𝑖𝑓𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑝𝑒𝑟 𝐵𝑎𝑡𝑡𝑒𝑟𝑦
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𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑃𝑟𝑖𝑐𝑒 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑘𝑊ℎ] ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∗  𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐶𝑜𝑠𝑡 [
$

𝑘𝑊ℎ
] 

3.4.2 Operating Expenses 

The operating expenses are calculated as the summation of remote pilot cost, maintenance cost, 

energy cost, and indirect operating cost. The model does not consider the fees paid to air traffic 

control and the landing fees for wildfire suppression missions. 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 = 𝑅𝑒𝑚𝑜𝑡𝑒 𝑃𝑖𝑙𝑜𝑡 𝐶𝑜𝑠𝑡 + 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡 + 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡 

The wildfire suppression mission is assumed as an autonomous flight mission. Therefore, the 

missions are guided by a remote pilot who is responsible for the fleet on the ground. The remote pilot 

cost is calculated by modifying the relation mentioned in [25] by multiplying by the fleet size to 

estimate the cost per mission. The number of aircraft assigned to remote pilot is assumed to be equal 

to the fleet size and the average pilot wrap rate is shown in Table 1. 

𝑅𝑒𝑚𝑜𝑡𝑒 𝑃𝑖𝑙𝑜𝑡 𝐶𝑜𝑠𝑡 =
𝑃𝑖𝑙𝑜𝑡 𝑊𝑟𝑎𝑝 𝑅𝑎𝑡𝑒[

$
ℎ𝑜𝑢𝑟

] ∗ 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒[ℎ𝑜𝑢𝑟]

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑝𝑒𝑟 𝑅𝑒𝑚𝑜𝑡𝑒 𝑃𝑖𝑙𝑜𝑡
∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑔𝑒𝑛𝑡𝑠 

The maintenance cost per mission depends on the mechanic wrap rate, the ratio of maintenance 

man-hours to flight hours, mission time, and the number of agents [25]. 

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡 = 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐 𝑊𝑟𝑎𝑝 𝑅𝑎𝑡𝑒 [
$

ℎ𝑜𝑢𝑟
] ∗

𝑀𝑀𝐻

𝐹𝐻
∗ 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 [ℎ𝑜𝑢𝑟] ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑔𝑒𝑛𝑡𝑠 

For electric aircraft, the ratio of Maintenance Man-Hours (MMH) to Flight Hours (FH) has lower 
values provided that electric motors require less maintenance and are easily accessible. 
The energy cost per mission depends on the total amount of energy used in the mission and the 

electricity price.  

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡 = 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 [𝑘𝑊ℎ] ∗ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑃𝑟𝑖𝑐𝑒 [
$

𝑘𝑊ℎ
] 

Indirect operating cost is calculated as a fixed fraction of the direct operating cost. In the wildfire 

suppression mission, indirect operating cost includes a hangar to store and maintain the vehicles in 

addition to the necessary infrastructure for take-off and landing.  

3.4.3 Capital Expenses 

The capital expenses only consider the depreciation cost of aircraft in each mission. The depreciation 

cost refers to the decrease in the value of an aircraft over time. The value of assets after their useful 

life is not included in the capital expenses. The insurance cost and finance cost are also not included 

in the capital expenses for the wildfire suppression mission.  

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 = 𝐴𝑖𝑟𝑓𝑟𝑎𝑚𝑒 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 + 𝐴𝑣𝑖𝑜𝑛𝑖𝑐𝑠 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 + 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 

Exponential decay over time is assumed for airframe depreciation referring to [30].  

𝐴𝑖𝑟𝑓𝑟𝑎𝑚𝑒 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 [
$

𝑚𝑖𝑠𝑠𝑖𝑜𝑛
] =

𝐴𝑖𝑟𝑓𝑟𝑎𝑚𝑒 𝑃𝑟𝑖𝑐𝑒 ∗ (1 − exp(−𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒))

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟
 

The equation used in the model implicitly approximates the lifetime of the aircraft as 10 to 15 years. 

To find the depreciation cost per mission, the equation is modified by dividing by the number of 

missions per year. 

The avionics depreciation cost per mission is estimated in the same manner as the airframe 

depreciation following [30]. 

𝐴𝑣𝑖𝑜𝑛𝑖𝑐𝑠 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 [
$

𝑚𝑖𝑠𝑠𝑖𝑜𝑛
] =

𝐴𝑣𝑖𝑜𝑛𝑖𝑐𝑠 𝑃𝑟𝑖𝑐𝑒 ∗ (1 − exp(−𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒))

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟
 

Battery depreciation cost is assumed as a straight-line approximation. The number of missions 

provided by the battery is found by dividing the life cycle of the battery by the required battery cycle 

per mission.  
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𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 [
$

𝑚𝑖𝑠𝑠𝑖𝑜𝑛
] =

𝑈𝑛𝑖𝑡 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑃𝑟𝑖𝑐𝑒[$]

𝐿𝑖𝑓𝑒 𝑜𝑓 𝐵𝑎𝑡𝑡𝑒𝑟𝑦
𝐶𝑦𝑐𝑙𝑒 𝑝𝑒𝑟 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 

 

3.4.4 Parameters 

Finally, the cost model section is concluded by Table 1, which summarizes the underlying cost model 

parameters, the assumed values, and corresponding references. 

Table 1 – Cost model parameters. 

Parameter Value Reference 

Airframe price, USD/kg 1,102 [25] 

Avionics price, USD 100,000 [25] 

Depreciation rate, % 7.5 [30] 

Electricity price, USD/kWh 0.2 [31] 

Battery specific cost, USD/kWh 300 [29,31] 

Lifetime, years 15 [30] 

Number of Missions, missions/year 60 [32] 

Mechanic wrap rate, USD/hour 75 [25] 

MMH to FH ratio, dimensionless 0.6 [25] 

Pilot wrap rate, USD/hour 150 [33] 

Indirect operating cost, % 20 Assumed 

4. Results and Discussions 

The evaluation parameters used in this study for the analysis of results are as follows: 

• Number of Agents [count] 
Total number of wildfire suppression aircraft deployed 

• Energy [kWh] 
Represents the total energy used by each fleet and is indicated by marker size 

• Burnt Area [football fields] 
The total burnt forest area in [football fields], i.e. 5,000 m2 per football field 

• Operating Cost [USD] 
The total operating cost per mission (incl. depreciation) of each fleet 

• Measure of Effectiveness (MoE) [nondimensional] 
Combines firefighting effectiveness and cost with minimum indicating optimality 

𝑀𝑜𝐸 = 0.5 ∗
𝐵𝑢𝑟𝑛𝑡 𝐴𝑟𝑒𝑎

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑢𝑟𝑛𝑡 𝐴𝑟𝑒𝑎
+ 0.5 ∗

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡
 

The parameters investigated in this study and their values are given in Table 2, where the underlined 

values represent the baseline case. Each sensitivity study is carried out in comparison with the 

baseline case. 
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Table 2 – Wildfire suppression case study parameters. 

Parameter Value 

Design  

Payload Capacity 250 kg 

500 kg 

Cruise Speed 20 m/s 

30 m/s 

40 m/s 

Range 30 km (short) 

60 km (mid) 

Operations  

Operational Range 5 km average (short) 

10 km average (high) 

Response Time 20 min 

25 min 

4.1 General Cost Model Discussions 

The results demonstrate that the total operating cost is substantially dominated by capital expenses. 

The domination of capital expenses for wildfire suppression missions is expected due to the small 

number of missions per year. Therefore, the number of missions strongly affects the capital expenses 

which decrease as the use of aircraft increases. Consequently, changes in the aircraft configuration 

and maximum take-off mass have substantial effects on the total operating cost as well.  

While the airframe depreciation cost is the leading cost component in capital expenses, the battery 

depreciation cost has a considerably low effect on them. On the other hand, the operating expenses 

are driven by maintenance cost and energy cost, and the pilot cost is reduced significantly due to 

autonomy. The total operating cost is hardly sensitive to any changes in the parameters for operating 

expenses. Overall, both capital and operating expenses are strongly sensitive to the fleet size. 

4.2 General System of Systems Simulations Capabilities 

Before addressing the SoS simulation results in the following, the authors would like to introduce 

some qualitative results to demonstrate the capability of the framework. Therefore, Figure 4 shows 

an active wildfire suppression mission on the left. Here, the active fire front is represented by red 

cells, whereas the burnt area is shown by brown cells. The firefighting UAVs are shown as blue disks. 

Furthermore, the completed successful mission can be seen in Figure 4 on the right, where 

suppressed area is represented by grey cells. 

  
Figure 4 – Active wildfire suppression mission (left) and completed successful wildfire suppression 

mission (right). 

  



10 

EXPLORATION OF AERIAL FIREFIGHTING FLEET EFFECTIVENESS AND COST 

 

 

The MABS also provides the capability or feature to prioritize certain locations. While in this study 

this capability is not utilized, it was generally developed to model the priority protection areas such 

as housing areas, which would be prioritized in a real-life suppression scenario. Thus, Figure 5 

presents the capability for completeness. On the left screenshot in Figure 5, a failed wildfire 

suppression mission is shown, where the feature is disabled. This can be found, since the protection 

locations (represented by yellow icons) are fully burnt. Instead, the UAV bases and off-base water 

sources were protected by the UAVs. However, enabling the feature for priority protection areas 

shows that these areas can be saved as display on the right screenshot in Figure 5. More detailed 

discussions on this capability demonstration can be found in [9]. 

   
Figure 5 – Failed wildfire suppression missions with protection locations disabled (left) and 

protection locations enabled (right). 

4.3 System of Systems Simulations of Design Parameters 

In the following sections, the impact of top level aircraft design parameters on the aerial firefighting 

effectiveness and cost will be presented. Accordingly, the cruise speed, the payload capacity, and 

the design range are studied. 

4.3.1 Cruise Speed 

The sensitivity of three design cruise speeds on the firefighting effectiveness is presented in Figure 

6, where the number of agents is plotted against the Measure of Effectiveness and its individual 

components. The first clear trend is that larger fleet sizes perform better in fire suppression as 

expected. Considering the fleet size of 8, it is observed that the design cruise speed of 30 m/s results 

in the most effective fleet for the multirotor and compound helicopter architectures. In comparison, 

for the same fleet size, the lift + cruise and tiltrotor architectures are the most effective with 40 m/s 

cruise speed. This shows that the optimal fleet size and speed is dependent on the architecture in 

consideration. At the high speeds of 40 m/s, the compound helicopter and multirotor architectures 

suffer in performance due to the energy limitations. This can be seen from the marker sizes as it 

represents the total energy consumed by each fleet. Considering the operating cost, larger fleets 

cost more to operate as expected. It is found that depending on the design cruise speed, the 

cheapest architecture to operate changes between multirotor for the lower speeds and the compound 

helicopter for the higher speeds. Combining these two factors together into the MoE, an optimal fleet 

size can be obtained for each architecture and cruise speed. For the lowest cruise speed, the fleet 

size of 10 is found to be optimal for all architectures, whereas for the middle cruise speed the fleet 

size of 8 is optimal for multirotor and compound helicopter architectures and a fleet size of 12 is 

optimal for the others. A fleet size of 10 is found to be optimal for the highest cruise speed in 

consideration. 
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Figure 6 – The sensitivity of cruise speed on the aerial firefighting effectiveness and cost. 

4.3.2 Payload Capacity 

The effect of payload capacity on the effectiveness of aerial suppression is shown in Figure 7. 

 

Figure 7 – The impact of payload on the aerial firefighting effectiveness and cost. 

In general, the higher payload capacity of 500 kg is shown to improve aerial firefighting effectiveness 

compared the 250 kg payload capacity. Conversely, the fleet with the higher payload is more 

expensive to operate. The optimal fleet size is found to be dependent on the payload and 

architecture. In particular, for the lift + cruise architecture, the smaller payload fleet is found to be 

optimal with 12 aircraft whereas for the larger payload fleet 10 aircraft is optimal. For the multirotor 

architecture, for both the payload capacities, a fleet size of 8 is found to be optimal.  
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4.3.3 Design Range 

The effect of the design range on the aerial firefighting effectiveness considering short (30 km) and 

mid (60 km) ranges is given in Figure 8. In terms of the burnt area both design ranges perform 

similarly. However, for the mid design range the vehicles are oversized which mostly leads to higher 

energy consumption (indicated by marker size) and operating cost. Consequently, it is observed that 

the best MoE is slightly worse for the mid design range than the short design range. In addition, 

some architectures (e.g. multirotor) are very sensitive to higher design range and as such this 

parameter must be chosen carefully. 

 

Figure 8 – The impact of design range on the aerial firefighting effectiveness and cost. 
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4.4 System of Systems Simulations of Operational Parameters 

In the following sections, the impact of operational parameters on the aerial firefighting effectiveness 

and cost will be presented. Here, the operational range, which is the distance between the fire ignition 

center and the aircraft bases, is varied. Furthermore, the impact of the response time until the 

firefighting aircraft are deployed is studied. 

4.4.1 Operational Range 

Figure 9 shows the results for a wildfire scenario, in which the operational range is doubled from 

5 km (short) to 10 km (high), whereas the aircraft are sized for the low design range of 30 km. It 

should be noted that both operational ranges are averaged. It is found that the number of successful 

fleets clearly diminishes for the high operational range. Accordingly, this effects the operating cost, 

which can be seen by the significant cost increase for the smaller fleet sized. Consequently, the best 

MoE of the short operational range scenario cannot be reached in the high operational range 

scenario. This operational scenario results in a fleet size requirement of at least 10 fixed-wing cruise 

eVTOL aircraft architectures, i.e. lift + cruise or tiltrotor, or 12 eVTOL aircraft of any architecture. 

Compared to the low operational range, where 8 aircraft are sufficient, an increased fleet size of 25% 

or even 50% is required. 

 

Figure 9 – The impact of operational range on the aerial firefighting effectiveness and cost. 

4.4.2 Response Time 

Eventually, Figure 10 shows the impact of a delayed firefighting response on the effectiveness and 

cost. If the response time is prolonged from 20 min to 25 min (by 5 min or 25%), most previously 

successful fleets fail to suppress the fire successfully. As a consequence, the operating cost shows 

a steeper increase compared to the baseline response time of 20 min. This step increase affects the 

MoE, which shows a wavy trend. Regarding the fleet design, the fleet size must be increased. This 

means that the 12 instead of 8 aircraft are required for the delayed response time scenario. For this 

case study, an only 5 min or 25% longer response time leads to 4 additionally required aircraft or a 

50% increased fleet size. 
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Figure 10 – The impact of response time on the aerial firefighting effectiveness and cost. 

5. Conclusions and Future Work 

The aim of this study was to establish an initial MoE for wildfire suppression that involves aerial 

firefighting effectiveness and cost. The inclusion of cost estimations allows to identify an optimal fleet 

for a given wildfire scenario and fleet composition. It was investigated how various design and 

operational parameters impact the MoE and optimal fleet size. 

Generally, the aerial firefighting fleet and its interaction with the fire model is a complex SoS, where 

analytical methods cannot evaluate the fleet effectiveness based on fire spread and aircraft 

performance. Hence, a small change in one of the aircraft design or operational parameters will have 

a snowball effect throughout the mission. Therefore, the investigations carried out in this study and 

the results highlight the importance of the SoS approach to the design and fleet planning as well as 

management of wildfire suppression aircraft.  

Several sensitive parameters such as cruise speed, payload, and response time were identified and 

the complex impacts on the effectiveness were highlighted. An ideal combination of these 

parameters, along with aircraft performance, needs to be identified for a robust fleet that can sustain 

its effectiveness over various environmental conditions and terrains. Furthermore, this work proved 

that there is need for simulation embedded SoS approaches for such non-linear complex 

explorations of emergence. 

Future work includes exploring more subsystem, SoI or SoS level parameters and fine-tuning of the 

MoE to better represent the priorities of the stakeholders in terms of financial and environmental 

costs. While in this study the terrain and environmental conditions were fixed, the capability exists in 

the MABS to vary the temperature, wind, and other environmental conditions in addition to the 

vegetation indices of the terrain and its topography. Various environmental conditions and terrains 

can be included in the sensitivity investigations to aid in the identification of the parameters that 

contribute most to a robust aerial firefighting fleet. Moreover, heterogenous fleets can be investigated 

and compared to homogenous fleets. In addition, the simulation can be expanded to extended attack 

scenarios with the inclusion of ground agents and parallel as well as indirect attack strategies. In 

terms of aircraft design, more sophisticated methods will be incorporated in the design process of 

the wildfire suppression UAVs together with refined modelling of subsystem level performance as 

performed in other works by the same authors [26]. Moreover, the simulation of historical fires can 

be attempted together with their suppression using various fleet sizes and aircraft architectures. 
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