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Abstract
Temperature and precipitation regimes are rapidly changing, resulting in forest die-
back and extinction events, particularly in Mediterranean- type climates (MTC). Forest 
management that enhance forests’ resilience is urgently required, however adaptation 
to climates in heterogeneous landscapes with multiple selection pressures is complex. 
For widespread trees in MTC we hypothesized that: patterns of local adaptation are 
associated with climate; precipitation is a stronger factor of adaptation than tempera-
ture; functionally related genes show similar signatures of adaptation; and adaptive 
variants are independently sorting across the landscape. We sampled 28 populations 
across the geographic distribution of Eucalyptus marginata (jarrah), in South- west 
Western Australia, and obtained 13,534 independent single nucleotide polymorphic 
(SNP) markers across the genome. Three genotype- association analyses that employ 
different ways of correcting population structure were used to identify putatively 
adapted SNPs associated with independent climate variables. While overall levels of 
population differentiation were low (FST = 0.04), environmental association analyses 
found a total of 2336 unique SNPs associated with temperature and precipitation 
variables, with 1440 SNPs annotated to genic regions. Considerable allelic turnover 
was identified for SNPs associated with temperature seasonality and mean precipi-
tation of the warmest quarter, suggesting that both temperature and precipitation 
are important factors in adaptation. SNPs with similar gene functions had analogous 
allelic turnover along climate gradients, while SNPs among temperature and precipi-
tation variables had uncorrelated patterns of adaptation. These contrasting patterns 
provide evidence that there may be standing genomic variation adapted to current 
climate gradients, providing the basis for adaptive management strategies to bolster 
forest resilience in the future.
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1  |  INTRODUC TION

Climate change is a key pressure on ecosystem persistence and func-
tion (Brondizio et al., 2019; Urban, 2015). The shift in climate trends 
will have an impact on ecosystem structure, potentially making or-
ganisms more susceptible to the effects of extreme climate events 
(Harris et al., 2018; Pacifici et al., 2015). Precipitation patterns are 
changing in heterogenous ways, with some areas becoming wetter 
and others drier. While global surface temperature is predicted to 
rise by 1– 4°C on average by the end of the current century, the level 
of temperature rise is also heterogeneous depending on various fac-
tors (e.g., latitude, elevation). In addition, the frequency of extreme 
events such as heatwaves and droughts have increased over recent 
decades in several regions of the world (IPCC, 2021). Because these 
changes are spatially assorted, understanding broad patterns of ad-
aptation across landscapes is often challenging.

Mediterranean- type climates (MTC) are defined by reliable pre-
cipitation and temperature regimes, with predictable summer pe-
riods of low rainfall and hot temperatures, and winter periods of 
high rainfall and moderate temperatures. Ecological studies in the 
Mediterranean basin consistently identify more frequent drought 
periods, together with warmer temperatures, as main drivers for de-
clines in oaks (Quercus spp.) (Corcobado et al., 2014; Gentilesca et al., 
2017) and pines (Pinus spp.) (Camarero et al., 2018). In the South- 
west Western Australia biodiversity hotspot, a region with MTC, 
the 2010– 2011 extreme drought and heatwave conditions resulted 
in large- scale forest collapses in eucalypts (Matusick et al., 2013). 
While some variation in climatic factors exists in natural systems 
(Staudinger et al., 2013), the rapid and extreme shifts associated 
with anthropogenic climate change are challenging for most organ-
isms to persist (Carlo et al., 2018; Levin & Poe, 2017).

If new climatic scenarios are no longer suitable for species to 
maintain their normal ecology and physiology, they either shift their 
geographical range or, in worst case scenarios, go extinct (Aitken 
et al., 2008; Bellard et al., 2012). Although, species may persist 
through enhanced physiological tolerance, phenotypic plasticity 
and/or genetic adaptation (Anderson et al., 2011; Christmas et al., 
2016). Maintenance of standing genetic variation (within popu-
lation allelic variation at a locus) is a key factor for adaptation to 
changing conditions in native habitats (Chhatre et al., 2019; Guzella 
et al., 2018) and for persistence through environmental stressors 
over generations (Kremer et al., 2012; Sexton et al., 2011). Genetic 
variation is critical for ecological adaptive capacity –  the potential 
and ability to adjust to, and persist through, external factors –  and 
consequently, the evolutionary potential of the species (Reed et al., 
2011). Evolution to a specific environment through natural selection 
results in patterns of local adaptation, when a local population expe-
riences higher fitness compared to nonlocal counterparts (Kawecki 
& Ebert, 2004).

Recent improvements in DNA sequencing and statistical meth-
odology have made it possible to investigate genetic divergence 
and the effects of environmental factors on the process of local 
genetic adaptation (Gougherty et al., 2020; Honjo & Kudoh, 2019). 

Environmental association analyses (EAA) have been gaining trac-
tion in the last decade (Ahrens et al., 2018), allowing identification of 
possible candidate genes involved in environmental adaptation from 
tens of thousands of genome- wide single- nucleotide polymorphisms 
(SNPs) sourced from populations across environmental gradients. 
For example, EAAs have been used to explore adaptive genetic vari-
ation on diverse and widespread woody plant genera, like Quercus 
(Gugger et al., 2021; Martins et al., 2018), Populus (Gougherty et al., 
2021; Ingvarsson & Bernhardsson, 2020) and Corymbia (Ahrens 
et al., 2019). These studies have identified functional genes involved 
in adaptation to climatic factors that can be interpreted as diver-
gent selection linked to population- specific environmental variables 
(i.e., local adaptation to climate). However, different climate factors 
identify different sets of adaptive candidates, and few studies have 
focused on how sets of putatively adaptive SNPs sort across the 
landscape. If adaptive SNPs independently sort across the landscape 
(here, we define independent assortment as contrasting distribu-
tions of adaptation across the landscape), then understanding these 
species’ adaptative patterns to climate may prove to be difficult.

Identifying the genetic basis of local adaptation and selective en-
vironmental factors is still challenging. Genetic patterns that confer 
climate adaptations are mostly polygenic (Savolainen et al., 2013) 
and complex to investigate (Lind et al., 2018), particularly for spe-
cies with limited genomic resources (Capblancq et al., 2020; Mayol, 
2019). Genomic resources allow investigators to identify mutations 
that are more likely to affect adaptation. For example, nonsynony-
mous mutations in coding genes result in amino acid changes, which 
can yield changes in gene functions (Kryazhimskiy & Plotkin, 2008), 
or mutations in cis- regulatory regions, which can often result in 
quicker adaptive processes (Wittkopp & Kalay, 2012). Beneficial mu-
tations can be under selection among populations spread across that 
environment. Groups of genes found to be significantly associated 
with environment can be categorised into broader functional groups 
using gene ontology (GO) enrichment analysis (The Gene Ontology 
Consortium, 2019). GO terms have been used to predict polygenic 
adaptive biological processes and molecular functions associated 
with putatively adaptive SNPs in tree species (Collevatti et al., 2019; 
Jordan et al., 2017). However, few studies investigate how genes of 
similar function develop patterns of adaptation across complex land-
scapes. If genes with related functions are found to be adaptive to 
the same climate variable, this might be indicative of additive genetic 
variation controlling adaptation to the environment.

This study investigated the putative patterns of local adaptation 
associated with climate gradients across complex landscapes. To 
test hypotheses associated with signals of adaptation, we focused 
on Eucalyptus marginata Donn ex. Sm. (jarrah) because of its high 
genetic diversity and low population differentiation (Wheeler et al., 
2003), and its ecological importance in the biodiverse hotspot of 
South- west Western Australia (SWWA). This region has prolonged 
periods of extensive drying, with an estimated reduction of 20% in 
rainfall, from the 1970s to the present (Water Corporation, 2020), 
documented impacts of drought and heatwave events (Matusick 
et al., 2013), and the future (2030) climate is projected to show 
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increased frequency and intensity of extremes (BOM & CSIRO, 
2020). Furthermore, jarrah provenance trials have demonstrated ge-
netic variation in functional traits associated to precipitation factors 
(Koch & Samsa, 2007; O'Brien et al., 2007), indicating potential local 
adaptation to drought stress. Ecological studies have also confirmed 
that water availability is critical for jarrah seedling survival and per-
sistence (McChesney et al., 1995; Standish et al., 2015; Stoneman 
et al., 1994). Considering these studies on jarrah, we hypothesize 
that (1) populations show strong genetic patterns of local adapta-
tion to climate, (2) precipitation is a stronger determinant of genetic 
adaptation compared to temperature, (3) functionally related genes 
show similar signatures of adaptation to climate, and (4) adaptive 
variants are independently sorting across the landscape. Lastly, we 
use this information to map the biological turnover of loci across the 
landscape to facilitate informed strategies for forest management 
that incorporate current patterns of genetic variation. We discuss 
how active management strategies, such as assisted gene migra-
tion (Aitken & Bemmels, 2016; Hoffmann et al., 2015; Prober et al., 
2015) may incorporate the results from this study and be employed 
to build adaptive capacity to climate change.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection and DNA extraction

Leaf samples from a total of 280 individual mature trees from 28 
natural jarrah populations across the geographic range of the spe-
cies (Figure 1), including one outlier population (JIL; located out-
side jarrah's natural range), were collected during 2019 (Table 1). 
Geographic coordinates were recorded for all sampled individual 
from each population using a handheld GPS device (Magellan eX-
plorist 310) (Table 1 shows a central point for each population). The 
sampling, which covered a total area of approximately 80,000 km2, 
included independent (>50 km separation) and replicate (across 
similar climate of origin) populations over both temperature and pre-
cipitation gradients to ensure adequate partitioning of the adaptive 

and neutral genetic variation. For each population, mature leaves 
were collected from 10 trees at least 100 m apart from each other. 
Leaves were immediately stored in silica gel until freeze- dried using 
FreeZone 6 Liter Benchtop Freeze Dryer (Labconco Corporation), 
and kept in silica gel at room temperature until DNA extraction 
could be performed. For each sample, genomic DNA was extracted 
from 40 mg of freeze- dried leaf material. Each leaf sample was in-
dependently ground into fine powder and a modified CTAB- DNA 
extraction protocol was employed (Doyle & Doyle, 1990), with 0.1 M 
sodium sulphite (Byrne et al., 2001) and 2% w/v polyvinylpyrrolidone 
(MW 40,000) added to the extraction buffer. Quality of extracted 
DNA was estimated using gel electrophoresis and quantified using 
the Qubit dsDNA BR assay kit on a Qubit fluorometer (Invitrogen).

2.2  |  Genotyping by DArTseq platform

Sequencing of the 280 jarrah individuals was undertaken using 
DArT- Seq technology at Diversity Arrays Technology Pty Ltd. This 
technology uses a double digestion complexity reduction method 
for next generation sequencing (Kilian et al., 2012). The reduction 
of the genome is accomplished by using a combination of PstI and 
HpaII enzymes in digestion/ligation reactions with different adapt-
ers corresponding to two different restriction- enzyme overhangs. 
The PstI- compatible adapter is designed to include flowcell attach-
ment sequence, sequencing primer sequence and varying length 
barcode region. Diversity Arrays Technology's proprietary bioinfor-
matic pipeline was used to demultiplex and align the raw fastq files. 
Identical sequences were then collapsed into fastqcall files. These 
files were used in the secondary pipeline for DArT P/Ls proprietary 
SNP calling algorithm (dartsoft14). Minimum read depth for each in-
dividual was set to six and average read depth was 30.93 across all 
SNPs, guaranteeing call quality for all SNPs and individuals. For the 
SNP calling algorithm, only nucleotide substitutions were considered 
a SNP. Only one random SNP was retained on each 75 base pair (bp) 
sequence to avoid linkage disequilibrium bias. All SNPs were mapped 
to the Eucalyptus grandis genome to obtain chromosome number and 

F I G U R E  1  Sampling locations of 
jarrah in South- west Western Australia 
(black squares). Two climate gradients 
are shown for the species distribution 
area: (a) maximum temperature of the 
warmest month, (°C; TMAX) and (b) mean 
annual precipitation (mm; PMA). Bioclimatic 
layers from worldclim.org (Fick & Hijmans, 
2017). Insert shows distribution of jarrah 
in Australia
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bp position to support the linkage disequilibrium analysis. The full 
data set was then filtered in r (R Core Development Team, 2020) 
using custom scripts. We applied a minor allele frequency filter of 
2% (i.e., an allele frequency of 0.02), which equates to a minor al-
lele count of at least 11 calls, minimising inclusion of sequencing 
errors. Missing data was set to 6% across individuals (SNPs were 
kept if they were called in at least 263 individuals). These thresholds 
were chosen because this translates to, on average, the presence of 
genetic information from nine individuals per population, which is 
adequate for EAA type of method and identifying SNPs under selec-
tion (Ahrens, Jordan, et al., 2021). Linkage disequilibrium (LD) was 
calculated within each of the chromosomes using the function LD. 
Measures in ldcorsv (Mangin et al., 2012). To guarantee adequate 
independence between SNPs and prevent potential linkage bias, 
the data set was filtered by the within chromosome pairwise LD r2 

coefficient (only one of the SNPs was randomly retained for analysis 
if the r2 is >.5).

2.3  |  Environmental variables

Temperature and precipitation variables have been commonly as-
sessed as predictors for environmental adaptation in eucalypts for 
phenotypic and genotypic variants (Aspinwall et al., 2019; Correia 
et al., 2018; Pritzkow et al., 2020). Climatic data for all populations 
was downloaded from the 19 variables in the worldclim v2 database 
(Fick & Hijmans, 2017) at a spatial resolution of 30 arcsec. Climate 
data for each population was extracted using the r package raster 
(Hijmans, 2021) from the geolocated GPS coordinates of the sampled 
populations. Principal component analysis (PCA) of environmental 

TA B L E  1  Locations and climatic variables for the 28 sampled populations of jarrah in SWWA

Population Code Lat Long TSEAS TMAX TMIN PMA PWQ

Mt Lesueur LES ‒ 30.1644 115.1991 41.1 32.2 8.2 578 35

Julimar JUL ‒ 31.3491 116.2470 49.0 33.1 6.1 635 44

Jilakin Rocka JIL ‒ 31.6647 118.3261 52.8 33.2 5.0 326 46

Chidlow CHI ‒ 31.8622 116.2266 47.4 32.3 6.1 876 54

Perry Lakes PER ‒ 31.9436 115.7838 37.6 30.4 9.4 765 38

Dale DAL ‒ 32.1017 116.1900 45.9 31.5 6.2 1053 58

Serpentine SER ‒ 32.3451 116.072 43.9 30.6 6.4 1151 57

Lupton LUP ‒ 32.5292 116.5003 48.3 31.4 4.3 705 45

Whittaker WHI ‒ 32.5499 116.0100 43.1 29.9 5.8 1190 62

Peel PEE ‒ 32.6920 115.7103 37.5 30.4 8.3 888 42

Saddleback SAD ‒ 32.9967 116.535 46.1 30.8 4.3 681 44

Godfrey GOD ‒ 33.2142 116.5712 45.0 30.2 4.1 661 45

Yourdaming YOU ‒ 33.3035 116.2407 43.9 30.4 4.1 851 46

Eaton EAT ‒ 33.3177 115.7482 39.2 30.5 6.7 853 47

Meelup MEE ‒ 33.5939 115.088 30.1 27.4 9.1 839 43

Grimwade GRI ‒ 33.7612 115.9988 40.2 29.6 5.3 881 53

Katanning KAT ‒ 33.8294 117.5731 41.9 29.2 5.2 457 50

Bramley BRA ‒ 33.9035 115.0871 28.8 26.1 8.8 1072 54

Mowen MOW ‒ 33.9133 115.5434 34.7 27.8 6.9 965 54

Nannup NAN ‒ 33.9852 115.7778 36.1 28.3 6.6 928 56

Kingston KIN ‒ 34.0825 116.3374 38.8 28 5.1 785 61

Milylannup MIL ‒ 34.1928 115.6654 32.3 26.6 7.4 1027 64

Stirling Range STI ‒ 34.3850 117.9927 35.4 26.9 5.8 493 67

Carey CAR ‒ 34.4257 115.8223 30.6 26 7.6 1112 72

Boorara BOO ‒ 34.6126 116.2060 31.4 25.9 6.9 1126 79

Plantagenet PLA ‒ 34.6402 117.4987 33.7 26.7 6.5 738 79

Beadmore BEA ‒ 34.8171 116.4834 31.3 25.8 7.0 1088 83

Denmark DEN 201334.9535 117.3805 30.3 25.8 7.6 976 88

Note: Temperature (T) and precipitation (P) variables are expressed in degrees Celsius (°C) and millimetres (mm), respectively.
Abbreviations: Lat, latitude; Long, longitude; PMA, mean annual precipitation; PWQ, mean precipitation of the warmest quarter; TMAX, mean maximum 
temperature of the warmest month; TMIN, mean minimum temperature of the coldest month; TSEAS, temperature seasonality.
aOutlier population.
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variables was performed with r package ade4 (Chessel et al., 2004) 
and a Pearson's correlation coefficient matrix was calculated be-
tween all 19 climate variables using the cor function. For later en-
vironmental association analysis, we tested a total of five climate 
variables. Two of these represent extreme temperature and precipi-
tation variables and we predicted they would drive patterns of adap-
tation in MTC regions: maximum temperature of the warmest month 
(TMAX) and precipitation of the warmest quarter (PWQ). Three other 
temperature and precipitation variables were selected as independ-
ent climatic factors, based on PCA and Pearson's correlation coeffi-
cients (If the r > .7 of magnitude between two variables, these were 
considered strongly correlated and thereafter not included in fur-
ther analysis; Table S2, tabs 16– 17) and are known to be important 
for local adaptation in eucalypts (Queirós et al., 2020; Rocha et al., 
2020): minimum temperature of the coldest month (TMIN), mean an-
nual precipitation (PMA), and temperature seasonality (TSEAS).

2.4  |  Environmental association analysis

To understand how genetic structure of jarrah populations might af-
fect EAA, genetic structure was estimated by measure of genetic 
differentiation (FST) (Weir & Cockerham, 1984) using the hierfstat 
package (Goudet, 2005) in r. We also estimated individual ances-
try coefficients for input for the EAA in LFMM. For this, we used 
the sparse nonnegative matrix factorization (SNMF) method in the 
r package LEA (Frichot & François, 2015). SNMF was run for each 
k- value between 1 and 10, with each k- value ran 10 times (200 
iterations each). The optimum k- value across all 10 runs was esti-
mated using the software clumpp (Jakobsson & Rosenberg, 2007), 
and the graphical parameters were drawn in the program distruct 
(Rosenberg, 2004). The ideal k- value was selected by visualising the 
cross entropies as defined in the SNMF manual (Frichot & François, 
2015) and choosing the k- value with the lowest cross entropy score 
for the LFMM analysis.

To elucidate the association between climate and genetic varia-
tion, three approaches were applied: a redundancy analysis (RDA), 
latent factor mixed models (LFMM) and BAYPASS. The three distinct 
approaches apply different statistical frameworks to identify popu-
lation structure, which should reflect on the performance for each 
method (Lotterhos & Whitlock, 2015), but simultaneously allow a 
greater confidence in the identified associations (Ahrens et al., 
2018). The detailed description for each method, including advan-
tages and limitations, are broadly documented elsewhere (Ahrens 
et al., 2018; Hoban et al., 2016; Lotterhos & Whitlock, 2015; Rellstab 
et al., 2015). Therefore, we applied a multiapproach methodology as 
suggested by De Mita et al. (2013), providing a powerful detection 
of potential adaptive loci, regardless of limitations from each method 
(Rellstab et al., 2015).

Briefly, RDA is a multivariate method that assumes linear rela-
tionships from explanatory variables on response variables, thus 
allowing the estimation of genetic variance related to each distinct 
environmental factor simultaneously (Forester et al., 2018). RDA 

and LFMM require complete data sets, therefore we imputed miss-
ing data as the most common allele in the locus from the optimal 
ancestral cluster (k) as defined in the SNMF output. The explanatory 
variables (i.e., climate) were then constrained by the dependent vari-
ables (i.e., individuals), using the rda function in the vegan package 
2.5- 1 in r (Oksanen et al., 2018). The anova.cca function was used to 
test for RDA significance using 999 permutations (randomised en-
vironmental variables). We did not explicitly control for population 
structure because RDA without explicit population structure inputs 
improves the output (Forester et al., 2018).

We also used LFMM to test for climate associations (Frichot 
et al., 2013), which applies a univariate regression model to assess 
genotype- environment associations while using the optimal k- value 
estimated in SNMF to control for ancestral population structure. 
This method is described as highly efficient to identify polygenic 
associations, even across diverse demographic sampling (De Mita 
et al., 2013; Lotterhos & Whitlock, 2015). The LFMM analyses were 
independently performed for each of the climate variables, consist-
ing of 30,000 iterations each (15,000 discarded as initial burnin). 
Median z- scores were combined from a total of five runs for each 
variable and recalibrated by manually adjusting the genomic infla-
tion factor, λ, and then dividing the scores by λ. Adjusted p- values 
were computed by flattening the histogram (false discoveries were 
controlled with the Benjamin- Hochberg algorithm using q = 0.01), 
which ideally should display a peak close to zero. We used λ = 0.45 
(this optimally flattened the histogram after testing other λ values as 
recommended in LFMM manual) in the adjustment function to flat-
ten the histogram and followed the steps and R script available from 
the LFMM manual. To account for multiple comparisons, we applied 
a false discovery rate (FDR) threshold of 0.05 to all runs.

Lastly, we used a hierarchical clustering model implemented in 
baypass (Gautier, 2015), based on the model from bayenv (Coop et al., 
2010). A population covariance matrix (Ω) was generated by running 
the core model. Each run had 100,000 iterations (50,000 discarded 
as initial burnin), repeated five times and averaged. The covariance 
matrix was then used in the AUX covariate mode (100,000 iterations; 
50,000 as burnin), repeated five times and averaged for final results. 
Significant SNPs were identified if they had a Bayes Factor (BF) >3 
(Kass & Raftery, 1995). Like LFMM, BAYPASS is based on a mixed 
linear model to account for potentially confounding allele frequency 
variances due to population structure. However, the difference 
between the two approaches may provide a means of identifying 
any influence of population structure (Ahrens, Jordan, et al., 2021; 
Forester et al., 2018).

2.5  |  Annotation and gene ontology analysis

To investigate the potential role of adaptive SNPs, identified by the 
three EAAs, in coding regions of genes, genomic annotation was run 
using the blastn function (Altschul et al., 1997) from BLAST (https://
blast.ncbi.nlm.nih.gov/). The 75 bp sequences associated with each 
putatively adaptive SNP were annotated using the E. grandis genome 

https://blast.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/
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(Myburg et al., 2014) and gene annotation considered significant if 
their blast output values met two related thresholds: an E- value 
<1 × 10−8 and a blast- score of at least 60.0. Chromosome number 
and location of SNPs were recorded, as well as annotated gene func-
tions. Annotated genes were used in a comparative analysis with the 
co- occurring tree marri (Corymbia calophylla) from Ahrens, Byrne, 
et al. (2019) to identify shared adaptive genes between the two 
species.

The putatively adaptive SNPs in genes were also used to pre-
dict broader biological functions using GO enrichment analysis 
through the web interface PlantRegMap (Tian et al., 2020). GO 
terms are organized within three categories: molecular function, 
cellular component and biological process. We explored the bi-
ological process aspect from the GO analysis, which refers to a 
category of broad processes accomplished by multiple genes or 
gene products. For each climate variable, Fisher's exact test was 
used to test for significantly overrepresented GO terms, with a 
threshold of p- value <.01. Significant GO terms are defined by a 
set of genes associated with a specific climate variable. We use 
this output to explore how functionally related candidate SNPs 
associated to each climate variable are linked to GO terms, which 
might be additive for environmental responses (e.g., abiotic stress 
response) (Kulbaba et al., 2019). We only developed a subset of 
significant GO terms for landscape scale patterns to illustrate our 
point of variation among similarly functioning genes. We chose 
GO terms with the highest number of SNPs and/or with biologi-
cal processes directly related to the climate variable (specifically 
response and/or tolerance to heat, cold and drought) for further 
landscape genomic analysis.

2.6  |  Landscape genomics

We used generalized dissimilarity modelling (GDM) to visualise the 
relationship between allele frequency of putatively adaptive SNPs 
and climate (Fitzpatrick & Keller, 2015). GDM is a statistical method 
that predicts spatial patterns of allelic turnover across geographic re-
gions due to climate by generating an I- spline turnover plot for each 
tested predictor and uses percent deviance explained as a measure 
of model fit (Ferrier et al., 2007). Specifically, the GDM spline plots 
show the association between predicted ecological distances and 
genetic dissimilarities (FST matrix) while partitioning out variance 
explained by geographic distance; the y- axis on the spline plots is 
therefore labelled as partial genetic distance, as it describes a por-
tion of genetic distance, and the height of each spline indicates the 
magnitude of genomic turnover of a SNP along the climate gradient. 
GDM analyses was run using the gdm package v 1.3.7 in r (Manion 
et al., 2018), considering an input genotypic matrix (pairwise FST for 
single putatively adaptive SNPs or SNP groups from GO terms) and 
a pairwise climate matrix that includes geographic coordinates. The 
hierfstat package in r was used to create population pairwise FST ma-
trices with the putatively adaptive SNPs associated with each cli-
mate variable. GDM was independently applied to all the putatively 

adaptive SNPs identified by the EAA as significant. For each climate 
variable, SNP GDM models with the highest value of deviance ex-
plained was selected for plotting and mapping of predicted allelic 
turnover to test the hypothesis of adaptive variants being indepen-
dently sorted across the landscape.

Following the GDM transformation of the climate variables for 
each SNP, we performed PCA on the GDM transformed environ-
mental layer using r. The PCA was predicted across geographic 
space using the predict function in the raster package and visual-
ised using the plot function, revealing a 0– 1 allelic turnover map. To 
test the hypothesis of additive variation, we ran GDM analyses on 
groups of SNPs related to specific GO terms for each of the five 
climate variables and visualised how the allelic turnover within the 
GO term was related to that climate. By running GDM analysis on 
groups of SNPs, we were able to quantify an “additive score” of de-
viance explained for each set of SNPs to compare the importance of 
GO terms. To test the independent assortment hypothesis among 
SNPs, we directly compared maps derived from the GDM models 
that explained the most deviance for each of the five bioclimatic fac-
tors using a Spearman's correlation coefficient test in the spatialeco 
package (Evans, 2021).

3  |  RESULTS

3.1  |  Sequencing and population structure

A total of 78,198 SNPs were generated by DArTseq technologies and 
filtered down to 13,534 independent SNPs, with 8824 SNPs mapped 
to the 11 Eucalyptus grandis chromosomes. The number of SNPs per 
chromosome varied from 599 to 1083, with a mean of 802 SNPs per 
chromosome. Of the remaining SNPs, 477 fell on unspecified scaf-
folds and 4233 on regions that could not be aligned to the E. gran-
dis genome (unknown location). Population differentiation was low 
(global FST = 0.04), and similar to that identified in a previous RFLP 
analysis of variation (FST = 0.034; Wheeler et al., 2003), with popula-
tion pairwise FST values ranging from 0.011 to 0.18 (Table S2, table 
18). The cross- entropy analysis estimated that the optimal number 
of clusters (k- value with the lowest entropy score) was 6 (Figure S1). 
SNMF analysis with six clusters revealed substantial admixture in 
populations. Five of the clusters could be geographically described 
(Figures 2 and S2), one cluster was primarily located in the southern 
area, one in the central area and two in the northern area, where one 
cluster was dominant in populations along the coast. A fifth cluster 
occurred in the outlier population (JIL; blue colour), and the sixth 
cluster was present in four individuals (two individuals from BRA 
and BOO). The LES population, which is the northmost population, 
displays mixed affinity, being similar to both southern (green) and 
northern (yellow and red) populations. This is consistent with the 
northern areas harbouring ancestral variation in other co- occurring 
species (e.g., marri; Sampson et al., 2018), or could indicate possi-
ble historic human influence through Aboriginal movement of plants 
(Lullfitz et al., 2020; Lullfitz, Dabb, et al., 2020).
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F I G U R E  2  Distribution of sampled 
jarrah displaying population membership 
proportion for K = 6 genetic clusters, 
depicted as pie charts. Table 1 provides 
more details on each population

F I G U R E  3   Summary of environmental association analysis in jarrah. Venn diagrams show the intersections between the three 
approaches of environmental association analyses (RDA, red; LFMM, blue; BAYPASS, yellow) considering adaptive SNPs associated with 
each of the climate variables: PMA, mean annual precipitation; PWQ, mean precipitation of the warmest quarter; TMAX, mean maximum 
temperature of the warmest month; TMIN, mean minimum temperature of the coldest month; TSEAS, temperature seasonality
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3.2  |  Environmental association analysis

The full set of 13,534 independent SNPs were considered for en-
vironmental association analysis. All three EAA approaches found 
putatively adaptive SNPs for each of the five climate variables (Table 
S2, tabs 1– 5). The RDA approach identified fewer putatively adap-
tive SNPs than BAYPASS and LFMM that identified similar numbers 
(Figure 3; Table S1). The proportion of overlapped SNPs is different 
for each variable (Figure 3). Overall, 2336 unique SNPs were flagged 
to be associated with at least one of the tested climate variables 
across the three EAA approaches. RDA analysis (Figure S3) identi-
fied between 16 (TSEAS) and 57 (TMAX) SNPs significantly associated 
with each of the climate variables, for a total of 168 SNPs. All five 
climate variables were shown to be significantly associated with var-
iation in the RDA (TSEAS: F = 3.98, p = .001; TMAX: F = 2.26, p = .001; 
TMIN: F = 2.11, p = .001; PMA: F = 1.80 p = .001; PWQ: F = 1.49, 
p = .001). LFMM identified between 263 (PMA) and 411 (TMAX) SNPs 
with significant correlations, with a total of 1753 putatively adaptive 
SNPs. BAYPASS identified between 284 (TMIN) and 888 (TMAX) SNPs 
with significant correlations, with a total of 2327 putatively adaptive 
SNPs. Putatively adaptive SNPs found for all environmental vari-
ables from each EAA method were used in further analyses.

3.3  |  Annotation and gene ontology

Of the 2336 unique putatively adaptive SNPs associated with the 
climate variables, 1440 SNPs were linked to functionally annotated 
genes, which represents 10.6% of the total independent SNPs 
tested for EAA (13,534). Full annotation results for SNPs associated 
with each variable are given in Table S2, tabs 6– 10. TMAX delivered 
the highest amount of linked functionally annotated genes (474), fol-
lowed by PWQ (312), TSEAS (237), PMA (214) and TMIN (203). Annotated 
SNPs (Table 2) included, for example, JAR00198, associated with 
both TSEAS and TMIN, located in a transcinnamate 4- monooxygenase 
(TCMO) gene; two SNPS associated with TMAX, JAR00038 and 
JAR00207 were found on transcription repressor MYB6 and tran-
scription factor MYB44 genes respectively; PMA, JAR02395, located 
in a peroxidase 72 gene.

Gene ontology enrichment analysis explored how groups of 
annotated SNPs relate to similar functions (Table S2, tabs 11– 15). 
Enriched GO terms in the biological process category are highlighted 
for each of the five bioclimatic variables (Table 3). A GO term as-
sociated with response to light stimulus (GO:0009416) was found 
with the SNPs related to TSEAS. Genes associated with this GO term 
are linked to cellular response processes (in terms of components 
movement, enzyme production, and secretion and protein expres-
sion) from abiotic stimulus, specifically electromagnetic radiation 
and light. A GO term related to karrikin stimulus was found associ-
ated with TMIN (GO:0080167). As for PMA and PWQ, GO terms with 
high counts of SNPs were found for each variable (GO:0044763 and 
GO:1901566, respectively) as well as a term related to UV response 
(GO:0009411) associated with PMA.

3.4  |  Landscape modelling

We independently applied GDM analysis to all putatively adaptive 
SNPs associated with the five climatic variables (Figure S4), and the 
models that explained the highest deviance for each variable were 
selected to display spatial patterns of allelic turnover (Figure 4): TSEAS 
–  JAR00269 (39.2%); TMAX –  JAR11943 (25.5%); TMIN –  JAR01172 
(16.8%); PMA –  JAR10596 (21.9%) and PWQ –  JAR06621 (36.9%). The 
GDM model for the SNP associated with TSEAS (JAR00269) explained 
more deviance than any other putatively adaptive SNP across the 
five climate variables, followed by the model for PWQ (JAR06621). 
There was rapid turnover noticeable for the three temperature vari-
ables from the coastal to eastern populations in the north of the 
range, and more gradual turnover from the northern populations to 
the southern populations (Figure 4a– c). But even among the three 
temperature variables, there were major differences in adaptive pat-
terns. For instance, while TSEAS and TMAX displayed a similar rapid 
turnover from the coastal to eastern populations in the north of the 
range, and fairly gradual turnover from the northern populations 
to the southern populations, TMIN followed the same trend in the 
northern region, but a rapid turnover is present between the coastal 
and inland populations in the south region. In contrast, the precipita-
tion variables showed rapid turnover in the southern or central parts 
of the distribution, and more gradual turnover in the northern distri-
bution (Figure 4d,e). In southern areas, PWQ showed a rapid turnover 
between coastal and inland southern populations, while PMA showed 
a more gradual pattern in this region. Correlation coefficients be-
tween allelic turnover maps showed clear differences between some 
of the adaptive landscapes (Figure 4; bottom right table, below the 
diagonal), as r2 values ranged between the absolute values of .21 to 
.74, and often different than correlation between their respective 
climate variables (above the diagonal). These differences are indica-
tive of contrasting spatial patterns.

The groups of SNPs associated with selected GO terms (Table 3) 
were also used in a combined GDM analysis to measure allelic turn-
over across climatic gradients and interpreted as an additive pattern 
of adaptation (Figure 5). The patterns of allelic turnover varied by 
climatic variable: overall, GDM showed small to moderate response, 
in terms of deviance explained. The GDM model explained more 
deviance for the group of SNPs linked to the GO term associated 
with PWQ (n = 21; 21.22%, Figure 5e) than any other climate variable 
association using GO terms, followed by GO terms associated with 
TMIN (n = 3; 14.27%, Figure 5c). Models for TSEAS, TMAX and PMA ex-
plained a similar deviance for allelic turnover composition (<5% for 
each group of SNPs).

4  |  DISCUSSION

Our study identified putative patterns of climate adaptation in jar-
rah, with several strong associations between candidate SNPs and 
climatic gradients. The results provide support for our hypoth-
esis of strong patterns of local adaptation to climate across the 
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distribution of jarrah, although, contrary to our second hypoth-
esis, we found adaptation to both temperature and precipitation 
variables rather than primarily with precipitation. As expected, 
annotation highlighted functional genes associated with biological 
processes, some of which relate to abiotic stress factors and pro-
vide good candidates for adaptations. Furthermore, the landscape 
genomics modelling assessed the magnitude of allelic turnover for 
putatively adaptive SNPs and highlighted temperature seasonal-
ity, mean maximum temperature of the warmest month and pre-
cipitation of the warmest quarter as explaining significantly more 
variation than other climate drivers. These patterns indicate that 
adaptive variants are independently sorting across the landscape, 
which is consistent with our fourth hypothesis. We discuss the 

mechanisms for adaptation to climate across complex landscape 
for forest trees, including a direct comparison with a codominant 
co- occurring foundation species, before providing the scientific 
basis for implementation of management and conservation strate-
gies to promote the resilience of foundation tree species. These 
associations, indicating potential local adaptation, were found 
despite high levels of gene flow among populations across the 
distribution, a common characteristic among eucalypt species 
(Ahrens, Byrne, et al., 2019; Jones et al., 2002; Murray et al., 2019; 
Supple et al., 2018). Low differentiation among populations indi-
cates that application of EAA in jarrah is appropriate to identify 
alleles putatively under selection. As expected, the three EAA ap-
proaches identified different sets of putatively adaptive SNPs for 

TA B L E  2  Gene annotation showing the top five SNPs (Blast score, 125) for jarrah, with NCBI blast e- value score, relative ranks based 
on levels of significance for each EAA and chromosome number (chr) from Eucalyptus grandis genomic mapping (un, unknown) for each 
environmental variable

Climate SNP
RDA 
(p- value)

LFMM 
(p- value)

BAYPASS 
(BF) chr

Blast 
e- value

Gene annotation from the Eucalyptus 
grandis genome

TSEAS JAR00166 – .00034 4.708 un 1.0E- 28 Mitochondrion

JAR00198 – .00064 6.788 10 1.0E- 28 Trans- cinnamate 4- monooxygenase

JAR00273 – 3.11E- 05 21.663 11 1.0E- 28 Mitochondrion

JAR00499 – .00071 – 8 1.0E- 28 Probable LRR receptor- like serine/
threonine- protein kinase

JAR00662 – 4.78E- 06 – 6 1.0E- 28 UPF0496 protein

TMAX JAR00038 – – 3.270 6 8.0E- 29 Transcription repressor MYB6

JAR00207 – – 3.054 6 8.0E- 29 Transcription factor MYB44

JAR00209 – – 9.466 11 8.0E- 29 AT- hook motif nuclear- localized protein 
16

JAR00214 – – 11.262 6 8.0E- 29 Protein indeterminate- domain 1

JAR00262 – – 6.154 4 8.0E- 29 Uncharacterized

TMIN JAR00013 – – 9.801 10 8.0E- 29 Mitochondrion

JAR00166 – – 18.303 un 1E- 28 Mitochondrion

JAR00198 – .00026 6.788 10 1E- 28 Trans- cinnamate 4- monooxygenase

JAR00273 – 1.32E- 06 – 11 1E- 28 Mitochondrion

JAR00620 0.242 – – 11 8.0E- 29 Uncharacterized

PMA JAR00027 – .00014 10.316 7 1.0E- 28 Mitochondrion

JAR00500 – – 6.788 4 1.0E- 28 Putative yippee- like protein 
Os10g0369500

JAR01426 – .0004 – 11 1.0E- 28 Tyrosine decarboxylase 1

JAR01512 – .0001 – 5 1.0E- 28 Uncharacterized

JAR02395 – .00092 – 9 1.0E- 28 Peroxidase 72

PWQ JAR00214 0.454 .00053 – 6 8E- 29 Protein indeterminate- domain 1

JAR00273 – – 11.889 11 8E- 29 10 kDa chaperonin

JAR00499 – .00021 – 8 1E- 28 Probable LRR receptor- like serine/
threonine- protein kinase A

JAR00690 – .00031 6.266 1 8E- 29 Zinc finger protein ZAT5

JAR01091 – 5.34E- 07 4.388 7 1E- 28 LOB domain- containing protein 1- like

Note: SNPs that were also found associated with GO terms (Table 3) are in bold.
Abbreviations: PMA, mean annual precipitation; PWQ, mean precipitation of the warmest quarter; TMAX, mean maximum temperature of the warmest 
month; TMIN, mean minimum temperature of the coldest month; TSEAS, temperature seasonality.
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each climate variable. One limitation of EEAs is the identification 
of SNPs that are found to be under selection but are in fact not 
(false positives). While false positives are an inherent limitation 
in EAA studies, EAAs can consistently identify adaptive SNPs, 
even if the selection coefficient is small (Ahrens, Jordan, et al., 
2021). We focus our interpretation on SNPs that are within gene 
space to lessen the impact of false positives, despite that candi-
date SNPs identified outside of gene space could be true positives. 
For instance, SNPs could be in promoter regions, which are known 
to have high proportion of adaptive variants (Wittkopp & Kalay, 
2012), SNPs could form a large haplotype block with genes that 
are under selection (Todesco et al., 2020), or SNPs could be in link-
age disequilibrium with adaptive SNPs. Future work should focus 

on improving the genomic resources of the species to elucidate 
these complex issues that are beyond the scope of this work.

4.1  |  Adaptation to temperature and precipitation

Generalized dissimilarity modelling models on all putatively adap-
tive SNPs found the highest deviance explained for a SNP associ-
ated with TSEAS (39.2%), closely followed by PWQ (36.9%), with overall 
results showing low to moderate deviance across the five climate 
variables. Furthermore, PWQ was linked to GO:1901566, with the 
highest number of putatively adaptive SNPs (21) and also showed 
the highest deviance explained by the GDM analysis (Figure 5e). 

F I G U R E  4  Predicted spatial variation of allelic turnover based on the outputs from the GDM models that explained the most deviance 
for each climate variable (between climate and SNP) for jarrah. (a) TSEAS, JAR00269; (b) TMAX, JAR11943; (c) TMIN, JAR01172; (d) PMA, 
JAR10596 and (e) PWQ, JAR06621. Insets are spline plots of partial genetic distance (y- axis) by climatic distance (x- axis) for the individual SNP 
(dimensions of the plot are the same as in Figure 4). Table shows the pairwise Spearman's correlation coefficient (r2) between the two allelic 
turnover maps (below diagonal) and between the climate variables (above the diagonal)
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Overall, both temperature and precipitation variables are linked to 
adaptive genetic variants; although, GO and GDM analyses high-
lighted the specific precipitation variable (PWQ) as a stronger driver 
of adaptation.

The annotations of putatively adaptive genes were made based 
on the reference genome of E. grandis, a distant relative, so we pro-
vide a pertinent but cautious preliminary interpretation of func-
tional results until a full jarrah reference genome becomes available. 
Gene functions associated with the temperature and precipitation 
variables show biological functions associated with response and 
adaptation to these abiotic factors. For example, the KCS gene fam-
ily (JAR02659), that was associated with TSEAS, has been linked to 
cold and light responses (Joubès et al., 2008) in Arabidopsis, being 
involved in the biosynthesis of waxes that cover the leaves surface. 
Two SNPs, also associated to TSEAS, (JAR13256 and JAR08936) 
are linked to the ABC transporter gene families, which have been 
shown to be associated with heat response and abiotic stress tol-
erance during seed germination (Hwang et al., 2016; Zhang et al., 
2012). Control of seed germination during periods of thermal stress 
could be a crucial mechanism for selecting phenotypes that are more 
adapted to Mediterranean type of climates with hot and dry sum-
mers. In that sense, we can envision how genes that control seed 
germination response could be selected for or against in such cli-
mates (Rix et al., 2015). A SNP associated with PWQ (JAR13490) was 
found in the chromatin- remodelling factor PKL gene that has been 
consistently linked to multiple plant development processes, partic-
ularly to the abscisic acid (ABA) pathway regulation (Perruc et al., 
2007). ABA is a phytohormone that is well known for controlling sto-
matal closure (Maheshwari et al., 2020; Rajab et al., 2019), thus being 
crucial for efficient drought response (Yu et al., 2019; Zhang et al., 

2020). Drought is a known selective force in the region, and the abil-
ity to control stomates would also allow for the reduction of transpi-
ration during dry periods, a physiological ability that has been shown 
to be crucial in the co- occurring marri (Challis et al., 2020). These 
are just a sample of the many compelling gene functions associated 
to either temperature or precipitation found across the five tested 
climatic variables, identifying these variables as potential drivers of 
local adaptation.

4.2  |  Functionally related genes have similar 
adaptive patterns

In our GO enrichment analysis, we focused on biological processes 
related to abiotic stress responses such as drought, cold and heat. 
Generally, we found biological GO terms with gene overrepresen-
tations, consistent with expectations under our third hypothesis: 
functionally related genes have similar patterns of correlation with 
climate. For instance, a GO term related to karrikin stimulus was 
found associated with TMIN (GO:0080167). Karrikins are a group of 
phytohormones that control several aspects of plant germination 
and growth (Nelson et al., 2012). A study with Arabidopsis showed 
that karrikin signalling can inhibit seed germination under heat stress 
(Wang et al., 2018), possibly to avoid germination under conditions 
unfavourable to seedling establishment.

Many plant functional traits are polygenic, involving complex 
interactions controlled by multiple genes, so it is expected that 
patterns of climate adaptation are also the result of combined ef-
fects from several alleles of small- effect (Wadgymar et al., 2017). 
Indeed, climatic variables are expected to not be the main driver for 

F I G U R E  5  Geographic generalized dissimilarity modelling (GDM) in jarrah showing SNPs allelic turnover for gene functions (GO terms) 
across each environmental variable. PMA, mean annual precipitation; PWQ, mean precipitation of the warmest quarter; TMAX, mean maximum 
temperature of the warmest month; TMIN, mean minimum temperature of the coldest month; TSEAS, temperature seasonality. GO terms with 
different SNP sets in the same plot are represented with different colours (black or orange)
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variation in some putatively adaptive SNPs, as the genes associated 
can be pleiotropic and may be under selection from other biotic or 
abiotic factors. For example, although precipitation and temperature 
are consistently highlighted as key factors influencing plant distri-
bution and ecology, soil properties greatly affect these settings, 
as water availability depends on the interaction between climatic 
variables and soil characteristics (Piedallu et al., 2013). The identifi-
cation and understanding of adaptive genetic variations might then 
be improved by including other relevant abiotic factors such as soil 
characteristics. Nevertheless, by hierarchically categorising gene 
functions through GO enrichment, we were able to find adaptive 
patterns across the distribution, highlighting likely polygenic adapta-
tions to climate variables in this species.

4.3  |  Adaptive variants are independently sorted

Across the species geographic distribution, climatic heterogeneity 
explains significant genomic variation. In particular, two distinct 
climate variables, TSEAS and PWQ, showed strong associations with 
genomic variants. The patterns of genomic turnover associated with 
the studied climatic variables are aligned with the climatic gradients 
of the region (Figure 4). These associations are indicative of the 
multidimensional patterns of adaptation resulting in uncorrelated 
intraspecific selection among SNPs (White & Butlin, 2021). Here, 
we define dimensionality as the interaction between uncorrelated 
climate variables to independently describe each habitat. Our di-
mensionality is driven by climate, and the independent sorting of 
putatively adaptive SNPs is indicative of this complex pattern. It has 
been modelled that local adaptation increases with dimensionality 
(MacPherson et al., 2015), and it probably leads to dimensionality 
of phenotypic traits (Kirkpatrick & Meyer, 2004; McGuigan et al., 
2005). Indeed, there is evidence of intraspecific variation among 
growth traits (e.g., height and diameter) that are locally adapted in 
jarrah (Koch & Samsa, 2007; O’Brien & Krauss, 2010; O’Brien et al., 
2007).

In some ways, increased dimensionality is ubiquitous with in-
creased habitat heterogeneity, and habitat heterogeneity has been 
shown to drive signatures of adaptation to temperature and precip-
itation in tree species (Shryock et al., 2020; von Takach et al., 2021; 
Walters et al., 2021). While these studies did not explore dimen-
sionality explicitly, their results nevertheless show that tree species 
are able to independently adapt to multiple types of environments. 
While such patterns of differential adaptation make management of 
the species more complex and nuanced in the future, our results pro-
vide a level of understanding that will allow for targeted responses 
to changing climatic conditions in different regions.

4.4  |  Landscape adaptations of forests

Comparative analysis can provide broader patterns for forest 
management, where concurrent genetic and spatial patterns of 

local adaptation within co- occurring tree species provides strong 
evidence for environmental fitness and evolution (Bragg et al., 
2015). Our analysis here identified SNPs associated with both tem-
perature and precipitation in jarrah; while a similar study on a co- 
occurring species, marri, found SNPs associated with temperature 
to explain more deviance than precipitation (Ahrens, Byrne, et al., 
2019), thereby suggesting that temperature is a stronger driver of 
local adaptation for marri. It is interesting that there were similari-
ties in functional genes associated with several adaptive variants 
between jarrah and marri (e.g., ABC transporters and CBL gene 
families). Comparison across both species identified a set of 26 
genes that were also found to be associated with at least one of 
the five variables analysed (Table S3). Most of these shared genes 
are associated with either TMAX (16) or PWQ (12) in jarrah; while for 
marri, the majority of the shared genes are associated with TMAX 
(24), which is consistent with adaptation to both temperature and 
precipitation in jarrah and with temperature in marri. While this 
comparison shows that some functional genes share adaptive pat-
terns, there were more genes that were different, indicating that 
the same adaptive management plan may not be effective for both 
species.

4.5  |  Management perspectives

Our analysis of standing genetic variation across the distribution of 
jarrah found potential links between putatively adaptive SNPs and 
climate factors, which may provide a source of adaptation to future 
climate conditions. The evidence that genetic variants are involved 
with climate adaptation occurred as either associations with specific 
annotated gene functions or biological processes associated to cli-
mate factors. Our analysis here, and that of the co- dominant species 
marri (Ahrens, Byrne, et al., 2019), are also consistent with results 
from recent genomic studies on other eucalypt species in other re-
gions of Australia (Jordan et al., 2017, 2020; Steane et al., 2017), 
providing evidence of adaptation to climate in natural populations 
and stressing the role of temperature (particularly TSEAS and TMAX) 
and precipitation (PWQ) variables. The presence of climate adapta-
tion provides a basis for implementation of assisted gene migration 
for forest management strategies (Aitken & Bemmels, 2016) and 
climate adjusted provenance (i.e., sourcing of seed from popula-
tions in the direction of climate change for use in restoration sites 
to enhance adaptation to future climate) in restoration practices 
(Prober et al., 2015). As a foundation tree, jarrah is a vital compo-
nent in the ecosystem and has a significant role in regulating local 
hydrological systems and carbon storage (Bradshaw, 2015; CCWA, 
2013). Additionally, it offers abundant habitats for a wide variety 
of groups, from vascular flora and lichens to terrestrial vertebrates 
and birds (Whitford & Williams, 2002; Whitford et al., 2015), as well 
as unique food sources for fauna, especially birds (Lee et al., 2013; 
Wrigley & Fagg, 2012). The Forest Management Plan 2014– 2023 
(CCWA, 2013) for SWWA forests has provision for implementation 
of assisted gene migration in management strategies for response 



14  |    FILIPE Et aL.

to climate change. Our findings of standing variation harbouring 
putative adaptations to climate associated with temperature and 
precipitation factors provides an evidence base for design and imple-
mentation of such strategies. In addition, phenotypic approaches on 
other eucalypt species have also highlighted the role of local climate 
in the development of adaptive traits (Ahrens, Andrew, et al., 2019; 
Ahrens, Rymer, et al., 2021; Costa e Silva et al., 2019). Expanding 
this work to a phenotypic approach in jarrah (such as O’Brien et al., 
2007) for identifying patterns of plasticity and adaptation associ-
ated with climate would contribute to further understanding the 
association of genomic and phenotypic diversity across environ-
mental gradients. While it appears that genetic variants associated 
with similarly functioning genes are adapting to the environment in 
similar ways, we also found that putative adaptations among climate 
variables are sorted through the landscape in contrasting ways. 
This makes implementation of assisted gene migration strategies 
more complex and multidimensional. In fact, our findings support 
recommendations for sourcing germplasm from multiple sources 
to bolster the adaptability in adaptively depauperate populations 
and provide a basis for more active selection of functionally related 
genes, potentially increasing the diversity and adaptability through 
new combinations of genetic variation.
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