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Abstract— An unmanned aircraft serves as a testing platform
to demonstrate the benefits of active flutter suppression. The
mathematical model representing the structural dynamics and
aerodynamics of the demonstrator aircraft is described. Based
on flight test data the rigid body model is updated in two
steps. At first the aircraft states and sensor measurements are
reconstructed. Subsequently, the output error method is used
to estimate the desired aerodynamic parameters. The mathe-
matical model with updated parameters appropriately describes
the longitudinal and lateral aircraft dynamics. Furthermore, a
comparison of the aeroelastic mode shapes of the derived model
shows good agreement, which is even improved when updating
aerodynamic damping values obtained from flight tests.
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1. INTRODUCTION

The fuel costs account for the greatest portion of the operating
costs of today’s aircraft. Therefore, fuel efficiency is one of
the most important aspect of new aircraft design concepts [1].
Lightweight wing structures and higher wing aspect ratios
hold great potential to increase the fuel efficiency and make
flying more economic. These modifications, however, lead
to a higher wing flexibility and the flutter speed decreases.
Flutter is a vibrational instability of the wings, which can re-
sult in catastrophic structural failure. It generally involves the
coupling between wing bending and torsion [2,3]. Active flut-
ter suppression offers the opportunity to prevent flutter and
guarantee stability within the entire flight envelope. As part of
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the Horizon 2020 projects Flutter Free FLight Envelope eX-
pansion for ecOnomic Performance improvement (FLEXOP)
[4] and FLight Phase Adaptive Aero-Servo-Elastic aircraft
Design methods (FLiPASED) [5] active flutter suppression
methods are developed and tested on the demonstrator aircraft
shown in Figure 1. A flutter controller, which controls the

Figure 1: FLiPASED demonstrator aircraft [4]

actuators of the ailerons, forms the core of the flutter suppres-
sion system. It is developed based on aeroelastic models. It is
therefore essential to derive sophisticated aeroelastic models
beforehand. More insight into the design of an active flutter
controller is given in Ref. 6-8.

Before the aircraft is tested beyond its open-loop flutter
speed, it is tested with a rather stiff set of wings featuring
a much higher open-loop flutter speed. This offers the
opportunity to undergo the entire process of modelling and
flight testing without the risk of harming the aircraft. The
presented work solely presents results based on the "stiff-
wing-configuration". Applying the process to the flutter-
critical configuration is part of research yet to be conducted.

The aeroelastic modelling process within the FLEXOP
project is described in Figure 2. A finite element (FE) model
represents the structural dynamics of the demonstrator. As
the FE model features many degrees of freedom (DOF),
it is unsuitable for flutter control design. The DOF are
decreased by means of the Guyan reduction. However, the
relevant dynamics are preserved. A condensed model with
significantly less DOF is the result. Based on this model the
equations of motion (EOM) describing the rigid and flexible
aircraft motion are formulated [9].

The aerodynamic model is built of trapezoidal aerodynamic
boxes, which represent the lifting surfaces. Vortices or
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Figure 2: Aeroelastic modeling process of the demonstrator
aircraft

doublets from potential theroy are applied to the boxes ap-
proximating the demonstrator flow field. The application with
vortices is called vortex lattice method (VLM), while with
doublets it is known as the doublet lattice method (DLM),
respectively. The VLM represents steady aerodynamics. To
extend the aerodynamic model for unsteady aerodynamic
effects the DLM is applied [2, 10].

The interconnection between the structural dynamics and
aerodynamics is carried out through splining, which results
in an aeroelastic model. The entire aircraft modelling process
is described in greater depth in Section 2.

For the analysis and adaption of the proposed aeroelastic
model several flight test manoeuvres are defined. In this
context, the rigid body and flexible body motion of the
aircraft are treated separately. With respect to the rigid body
model the two-step method (TSM) is applied. The first
step is the flight path reconstruction (FPR). At this point
it is assumed, that the most reliable measurements are the
translational accelerations and angular rates. These serve
as inputs to the flight mechanical EOM. Aircraft states and
sensor readings that are prone to disturbances can be deter-
mined. The reconstructed signals help to make the parameter
estimation more reliable. The desired parameters are the
aerodynamic parameters accounting for the rigid body motion
of the aircraft. These are updated in an optimization using the
output error method (OEM) [11].

Inertial measurement units (IMUs) are attached to the aircraft
wings, in order to record the deformation of the wings.
The analysis of the IMU data provides information on the
aeroelastic mode shapes that the wings are exposed to in
flight. Subsequently, the aeroelastic model is updated.

2. AEROSERVOELASTIC AIRCRAFT
MODELLING

The overall aeroservoelastic model is built of several sub-
models, as depicted in Figure 3. The core forms the
aeroelastic system coupling the aerodynamics and structural
dynamics. Adding control related systems, like actuators,
sensors and the controller itself, completes the aeroservoe-
lastic model. In the following, the subject of investigation is
the update of the aeroelastic model, therefore the structural
dynamics and the aerodynamics are described further.

Structural Dynamics

The structural dynamics of the demonstrator aircraft are
divided by their contributions to the rigid and flexible body
motion. The rigid body dynamics basically describe the
manoeuvre characteristics of the aircraft. The flexible body
dynamics represent the aircraft motion due to its flexible
structure. While the rigid body dynamics are described in
nonlinear form, the equation of the flexible body dynamics
is defined linearly. A detailed FE model serves as basis for
the structural model of the aircraft. The process of generating
the FE model and its condensed version is described below.
Subsequently, the EOM are applied to the condensed model.

Finite Element Model— The aircraft structural FE model
comprises the wing, fuselage and empennage. It is shown
in Figure 4. The wings are built of beam, surface and solid
elements. Rigid body interpolation elements are added at
predefined locations throughout the wing to facilitate the
required model reduction. The fuselage consists of beam
elements only. The equivalent beam stiffnesses are obtained
utilizing the cross sections of the fuselage hull at different
sections and the lay-up of the hull [13]. The mass is then
lumped at the two beam nodes. The V-tail empennage FE
model is shell-element-based [9].

Given that the FE model of the wing is of very high fidelity
(more than 600000 nodes), a Guyan reduction, also called
condensation, is performed reducing the mass and stiffness
matrices to less than 200 nodes in the condensed model
[9,14].

Equations of Motion—The structural dynamics are described
by the EOM based on an equilibrium of forces and moments.
They describe the behaviour of the aircraft due to external
loads Pge’“, defined by

Pgexl — Pgeng + P;CI‘O' (1)

It originates from the thrust P;" and aerodynamic loads
P3¢, For simplification, the following assumptions are made

[9]:

1. As the earth rotation can be neglected, the inertial refer-
ence system is earth fixed [10].

2. Gravity is constant over the airframe [15].

3. The deformations of the airframe are considered to be
small which allows the use of linear elastic theory defined
by Hooke’s law [10].

4. Due to small deformations of the aircraft structure, the
aircraft mass moment of inertia .J, remains unchanged [10].
5. As the structural deformations are small, loads act on the
undeformed airframe [15].

6. The eigenvectors of the modal analysis are orthogonal,
because of which the total structural deformation can be
written as a linear combination of the modal deflections [15].
7. The rigid body and flexible body EOM are considered to
be decoupled [15].

Rigid Body Dynamics—For the derivation of the nonlinear
flight mechanical EOM, the aircraft is considered a rigid body
with constant mass m; and constant mass moment of inertia
Jy. Thus, the aircraft rigid body motion is given by the
Newton-Euler EOM [16]

mb(%+ Qp x Vp — Tbege) _ &T pext __ F
Jbe + Qb X (Jbe) o (I)ngg M| (2)
ng‘

The translational and angular velocities of the aircraft with
respect to the body frame of reference are defined by V}, and
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Figure 3: Aeroservoelastic system [9, 12]

Figure 4: Full FE model of the FLEXOP demonstrator
aircraft [9]

Qp. The vector g, represents the gravitational acceleration,
which is transformed with 7}, from the earth-fixed to the
body-fixed frame of reference. Multiplication of the loads
P;’“ with matrix <I>gTb transforms them into the rigid body

frame [9, 10].

Flexible Body Dynamics—The displacements due to the air-
craft flexibility are assumed to be small. Therefore, linear
elastic theory is applied to define the flexible body motion.
The correlation between external loads Pge"t and generalized
coordinates uy representing the modal deformation of the
structure is given by

Mjyiiy + Byyiy + Kypup = ®F  P(t) . 3)

P(t)

The matrices Myr, Byy and Ky are the modal masses,
dampings and stiffnesses. The modal matrix ®,; contains
the eigenvectors of the structural modes sorted by frequency
[10]. Typically, higher frequency modes contribute less to
the flexible body motion. Consequently, modal truncation is
applied to reduce the DOF significantly by considering only
the most relevant eigenmodes [9].

Aerodynamics

The aerodynamic loads are the major external loads acting
on the aircraft structure. Their calculation is either based

on the VLM representing steady aerodynamics or the DLM
introducing additionally unsteady aerodynamic effects. Both
methods are based on a panel model.

Panel Model—The lifting surfaces are discretised by sev-
eral trapezoidal-shaped panels, so-called aerodynamic boxes
shown in Figure 5. Of note is the panel model for the

Figure 5: Aerodynamic boxes of the FLEXOP demonstrator
aircraft [9]

fuselage. The wetted areas of the fuselage are projected onto
a T-cruciform shaped panel model. Although this is a vast
simplification, the fuselage aerodynamics are modelled quite
accurately with respect to higher-order CFD simulations.

Steady Aerodynamics—The VLM is used for steady aerody-
namics. As depicted in Figure 6a, each aerodynamic box of
the panel model possesses a horseshoe vortex at point [ on
the quarter-chord line. As the Helmholtz theorem states, the
vortex is shed downstream to infinity at the side edges of the
box. For each aerodynamic box the Pistolesi Theorem needs
to be met, stating that there is no perpendicular flow through
the control point j at the three-quarter-chord line. Therefore,
the induced velocity at the control point needs to equalize the
perpendicular component of the incoming flow, like shown in
Figure 6b. Using the Biot-Savart law the induced velocities
v; caused by the circulation strengths I'; of the horseshoe
vortices are determined by

vj = Ayl €
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Figure 6: Schematic drawing of an aerodynamic box [9]

The matrix A;; contains the contribution of all vortices to
the induced velocities of each individual aerodynamic box.
Inverting A;; and multiplying with 2/c;, where ¢; is the
chord length of the respective aerodynamic box, yields the
aerodynamic influence coefficient (AIC) matrix @;;. If the
aerodynamics are steady, it is considered constant. The
pressure coefficients Ac,; of the panels are then determined
by

Acyj = Qjjwj, ©)

Vi

where the downwash w; = - is the velocity v; normalized
with the flight speed U,. For small angles of attack «; at a
panel, w; is assumed to be equal «;, i.e. w; = sin(e;) = «;.

The downwash w; comprises different aerodynamic contri-
butions. It is affected by a rigid body motion of the aircraft
with

cr Vi
Wjb, = ijk,Zq)kaTab [Qﬂ : (6)

The vector [V,'QI]" contains the rigid body velocities V;,
and angular rates (), and is transformed to the aerodynamic
centre by means of T;;. Subsequently, the respective motion
of each panel reference point % is calculated by multiplying
®p,. The resulting contribution to the downwash is then de-
termined by multiplication with the matrix Dy, > and factori-

sation with 577, where ¢, depicts the reference chord length.

Further details on the determination of the contributions of
the downwash can be found in Ref. 10. Under the assumption

of small angles Equation (6) can be rearranged to

[cos o cos [,
sin B,
c cos B, sin o
Wjb, = ETDij(I)ka pf‘}Uoo a
9a/Uso
Ta/Uso
1
Ba
o
pa/Uoo

9a/Uso
_Ta/Uoo

(7

cr
EDjk,Qq)ka

Q

It can be seen that, besides the angular rates p,, q, and 74,
the downwash is affected by the sideslip angle 3, and the
angle of attack «,. The "1" in the vector represents a constant
contribution to the downwash. This gives the opportunity to
add the downwash caused by effects like camber and twist
by adaptation of the first column of ®,. As a first step, it
is updated based on a steady computational fluid dynamics
(CFD) calculation.

The deflection of the control surfaces u,, is taken into account
by changes in the downwash

Wigy = Djk:,lq)kwua:- (8)

The matrix ®;, links control surface deflections to the cor-
responding aerodynamic boxes. The differentiation matrix
Djy,.1 then relates a displacement of the panel reference point
k to the downwash w;. Besides, the control surface deflection
rate alters the lift, which can be accounted for by

wjffl =

cr .
ﬁDjk,zq’szz- 9
Introducing aeroelastic effects extends the model to a flexible
aircraft. Comparable to the control surfaces, the flexible

deflection u ¢ and deflection rate 4y of the aircraft contribute
with

wjfy = Djk1TigPgruy (10)
cr .
Wity = 55 Dik2Tkg gty (1D

to the downwash, where the matrix T}, transforms structural
grid deflections and deflection rates to the acrodynamic boxes
[10].

Finally, the total downwash is the sum of the specified contri-
butions given by [9]

Wi = Wjp, + Wjzg + Wiz, + Wif, +wip,.  (12)

The aerodynamic model does not include pressure contribu-
tions due to structural thickness. These are not associated
with the downwash but with the tangential flow of a panel,
which is not part of the proposed approach. As a consequence
forces in the aircraft x-direction are neglected, which is why
the roll-yaw coupling of the aircraft for example is not accu-
rately represented [17]. It is investigated, on how to extend
the proposed model for forces in x-direction. Nevertheless,
as a first step a drag model of the rigid body model was
added. The drag coefficient cp is calculated by means of a
preliminary drag polar providing a force in x-direction [18].



Unsteady Aerodynamics—When applying the DLM the aero-
dynamics are widened to account for unsteady aerodynamic
effects. An airfoil, that is suddenly moved forward at an angle
of attack, creates circulation. Since the Helmholtz theorem
states that the total circulation has to stay constant, a vortex of
the same strength but switched sign is shed from the trailing
edge. As it moves downstream it loses its influence on the
airfoil. Therefore, with increasing time the flow converges
to the steady condition. This lag is caused by unsteady
aerodynamics [19].

To apply unsteady aerodynamics to the panel model, doublets
instead of horseshoe vortices are placed at the quarter-chord
line of each aerodynamic box. The pressure coefficient is then
determined by

Acyj(k) = Qjj(k)w; (k) (13)

in the reduced frequency domain, where the dimensionless
reduced frequency k is
c
k=ws— 14
YU, (14
and w is the frequency. For k& = 0 the quasi-steady solution is
derived. The transformation of the unsteady aerodynamics to
the time domain is performed by means of a rational function
approximation (RFA). The AIC matrix is approximated using
Roger’s method, which is defined by [20]

np

N s*1
Qi (s*) =Qojj + Qujjs* + Y Qujj————
i=1 §T D
2U N
:Q()J'j + Drs
c -1
+CL <S*I— - AL> BLS*
2U 5 (15)
W ..
Ap =——diag ([-p1! —Pn, 1))
By=[ ... 1"
Cr = Q. QL. .ji]
Cr
Dy, Z@Ql,jja
where s* = ik is equivalent to the Laplace variable s for

the reduced frequency k. When multiplying Equation (15)
with the downwash w; from the right side and performing an
inverse Laplace transformation, it becomes

Acp; =L7{Qj5(s ) wi(s)}
= Qo jjw; + LTHDp + Cp (sT — Ar) ™" By, .
——

quasi-steady

unsteady

(16)

As can be seen, the quasi-steady aerodynamics depend solely
on the downwash w; defined in Equation (12). In contrast, the
unsteady aerodynamics depend on its derivative w; in time.
The unsteady aerodynamics can be represented in the time
domain as a state space system, defined by

i, = Arzr + Brw; A7)
ACpjumesy = Crxr + Dpi;. (18)
Thus, the chosen approximation introduces the additional

states . They are called lag states and represent the lagging
behaviour of the unsteady aerodynamics [9, 10].

Integrated Model

In Figure 3 the structural dynamics are affected by the aero-
dynamic loads P;*°. These can be expressed as

Pgaero _ qOoTkTgSkajjwj + qOOTg;STCD, (19)

where the first term is affected by the downwash w; and
the second term represents the aerodynamic drag loads with
reference area S, and the transformation matrix from the
mean aerodynamic centre to the structural grid ng. Matrix
Si; depicts an integration relating the pressure in the aero-
dynamic boxes at point j with the forces at the aerodynamic
grid points k. The forces at the aerodynamic grid points &
are then interpolated onto the structural grid points via the
transpose of the spline matrix Tj,. The splining model of
the wing is exemplary shown in Figure 7. Multiplication

Figure 7: Splining between the aerodynamic model and
structural model of the right wing [9]

with the dynamic pressure ¢, leads to the aerodynamic loads
affecting the aircraft structure. To distinguish between the
distributions of the aerodynamic loads with respect to the
rigid and flexible body dynamics, Equation (19) is multiplied
by <I>gTb and <I>§f leading to

P élCI”O _ (I)Tb aero

The aerodynamic loads cause rigid and flexible body motions
of the aircraft which, in turn, affect the aircraft aerodynamics.
Therefore, the aeroelastic model is considered a loop between
structural dynamics and aerodynamics [9, 10, 12].

3. FLIGHT TESTING

The demonstrator aircraft, shown in Figure 8, is a jet-engine-
powered UAV with 65 kg take-off mass and 7.1 m wingspan.
It is flown manually by a pilot within visual line of sight. In
rate control flight mode the surface deflections are directly
linked to the joystick positions on the transmitter. The
autopilot is used only during some test sequences, but not
during take-off or landing. The geometry of the aircraft is
summarized in Table 1. In Ref. 18 the aircraft design process
of the demonstrator aircraft is described in more detail.

Instrumentation of the Demonstrator

The aircraft is equipped with integrated measurement equip-
ment. The usual air data, position and inertial parameters



Figure 8: FLEXOP Aircraft before a flight test ©DLR

Table 1: Geometry of the FLEXOP UAV

Wing

Span: 7.07m
Area: 2.53m?
Aspect ratio: 19.74
Incidence: —0.52°
1/4-chord sweep: 18.36°
Taper ratio: 0.5
Twist: —2°
Number of control surfaces: | 8
Fuselage

Length: 3.42m
Maximum height: 0.315m
Maximum width: 0.3m
Tail

Projected span: 1.27m
Area: 0.39 m?
Aspect ratio: 4.2
Incidence: —4.33°
1/4-chord sweep: 19.83°
Taper ratio: 0.52
Dihedral: 35°
Number of control surfaces: | 4

are being logged on the aircraft. In addition, the wings
are equipped with multiple IMUs spaced along the wing
leading and trailing edge for vibration measurements. Figure
9 depicts the position of the IMUs. There are three telemetry
systems installed onboard the aircraft:

1. the Unilog Link which sends the airspeed directly to the
transmitter of the pilot,

2. the MAVLink which sends the data related to the flight
state of the aircraft to the ground control station (GCS),

3. and the Engineering Data Link which is concerned with
structural and safety information regarding the aircraft.

The take-off weight of the configuration was kept at 65 kg
for all the flights. For the first flight it was decided to shift
the centre of gravity (CG) forwards in order to decrease the
possibility of pitch-up stall. As the aircraft appeared to be
well controllable in this configuration during the first flight, it
was decided to keep the CG location fixed for all flights.

Figure 9: Location of the IMUs (red) [21]

Environment

The aircraft was flown at the Airport Oberpfaffenhofen
(EDMO) [22], located around 20 km Southwest of Munich,
Germany. During a flight test, the airspace of the airport
was closed for 30 minutes, within which the flights with the
demonstrator could take place. The airport has a 2286 m
long concrete runway that is 45 m wide. Two sectors with
different altitude limits are assigned for the flights by the
traffic control.

Red Sector
GND
3500ft MSL

S

Blue Sector
2100ft MSL
3500ft MSL

Figure 10: Allowed airspace for flight testing at EDMO
airport

Operations

The core flight test crew consists of 5 people: the Flight Test
Manager, the Flight Test Operator, the Flight Test Engineer,
the Pilot-in-Command and the Back-up Pilot.

Usually the preparations for a flight test would begin with
packing the entire equipment according to a checklist one
day before the flight test. On the day of the flight test, the
aircraft is assembled in the hangar at EDMO. Subsequently,
the systems are checked. If the systems work properly, a pre-
flight test briefing with the flight test crew follows. The flight
test plan is discussed in detail.

After the pre-flight briefing, the aircraft, the ground control



Figure 11: The Flight Test Manager (left), the Flight Test
Operator (middle) and the Flight Test Engineer (right) inside
the GCS during a flight test (F. Vogl/TUM)

station and the flight test crew moves to the nearest taxiway
and prepares for a system start. A system check and engine
start-up follows. If the start-up procedure was successful and
clearance has been given by the EDMO tower, the aircraft is
moved to the runway. The engine is started and the flight test
takes place.

Subsequent to the flight test the aircraft is moved from the
runway and a post-flight debriefing takes place. Important
flight test and preparation items are noted down. If necessary,
sensor logs and video footage are analysed in order to identify
critical situations and implement mitigation strategies by
revision of routines and procedures.

Test Programme

During the aircraft design stage it had to be ensured that the
available airspace is enough to reach the flutter speed and
sustain it for some time. To maximize this time, a mission
design study has been done in Ref. 18. The study resulted in
a horse-race track with turns at the highest safety speed and
acceleration, deceleration and test legs.

Before flight testing the demonstrator aircraft various ground
tests were performed. This involved system tests, wing static
tests, ground vibration tests (GVT) and pilot and crew train-
ing in a flight test simulation environment. The performed
tests are described in Ref. 23.

After the successful completion of the ground tests, the flight
test programme followed. The programme was split into four
phases:

1. Phase, baseline wing: maiden flight, instrument calibra-
tion and core system tests

2. Phase, baseline wing: rigid aircraft dynamics identifica-
tion, aeroelastic model identification

3. Phase, aeroelastically tailored wing: static and dynamic
manoeuvres for aeroelastic model identification

4. Phase, flutter wing: static and dynamic manoeuvres for
aeroelastic model identification

The first and second phases of the flight test campaign dealt
with gathering data with a stiffer baseline wing. Static aeroe-
lastic testing manoeuvres, aircraft identification and perfor-
mance manoeuvres, as well as autopilot functionality checks
were all done at least once. All of the aircraft core systems

were tested and performed as expected. The flight test phases
3 and 4 will be part of upcoming research activities.

The focus in the upcoming sections lies solely on the second
flight test phase with respect to the identification of the
baseline wing configuration.

Performed Manoeuvres

The parameter estimation process strongly depends on the
performed manoeuvres in flight, as they define how well
the characteristics of the aircraft can be determined. In
order to define suitable excitation signals, a priori knowledge
on the model is used. However, this is conflicting as the
accuracy of the examined model determines the quality of the
model parameters to be estimated [11]. Nevertheless, under
the assumption, that the chosen modelling process provides
realistic results, this approach is considered applicable.

Flight Mechanical Manoeuvres—The first goal is to update
the flight mechanical model. Therefore all contributions
resulting from the aircraft flexibility are neglected. Besides,
unsteady aerodynamic effects are ignored, as their contribu-
tion to the flight mechanical model is assumed to be small. As
aresult, for the aerodynamic load P} on the right-hand side
of the rigid body EOM in Equation (2) it is only accounted for
the downwash wj1, wjz0 and w;jz1 yielding to

1
Ba
T T & 9
P:ero =(oo (I)ngkgSkaijDij(bka pa/[(}oo

4a/Uso
rq/Usc

+ oo @111, Sk Q55 Dk 1 Phg U
DQh,mO

c .
+ oo P19k Q5 ﬁDij(bkm Uy

DQpn b1
(21)

DQh,ml

It is assumed, that the correlation between the control sur-
faces and the aerodynamic load given by the matrices DQ}, 40
and DQ)p, ;1 is accurately predicted by the proposed model.
The focus is on an update of the rigid body contribution
gathered in matrix DQp, ;. It is a 6x6-matrix with the entries

0 0 0 0 0 0
0 fys 0 Fyp 0 fyr
DQ hpl = f z0 0 f za 0 zq 0
, 0 Mgg 0 Mgp 0 My
myo 0 mya 0 my, O
0 m,a 0 My 0 My
(22)
There are 15 parameters, that are to be estimated. As can
be seen the parameters related to forces in x-direction are
neglected, due to the mentioned constraints of the model.
Many more entries are equal to zero or considered too small
to have a significant influence on the parameter estimation.
The remaining parameters can be associated with either a
longitudinal or a lateral aircraft motion.

In Table 2 the performed manoeuvres, separated in longitu-
dinal and lateral, are listed with the parameters, that mainly
contribute to the aircraft motion. The definition of the excita-
tion signals for the short period, phugoid and dutch-roll mode
are determined based on an a priori analysis of the initial
model. The phugoid is excited by an elevator pulse, that is
chosen to last 2 seconds with an amplitude of approximately



Table 2: Performed manoeuvres for the parameter estimation

[11]
Longitudinal
Steady level flight: | f.o, f2a, My0, Mya
Pushover-pullup: 205 Jza J2q
Short period: Fras Fogr Myas Myq
Phugoid: 205 fzas fzg> M0, Myas Myq
Lateral
Steady sideslip: fyp> m2p
Dutch-roll: yB> fyrs Mags Mar, Mg, My
Bank-to-bank: yp> Map, Mzp

3°. This elevator deflection was found to be appropriate to
excite the phugoid mode of the aircraft [11]. The dutch-
roll mode can be excited by a doublet on the rudder. The
amplitude is chosen to be around 3°, while the half time
length Atgouiee Of the doublet is calculated with the dutch-
roll frequency waych-ron by the rule of thumb

2.3
Atdoublet e (23)

Wdutch-roll

to be 1.22 seconds [11]. The dutch-roll frequency waytch-ron
is determined from the simulation in advance of the flight
test. Equivalently, the short period mode can be observed
by exciting the elevator with a doublet. Equation (23) gives a
Atgoubler Of 0.24 seconds with the pre-determined frequency
of the short-period wshort-period- The amplitude is chosen to be
around 6°. The steady level flight, pushover-pullup, steady
sideslip and bank-to-bank manoeuvres were flown manually
by the pilot.

Excitation of Flexible Modes—The flexible properties of the
demonstrator aircraft were tested in a static test and GVT
[24]. The results are used to update the structural model
matrices K¢y and By introduced in Equation (3). However,
in flight the occurring aeroelastic modes caused by the flex-
ibility of the aircraft might vary from the model prediction.
Therefore, the aeroelastic modes of the demonstrator aircraft
in flight are analysed based on readings of the wing IMUs. A
flight test lag of 12 seconds is considered for that.

4. UPDATE OF THE RIGID BoDY MODEL

When it comes to updating an aircraft model or rather specific
model parameters, a suitable process needs to be set up.
On the one hand a model structure must be given including
parameters to be estimated and on the other hand an opti-
mization algorithm to find the somewhat best model param-
eters needs to be given. There exist different optimization
algorithms to estimate model parameters, like the output error
method (OEM), the filter error method (FEM) and more.
For an description of different optimization algorithms it is
referred to Ref. 11,25. Within the scope of this paper the
OEM based on the maximum likelihood estimation is chosen.

Output Error Method

In Figure 12 the basic procedure of the OEM is shown. The
upper path represents the flight test, where the outcome is
the measured inputs and outputs. The OEM assumes, that
the outputs are affected by measurement noise. Process
noise, however, is neglected. Subsequently, the inputs are
fed into the mathematical model to conduct a simulation of
the considered flight test manoeuvre. Based on the difference

Measurement
Noise v
/L_,_ Measured
Input v Demonstrator + Response z
Aircraft N\
Estimated +
Mathematical Response y - /)
Model \
Parameter Sensitivities l%zsldu%l
Estimates X Parameter Y
Estimation

Figure 12: Procedure of the OEM [25]

between the flight test measurements and the simulation out-
puts, the parameters of the mathematical model are updated
by means of an optimisation [11,25].

It is assumed, that the model equations are given in the form
of

X
y(t) = g(z(1), u(t), x) (24)
)

The first two equations describe the proposed mathematical
model. They dependent on the desired parameters x. The
last equation provides the relation between the discrete flight
test measurements z and the output of the measurement
equation y at a time instant ;. They exclusively differ in
the measurement noise v. The noise is considered stochastic
and is characterized by Gaussian white noise with zero mean.
Its definition is

E{v(ty)} =0

E{v(ty)v(t)T} = Row. (25)

The second expression of Equation (25) suggests that the
noise represents white noise, as it is time independent. Si-
multaneously the amplitude depends on chance defined by
a Gaussian distribution with covariance matrix R. As a
result the measurement vector z(¢j) with dimension n, is
affected by Gaussian white noise and therefore its values
are assumed to be Gaussian distributed with the probability
density function

1
p(2(te)[x) :m
exp (= 610 ~ 00T R elt0) = 9(0))
(26)

With respect to Equation (24) the expected value of z(ty) is
assumed to be E{z(tx)} = y(tx) for the model parameters x.



For a set of N measurements the likelihood function becomes

Hp (tr)x)

_ (my R

p(z(t1), .-

z(tn)Ix) =

2
k=1

N
exp (1 D () = y(te) "R (2(tk) — y(tk))>
27)

Goal of the maximum likelihood method (MLM) is to iden-
tify the model parameters y, which maximise the probability
defined by Equation (27). The optimal solution is the maxi-
mum likelihood estimate obtained as

XML = arg {m;gx p(Z|X)}
(28)

= arg {min (— lnp(zx))} .
X
For greater ease of handling the negative logarithm of the

likelihood function p(z|x) is considered, which simplifies
Equation (27) to the cost function

| X
52 2(tk) = y(te) " R (2(te) — y(tr)))
k=1
N Nn,
5 In(|R]) + 5 In(27).
(29)

At this point it is assumed, that the covariance matrix R is
unknown a priori. As R depends on the model parameters
x and vice versa, the relaxation strategy is used to find the
optimal solution of the redefined likelihood function (29)
in two steps. Firstly, for a given parameter vector x the
maximum likelihood estimate of R is obtained by setting the
partial derivative 9J(x, R)/OR to zero. This yields

2(tk) = y(te)) (=(te) — y(te)™.  (30)

HMZ

Secondly, substituting (30) in (29) provides

1

. + =" men. Gl

N,
37N+ 5 In((R) + =

J(x) =

Apart from In(|R|) all terms in Equation (31) are independent
from the model parameters y. The cost function therefore
reduces to

J() = IRl (32)

Equation (32) is solved iteratively for the optimal model
parameter y by means of a Gauss-Newton algorithm. Ref. 11
provides a deeper insight in the optimisation process.

Two-Step Method

By means of the two-step method (TSM) the model param-
eters can be determined. The TSM divides the state and
parameter estimation problem in a flight path reconstruction
(FPR) and a parameter identification part. The FPR is used
to accurately reconstruct the time history of the aircraft states
during the manoeuvre and besides allows the determination

of potential instrumentation errors. As some sensor readings,
like the angle of attack and the airspeed, are prone to be inac-
curate, the measurements are improved based on past, present
and future data and the flight mechanical equations. Subse-
quently, the identification of the model parameters follows
[11,26]. The success of the TSM depends on the aircraft to be
tested, the aircraft instrumentation, the excitation signals, the
mathematical model selected for identification and the chosen
algorithm for the analysis and adaption of the model [26].

Flight Path Reconstruction—The FPR is based on a non-
linear state-space system consisting of flight mechanical state
and measurement equations. The considered inputs are the
translational accelerations ap,, and the rotational rates €2,
measured in flight by an IMU placed in the fuselage. The
states are the velocity vector V}, the Euler angles ¢, 6 and
and the altitude h. The resulting state equations are given by

Vi = ap — (Qm — AQ) X Vi + Thege (33)
¢:7 é sincﬁ;czn 0 coi qsﬁi‘ila(rg 0
0| = sin ¢ cos ¢ (Qo,m — Aly)
0 0 sin 6 sin 6
(34)
h=[0 0 —1T,'V. (35)

Starting point of the state equations is the equilibrium of
forces of the rigid body equation of motion. Solving Equation

(2) for V,, leads to Equation (33), where (2, is replaced by its
flight test measurement €2, ,,, including a potential sensor bias
AQy. The translational acceleration a; is given with respect
to the center of gravity [11]. It is determined by

ap =ap,m — Qb X ds

— (Qpm — ADy) X

((Qb,m - AQb) X ds) — Aay,.

(36)

The acceleration measurement ay, ,, needs to be corrected for
the coriolis and the centrifugal force caused by the offset
between the acceleration sensor position and the center of
gravity ds. A potential sensor bias is covered by Aay.
Additional state equations of the Euler angles ¢, 6, 1 are con-
sidered through Equation (34). The remaining state equation
is given by Equation (35). The inverse of T3, transforms the
velocity Vj, to the Earth-fixed frame of reference. Extracting
only the element, which contributes to the z-direction, and

changing the sign leads to the derivative of the altitude / [11].

The outputs or reconstructed instrumentation measurements
are the true airspeed U ,, the angle of attack o, the sideslip
angle 3., the Euler angles ¢,., 0,- and 1),. and the altitude h...
The corresponding measurement equations are given by

Uso,r = |[Vs]]2 (37)
= K, tan ! (“;nb’z> + A« (38)

nb,x
By = Kgsin ! (Kjbb-’o +AB (39)
br =09 (40)
0, =0 (41)
h, = h. (43)



As the o and 8 measurements of the noseboom are sensitive
to errors, the scaling and bias variables K, Ac, Kg and A8
are introduced. The velocity vector V,,; at the noseboom is
determined by

an - ‘/b + (Qb,m - AQb) X dnbv (44)

where d,,;, is the distance between the aircraft CG and the
noseboom.
The unknown parameters Ay, Aay, Ko, A, Kg, AB as

well as the initial states Vyo, [pofotbo]?, ho of Equations
(33)-(35) are determined based on the OEM algorithm. It
is assumed that the difference between the flight test mea-
surements and the reconstructed measurements in (37)-(43)
is only coming from the measurement noise v. The residual
(z—y), which is equal to v, is therefore to be minimized [11].

The FPR is performed for each considered manoeuvre type
separately. Figures 13 and 14 depict the FPR results ex-
emplary for a pushover-pullup manoeuvre (POPU) and for
a sideslip manoeuvre (SL) in comparison with the measured
flight test data (FTD). Only the measurement variables that

=z 60 —7FTD
g 50 ---FPR
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Figure 13: Comparison of reconstructed and flight test mea-
surements (POPU)

play a major role for the manoeuvres are shown. For the
POPU manoeuvre it can be seen, that « changes dynami-
cally, while the remaining measurements are rather smooth.
Nevertheless, the reconstructed « follows very closely the
measurement.

The sideslip manoeuvre is not performed at a constant 3 as
intended. However, it still offers the opportunity for updating
lateral model parameters. The FPR follows the trends of the
observations very well. An exception is the reconstructed true
airspeed U, which follows the trend of the measurement, but
does not change as dynamically. As this is behaviour is not
observed for the additional measurements, it is valid to say
the true airspeed is more strongly affected by disturbance for
the considered sideslip manoeuvre.

Parameter Estimation—The parameter estimation is the sec-
ond step of the TSM. The control surface deflections com-
manded during the various flight test manoeuvres are fed in
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Figure 14: Comparison of reconstructed and flight test mea-
surements (SL)

the rigid body equation of motion (2). As mentioned before
the parameters of the matrix D@, 51 defined in Equation (22)
are to be estimated. Based on the comparison between the
outputs of the flight test z and the simulation y the model
parameters are updated like described in the section Output
Error Method.

The parameters corresponding to the longitudinal and lateral
motion respectively are updated in separate steps. At first, the
lateral manoeuvres are used to improve the matrix DQp, p1
with respect to the parameters fyg, fyp, fyr» Maxgs Map,
Mgr, Mzg, Myp and m,,.. Subsequently, the longitudinal
parameters f.o, f.a, fzg» Myo, My and my, are updated
with the matrix D@}, 51 coming from the previous step. The
final step is to redo the lateral update. This approach is cho-
sen, because the longitudinal manoeuvres also feature lateral
contributions and vice versa. Therefore, a strict separation of
the manoeuvres is not possible.

At the end, the OEM leads to the parameters summarized
in Tables 3 and 4.  Of note is that the f,, contributing to

Table 3: Initial and final longitudinal parameters

Parameter Initial Final
f0: —0.607 | —0.484
fra —15.12 | —15.19
2q" —2.76 —0.021
My0: 0.067 —0.02
Mya: —1.63 —2.19
Myq: —5.06 —2.21

the lift with respect to camber and drag was lightly overes-
timated with the CFD calculations mentioned before. The
corresponding moment coefficient m,o, however, undergoes
a relatively big change and switches sign. The f., and f,z3
values do not change much, which proves the validity of the
VLM/DLM modelling approach with respect to linear trends.
There are further parameters, that differ strongly from their



Table 4: Initial and final lateral parameters

Parameter Initial Final
fus: —0.621 | —0.661
up' —0.12 —0.876
yr 0.94 1.27
Myg: —0.382 | —2.08
Myp: —40.97 | —47.13
Myp: 0.477 12.16
m,g: 0.464 0.48
Mp: 0.11 —1.47
My —-1.5 —1.51

initial values. It is still under investigation, what the reason
is.

When the pushover-pullup (POPU) manoeuvre is performed
with the model featuring the estimated parameters (PE), one
can recognize a strong similarity with the reconstructed flight
test data (FPR). Figure 15 depicts the trend of some of the
observation variables affected by a longitudinal motion. The

Vias [m/s]

o]

61°]

q[°/s]

h [m]

time [s]

Figure 15: Comparison between reconstructed and simulated
measurements (POPU)

difference between the reconstructed and simulated angle of
attack o reveals a higher sensitivity to disturbances. However,
especially the pitch rate ¢ matches very well between both
data sets.

The measurements of the sideslip manoeuvre exhibited in
Figure (16) proves, that the set of estimated parameters of
the model fits well with the flight test data.
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Figure 16: Comparison between reconstructed and simulated
measurements (SL)

5. FLEXIBLE MODE IDENTIFICATION

This section primarily concerns the identification of the flexi-
ble aircraft dynamics of a highly flexible flutter demonstrator
aircraft based on in-flight data. The analysis of in-flight
data poses a number of specific challenges that are related
to the complex test structure and the difficulties caused by
test conditions. Therefore, an automatically running robust
Stochastic Subspace Identification (rSSI) method is intro-
duced, which only needs the structural dynamic response
data of the aircraft due to non-deterministic natural and/or
operational excitations which are provided by atmospheric
turbulence and/or pilot control inputs for determination of
the stochastic system matrices and consequently of the flight
modal parameters. In this method, as the only available
information are the measured responses, its assumed that the
aircraft are excited by white noise processes and that the
responses are realization of these processes. The flexible
aircraft dynamics are described by flight modal data, which
include eigenfrequencies, damping ratios and eigenvectors
of the aircraft during a specified flight condition. The ex-
perimental flight modal data obtained by this methodology
are then compared with the predicted results supplied by the
numerical model by means of modal correlation analysis for
the quality assessment of the actual numerical model of the
flexible aircraft.

Within the framework of the FIiPASED project, a robust
Stochastic Subspace Identification (rSSI) method in time-
domain has been implemented for identification of flight
modal paramerters, which are often used for quality assess-
ment of the numerical model and consequently its validation
with respect to flexible aircraft dynamics. In case of sub-



stantial discrepancies between predictions of the model and
those yielded by experimental data from tests on the aircraft
structure, the numerical aircraft model has to be updated until
model predictions and experimental results have a sufficient
correlation. At this point it is important to note that this
section of the paper solely addresses the rSSI algoritm and
its application to the in-flight data with a subsequent modal
correlation analysis between results from numerical and flight
test domain.

Data-driven Stochastic System Identification

SSI techniques are examples of the recent advances in modal
parameter estimation methods in time-domain. These meth-
ods have become very popular due to their robustness and
precision verified even in the presence of highly noisy data.
In these methods, as the only available information are the
outputs, it is assumed that the systems (here the tested
aircraft structure) are excited by white noise processes and
that the outputs (measured responses) are realization of these
processes [27]. In the following, a detailed description of
a robust data-driven SSI (rSSI-DATA) method is presented.
One of the major advantages of this identification method
is that it enables the extraction of modal parameters directly
from the time data which results in a reduction of additional
preprocessing time compared to its covariance-driven (SSI-
COV) counterpart. We start with state-space respresentation
of combined deterministic-stochastic systems. For these
systems, both the known input u;, and the process and mea-
surement noise wy, and vy, are different from zero. We will
consider state space models of the form:

Az, + Bug + wy, s
Cxp + Duy, + vy

Tk+1

Yk )

with wy and v; zero mean, white vector sequences with
covariance matrix:

B(() 0F )= (D)o w0

where E[-] is the expected value operator and 4, the Kro-
necker delta. Since wy and vg are zero mean white noise
vectors sequences, independent of xg, it follows:

E[xivi]

E[kag]

0,

47
0. 47

The vectors 4, € R' and u; € R™ are measured (given)
outputs and inputs of the system at the discrete time k with
k = 1,2,...Ng, where Ny is the number of data samples.
The order of the system n, system matrices A € R"*",
B e R"*™ C € R'*™ D € R'*™ and the covariance
matrices Q € R"*"™, S € R**!, P € R'*! have to be
determined. In our case of purely stochastic systems with
no external inputs (u; = 0) the state-space model from the
Equation (45) becomes:

Al‘k + wg ,
Cxyp, + v

Tk4+1

" (48)

In the following sections a robust Stochastic Subspace Iden-
tification (rSSI) algorithm for systems described in the previ-
ous Equations (48) will be introduced.

Robust Stochastic Subspace Identification Algorithm

In this section a robust subspace algorithm for subspace
identification will be introduced which can be applied for
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combined deterministic-stochastic systems, whereby we only
consider the subspace identification of purely stochastic sys-
tem which is relevant for our case. The stochastic identifi-
cation problem addresses the determination of the stochastic
system matrices from given output-only data. We make use of
the RQ and the singular value decomposition (SVD). Before
we start with the algorithm, we introduce the Block Hankel
matrices which play a major role in subspace identification
algorithms.

Block Hankel matrices—Hankel matrices can be defined from
the measured input-output or only from output data in case of
purely stochastic systems. Output block Hankel matrices are
constructed as follows:

[N Y2 Ys Yi

Y2 Y3 Ya Yj+1

v def Yi Yi+1 Yit+2 Yitj—1

1z = Yit1 Yiy2 Yit3 Yitj

Yi+2 Yi+3 Yita Yit+j+1

L Y2i Y2i+1 Y2i+4-2 y2i+j—1_
(7))
Yii1)2i Yy

Y1 Y2 Y3 Yi

Y2 Ys Ya Yj+1

def Yi Yit+1 Yi+2 Yitj—1

n Yit1 Yit2 Yi+3 Yitj

Yit2 Yi+3 Yita Yit+j+1

| Y Y2i+1 Y2i+2 Y2it+j—1 |
def<Y1|i+1)def -
Yiiop2i Y,

(49)

where ¢ is used-defined parameter and denotes the number
of block rows with Yy 9; € R?"= 3 Tt should be chosen
so that ¢ > 2N,,, where N,, represents the number of
physical modes. The number of columns j is mostly equal
to Ny — 27 4 1 in case of that all given data samples are used.
The subscript p denotes past and the subscript f stands for
future. The matrices Y, (the past outputs) and Y7 (the future
outputs) are defined by partitioning Y »; into two equal parts

of ¢ block rows. The matrices Y;r and Yff are constructed

by shifting the border between past and future one block row
downward.

Extended observability matrix I';—In subspace identification
algorithms the observability matrix and its structure play a
key role. The extended observability matrix I'; (i > n) where
the subscript 7 denotes the number of block rows, is defined



as follows:

C
CA
2 .
CA Elexn.

I, = (50)

CA‘ifl

The pair {A, C'} is assumed to be observable. The determi-
nation of the system matrices A and C can be realized by
using the shift structure of the extended observability matrix
I'; which will be described in the next section.

Robust Algorithm and Numerical Implementation—The ro-
bust algorithm which will be described here only consider
the subspace identification of purely stochastic systems which
addresses the calculation of the stochastic system matrices
from given output-only data.

Step 1. The robust algorithm starts with the RQ decomposi-
tion of the block Hankel matrix formed of the output data:

S
Vi

with the orthogonal matrix Q7 € R2®J and the lower
triangular matrix R € R?% ® 211 [28].

H=—Yiy = (QZ) = R-Q" € R G5D)

For the calculation of the system matrices within the algo-
rithm, only the R factor of this decomposition is needed
which results in reduction of computation time.

For convenience of notation, we partition the R matrix as
follows: li 1 (i —1)

Ry 0 0 li
R = Ry Ra o 0 l (52)
R3 1 Rso Rs3 I(i—1)

Thus the past and future outputs can be now defined by means
of the submatrices of R:

Rp — [RLl 0 0] c Rlix2li
53
Rs — Ry1 Rpo O c Rliz2li (53)
F=|Rsy Rsz Rsgs

Step 2. The second step of the algorithm depicts the orthog-
onal projection of the row space of the matrix Ry on the row
space of the matrix R):

0O; = Ry /Ry

T TN\t (54)
= Rf : Rp (RpRp) . RZD

Step 3. Calculation of SVD of the weighted orthogonal
projection:

Wi0OW, = USVT (55)
The user-defined weighting matrices 11 and W5 are based on

the canonical variate algorithm (CVA) described in [28-30]
with:
Wl € Rli z i ,

Wy

—-1/2 —
il - ()

1214 c R2li x 201 (56)
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where (g, g, is covariance of the future output matrix Ry.
The CVA of calculates the principal angles and directions
between the row spaces of the past outputs 12, and the future
outputs Ry. Thus, the singular value decomposition of the
weighted orthogonal projection becomes:

o —1/2
WlOZ B (I)[RfaRf]

=UsvT.

Oi )
(57)

Step 3. Determine the model order n by inspecting the
singular values

The singular values can be divided into two parts: Dominat-
ing part S; and insignificant part S:

S 0] [VT]
w10, = [Up U L 58)
A I A N
where
01
02
Sy = . (59
On—1
On
0n+1
Opn+2
Sy = (60)
Oli—1
Oli
withoy > 09 > -+ >0, >0 and o, > opy1 >

Opt2 2 "+ 2 Oy

Step 4. Define the extended observability matrix T'; :

r, = Wi, s,/

(61)
By removing the last [ (number of outputs) rows of I';, we get
the shifted observability matrix I'; _q:

i =1

7

(62)

Step 5. For the computation of the system matrices A and C
the solution of the following set of linear equations is needed:

T = {é] T, (63)
where left-hand side of the Equation (63) is equal to:
Li Ris. 1. L' [R31 Rss)
T = |=fv3:3L[1:2]| = |+ 3,1 3,2 64
: { Rpa:0),11:2] } [ 7{32,1 Ry 5] ©4)

The submatrices Ry 1, R22, R31, I3 3 are given in the
Equation (52). The right-hand side of the Equation (63) is
defined as follows:

R

Rs: (65)

R
T, = FIR[2:3],[1;2] = FI[ RM}

3,2

Now, the Equation (63) can be solved by means of least-
squares method:

(66)



Determination of the Modal Parameters

Once the matrices A and C' are estimated, the modal param-
eters could be easily calculated by means of an eigendecom-
position of the dynamic matrix A:
A = AP L | (67)
where the diagonal matrix A contains the discrete-time eigen-

values p, with # = 1,2, ...,n and the matrix & € C* X
consists of complex eigenvectors ¢, which appear in complex

conjugate pairs:

Apr = pror (68)
The discrete eigenvalues ., can be transformed into contin-
uous eigenvalues or system poles A, by using the following
definition:

ArAt )\T 1

= i) . (69)

The modal parameters f, (undamped eigenfrequencies) and
¢ (damping ratios) can now be determined as follows:

. Ar Re( A,
)\r = _Crwr"‘zwr V 1- 43 = f'r‘ = |27T| P C’r‘ = - |)E )
(70)

The experimental (complex) mode shape 1), of the 7" mode
at the sensor locations are the observed (measured) parts of
the system eigenvectors ¢,.. Thus, the extracted experimental
mode shape 1,. can be determined as follows:

b = Cor , r=12. (71)

ST

Stabilization Diagram for rSSI method—In case of exper-
imental or operational system identification methods, one
typically uses a model order which is significantly larger
than present in the data to ensure that all dynamics of the
structure are captured (overestimation of the system). The
reason for this is that, due to noise and modeling inaccuracies,
it often happens that no clear gap exists in the sequence of the
singular values of the weighted orthogonal projection matrix
given in Equation (57), which results in serious difficulties
for the determination of the correct model order. In any
case overestimating of the system introduces spurious poles,
which have to be separated from the physical ones. Therefore,
an essential part in modal parameter estimation methods
comes into effect - a so-called stabilization diagram. Here,
the poles associated to a given model order are compared with
those obtained from a one-order lower model. Only the poles
that fulfill all user-defined stabilization criteria are labeled as
stable. Typical stability criteria are defined by the following
inequalities [31]:

(k) p(d)

(k)  ~(4)
[ —n| 0 o | < 0,05 , (73)
1— MAC($P),, 6y < 0,02, (74)

with k = 1,2,...n+ 1, i = 1,2,...,n. In other words,
Equation (72) implies that the estimated natural frequency f*
from the system of order (n + 1) is frequency stable with

respect to the natural frequency f* obtained from the system
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of order (n) if the Equation (72) is fullfilled. Similar criteria
on damping ratios and mode shapes are defined in Equation
(73) and (74), respectively. If all the criteria expressed by
the previous inequalities are satisfied, the pole is labeled as
stable.

In the case of automated system identification methods, clus-
tering techniques enables the automatic selection of physical
poles from the stabilization diagram. Some of the most
widely used algoritms are, inter alia, the Hierarchical Clus-
tering (HC) algorithm [32], the Genetic Algorithm GA [33]
and Fuzzy C-Means clustering (FCM) [34]. In the following
section a suitable Hierarchical Clustering algoritm used in
this study is presented.

Hierarchical Clustering for Automated rSSI—In this study
the hierarchical clustering algorithms is applied on the data
obtained from the stabilization diagram. Hierarchical clus-
tering classifies data over a variety of scales by generation a
cluster tree or dendrogram. The tree is a kind of a multilevel
hierarchy, where clusters at one level are joined as clusters
at the next level, where each member (object) of the data
set itself depicts a cluster. The algorithm starts with the
two clusters which are closest according to a user-defined
metric distance (i.e. Euclidean distance), are merged into
a single cluster (agglomerative clustering). This procedure
is carried out until all of the objects are agglomerated into
one hierarchically constructed cluster as illustrated in Figure
17 [35]. Different approaches of the hierarchical clustering
algorithm can be used for the identification of physical poles.
The substantial difference between between these approaches
lies in the definition of the criteria used to quantify the degree
of similarities of the mean properties of two clusters. Several
methods can be found in the relevant literature to measure
these similarities, e.g. [36] and [37]. Within the framework
of this study following criteria are defined to quantify the
similarities between two cluster centres:

_ i 1yl

F(i,j) = 7, + 1 — MAC(¢s,95) (75)
J

where F(i,7) is a scalar quantitiy that measure the degree
of similarity between the eigenfrequencies and mode shapes
of two distinct poles (or objects) denoted by indexes ¢ and j.
Due to the agglomerated type of the Hierarchical Clustering
method where clusters at one level are joined as clusters at the
next level, indices ¢ and j can also denote clusters consisting
of more than one eigenfrequency and corresponding mode
shape - in which case f; and f; are the mean eigenfrequencies
of the clusters ¢ and j and ¢; and ¢; are, respectively, the
mean mode shapes of the clusters ¢ and j. A value close to
zero obtained from F'(4, ) indicates a high similarity of the
mean properties of two clusters of poles denoted by indices
1 and j. The Modal Assurance Criterion (MAC) from the
Equation (76) is a measure of the degree of linearity between
two vectors. Given two vectors ¢;, ¢;, it is defined by
following formula:

6f05]
MAC(¢i,¢5) = | 7o |
(¢, 95) <||¢1-||||¢j||>

where () designate the Hermetian transpose of a complex
vector. This criterion can be applied to both real-valued
and complex-valued vectors. In this context, it indicates the
correlation degree between the two mode shapes ¢; and ¢;.

(76)



DATA SET

ot
[ =

[ 1

(a)

[
3
T

Distance

1]

7 9 2 1 3 8 4 5 6
Data numbers

(b)

Figure 17: Illustration of agglomerative clustering: Data set
(a) and corresponding hierarchical clustering dendrogram (b)

Application of rSSI method to in-flight aircraft data

In this section the application of the rSSI method to in-flight
data of the FIiPASED aircraft will be presented. The intro-
duced rSSI algorithm is coded within MATLAB environment.
For the identification of the flight modal parameters of the
FLIPASED aircraft, the wings were instrumented with twelve
inertial measurement units (IMU) with the help of which the
structural vibrations of the wings are detected. At 30%, 60%
and 90% span width of each wing an IMU is attached to
the front and to the rear spar as shown in Figure 9. The
IMUs measure the translational accelerations in z direction
and the angular rates w; and w,. Therefore, 36 raw time
histories (12 x 3 channels) are available for the data analysis.
The measured vibrations were the structural response to the
natural operational excitation, being mainly the atmospheric
turbulence and, additionally, to the pulse excitation by means
of doublet input via ruddervators. The flight test where the
recorded time series have been taken from was performed at
an altitude of 663 m (MSL) -and with a flight speed of 34 m/s.
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Preprocessing of the data set and input parameters for rSSI
method—The in-flight raw test data consisting of translational
acceleration and angular velocitiy time series are analysed
within the time window of 11,54 seconds. A bandpass
Butterworth filter of 4th-order is applied to all measured
responses with a lower cutoff frequency of 0,5 Hz and a
higher cutoff frequency of 45 Hz. The original time histories
were sampled at 200 Hz and are then downsampled to 100
Hz where computational effort can be reduced to a minimum.
The whole preprocess required only 1.507 seconds of com-
putation time.

For the rSST analysis following parameters are chosen:

o Number of block rows in Hankel matrices: N; = 12
o Max. frequency deviation: A, = 1,25%

o Max. damping ratio deviation: A, =~ = 5%

o Min. MAC value: MAC . = 95%

e Model order range: n = f5 65]

« Threshold for inconsistency coefficient within cluster ana-
lyis: C,,.... = 0,4

After definition of the input parameters outlined above, the
rSSI method has been applied to the in-flight aircraft data.
The obtained results are presented in detail in the next section.

Identification results obtained with rSSI—The rSSI algorithm
is applied to the prepocessed in-flight data for the modal
identification. The identified flight modal parameter from
test are then compared with the predicted results provided by
the numerical model by means of modal correlation analysis.
Table 5 summerizes both the obtained modal parameters and
the correlation results. The four identified modes consisting
of 27, 3 4% and 6" wing bending within the frequency
range of 3 Hz < f < 30 Hz could be identified from the
flight test data. In this context, it is important to mention here
that the 5" wing bending mode could not be extracted from
the available test data due to poor excitation as can be seen
from the stabilization diagram as illustrated in Figure 18.

The flight modal parameters computed from the flexible
aircraft model show an excellent correlation compared with
those identified from flight test with MAC values > 95 %,
frequency deviations < 3,5 % and almost perfect matching
between damping ratios with a maximum deviation of < 0,7
%, as can be seen in the Table 5. The introduced rSST method

Table 5: Comparison of flight modal parameters obtained
from flight test and numerical model

Mode 1 2 3 4
o [Hz] [ 33 [ 85 123 [ 26.7
e [Hz] | 3.4 | 8.3 11.9 | 27.1
treq L /0) +35 | —2.1 | —2.6 | +1.6
rene 1%0] 142 | 6.4 |43 |38
o | %] 1141 |64 |43 | 3.8
wamp [0) | —0.7 | 4+0.0 | +0.0 | 40.0
MAC [%] | 99 98 99 95

for estimation of flight modal parameters shows a high degree
of robustness even in the presence of limited amounts of data
and high noise in the measurement. The cleaned stabilization
diagram in Figure 19 (b) obtained by the rSSI method where
the extracted physical modes are shown after hierarchical
clustering, clearly illustrate this. Finally, the identified mode
shapes from the flight test and their counterparts from the
numerical model are visualized in Figures 20 to 27.
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Figure 27:

6. SUMMARY

The aeroservoelastic modelling approach has proven appro-
priate for the considered demonstrator aircraft. The rigid
body model can be further improved with the output error
method (OEM) by analysing specific flight test manoeuvres.
However, to keep disturbances at a minimum flight tests
should take place during a calm day.

A separated update of longitudinal and lateral parameters of
the flight mechanical model is promising. A simulation of
the model featuring the updated parameters shows a good
agreement with the flight test data. Nevertheless, the rigid
body model can still be improved. So far the parameters of
the drag polar were assumed as given, although they are based
on preliminary design methods. In a next step, the drag polar
parameters will be updated as well. Furthermore, the model
could be extended to provide forces in x-direction, which
would lead to a further improvement of the flight mechanical
model.

For the flexible motion, an automatically running robust
Stochastic Subspace Identification (rSSI) method is used for
the identification of the flight modal paramerters, which are
often used for quality assessment of the actual numerical
model and consequently its validation with respect to the flex-
ible aircraft dynamics. The application of the rSSI method
to the in-flight data has been successfully demonstrated.
The identified flight modal parameters were then compared
with the predicted counterparts computed from the numerical
model by means of modal correlation analysis.
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