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Large wildfires are increasingly occurring phenomenon in several since the past few 

years. The suppression of wildfires is complex considering heterogeneous independent 

constituent systems operating together to monitor, mitigate, and suppress the fire. In 

addition, the management of the disaster response involve multiple institutions in 

collaboration.  Recognition of this wildfire fighting scenario, as a System of Systems (SoS) 

is valid. Aerial vehicles may play a big role in firefighting considering monitoring and 

suppression at early stages when  the fire is still small. Thus, there is scope for designing a 

new Unmanned Aerial Vehicle (UAV) with a payload of 250 kg to 500 kg  for aerial forest 

fire suppression, using a SoS wildfire simulation driven aircraft design approach, where 

the individual optimum performance of a system, especially of a new aircraft for 

firefighting, does not guarantee optimum overall firefighting mission effectiveness. 

Whereas an optimum combination of fleet, technology and operational tactics can 

effectively suppress fire. For this reason, this research focuses on four different aspects: 

1) Applying the inverse design paradigm to a wildfire suppression air vehicle by coupling 

a fire propagation cellular automata model with a stochastic agent-based simulation of 

an evolved firefighting SoS. An efficient SoS framework to Evaluate fleet performance.  

2) Four System of systems – system – subsystem interlinking research questions are 

addressed with corresponding sensitivity results. The impact of wildfire based on 

vehicle fleet size, vehicle architecture (Tiltrotor, Compound Heli, Multirotor or Lift 

cruise), payload carrying capability, response time and cruise speed.  

3) The evolution of perfect combination of aerial vehicle fleet with different vehicle 

architectures, technologies and performances using simulations. 

4) Obtaining a set of system level (aircraft level) Measures of Performance (MoP) for the 

large suppression UAVs that produce improved SoS-level Measures of Effectiveness 

(MoE) during an initial attack quantified by containment time and total fire burnt area. 

As addressed by research questions and results. The response time and Number of Aircraft 

has large impact on success of the firefighting mission. As the time advantage deteriorate, 

the wild fire expands exponentially.  

I. Introduction 
As the northern part of the earth warms at a faster pace, the unusual heat is causing forests to dry out, leading to 

an unprecedented severity of wildfires. In Europe alone, the area susceptible to fire is projected to increase 200% 

by the end of the 21st century [1]. Already the intense forest-fires in Sweden during July of 2018 prompted the 

activation of the European Union Civil Protection Mechanism which constituted the largest forest fire operation 

of the last decade in Europe, where 80 vehicles and 360 personnel were deployed from seven countries [2]. 

Therefore, the positive emergent ability to contain such wildfires is possible through the collaboration of various 

operationally independent and useful heterogeneous systems that are geographically distributed. These systems 

include ground, air, and space vehicles, ranging from bulldozers and fire engines, to helicopters, fire monitoring 

air vehicles, and earth observation satellites. Often these vast systems are operated by separate agencies and are 

therefore managerially independent and evolve their capabilities on their own. 

 

Thus, recognition of this firefighting scenario, a complex system, as a System of Systems (SoS) is valid 

according the Maier criteria [3]. Thus, the scope of designing a new air vehicle  for fire suppression, using a System 
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of Systems oriented flight vehicle design approach, where the individual optimum performance of a system, 

especially of a new aircraft for firefighting, does not guarantee optimum mission effectiveness.  

 

The use of autonomous vehicles for combating wildfires is not a new avenue of research; however, compared 

to using Unmanned Aerial Vehicles (UAVs) for fire detection and fire-front monitoring, [4] concluded that the 

published research on using UAVs for fire suppression is scarce and lacks detail. Furthermore, according to [5] 

much work remains to make the use of UAVs affordable and technically viable for firefighting. Even rarer is the 

analysis of suppression UAVs from a SoS perspective. The usefulness of UAVs during extended attack scenarios, 

necessitating the use of ground assets, requires further research. In fact, a significant increase in the probability of 

successful containment is observed when aircraft and ground assets collaborate [6], since aircraft enhance the 

effectiveness and efficiency of ground suppression forces and make fire-line construction safer and easier by 

decreasing the fire intensity and slowing fire-front propagation [7]. Therefore, this research will serve to fill this 

gap in present literature by simulating a larger-scale SoS comprised additionally of ground units and legacy 

manned aircraft that execute direct, parallel, and indirect attack strategies dynamically. In doing so, this research 

can quantify effectiveness in worst-case wildfire scenarios where extended attack is necessary. 

 

In order to structure the SoS design, a framework is developed to establish the key variables of the design, 

construct the SoS model, execute the simulations, and analyze the output data to constrain the design space. The 

concept of operations of current firefighting and tactics, as described by firefighting handbooks, is implemented 

in the Multi-Agent Based Simulation (MABS) with a rule-based approach where properties of the fire-model 

trigger predefined containment and suppression actions. Fig. 1 depicts a rule-based suppression strategy, where 

the incident commander dynamically assigns assets and firefighting strategies to specific fire-fronts based on 

visibility and intensity. Fig. 2 shows an envisioned coupling between the discrete cellular space and the continuous 

operational space in which the firefighting agents reside and interact. Finally, as it is important to represent 

uncertainty in a SoS, stochasticity will be incorporated into the simulation through use of probability distributions 

for variables such the start location and time of a fire, as well as environmental conditions such as wind and 

ambient temperature. 

 

 

Fig. 1 Proposed SoS wildfire suppression strategy 

 

 

Fig. 2 Coupling of fire model and firefighting 

agents 

 

Once a coupling between the fire-model and MABS is established, the Overall Effectiveness Criterion (OEC) 

will be used to assess the MoEs of the firefighting mission. For this research, the OEC of containment time and 

burnt area is used, which are typical indicators of success [8].  
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II. System of System Framework  
 

The following Fig. 3 provides the implementation of fire fighting vehicle design where the simulation drives the 

design process. As per Fig. 3 based on multiple scenario of wildfire; Efficient Vehicle configuration architecture 

need to be design for with best range, quick turnaround, low altitude terrain hugging flying quality, speed, water 

retrieval and water dropping subsystem. Multiple heterogeneous fleet of vehicles (suppression fighting and 

suppression super tankers, small rapid response vehicles) need to be designed for optimal combined operations. 

The simulation acts as the testbed on which different homogenous and heterogenous fleets can be analyzed and 

evaluated. As a simple example of what the simulation could help answer: the question of whether a large fleet of 

small agile aircraft or a small fleet of large aircraft would perform better at wildfire suppression. Moreover, 

simulations can help find the ideal balance between the multiple architectures within a fleet and help in driving 

the design of the vehicle or fleet. 

 

 

Fig. 3 Simulation embedded System of System aircraft design framework 

A.   Aircraft Design and Operations 

The aircraft design as first approach is evolved from the conceptual eVTOL aircraft design methodology by 

Brown and Harris [12]. Multirotor, compound helicopter, lift + cruise, and tiltrotor configurations are designed 

with their respective performance characteristics. This is a simplistic preliminary study to propagate the design 

performance of one vehicle to fleet level and to achieve the proof of concept for the purpose of designing UAVs 

for wildfire fighting. The underlying method utilizes momentum theory for hover segments and simple steady 

flight equations for cruise segments. It allows for investigation of various eVTOL aircraft configurations. The 

design method will be constantly evolved and updated in subsequent publications, in fact strides have been made 

parallel to this study in [Cite SSOS paper] to improve the aircraft design methodology. Beyond configuration 

effects of propulsion, weights, and aerodynamics, the aircraft technology assumes a battery pack specific energy 

of 300 Wh/kg with a usable energy fraction of 0.8. The aircraft are sized for a reserve loiter of 20 minutes for 

contingencies, which probably would not be required for unmanned vehicles operated in non-urban environments. 

The aircraft are expected to have autonomous operating capabilities with remote intervention if required. The 

mission profiles for the sizing process are provided in Fig. 4. For the same profile, a short-range sizing mission 

(30 km) and a mid-range sizing mission (60 km) are considered, varying only the cruise range. In Fig. 5, two 

possible simulation mission profiles are presented. To the left a single suppression mission and to the right an 

extended suppression mission with resupplying. Furthermore, two payload masses, 250 kg and 500 kg, are 

considered. 

 

 

Fig. 4 Sizing mission profile 

Cruise Loiter

Hover Hover
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Fig. 5 Simulation mission profile: (Left) Single suppression drop, (Right) Extended with resupply and 

further suppression drops 

B. Multi Agent-Based Simulation  

While the MABS for the wildfire fighting case study will be explained in the following, the detailed work on 

the underlying simulation toolkit is extensively described in a separate paper presented at this conference [13]. 

The simulation model has four major components, which will be explained in the following. The components 

are namely: 

1) Wildfire model 

2) Multi agent-based simulation 

3) Wildfire suppressant drop model 

4) Aircraft performance and energy model 
 
1. Wildfire Model 

The simulations advancement in this research is to incorporate the medium-fidelity Cellular Automata (CA) 

wildfire spread model of [9], as depicted in Fig 6Error! Reference source not found.. This CA-based wildfire 

spread model was selected due to its ability to model the influence of combustibles, temperature, humidity, wind, 

and terrain in physical time steps. Its use of physical time-steps is important when coupling it with the firefighting 

agents. Furthermore, the ability to model temperature, humidity, and wind are paramount to representing the 

reduced intensity of wildfires at night. 

 

Fig. 6 Wildfire simulation model 

 
 The basis of any CA model is the processing of information in surrounding cells in order to evaluate so-called 

transition rules. Formally, each cell within a CA model is represented by a set of cell-states described by  

 

 

Table 1.  
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Table 1  Specification of cellular automata fire states 

State Name Symbol Color Description 

Non-Flammable 𝑆0  A cell with no fuels (i.e. water, roads, rock, etc.) 

Combustible 𝑆1  A cell that has fuel content and can ignite (i.e. farmland, forest, houses, 

etc.) 

Early Burning 𝑆2  A cell that has ignited. If a cell transitions to early burning, then it will 

automatically transition to a full burning state at the next iteration. 

Full Burning 𝑆3  A cell that is fully ignited which has the capability to ignite neighboring 

cells. If all neighboring cells are either full burning, beyond the full 

burning state, or are non-flammable, then the cell will start 

extinguishing in the next iteration. 

Extinguishing 𝑆4  A cell in which the fire is rapidly losing intensity. If a cell has 

transitioned to this state, then it will be burnt in the next iteration. 

Burnt 𝑆5  A cell in which a fire has fully extinguished. It is assumed that these 

cells cannot be re-ignited as their fuel content is now zero. 

 

As shown by Fig. 7, the state of each cell depends on the values of its 8 neighboring cells, which constitutes a 

Moore neighborhood. As the simulation time advances with a discrete time step, Δ𝑡, the cells which are burning 

ignite neighboring cells with a rate of spread equal to the computed local spread rate, 𝑅. Computationally, as each 

cell in the array performs the same calculations and logical operations it is identical to convolution kernels used in 

image processing which are also called Sliding Window Algorithms (SWOs) and allows for massive 

parallelization. Due to how inverse design requires thousands of simulation runs, it is of vital importance to utilize 

this opportunity to reduce runtime. However, the performance of implementing the fire-spread model with Python 

objects would not have been acceptable due the high computational overhead spent on querying dynamic types. 

To avoid these traditional shortcomings of a dynamically typed language, the Numba package was used, which is 

a Just-in-Time (JIT) compiler that translates pure Python code into efficient machine code. Additionally, the 

parallelization functionalities of Numba enabled the wildfire spread model to target multi-core CPUs or GPUs as 

well as utilize the same device functions on both CPUs and GPUs, increasing code commonality. 

 

Unlike CPUs which handle data caching and control-flow much better, GPUs are built for data processing and 

are invaluable when the ratio of computations performed per data access is high. However, unfortunately GPU 

programming has a steep learning curve and poses challenges for novices such as increased complexity with 

managing different types of device memory [10]. Therefore, programming an efficient algorithm on the GPU 

requires a good understanding of the underlying architecture of the device. This also means that algorithms are 

rather architecture dependent and cannot be ported to the GPUs of different manufacturers easily. However, 

regardless of the challenges, due to the highly repetitive and independent nature of Sliding Window Algorithms 

(SWOs), utilizing GPUs for this task has been gaining popularity in research [10].  
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Fig. 7 Overview of Wildfire Spread Model 

 

2. Multi-Agent Based Modeling 

Each fire fighting vehicle is modeled as an agent the performance characteristics are embedded into the agent 

while simulations are performed (see Fig. 8). 

 

Fig. 8 Logic for Suppression UAV Agents 

3. Wildfire Suppressant Drop Model 

Initially the suppression patch dimensions were kept constant for all firefighting UAVs, regardless of their 

payload bearing capacity or any other variable. Thus, it was necessary to develop a low to medium-fidelity 

suppression patch model that could connect the aircraft parameters to suppression effectiveness. The main goal 

was to find a relation determining the suppression patch dimensions from aircraft payload mass and at most two  
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other input parameters. The suppressant drop experiment data, which was collected from [11], was obtained from 

a wide variety of aircraft types and delivery systems. In general, the delivery systems in the study can be first 

classified (as Model) into fixed-wing aircraft and rotorcraft. Next, the fixed wing aircraft delivery systems can be 

further divided into gravity deployment systems and pressurized systems, while the rotorcraft can be further split 

into the ones utilizing a so-called ”helibucket” and the ones using a fixed tank. This variety makes the data well 

suited for the SoS case study suppression model, since the model has to be able to predict the suppression patch 

dimensions for a large range of simulated firefighting aircraft. The data in [11] was generated by USDA Forest 

Service during real-scale water drop tests for different delivery systems. In total, 20 different aircraft types were 

included in the experiments. Some aircraft performed multiple runs and produced multiple data points while others 

only performed a single drop which resulted in a single data point for that type. The measurements were conducted 

by simply arranging cups in a grid pattern over the ground and collecting the water released from the aircraft. Next, 

the cups were closed and weighed. The results obtained gave information about the dimensions of the suppression 

patch, but also about the distribution of water over this patch. A top-down visualization of the drop patterns of 3 

different aircraft from the data-set can be seen in Fig. 9. Examples of the water drop distribution contours from 3 

different aircraft, flying left to right. Top: BV-107 helicopter using the 1,000-gallon (3,785 L) Griffith helibucket. 

Middle: CDF S-2T Turbo Tracker with 1,200-gallon (4,542 L) constant-flow tank. Bottom: Evergreen Boeing 747 

with 18, 000-gallon (68,137 L) pressurized tank. [11] 

 

 

Fig. 9 Examples of the water drop distribution 

First, when multiple data points were obtained by USDA Forest Services for the same aircraft type only the most 

extreme values were presented in [11]. Therefore, the average values between the minimum and maximum values 

given were considered for this suppression model. Second, upon further examination of the data it was decided to 

ignore the data for Evergreen Boeing 747 using a pressurized jet delivery system. The aircraft was deemed too 

large and the delivery system too sophisticated to be a valid representation of the small to medium size UAVs the 

wildfire case study is meant to simulate. Thirdly, since the total suppression patch area was not directly available 

from the data set an assumption had to be made to be able to obtain an approximate area from length and width. 

Based on Fig. 9 it was assumed that all suppression patches can be approximated by an ellipse with length and 

width of the patch corresponding to the major and minor axes of the ellipse. Finally, different data set parameters 

were plotted in an effort to discover the strongest correlations between aircraft or environmental variables, and the 

resulting suppression patch dimensions. As expected, the strongest correlation between the aircraft payload volume 

and dimensions of the suppression patch was observed in the total area of the suppression patch. The Fig. 10 

displays this correlation for different types of aircraft and suppressant delivery systems. It can be observed that the 

R2 value of the linear regression for all data combined is around 0.49, which was deemed adequate for the expected 

fidelity of the model. Looking at the fixed-wing aircraft subset, however, reveals that there is effectively no 

correlation whatsoever. Thus, it is paramount to update the model once the aircraft type is considered in the wildfire 

case study.  
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Fig. 10 Drop pattern area versus the aircraft suppressant payload volume (assuming elliptic suppression 

patch). 

Fig. 11 shows the suppressant flow rate and the resulting patch width. This plot is presented because the depicted 

variables exhibit the strongest correlation of any parameters in the data-set and because they were subsequently 

selected to be a part of the model. Due to the large number of variables influencing the patch width and the lack 

of sufficient research into the topic it was hard to predict what mathematical function type would best describe the 

given correlation in reality. The power function regression was therefore selected mainly due to the highest R2 

 

Fig. 11 Drop pattern width versus the aircraft suppressant payload flow rate 

The size of a suppressed area caused by a single suppressant drop can vary significantly based on a plethora of 

parameters besides the more obvious ones, such as payload volume, aircraft ground speed and suppressant flow 

rate. Deployment technology, fire intensity, drop height, and wind are just some of the other major factors 

influencing the suppression patch dimensions. However, even predicting a select few of these major influences 

within the wildfire case study would result in an unwanted increase in the number of simulation input variables. 

Thus, many assumptions had to be made to produce a uniform model based on a limited number of variables.  

Following the drop pattern data analysis these assumptions were deemed admissible to simplify the model to an 

acceptable level: 

•  The suppression patch is always elliptical  
• The suppressant payload volume fully determines the resulting suppression patch area  
• The suppressant flow rate fully determines the suppression patch width  
• Any fire within the drop patch will be fully suppressed  
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• The aircraft ground velocity, wind, release door size, drop height, deployment technology, terrain slope and 

any other minor effects on the suppression are neglected 
 

The final model implements the payload volume versus suppression area linear regression seen in Equation 1 

from Fig. 10. Assuming water as the suppressant fluid, the model estimates that each kilogram of payload covers 

around a square meter of ground area. Next, the minor axis of the elliptical suppression patch is obtained with 

Equation 2 following from the power-function regression curve of the Fig. 11: 

Asupress[m2] = 1028 Vpayload[m3] (1) 

Bsupress[m2] = 21.07 Q[
m3

s
]0.428 (2) 

The major axis of the patch than simply follows from rearranging the equation for the area of an ellipse: 

Asupress=
4

π
 
Asupress

Bsupress

   (3) 

   To translate the suppression model from continuous space to the rasterized CA grid of the SoSID wildfire 

example fire model additional steps were required. The issue and the solution will be demonstrated using an 

example. Assume a CA grid with a resolution of 10 m and the suppression model gives a suppression patch length 

of 61 m. Because of the resolution of the grid, the patch can either be mapped onto the grid as 60 m or 70 m (6 or 

7 cells). The instinctive solution would be to simply round the length to the nearest full cell, in this case 60 m. 

Now assume the payload has increased and the new length is 64 m. Again, the value is rounded down to 60 m, 

making the higher payload aircraft no more effective at suppressing the fire. To overcome this a probability 

function that determines whether the parameter should be rounded up or down was added to the model. Returning 

back to the first example, a length of 61 m would have a 10% chance of being rounded up to 70 m and a 90% 

chance of being rounded down to the 60m. Consequently, even a slight change in payload mass has a proportional 

effect once enough suppressions are performed in a simulation. 

 

4. Aircraft Performance and Energy Model  

The simulation framework employs an energy model evaluating the performance computations of the aircraft. 

The maximum battery energy of the aircraft is reduced by the usable energy fraction and the energy required for 

the reserve mission. Power consumption data are provided to the simulation by the sizing tool for full payload and 

no payload states. The available energy of the aircraft is updated in every iteration considering its flight state and 

payload. As this study is in the conceptual aircraft design level, simplifying assumptions are taken in the mission 

profile related performance, as such the exact data should be taken with care 

III. Results and Discussion 
The results of the SoS framework are presented in this section. The results provide answers to several research 

questions related to aerial wildfire fighting. These research questions span the multi-level framework System of 

Systems, system/aircraft and subsystem technology as shown in Fig. 12. The research questions are as follows: 

1) Effect of number of Vehicles on Wildfire Suppression Success 

2) Effect of Aircraft Cruise Speed on Wildfire Suppression Success 

3) Effect of Response Time on Wildfire Suppression Success 

4) Effect of Payload on Wildfire Burnt Area 
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Fig. 12 System of System levels of the underlying research questions 
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A. Framework Capability Demonstration by Qualitative Results 

 Before addressing the research questions in the following, the authors would like to introduce some qualitative 

results which demonstrates the capability of the framework. In Fig. 13 an active wildfire suppression mission is 

presented on the left with the fire represented by the red cells, whereas on the right is a successful suppression 

mission with the fire fully suppressed denoted by the grey cells.  

 

 

Fig. 13   Active wildfire suppression mission (left) and successful wildfire suppression mission (right) 

The capability to prioritize certain locations is modeled in the wildfire suppression simulation. While in this 

study this capability is not utilized, it is presented here for completeness. On the left of Fig. 14, a failed wildfire 

suppression mission is presented with the protection locations (represented by yellow icons) disabled. The results 

of the simulation show that the agents naturally protect any location from which the water can be sourced. In this 

case these are UAV bases and off-base water sources. This behavior can be explained very easily. The default fire-

front selection is done based on the proximity to the agent. Since the agents are instructed to select the fire-front 

right after they have acquired the suppressant, that is at the UAV bases and off-base water sources, the fire-fronts 

closer to these locations will always have the priority. Consequently, the areas around water resupply locations are 

generally well protected. When the protection locations are enabled the wildfire suppression agents prioritize the 

area surrounding the protection locations, this can be seen to the right of Fig. 14.   All firefighting capabilities are 

now used to stop the fire propagating towards the protection points. Only after these points are safe, the bases and 

water sources are defended. In the particular case displayed to the right of Fig. 14, one of the water sources was 

not spared from the flames. Because the fire reached this water source at the same time as one of the protection 

points was being threatened by an approaching fire-front, the protection point was given priority while the water 

source surroundings were left to burnt down.  This capability was developed to model the priority areas such as 

towns which would be prioritized in a real-life suppression scenario.  

 

Fig. 14  Failed wildfire suppression missions with protection locations disabled (left) and protection 

locations enabled (right) 
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B. System of System Results for the Research Questions 

5. Effect of Number of Vehicles on Wildfire Suppression Success 

  

 

As shown in the Fig. 15, each circle represents a homogeneous 

fleet of the following aircraft configuration architectures : 

 

Compound helicopter  

Multirotor  

Lift + Cruise  

Tiltrotor  

 

The units of measure of burnt area is given in terms of standard 

football fields for enhancing the comprehension of the reader. 

With 6  or 8 number of aircraft fighting the wildfire, there are 

no successful fleets of vehicles for any type of configuration. 

All of the fleet fail to suppress the fire or contain the wildfire.  

 

With 10 vehicles of compound helicopter and lift + cruise 

configuration architecture the fire can be successfully 

contained,  whereas the multirotor and tiltrotor configuration 

fail to suppress and there is a large burnt area of more than 450 

football fields (the simulation stops after several hours as it will 

be impossible to contain the fire). This shows the configuration 

architecture effects of aircraft, i.e. system/system of interest 

level, impacted at System of System level. 

 

With 12 or 16 vehicles, all configuration types can suppress the 

wildfire. The success trend is shown by Arrow AB. 

 

The size of the circle represents the energy consumed by the 

aircraft. The larger circle represents more energy is required,  

highlighting more recharging sorties than suppression sorties 

 

 

 

 

 

6. Effect of Aircraft Cruise Speed on Wildfire Suppression Success 

Fig. 16 highlights the effect of cruise speed (20 m/s, 30 m/s, 40 m/s) on wildfire suppression. The boxed region 

“C” in Fig. 16 denotes that configurations have failed to suppress the fire while flying at 20 m/s. Box region “D” 

denotes that all type of vehicle configurations, i.e. compound helicopter  (blue), lift + cruise (red), multirotor 

(green) and tiltrotor (purple) , all flown at 30 m/s successfully eliminate the fire within very few football fields of 

burnt area. Further, box region “E” denotes the cruise speed 40 m/s. Surprisingly, none of the vehicle 

configurations lead to successful missions. The reason being, flying faster needs higher energy and the aircraft 

spends more time recharging instead of fire suppressing sorties. Next figures show the actual magnitude of burnt 

area in successful missions. Thus, highlighting the diminishing effect of cruise speed. There is an optimal cruise 

for a successful SoS mission for each fleet composition.   

Fig. 15 Effect of aircraft numbers on wildfire suppression success(Short range, 250 kg payload) 
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Fig. 16 Effect of cruise velocity on wildfire suppression success (Short range, 250 kg Payload) 

 
Within the successful missions the effect of speed is shown in Fig. 17, where it can be noted that within the 

successful mission of the mid-range, 250 kg payload aircraft fleet, the configuration parameter play a role in how 

fast they can suppress fire. For example, if the homogenous fleet is flying at 20 m/s, the fleet with 12 aircraft can 

suppress the fire within 5 football fields as compared to 10 football fields with 10 aircraft. Adding just 2 aircraft 

can play a vital role in large burnt area reduction. 

 

Also, the problem of diminishing returns (success) can be visualized at higher speeds and with higher number 

of aircraft. Such sensitivities or trends propagating aircraft/system level trends to System of System levels can be 

only assessed with a simulation embedded framework. 
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Fig. 17 Effect of cruise speed within successful missions (mid-range, 250 kg payload) 

 

7. Effect of Response Time on Wildfire Suppression Success 

 

Fig. 18 shows the effect of response time, the response time is defined as the time between the detection of fire 

and take off of the first wildfire fighting vehicle. When the response time increased by 5  minutes from 20  minutes 

to 25  minutes, as represented by box regions “G” and “H”, most configurations which was previously successful 

in suppression fails to suppress.  

 

Thus, highlighting the fact that response time is important and SOS approach helps to evaluate such complex 

interactive phenomenon at fleet level.  

 



 

15 

 

 

 

Fig. 18 Effect of response time on wildfire suppression success (short-range, 250 kg payload) 

Within the successful missions, Fig. 19 shows the sensitivities of cruise speed, response time, and number of 

vehicles for different type of homogenous fleet. For example, 40 m/s scenario of 25 minutes response time shows 

that 20% increase in fleet number from 10 to 12 would lead to 40% reduction in burnt area for tiltrotor (red) 

configuration.  

  

Fig. 19 Effect of response time within successful mission (short-range, 250 kg payload) 
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8. Effect of Payload on Wildfire Burnt Area 

 

Fig. 20 shows the effect of payload change from 250 kg to 500 kg of each aircraft. The performance of each 

aircraft is propagated based on weight (suppressant) carrying capability.  

At 30 m/s scenario, the multirotor (green) fleet can suppress the fire with 6 aircraft carrying 500 kg of payload 

or suppressant, but if it carries 250 kg, the aircraft fail to suppress the fire. Similar trends can be seen for different 

fleet, speed, and weight combinations.  

 

 

Fig. 20 Effect of payload on burnt area within successful missions (mid-range, 20 min response time) 

IV.Conclusion and Future Work 
The research questions, sensitivities and results highlight the fact that it is important to design the vehicles 

based on SOS approach to evaluate such complex interactive multi vehicle emergence phenomenon. Further 

supports narrowing down the design space for higher fidelity designs in next paper using the same framework. 

The focus of the study was to highlight sensitive parameters, technologies at vehicle level, and propagate it to fleet 

level and assess the fleet performance for fighting wildfire. 

Within the simulation, the number of aircraft, fleet mix, base location and base numbers, water source are all 

parametrically modifiable. It should be noted that the framework can simulate various terrain, wind speed, 

vegetation burn rate, humidity, vegetation index, and wind direction. The demonstration of framework was limited 

to some constant parameters.  

 

The effect of number of vehicles, payload, speed and design range has big impact on wildfire fighting success 

for a given scenario. A good combination of these properties (considered as fleet) will make or break the disaster 

response. Design of vehicle not to be performed as separate but with operations and heterogeneous or 

homogeneous fleet.  

 

System of Systems driven design has non-linear couplings. For example, increasing cruise velocity would may 

not suppress fire faster, but may need more recharge sorties. There is an optimal for every technology, fleet and 

operation, beyond which the benefit diminishes or even hurt the optimum.  Which makes analysis hard, simulations 
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are time consuming but this is the only way to evaluate many nonlinear couplings of combinatorial evaluations to 

find the SoS emergence. This makes SoS and firefighting way more interesting. 

Future work includes cost estimations as well as higher fidelity wildfire fighting UAV design, collaborative 

methods [14], heterogeneous fleets, and detailed vehicle and subsystem level performance estimations driven by 

other publications of same authors [15, 16]. The technology, design, and methods uncertainties are propagated and 

quantified using the methods of Prakasha et al. [17]. 
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