Base materials and fuels production founded on solar heat as the energy input

Martin Roeb, Gkiokchan Moumin, Stefan Brendelberger, Andreas Rosenstiel DLR Institute of Future Fuels

Knowledge for Tomorrow

Solar World Congress 2021 28th Oct. 2021

Outline

- History on Solar Heat Generation and Use
- Solar Calcination and Solar Cement
- Solar Recycling
- Solar Thermal Fuel Production

Relevance of cement

(1) Cement Technology Roadmap, WBSCD, 2009(2) Concrete constituents, mastour.com

Emissions of cement production

(2) Technology Roadmap: Low-Carbon Transition in the Cement Industry, IEA, 2018

Solar rotary kiln for calcination

Experiments in the solar simulator

Results of the solar campaigns

Reactor Performance

- Successful tests with cement raw meal
- Calcination degrees up to 99 %

- Total efficiency up to 40 %
- Increase of efficiency with load
- Chemical efficiency lagging behind

Degree of calcination

Bed motion inside the kiln

Bed motion inside the kiln

Impact on the bed thermal conductivity

Present and planned studies

And going beyond?

"Perhaps it is even possible to use this heat source, as Buffon already suggested, for the calcination of gypsum and limestone or for the reduction of ores? But the great natural scientist [Buffon] feared that the bodies could cool down in the air at the focal point of his mirror during these experiments. But this can be prevented quite simply by placing the substances to be calcined in a glass cage or, even better, in a blackened metal container standing in the cage."

A. Mouchot, "Die Sonnenwärme und ihre industriellen Anwendungen", translated from French original 1879, 1987

Aluminium Recycling

- Development and testing of 20 kg pilotscale rotary kiln in Solar Furnace in Köln
- Scale-up study: Integration of pilot-scale rotary kiln at a solar tower plant

9 10

8

-2.000.000

-4.000.000

0

solar

1

3

2

4

5

Jahi

6 7

Portfolio of technologies for renewable fuels production

Thermochemical syngas production

source: sun-to-liquid.eu

Background: Plant based on Plant of Prior Project ASTOR

Background: Plant based on Plant of Prior Project ASTOR

Background: Plant and Process of Project ASTOR

Sun2Liquid – EU H2020

- Move from laboratory to field environment
- Demonstration of complete fuel production cycle in a relevant environment
- Increase TRL from 3 to 5
- Scale-up of thermal power input from 4 kW to 50 kW
- Optimization of reactor geometry and material structure to increase efficiency from 2% to 5-10%
- On-site conversion of produced syngas to hydrocarbons

DLR

Sun2Liquid Solar Plant in Mostoles (Overview)

Economic analysis: Regional variability of production cost

	USA	Australia	Spain	Morocco	Chile	South Africa
DNI [kWh/(m² y)]	2800	2800	2000	2500	3500	3100
Mirror area [10 ⁶ m ²]	8.15	8.15	11.4	9.12	6.52	7.36
Labour costs [10 ⁶ €]	19.1	19.6	8.71	2.14	3.42	3.46
Investment costs [10 ⁹ €]	1.53	1.53	1.89	1.64	1.35	1.45
O&M costs [10 ⁶ €]	82.9	83.4	79.0	67.9	64.4	65.7
WACC [%]	5.7	6.2	4.9	8.1	7.1	13.1
Production costs [€/L jet fuel]	2.17	2.30	2.21	2.37	2.12	3.10

Production costs of jet fuel for six countries with favourable solar resource.

C. Falter et al. Energies 2020, 13, 802.

Economic analysis: Sensitivity of production cost

 Core assumptions for baseline case and for low-cost scenario.

 Subsystem
 Baseline case
 Low-cost scenario

Heliostat costs [€/m²]	100	75
DNI [kWh/(m² y)]	2500	3500
Thermochemical efficiency	15.1%	20%
Cost of CO₂ capture [€/t]	108	45
Production costs [€/L jet fuel]	2.37	1.60

C. Falter et al. Energies 2020, 13, 802.

Acknowledgements

- To the EC for the Co-Financing of the Projects SUN2LIQUID (Contract-No. 654408), SPOTLIGHT (Contract No.101015960) and SFERA-III (Contract No. 823802).
- To the European Hydrogen and Fuel Cell Joint Undertaking for the Co-Financing of the Projects HYDROSOL_beyond (Contract-No. 826379) and PEC_DEMO (Contract N.621252).
- To the federal state NRW in the Leitmarkt- und Klimaschutzwettbewerb "ErneuerbareEnergien.NRW" and the EFRE Programme of EU for the Co-Financing of the ASTOR (EFRE-0800877) and ASTOR-ST (EFRE-0801815).

EFRE.NRW Investitionen in Wachstum und Beschäftigung

EUROPEAN UNION Investing in our Future European Regional Development Fund

• To the HGF for co-funding the project HI-CAM, and to the German Ministry of Economics and Energy (BMWi) for funding the project SolareKraftstoffe (Contract No. 03EIV221).

Thank you for your attention!

Martin Roeb Institute of Future Fuels Martin.roeb@dlr.de