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Abstract

This thesis explores and evaluates a decision support system (DSS) for the management of 

desalination brine. The rapid uptake of desalination technologies to meet freshwater 

demands has led to producing a significant quantity of brine, which is a highly saline 

solution. Currently, the most popular brine management method in Western Australia (WA) 

is disposal by surface water discharge (into the ocean), deep-well injection or evaporation 

ponds. Brine disposal isn’t a long-term sustainable option due to the environmental impacts 

it can cause, such as salinisation. Brine treatment methods that reduce the liquid volume of 

brine partially or completely are still under development or aren’t currently economically 

viable.  

This thesis uses two multi-criteria analysis techniques. These are interval Analytical 

Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS) under hybrid information. The use of interval AHP gives decision-makers a reliable 

method of assigning appropriate weightings to the chosen criteria, using the relative 

importance between each criterion. The DSS uses TOPSIS to allow for different information 

types (crisp numbers, interval numbers, fuzzy triangular numbers representing linguistic 

terms) within the DSS.  

To showcase the DSS, a case study was developed using 4 emerging brine treatment 

technologies, membrane distillation (MD), forward osmosis (FO), osmotically-assisted 

reverse osmosis (OARO) and eutectic freeze crystallisation (EFC). The results suggest that 

the most to least appropriate technology are MD, FO, EFC and OARO. Sensitivity analyses 

using a Monte Carlo simulation determined the influence of varying different criteria 

weightings on the TOPSIS process. MD was the most dominant appropriate technology with 

little confusion between FO, which was consistently ranked 2nd. Sensitivity analysis of the 

entire DDS requires further validation of the interval AHP.  
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1 Introduction 

Water scarcity is a significant challenge to the sustainable development of human society. 

Only 3% of the total water present on Earth is freshwater, while the remaining 97% is saline 

[1]. Of the 3%, only 0.5% is readily available, the remaining freshwater is unavailable, as it is 

stored in glaciers and snowcaps [2]. The increase in human population from 7.6 billion 

people in 2018 to 9.4-10.2 billion by 2050, climate change, economic development and 

rising living standards will result in high per capita water consumption and contribute to 

water scarcity [3]–[5]. Recent studies on water scarcity have estimated that 40% of the 

global population in 2014 experiences severe water scarcity, and it is expected to increase 

to 60% by 2025 [6], [7]. The increasing strain on conventional water resources has triggered 

a global search for sustainable alternative water resources.   

Desalination is a popular alternative water resource, with many countries utilising it to 

bolster existing conventional freshwater sources to meet growing demand. There is a wide 

variety of desalination technologies commercially available. They can be separated into 

membrane-based and thermal-based technologies. Membrane systems such as reverse 

osmosis (RO) are the most popular desalination technology. With 69% of the estimated 

15,906 operational desalination plants in 2018 utilise RO, followed by Multi-Stage Flash 

(MSF) and Multi-Effect Distillation (MED), which are thermal-based techniques, at 18% and 

7%, respectively [6]. All desalination techniques separate undesirable components, such as 

dissolved solids, from the feed water and create a freshwater stream (permeate) and a by-

product stream, known as brine, that consists of the compounds that were removed from 

the freshwater stream.  

Desalination systems close to the sea often discharge the brine back into the ocean, while 

inland systems employ a wide variety of disposal methods. Concerns regarding the long-

term sustainability and environmental impacts of current brine disposal methods have led 

to the development of two approaches of managing brine. Minimal liquid discharge (MLD) 

aims to minimise the amount of brine and utilises primarily membrane-based treatment 

methods. Zero liquid discharge (ZLD) aims to completely eliminate the need for brine 
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disposal and produce a solid by-product in the form of salt. This is achieved through the use 

of a combination of a membrane-based and thermal-based treatment technologies.  

1.1 Aims and Objectives  

The overall aim of this project is to develop a decision support system (DSS) to aid in the 

selection of brine management strategies for desalination systems. The main objectives of 

the project are as follows:  

1. Review current brine disposal and treatment methods, outlining the limitations and 

strengths of each method.  

2. Develop a DSS based on a multi-criteria analysis framework and go through a case 

study through the following steps: 

a. Select a suitable multi-criteria framework for the DSS. 

b. Produce suitable criteria to be used within the framework. 

c. Develop a case study to showcase the DSS. 

3. Assess the sensitivity and robustness of the decision support system by conducting a 

sensitivity analysis.  

1.2 Thesis Structure and Scope 

Section 1 (Introduction) introduces the background for the thesis, with Section 1.1 outlining 

the aims and objectives. Section 2 (Literature Review) provides a review of the literature 

relevant to brine management and its properties. Section 2.1 (Desalination Brine and its 

Environmental Impacts) outlines the properties of brine which cause complications in brine 

volume reduction and current disposal methods employed globally. Section 2.2 (Brine 

Treatment Strategies) provides details on the working principles, limitations and strengths 

of membrane-based technologies (Sections 2.2.1-2.2.5) and thermal-based technologies 

(Sections 2.2.6-2.2.10). 

Section 3 (Methodology) introduces the multi-criteria analysis framework and criteria 

development. Section 3.1 outlines the development of suitable independent criteria that 

could be used in the DDS. Sections 3.2 and 3.3 show the mathematical models for the 
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Interval Analytical Hierarchy Process (AHP) and the Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) used in the development of the DDS. Section 4 goes 

through a case study, including the selection of appropriate criteria for a specific situation 

and a DDS demonstration. Section 5 (Results and Discussion) will consist of the results of the 

case study and outline how a sensitivity analysis was conducted and its findings. Sections 6, 

7 and 8 will consist of the conclusion, references and appendix, respectively.   
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2 Literature Review 

The literature review will be covering the following topics: 

1. Brine characteristics and challenges in producing high total dissolved solid (TDS) 

brine.  

2. Environmental impacts of inland brine disposal.  

3. Current inland brine disposal methods. 

4. Brine treatment methods for minimal liquid discharge and zero liquid discharge 

systems, covering: 

a. The working principles behind each technology. 

b. Development status (market readiness). 

c. Limitations and current areas of research. 

d. Energy consumption.  

2.1 Desalination Brine and its Environmental Impacts 

Brine, also known as reject or concentrate, is a highly saline solution that contains the 

filtered dissolved solids, organic contaminants and pretreatment chemicals (i.e., antiscalant, 

coagulants and flocculants). Brine is measured by its total dissolved solids (TDS), usually 

measured as mg/L. Brackish water has a TDS ranging from 1,000 to 15,000 mg/L, brine 

produced from this source water typically has a TDS between 5,000 to 55,000 mg/L [8], [9]. 

The quality and quantity of brine can be determined by the desalination technology’s 

recovery rate, feed water quality and pretreatment methods employed [10].  

Brine is commonly returned to the environment (without treatment) by surface water 

discharge, evaporation ponds, sewer discharge, land application and deep-well injection. 

Brine possesses significant environmental risks, as it’s highly saline and has potential 

contaminants, including pretreatment chemicals, organic compounds and heavy metals. 

Environmental impacts of brine disposal are reported in three areas the marine 

environment, groundwater and soil quality.  
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2.1.1 Brine Characteristics 

The two important factors to consider for the treatment of brine include the volume of 

brine to be treated and its initial quality. Recovery rate (𝑅) is the percentage of source water 

(𝑄𝑓) that is converted to freshwater (𝑄𝑝) as presented in equation 1.  

 𝑅 =
𝑄𝑝

𝑄𝑓
100% 1 

As the recovery rate increases, brine volume decreases and its salinity increases.  The 

volume of brine (𝑄𝑏)can be determined through the recovery rate (equation 2) or by 

subtracting the freshwater (𝑄𝑝) from the source water (𝑄𝑓), as shown in equation 3. 

 𝑄𝑏 = 𝑄𝑓(1 − 𝑅) 2 

 

Brine quality is dependent on the source water quality and the recovery rate of the system. 

There are complicated methods to determine the quality for specific desalination 

technologies, however, for the purpose of this review, the simplified calculation will be 

sufficient (equation 4). 

 𝑇𝐷𝑆𝑏 = 𝑇𝐷𝑆𝑓
1

1 − 𝑅
 4 

In equation 4, TDSb and TDSf represent the total dissolved solids present in the brine and 

feed, respectively. The remaining term (
1

1−𝑅
) is the concentration factor (CF), and is shown 

in equation 5. It is a factor that represents the degree of concentration of the source water 

compared to brine.  

 𝐶𝐹 = 
𝑄𝑓

𝑄𝑓 − 𝑄𝑝
= 

1

1 − 𝑅
 5 

 𝑄𝑏 = 𝑄𝑓 − 𝑄𝑝 3 
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For brackish water reverse osmosis (BWRO), the concentration factor is usually between 2.5 

to 10, correlating with recovery rates of 65% to 90%, respectively [11]. 

2.1.2 Challenges with Producing High-TDS Brine 

Treating source water (seawater and brackish water) to a high standard using desalination 

results in a high-TDS brine. As the brine concentrates within the desalination system, 

treatment challenges such as scaling, fouling and corrosion are more likely to occur. Scaling 

occurs when inorganic salts precipitate and clog working surfaces, such as membranes, 

pipes, fittings and heat exchangers. Scaling is more prone to occur in membrane-based 

systems, than in thermal-based systems [12]. Similar to scaling, organic fouling occurs when 

organic material is lodged and grows on the working surface (membrane or heat exchanger) 

of the desalination technology [13]. Corrosion is associated with changes to processing 

conditions (temperature), and water chemistry (pH and salt formation). To minimise the 

likelihood of fouling, scaling and corrosion, physical and chemical pretreatment can be 

utilised to adjust feed water conditions [14]. The predominant pretreatment method used in 

desalination and brine concentration technologies is chemical pretreatment (antiscalant, 

scaling inhibitors, acids, bases, coagulants) [15]. Pretreatment is explored in-depth by 

Semblante et al. [16] and Kaplan, et al. [17] and states the importance of this field of 

research to the realisation of membrane-based zero liquid discharge (ZLD) systems. 

2.1.3 Environmental Impacts 

In recent years, the environmental impacts of brine disposal in published literature have 

been limited to the marine environment [4], [18]–[22]. The environmental risks of brine 

disposal of inland systems are explained superficially or not mentioned at all, by those in the 

desalination community. The focus on the marine environment is most likely a consequence 

of two factors. The prominence of seawater desalination systems and 79% of desalination 

plants are within 10km of a coastline, making it a cost-effective disposal method [6]. The 

main environmental risk of inland brine disposal is salinisation, caused by the increased salt 

load in the soil and groundwater.  



7 | P a g e  

 

Currently, more than 1,000,000 hectares of agricultural land in Western Australia are 

affected by natural and anthropogenic salinisation, resulting in economic damage of 

approximately $519,000,000 per annum to the agricultural sector [23], [24]. The effects of 

salinity on plant growth are diverse, due to the complex interactions between the 

biochemical, physiological and morphological processes that take place in the soil [25]. 

Presence of salt in the soil and groundwater can subject plants to osmotic stress, which 

contributes to nutrient deficiencies, primarily carbon and nitrogen uptake [26], [27]. This 

significantly hinders plant growth, due to the requirement of carbon, primarily in the form 

of CO2 for photosynthesis [28]. The osmotic stress also limits the uptake of water from the 

soil [29]. Contamination from heavy metals, such as cadmium, lead, copper, zinc and iron, 

can also adversely affect plant growth, productivity and presents a human health risk [30], 

[31].  

2.1.4 Brine disposal methods 

Conventional brine disposal methods include surface water discharge, evaporation ponds, 

land application, deep-well injection and sewer discharge. None of these disposal methods 

can be universally applied for a given desalination technology, size or location. Rather the 

suitability of a given disposal method is determined by the quality, quantity and 

composition of the brine, geographical location, capital and operating costs and local 

regulations [4], [32].  

2.1.4.1 Surface Water Discharge 

Surface water discharge (SWD) consists of disposing brine in the ocean, lakes, rivers or any 

other water body. SWD is a common disposal method for desalination plants that utilise 

seawater, due to the close proximity to the ocean in most cases [33], [34]. Outfall structures 

are common among seawater desalination systems, but implementations on inland systems 

are limited. Seawater brine outfalls utilise high-pressure diffusers, that discharge brine at 

high velocity into the receiving body [35]. The diffusers increase the mixing efficiency 

between the brine and the receiving body, by increasing the area that mixing is taking place, 

which reduces the direct environmental risks of the point-source brine disposal [36]. A 
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limitation of inland SWD is finding a suitable water body to receive the brine, which 

conforms with local regulations and doesn’t contaminate a freshwater resource. Brine can 

be mixed with a less contaminated waste stream, such as wastewater treatment plant 

(WWTP) effluent, to meet regulatory standards. However, the use of waste streams can add 

additional environmental risks, such as introducing additional nutrients, leading to 

eutrophication of the receiving water body.   

2.1.4.2 Evaporation Ponds 

Evaporation ponds are a very mature technology, utilised for centuries to produce sea salt 

from seawater. Evaporation ponds consist of a shallow basin that is filled with brine, which 

is evaporated by solar radiation. Evaporation ponds have a simple structure, maintenance is 

trivial, few mechanical components and can be used to harvest salts and minerals [37], [38]. 

Other than the production of salts, evaporation ponds can also be used for aquaculture of 

marine species and algal cultivation that could be converted into feedstock [39]. As a system 

dependant on solar radiation, arid or semi-arid climates are required, there is also a large 

land requirement [40], [41]. Pond depth, which is determined by the evaporation rate of the 

area and the required pond liner also contribute to the feasibility of an evaporation pond 

[19]. One key issue with evaporation ponds, is if the pond lining is breached, causing the 

brine to infiltrate into the soil and groundwater.  

2.1.4.3 Land Application 

Land application disposal consists of irrigating salt-tolerant plants (halophytic) or grasses. 

Halophytic plants can be characterised by their tolerance to salinity (TDS) higher than 2,000 

mg/L, in comparison, most plants can tolerate a salinity of <500 mg/L [4], [42]. The adoption 

of this technique is currently limited to small quantities of brine [4], [19], [43]. Large scale 

applications are limited by low crop yield associated with halophytic crops, climatic 

conditions, seasonal demand, soil degradation and groundwater contamination [44], [45]. 

The design behind this technique is similar to an artificial wetland and is dictated by which 

halophytic plant is being utilised, soil type and brine characteristics [46].   
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2.1.4.4 Deep-well Injection 

Deep-well injection (DPI) is a disposal method that consists of injecting brine into a confined 

aquifer. This method is popular among brackish water systems of all sizes [47]. This method 

is only appropriate if a confined aquifer can store all brine produced over the desalination 

technologies expected operating lifespan [40]. The key environmental concern with DPI is 

the contamination of adjacent freshwater aquifers [48]. This risk can be substantially 

reduced if hydrogeological surveys are undertaken to verify whether the aquifer is suitable 

for DPI [49]. 

2.1.4.5 Sewer Discharge 

For the sewer discharge disposal method, brine is directed towards a connected sewage 

system, to be treated at the downstream wastewater treatment plant (WWTP). Sewer 

discharge is only suitable for small scale BW systems, as salinity in the wastewater network 

can negatively influence the WWTP treatment process, if secondary treatment is being 

conducted. When the salinity of wastewater exceeds a TDS of 20000 mg/L, nitrogen removal 

by the microbes utilised in the activated sludge process (secondary water treatment 

process) is severely impacted [50]. The reduction in nutrient removal could indirectly cause 

the WWTP not to meet water treatment regulations. Therefore, only small quantities of 

brine can be disposed of into the sewer network.  

2.2 Brine Treatment Strategies 

Increasing uptake of desalination technologies to meet the water requirements for human 

consumption and industry, has illuminated environmental risks of typical disposal methods 

(SWD, DPI, evaporation ponds, land application and sewer discharge), causing increasingly 

stringent regulations to be imposed. This has encouraged research into sustainable brine 

management strategies. There are two broad approaches currently being investigated which 

are, Minimal Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) [4], [10], [21], [51]. 

MLD aims to reduce the volume of brine produced, while, ZLD processes the brine produced 

by MLD until the liquid component is removed entirely, and only solids (salts and minerals) 
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remain [52]. The solid waste from ZLD can be disposed of, sold or processed further to 

produce goods like fertiliser and caustic soda.  

MLD and ZLD both start with technologies that concentrate brine. These technologies 

generally consist of membrane-based technologies. The preference for these technologies 

as the first stage of brine treatment is due mostly to the capital and operational costs 

involved with the alternative options, which are primarily thermal-based technologies [53]. 

However, thermal-based technologies and a small quantity of membrane-based 

technologies that can produce a solid product, are required in a ZLD framework. Therefore, 

the brine volume reduction from membrane-based technologies, results in a reduction of 

the operational capacity required for the technologies used in a ZLD framework.  

Membrane-based brine treatment technologies utilised in MLD and ZLD systems are 

covered in sections 2.2.1-2.2.5, meanwhile, sections 2.2.6-2.2.10 will discuss the thermal-

based technologies. The main points of interest for each technology are the working 

principles, limitations and operating parameters of the relevant technology. A summary of 

this information is presented in Table 1. 

2.2.1 Reverse Osmosis and High-Pressure Reverse Osmosis  

As previously mentioned, reverse osmosis (RO) is the most commercially successful 

desalination technology. RO is a pressure driven process, by which hydraulic pressure is 

applied to the feed water (brine), to force permeate (freshwater) to the other side of a 

semipermeable membrane. To produce permeate, the applied pressure has to be greater 

than the osmotic pressure between the brine and permeate.  

The osmotic pressure of a saline solution can be estimated using van’t Hoff’s equation 

(equation 6), where, Π is the osmotic pressure in Pascals, n represents the moles of solute, V 

is volume of solvent, R is the gas constant (8.3145 ∗ 103  
𝑃𝑎∗𝐿

𝐾∗𝑚𝑜𝑙
) and 𝑖 is the species. 

 𝛱 = 𝑖
𝑛

𝑉
𝑅𝑇 6 
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From this equation, the hydraulic pressure required to produce permeate for any TDS can 

be calculated. Figure 1 shows the minimum hydraulic pressure required for a solution of 

pure NaCl, which is a good approximation of the TDS of brackish water, seawater and brine, 

as the main constituents are sodium and chlorine. The units used for osmotic pressure isn’t 

usually Pascals, instead Bar is preferred (1 Bar = 100,000 Pascals). 

 

Figure 1: TDS vs osmotic pressure for a solution with only NaCl. 

RO membranes used in conventional desalination are limited to TDS outlet concentrations 

up to 70,000 mg/L [54]. However, as the TDS increases, the associated recovery rate can 

become as low as 10% [55]. Therefore, conventional RO membranes are not suitable for 

concentrating high-TDS for MLD or ZLD systems.  

This limitation triggered the development of membranes that can handle the extreme 

pressure required for concentrating high-TDS brine. Any RO system operating above a TDS 

of 70,000 mg/L or 82 Bar, is often referred to as high-pressure RO (HPRO) [53]. Saltworks 

and Dupont have recently advertised membranes that can operate up to 120 bar, which 

correlates with an approximate TDS limit of 130,000 mg/L [56], [57]. The specific energy 

consumption (SEC) is the amount of energy required to produce a specific amount of 

product (permeate). For HPRO systems the SEC is estimated to be between 3 to 9 kWh/m3. 

In comparison RO has a SEC between 1.2 to 1.5 kWh/m3[58], [59].  
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2.2.2 Forward Osmosis  

Unlike RO, Forward Osmosis (FO) is an osmotically-driven process that uses a draw solution 

of higher osmotic pressure to draw permeate out of the feed solution using a 

semipermeable membrane [60], [61]. Figure 2 shows a typical layout of a FO system.

 

Figure 2: Simple layout of a Forward Osmosis (FO) system. 

As external pressure isn’t required for this process, FO has the potential to be very energy 

efficient if draw solution recovery, also known as regeneration, isn’t used. A recent study 

found that the SEC of FO without a regeneration process uses between 0.02 to 1.86 kWh/m3 

[59]. However, if regeneration systems are implemented with the FO system, typically seen 

in combined systems like MLD and ZLD, the energy demand increases substantially [62]. The 

addition of a regeneration system, increases the SEC to between 6.8 to 16.7 kWh/m3 [63]. 

The SEC for the regeneration system is dependent on the draw solution, separation 

technique required for that draw solution and the quality of the feed solution. The primary 

area of research for FO is in the development of viable draw solution for the FO systems 

[64]. Current draw solutions limit FO to TDS between 150,000 to 220,000 mg/L [65]. 

2.2.3 Osmotically Assisted Reverse Osmosis  

Osmotically assisted reverse osmosis (OARO) utilises the working principles behind RO and 

FO. However, unlike in FO, the draw solution (DS) has a lower osmotic pressure compared to 
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the feed solution (FS). The DS reduces the osmotic pressure difference between the 

solutions, rather than the driving force behind the process, like it is in FO systems. The 

reduced osmotic pressure differential between the feed and permeate, decreases the 

necessary hydraulic pressure required to produce permeate [66]. OARO is typically arranged 

into several stages, also known as sweeps, shown in Figure 3.  

 

Figure 3: Schematic for an OARO system. 

This also reduces the limitations imposed by the DS that is currently an issue with FO 

systems. Therefore, higher TDS feed solutions can be treated using OARO compared to 

HPRO and FO. OARO currently shares a lot of the disadvantages of FO, such as, availability of 

viable DS, complex system design (multiple stages) and limitations on the mechanical 

strength of available membranes [67], [68]. The expected SEC for OARO is between 6 to 19 

kWh/m3, dependant on the system design and feed quality [69], [70]. Currently, commercial 

OARO systems are limited to FS of approximately 160,000 mg/L [71]. 

2.2.4 Membrane Distillation and Membrane Crystallisation 

Membrane distillation (MD) is a thermally-driven membrane process. It uses a hydrophobic 

membrane, that allows water vapour to pass through, but acts like a physical barrier for 



14 | P a g e  

 

liquids and solids [72]. When a temperature differential > 5 C° exists between the feed and 

permeate, water evaporates from the feed and passes through the membrane, and 

condenses on the other side [73]. The feed temperature in MD is often between 45 and 85 

C° [74]. As a thermally driven process, there are no limitations imposed by the osmotic 

pressure of the feed water, therefore, theoretically there is no limit to the TDS of the feed 

water [75]. MD systems can often be enhanced by utilising a waste heat streams [76].  

There are 4 main configurations for MD, namely, direct contact MD (DCMD), air gap MD 

(AGMD), vacuum MD (VMD) and sweeping gas MD (SGMD) [77]. The advantages and 

disadvantages of these configurations are explored in detail by Ahmed et al, who also cover 

alternative heating techniques commonly associated with MD systems [78]. The most 

commercially successful configuration is DCMD, however the AGMD and VMD have been 

used in ZLD systems [79], [80]. Energy consumption in MD literature typically displayed as 

the specific thermal energy consumption (STEC), which is the amount of energy in the form 

of heat required to produce a specific amount of product, with the units of kWh/m3. For the 

4 configurations mentioned previously, the STEC value fluctuates between 54.5 to 350 

kwh/m3, and a SEC between 39 to 67 kWh/m3 [10], [81].  

Membrane crystallisation (MCr) is the first technology on this list that can directly produce 

added value products. In essence, MCr is an extension of the MD process. The environment 

created during the MD process is well suited to heterogeneous nucleation, which can be 

carried to a crystallisation tank to grow further [82]. As it is an extension to the MD process 

it has no theoretical TDS limit and similar SEC. 

2.2.5 Electrodialysis and Electrodialysis Reversal 

Electrodialysis (ED) and electrodialysis reversal (EDR) are processes that utilise electricity to 

create a driving force. Both techniques use ion exchange membranes that allow for the 

transport of ions [83]. These membranes can further be categorised into anion exchange 

membranes (AEM) and cation exchange membranes (CEM), which allow the transport 

anions or cations, respectively [84]. These membranes are then alternated in a stack, with a 

cathode and anode at each end to produce an electrical field.  
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The electrical field draws cations and anions in the direction of the oppositely charges 

cathode or anode. Although conventional ED and EDR systems are targeted towards low 

TDS (< 10,000 mg/L) feed sources, there are commercially available conventional ED and 

EDR systems suited to feed sources with TDS > 70,000 mg/L [85]–[89]. Currently, there is 

little literature on the maximum feed TDS of conventional ED and EDR systems, however, 

common assumptions on the limitations range from 150,000 to 200,000 mg/L [10], [86], 

[90]. The SEC of conventional ED and EDR systems is estimated to be between 7 and 15 

kWh/m3 for high TDS fluids [91].  

2.2.6 Brine Concentrator  

Brine concentrator (BR) is a term that covers different configurations of evaporators. There 

are 3 main configurations namely, falling film evaporator (FFE), horizontal spray and flat-

plate evaporator, of which FFE is the most widely used [92]. The working principle behind 

these evaporators is heavily based on shell and tube heat exchanger design. A thin film of 

liquid flows over a vertical, horizontal or inclined surface. When the contact surface is 

exposed to a heat source, usually steam, it causes the liquid to transform into vapour, which 

is collected at the end of the process, to be condensed in a separate chamber [93].  

A drawback of falling film evaporator is that it’s very difficult to scale down, as the reduction 

in surface area negatively affects the evaporation efficiency [94]. Evaporators can also be 

paired with recompression systems, namely, mechanical vapour recompression (MVR) and 

thermal vapour recompression (TVR). Recompression systems are usually only coupled with 

multi-effect (stage) evaporation systems [95]. Recompression systems improve the energy 

efficiency of evaporation systems, making them more economical [96]. Due to the 

widespread nature of FFE use in multiple industries, finding a reasonable value for SEC for 

concentrating brine has proven difficult, and will be omitted. 

2.2.7 Multi-Stage Flash Distillation and Multi-Effect Distillation  

Multi-Stage Flash distillation (MSF) and Multi-Effect Distillation (MED) are the most popular 

desalination technology after RO and are thermal-based technologies. Both systems are 
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very similar, both use heat to evaporate the feed water in stages and condenses the water 

vapour to produce freshwater.  

One of the few technical and economic analyses of MSF for brine concentration was 

conducted by Eiff et al. and found that a combined MD-MSF-crystalliser was more 

economical to operate than a standalone MD system, due to the benefit of the salts 

produced [97]. One of the reasons why MSF and MED systems aren’t widely used for high-

TDS solutions is because the materials used in typical systems don’t have the required 

resistivity to corrosion [98]. Replacement of contact surfaces with corrosion-resistant 

materials is currently very expensive.  

The SEC for MED is between 5.5 to 21.35 kWh/m3, while MSF is between 10 to 27.25 

kWh/m3 [40], [99]–[101]. However, this appears to the SEC to treat brackish water and 

seawater, rather than concentrated brine. Therefore, the SEC is most likely higher for 

concentrated brine treatment. As mentioned previously with MD, thermal systems 

theoretically have extremely high TDS limits, and in the case of MFS and MED, TDS is limited 

to the corrosive resistance of the contact surfaces.  

2.2.8 Spray Drying 

Spray dryers (SD) are an alternative method to traditional crystallisers. However, SD 

produces a mixed collection of salts from concentrated brine. Currently, SD has been used 

sparingly in brine management strategies, however it is used widely in food (e.g., milk 

powder, instant coffee, baby foods), pharmaceutical (e.g., perfume, probiotics, oil) and 

chemical (e.g., fuel injectors) industries [102]. Brine is injected into the drying chamber by a 

single or dual fluid nozzle atomiser to form small droplets. The dispersed brine (droplets) 

then come into contact with a hot convective medium (usually air, but nitrogen is also 

utilised in some situations), dehydrating individual droplets and forms a dried product 

(mixed salts). The mixed salts can be collected through use of a cyclone separator and a bag 

filter [103]. In most circumstances, SD doesn’t allow for the recovery of additional 

freshwater. A suitable SEC for this technology couldn’t be found in literature due to 2 

factors, limited research on SD that utilise brine and the effects of viscosity on energy 
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performance. Viscous fluids stick to the atomiser, which hinders the dispersion of droplets 

in the drying chamber and reduces the energy efficiency of the atomiser. However, for 

saline brines the effect of viscosity would be minor.  

2.2.9 Eutectic Freeze Crystallisation 

Freeze crystallisation is an assortment of different techniques that have been around for 

centuries, including utilisation by sailors to harvest freshwater during long journeys. There 

are 4 main types of freeze crystallisation: Direct contact freezing, vacuum freezing, indirect 

contact freezing and eutectic separation (also known as eutectic freezing). The only freeze 

crystallisation technology applicable for brine management is eutectic freeze crystallisation 

(EFC), developed in the 1970s [104]. The state of the solution is determined by the 

temperature of the solution and the concentration of relevant salts that can be formed. 

There are 4 main phases, unsaturated solution (all liquid), ice and concentrated (saturated) 

solution, salt and concentrated solution and ice and salt. The eutectic point is the 

operational temperature and concentration for EFC, and the point in which salt and ice form 

simultaneously. Ice is less dense than water, so it floats to the top of the chamber. 

Meanwhile, the salt formed is denser than water and sinks to the base of the chamber. The 

ice and salt can then be separated from the solution at the top and bottom of the chamber. 

Williams et al, explains the history and operation of freeze crystallisation in more 

depth[105]. 

The advantages of EFC compared to conventional brine treatment technologies are: 

1. It doesn’t require pretreatment chemicals. 

2. Thermodynamically, the energy required for heat of vaporisation is higher 

(approximately six times) than heat of fusion. Therefore, freezing technologies 

theoretically use less energy than evaporative processes [106]. In practice, EFC has 

demonstrated 60-70% energy reduction compared to traditional evaporative 

processes [106], [107]. 

3. Ice formed from an aqueous solution is pure [108]. 

4. Ice and salt have different densities, which allows for gravitational separation. 
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5. Corrosive conditions usually seen in evaporative technologies are minimal in EFC, 

resulting in less stringent construction materials. 

6. Specific salts of high purity can be harvested by operating several EFC stages at 

different temperatures, by taking advantage of the unique crystallisation 

temperatures of pure salts [109]. 

Researchers have published a significant range of SEC for EFC from 4-150 kWh/m3. The wide 

range of values is primarily due to the composition of the solutions used in the EFC [4], 

[109]. Randall et al, mentioned that most of the research on EFC was conducted with only 1-

2 salts present in solution [106]. There is currently a lack of research on EFC for complex 

solutions, such as desalination brine. However, as mentioned previously, using a staged 

approach shows potential for complex solutions containing multiple salts. EFC has been 

used for TDS of 300,000 mg/L (30 wt%) for salty whey (behaves similarly to a pure NaCl-H2O 

system). With a lower temperature, the TDS range would increase, at the cost of higher 

energy consumption [109]. 

2.2.10 Wind-Assisted Intensified Evaporation and Convection-Enhanced Evaporation 

Wind-assisted intensified evaporation, also known as wind-aided intensification of 

vaporisation (WAIV) is a relatively new technology first proposed by Gilron et al, in 2003 

[110]. It Consists of a series of vertically mounted evaporation surfaces consisting of woven 

netting, non-woven geotextiles or tuff (volcanic rock) [111], [112]. Brine is then dispersed 

onto the evaporation surfaces, generally through perforated pipes with pressurised brine to 

create a falling film. WAIV generally refers to using natural wind as the only driving force, 

however, wind availability is a limiting factor [113]. Convection-enhanced evaporation (CEE) 

uses a similar approach to WAIV, however, the main difference is wind is generated using a 

fan [113]. Both systems can allow recycling of brine that isn’t evaporated and freshwater 

isn’t recovered in either system. WAIV and CEE are often compared to evaporation ponds 

due to the similar concepts in their design. WAIV and CEE utilise a wetted surface allowed 

loading of 30-40 m2 per m2 footprint [114]. Energy consumption is only contributed by 

pumps (in a WAIV system) and fans (in a CEE system). The author expects a maximum SEC of 

approximately 0.8 kWh/m3. 
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2.3 Summary of brine treatment technologies 

A summary of the key parameters the brine treatment technologies covered in Sections 2.2 

are provided in Table 1. The primary purpose of this table is to facilitate the addition of 

more technologies to the DDS at a later date. This thesis will only be covering 4 

technologies.
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Table 1: Summary of the brine treatment technologies covered in the Literature Review. 

Technology TDS Limitation Recovery 
Rate 

Advantages Challenges Technology 
Maturity 

Specific Energy 
Consumption (SEC) 

Production 
Cost  

References 

Membrane-
based 

      Panagopoulos 
et al., is used 

for all 
production 

costs [4] 

 

RO 70,000 
𝑚𝑔

𝐿⁄  Up to 65- 
90% 

Small energy 
consumption 

Intensive 
pretreatment 
requirements 

Developed 
commercially 

available 
technology 

1.2 − 1.5 𝑘𝑊ℎ
𝑚3⁄  $0.75

𝑚3⁄  

(US) of 
freshwater 
produced  

[56]–[59] 

HPRO 130,000 
𝑚𝑔

𝐿⁄  Up to 50% Small energy 
consumption 

-Intensive 
pretreatment 
requirements 

-Availability of 
HPRO 

membranes 

Developed 
commercially 

available 
technology 

3 − 9 𝑘𝑊ℎ
𝑚3⁄  $0.79

𝑚3⁄  

(US) of 
freshwater 
produced 

[56]–[59] 

FO 150,000

− 220,000 
𝑚𝑔

𝐿⁄  

Up to 98% -No feed pressure 
required 

-Small energy 
consumption (if 

regeneration isn’t 
used) 

-Availability of 
suitable draw 

solutions 

-intensive 
pretreatment 
requirements 

Developing 
technology 

0.02 − 1.86 𝑘𝑊ℎ
𝑚3⁄  

with no regeneration 
(recovery of 
freshwater) 

  
6.8 − 16.7 𝑘𝑊ℎ

𝑚3⁄  

with regeneration 

$0.63
𝑚3⁄  

(US) of 
freshwater 
produced 

[59], [63], 
[65] 
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-High rejection rate -Salt 
precipitation 
on working 

surface inhibits 
flux and 
recovery 

OARO 160,000 
𝑚𝑔

𝐿⁄  Up to 72% -No feed pressure 
required 

-High rejection rate 

-Availability of 
suitable draw 

solutions 

-intensive 
pretreatment 
requirements 

-Salt 
precipitation 
on working 

surface inhibits 
flux and 
recovery 

Developing 
technology 

6 − 19 𝑘𝑊ℎ
𝑚3⁄  $2.40

𝑚3⁄  

(US) of 
freshwater 
produced 

[69]–[71] 

MD and 
MCr 

-Both 
technologies 

have no 
theoretical limit 

MCr produces a 
mixed salt 

Up to 90% 
(potentially 

100%) 

-No feed pressure 
required 

-Can be paired with 
waste heat streams 

to increase 
efficiency 

-intensive 
pretreatment 
requirements 

-Salt 
precipitation 
on working 

surface inhibits 

Developing 
technology 

39 − 67 𝑘𝑊ℎ
𝑚3⁄  $1.17

𝑚3⁄  

(US) of 
freshwater 

produced for 
MD 

$1.24
𝑚3⁄  

(US) of 

[10], [77], 
[78], [81] 
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flux and 
recovery 

-Membranes 
have low 
thermal 

efficiency 

freshwater 
produced for 

MCr 

 

ED and EDR 150,000

− 200,000 
𝑚𝑔

𝐿⁄  

Up to 86% 

 

No substantial 
advantages 

-Energy 
consumption 

increases with 
TDS 

-Intensive 
pretreatment if 
feed brine has 

organics 
present 

Developing 
Technology 

7 − 15 𝑘𝑊ℎ
𝑚3⁄  $0.85

𝑚3⁄  

(US) of 
freshwater 
produced 

[85]–[91] 

Thermal-
based 

        

BC Reasonable value 
wasn’t found, 
however, as a 

thermal system it 
can be assumed 

to be  

> 200,000 
𝑚𝑔

𝐿⁄  

Assumed 
to be 
>90%. 

Widespread 
technology present 

in multiple fields 

-Hard to scale-
down 

-Energy 
intensive 

-high capital 
costs of 

material to 

Developed 
technology 

Wasn’t found 
specifically for high-

TDS brine 

$1.22
𝑚3⁄  

(US) of 
freshwater 
produced, 

however this 
is most likely 

for large 
installations. 
Expected to 

[94], [96] 
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prevent 
corrosion 

increase in 
smaller 
systems 

MFS and 
MED 

-No theoretical 
limit 

-Limited by 
corrosive 

resistance of the 
material used 

Up to 80-
90% 

-Widespread 
technology 

-Can potentially use 
waste heat 

-Energy 
intensive 

-High capital 
cost due to 
corrosive 
resistant 
material 

requirement 

Developed 
technology 

10 − 27.25 𝑘𝑊ℎ
𝑚3⁄  

for MFS 

5.5 − 21.35 𝑘𝑊ℎ
𝑚3⁄  

for MED 

$1.40
𝑚3⁄  

(US) of 
freshwater 

produced for 
MSF 

$1.10
𝑚3⁄  

(US) of 
freshwater 

produced for 
MED 

Most likely 
costs for 

larger 
systems. For 
smaller scale 
systems cost 

is expected to 
increase 

substantially 

 

[40], [98]–
[101] 
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SD -No theoretical 
limit 

Limited mostly by 
the viscosity of 

the fluid 

No 
recovery  

-Widespread 
technology 

-produces salts 

-Freshwater 
could be 

recovered, 
however it 
would be 
expensive 

Developed 
technology 

Wasn’t found 
specifically for brine 

Wasn’t found 
specifically for 

brine 

[102], [103] 

EFC No theoretical 
limit 

100% -
Thermodynamically 

it requires less 
energy than 
evaporative 

systems 

-No pretreatment 
required 

-Salt precipitation 
can be selective, 
producing high 

purity salt 

-Lower requirement 
on corrosive 

resistant materials 
for construction 

-Capitally 
expensive 

-Hasn’t been 
used for 

complex brine 
solutions  

Developing 
technology 

4 − 150 𝑘𝑊ℎ
𝑚3⁄  $1.42

𝑚3⁄  

(US) of 
freshwater 
produced 

[106]–[109] 

WAIV No theoretical 
limit 

No 
recovery 

-Simple 

-Higher working 
surface evaporation 

-No obvious 
disadvantages 

Developing 
technology 

Assumed to be 
around  

0.8 𝑘𝑊ℎ
𝑚3⁄  

Doesn’t 
produce 

freshwater 

[110]–[114] 



25 | P a g e  

 

rates than 
evaporation ponds 

(less footprint) 

-Mixed salts can be 
collected 

-Higher capital 
than 

evaporation 
ponds 
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3 Methodology  

It is challenging to select suitable brine management strategies because decision-makers 

have to consider various aspects, such as capital cost, electrical consumption and 

production cost. Therefore, the selection process is typically based on a multi-criteria 

decision analysis (MCDA). An MCDA is a decision support system (DSS), which is an 

information system that supports a decision-maker to produce consistent and fast 

responses to a problem [115]. Therefore, a good DSS has the following attributes [116]; 

1. Capable of representing and analysing information relevant to the goal of the DSS. 

2. Flexible and robust  

3. Produces a useful output that is relevant to the objective. 

Other forms of DSSs include Life Cycle Assessments (LCA), Mathematical Models (MM), 

Intelligent DSS (IDSS) or combinations of LCA, MM, MCDA and IDSS [117]. The MCDA 

method has been applied to various fields, for instance, the medical industry [118], 

environmental management [119], [120], risk management [121], agriculture [122], energy 

sector [123], etc. Popular MCDA techniques include weighted sum method, weighted 

product method, Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS), 

Performance Ranking Organisation Method for Enrichment of Evaluations (PROMETHEE) 

and Analytical Hierarchy Process (AHP) [123].  

There are multiple MCDAs for selecting suitable desalination locations and technologies. For 

example, Dweiri, Khan and Almulla used Analytical Hierarchal Process (AHP) to rank 

sustainable desalination plant locations [124]. Ghassemi and Danesh used Fuzzy-AHP and 

TOPSIS to select desalination technologies for brackish water [125]. Several other authors 

have utilised versions derived from AHP in conjunction with other MCDA tools, such as 

TOPSIS or PROMETHEE [125]–[128]. From these studies arise the following concerns: 

1. Some techniques struggle with assigning weightings to criteria with regards to 

ambiguity and uncertainty.  
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2. Most of these MCDA techniques can’t handle multiple data types (e.g., interval 

numbers, crisp numbers and fuzzy numbers). 

Wang et al, also reviewed similar trends in literature and developed a MCDA model for 

hybrid information that addresses the concerns mentioned and will be adopted as the 

framework for this methodology [129]. The multi-criteria framework was developed by 

combining Interval AHP and the TOPSIS under hybrid information techniques (Figure 4).  
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Figure 4: Framework for MCDA under hybrid information. 

The framework is divided into 2 stages, with each phase addressing one of the previously 

mentioned concerns. Employing Interval AHP to cover the 1st concern, calculating the 

weights of criteria and TOPSIS under hybrid information to mitigate the 2nd concern, ranking 

technologies using multiple types of data. The calculations shown in Sections 3.2 and 3.3 

were utilised in excel to create the decision support system, no existing software packages 

for interval AHP or TZOPSIS were used. The main benefit of conducting the thesis this way is 
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developing a deeper understanding of how the model is operating. IF a software package 

was used it is a “black box” approach where there is no control of whats happening inside 

the model.  

3.1 Criteria Development 

The first step of any MCDA technique is determining what criteria apply to the current task 

or problem. MCDA techniques often employ a hierarchy structure with overarching aspects 

or global variables encompassing criteria tied to a theme. For example, the 3 pillars of 

sustainability i.e., economic, environmental and social, which are present in most MCDAs 

[130]. However, sometimes projects can evolve, requiring additional aspects to be 

considered. In addition to the economic, environmental and social considerations, technical 

considerations surrounding the technology are required to evaluate brine management 

strategies. The technical aspect plays an important role in selecting an appropriate brine 

management strategy and is independent of the other 3 aspects (economic, social and 

environmental (Figure 5).   

 

Figure 5: Decision Support System criteria tree diagram. 
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The 4 aspects encompass all considerations that contribute to the overall evaluation of 

brine management strategies. Sub-criteria for each aspect were designed and evaluated 

using the following principles [131]: 

1. All sub-criteria are related to the definition of the aspect. 

2. All criteria are independent. 

3. The criteria can be depicted quantitatively or qualitatively.  

Principles 2 and 3 are particularly important. If 2 criteria aren’t independent, then the 

commonality of both sub-criteria has been assigned 2 weightings. The results of DDS with 

dependant criteria could deceive the decision-maker by assigning a higher weighting to 

criterion unintentionally. DSSs must consider the objective facts (hard/quantitative 

information) and subjective opinions (soft/qualitative information) that contribute to the 

problem or selection process.  

The selection of aspects and sub-criteria for individual projects within the area of brine 

management strategies will change for each project. Therefore, developing a master list of 

criteria that encapsulates most of the likely criteria decision-makers would consider is a 

reasonable approach (Figure 6). Decision-makers can select and make additional aspects 

and sub-criteria, assuming the 3 principles listed previously are upheld.  
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Figure 6: Master list of criteria used for a brine management DDS. 

The economic aspect contains the sub-criteria components of capital and maintenance costs 

and producing added-value products. However, the production cost of freshwater is an 

important economic criterion for technologies with long operational lifetimes (20+ years). 

The environmental aspect considers the potential impacts of salinisation, energy 

consumption, groundwater level and brine volume reduction. Energy consumption is a sub-

criterion to the environmental aspect due to the intrinsic link between energy usage and 

carbon footprint. Groundwater level encapsulates potential limitations on the quantity of 

feed water available for desalination compared to the amount of freshwater required. 

Salinisation is an indication of the risk and impact of salinisation in the surrounding area if 

something goes wrong i.e., the lining of an evaporation pond breaks. This is an important 

criterion if comparing brine disposal methods to treatment methods such as MLD and ZLD. 
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For example, the impact of a contamination site on agricultural land would be larger than a 

urban built-up area, such as, a rural town.  

The sub-criteria for the technical aspect contain the considerations directly related to the 

technology covering areas, such as technology maturity, reliability, footprint (size), the 

recovery rate of freshwater, fresh water quality and flexibility. Technology maturity and 

reliability are implying the degree of the market readiness of the technology, and in some 

circumstances can be combined into a singular criterion (market readiness). Footprint 

accounts for stakeholders or decision-makers finding machinery or built-up processing 

environments (i.e., evaporation ponds) utilising large areas unfavourably. Recovery of 

freshwater takes into consideration that not all brine treatment methods recover usable 

freshwater. There is some crossover between brine volume reduction under the 

environmental aspect and freshwater recovery. The decision-maker should only be applying 

one of these sub-criteria (brine volume reduction or recovery rate) to any MCDA. Based on 

whether the decision-makers considerations primarily fall under environmental concerns 

(brine minimisation) or technical constraints (recovery rate)? Under most circumstances, 

freshwater quality is unlikely to play a considerable role in the multi-criteria analysis as all of 

the technologies that produce additional freshwater covered in the literature review 

produces drinking quality water. Flexibility accounts for a technology’s ability to meet the 

brine volume produced effectively. This is mostly applicable for small (1 − 100 𝐿 ℎ𝑟⁄ ) to 

medium (100 − 500 𝑙 ℎ𝑟⁄ ) scale systems. The author believes some technologies will 

experience efficiency loss or require additional infrastructure to accommodate particular 

technologies i.e., stop-start systems where brine volume is too low for a continuous system.  

The social considerations are more straightforward in comparison to the other 3 aspects. 

Company image relates to the concept of social license to operate. It refers to the approval 

of local communities and stakeholders that the organisation has behaved in a socially and 

environmentally responsible way [132]. The skill required to operate the technology is also 

an important factor when dealing with remote locations. Finally, the considerations of 

current and future legislation on the suitability of a particular technology. 
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3.2 Interval Analytic Hierarchy Process (AHP) 

The Interval Analytic Hierarchy Process can be divided into 6 steps, shown previously in 

Figure 4 as stage 1 [129]. All of the necessary calculations were derived from Wang and 

other’s work[129]. The first step is establishing the interval comparison matrix (equation 7). 

The matrix is designed with a total of n criteria or aspects being evaluated and compared, 

noted as {𝐶1, 𝐶2⋯ ,𝐶𝑛}. Then assigning interval numbers rating the importance between 

each pair of criteria and aspects. Interval numbers are represented by  𝑎𝑖𝑗
±  (equation 8) (𝑖 =

1, 2,⋯ , 𝑛; 𝑗 = 1, 2,⋯ , 𝑛), where 𝑎𝑖𝑗
−  and 𝑎𝑖𝑗

+  represent the lower and upper bound of 𝑎𝑖𝑗
± , 

respectively. Then using Saaty’s nine-scale importance system to guide the assignment of 

appropriate values to the upper and lower bounds of 𝑎𝑖𝑗
± , which are used in the traditional 

AHP method (Table 2).  

The use of interval numbers in the interval comparison matrix reduces the ambiguity of the 

decision-makers judgement. For example, if a decision-maker expresses their opinion as 

“strongly less important” to “moderately less important” then the values of 3 and 5 can be 

used based on Saaty’s scale, as the lower and upper bounds of 𝑎𝑖𝑗
± , represented as [3 5]. 

Using crisp numbers, the decision-maker would be forced to choose a singular expression 

from Saaty’s scale. After comparing each pair of criteria/aspect, the interval comparison 

matrix can be constructed.   

AHP 
Step 

Calculation/Matrix 
Eq. 

Number 

1 

 𝐶1 𝐶2 ⋯ 𝐶𝑛 

𝐶1 1 𝑎12
±  ⋯ 𝑎1𝑛

±  

𝐶2 𝑎21
±  1 ⋯ 𝑎2𝑛

±  

⋮ ⋮ ⋮ ⋱ ⋮ 

𝐶𝑛 𝑎𝑛1
±  𝑎𝑛2

±  ⋯ 1 
 

7 

1 𝑎𝑖𝑗
± = [ 𝑎𝑖𝑗

−   𝑎𝑖𝑗
+] 8 



34 | P a g e  

 

Table 2: Saaty's nine-scale for relative importance [133]. 

Definition Explanation Scale 

Equal importance 𝐶𝑖 is equally important 
comparing with 𝐶𝑗  

1 

Extremely less important 𝐶𝑖 is extremely less 
important comparing with 

𝐶𝑗 

2 

Strongly less important 𝐶𝑖 is strongly less important 
comparing with 𝐶𝑗 

3 

Less important 𝐶𝑖 is less important 
comparing with 𝐶𝑗 

4 

Moderately less important 𝐶𝑖is moderately less 
important comparing with 

𝐶𝑗 

5 

Moderately important 𝐶𝑖is moderately important 
comparing with 𝐶𝑗 

6 

Strong importance 𝐶𝑖is strongly important 
comparing with 𝐶𝑗 

7 

Very strong Importance 𝐶𝑖is very strongly important 
comparing with 𝐶𝑗 

8 

Extreme importance 𝐶𝑖is extremely important 
comparing with 𝐶𝑗 

9 

Progressing further, the consistent approximate matrix (equation 9) can be derived from the 

interval comparison matrix. Each element of the consistent approximate matrix is denoted 

by 𝑚𝑖𝑗  (𝑖 = 1, 2,⋯ , 𝑛): (𝑗 = 1 , 2,⋯ , 𝑛), calculated through equation 10. Where 𝑚𝑖𝑗 

symbolises the relative priority of the 𝑖-th criterion to the 𝑗-th criterion. Lower values 

indicating more favourable outcomes. 
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AHP 
Step 

Calculation/Matrix 
Eq. 

Number 

2 

 𝐶1 𝐶2 ⋯ 𝐶𝑛 

𝐶1 1 𝑚12 ⋯ 𝑚1𝑛 

𝐶2 𝑚21 1 ⋯ 𝑚2𝑛 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝐶𝑛 𝑚𝑛1 𝑚𝑛2 ⋯ 1 
 

9 

2 𝑚𝑖𝑗 = (∏
𝑎𝑖𝑘
− 𝑎𝑖𝑘

+

𝑎𝑗𝑘
− 𝑎𝑗𝑘

+

𝑛

𝑘=1

)
1
2𝑛⁄  10 

The 3rd and 4th step of the Interval AHP process is the determination of the crisp weightings 

and its positive and negative deviations. The crisp weights (𝑤𝑖
∗) are determined by equation 

11, using values from the consistent approximate matrix. Then calculating the positive and 

negative deviations of the crisp weightings (𝑤𝑖
∗). Using elements from the interval 

comparison and consistent approximate matrices to calculate the deviation matrices, 

following equations 12 and 13 for positive and negative deviation matrices respectively. The 

positive (∆wi
+) and negative (∆wi

−) deviations of the crisp weightings of the 𝑖-th criterion 

are calculated using the positive and negative deviation matrices alongside elements from 

the consistent approximate matric, in equations 14 and 15 for positive and negative 

deviations, respectively.  
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AHP 
Step 

Calculation/Matrix 
Eq. 

Number 

3 𝑤𝑗
∗ = 

1

∑ 𝑚𝑖𝑗
𝑚
𝑖=1

 11 

4 

 𝐶1 𝐶2 ⋯ 𝐶𝑛 

𝐶1 1  𝑎12
+ −𝑚12 ⋯  𝑎1𝑛

+ − 𝑚1𝑛  

𝐶2  𝑎21
+ −𝑚21 1 ⋯  𝑎2𝑛

+ − 𝑚2𝑛 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝐶𝑛 𝑎𝑛1
+ − 𝑚𝑛1  𝑎𝑛2

+ − 𝑚𝑛2 ⋯ 1 
 

12 

4 

 𝐶1 𝐶2 ⋯ 𝐶𝑛 

𝐶1 1 𝑚12 − 𝑎12
−  ⋯ 𝑚1𝑛 − 𝑎1𝑛

−   

𝐶2 𝑚21 − 𝑎21
−  1 ⋯ 𝑚2𝑛 − 𝑎2𝑛

−  

⋮ ⋮ ⋮ ⋱ ⋮ 

𝐶𝑛 𝑚𝑛1 − 𝑎𝑛1
−  𝑚𝑛2 − 𝑎𝑛2

−  ⋯ 1 
 

13 

4 ∆𝑤𝑖
+ = √

∑ (𝑎𝑖𝑗+ −𝑚𝑖𝑗)2
𝑛
𝑗=1

(∑ 𝑚𝑖𝑗)
𝑛
𝑗=1

4  14 

4 ∆𝑤𝑖
− = √

∑ (𝑚𝑖𝑗 − 𝑎𝑖𝑗
−)2𝑛

𝑗=1

(∑ 𝑚𝑖𝑗)
𝑛
𝑗=1

4  15 

As indicated in Wang et al’s paper the 5th and 6th step consist of applying the positive and 

negative deviations to the crisp weighting and determining the final weightings [129]. By 

applying the positive and negative weight to the crisp weighting creates an interval weight 

(∆𝑤𝑖
±) for the 𝑖-th criterion or aspect, as shown in equation 16. The upper and lower bounds 

of ∆𝑤𝑖
± are represented by 𝑤+ and 𝑤−, respectively, with the subscript 𝑖, 𝑔 and 𝑖, 𝑙 

representing the 𝑖-th aspect (economic, technological, environmental, social) and 𝑖-th local 

sub-criteria, respectively. The weightings of the aspects are then applied to each sub-

criterion related to it, creating a set of global interval weightings (𝐺𝑊𝑖
±) for all criteria, 

through equation 17. The midpoint (𝑀𝑃𝑖) of each global interval weight is then calculated 

and converted to a normalised crisp weight (𝑤𝑖), through equations 18 and 19, respectively. 
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AHP 
Step 

Calculation/Matrix 
Eq. 

Number 

5 ∆wi
± = [wi

∗ − ∆wi
−, wi

∗ + ∆wi
+] = [wi,l

− , wi,l
+] = [wi,g

− , wi,g
+ ]  16 

5 𝐺𝑊𝑖
± = [𝑤𝑖,𝑙

− ∗ 𝑤𝑖,𝑔
− , 𝑤𝑖,𝑙

+ ∗ 𝑤𝑖,𝑔
+ ] 17 

6 𝑀𝑃𝑖 = 
𝐺𝑊𝑖

±

2
 18 

6 𝑤𝑖 = 
𝑀𝑃𝑖

∑ (𝑀𝑃𝑖)
𝑛
𝑖=1

 19 

3.3 Technique for Order Preference by Similarity to an Ideal Solution under 

Hybrid Information (TOPSIS) 

Technique for Order Preference by Similarity to an Ideal Solution under Hybrid Information 

(TOPSIS) can support a decision-making matrix composed of different types of data to rank 

brine management strategies or technologies. The main types of data that will be utilised in 

this document are crisp numbers (whole numbers), interval numbers (range of values) and 

triangular fuzzy numbers. The TOPSIS under Hybrid Information process can be summarised 

in the following six steps. All of the equations for TOPSIS shown in this section are derived 

from Wang et al’s work [129]. 

The first step in the TOPSIS is similar to AHP and consists of producing a decision-making 

matrix. Consisting of crisp numbers, interval numbers and fuzzy numbers, as presented in 

equation 20.  

  



38 | P a g e  

 

TOPSIS 
step 

Calculation/Matrix 
Eq. 

Number 

1 

 𝐴1 𝐴2 ⋯ 𝐴𝑀 

𝐶1 𝑥11 𝑥12 ⋯ 𝑥1𝑀 
⋮ ⋮ ⋮ ⋱ ⋮ 
𝐶𝐾 𝑥𝐾1 𝑥𝐾2 ⋯ 𝑥𝐾𝑀 
𝐶𝐾+1 𝑦(𝐾+1)1

±  𝑦(𝐾+1)2
±  ⋯ 𝑦(𝐾+1)𝑀

±  

⋮ ⋮ ⋮ ⋱ ⋮ 
𝐶𝐾+𝐿 𝑦(𝐾+𝐿)1

±  𝑦(𝐾+𝐿)2
±  ⋯ 𝑦(𝐾+𝐿)𝑀

±  

𝐶𝐾+𝐿+1 𝑧(𝐾+𝐿+1)1
±  𝑧(𝐾+𝐿+1)2

±  ⋯ 𝑧(𝐾+𝐿+1)𝑀
±  

⋮ ⋮ ⋮ ⋱ ⋮ 
𝐶𝐾+𝐿+𝑇 𝑧(𝐾+𝐿+𝑇)1

±  𝑧(𝐾+𝐿+𝑇)2
±  ⋯ 𝑧(𝐾+𝐿+𝑇)𝑀

±  
 

20 

𝐴𝑗(𝑗 = 1, 2,⋯ ,𝑀) represents the 𝑗-th brine management strategy/technology. 𝐶𝑖(𝑖 =

1,2,⋯ , 𝐾), 𝐶𝑖(𝑖 = 𝐾 + 1,𝐾 + 2,⋯ ,𝐾 + 𝐿) and 𝐶𝑖(𝑖 = 𝐾 + 𝐿 + 1,𝐾 + 𝐿 + 2,⋯ ,𝐾 + 𝐿 +

𝑇) represents the criteria that can be described by crisp numbers, interval numbers and 

fuzzy numbers, respectively. Different data-types in the decision-making matrix use the 

notation of 𝑥𝑖𝑗(𝑖 = 1,2,⋯ , 𝐾), 𝑦𝑖𝑗
± = [𝑦𝑖𝑗  

− , 𝑦𝑖𝑗
+](𝑖 = 𝐾 + 1,𝐾 + 2,⋯ ,𝐾 + 𝐿) and 𝑧𝑖𝑗

′ =

[𝑧𝑖𝑗
𝑙   , 𝑧𝑖𝑗

𝑚  , 𝑧𝑖𝑗
ℎ ](𝑖 = 𝐾 + 𝐿 + 1, 𝐾 + 𝐿 + 2,⋯ ,𝐾 + 𝐿 + 𝑇) for crisp numbers, interval 

numbers and fuzzy numbers, respectively. The superscripts – and + denote the lower and 

upper bounds of an interval number. While the superscripts 𝑙, 𝑚 and ℎ are representing the 

low, medium and high values of the fuzzy numbers. To distinguish matrices and individual 

elements within a matrix, the author will use square brackets to denote a matrix and 

commas to denote separate elements and equations relating to separate elements. 

Crisp numbers are used when the relevant data of a criterion is determined to be hard 

evaluation criteria i.e., objective facts. Interval numbers are used when the data can’t be 

presented as crisp number and may vary depending on a variety of circumstances i.e., 

energy consumption. Fuzzy numbers are used to rate criteria that can’t be numerically 

represented, but can be rated relative to other alternatives using linguistic terms i.e., 

extremely bad, bad, good, extremely good. Seven linguistic terms are used corresponding to 

7 triangular fuzzy number sets, comparing the relative performances of each technology to 

a particular criterion (Table 3).  
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Table 3: Linguistic terms and the corresponding fuzzy numbers. 

Linguistic Term Abbreviation Corresponding Fuzzy 
number 

Extremely Bad EB [0 0 0.1] 

Very Bad VB [0.1 0.2 0.3] 

Bad B [0.2 0.3 0.4] 

Moderate M [0.4 0.5 0.6] 

Good G [0.6 0.7 0.8] 

Very Good VG [0.8 0.9 1] 

Extremely Good EG [0.9 1 1] 

The next step is to normalise all of the data-types to eliminate the impacts of the units 

corresponding to each criterion with the ranking process. The data entered into the 

decision-making matrix will fall into one of two categories. The 1st category is known as a 

benefit-type criteria (BC), where higher values for a particular criterion is more beneficial to 

a technology. The 2nd category is the opposite of the benefit-type criteria, known as a cost-

type criteria (CC), where data with the smallest values are preferred. Crisp numbers, interval 

numbers and fuzzy numbers can be normalised using equations 21, 22 and 23, respectively.   
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TOPSIS 
step 

Calculation/Matrix 
Eq. 

Number 

2 𝑁𝑥𝑖𝑗 =

{
 
 
 
 
 

 
 
 
 
 𝑥𝑖𝑗 −

𝑀
𝑚𝑖𝑛
𝑗
{𝑥𝑖𝑗}

𝑀
𝑚𝑎𝑥
𝑗
{𝑥𝑖𝑗} − 

𝑀
𝑚𝑖𝑛
𝑗
{𝑥𝑖𝑗}

 (𝑗 = 1,2 ⋯ ,𝑀: 𝑗 𝜖 𝐵𝐶

𝑀
𝑚𝑎𝑥
𝑗
{𝑥𝑖𝑗} − 𝑥𝑖𝑗

𝑀
𝑚𝑎𝑥
𝑗
{𝑥𝑖𝑗} − 

𝑀
𝑚𝑖𝑛
𝑗
{𝑥𝑖𝑗}

 (𝑗 = 1,2 ⋯ ,𝑀: 𝑗 𝜖 𝐶𝐶

 21 

2 𝑁𝑦𝑖𝑗
± =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑦𝑖𝑗

− −
𝑀
𝑚𝑖𝑛
𝑗
{𝑦𝑖𝑗

−}

𝑀
𝑚𝑎𝑥
𝑗
{𝑦𝑖𝑗

+} − 
𝑀
𝑚𝑖𝑛
𝑗
{𝑦𝑖𝑗

−}

 ,

𝑦𝑖𝑗
+ −

𝑀
𝑚𝑖𝑛
𝑗
{𝑦𝑖𝑗

−}

𝑀
𝑚𝑎𝑥
𝑗
{𝑦𝑖𝑗

+} − 
𝑀
𝑚𝑖𝑛
𝑗
{𝑦𝑖𝑗

−}

 

(𝑗 = 1,2 ⋯ ,𝑀: 𝑗 𝜖 𝐵𝐶
𝑀
𝑚𝑎𝑥
𝑗
{𝑦𝑖𝑗

+} − 𝑦𝑖𝑗
+

𝑀
𝑚𝑎𝑥
𝑗
{𝑦𝑖𝑗

+} − 
𝑀
𝑚𝑖𝑛
𝑗
{𝑦𝑖𝑗

−}

 ,

𝑀
𝑚𝑎𝑥
𝑗
{𝑦𝑖𝑗

+} − 𝑦𝑖𝑗
−

𝑀
𝑚𝑎𝑥
𝑗
{𝑦𝑖𝑗

+} − 
𝑀
𝑚𝑖𝑛
𝑗
{𝑦𝑖𝑗

−}

(𝑗 = 1,2 ⋯ ,𝑀: 𝑗 𝜖 𝐶𝐶

 22 

2 𝑁𝑧𝑖𝑗
′ =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑧𝑖𝑗

𝑙 −
𝑀
𝑚𝑖𝑛
𝑗
{𝑧𝑖𝑗

𝑙 }

𝑀
𝑚𝑎𝑥
𝑗
{𝑧𝑖𝑗

ℎ } − 
𝑀
𝑚𝑖𝑛
𝑗
{𝑧𝑖𝑗

𝑙 }

 ,

𝑧𝑖𝑗
𝑚 −

𝑀
𝑚𝑖𝑛
𝑗
{𝑧𝑖𝑗

𝑙 }

𝑀
𝑚𝑎𝑥
𝑗
{𝑧𝑖𝑗

ℎ } − 
𝑀
𝑚𝑖𝑛
𝑗
{𝑧𝑖𝑗

𝑙 }

,

𝑧𝑖𝑗
ℎ −

𝑀
𝑚𝑖𝑛
𝑗
{𝑧𝑖𝑗

𝑙 }

𝑀
𝑚𝑎𝑥
𝑗
{𝑧𝑖𝑗

ℎ } − 
𝑀
𝑚𝑖𝑛
𝑗
{𝑧𝑖𝑗

𝑙 }

  

(𝑗 = 1,2 ⋯ ,𝑀: 𝑗 𝜖 𝐵𝐶
𝑀
𝑚𝑎𝑥
𝑗
{𝑧𝑖𝑗

ℎ } − 𝑧𝑖𝑗
ℎ

𝑀
𝑚𝑎𝑥
𝑗
{𝑧𝑖𝑗

ℎ } − 
𝑀
𝑚𝑖𝑛
𝑗
{𝑧𝑖𝑗

𝑙 }

 ,

𝑀
𝑚𝑎𝑥
𝑗
{𝑧𝑖𝑗

ℎ } − 𝑧𝑖𝑗
𝑚

𝑀
𝑚𝑎𝑥
𝑗
{𝑧𝑖𝑗

ℎ } − 
𝑀
𝑚𝑖𝑛
𝑗
{𝑧𝑖𝑗

𝑙 }

,

𝑀
𝑚𝑎𝑥
𝑗
{𝑧𝑖𝑗

ℎ } − 𝑧𝑖𝑗
𝑙

𝑀
𝑚𝑎𝑥
𝑗
{𝑧𝑖𝑗

ℎ } − 
𝑀
𝑚𝑖𝑛
𝑗
{𝑧𝑖𝑗

𝑙 }

 

(𝑗 = 1,2 ⋯ ,𝑀: 𝑗 𝜖 𝐶𝐶

 23 
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Where the normalised data of crisp numbers, interval numbers and fuzzy numbers are 

denoted by Nxij (𝑗 = 1,2,⋯ , 𝐾), Nyij
± = [𝑁𝑦𝑖𝑗  

− , 𝑁𝑦𝑖𝑗
+](𝑖 = 𝐾 + 1,𝐾 + 2,⋯ ,𝐾 + 𝐿) and 

Nzij
′ = [𝑁𝑧𝑖𝑗

𝑙   , 𝑁𝑧𝑖𝑗
𝑚  , 𝑁𝑧𝑖𝑗

ℎ ](𝑖 = 𝐾 + 𝐿 + 1,𝐾 + 𝐿 + 2,⋯ , 𝐾 + 𝐿 + 𝑇), respectively. 

Each normalised value has the same form as the original input data-type. Therefore, crisp 

numbers are presented as individual values, interval numbers are represented in a 1 by 2 

matrix and fuzzy numbers are presented in a 1 by 3 matrix. The normalised data can then be 

transferred to a normalised hybrid information matrix (equation 24). 

TOPSIS 
step 

Calculation/Matrix 
Eq. 

Number 

2 

 𝐴1 𝐴2 ⋯ 𝐴𝑀 

𝐶1 𝑁𝑥11 𝑁𝑥12 ⋯ N𝑥1𝑀 

⋮ ⋮ ⋮ ⋱ ⋮ 
𝐶𝐾 𝑁𝑥𝐾1 𝑁𝑥𝐾2 ⋯ 𝑁𝑥𝐾𝑀 
𝐶𝐾+1 𝑁𝑦(𝐾+1)1

±  𝑁𝑦(𝐾+1)2
±  ⋯ 𝑁𝑦(𝐾+1)𝑀

±  

⋮ ⋮ ⋮ ⋱ ⋮ 
𝐶𝐾+𝐿 𝑁𝑦(𝐾+𝐿)1

±  𝑁𝑦(𝐾+𝐿)2
±  ⋯ 𝑁𝑦(𝐾+𝐿)𝑀

±  

𝐶𝐾+𝐿+1 𝑁𝑧(𝐾+𝐿+1)1
±  𝑁𝑧(𝐾+𝐿+1)2

±  ⋯ 𝑁𝑧(𝐾+𝐿+1)𝑀
±  

⋮ ⋮ ⋮ ⋱ ⋮ 
𝐶𝐾+𝐿+𝑇 𝑁𝑧(𝐾+𝐿+𝑇)1

±  𝑁𝑧(𝐾+𝐿+𝑇)2
±  ⋯ 𝑁𝑧(𝐾+𝐿+𝑇)𝑀

±  
 

24 

The next step is to determine the weighted normalised hybrid information matrix (𝑊𝑁𝐷), 

where 𝑊𝑁𝐷𝑖𝑗 represents the normalised data for the 𝑖-th criterion to the 𝑗-th technology 

(equation 25). This is where the normalised crisp weightings calculated at the end of the 

Interval AHP (equation 19) combines with the TOPSIS process, as seen in Figure 4.  
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TOPSIS 
step 

Calculation/Matrix 
Eq. 

Number 

3 𝑊𝑁𝐷𝑖𝑗 = 𝑤𝑖𝑁𝐷𝑖𝑗 =
{
  
 

  
 

𝑤𝑖𝑁𝑥𝑖𝑗 
(𝑖 = 1, 2,⋯ , 𝐾)

𝑤𝑖𝑁𝑦𝑖𝑗
± 

(𝑖 = 𝐾 + 1,𝐾 + 2,⋯ ,𝐾 + 𝐿)

𝑤𝑖𝑁𝑧𝑖𝑗
′  

(𝑖 = 𝐾 + 𝐿 + 1,𝐾 + 𝐿 + 2,⋯ ,𝐾 + 𝐿 + 𝑇)

{
  
 

  
 

𝑤𝑖𝑁𝑥𝑖𝑗 
(𝑖 = 1, 2,⋯ , 𝐾)

[𝑤𝑖𝑁𝑦𝑖𝑗
− , 𝑤𝑖𝑁𝑦𝑖𝑗

+] 

(𝑖 = 𝐾 + 1,𝐾 + 2,⋯ ,𝐾 + 𝐿)

(𝑤𝑖𝑁𝑧𝑖𝑗
𝑙 , 𝑤𝑖𝑁𝑧𝑖𝑗

𝑚, 𝑤𝑖𝑁𝑧𝑖𝑗
ℎ )

(𝑖 = 𝐾 + 𝐿 + 1,𝐾 + 𝐿 + 2,⋯ ,𝐾 + 𝐿 + 𝑇)

 25 

The next step is to determine the highest and lowest values of the data set of a specific 

criterion. These values are known as the positive and negative ideal solutions. Positive and 

negative ideal solutions will be denoted as 𝑣+ and 𝑣− respectively. The positive and 

negative ideal solutions are presented in the same format of the data input i.e., crisp 

numbers will produce a crisp ideal solution and interval numbers will produce an interval 

ideal solution. Calculating the positive and negative ideal solutions for each element of 

𝑊𝑁𝐷 are attainable through equations 27 and 29, respectively. The positive and negative 

ideal solutions can then be shown as a matrix through equations 26 and 28, for positive and 

negative ideal solutions respectively.  
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TOPSIS 
step 

Calculation/Matrix 
Eq. 

Number 

4 𝑉+ = [𝑣1
+, ⋯ , 𝑣𝐾

+    𝑣𝐾+1
+ , ⋯ , 𝑣𝐾+𝐿

+     𝑣𝐾+𝐿+1
+ , ⋯ , 𝑣𝐾+𝐿+𝑇

+ ] 26 

4 𝑣𝑖
+ = 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑀
𝑚𝑎𝑥
𝑗 = 1

 𝑤𝑖𝑁𝑥𝑖𝑗 

(𝑖 = 1, 2,⋯ , 𝐾)

[
𝑀
𝑚𝑎𝑥
𝑗 = 1

 𝑤𝑖𝑁𝑦𝑖𝑗
− ,

𝑀
𝑚𝑎𝑥 
𝑗 = 1

𝑤𝑖𝑁𝑦𝑖𝑗
+] 

(𝑖 = 𝐾 + 1,𝐾 + 2,⋯ ,𝐾 + 𝐿)

(
𝑀
𝑚𝑎𝑥
𝑗 = 1

𝑤𝑖𝑁𝑧𝑖𝑗
𝑙 ,

𝑀
𝑚𝑎𝑥
𝑗 = 1

𝑤𝑖𝑁𝑧𝑖𝑗
𝑚,

𝑀
𝑚𝑎𝑥
𝑗 = 1

𝑤𝑖𝑁𝑧𝑖𝑗
ℎ)

(𝑖 = 𝐾 + 𝐿 + 1,𝐾 + 𝐿 + 2,⋯ ,𝐾 + 𝐿 + 𝑇)

 27 

4 𝑉− = [𝑣1
−, ⋯ , 𝑣𝐾

−    𝑣𝐾+1
− , ⋯ , 𝑣𝐾+𝐿

−     𝑣𝐾+𝐿+1
− , ⋯ , 𝑣𝐾+𝐿+𝑇

− ] 28 

4 𝑣𝑖
− = 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑀
𝑚𝑖𝑛
𝑗 = 1

 𝑤𝑖𝑁𝑥𝑖𝑗 

(𝑖 = 1, 2,⋯ , 𝐾)

[
𝑀
𝑚𝑖𝑛
𝑗 = 1

 𝑤𝑖𝑁𝑦𝑖𝑗
− ,

𝑀
𝑚𝑖𝑛 
𝑗 = 1

𝑤𝑖𝑁𝑦𝑖𝑗
+] 

(𝑖 = 𝐾 + 1,𝐾 + 2,⋯ ,𝐾 + 𝐿)

(
𝑀
𝑚𝑖𝑛
𝑗 = 1

𝑤𝑖𝑁𝑧𝑖𝑗
𝑙 ,

𝑀
𝑚𝑖𝑛
𝑗 = 1

 𝑤𝑖𝑁𝑧𝑖𝑗
𝑚,

𝑀
𝑚𝑖𝑛
𝑗 = 1

𝑤𝑖𝑁𝑧𝑖𝑗
ℎ)

(𝑖 = 𝐾 + 𝐿 + 1,𝐾 + 𝐿 + 2,⋯ ,𝐾 + 𝐿 + 𝑇)

 29 

From the positive ideal solutions, the distance to the positive ideal best solutions can be 

calculated (equations 30-33). The distance to the positive ideal best solution for technology 

Aj is denoted by d(Aj, V
+) (equation 30). Calculating the positive distance to the ideal 

solution for crisp, interval and fuzzy numbers for each criterion is done through equations 

31-33. The positive distance between the weighted normalised data (wiNxij (crisp 

numbers), wiNyij
±(interval numbers) and wiNzij

′  (fuzzy numbers)) and the ideal positive 

solution (vi
+) for the related criterion is denoted by d(wiNxij , vi

+), d(wiNyij
± , vi

+) and 

d(wiNzij
′ , vi

+) for crisp, interval and fuzzy numbers. A similar process is also conducted to 

determine the negative distance to the ideal worst solution (d(Aj, V
−)), through equations 
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34-37. The negative distance to the ideal negative solution (vi
−) are denoted by 

d(wiNxij , vi
−), d(wiNyij

± , vi
−) and d(wiNzij

′ , vi
−) for crisp, interval and fuzzy numbers, 

respectively. A good mental visualisation of the positive and negative distance is imagining a 

string with a known point somewhere along the string. One end of the string represents the 

best outcome, meanwhile the other is the worst outcome. The positive distance is the 

distance between the known point and the best outcome. The negative distance is the 

distance between the known point and the worst outcome. 

TOPSIS 
step 

Calculation/Matrix 
Eq. 

Number 

5 𝑑(𝐴𝑗 , 𝑉
+) =  

√
  
  
  
  
  
  

∑[𝑑(𝑤𝑖𝑁𝑥𝑖𝑗 , 𝑣𝑖
+)]

2
+ 

𝐾

𝑖=1

∑ [𝑑(𝑤𝑖𝑁𝑦𝑖𝑗
± , 𝑣𝑖

+)]
2
+ ∑ [𝑑(𝑤𝑖𝑁𝑧𝑖𝑗

′ , 𝑣𝑖
+)]

2
𝐾+𝐿+𝑇

𝑖=𝐾+𝐿+1

𝐾+𝐿

𝑖=𝐾+1

 30 

5 𝑑(𝑤𝑖𝑁𝑥𝑖𝑗 , 𝑣𝑖
+) =  𝑤𝑖𝑁𝑥𝑖𝑗 − 𝑣𝑖

+  31 

5 

𝑑(𝑤𝑖𝑁𝑦𝑖𝑗
± , 𝑣𝑖

+) =  
√
  
  
  
  
  
  
  
 

(𝑤𝑖𝑁𝑦𝑖𝑗
− −

𝑀
𝑚𝑎𝑥
𝑗 = 1

 𝑤𝑖𝑁𝑦𝑖𝑗
−)

2

+(𝑤𝑖𝑁𝑦𝑖𝑗
+ − 

𝑀
𝑚𝑎𝑥 
𝑗 = 1

𝑤𝑖𝑁𝑦𝑖𝑗
+)

2

2
 

32 

5 

𝑑(𝑤𝑖𝑁𝑧𝑖𝑗
′ , 𝑣𝑖

+) =  
√
  
  
  
  
  
  
  
  
  
  
  
 

(𝑤𝑖𝑁𝑧𝑖𝑗
𝑙 − 

𝑀
𝑚𝑎𝑥
𝑗 = 1

𝑤𝑖𝑁𝑧𝑖𝑗
𝑙 )

2

+

(𝑤𝑖𝑁𝑧𝑖𝑗
𝑚 − 

𝑀
𝑚𝑎𝑥
𝑗 = 1

𝑤𝑖𝑁𝑧𝑖𝑗
𝑚)

2

+

(𝑤𝑖𝑁𝑧𝑖𝑗
ℎ − 

𝑀
𝑚𝑎𝑥
𝑗 = 1

𝑤𝑖𝑁𝑧𝑖𝑗
ℎ)

2

3
 

33 
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5 𝑑(𝐴𝑗 , 𝑉
−) =  

√
  
  
  
  
  
  
  
  

∑[𝑑(𝑤𝑖𝑁𝑥𝑖𝑗 , 𝑣𝑖
−)]

2
+ 

𝐾

𝑖=1

∑

[𝑑(𝑤𝑖𝑁𝑦𝑖𝑗
± , 𝑣𝑖

−)]
2

+ ∑ [𝑑(𝑤𝑖𝑁𝑧𝑖𝑗
′ , 𝑣𝑖

−)]
2

𝐾+𝐿+𝑇

𝑖=𝐾+𝐿+1

𝐾+𝐿

𝑖=𝐾+1

 34 

5 𝑑(𝑤𝑖𝑁𝑥𝑖𝑗 , 𝑣𝑖
−) =  𝑤𝑖𝑁𝑥𝑖𝑗 − 𝑣𝑖

− 35 

5 

𝑑(𝑤𝑖𝑁𝑦𝑖𝑗
± , 𝑣𝑖

−) =  
√
  
  
  
  
  
  
  
 

(𝑤𝑖𝑁𝑦𝑖𝑗
− −

𝑀
𝑚𝑖𝑛
𝑗 = 1

 𝑤𝑖𝑁𝑦𝑖𝑗
−)

2

+(𝑤𝑖𝑁𝑦𝑖𝑗
+ − 

𝑀
𝑚𝑖𝑛 
𝑗 = 1

𝑤𝑖𝑁𝑦𝑖𝑗
+)

2

2
 

36 

5 

𝑑(𝑤𝑖𝑁𝑧𝑖𝑗
′ , 𝑣𝑖

−) =  
√
  
  
  
  
  
  
  
  
  
  
  
 

(𝑤𝑖𝑁𝑧𝑖𝑗
𝑙 − 

𝑀
𝑚𝑖𝑛
𝑗 = 1

𝑤𝑖𝑁𝑧𝑖𝑗
𝑙 )

2

+

(𝑤𝑖𝑁𝑧𝑖𝑗
𝑚 − 

𝑀
𝑚𝑖𝑛
𝑗 = 1

𝑤𝑖𝑁𝑧𝑖𝑗
𝑚)

2

+

(𝑤𝑖𝑁𝑧𝑖𝑗
ℎ − 

𝑀
𝑚𝑖𝑛
𝑗 = 1

𝑤𝑖𝑁𝑧𝑖𝑗
ℎ)

2

3
 

37 

Finally, the closeness degree (CDi) can be calculated through equation 38 to determine 

which technology is the closest to the ideal solution. The closeness degree for each 

technology is then ranked from highest to smallest, with the highest value representing the 

most superior (preferred) technology. 

TOPSIS 
step 

Calculation/Matrix 
Eq. 

Number 

6 𝐶𝐷𝑖 = 
𝑑(𝐴𝑗 , 𝑉

−)

𝑑(𝐴𝑗 , 𝑉−) + 𝑑(𝐴𝑗 , 𝑉+)
 38 

Unlike the AHP process that requires an iteration of the first 5 steps for aspects and the sets 

of sub-criteria i.e., 1+ however many aspects there are. The TOPSIS process is complete 

after only 1 iteration.   
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4 Case Study 

A case study was developed to showcase the DDS using 4 brine management technologies, 

namely, membrane distillation (MD), forward osmosis (FO) with regeneration (ability to 

recover freshwater), osmotically-assisted reverse osmosis (OARO) and eutectic freeze 

crystallisation (EFC).  Minimal liquid discharge (MLD) is the current mindset for most 

decision-makers in the brine management domain. Therefore, 3 out of the 4 technologies 

selected are primarily used for MLD. Meanwhile, EFC is included as a representation of the 

current status of thermal technologies aiming for zero liquid discharge (ZLD). The selection 

of technologies was also partially made based on the authors understanding of each 

technology to ensure assigned values to subjective variables, i.e., variables with linguistic 

terms, were reasonable. This section is separated into 2 components, namely criteria 

selection and model demonstration. Criteria selection goes through the selection of criteria. 

The model demonstration section goes through the AHP and TOPSIS process outlined in 

sections 3.2 and 3.3 using relevant input data from literature and the authors understanding 

of each technology.  

4.1 Criteria Selection 

Capital cost and production cost were selected as a measurement of economic 

performance. Both criteria utilised crisp numbers. Capital costs have assumptions based on 

the author’s knowledge. This is primarily an artefact of the current state of most of the brine 

treatment technologies. It is challenging to find Capital Expenditure (CAPEX) and Operating 

Expenditure (OPEX) in literature for technologies that aren’t technologically mature (lab-

scale or pilot-scale). This is also the justification for not including maintenance costs as an 

economic indicator.  

The author is utilising the energy consumption and total dissolved solids (TDS) limit of each 

technology as the performance indicators for the environmental aspect. As previously 

mentioned, energy consumption has a direct relationship to the carbon footprint of the 

technology. The TDS limit of the technology is used as a crude indirect representation of the 

recovery rate and brine volume reduction of the technology. The relationship between TDS 
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limit and volume was outlined in Section 2.1.1 Brine Characteristics. The data types for 

energy consumption and TDS of the brine are interval numbers and crisp numbers, 

respectively. In some situations, energy consumption has been identified as a crisp number 

in the literature. However, transforming crisp numbers into an interval number is 

straightforward, i.e., 8 𝑘𝑊ℎ 𝑚3⁄  transforms into [8 𝑘𝑊ℎ 𝑚3⁄ , 8 𝑘𝑊ℎ 𝑚3⁄ ]. All of the 

necessary data for capital cost, production cost, energy consumption and TDS of the brine 

was collected through various sources, summarised in Table 1.   

The technical aspect involves applying 4 sub-criteria, technology maturity, technology 

reliability, footprint and flexibility. By including technology maturity and reliability as sub-

criteria to the technical aspect, using it to gauge the market readiness of each technology. 

Footprint and flexibility are used to indicate how large the system is and how well it adapts 

to different feed volumes. The footprint (area) of each technology given an interval number 

representing the author’s best guess of the size of the technology. Currently, in the 

literature the size of each technology is rarely mentioned. Under ideal conditions the 

footprint of the system would be identified as a crisp number. The model will be using 

linguistic terms for technology maturity, technology reliability and flexibility. The social 

aspect is made up of the following components, skill requirement and company image. Both 

sub-criteria are assigned linguistic terms, as they can’t be represented numerically. A 

summary of the selected sub-criteria is shown in Figure 7. 
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Figure 7:Case study- DDS criteria and aspect tree. 

4.2 Model Demonstration 

Firstly, using the interval AHP method to determine the weightings of all the aspects and 

related sub-criteria. The first step is to populate the interval comparison matrix for the 

aspects and the sub-criteria. Ideally, the interval comparison matrices are populated by 

multiple decision-makers. However, for this case study, the interval comparison matrices 

were populated by the author. The interval AHP process for the technical sub-criteria was 

also not populated, because the author’s attempt to verify the model with the paper it was 

adapted from, failed, and the reason why is unclear. Attempts to communicate with the 

corresponding authors of the paper the methodology is adapted from also fell through. In 

order to navigate around this issue, the author assigned local interval weightings (step 5 of 
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AHP) directly for the technical sub-criteria. Further repercussions of this workaround will be 

discussed in the discussion section and through a sensitivity analysis. The populated interval 

comparison matrix for the 4 aspects (economic, environmental, technical and social) is 

presented in Table 4. The cells that overlap aspects or sub-criteria of the same type are 

always allocated the value [1 1] as their importance to itself is always equal (1 is equal 

importance going back to Saaty’s nine-scale in Table 2).  

Table 4: Populated interval comparison matrix for the economic, environmental, technical 
and social aspects. 

 ECONOMIC ENVIRONMENTAL TECHNICAL SOCIAL 

ECONOMIC [1 1] [1/2 1] [1/3 1] [1/4 1/3] 

ENVIRONMENTAL [1 2] [1 1] [1/5
1

4
] 

[1/4 1/3] 

TECHNICAL [1 3] [4 5] [1 1] [1/2 1] 

SOCIAL [3 4] [3 4] [1 2] [1 1] 

The values chosen by the decision-makers for the interval comparison matrix are used to 

populate the consistent approximate matrix by using following equations 9 and 10. For 

example, calculating the value of the cell in the 1st row and 2nd column of the consistence 

approximate matrix is shown in equation 39. For future reference, the subscript 12 refers to 

the cell in the 1st row and 2nd column. Populating the remaining cells results in a complete 

consistent approximate matrix ( 

Table 5).    
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 𝑚12 = (
1 ∗ 1 ∗

1
2 ∗ 1 ∗

1
3 ∗ 1 ∗

1
4 ∗

1
3

1 ∗ 1 ∗ 1 ∗ 2 ∗ 1 ∗ 3 ∗ 3 ∗ 4
)
1
2∗4 = 0.3432 39 

 

Table 5: Consistent approximate matrix for the AHP Process. 

 Economic Environmental Technical Social 

Economic 1 0.3432 1.1906 0.8963 

Environmental 0.3014 1 1.1157 0.8399 

Technical 0.8399 0.8963 1 2.3409 

Social 1.1157 1.1906 4.1300 1 

The next step of the AHP process (step 3), determines the weights of the aspects or sub-

criteria according to equation 11. Examples of calculating the weights for the economic, 

environmental, technical and social aspects are shown in equations 40-43.  

 𝜔𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 = 
1

1 + 0.3014 + 0.8399 + 1.1157
= 0.3070  40 

 𝜔𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 = 
1

0.3432 + 1 + 0.8963 + 1.1906
=  0.2915 41 

 𝜔𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 = 
1

1.1906 + 1.1157 + 1 + 4.1300
=  0.1345 42 

 𝜔𝑆𝑜𝑐𝑖𝑎𝑙 = 
1

0.8963 + 0.8399 + 2.2409 + 1
=  0.1970 43 

We now calculate the positive and negative deviations of the weights. Firstly, the deviation 

matrices need to be constructed. According to equation 12, the positive deviation matrix 

can by populated by following the example shown in equation 44 for each cell of the 

positive deviation matrix. Populating the positive deviation matrix results in Table 6. The 

negative deviation matrix can be populated according to equation 13. An example of the 
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calculation in each cell of the negative deviation matrix and the fully populated matrix is 

shown in equation 45 and Table 7. 

 𝜔12
+ = 𝑎12

+ −𝑚12 = 1 − 0.3432 = 0.6568 44 

Table 6: AHP Process – Populated positive deviation matrix. 

 Economic Environmental Technical Social 

Economic 0 0.6568 −0.1906 −0.5630 

Environmental 1.6986 0 −0.8657 −0.5099 

Technical 2.1631 4.1037 0 −1.3409 

Social 2,8843 2.8094 −2.1300 0 

 

 𝜔12
− = 𝑚12 − 𝑎12

− = 0.3432 − 0.5 =  −0.1568 45 

Table 7: AHP Process – Populated negative deviation matrix. 

 Economic Environmental Technical Social 

Economic 0 −0.1568 0.8576 0.6463 

Environmental −0.6989 0 0.9157 0.5899 

Technical −0.1601 −3.1037 0 1.8409 

Social −1.8846 −1.8397 3.1300 0 

The next step uses the positive and negative deviation matrices to determine the positive 

and negative deviations of each aspect or sub-criteria. An example of calculating the 

positive and negative deviations of the economic aspect using the respective matrices is 

shown in equations 46 and 47.  
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∆𝑤𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐
+ = √

∑ (𝑎𝑖𝑗+ −𝑚𝑖𝑗)2
𝑛
𝑗=1

(∑ 𝑚𝑖𝑗)
𝑛
𝑗=1

4  

= √
02 + 0.65682 +−0.19062 +−0.56302

(0 + 0.6548 − 0.1906 − 0.5630)4
= 0.0753 

46 

 

∆𝑤𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐
− = √

∑ (𝑚𝑖𝑗 − 𝑎𝑖𝑗
−)

2𝑛
𝑗=1

(∑ 𝑚𝑖𝑗)
𝑛
𝑗=1

4  

= √
02−0,15682 + 0.85762 + 0.64632

(0 − 0.1568 + 0.8576 + 0.6463)4
= 0.0922 

47 

Applying the positive and negative deviations to the aspect weightings calculated in 

equations 40-43 creates the interval weights of each aspect by following equation 16. The 

results of this calculation are summarised in Table 8.  

Table 8: AHP Process - Deviations and interval weights of the economic, environmental, 
technical and social aspects. 

 Economic Environmental Technical Social 

Positive 
deviation 

0.0753 0.1860 0.1873 0.0824 

Negative 
deviation 

0.0922 0.1220 0.1401 0.0740 

Interval 
weights 

[0.2148 0.3823] [0.1696 0.4776] [−0.0056 0.3218] [0.1230 0.2793] 

Calculating the local interval weights of the sub-criteria under the economic, environmental, 

technical and social aspects is conducted similarly to how the aspect interval weights are 

calculated. The main notable difference between calculating the interval weights is the size 

of the matrices, which is tied to the number of sub-criteria, i.e., if there are 2 sub-criteria 

under the social aspect then the relevant matrix size is a 2x2 matrix. The size of the sub-

criteria matrices was previously indicated in Figure 7. The local interval weightings for the 

sub-criteria then need to be converted into global interval weights by following equation 17. 

Moving forward in the AHP process, the next step is calculating the midpoints of each global 

interval weight as seen in equation 18. The final step of the AHP process involves calculating 
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the crisp weightings for each sub-criteria following equation 19. An example of the process 

of converting local interval weightings of the sub-criteria into crisp weightings is 

demonstrated through equations 48-50 for the capital cost sub-criteria. A summary of the 

entire process for all sub-criteria is shown in Table 9. 

 
𝐺𝑊𝑖

± = [𝑤𝑖,𝑙
− ∗ 𝑤𝑖,𝑔

− , 𝑤𝑖,𝑙
+ ∗ 𝑤𝑖,𝑔

+ ] 

= [0.5147 ∗ 0.2148 0.6863 ∗ 0.3823] = [0.1106 0.2624] 

48 

 𝑀𝑃𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =
0.1106 + 0.2624

2
= 0.1865 49 

 𝜔𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 
𝑀𝑃𝑖

∑ (𝑀𝑃𝑖)
𝑛
𝑖=1

= 
0.1865

1.1192
= 0.1666  50 
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Table 9: TOPSIS Process - Conversion of local sub-criteria weightings into crisp weightings. 

Conversion from local weightings to crisp weightings 

Aspects 
Aspect weightings 

Sub-criteria 
Local Interval weights 

Global interval 
weightings Mid-

Point 
Crisp 
weightings Lower 

bound 
Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Economic 0.2148 0.3823 
Capital cost 0.5147 0.6863 0.1106 0.2624 0.1865 0.1666 

Production cost 0.3431 0.5147 0.0737 0.1968 0.1352 0.1208 

Environmenta
l 

0.1696 0.4776 
TDS Limitation 0.2679 0.5359 0.0454 0.2559 0.1507 0.1346 

Energy 
consumption  

0.5359 0.8038 0.0909 0.3839 0.2374 0.2121 

Tech -0.0056 0.3218 

Footprint 0.3500 0.4000 -0.0020 0.1287 0.0634 0.0566 

Technology 
maturity  

0.0900 0.1400 -0.0005 0.0451 0.0223 0.0199 

Technology 
Reliability  

0.2500 0.3500 -0.0014 0.1126 0.0556 0.0497 

Flexibility  0.2000 0.3000 -0.0011 0.0965 0.0477 0.0426 

Social 0.1230 0.2793 
Company image 0.3431 0.5147 0.0422 0.1438 0.0930 0.0831 

Skill req 0.5147 0.6863 0.0633 0.1917 0.1275 0.1139 
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Moving forward to the start of the TOPSIS process requires creating a multi-data decision-

making matrix comprised of all the hard and soft information that relates to each sub-

criteria (Table 10). For the capital cost, due to the poor market readiness of the 4 

technologies being assessed, values have been assigned based on the author’s knowledge 

and correspondence with Dr Vishnu Ravisankar, a desalination expert at Murdoch University 

[134]. There is fairly high confidence with the placement of MD and FO as the cheapest and 

second-cheapest options. However, the placements of OARO and EFC could switch based on 

the system sizing. The TDS limitation for technologies indicated as “no theoretical limit” in 

Table 1, were assigned a value of 360,000 
𝑚𝑔

𝐿⁄ , which corresponds with the saturation 

point of pure NaCl in water at 25 °𝐶 [135]. Assumptions were also made on the footprint of 

each technology, based on the author’s knowledge and previous work experience in the 

desalination industry. The linguistic terms in Table 10 can be converted to fuzzy triangular 

numbers by following the corresponding number sets shown in Table 3. A decision-making 

matrix with only crisp, interval and fuzzy numbers is shown in Table 11. In both Table 10 and 

Table 11, cells have been highlighted in gold to indicate where an assumption for a hard 

information data-type has been applied. 

 

 



56 | P a g e  

 

Table 10: TOPSIS Process - Hybrid information decision-making matrix for hard and soft information types. 

Sub-criteria Units MD 
FO with 

regeneration 
OARO EFC 

Capital Cost $ 10,000 12,000 13,500 14,000 

Production Cost 
$
𝑚3⁄  1.17 0.63 2.4 1.42 

TDS Limitation 

TDS 

(mg/L) 
360,000 360,000 150,000 220,000 160,000 160,000 360,000 360,000 

Energy consumption 
𝑘𝑊ℎ

𝑚3⁄  39 67 6.8 16.7 6 19 4 150 

Footprint m2 6 10 8 12 8 10 6 10 

Technology maturity linguistic M B B G 

Technology Reliability linguistic G M M VB 

Flexibility linguistic G B M G 

Company Image linguistic M G G B 

Skill req linguistic M G M M 
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Table 11: TOPSIS Process - Hybrid information decision-making matrix for hard and soft information types with fuzzy numbers. 

Sub-criteria Units MD FO with regeneration OARO EFC 

Capital Cost $ 10,000 12,000 13,500 14,000 

Production Cost $
𝑚3⁄  1.17 0.63 2.4 1.42 

TDS Limitation TDS limit 360,000 360,000 150,000 220,000 160,000 160,000 360,000 360,000 

Energy consumption 𝑘𝑊ℎ
𝑚3⁄  39 67 6.8 16.7 6 19 4 150 

Footprint m2 6 10 8 12 8 10 6 10 

Technology maturity 
fuzzy 

numbers 
0.4 0.5 0.6 0.2 0.3 0.4 0.2 0.3 0.4 0.6 0.7 0.8 

Technology 

Reliability 

fuzzy 

numbers 
0.6 0.7 0.8 0.4 0.5 0.6 0.4 0.5 0.6 0.1 0.2 0.3 

Flexibility 
fuzzy 

numbers 
0.6 0.7 0.8 0.2 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.8 

Company Image 
fuzzy 

numbers 
0.4 0.5 0.6 0.6 0.7 0.8 0.6 0.7 0.8 0.2 0.3 0.4 

Skill req 
fuzzy 

numbers 
0.4 0.5 0.6 0.6 0.7 0.8 0.4 0.5 0.6 0.4 0.5 0.6 
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From Table 11, the normalisation process for the data inputs can begin (step 2 of TOPSIS). 

Capital cost and production cost are the only crisp data types in the decision-making matrix. 

The normalisation process for crisp numbers is done by following equation 21 and selecting 

whether the data-type is a benefit-type (highest value is the preferred option) or cost-type 

(lowest value is the preferred option). Both capital cost and production cost are classified as 

cost-type criteria. The process to normalise crisp data of the cost-type is demonstrated for 

production costs (PC) of MD, FO with regeneration, OARO and EFC through equations 51-54.  

 𝑁𝑃𝐶𝑀𝐷 = 
2.4 − 1.17

2.4 − 0.63
= 0.6949 51 

 𝑁𝑃𝐶𝐹𝑂 = 
2.4 − 0.63

2.4 − 0.63
= 1 52 

 𝑁𝑃𝐶𝑂𝐴𝑅𝑂 = 
2.4 − 2.4

2.4 − 0.63
= 0 53 

 𝑁𝑃𝐶𝐸𝐹𝐶 = 
2.4 − 1.42

2.4 − 0.63
= 0.5537 54 

The interval data types must be considered next, namely, TDS limitation, energy 

consumption and footprint. TDS limitation is a benefit-type, while energy consumption and 

footprint are cost-type criteria. A demonstration of the normalisation process for TDS 

limitation (TDSL) and energy consumption (EC) is shown in equations 55-58 and 59-62, to 

showcase the difference between benefit-type and cost-type criteria, respectively.  
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 𝑁𝑇𝐷𝑆𝐿𝑀𝐷 = 
360,000 − 150,000

360,000 − 150,000
,
360,000 − 150,000

360,000 − 150,000
= [1 1] 55 

 𝑁𝑇𝐷𝑆𝐿𝐹𝑂 = 
150,000 − 150,000

360,000 − 150,000
,
220,000 − 150,000

360,000 − 150,000
= [0 0.3333] 56 

 𝑁𝑇𝐷𝑆𝐿𝐹𝑂 =
160,000 − 150,000

360,000 − 150,000
,
160,000 − 150,000

360,000 − 150,000
= [0.0476 0.0476] 57 

 𝑁𝑇𝐷𝑆𝐿𝐸𝐹𝐶 = 
360,000 − 150,000

360,000 − 150,000
,
360,000 − 150,000

360,000 − 150,000
= [1 1] 58 

 𝑁𝐸𝐶𝑀𝐷 = 
150 − 67

150 − 4
,
150 − 39

150 − 4
= [0.5685 0.7603] 59 

 𝑁𝐸𝐶𝐹𝑂 = 
150 − 16.7

150 − 4
,
150 − 6.8

150 − 4
= [0.9130 0.9808] 60 

 𝑁𝐸𝐶𝑂𝐴𝑅𝑂 = 
150 − 6

150 − 4
,
150 − 19

150 − 4
= [0.8973 0.9863] 61 

 𝑁𝐸𝐶𝑂𝐴𝑅𝑂 = 
150 − 150

150 − 4
,
150 − 4

150 − 4
= [0 1] 62 

The remaining criteria (technology maturity, reliability, flexibility, company image and skill 

requirement) are classified by fuzzy triangular numbers. How the fuzzy numbers were set up 

using Saaty’s nine-scale forces a benefit-type normalisation approach to fuzzy numbers. It 

ties into the perceptual understanding of the linguistic terms like “Good” and “Very Bad 

(VB)” and general social understanding that a higher ranking or score is equivalent to a 

better outcome (most prominent in the educational domain). Equations 63-66 below use 

Technology Maturity (TM) to demonstrate the normalisation process for fuzzy triangular 

numbers. All of the normalised data for all of the remaining criteria are presented in the 

Appendix (Table 20). 
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 𝑁𝑇𝑀𝑀𝐷 =
0.4 − 0.2

0.8 − 0.2
,
0.5 − 0.2

0.8 − 0.2
,
0.6 − 0.2

0.8 − 0.2
= [0.3333 0.5 0.6667] 63 

 𝑁𝑇𝑀𝐹𝑂 =
0.2 − 0.2

0.8 − 0.2
,
0.3 − 0.2

0.8 − 0.2
,
0.4 − 0.2

0.8 − 0.2
= [0 0.1667 0.3333] 64 

 𝑁𝑇𝑀𝑂𝐴𝑅𝑂 =
0.2 − 0.2

0.8 − 0.2
,
0.3 − 0.2

0.8 − 0.2
,
0.4 − 0.2

0.8 − 0.2
= [0 0.1667 0.3333] 65 

 𝑁𝑇𝑀𝐸𝐹𝐶 =
0.6 − 0.2

0.8 − 0.2
,
0.7 − 0.2

0.8 − 0.2
,
0.8 − 0.2

0.8 − 0.2
= [0.6667 0.8333 1] 66 

The next step is to calculate the weighted normalised data by multiplying the normalised 

data with the relevant crisp weightings calculated through AHP following Eq 25. These 

calculations is shown using production cost, energy consumption and technology maturity 

through equations 67-70 for crisp numbers, equations 71-74 for interval numbers and 

equations 75-78 for triangular fuzzy numbers. The remaining weighted normalised data is 

presented in the Appendix (Table 21).  
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 𝑊𝑁𝑃𝐶𝑀𝐷 = 0.6949 ∗ 0.1208 = 0.0840 67 

 𝑊𝑁𝑃𝐶𝐹𝑂 = 1 ∗ 0.1208 = 0.1208 68 

 𝑊𝑁𝑃𝐶𝑂𝐴𝑅𝑂 = 0 ∗ 0.1208 = 0 69 

 𝑊𝑁𝑃𝐶𝐸𝐹𝐶 = 0.5537 ∗ 0.1208 = 0.0669 70 

 
𝑊𝑁𝐸𝐶𝑀𝐷 = [0.5685 ∗ 0.2121 0.7603 ∗ 0.2121]

= [0.1206 0.1612] 
71 

 
𝑊𝑁𝐸𝐶𝐹𝑂 = [0.9130 ∗ 0.2121 0.9808 ∗ 0.2121]

= [0.1936 0.2080] 
72 

 
𝑊𝑁𝐸𝐶𝑂𝐴𝑅𝑂 = [0.8973 ∗ 0.2121 0.9863 ∗ 0.2121]

= [0.1903 0.2092] 
73 

 𝑊𝑁𝐸𝐶𝑀𝐷 = [0 ∗ 0.2121 1 ∗ 0.2121] = [0 0.2121] 74 

 
𝑊𝑁𝑇𝑀𝑀𝐷 = [0.3333 ∗ 0.0199 0.5 ∗ 0.0199 0.6667 ∗ 0.0199]

= [0.0066 0.0099 0.0133] 
75 

 
𝑊𝑁𝑇𝑀𝐹𝑂 = [0 ∗ 0.0199 0.1667 ∗ 0.0199 0.3333 ∗ 0.0199]

= [0 0.0033 0.0066] 
76 

 
𝑊𝑁𝑇𝑀𝑂𝐴𝑅𝑂 = [0 ∗ 0.0199 0.1667 ∗ 0.0199 0.3333 ∗ 0.0199]

= [0 0.0033 0.0066] 
77 

 
𝑊𝑁𝑇𝑀𝐸𝐹𝐶 = [0.6667 ∗ 0.0199 0.8333 ∗ 0.0199 1 ∗ 0.0199]

= [0.0133 0.0166 0.0199] 
78 

Following equations 26-29, the ideal best and worst solutions for each criterion can be 

identified. Using the results from weighted normalised production cost (WNPC) (equations 

67-70) as an example, the ideal solution is FO as it has the highest value (0.1208). 

Meanwhile, the ideal worst solution is OARO as it has the lowest value (0). A summary of 

the ideal best and worst solutions for each criterion is shown in Table 12.  
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Table 12: Ideal best and worst solutions for each criterion of the case study. 

Criteria Ideal Best Solution Ideal Worst Solution 

Capital cost 0.1666 0 

Production cost 0.1208 0 

TDS limitation 0.1346 0.1346 0 0.0064 

Energy consumption 0.1936 0.2121 0 0.1612 

Footprint 0.0189 0.0566 0 0.0377 

Technology maturity 0.0133 0.0166 0.0199 0 0.0033 0.0066 

Technology reliability 0.0355 0.0426 0.0497 0 0.0071 0.0142 

Flexibility 0.0284 0.0355 0.0426 0 0.0071 0.0142 

Company Image 0.0554 0.0692 0.0831 0 0.0138 0.277 

Skill requirement 0.0570 0.0854 0.1139 0 0.285 0570 

Now that the ideal best and worst solutions for each criterion have been identified, the 

distance between the weighted normalised data and ideal best and worst solutions can be 

determined by following equations 31-33 and 35-37 for ideal best and worst solutions 

respectively (Table 13). From the distance to the ideal best and worst solutions for each 

criterion, the distance to the ideal best and worst technology can be calculated by following 

equations 30 and 34 for the best and worst ideal solutions, respectively. Finally, from the 

distance to the ideal best and worst solutions for each technology, the closeness degree to 

the best solution can be calculated and ranked from highest (most ideal) to lowest (least 

ideal) (Table 13). 

Table 13: The closeness degrees for the 4 selected brine management technologies for the 
case study. 

 MD FO OARO EFC 

Distance to 
ideal best 
solution 

0.0958 0.1469 0.2373 0.2387 

Distance to 
ideal worst 
solution 

0.2502 0.2211 0.1537 0.1562 

Closeness 
Degree 

0.7206 0.6008 0.3931 0.3955 

Ranking 1 2 4 3 



63 | P a g e  

 

The ranking of the brine management technologies from best to worst is membrane 

distillation (MD), forward osmosis with regeneration (FO), eutectic freeze crystallisation 

(EFC and osmotically assisted reverse osmosis (OARO).  

4.3 Sensitivity Analysis 

A sensitivity analysis (SA) is an essential process for any model that could experience 

uncertainty. Sensitivity analyses are methods used to study the influence of the inputs on 

the uncertainty of the output variables of a model [136]. One of the techniques often used 

in sensitivity analyses in fields such as medicine, mathematics, physics and engineering, is a 

Monte Carlo Simulation (MCS) [137]–[141]. The MCS has a wide variety of different variants. 

However, the basic premise stays the same. It is an iterative process consisting of 

alternating the input variables based on an input distribution (e.g., uniform, triangular, 

normal) into the model and recording the model’s output. From the recorded results, 

statistical information and interpretations can be applied to understand further how the 

model responds to different input variables. The sensitivity analysis for the model 

developed in this document followed the schematic seen in Figure 8. 
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Figure 8: Monte Carlo Simulation schematic
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The red cells and arrows indicate the steps of the interval analytical hierarchy process (AHP) 

that have been bypassed, owing to the validation issue mentioned in Section 4.2. There is 

also the lack of a consistency ratio measurement in the interval AHP seen in the original 

version of AHP developed by Saaty [133]. The consistency ratio is an important 

measurement for determining whether the decision maker’s comparison matrices are 

acceptable or needs revision [142]. The cells in green showcase the three different types of 

distributions, namely triangular, uniform and normal distributions that the SA will employ to 

assign weightings. There are two methods of variable weighting assignment used in this SA. 

The first is directly altering the final crisp weightings for every sub-criterion (Method 1). The 

analysis of this output would then be used to indicate the total variability of each 

technology. The second is to apply the variable input to 1 aspect (economic, environmental, 

technical or social) at a time and keeping the remaining weightings for sub-criteria 

associated with other aspects the same as the case study (Method 2). This approach 

benefits from isolating aspects to determine which aspects have the most influence on the 

outputs [143]. This analysis will use only one distribution type at a time.  

The SA was developed in excel with the assistance of a macro. The macro copies the 

closeness degree (last step of TOPSIS, equation 38) for each technology for every set of 

random weightings to the number of specified iterations (Figure 9). For this SA, there will be 

10,000 iterations for each simulation.  

 

Figure 9: Sensitivity analysis macro code. 

Some distribution types have dedicated functions in excel, such as NORM.INV or NORM.DIST 

for normal distribution. Other distributions use a random number generator in excel using 

the RAND () function, which produces a uniformly distributed random number between 0 to 
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1. Extending the range of the RAND () function to the limits of the input variables gives a 

uniform distribution across the specified range (equation 79). For SA method 1, the global 

interval weighting for each criterion limits the total range of the uniform random number 

generator. The upper and lower bounds are shown in Table 9. For the 2nd SA method, the 

aspect weightings will range from 0 to 0.6. This range accounts for the entire aspect 

weighting range seen in the model demonstration and applies an estimated upper limit of 

aspect weightings of 0.6 and a lower limit of 0. This is in comparison to the current aspect 

weightings for the case study, with an upper limit of 0.48 and a lower limit of 0 (Table 8). 

 
𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟

= (𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 − 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑) ∗ 𝑅𝐴𝑁𝐷( )
+ 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 

79 

A triangular distribution is a continuous probability distribution that results in a triangular-

shaped distribution pattern with a bias towards the most likely (peak) value. In order to 

simulate a triangular distribution variable input, the distance between the peak value and 

the lowest value, peak value and the maximum value and the total range need to be known 

(equations 80-82).  

 𝐿𝑜𝑤𝑒𝑟 𝑟𝑎𝑛𝑔𝑒 = 𝑝𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 80 

 𝐻𝑖𝑔ℎ𝑒𝑟 𝑟𝑎𝑛𝑔𝑒 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒 81 

 𝑇𝑜𝑡𝑎𝑙 𝑟𝑎𝑛𝑔𝑒 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 82 

For this MCS, triangular distributions will only be applied to the 1st SA method. The 

maximum and minimum values are the global interval criteria weightings, and the peak 

value is the midpoint for that specific criterion weighting (shown in Table 9). Knowing the 

lower range, higher range and total range, the next step is calculating the triangular random 

number by following the logic shown in equation 83. 
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𝐼𝐹 𝑅𝐴𝑁𝐷( ) < (
𝐿𝑜𝑤𝑒𝑟 𝑟𝑎𝑛𝑔𝑒

𝑇𝑜𝑡𝑎𝑙 𝑟𝑎𝑛𝑔𝑒
)  𝑡ℎ𝑒𝑛  

𝑅𝑎𝑛𝑑𝑜𝑚 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑛𝑢𝑚𝑏𝑒𝑟
=  𝑀𝑖𝑛𝑖𝑚𝑢𝑚

+ √(𝑅𝐴𝑁𝐷( ) ∗ 𝐿𝑜𝑤𝑒𝑟 𝑟𝑎𝑛𝑔𝑒 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑟𝑎𝑛𝑔𝑒)  

𝐸𝑙𝑠𝑒 𝑅𝑎𝑛𝑑𝑜𝑚 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑛𝑢𝑚𝑏𝑒𝑟
= 𝑀𝑎𝑥𝑖𝑚𝑢𝑚

− √(1 − 𝑅𝐴𝑁𝐷( ) ∗ 𝐻𝑖𝑔ℎ𝑒𝑟 𝑟𝑎𝑛𝑔𝑒 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑟𝑎𝑛𝑔𝑒)   

83 

Furthermore, a normal distribution, also known as a Gaussian distribution, is a symmetric 

distribution about the mean value and appears as a bell curve. A normal distribution in excel 

can be done by using the inbuilt function NORM.INV. However, assumptions need to be 

made for the mean value (𝜇) and the standard deviation (𝜎). These assumptions were 

estimated using the 68 95 99.7 empirical rule. Which states that 𝜇 ± 1𝜎 accounts for 68% of 

the area under the curve, 95% of the values under the curve fall within 𝜇 ± 2𝜎 and 𝜇 ± 3𝜎 

represents almost all of the values under the bell curve [144]. For SA method 1, 𝜇 is defined 

as the midpoint of the global interval weighing and the total range from the midpoint to the 

lower or upper bound is assumed to be the full range of values (~3𝜎) for each criterion. 

Therefore 𝜎 can be calculated following equation 84. An example is shown in equation 85 

using the capital cost global interval weight information present in Table 9. 

 𝜎 =  
(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 − 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑) ∗ 0.95

2
 84 

 𝜎 =  
(0.186 − 0.111) ∗ 0.95

2
= 0.036 85 

For the normal distribution of the aspect weightings, Table 14 shows the 𝜇 and 𝜎 values 

chosen for each aspect. The author has made the assumption that the economic and 

environmental aspects would likely see a larger range of potential values than the technical 

or social aspects. This decision was primarily driven by the general relevance of the criterion 

under each aspect, i.e., capital cost and energy consumption are likely to have a 

considerably higher range of weightings than technical criteria (technological maturity, 

reliability, footprint and flexibility).  
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Table 14: Mean value and standard deviations used for aspect weightings in sensitivity 
analysis. 

Aspect Mean value assumption (𝜇) Standard Deviation (𝜎) 

Economic 0.3 0.14 

Environmental 0.32 0.15 

Technical 0.2 0.1 

Social 0.2 0.1 

For each set of random global crisp weightings produced for SA method 1, the values need 

to be normalised to total 1 by following equation 19. There are three main features of the 

SA outputs that were analysed: 

1. The proportion of the time a technology obtains a specific rank.  

2. Secondly, the coefficient of variation (equation 86), also known as the relative 

standard deviation.  

3. The maximum, minimum and mean values. 

 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  
𝜎

𝜇
 86 

The proportion of the time a particular technology is given the same rank indicates how 

strong or potentially biased a technology is overall. The coefficient of variation is a 

measurement of the dispersion or frequency of a given dataset [145]. It is used to measure 

the reliability or risk, with smaller values implying more reliable (consistent) results. The 

maximum, minimum and mean values might give insight into what’s occurring within the 

model and why specific outcomes were observed.  

  



69 | P a g e  

 

5 Results and Discussion 

This section provides the results and discussion on the two Sensitivity Analysis (SA) methods 

previously mentioned in Section 4.3. Section 5.1 covers the first method, which varies all 

global criteria simultaneously. Meanwhile, Section 5.2 will be covering the second method, 

which involves varying each aspect weighting individually. The discussion will primarily focus 

on any confusion (competition of 2 or more technologies with the same rank) within the 

technology rankings. One of the main metrics used in this discussion is the ideal best 

solution (IBS) and ideal worst solution (IWS) criteria (Table 12). The identified IBS and IWS in 

the case study for a given criterion will remain the same. Because there have been no 

alterations to the hybrid information decision-making matrix (Table 10) for either SA 

method. The raw data produced by the MSC are synthesised into histogram frequency 

distribution graphs in Appendix 8.2.1 for the first SA method.  The second SA method results 

are shown in Appendix 8.2.2, 8.2.3, 8.2.4 and 8.2.5 for economic, environmental, technical 

and social, respectively. 

5.1 Varying Global Criteria Weightings 

For SA method 1, three input distribution types were employed, namely triangular, uniform 

and normal. Across all three distribution types, membrane distillation (MD) was the most 

predominant technology. MD is ranked first 98%, 93% and 96% of the time for triangular 

(Figure 10), uniform (Figure 11) and normal (Figure 12) input distributions, respectively. The 

main explanation for the dominance of MD as the consistently higher ranked technology is 

because it doesn’t represent any IWS criteria. Whereas forward osmosis (FO), osmotically 

assisted reverse osmosis (OARO) and eutectic freeze crystallisation (EFC) represent 4, 3 and 

5 of the IWS criteria, respectively.  
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Figure 10: Ranking breakdown for global varying inputs based on triangular distribution. 

FO is consistently ranked 2nd with a frequency of 98%, 90.5% and 96% for triangular, 

uniform and normal distribution. However, there is some confusion between MD and FO for 

1st and 2nd place, ranging from 2% to 7%. This confusion represents the small window in 

which the very few criteria where FO triumphs over MD (production cost, energy 

consumption, company image and skill requirement) outweighs the weightings of the other 

6 criteria, which MD benefits more from than FO.   
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Figure 11: Ranking breakdown for global varying inputs based on uniform distribution. 

There is also confusion for 3rd and 4th place between OARO and EFC. EFC tends to be ranked 

3rd more often than OARO. This is likely due to the larger representation of IBS criteria 

among the EFC weighted normalised data compared to OARO, which only represents 1 IBS 

criterion. Making up for the fact that EFC represents 5 of the IWS criteria.    
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Figure 12:Ranking breakdown for global varying inputs based on normal distribution. 

The coefficient of variation (risk) follows a similar trend to the ranking order. MD had the 

lowest risk, and highest mean, minimum and maximum closeness degree values out of the 4 

case study technologies for every type of distribution simulated (Table 14). FO follows MD 

as the 2nd lowest risk factor and 2nd highest mean, minimum and maximum closeness 

degree values. There is a fair amount of overlap in the maximum and minimum boundaries 

of MD and FO. Combining this with the previously mentioned ranking frequency indicates 

that MD and FO share most of the criteria contributing to higher closeness degree values. 

Otherwise, there would be a much larger proportion of FO systems ranking first. Further 

proves that production cost, energy consumption, company image and skill requirement are 

the predominant criteria contributing to the confusion between MD and FO rankings.  
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Table 15: Coefficient of variation, mean, minimum and maximum closeness degree values for 
the Monte Carlo simulation varying global interval input values. 

Distribution 
Input Type 

Technology Coefficient of 
Variation 

Mean 
Closeness 

Degree 

Maximum Minimum 

Triangular MD 4.16% 0.721 0.821 0.617 

FO 8.17% 0.601 0.753 0.434 

OARO 14.01% 0.391 0.561 0.216 

EFC 13.64% 0.394 0.582 0.231 

Uniform MD 5.75% 0.721 0.860 0.588 

FO 11.04% 0.601 0.801 0.407 

OARO 20.08% 0.386 0.635 0.186 

EFC 18.87% 0.393 0.608 0.200 

Normal MD 4.74% 0.721 0.844 0.591 

FO 9.17% 0.601 0.804 0.402 

OARO 16.33% 0.389 0.592 0.138 

EFC 15.46% 0.395 0.629 0.189 

OARO and EFC share a similar mean closeness degree, contributing to the confusion 

between these two technologies. The maximum and minimum values for OARO and EFC 

also results in significant overlap between the two technologies. The confusion is most likely 

resulting from a trait both of these technologies have, if it isn’t the IBS for that particular 

category, then it is most likely to be the IWS or very close to being the IWS.  

5.2 Varying Individual Aspect Weightings 

The following 4 sub-sections will discuss the effects of individually varying the Economic 

Aspect, Environmental Aspect, Technical Aspect and Social Aspect weightings. It is important 

to mention that the remaining fixed aspects and criteria weightings were kept identical to 

the values seen in the case study (Table 9) up until the global interval midpoints. This is 

because the final crisp weights used in the TOPSIS process still need to sum to 1 by following 

equation 19. Meaning that the ratio of criteria weightings under each fixed aspect will 

remain the same. However, the final crisp weighting for fixed criteria will increase with a 

lower varying aspect weighting and decrease with an increase to the varying aspect 

weighting.  
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5.2.1 Economic Aspect 

Starting with the rankings of the outputs, there is a very small (0.13%) ranking confusion 

between MD and FO for the normal distribution results (Figure 13). There is, however, no 

confusion between MD and FO within the simulation results for uniform distribution 

simulation (Figure 14). Observations of the IBS and IWS (Table 9), along with the weighted 

normalised hybrid information (see Appendix Table 21), gives no clear indications to the 

cause of this discrepancy. Further observations on this discrepancy will be using the 

statistical outputs of the simulation results further into this section.   

The confusion between OARO and EFC remains at a similar level to the confusion seen in 

Section 5.1. There are two reasons for the confusion. Firstly, the economic aspect weighting 

is directly causing the confusion. Secondly, the weightings for the fixed criteria weightings 

influence the rankings. Observing the normalised data for the capital and production costs 

(criteria that are affected by changes to economic weighting), EFC has an overall higher 

weight assignment than OARO in the weighted normalised hybrid information table (see 

Appendix for Table 21). Meaning EFC benefits greatly from a higher economic weighting and 

thus would make itself distinct from OARO. This implies that the fixed criteria is influencing 

the ranking of OARO more so than EFC. 
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Figure 13: Technology rankings of the Monte Carlo simulation outputs using alternating 
economic weightings based on a normal distribution. 

 

Figure 14: Technology rankings of the Monte Carlo simulation outputs using alternating 
economic weightings based on a uniform distribution. 
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Interpretations of the statistical information (Table 16) reach similar conclusions to the 

discussion on technology rankings. The maximum and minimum values of MD and FO don’t 

overlap. However, there is an exception. The minimum closeness degree of 0.435 for MD 

with varying input based on normal distribution is extremely low and appears to be an 

outlier. There is speculation that the cause is a negative weighting assignment to the 

economic aspect. Due to the method used to incorporate the random number generator to 

the TOPSIS model, the methods used to regulate negative weighting assignments were 

bypassed. This is causing a reversal of the weighting importance, i.e. a cost-type criterion is 

acting like a benefit-type criterion for the capital and production cost criteria. The minimum 

closeness degree of 0.651 for MD in the uniform distribution results reinforces this theory, 

which was restricted to input aspect weightings between 0 and 0.6. Observations of the 

output distribution graphs that show the frequency of results also show that by following 

the 68 95 99.7 empirical rule, the most likely minimum value is approximately 0.63 (see 

Appendix 8.2.2). Which is higher than the maximum value of FO for the normal distribution 

outputs.  

Table 16: Statistical outputs of the Monte Carlo simulation when varying only the economic 
aspect. 

Distribution 
Input Type 

Technology Coefficient 
of Variation 

Mean 
Closeness 

Degree 

Maximum Minimum 

Normal MD 4.75% 0.715 0.796 0.435 

FO 1.85% 0.598 0.625 0.531 

OARO 14.84% 0.403 0.598 0.243 

EFC 8.58% 0.400 0.519 0.311 

Uniform MD 5.84% 0.714 0.777 0.651 

FO 2.23% 0.598 0.618 0.577 

OARO 18.22% 0.403 0.516 0.287 

EFC 10.58% 0.401 0.465 0.336 

5.2.2 Environmental Aspect 

For the environmental aspect, the trend of MD and FO in 1st and 2nd place is continuing. 

There is no confusion between the rankings for either distribution type. Confusion between 

OARO and EFC is slightly less than seen with the economic aspect. Modifying the 
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environmental aspect favours OARO more than EFC but only slightly. This indicates that the 

criteria associated with the economic and environmental aspects aren’t heavily influencing 

the closeness degree. Or they are negating the influence of the economic aspect on the 

technical aspect due to similar total weightings between the 2 technologies. As seen in the 

slight but opposite rankings of OARO and EFC in the results of the economic simulation 

(Figure 13 and Figure 14) and the environmental simulation (Figure 15 and Figure 16). With 

this thought in mind and looking back at the rankings seen in Section 5.1 which was 

indicating that there is a slight advantage of EFC being ranked 3rd over EFC . The remaining 2 

aspects are likely to have relatively equal but opposite priority rankings for OARO and EFC.  

 

Figure 15: Technology rankings for Monte Carlo simulation varying the environmental aspect 
weighting based on a normal distribution. 
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Figure 16: Technology rankings for Monte Carlo simulation varying the environmental aspect 
weighting based on a uniform distribution. 

The coefficient of variation is low for MD when using both distribution types (Table 17). This 

implies that the environmental aspect has very little influence on the closeness degree of 

MD. This is unusual as MD obtains a high proportion of the environmental criteria weights in 

the weighted normalised hybrid information matrix (Table 21).  

Table 17: Statistical outputs of the Monte Carlo simulation when varying only the 
environmental aspect. 

Distribution 
Input Type 

Technology Coefficient 
of Variation 

Mean 
Closeness 

Degree 

Maximum Minimum 

Normal MD 0.55% 0.719 0.726 0.709 
FO 2.61% 0.614 0.646 0.581 

OARO 15.53% 0.376 0.496 0.248 

EFC 11.55% 0.371 0.462 0.281 

Uniform MD 0.62% 0.720 0.726 0.713 

FO 2.99% 0.617 0.646 0.590 

OARO 18.88% 0.364 0.460 0.248 

EFC 13.85% 0.363 0.433 0.281 
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5.2.3 Technical Aspect 

Within the technical aspect, there was no confusion between the rankings of MD and FO for 

1st and 2nd. Varying the technical aspect has substantially reduced the confusion between 

OARO and EFC, as seen in Figure 17 and Figure 18. With EFC gaining a more stable position 

as the 3rd best technology. This is logical, as EFC represents 3 out of the 4 technical criteria 

as an IBS. In comparison to OARO, that doesn’t represent any IBSs in the technical aspect.   

 

 

Figure 17: Technology rankings for Monte Carlo simulation varying the technical aspect 
weighting based on a normal distribution. 
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Figure 18: Technology rankings for Monte Carlo simulation varying the technical aspect 
weighting based on a uniform distribution. 

FO’s mean closeness degree value is closer to the maximum value, unlike the other 3 

technologies, which have means closer to the minimum value (Table 18). This difference is 

likely due to FO representing the 3 out of the 4 IWS criteria under the technical aspect. 

There is still a significant overlap in the simulation closeness degree values of OARO and 

EFC. Yet EFC has a much higher chance of ranking 3rd than OARO. This implies that the 

technical aspect is an influential aspect with regards to the ranking of OARO and EFC. 

However, it has little influence on the ranking of MD and FO.  

Table 18: Statistical outputs of the Monte Carlo simulation when varying only the technical 
aspect. 

Distribution 
Input Type 

Technology Coefficient 
of Variation 

Mean 
Closeness 

Degree 

Maximum Minimum 

Normal MD 0.58% 0.723 0.748 0.717 

FO 1.44% 0.598 0.609 0.545 

OARO 0.79% 0.394 0.422 0.390 

EFC 1.15% 0.397 0.423 0.391 

Uniform MD 1.30% 0.729 0.748 0.717 

FO 3.25% 0.586 0.609 0.548 

OARO 1.83% 0.399 0.414 0.390 

EFC 2.47% 0.404 0.424 0.391 
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5.2.4 Social Aspect 

Varying the social aspect is causing a minor confusion (0.13%) between MD and FO for the 

normal distribution (Figure 19). However, the confusion between MD and FO in uniform 

distribution MCS results is substantially higher (22.17%) (Figure 20). The ranking results for 

OARO and EFC are also drastically different depending on the distribution type used. With 

the normal distribution, the favoured technology is EFC, with it ranking 3rd 60.79% of the 

time. However, the uniform distribution favours OARO and comes in 3rd 74.72% of the time.   

 

Figure 19: Technology rankings for Monte Carlo simulation varying the social aspect 
weighting based on a normal distribution. 
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Figure 20: Technology rankings for Monte Carlo simulation varying the social aspect 
weighting based on a uniform distribution. 

Starting with the normal distribution results, the shape of the input distribution limits the 

confusion between MD and FO. Remembering that normal distribution has a bias towards 

the mean value, which was set to 0.2. It is causing most of the randomly generated social 

aspect weightings to be between 0 and 0.4. This means that in the lower range of social 

aspect weighting values, the overwhelming advantage that MD has across the fixed criteria 

(criteria from the economic, environmental and technical aspects) makes up for MD’s 

slightly worse social aspect weighting compared to FO. The frequency in which the normal 

distribution inputs breach the higher social aspect weightings necessary for FO to rank 

higher than MD is rare. OARO and EFC share a similar phenomenon, as the lower social 

aspect weights allow EFC to benefit from its overwhelming advantage in the technical 

aspect, which was previously mentioned in Section 5.2.3.  

Moving onto the uniform distribution results, the increased range of possible social aspect 

weightings increase from approximately 0.4 to 0.6. The higher range of values heavily 

favours FO and OARO against their primary competitors MD and EFC. Within the social 

aspect, FO represents the IBS for both of the social criteria. Meanwhile, EFC represents both 
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of the IWSs for both of the social aspect criteria. Therefore, higher importance on the social 

aspect positively influences FO but negative influences EFC.  

The statistical information in Table 19 shows that the increase in the available range of 

social aspect weightings increases the risk. The maximum closeness degree values for MD, 

OARO and EFC remain constant across both distribution methods. The change from normal 

to uniform distribution reduces the mean values of MD and EFC but increases for FO and 

OARO, which follows the expected pattern previously discussed.   

Table 19: Statistical outputs of the Monte Carlo simulation when varying only the social 
aspect. 

Distribution 
Input Type 

Technology Coefficient 
of Variation 

Mean 
Closeness 

Degree 

Maximum Minimum 

Normal MD 4.78% 0.722 0.772 0.581 

FO 2.20% 0.601 0.669 0.584 

OARO 1.76% 0.393 0.428 0.384 

EFC 2.90% 0.395 0.410 0.328 

Uniform MD 9.36% 0.683 0.772 0.574 

FO 4.55% 0.619 0.674 0.584 

OARO 3.46% 0.402 0.428 0.384 

EFC 6.48% 0.380 0.410 0.331 
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6 Conclusion 

In this work, the development and sensitivity assessment of a decision support system (DSS) 

for desalination brine management was undertaken. Built upon a combination of two multi-

criteria analysis techniques, interval Analytical Hierarchy Process (AHP) and the Technique 

for Order Preference by Similarity to the Ideal Solution (TOPSIS). There are a wide variety of 

factors that influence how appropriate a brine management strategy is for a given situation. 

Therefore, by creating a criteria master list the decision-makers can quickly organise those 

criteria that are suitable for a given scenario. The master list was adapted to a hypothetical 

case study in WA, as there was very little literature specific to WA with regards to brine 

management. This case study made use of 4 brine treatment technologies, namely 

membrane distillation (MD), forward osmosis (FO), osmotically-assisted reverse osmosis 

(OARO) and eutectic freeze crystallisation (EFC). Based on the information provided to the 

DDS from literature, the DDS suggested that the most preferred to least preferred options 

are as follows, MD, FO, EFC and OARO.  

In order to test the robustness of the DDS, two sensitivity analyses were undertaken using a 

Monte Carlo simulation. The first method assigned random crisp weightings by using 

triangular, normal and uniform input distributions. The findings suggest that MD was the 

most suitable technology across all three distribution types. There was uncertainty between 

1st and 2nd rankings between MD and FO, ranging from 2% to 6.6%. The second sensitivity 

analysis method looked at the effects of individual aspects (economic, environmental, 

technical and social) on the outputs (rankings and closeness degree). Individually altering 

the aspect weightings for the economic, environmental and technical aspects had very little 

influence on the dominance of MD as the most preferred brine management technology. 

However, the social aspect with a uniform distribution significantly increased FO’s chances 

at ranking 1st to 22%. Which indicates that sufficiently high social aspect weighting can 

significantly influence MD’s ranking. For OARO and EFC the most confusion was seen when 

altering the technical and social aspects.  
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The DSS created can be adapted to any brine management scenario and is not limited to 

WA. Although this thesis has a focus on brine treatment, it can be adapted for selecting an 

appropriate brine disposal method. Further work can be done to refine and validate the 

DDS. 

6.1 Recommendations 

In order to better understand the model, potential additional tasks include: 

1. Further validation of the interval AHP, especially for matrices larger than 2 by 2. This 

would also include further understanding of the matrix calculations being used in 

interval AHP. 

2. Develop or find a method of measuring the consistency in the decision-maker’s 

interval AHP comparison matrix, which indicates to the user if there is potential 

error. 

3. Sensitivity analysis on the influence of the distance between ideal best and worst 

solution. One scenario in which this could be applied is that a client only wants to go 

up to a certain TDS limit and feels like there is no benefit going higher. Therefore, 

technologies that greatly exceed the clients limit would be restricted, however, the 

influence on the final results wouldn’t be known unless a sensitivity analysis is 

conducted. Because TOPSIS works on distance between the ideal best and worst 

solutions to determine the proportion of the weights that are assigned to each 

technology. 

4. Incorporation of more brine management technologies to the TOPSIS hybrid 

information table, allowing for every technology added be included or excluded for 

any given scenario.  

5. Sensitivity analysis of the complete model once the previously mentioned tasks are 

complete.  
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8 Appendix 

The appendix shows intermediate results and pre-processed raw data for the Monte Carlo simulations.  

8.1 TOPSIS hybrid information decision making matrices 

Shows the intermediate results of step 2 (normalised decision making matrix) and 3 (weighted normalised decision making matrix) of the 

TOPSIS process. 

Table 20: Normalised data from the hybrid information decision-making matrix. 

Criteria 
Global crisp 
weightings 

MD FO with regeneration OARO EFC 
Calculation type 

Capital Cost 0.1666 1.0000 0.5000 0.1250 0.0000 cost type 

Production Cost 0.1208 0.6949 1.0000 0.0000 0.5537 cost type 

TDS Limitation 0.1346 1.0000 1.0000   0.0000 0.3333   0.0476 0.0476   1.0000 1.0000   benefit type 

Energy consumption 0.2121 0.5685 0.7603   0.9130 0.9808   0.8973 0.9863   0.0000 1.0000   cost type 

Footprint 0.0566 0.3333 1.0000   0.0000 0.6667   0.3333 0.6667   0.3333 1.0000   cost type 

Technology maturity  0.0199 0.3333 0.5000 0.6667 0.0000 0.1667 0.3333 0.0000 0.1667 0.3333 0.6667 0.8333 1.0000 benefit type 

Technology Reliability  0.0497 0.7143 0.8571 1.0000 0.4286 0.5714 0.7143 0.4286 0.5714 0.7143 0.0000 0.1429 0.2857 benefit type 

Flexibility  0.0426 0.6667 0.8333 1.0000 0.0000 0.1667 0.3333 0.3333 0.5000 0.6667 0.6667 0.8333 1.0000 benefit type 

Company Image 0.0831 0.3333 0.5000 0.6667 0.6667 0.8333 1.0000 0.6667 0.8333 1.0000 0.0000 0.1667 0.3333 benefit type 

Skill req 0.1139 0.0000 0.2500 0.5000 0.5000 0.7500 1.0000 0.0000 0.2500 0.5000 0.0000 0.2500 0.5000 benefit type 
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Table 21: Weighted normalised hybrid information decision-making matrix. 

Criteria 
Global crisp 
weightings 

MD FO with regeneration OARO EFC 

Capital Cost 0.1666 0.1666 0.0833 0.0208 0.0000 

Production Cost 0.1208 0.0840 0.1208 0.0000 0.0669 

TDS Limitation 0.1346 0.1346 0.1346   0.0000 0.0449   0.0064 0.0064   0.1346 0.1346   

Energy consumption 0.2121 0.1206 0.1612   0.1936 0.2080   0.1903 0.2092   0.0000 0.2121   

Footprint 0.0566 0.0189 0.0566   0.0000 0.0377   0.0189 0.0377   0.0189 0.0566   

Technology maturity  0.0199 0.0066 0.0099 0.0133 0.0000 0.0033 0.0066 0.0000 0.0033 0.0066 0.0133 0.0166 0.0199 

Technology Reliability  0.0497 0.0355 0.0426 0.0497 0.0213 0.0284 0.0355 0.0213 0.0284 0.0355 0.0000 0.0071 0.0142 

Flexibility  0.0426 0.0284 0.0355 0.0426 0.0000 0.0071 0.0142 0.0142 0.0213 0.0284 0.0284 0.0355 0.0426 

Company Image 0.0831 0.0277 0.0415 0.0554 0.0554 0.0692 0.0831 0.0554 0.0692 0.0831 0.0000 0.0138 0.0277 

Skill req 0.1139 0.0000 0.0285 0.0570 0.0570 0.0854 0.1139 0.0000 0.0285 0.0570 0.0000 0.0285 0.0570 

8.2 Frequency distribution graphs 

The frequency distribution graphs shown in the following 2 sections are a visual representation of the final rankings of each of the 10,000 

Monte Carlo simulations conducted for each input type and input location.   
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8.2.1 Varying Global Interval Weightings Directly 

8.2.1.1 Triangular Input Distribution 
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8.2.1.2 Uniform Input Distribution 

 



114 | P a g e  

 

 



115 | P a g e  

 

 



116 | P a g e  

 

 



117 | P a g e  

 

8.2.1.3 Normal input Distribution 
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8.2.2 Distribution of simulation closeness degree results while only varying the economic aspect 

8.2.2.1 Normal input Distribution 
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8.2.2.2 Uniform Input Distribution 
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8.2.3 Distribution of simulation closeness degree results while only varying the environmental aspect 

8.2.3.1 Normal Input Distribution 
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8.2.3.2 Uniform Input Distribution 
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8.2.4 Distribution of simulation closeness degree results while only varying the technical aspect 

8.2.4.1 Normal Input Distribution 
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8.2.4.2 Uniform Input Distribution 
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8.2.5 Distribution of simulation closeness degree results while only varying the social aspect 

8.2.5.1 Normal Input Distribution 
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8.2.5.2 Uniform Input Distribution 
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