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Abstract:  

For many decades occupied aircraft with trained observers have conducted aerial 

surveys of marine megafauna to estimate population size and dynamics. Recent 

technological advances mean that unoccupied aerial vehicles (UAVs) now provide a 

potential alternative to occupied surveys, eliminating some of the disadvantages of occupied 

surveys such as risk to human life, weather constraints and cost. In this study, data collected 

from an occupied aircraft (at 500 ft) and a UAV (at 1400 ft) flown at the same time, 

deployed for counting dugongs, were compared for detecting dolphins and turtles within 

Shark Bay, Western Australia. The UAV images were manually reviewed post hoc to count 

the animals sighted and the environmental conditions (visibility, sea state, cloud cover and 

glare) had been classified by the occupied teams’ data for each image. The UAV captured 

more sightings (174 dolphins and 368 turtles) than were recorded by the flight team (93 

dolphins and 312 turtles). Larger aggregations (>10 animals) were also found in the UAV 

images (5 aggregations of dolphins and turtles) compared to the occupied teams sightings (0 

dolphins and 3 aggregations of turtles). A generalised linear mixed model determined that 

turtle detection was significantly affected by visibility, while cloud cover, sea state and 

visibility significantly affected dolphin detection in both platforms. An expert survey of 120 

images was also conducted to determine the image ground sampling distance (GSD; four 

levels from 1.7 to 3.5 cm/pixel) needed to identify dolphin and turtles to species. At 3 

cm/pixel only 40% of the dolphins and turtles were identified to species with a reasonable 

level of certainty (>75% certainty). This study demonstrated that UAVs can be successfully 

deployed for detecting dolphins and turtles and that a GSD of 1.7 – 3cm/pixel is too low 

resolution to effectively identify dolphin and turtle species. Overcoming the limitations 

imposed on UAVs such as aviator regulatory bodies and payload capabilities will make 

UAVs a pivotal tool for future research, conservation, and management.  
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Chapter 1. Introduction  

Species seen as being at risk need to be studied and analysed to understand their 

population trends over time, whether they are decreasing, increasing or stable (IUCN, 

2021). Monitoring animals in their natural habitat to determine population size and 

dynamics is challenging due to their complex behaviours and movements and is highly 

species dependant (Chabot & Bird, 2015). Methodologies for estimating the population 

size of a species date back decades, as animal surveys are a key component of ecology 

and understanding the abundance of a given population within an ecosystem (Cohen et 

al., 2003; Lindenmayer et al., 2012). Abundance and density measures have been noted 

as being the most important demographic measures of a population and constant 

monitoring of a given population, using surveying methods, aids in detecting changes 

within that group over time (Liebhold, 2002). Production of high-quality ecological 

information over extensive periods generates awareness of the changes to ecosystem 

structure, the key ecological processes involved, and the services that the ecosystem 

provides (Lindenmayer et al., 2012).  

Large marine vertebrates that are long-lived, expansive in their range, and take 

years to mature, are the most susceptible to anthropogenic threats (Godley et al., 2010). 

Due to the consistent threat of climate change and the ever-increasing human 

population, anthropogenic stressors, such as fishing, marine debris, and vessel traffic, 

are affecting these marine vertebrate populations (Butterworth, 2017). These stressors, 

especially on coastal marine animal species, makes studying these human impacts a 

high priority (Lotze et al., 2006). Knowledge on the distribution of marine mammals 

and reptiles as well as their abundance, behaviour, and surrounding habitat, aids in their 

conservation and management, in particular allowing us to assess the anthropogenic 
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impacts of co-occurring human activities (Broker et al., 2019). Data produced from 

surveys creates an understanding that is utilised to determine conservation status of a 

population and support evidence-based policy, management, and decision-making 

(Lindenmayer et al., 2012). Coastal marine mammals and sea turtles are seen as key 

organisms for marine conservation and management in Australia as they are concerns of 

‘National Environmental Significance’ under the EPBC Act. They are among the 

species that most often ‘trigger’ the EPBC Act as they often occur in highly human-

populated areas and are at greatest risk of human impact (IUCN, 2021).   

Marine megafauna are large vertebrates that can be surveyed from the air such 

as whales, dolphins, sharks, rays, dugongs (Dugong dugon), and turtles (Preen et al., 

1997). Marine megafauna are difficult to count and observe because they occur over 

large expanses, some having extensive migratory routes, as well as the time they spend 

submerged (Gray et al., 2019). These features of their biology and behaviour make it 

difficult to accurately estimate abundance (Cohen et al., 2003). Well-designed programs 

are fundamental to provide accurate and cost-effective estimates of abundance (Gray et 

al., 2019).  

Both the IUCN and the International Whaling Commission (Paxton et al., 2011) 

rely on data from aerial surveys to estimate populations of some listed marine species to 

determine their status and monitor changes. The US Marine Mammal Protection Act 

(MMPA, 16 U.S.C. 1361 et seq) of 1972 also requires the monitoring of marine 

mammal populations, which for a number of species is conducted via aerial surveys 

(Maire et al., 2013).  
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Aerial surveys have been used to estimate the size of animal populations since 

the 1940s (Marsh & Sinclair, 1989a). In Australia, regular aerial surveys of dugongs 

have been conducted since the 1980s mainly in Queensland (Marsh et al., 2006) and the 

Torres Strait Islands (Marsh et al., 2004) and then later became a regular occurrence in 

the 1990s within Shark Bay and Exmouth, Western Australia (Preen et al., 1997; Gales 

et al., 2004). In the northern hemisphere, in both Europe (Hammond et al., 2002) and 

Canada (Kingsley & Reeves, 1998) aerial survey techniques are used to estimate the 

abundance of cetacean species such as harbour porpoises (Phocoena phocoena), 

bottlenose dolphins (Tursiops spp.), minke whales (Balaenoptera spp.) and humpback 

whales (Megaptera novaeangliae).  

For the remainder of this introduction, I review the main methods used for 

marine megafauna surveys, specifically aerial surveys, and the emerging use of UAVs. I 

explore the broad necessity and use of marine animal surveys, the types of surveying 

methods that are used, as well as the marine megafauna that are targeted by these 

surveys, and the value of surveys in the world of conservation and monitoring.  

 

1.1 Current land, vessel, and aerial-based techniques for detecting marine 

animals  

Different survey methodologies are appropriate for different species, 

environmental conditions and also depends on the type of data being captured (Evans & 

Hammond, 2004). Each method has advantages and disadvantages according to species 

characteristics, environmental conditions, and the spatial and temporal scales of the 

survey, i.e. not one marine survey methodology is suitable for all uses (Evans & 

Hammond, 2004). In designing a survey, the following points should be considered:   
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the specific aims of the study, the behaviour of the target species, the budget, the time 

available for the study, morphology of the landscape, logistical support and the 

resources available for the study (Aragones et al., 1997). Most systematic marine animal 

surveys are conducted by human observers from high vantage points on land, or from a 

vessel or aircraft (Buckland et al., 2001). The strengths and weaknesses of land-based, 

vessel-based, and aerial-based survey methods are discussed below.  

1.1.1 Land-based surveys  

Land-based surveys are conducted by a team of observers recording sightings 

from a fixed location, limited to a certain range of observation (Giacoma et al., 2013). 

Land-based surveying requires a medium skill level of observation and is usually low 

cost because little equipment is needed (Giacoma et al., 2013). As observation is from a 

fixed point, from a distance, there is no interference with the animal being studied and 

hence no behavioural change (Giacoma et al., 2013). The large area being scanned at 

one time means land surveys are excellent at recording animal movements, interactions, 

group dynamics and anthropogenic elements (such as manoeuvring vessel traffic) 

(Papale et al., 2011). This also means that land surveys can be used to analyse sighting 

frequency over time as well as seasonal variation (Giacoma et al., 2013). Land-based 

surveys have been proven to produce adequate data and are effective in sampling for 

abundance, recording diving characteristics and behaviour at the surface for airbreathing 

marine organisms (Hawkins & Gartside, 2008). Particular locations such as Stradbroke 

Island, Queensland, Australia, which have ideal cliff-top viewing platforms, have been 

used to survey for humpback whales as they pass the coastline on their annual migration 

(Dudgeon et al., 2018). Most land-based surveys tend to focus on marine mammals 

because of their size and predictable migratory routes (Dudgeon et al., 2018). Therefore, 
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land-based surveys are primarily advantageous in terms of their cost efficiency and 

ability to detect large migratory megafauna that travel close to the coastline.  

However, land surveys are limited by their fixed position, limited range, and 

field of view. They are also very affected by conditions such as glare (Giacoma et al., 

2013). As distance from the platform increases, detectability decreases because of the 

limitations of the visual field (Dudgeon et al., 2018). Land-based surveys are also 

limited to the detection of animals at the surface; they cannot be used to detect animals 

below the surface (Kelaher et al., 2020). Monitoring from a distance also means that 

some data, such as age, sex, body condition and precise location data cannot be 

collected and this type of survey only works for large marine megafauna (particularly 

whales) (Giacoma et al., 2013).  

1.1.2 Vessel-based surveys  

Vessel-based observations have also been a common method for marine 

megafauna surveying. Highly trained and skilful researchers are needed for boat-based 

surveys due to this type of surveying allowing for researchers to capture morphological 

data and even tissue sampling and tagging to better understand the genetic composition 

of that animal as well as its movements (Giacoma et al., 2013). Vessels are able to 

approach animals closely and thus collect more in-depth and detailed observations than 

land-based surveys e.g. photographic identification, social interaction, age 

determination, gender classification and even body condition (Giacoma et al., 2013). 

Vessel-based observations also produce high quality georeferencing data (Giacoma et 

al., 2013). Vessel-based surveys can be conducted from a range of boat types 

(catamarans, motorised vessels) with ranging speed capabilities (sailing or engines) 

based on the target animal being studied (Castelblanco-Martínez et al., 2019). 
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Complimenting boat-based surveys also include the use of sonar scanning to detect 

animals that are submerged or not visible in certain conditions (Castelblanco-Martínez 

et al., 2019).  

Vessel-based surveys are also expensive because of the operating costs of the 

vessel and the need for highly trained individuals involved in the survey (Giacoma et 

al., 2013). The close proximity of vessels to the animals being studied and the fact that 

noise travels very well underwater means that vessel noise may disturb the focus 

animals. The noise disturbance created by vessels (even small boat-based surveys) 

means that the behaviour of some animals changes e.g. seabirds and dolphins can be 

attracted to the vessel, while some cetaceans can avoid the area (Würsig et al., 1998). 

This attractancy and avoidance to the research vessels may create biases in estimating 

abundance and distribution (Würsig et al., 1998), especially for marine mammals which 

are more sensitive to noise pollution than seabirds and sea turtles (Koski et al., 2011). 

Another limitation of boat-based surveys is that they can only observe animals at the 

water surface, limited to observing animals that are submerged (Thomson et al., 2013). 

There are also restrictions imposed on vessels, especially surrounding the distance that 

they are allowed to approach marine wildlife, so this and the boat's manoeuvrability also 

limits boat-based observations (Orbach et al., 2020).  

1.1.3 Aerial surveys  

Aerial surveys are another well-developed and used method within most coastal 

marine megafauna population assessments, as the height provides a larger field of view 

than possible from land or a vessel (Marsh & Sinclair, 1989a). Aerial surveys are 

recognised as being a valuable tool in wildlife management, this method mainly targets 

marine mammals and other air-breathing marine organisms (Jones et al., 2006). Aerial 
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surveys are used for species that occur across large spatial scales and/or are too difficult 

to spot from land or a vessel. For example, dugongs do not present much of themselves 

at the surface for very long periods of time, so the aerial perspective allows observers to 

detect animals deeper in the water column (Hodgson et al., 2013). There are two 

commonly used ways of conducting aerial surveys, either in occupied vehicles (planes 

or helicopters) or unoccupied aerial vehicles (UAVs). The occupied aerial survey 

method consists of a pilot and a group of observers that fly in a light aircraft over a set 

flight path or transect at a low altitude (e.g., 500 ft for dugong surveys, Marsh & 

Sinclair, 1989a). The survey team usually has two observers on each side of the aircraft 

to minimise and quantify bias caused by observers missing sightings. The observers 

record the sightings perpendicular to the plane, in real-time. This method is known as 

line transect sampling (Buckland et al., 2004) and relies on three main assumptions:  

1. All animals along the line are detected with certainty, 

2. The perpendicular distance of the animal from the line is measured exactly, 

or all animals within a set distance from the line are counted with equal 

probability, and  

3. Animals are detected in their initial location (Glennie et al., 2015).  

The aerial advantage and overhead perspective maximizes the detection of 

animals that spend little time at the surface (Hodgson et al., 2013). Aerial surveys are 

also a good tool for surveying populations that are sparsely distributed over a large area 

(Quang & Becker, 1996) and for species with either predictable movements or habitats 

that are used regularly for activities such as resting, breeding, foraging, and socialising 

(Seymour et al., 2017).  
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Aerial surveys, however, do have their disadvantages. Aerial surveys are 

primarily conducted on air-breathing organisms because they rely on making 

observations of animals at the sea surface or just below (Marsh & Sinclair, 1989b). Air-

breathing animals are defined as those that are obligated to come to the surface regularly 

and based on this behaviour researchers can determine an understanding of the 

probability of detecting them. Because aerial surveys are primarily conducted on air-

breathing fauna, marine mammals (whales, dolphins and porpoises) and marine reptiles 

(alligators and turtles) are usually the main target species for aerial observation (Jones et 

al., 2006). They have also been applied to other species e.g., one aerial survey was 

conducted on whale sharks to better understand their temporal and spatial distribution as 

they seasonally aggregate around the islands of Seychelles (Rowat et al., 2009). 

However, relatively low numbers of whale sharks were sighted each month (varying 

from 0 to 14), and this highlights the problem of using aerial surveys to detect non-air-

breathing fauna. Because aerial surveys rely on observations of animals at the surface, 

this factor too becomes a limitation as marine mammals and reptiles only spend a small 

portion of their time at the surface to breathe, rest or forage (Marsh & Sinclair, 1989b). 

Environmental conditions affect the observers’ ability to detect animals and therefore 

need to be taken into consideration when estimating abundance (Pollock et al., 2006). 

Occupied aerial surveys have both functional and logistical limits, which leads 

researchers to search for other tools in surveying marine animals such as UAVs. 

1.1.4 Satellite imagery  

Satellite imagery, particularly in very high resolution (VHR) systems is now 

being utilised as an accessible and inexpensive alternative to aerial surveys, which 

researchers are hoping will aid in producing data on distribution, abundance, density, 

and population trends of animals for which we currently have large gaps in our 
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understanding (Höschle et al., 2021). The objective of developing satellite imagery 

survey methodologies would be to have them as a supplement to current aerial and boat 

based surveys by helping researchers plan the field process (Höschle et al., 2021). 

However, this method is in its infancy, as satellite imagery tends to produce mid-to low-

resolution images depending on the source of the data and the source determines the 

cost (Hyun et al., 2020). Satellite images also frequently have large areas of cloud cover 

and have limited repeatability due to the low number of orbits of a satellite per day 

currently (Anderson & Gaston, 2013).  

 

1.2 Current UAV technology and its applications   

Exploration of the ocean and its species and ecosystems is becoming more 

reliant on robotic systems (Fish, 2020). UAV technology is relatively new compared to 

land and occupied aerial surveys and ever-evolving in its use for monitoring wildlife 

(Bushaw et al., 2019). Derived from a military background (Anderson & Gaston, 2013), 

UAVs are able to produce both high spatial and temporal resolution data for a given 

area (Whitehead & Hugenholtz, 2014). UAVs have been successful in surveying both 

terrestrial (e.g. orangutan, elephant and cheetah) (Koh & Wich, 2012) and marine 

wildlife species (sea lions, dugong and whales) (Hodgson et al., 2013; Adame et al., 

2017; Fiori et al., 2020). UAVs are defined as a vehicle containing a flying portion or 

unit, with at least one onboard camera, connected to a ground control station (GCS) and 

communicating with a launch and recovery system (Koski et al., 2009). UAV systems 

can range in cost from as little as $1000 into the millions (Koski et al., 2011) and in size 

from micro-craft no heavier the 250g to large aircraft over 150kg (CASA, 2021a). 

Recently, some UAVs have been improved to become waterproof, be cost-efficient, 
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have a longer battery life, are able to travel greater distances (Fiori et al., 2017), and are 

built quieter than earlier UAVs, producing less noise disturbance (Christiansen et al., 

2016a).  

UAVs are used in a diverse range of scientific fields for oceanographic and 

meteorological studies to assess varying ocean temperatures (Inoue & Curry, 2004), 

ocean productivity (Elarab et al., 2015), the geomorphology of given coastlines, 

mapping of shoreline habitats, and studying the progression of coastal erosion (Mancini 

et al., 2013). They also have industrial applications such as equipment inspections and 

leak detection within the oil and gas sector (Budiyono, 2009). Broader tasks managed 

by UAV technology include surveillance (e.g. detecting sharks in swimming areas), 

military observation, and aiding in search and rescues (Valavanis, 2007). UAVs include 

an array of payload and sensor types, for example: photography, videography, thermal 

imaging, and telemetry (Jones et al., 2006). These sensors aid in collecting surrounding 

environmental data (Koski et al., 2011). Such data includes outside ambient 

temperature, sea ice movement, wind speed, and the given longitude and latitude of 

each still image (Koski et al., 2011).  

UAVs are less invasive than some aircraft and boat based methods, cost-

effective (content dependant), and accurate in wildlife and environmental monitoring 

(Gooday et al., 2018). Raoult et al. (2020) have developed operational protocols for the 

safe use of UAVs by the researchers and for the animals being studied.  

Some ways to maximise the efficacy of UAVs include: 

1. Understanding the common animal traits of your target species, 

2. Understanding the information that can be produced from UAV research, 

3. Picking the appropriate UAV for the survey type, 
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4. Understanding how the UAV may impact the target species, 

5. Creating an appropriate flight pattern to optimize the data collected, and 

6. Understand how the likely environmental conditions will affect the UAV in 

flight and the recording of data (Raoult et al., 2020) 

Because of their success, UAVs have increased our capacity to observe many 

organisms, including both marine and terrestrial species, leading to a better 

understanding of their biology, physiology, ecology, and behaviours (Nowacek et al., 

2016). Scientists are only just beginning to utilise the payload, media, sensory and 

mechanical capacity of UAVs (Torres et al., 2018).  

 

1.3 Advantages and disadvantages of occupied and unoccupied aerial 

survey methods  

Both occupied and unoccupied methods of aerial surveying have advantages and 

disadvantages, which are important to understand in order to determine which will be 

appropriate for the objectives of any study. Both occupied and unoccupied aerial 

surveys are conducted at altitude and hence similar factors affect the probability of 

detecting animals including water clarity, sun glare, sea state and observer error 

(Pollock et al., 2006; Hodgson et al., 2013; Lubow & Ransom, 2016;). Observer error 

may happen either in real-time or when reviewing images depending on the level of 

skill, training, and experience of the observer (Lubow & Ransom, 2016).  

Occupied aerial surveys are particularly suited for use in dynamic conditions, 

collecting additional real-time data and have less imposed regulations when surveying 

than occupied aerial surveys (Table 1.1). They do however incur high risk to human 

lives, are expensive to operate and need highly trained individuals for observation 



19 
 

(Table 1.1). UAVs diminish the risk to human lives, are very manoeuvrable and the data 

captured creates permanent still image records that can be reanalysed (Table 1.1.). 

UAVs are however highly constrained by regulatory bodies and the image review 

process may be cost-prohibitive and time-consuming (Table 1.1). 

 

Table 1.1.  A summary of the advantages and disadvantages of occupied and unoccupied aerial 

methods for surveying marine animals.  

Method Advantage Disadvantage  

Occupied 

Aerial 

Survey  

1. Better adapted to changing and 

dynamic conditions (Broker et 

al., 2019) 

2. In some cases, an increased 

field of view at the front and 

sides of the aircraft leading to 

a larger area available for 

survey (Hodgson et al., 2013) 

3. The ability to collect 

additional real time data that 

can become available for use 

in real time (Hodgson et al., 

2013) 

4. Currently less constrained by 

aviation regulations than 

UAVs (Colefax et al., 2018)  

1. Aircraft crashes being one of the 

leading causes of infield marine 

mammal biologist fatalities 

(Hodgson et al., 2013) 

2. Consisting of a pilot, a paid 

observer team and fuel costs, is 

highly expensive to operate 

(Hodgson et al., 2013)  

3. Long flights within occupied 

surveys can result in observer 

fatigue and inaccurate detection 

(Hodgson et al., 2013) 

4. Constrained by weather 

conditions (Goebel et al., 2015) 

i.e., need clear conditions such 

as good sea state, reduced sun 

reflectance and glare (Hodgson 

et al., 2013) 

5. Specialised and experienced 

observer team required (Bayliss, 

1986) 

6. Limited in the capacity to 

identify the observed animal to 

species level due to high level of 

difficulty during real-time 

observation compared to that of 

still images (Colefax et al., 

2018) 

UAV 

Survey  

 

 

 

1. Reduction in risk to human 

life (Hodgson et al., 2013) 

2. Lower operational cost 

compared to aircrafts 

(depending on the drone 

1. The need for this technology to 

be accepted by governing and 

regulating bodies, so UAVs 

aren’t confined by aviation-
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Method Advantage Disadvantage  

UAV 

Survey  

 

 

 

 

 

 

 

 

 

system used) (Goebel et al., 

2015) 

3. Still image analysis allows for 

the reduction in observer 

fatigue (Hodgson et al., 2013) 

4. Increased location accuracy 

due to UAVs being fitted with 

internal GPS and flight 

telemetry payloads (Hodgson 

et al., 2013) 

related restrictions (Koski et al., 

2011) 

1.1 UAVs cannot be flown out 

of sight from the operator, 

limiting their use over large 

distances (Colefax et al., 

2018) 

1.2 Common UAV airspace 

regulations limiting research 

include having a buffer 

distance to airports (Raoult 

et al., 2020) 

 5. Little to no behavioural 

response from marine animals 

at altitude (Koski et al., 2009; 

Smith et al., 2016; Fiori et al., 

2017) 

6. Depending on the altitude, can 

be less constrained than 

aircrafts to environmental 

conditions, e.g., surveying in 

higher sea states (Hodgson et 

al., 2017) 

7. Lower environmental 

footprint, producing less 

carbon and fuel emissions 

(Hodgson et al., 2013)  

8. Very manoeuvrable, can be 

deployed in areas with limited 

take-off access (Hodgson et 

al., 2013) 

9. Modest level of training 

required for image reviewing 

(Goebel et al., 2015)  

10. Data can be reviewed by more 

than one observer making 

accounting for detection bias 

easier  

11. Still images are a permanent 

record that can be shared and 

be reanalysed if necessary 

(Hodgson et al., 2013) 

2. Image analysis can be cost-

prohibitive and time-consuming, 

not delivering real time results 

like occupied surveys (Hodgson 

et al., 2013) 

3. UAVs that are capable of flying 

long distances required for 

large-scale surveys are currently 

cost-prohibitive (Colefax et al., 

2018) 
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1.4 Previous UAV studies of marine megafauna 

UAV use for surveying marine wildlife studies has stemmed from its success in 

the terrestrial surveying field (Linchant et al., 2015). UAVs have been used for the 

study of large terrestrial animals such as deer (Israel, 2011), elephants (Ferreira & van 

Aarde, 2009) and rhinoceros (Mulero-Pázmány et al., 2014), as well as aquatic animals 

such as crocodiles (Gavialis gangeticus) (Thapa et al., 2018), whales (Christiansen et 

al., 2016a; Hodgson et al., 2017), dugongs (Hodgson et al., 2013) and even seabirds 

(Abd-Elrahman et al., 2005). The use of drones for survey marine fauna have increased 

greatly in recent years (Broker et al., 2019). Between 2015 and 2019 the percentage of 

UAV studies focussing on a particular taxon were as follows: 35% bird studies, 29% 

marine mammals, 19% terrestrial mammals, 12% reptiles (both aquatic and land), and 

4% focussed on fish (Hyun et al., 2020).  

The design of UAVs and the sensor technology currently available have 

enhanced their applicability to different types of marine surveys. The differing 

environmental conditions and depths of the ocean meant that UAVs are still under an 

“exploratory phase” for animal surveys in the marine environment (Broker et al., 2019). 

This “exploration” of UAVs technology has been applied to many different types of 

marine mammal studies such as:  

1. Assessing the detection of large marine mammals (Koski et al., 2009; 

Hodgson et al., 2017) 

2. Estimating abundance of pinniped breeding colonies (Adame et al., 2017) 

3. Photo-identification of whales (Koski et al., 2015) 

4. Assessing the body condition and population health of pinnipeds (Krause et 

al., 2017) and whales (Christiansen et al., 2019)  
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5. Estimating the energetic costs of reproduction in humpback whales 

(Christiansen et al., 2016b).  

6. Understanding the copulatory behaviour and social construct of dusky 

dolphins (Lagenorhynchus obscurus) (Orbach et al., 2020). 

The first cetacean UAV study was conducted in 2002 by the Office of Naval 

Research on Humpback whales and in 2006 Royal Dutch Shell Petroleum Development 

Company conducted a UAV study aiming to detect simulated whale targets in the 

marine environment (Koski et al., 2009). The study concluded that, in certain 

conditions, UAVs could easily detect either large cetaceans or large groups of 

cetaceans, and smaller animals would be harder to detect (Koski et al., 2009). In 2008, 

Shell joined with ConocoPhillips to use UAV technology to detect pinnipeds and 

cetaceans successfully but was hindered by restrictions from the US Federal Aviation 

Administration because of the cloud coverage in the area and having to remain within 

one nautical mile of the vessel (Koski et al., 2011). Another UAV study conducted by 

the National Marine Fisheries Service in 2009 used a ScanEagle UAV to identify and 

estimate population density on seals on pack ice (Cameron et al., 2009). This study 

confirmed that UAV technology had the ability to operate in difficult weather and still 

obtain high-quality images for identifying different species, ages, and even genders of 

seals (Cameron et al., 2009).  

UAV technology has been utilised not only for marine mammals but also marine 

reptiles, such as turtles (Schofield et al., 2017a). Similar to marine mammal surveys, 

surveys of sea turtles are conducted to better understand their environment and 

population status to inform conservation approaches (Rees et al., 2018). One study in 

particular focussed on using UAVs for population assessments of loggerhead turtles 

(Caretta caretta) within Costa Rica (Sykora-Bodie et al., 2017). The smaller size of 
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turtles and their deep diving and long breath-holding capabilities make them harder to 

detect than humpback whales or even Indo-pacific bottlenose dolphins (Tursiops 

aduncus) (hereafter referred to as bottlenose dolphins) (Hochscheid, 2014). Therefore, 

there is a need to better understand the implications of not only aerial surveying for 

marine mammals but also marine reptiles and how survey methods for the two taxa may 

differ.    

 

1.5 Accounting for detectability bias  

The imperfect detection of a target species can lead to a biased estimate of the 

population size (Buckland et al., 2004). The flight parameters of a survey, the 

environmental conditions, and the physical and behavioural characteristics of marine 

animals affect their successful and accurate detection (Linchant et al., 2015). As stated 

above, the method of line transect sampling used for most marine fauna species assumes 

all animals on the transect line (or within a set strip in the case of strip transect 

sampling) are detected with certainty (Marsh & Sinclair, 1989a). However, this is not 

possible because of varying depths at which marine fauna can occur, possible human 

error, and visibility issues (Marsh & Sinclair, 1989a). Therefore, these sources of 

variability need to be accounted for when counting individuals.  

Visibility bias is relevant for animals that continuously dive and surface as they 

are only visible, sometimes, for short periods (Anderson, 2001). Visibility bias can lead 

to the underestimation of population sizes and has two main sources: availability and 

perception bias (Laake & Borchers, 2004). Firstly, availability bias occurs when an 

animal is missed as a result of being submerged and too deep to be viewed by an 

observer (Marsh & Sinclair, 1989a) or the surrounding environmental conditions 
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concealing the animal (Hagihara et al., 2018). Secondly, perception bias occurs when an 

observer misses an available animal because of environmental conditions, the 

colouration of the animal, or observation fatigue (Boyd et al., 2019). A false negative 

error (i.e., no animal is recorded when an animal was present) occurs through either 

availability bias or perception bias (when an individual isn’t detected within a given 

area) (Brack et al., 2018). While a false positive error arises from identifying the wrong 

individual or double-counting the same individual (Dénes et al., 2015).  

As noted above, the probability of an animal being unavailable (availability 

bias) depends on that animal's diving behaviour (availability process) and the 

surrounding environmental conditions (Hodgson et al., 2017). Availability bias can be 

accounted for by determining the time that an animal has been "absent", which can be 

determined via time-depth recording (Pollock et al., 2006) or other tagging techniques 

(Schweder et al., 1991), or from human observation of surfacing and dive times (Barlow 

et al., 1988). Availability bias can be taken into account in the following ways:  

1. Marsh and Sinclair (1989a) created an availability correction factor (ACF) 

for dugongs, by recording where they saw dugongs in the water column.   

2. This ACF was later adapted by incorporating depth into their availability 

corrections. Using time-depth recorders (TDRs) and GPS satellite 

transmitters, they quantified the depth of dugongs. The instruments then 

measured the time the dugongs spent in “detection zones” in different 

environmental conditions, estimating probability of detection (Pollock et al., 

2006; Hagihara et al., 2018). 

3. Direct observations e.g., by using a drone (Hodgson et al., 2017). 
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One can account for perception bias onboard occupied surveys by having 

multiple independent observers and using mark-recapture techniques (Buckland et al., 

2004; Pollock et al., 2006). Perception bias can be remediated in UAV imaging in a 

similar way, by having two people review the same images (Hodgson et al., 2017). 

Ongoing research is investigating whether multispectral imaging could improve 

availability bias (Shrestha & Hardeberg, 2013). 

 

1.6 Diving and surfacing behaviour of cetaceans and sea turtles 

Both marine mammals and sea turtles, have the interplay of needing to surface 

to breathe but dive for feeding and resting (Hochscheid, 2014). In the 1930s and 40s, 

physiologists and behavioural scientists began to investigate how air-breathing marine 

organisms dealt with the physical separation of food (in deep water) and oxygen (at the 

surface) (Hochscheid, 2014). Diving and surfacing intervals vary between taxa and 

within individuals of the same species and this variation in dive time creates 

heterogeneous patterns in observation which can cause bias (Kasamatsu & Joyce, 1995). 

1.6.1 Dolphins  

The distribution of cetaceans is linked to their surrounding habitat features, food 

availability and mating behaviours (Hastie et al., 2004). Cetaceans, especially dolphins, 

are very mobile animals that range over large distances, spending most of their time 

underwater (Hastie et al., 2004). The identification of dolphins during aerial surveys is 

difficult due to their agility and quick movements throughout the water column (Alves 

et al., 2013). Also, the small morphological variation between cetaceans makes it even 

more difficult to differentiate between species within occupied aerial surveys (Preen, 

2004).  
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Odontocetes in particular, are known for having unpredictable surfacing patterns 

and behaviours (Raoult et al., 2020). Varying water depths (and associated foraging 

activities) and surfacing behaviours of dolphins determine the time available for 

detection during an aerial survey. It is thought that water depth acts as a factor for 

foraging efficiency, determining the time spent submerged at depth (Hastie et al., 2004). 

Therefore, if dolphins are spending large amounts of time at depth they become less 

‘available’ for detection and the detection probability is thus lower in deeper water than 

shallower.  

It is important to understand the diving mechanisms of dolphins, as dolphin pods 

will only be visible in times of surfacing or activities near the surface. Bottlenose 

dolphins and most dolphin species in general, utilise the whole water column to forage 

and consistently dive to depths of approximately 50 m to find food (Hastie et al., 2006). 

According to vocalisation records at 20-30 m, most feeding and socialising occurs 

within this area, with relatively little time spent above 10 m or near the surface (Hastie 

et al., 2006). Therefore, dives tend to be short and because they spend more time in 20-

30 m of water, that means less time on the surface for observation. Observation of 

dolphins from above can be accomplished; an aerial survey, flown at 500 ft, was 

conducted in the Pilbara on bottlenose dolphins (T. truncatus) and was the first to 

estimate the abundance of an Australian pelagic dolphin community successfully (Allen 

et al., 2017). Dolphins can be seen from the air easily when they’re at the surface, but as 

mentioned this time is limited. Allen at al. (2017) did not use correction factors for 

availability bias of dolphins because there are no ACF currently determined for 

bottlenose dolphins. Thus, their estimate could not be corrected for availability bias, and 

was likely that they under estimated the number of dolphins in the area at that time.  
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1.6.2 Sea Turtles  

The dive parameters of turtles are determined by the species of turtle, the turtle's 

size, ocean temperatures, and their surrounding habitat (Hochscheid, 2014). Sea turtles 

are exothermic and vary their diving and surfacing behaviour based on the surrounding 

environmental conditions (Table 1.2). The age of a sea turtle also affects their diving 

regime, as juvenile and adult sea turtles have different diving capacities (Table 1.2). In 

Shark Bay, Western Australia, both green turtles (Chelonia mydas) and loggerhead 

turtles (Caretta caretta) have varying dive time and depths according to the differing 

surface and water temperatures throughout the year (Thomson et al., 2012). Because sea 

turtles are exothermic, they tend to conduct short, frequent surfacing in warmer, 

shallower conditions and longer, infrequent surfacing intervals in colder, deeper 

conditions (Thomson et al., 2012).  

A study conducted by Freitas et al., (2019) found that loggerhead turtles spend 

one-third of their time at the surface each day, with the minimum time one turtle spent 

at the surface in 24 h being 0.4 h. Loggerhead turtles are able to spend many hours 

beneath the surface, with one individual logging over 10 h submerged before surfacing 

(Hochscheid, 2014). Green turtles spend about half that time submerged, usually around 

5 h during rest periods (Hochscheid, 2014). The biological attributes of sea turtles 

shown below should be considered when designing aerial surveys, whether occupied or 

unoccupied, and suggest that differing physiological and environmental conditions 

produce limitations as diving patterns are heterogeneous throughout different seasons 

and for different activities (Thomson et al., 2011).  
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Table 1.2.  Summary of the key biological traits of sea turtles and how they influence detection 

probability.  

Biological trait Effect on detection probability during aerial 

surveys 

- Exothermic, turtles rely on their surrounding 

environments temperature to regulate their 

bodily function and movements (Carr et al., 

1978). This means that as temperatures 

change, so do the diving behaviour of sea 

turtles. 

- As water temperature decreases, their diving 

capacity increases, meaning they spend longer 

time at depth, decreasing detection probability 

(Thomson et al., 2011).  

- Sea turtles exhibit a behaviour known as 

basking, whereby they “bask” at the surface to 

thermoregulate via solar radiation (Boyer, 

1965). 

- This thermoregulatory behaviour also means 

turtles are more active and spend more time at 

the surface during the day (Hochscheid, 2014). 

This may increase detection probability, 

depending on what time during the day an 

aerial survey is conducted (Boyer, 1965). 

- Surface time is negatively associated with 

wind speed due to less radiation penetration 

(Freitas et al., 2019).  

- Strong winds and more wave activity means 

less surfacing time (Freitas et al., 2019). 

- Juvenile sea turtles spend more time at the 

surface due to their decreased diving capacity 

compared to adults (Freitas et al., 2019). 

- The age dynamics of the region needs to be 

considered, and whether it is a foraging ground 

or mating ground. This will determine whether 

the turtles are more mature and thus, can spend 

longer times at depth (Freitas et al., 2019).  

 

Obtaining measures of relative and or absolute abundance is a high priority in 

sea turtle research worldwide (Hamann et al., 2010). Aerial line transect sampling has 

been used to estimate both the density and abundance of loggerhead turtle populations 

(Lauriano et al., 2011). However, over the past 40 years, biologging and biotelemetry 

(such as radio tracking, GPS, and satellite telemetry) have been used on sea turtles to 

understand both their movements and behaviours (Hussey et al., 2015). Mark-recapture 

methods (Chaloupka & Limpus, 2001), nesting beach monitoring (Broderick et al., 

2002) and boat-based surveys (Seminoff et al., 2014) have also been useful abundance 

techniques for turtles. UAVs have the potential to advance the understanding of sea 

turtle population dynamics by allowing us to study and estimate the abundance of turtles 
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at all developmental stages; nesting mothers, hatchlings, immature and adult turtles 

(both male and female) (Bevan et al., 2016). They have also provided information on 

the feeding, mating, and cleaning behaviours of turtles as well as their distributions and 

varying sex ratios within each species (Schofield et al., 2017b). UAV technology has 

provided even more avenues for understanding sea turtles, and this will enhance our 

knowledge about their detection probability and allow for better population assessments 

and benefit broad-scale conservation efforts (Sykora-Bodie et al., 2017).  

 

1.7 Environmental conditions affecting sightings 

Environmental factors play a huge role in the sighting rate and clear 

identification of the organisms being observed, as sea state (wind), water visibility, sun 

glare and cloud cover can hinder certainty in sightings from both occupied and still 

image observations (Lubow & Ransom, 2016). The sightability threshold (depth at 

which animal detection is not possible) becomes shallower as visibility declines 

(Pollock et al., 2006). A decline in water clarity also affects the ability to detect and 

make accurate taxonomic identification of an animal (Kelaher et al., 2020a). The error 

in sightability decreases in clearer and calm conditions (Pollock et al., 2006, Fuentes et 

al., 2015, Hodgson et al., 2017).  

Rowat et al (2009) noted that during their whale shark (8-18 m in length) aerial 

survey, as the wind speed increased, wave height and sea state became visibly 

obstructive, and observers were unable to sight some whale sharks in the area. It is 

interesting to note that increased wind velocity and as a result, increased sea state, 

negatively affects sighting rate in occupied aerial surveys (Koski et al., 2009) but in 

some UAV surveys, these variables had no notable effects on sightability (Hodgson et 
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al., 2013, Fiori et al., 2017, Hodgson et al., 2017). Mount (2005) found that winds 

speeds of 5-10 knots or above cause multiple scattering of sun glitter and glare across 

still images. Light interplay at the surface of water affects the quality of vertical 

observation from a given height (Mount, 2005). Sun angle, reflection, and refraction all 

play a role in affecting the amount of shadowing and subsurface illumination of the 

seafloor (Mount, 2005). Glare affects detectability and sightings of an animal and can 

produce false negatives (Guimarães Paiva et al., 2015).  

 

1.8 Ground sample distance  

Identifying species from the air is challenging as researchers aim to maximise 

spatial coverage while maintaining high resolution data (McClintock et al., 2015). The 

animal's body position, movements, and even the light conditions can affect the 

identification of an animal and a misidentification can bias the distribution and 

abundance of a given species (McClintock et al., 2015). Ground sample distance (GSD) 

is defined as the distance between pixel centre points that have been measured on the 

ground, e.g. in an image that has a 1 m GSD, the centre points of adjacent pixels within 

the image are located 1 m apart on the ground (Felipe-García et al., 2012). For a given 

GSD, the quality of the image depends on the exposure of the camera as well as other 

factors such as the blur caused by motion (Grenzdörffer, 2008). GSD ultimately is 

determined by the camera’s resolution, lens focal length and the altitude of the UAV 

(Kislik et al., 2018).   
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1.9 Conclusion: summary and major knowledge gaps  

With advances in technology, the transition from occupied to unoccupied survey 

methods is likely, assuming regulations change. The question is whether the unoccupied 

platform can produce equal if not better results than the occupied platform. With issues 

such as risk to human lives, real time human error and environmental conditions in 

occupied flights, using the unoccupied technique may have more advantages then 

occupied. However, UAV technology is still relatively new and has some 

disadvantages.  

The diving behaviour of dolphins and turtles, the environmental conditions of 

the survey (sea state, glare, visibility) and the given GSD of the images captured, will 

all affect the detectability of these two taxa. With dive characteristics and physiology 

varying between these two taxa, it is important to understand how environmental 

conditions affect observations and data recorded for each taxa and for each survey 

platform. Another gap in the knowledge of surveying both dolphins and turtles is the 

GSD required to identify each taxa to species level.  

 

1.10 Thesis objectives and research aims 

The objective of this Honours project is to compare the detectability of dolphins 

(Tursiops and Sousa spp.) and turtles (Cheloniidae) from an occupied aircraft with UAV 

images captured during concurrent surveys. I have also examined whether it is possible 

to identify different species of dolphins and turtles at varying GSDs and assess at what 

level of certainty these identifications were made. The data for this study were collected 

in 2012 from a trial UAV survey which assessed the detectability of dugongs in UAV 

images and compared these with the results from an occupied survey (Hodgson et al., 
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2013). That study was designed to optimise the detection of dugongs i.e., the flight 

altitude of 500 ft and resulting GSD were chosen for dugongs. Both dolphins and turtles 

were also clearly visible in the images from these surveys and were recorded by the 

observers in the occupied survey.  

The specific objectives of my Honours research were to: 

1. Compare the detection rates of dolphins and turtles in UAV images with 

those of real-time data collected from an occupied aircraft,  

2. Investigate how detection rates of dolphins and turtles from the two survey 

platforms vary with environmental conditions (sea state, glare, visibility),  

3. Determine whether is it possible for “expert researchers” (those who 

specialise in either dolphin or turtle research and are well versed in species 

identification of those taxa) to identify species of dolphins and turtles from 

the UAV images and the minimum GSD needed to identify species, and 

4. Assess whether environmental conditions affect the “experts” ability to 

determine species at a given GSD.  

 

Hypotheses:  

Because UAVs provide high resolution, still images that can be reviewed, while 

occupied surveys only offer observers a few seconds to see and identify animals, I 

hypothesise that the UAV survey will provide a higher sighting rate of individuals than 

the occupied survey team.  

Secondly, due to the clear and motionless analysis of images from the UAV, I 

predict that the environmental conditions of glare, sea state, visibility and cloud cover 

will affect the sighting rates of dolphins and turtles differently between the two 
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platforms. With the four variables making detection of the two taxa more difficult 

within the occupied teams observations compared to the UAV images.  

The third aim of this project is to determine the image GSD required to be able 

to identity dolphins and turtles to species level. I hypothesise that a lower GSD value 

image will capture clearer, more identifiable individuals than a high GSD value. Turtles 

are relatively small compared to their cetacean counterparts and previous aerial survey 

studies have suggested that the carapace width of a turtle needs to range from 30-75 cm 

to identify turtles to species level (Alves et al., 2013). Therefore, I also hypothesize that 

since dolphins are larger than turtles, a lower GSD will be needed to identify species of 

turtles than dolphins.  

Likely, images with good environmental conditions (low glare, calm sea state) 

and low GSD will provide the best images for species identification. Therefore, I 

hypothesize that images with poor visibility and intense glare will affect the GSD 

required to identify species (meaning in harsher environmental conditions, the minimum 

GSD may need to be lowered to identify species of dolphins and turtles). 
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Chapter 2.1 Materials and Methods  

The data used in this study were collected in 2012 from research primarily 

conducted to compare dugong detection rates between an occupied aircraft and a UAV 

(Hodgson et al., 2013). Data on dolphins and turtles were collected as secondary data 

during this study (see below Detection of dolphins and turtles). As the original research 

was focussed on dugong detection, this survey design was not the most appropriate 

design for dolphin and turtle detection. Here I describe the materials and methods of 

those trial flights and how the data I received were collected. Then in Detection of 

dolphins and turtles, I describe the methods specific to my aims and objectives. 

 

2.1.1 Study site  

Both occupied and unoccupied aerial surveys were conducted in Shark Bay, WA 

(25°30’S, 113°30’E) in 2012. The bay covers approximately 13,000 km2 and is 

recognised for its high conservation values as it is a World Heritage Area (WHA) and a 

Marine Park. The Shark Bay WHA includes pristine, diverse seagrass ecosystems 

(Olson et al., 2012) with 12 different seagrass species (Walker et al., 1988). The Shark 

Bay region receives limited rainfall (average annual rainfall 197.1 mm) and has mean 

monthly temperatures ranging from 10.7-34.7℃ (Meteorology, 2021). It supports large 

turtle populations and is important for both large and small cetaceans (Preen et al., 

1997). Green turtles are the most common species within Shark Bay, with the 

loggerhead turtles also being present within the bay (Preen et al., 1997), while the two 

main delphinid species found here include a large population of bottlenose dolphins 

(Nicholson et al., 2012) and a lesser known population of humpback dolphins (Sousa 

sahulensis) (Parra & Corkeron, 2004).  
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2.1.2 Experimental design and flight details  

The survey design followed that of five previous aerial surveys conducted within 

Shark Bay and consisted of a series of parallel line transects spaced 4.6 km apart (Gales 

et al., 2004; Preen, 2004; Holley et al., 2006;) . The 2012 survey focussed on detecting 

dugongs, so the transects flown were just in those areas where the highest density of 

dugongs were expected to occur. The two aircraft were flown at the same time over the 

same transects, at different altitudes (see below) and covered approximately similar 

sized strips (400 m each; a strip being a patch of ocean that the observations occurred 

within). However, the strips covered by each platform did not entirely overlap because 

the observers were looking at two 200 m strips either side of the aircraft while the UAV 

captured a 400m strip directly nadir (i.e., straight below the UAV). The flights took 

place between the 29th of August and the 3rd of September 2012. The correlated flight 

paths and dates of flying each transect are shown in Figure 2.1. 

 

 

 

 

 

 

 

 

Figure 2.1. The combined footprint of the UAV images taken during the 2012 aerial survey of 

Shark Bay, WA, 29th August to 3rd September. Colours of flight paths identify each 

flight. Map provided by Amanda Hodgson. 
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2.1.3 Occupied aircraft observations   

The aerial survey methods followed those described in Marsh and Sinclair 

(1989a). The aircraft used was a twin-engine Partenavia 68B which flew at 100 

knots and at an altitude of 500 ft. The survey team consisted of a pilot, survey leader 

and four trained observers (two on each side of the aircraft). The ‘front seat’ and 

‘back seat’ observers were isolated visually and acoustically so that their sightings 

were independent. This double-observer system maximised the probability of 

detecting dolphins and turtles and meant that the ‘perception bias’ could be 

calculated for the survey. 

The observer team announced all dolphins and turtles within an 

approximately 200 m strip of ocean on each side of the aircraft. This 200 m strip 

was defined by rods attached to ‘pseudo wing struts’ (the exact widths were 206 m 

on the port side and 203 m on the starboard side).  

 

2.1.4 UAV Surveys  

i) ScanEagle UAV  

The UAV used in this study was a fixed-wing ScanEagle (Figure 2.2). It was 

operated by Insitu Pacific Ltd and is described in detail in Hodgson et al. (2013, 2017). 

The ScanEagle was operated via a Ground Control Station (GCS) from Monkey Mia 

airport. The deployment of the UAV from the GCS was from a pneumatic catapult 

called a Superwedge launcher and was recovered using the Skyhook retrieval system 

(Hodgson et al., 2013).  
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ii) UAV Imaging System (payload)  

As mentioned above, the primary goal of the data collected in 2012 was to 

maximise dugong detections and the altitude flown by the UAV was chosen on this 

basis. The GSD of 3.2-3.5 cm/pixel was achieved by flying at an altitude of 1300-1400 

ft, which allows for the detection of dugongs (Hodgson et al., 2013).  

Two SLR cameras (24-megapixel (6016 x 4000) Nikon D3200) were used to 

capture images from the UAV (Figure 2.2). Both cameras were fitted with a 50 mm lens 

and a polarising filter. Maximal coverage with minimal overlap of the two cameras was 

achieved by rotating each camera ~11.5º from vertical in opposite direction. The target 

image overlap along the transect line was 40% which previously was found to help 

account for sightings inhibited by glare (Hodgson et al., 2013). The overlap of 40% 

created an on-ground width ranging from 193.4 cm (3.2 cm/pixel GSD at 1300 ft) to 

210.2 m (3.5 cm/pixel GSD at 1400 ft).  

 

 

Figure 2.2. Pictures of the ScanEagle UAV (left), fitted with the two SLR cameras (right). 

Images by Amanda Hodgson.  
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2.1.5 Environmental conditions  

Data on the environmental conditions were scored and compiled prior to my 

study. The process used is summarised below.  

i) Visibility  

The images captured by the UAV were used to determine the water visibility of 

the survey areas of both the occupied and unoccupied platforms. An image reviewer 

subjectively scored each image according to its dominant visibility category (Table 2.1) 

with 1 and 2 representing the differing visibility in waters where the seafloor is visible, 

and 3 and 4, where the water is deep.  

Both the occupied and unoccupied transects were then broken into segments 

based on the visibility scores assessed within the UAV images. These segments had 

constant visibility but varied in length. All further analyses were then based on these 

segments.  

Table 2.1. Summary of the visibility scale used to classify visibility from UAV images flown in 

Shark Bay between the 29th of August and 3rd of September 2012.  

Visibility Category Visibility of the Sea Floor  Water Quality 

1 Clearly visible  Clear 

2 Visible but unclear  Opaque  

3 Not visible  Clear 

4 Not visible Opaque 

 

ii) Sea state  

The sea state score was based on the Beaufort scale which ranges from 0 (calm) 

to 6 (strong breeze with large waves) (Table 2.2). During the occupied surveys the team 

leader recorded the sea state data every 2 minutes, or when the conditions changed. A 

handheld GPS on board the occupied aircraft tracked the occupied survey flight path by 
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recording a GPS location every second. Each GPS point was then assigned a sea state 

score based on the last record from the survey leader. The mean sea state was then 

calculated for each transect segment as the mean score of all GPS track locations that 

fell within the segment length.  

Table 2.2. Summary of the Beaufort scale of wind force used to classify sea state for both 

occupied and unoccupied data collected in Shark Bay between the 29th of August 

and 3rd of September 2012 (Bureau of Meteorology, 1970). Note that the scale 

ranges from 0-6, even though there are 12 levels in the Beaufort scale, as sampling 

did not occur beyond a score of 6.  

Force Description Sea State 

0 Calm Like a mirror  

1 Light Air Ripples, no foam 

2 Light Breeze Small wavelets, smooth crests with glassy appearance  

3 Gentle Breeze Large wavelets, some crests break, some white caps  

4 Moderate Breeze Small waves, frequent white caps  

5 Fresh Breeze Moderately long waves, many caps, some spray  

6 Strong Breeze Some large waves, extensive white foam crests, some spray  

 

iii) Glare 

Glare or ‘sun glitter’ was scored separately for the two platforms because glare 

was recorded differently on each platform (Hodgson et al., 2013). The occupied team 

noted down sun glitter for the north side of the plane (i.e., the direction in which sun 

glitter had the strongest effect). The estimate of sun glitter was subjective and scored as 

a percentage of the area observed that was affected. The scores were then applied to the 

GPS track locations (in the same way as for sea state) in order to determine the mean 

sun glitter for each occupied transect segment.  

In the UAV images, glare (sun glitter) assessment was made by one image 

reviewer for all the images using the same ordinal scale as for the occupied surveys 

(Figure 2.3). The mean glare score for each UAV survey transect segment was 

calculated from the glare score of each north-facing image in the segment.  
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Figure 2.3. Examples of scores for the differing intensities of glare for selected UAV images 

obtained from Shark Bay. Western Australia. Images by Amanda Hodgson.  

 

iv) Cloud cover 

Cloud cover was recorded in oktas (ranging from 0 for completely clear sky to 8 

for complete cloud cover) by the occupied survey leader at the beginning of each 

transect. Cloud cover was not scored within the UAV image review (as the clouds could 

not be seen) but was recorded by the occupied team. Cloud cover recordings were then 

applied to all occupied and UAV segments in that transect.  
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2.2 Detection of dolphins and turtles  

2.2.1 Perception bias: UAV 

In order to compare the manual image review detections of the main reviewer, a 

second reviewer was asked to review a subset of images from the same flight data set 

analysed by the main reviewer (n = 1968 images). This was done to calculate the UAV 

reviewer perception bias. The perception bias estimates were calculated via a mark-

recapture model (Huggins model) using the program MARK. Then the perception 

probabilities used for each observer were provided by the model that best fit the data 

according to Akaike’s Information Criterion (AIC), which corrects for small sample 

bias. 

The occupied perception bias was calculated prior to my study following 

Pollock et al. (2006) using a generalised Lincoln-Petersen models within the program 

MARK (White & Burnham, 1999).  

 

2.2.2 Image analysis and review  

A total of 38,365 UAV images were analysed by both the author and Brooke 

Chester (who began reviewing UAV images during her bachelor’s degree in marine 

biology) for turtle detection between 2019 and 2021. The analysis of images for dolphin 

detection had been conducted by three separate reviewers prior to this. The turtle 

reviewers recorded the time they started and completed reviewing each set of images as 

well as the number of images reviewed, to provide an estimate of the manual image 

review rate.  
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Reviewers searched each image for all turtles and dolphins present within the 

images and scored the environmental conditions within each image that contained a 

sighting. Reviewers also recorded the certainty of identification and whether the animals 

were resights. Certainty was scored as either uncertain or certain, with only certains 

being used in the final count. Resights of animals included those that were captured in 

multiple images and resights were subtracted from the final count. The images were all 

reviewed at 50% of their actual size to make the animals appear large and clear on the 

screen, and the reviewers used a standardised process to scroll around each image.  

The image review process for detecting turtles was originally conducted using 

custom ImageViewer software, described in Cleguer et al., (2021) and then checked 

through the software Dugong Detector (DD; a custom software still under 

development). Within the ImageViewer/DD software, when an animal was sighted, a 

red box was drawn around the animal, creating a georeferenced footprint for that animal 

(Figure 2.4). The following information was recorded for each sighting:  

- Taxa of the individual animal, 

- Environmental state in the image i.e., sea state, glare, and visibility, 

- Certainty of identification - certain (yes) or uncertain (no) for each sighting, 

- First certains were selected only on the first instance of certainty (for 

individuals occurring in more than one image), these were used for the final 

counts of individuals, and 

- If the sighting was a resight (yes or no, i.e., the same animal occurring 

within the overlap of successive images, they tend to be in the same position 

within the image just higher or lower in the plane of the image).  
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Figure 2.4. Example screen capture of the data recorded for each sighting within the 

DugongDetector program. Image of single dolphin.  

 

The program DD georeferences each sighting which allows us to account for 

resights of dolphins and turtles that appeared in overlapping images (Figure 2.5). This is 

done within DD by the appearance of a green box next to an animal in a successive 

image. By clicking on the green box, reviewers can see what the animal looked like in 

the previous image and based on its offset position within the overall image and the 

position and orientation of the animal in the water, determine whether it was a resight, 

eliminating recounts. All images that were highlighted as containing animals were 

rechecked by the author to ensure the counts and associated scoring was correct and 

consistent. 
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Figure 2.5. Example of a resight individual within the DugongDetector software. Red boxes 

indicate a new sighting; green boxes indicate a possible resighting from the previous 

image.  

 

2.2.3 Mapping of sightings within ArcGIS 

The area covered by the images and the occupied team had previously been 

mapped. When mapping the image footprints, the ScanEagle’s altitude, rotation, and 

orientation of the two cameras were accounted for. The transects had also already been 

split into segments of constant visibility. DD provided a georeferenced bounding box 

for each turtle and dolphin sighted which were exported as shapefiles and imported into 

ArcMap. The bounding boxes were polygons so were then transformed into points. The 

occupied turtle and dolphin sightings were mapped according to the GPS tracks of the 

aircraft by matching the time of the sighting with the closest track time (within 1 sec). 
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The main aim of using ArcGIS was to determine the counts of dolphins and 

turtles sighted within the UAV and occupied platforms per transect segment. I used the 

‘Spatial Join’ tool to join both the UAV and occupied sightings to the transect segments. 

Then the tool “Join Field” combined the occupied and unoccupied data based on their 

common attributes, i.e., dolphin and turtle sightings within the same transect segment, 

to produce a total count per transect segment.   

 

2.2.4 Assessing the influence of environmental conditions on detection    

The effects of the four covariates (visibility, sea state, glare, and cloud cover) on 

the dolphin and turtle sighting rate were estimated assuming:  

1. The number of dolphins and turtles available to be detected is equal relative 

to each of the covariates. However, visibility, which has a water depth 

factor, is correlated with turtle and dolphin distribution throughout the water 

column and thus detection. Due to the absence of data to properly model 

this relationship, we assumed that visibility had no effect on distribution;  

2. The number of dolphins and turtles available to be detected during a single 

survey flight remained constant; and  

3. Both dolphins and turtles were distributed randomly throughout the survey 

area and there are no systematic trends in the values of the four 

environmental covariates.  

Of course, the consequences of these assumptions being incorrect would affect the fair 

evaluation of the data. Visibility may have an effect on detection and the chance of 

detection between a marine mammal and a reptile may differ due to their surrounding 

environmental factors, the same goes with the impact of distribution and the four 
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covariates. There is also the chance that detection was not constant during a single 

flight, and this could have also led to more or less animals detected as the different 

platforms passed over.  

The total number of dolphins and turtles sighted were tallied for each platform 

and within each transect segment as well as the associated four covariates within 

ArcGIS. A generalised linear mixed model (GLMM) was fitted to the number of 

dolphins and turtles detected per transect segment to determine the relationship between 

the ability to see the animals and the covariates. The response variable was assumed to 

be Tweedie distributed in order to account for any individuals forming groups. A 

Tweedie distribution is an exponential dispersion model often used in GLMMs. The R 

package cplm was used to fit the Tweedie GLMMs (Zhang, 2013).  

Each flight and each transect was treated as a random effect to account for 

spatial and temporal autocorrelation. The covariates (glare, visibility, sea state and cloud 

cover) were treated as fixed effects. The Beaufort Sea state (0-6) was entered into the 

models as an ordinal value. Glare/sun glitter estimates of 0-50% and cloud cover oktas 

were also entered in the models as ordinal values. While visibility estimates were 

entered in the models as categorical values of 1, 2, 3 and 4 (with each row given a level 

e.g., Vis2, Vis3).  

A backwards selection process (see example below) was used to determine the 

model of best fit for the fixed-effects components (the environmental covariates). Given 

that the data were non-normal and over dispersed, a one-sided t-test on the last main 

effect or interaction term to enter the model was used to decide whether that term was 

significant (at the 0.05 level of significance). The form of the equation fitted was: 
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Count (number of detections) ~ Platform*Sea state + Platform*Glare + 

Platform*Visibility + Platform*Cloud cover 

Platform was the term to denote UAV as opposed to humans in an aircraft. The 

“main effects” (glare, visibility, sea state and cloud cover) apply to both platforms. 

Interactions are shown as e.g., Platform*Glare, where there is an interaction between the 

UAV and glare. The interaction term will put in the main effects as well (e.g., 

Platform*Sea_State will put terms Platform and Sea_State and Platforms:Seastate in the 

model).  

If the interaction wasn’t significant the interaction was dropped and the 

covariate re-fit into the equation e.g., if the cloud cover and platform interaction was not 

significant the equation would look like:  

Count (number of detections) ~ Cloud cover + Platform*Sea state + 

Platform*Glare + Platform*Visibility 

Once the last interaction term was dropped, platform would then have had to be 

re-added to the equation e.g.:  

Count (number of detections) ~ Platform + Cloud cover + Sea state + Glare + 

Visibility 

 

2.2.5 Expert surveys to test species identification  

Emails were sent to people considered to be experts in either dolphin or turtle 

identification, asking them to participate in reviewing images where turtles and dolphins 

were present, to see if they could identify them to species level. Three dolphin and three 

turtle experts reviewed the 120 images each containing dolphins and turtles 
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respectively. These surveys of experts were carried out under Human Ethics approval 

within Murdoch University.  

The images were sent via Google Drive and the original images had been 

cropped to reduce the time of experts finding an animal within a full image. An 

accompanying excel spreadsheet was sent to the experts to document their response for 

each image. The experts were asked to review the images within approximately two 

weeks. The images were selected from a number of locations including Shark Bay and 

Ningaloo in Western Australia and the Northern Territory (see Table 2.3 for details of 

the images sent for expert identification).  

Table 2.3. The details of each image dataset used in the human expert surveys and their specific 

altitudes and associated ground sampling distances (GSD).  

Year No. Dolphin 

Images 

No. Turtle 

Images  

Location Altitude 

(feet) 

GSD 

(cm/pixel) 

2010 9 12 Shark Bay 500 1.7 

2010 4 11 Shark Bay  750 2.5 

2020 15 30 Ningaloo 250 3.0 

2010 11 7 Shark Bay 1000 3.3 

2012 41 30 Shark Bay 1400 3.5 

2019 40 30 Northern Territory  500 3.5 

Total 120 120    

 

The images sent for review by the experts had differing GSD, locality (Table 

2.3) and environmental conditions of visibility, glare, and sea state. The experts were 

asked to record species, where possible, and the certainty of the species identification. 

Certainty values ranged from less than 50% to 100% (Table 2.4).  

Table 2.4. Certainty categories assigned to species identification by dolphin and turtle experts  

Certainty Category Degree of Certainty 

Unknown 0-49% 

Guess 50-74% 

Probable 75-99% 

Certain 100% 
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When determining the final species agreement and the average certainty, the 

certainty scores were given a number (unknown = 0, guess = 1, probable = 2, certain = 

3) and this was averaged across all three experts. Those results were then rounded 

appropriately to determine a certainty category for each species identified.  

The experts also recorded the specific morphological features they used to 

identify species and had no prior knowledge of the location that the images came from 

or the GSD. Because the images ranged from Shark Bay to the Northern Territory a 

variety of dolphin and turtle species could have been present. The species available for 

detection were noted in the excel spreadsheet and may have included:  

- Australian Snubfin Dolphin (Orcaella heinsohni) 

- Spinner Dolphin (Stenella longirostris) 

- Australian Humpback Dolphin (Sousa sahulensis) 

- Indo-Pacific Bottlenose Dolphin (Tursiops aduncus) 

- Green Turtle (Chelonia mydas) 

- Loggerhead Turtle (Caretta caretta) 

- Hawksbill Turtle (Eretmochelys imbricata) 

- Olive Ridley Turtle (Lepidochelys olivacea) 

- Leatherback Turtle (Dermochelys coriacea) 

- Flatback Turtle (Natator depressus) 

Chi-square test of independence was used to test whether the differing 

environmental variables of glare, visibility and sea state were related to the certainty of 

species identification (from unknown to certain). Each covariate was analysed 

separately using the significance level of 0.05. Categories were pooled when n < 5. The 

dataset of 3 cm/pixel provided no environmental information therefore only the GSDs 

of 1.7, 2.5, 3.3 and 3.5cm/pixel were assessed for effects of environmental conditions of 

species identification.  
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Chapter 3. Results  

The total transect distance covered by the occupied aircraft and the UAV during 

the six survey flights was 991.59 km2 (Table 3.1). The occupied observer team surveyed 

an estimated total area of 523.87 km2 while the UAV images covered a total of 467.73 

km2 (Table 3.1).  

A total of 44,941 images were captured from the UAV, with 38,365 being 

reviewed during this study. The total time to review all of these images was 

approximately 145 h with an average of 285 images reviewed per hour.  

 

Table 3.1. Summary details of the flights, coverage, and sightings for each platform. 

Flight UAV 

altitude 

(feet) 

Transect 

segments 

Occupied 

area 

(km2) 

UAV 

area 

(km2) 

Occupied count 

Dolphins   Turtles  

UAV count 

Dolphins   Turtles  

29F2 1400 58 114.8 107.51 16 77 28 202 

30F1 1300 62 91.49 82.21 5 29 14 30 

30F2 1300 82 65.54 56.59 32 70 51 45 

31F1 1400 35 83.34 76.64 14 63 34 19 

31F2 1300 38 94.93 82.13 22 50 30 41 

3F1 1300 21 73.77 62.65 4 23 17 31 

Sub-

total 

    93 312 174 368 

Total  296 523.87 467.73 405 542 

 

3.1 Animals sighted  

The UAV image reviewers were able to detect more dolphins (174) and turtles 

(368) within the image review process than the occupied aerial team (dolphins = 93; 

turtles = 312); i.e., nearly twice as many dolphins and 1.2 times as many turtles by the 

UAV (Table 3.1). When assessing the sightings per flight (Table 3.1), the UAV images 

captured more dolphins in every flight compared to the occupied survey.  
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The GLMM of best fit suggested that the number of dolphin sightings differed 

significantly between the occupied surveys and the UAV images with 2.15 times the 

number of dolphins (115% more) from UAV than the occupied (95% CI = [1.38, 3.39]) 

(Table 3.2). In contrast, the number of turtle sightings did not differ significantly 

between occupied flights and UAV (P = 0.11) (Table 3.2).  

Table 3.2. Comparison of dolphin detection rates between the occupied and unoccupied 

platforms by GLMM analysis. Dolphin sightings were transformed by the Tweedie 

distribution to account for individuals forming groups. Platform term denotes the 

UAV as apposed to the occupied survey observations.  

Dolphins       

 Estimate 

Std. 

Error 

Point 

estimate 95% lower 95% upper 

Significance 

Platform  0.77 0.23 2.15 1.38 3.39 <0.001 
 

 

The UAV captured 10 or more dolphins in five segments and 10 or more turtles 

in five segments while the occupied survey did not record 10 or more dolphins in any 

segment and only 3 segments had ten or more turtles. In two segments, the UAV 

captured very large aggregations of turtles; one of 94 and another of 50 turtles while the 

occupied team recorded only 3 and 4 turtles respectively in the corresponding segments. 

These two large aggregations were removed from the GLMM analysis for the turtles as 

they were considered to be outliers and were swamping the more subtle effects.   

In some cases, the larger segment counts for dolphins was also a result of larger 

groups being sighted in the UAV images compared to the occupied team. An example 

of a large group of dolphins is shown in Figure 3.1, where the red points indicate the 

UAV sightings (of individual animals), and the white dots indicate the occupied team’s 

sightings (of groups). Zooming into transect 16, the single white dot for the occupied 

sightings represents a group of 5 dolphins, while the 10 individual red dots represent 

individual dolphins seen in the UAV images, i.e., a group of 10.  
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Figure 3.1. a) Map highlighting the transects flown on the 29th of August 2012, during flight 2, 

within Shark Bay, WA. The black outline represents transect 16 while the red dots 

indicate the UAV (unoccupied) sightings of individual dolphins, and the white dots 

indicate the occupied team’s sightings of dolphin groups. b) Shows a zoomed in 

segment of transect 16 within the same flight. For the occupied data the single 

white dot represents a group of 5 dolphins, while red dots represent individual 

dolphins within the UAV data.  

 

3.2 Influence of environmental conditions on detection  

None of the interaction terms were significant, therefore the covariates affected 

both the UAV and occupied platforms in the same way. The detection of dolphins in 

both platforms was significantly influenced by visibility, sea state and cloud cover 

(Table 3.4).  

The number of dolphins detected in both the occupied and UAV decreased by 

12%, (95% CI = [0.79, 0.98]) with every unit (1 octa) increase in cloud cover (Table 

3.3). The number of dolphins detected in Visibility 2 (where the sea floor is visible, but 

a) b) 
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the water is opaque) was 4.4 times higher than in Visibility 1 (where the sea floor is 

visible, and the water is clear). Additionally, 4.8 times more dolphins were observed in 

Visibility 3 (where the see floor isn’t visible but the water is clear) than in Visibility 2 

(Table 3.3). The number of dolphins observed in the occupied aircraft and UAV 

decreased by 34%, (95% CI = [0.49, 0.9]) per unit increase in sea state (Table 3.3). 

Therefore, a reduction in sighting rates for dolphins was seen with an increase in sea 

state and cloud cover, while changes in visibility (i.e., as our category scores increased 

up to Visibility 3) meant an increase in detection for dolphins, in both occupied and 

unoccupied surveys.  

For turtles, neither platform nor the platform interaction terms were significant.  

Therefore, visibility affected turtle detection the same way in both the occupied and 

UAV platforms. Significantly more turtles were detected in Visibility 1 than 3; 36% 

fewer in Visibility 3 (95% CI = [0.42-0.98]) (Table 3.3). Additionally, detection in 

Visibility 2 compared to Visibility 1 was 1.4 times (40%) higher however Visibility 2 

was not significant in the analysis. Therefore, changes in visibility from category 1 to 3, 

meant turtle detection decreased. 

 

Table 3.3. Summary of the results from GLMM analyses to test the influence of environmental 

variables on the detection of a) dolphins and b) turtles recorded from both observers 

and UAV. Response variable was Tweedie distributed to account for individuals 

forming groups. Alpha = < 0.05.  

Variable Estimate 

Std. 

Error 

Point 

estimate 

95% lower 

CI 

95% upper 

CI 

Significance 

(P = ) 

a) Dolphins       

Intercept -2.19 0.48    7.26 x 10-6 

Cloud Cover -0.12 0.05 0.88 0.79 0.98 0.024 

Visibility 2 1.47 0.43 4.37 1.87 10.2 6.93 x 10-4 

Visibility 3 1.57 0.43 4.81 2.06 11.2 2.98 x 10-4 

Sea State -0.41 0.15 0.66 0.49 0.9 0.008 
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Variable Estimate 

Std. 

Error 

Point 

estimate 

95% lower 

CI 

95% upper 

CI 

Significance 

(P = ) 

b) Turtles       

 Estimate 

Std. 

Error 

Point 

estimate 95%_lower 95%_upper 

Significance 

(P = ) 

Intercept -0.71 0.34    0.037 

Visibility 2 0.34 0.20 1.41 0.95 2.09 0.09 

Visibility 3 -0.45 0.22 0.64 0.42 0.98 0.041 

 

3.3 Perception bias 

Perception bias previously calculated for the occupied observers was 0.95. The 

probability of the image reviewers detecting dugongs that were visible within the subset 

of images for all three reviewers ranged from 0.80 to 0.98 (previously calculated by 

Hodgson, Murdoch University, unpublished data). In this instance we are assuming that 

those three observers would have had a similar perception bias range for dolphins due to 

their similar morphology to sirenians.  

The overall perception probability of the two image reviewers detecting turtles 

that were visible within the subset of images (n = 1968 total images; n = 33 images with 

certain turtles) was 0.94. The main reviewer who reviewed all the images detecting 

turtles for this thesis had a perception probability of 0.74 (±0.08) while the secondary 

reviewer had a perception probability of 0.77 (±0.08). Perception bias was unable to be 

calculated for dolphins due the main image reviewer only identifying turtles during their 

image review process.  
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3.4 Human expert surveys 

3.4.1 Effect of GSD on species identification  

i) Dolphin species identified  

From the 120 images analysed by experts, three species of dolphin were 

identified: (Tursiops aduncus) the bottlenose dolphin, (Orcaella heinsohni) Australian 

snubfin dolphin and (Sousa sahulensis) the Australian humpback dolphin. Across all 

120 images (pooled from all certainty levels) the percentage of dolphin species 

identified were 51% unidentifiable (Table 3.4), 32% bottlenose, 12% humpback and 5% 

were snubfin dolphins.  

When evaluating the species identifications at different levels of GSD, the 

highest incidence of species identified (67%) was at 1.7 cm/pixel and the lowest was at 

3.3 and 3.5 cm/pixel (45-46%) (Table 3.4).  

Table 3.4. Summary of both turtle and dolphin total species identifications at different ground 

sampling distances (GSD) values from 1.7 cm/pixel to 3.5 cm/pixel.  

GSD 

(cm/pixel) 

Unknown 

Dolphin 

Identification 

Dolphin  

Species 

Identified 

N Unknown 

Turtle 

Identification 

Turtle 

Species 

Identified 

N 

1.7  33% 67% 9 58% 42% 12 

2.5  50% 50% 4 45% 55% 11 

3.0 40% 60% 15 20% 80% 30 

3.3  55% 45% 11 43% 57% 7 

3.5  54% 46% 81 87% 13% 60 

Total   120   120 

 

ii) GSD and certainty of dolphin species identified  

Overall, across all 120 images reviewed, 51% had no certainty of dolphin 

identification, while 23% were a guess, 21% probable and 5% were certain. Thus, 

experts were 75-100% sure of their dolphin species identification in 26% of images.  
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When comparing the GSD with the certainty of identification, the GSD of 2.5 

cm/pixel had the highest number of certain identifications (25%) (Figure 3.1). The 

lowest amount of no identifications (33%) was seen in a GSD of 1.7 cm/pixel. The 

GSDs of 3 and 3.3 cm/pixel had no certain identifications, while 3.5 cm/pixel had 5% 

certain identifications (Figure 3.1). GSDs of 3.3 cm and 3.5 cm/pixel produced the 

highest amount of no identifications (55%) (Table 3.4). While the GSD of 1.7 cm/pixel 

produced the second highest number of certain identifications (11%).  

If considering experts were confident in their species identification where their 

classifications were probable or certain, 34% of the sightings at 1.7 cm/pixel were 

confident, which declined to 25% at 2.5 cm but the sample size for this GSD was very 

low (n = 4). The GSD of 3 cm had a 40% confidence of sighting (with 0% certains but 

high probable identifications of 40%). This declined to 9% confidence at 3.3 cm and 

26% at 3.5 cm/pixel (Figure 3.1).  

 

Figure 3.1. The percentage of mean certainty levels for dolphin species identified at different 

ground sampling distances (GSD) from 120 images sent to dolphin experts.  
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iii) Turtle species identified  

Of the 120 images analysed by the three turtles experts, three species were 

identified: (Chelonia mydas) the green turtle, (Caretta caretta) loggerhead turtle and 

(Natator depressus) the flatback turtle. From the 120 images, including all certainty 

levels, 61% of turtles present could not be identified to species, 29% were green, 8% 

were loggerhead and 2% were flatback turtles.  

The GSD of 3 cm had the highest rate of turtle species identification (80%) 

while the GSD of 3.5 cm had the lowest incidence of turtle species identification (13%) 

(Table 3.4).  

 

iv) GSD and certainty of turtle species identified 

From the 120 images reviewed for turtles, 61% had no certainty in 

identification, 22% were a guess, 15% probable and 2% certain. Meaning that experts 

were 75-100% sure of their identification in only 17% of images.  

When comparing the differing GSD with the certainty of identification, the 

highest number of certain identifications were at GSDs of 3 cm (7%) which declined to 

0% in all other GSD categories. The GSD of 3 cm also had the lowest number of no 

identifications (20%) (Figure 3.2).  

If accepting both probable and certain outcomes, experts were confident in their 

species identification in 34% of the images at 1.7 cm GSD, at 2.5 cm/pixel they were 

0% confident and 40% confident at 3 cm/pixel. This declined to 14% confidence at 3.3 

cm/pixel and 5% confidence in species identification at 3.5 cm/pixel (Figure 3.2).  
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Figure 3.2. The percentage of mean certainty levels for turtle species identified at different 

ground sampling distances (GSD) from 120 images sent to turtle experts. 
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identifications (15%) (Figure 3.3). Counterintuitively indicating that as glare increased, 

species identification certainty also increased (X2 = 19.37, P < 0.05, df = 9, n = 105).  

The visibility score of 4 had the highest number of certains (8%) and the second 

lowest number of no dolphin identifications (54%) (Figure 3.3). Note that a visibility 

score of 1 had no certain sightings but had a small sample size of 3 images, compared to 

the 31, 34 and 37 instances of visibility scores 2, 3 and 4 in the survey.  

0

10

20

30

40

50

60

70

80

90

1.7 cm (n=12) 2.5 cm (n= 11) 3 cm (n = 30) 3.3 cm (n=7) 3.5 cm (n=60)

%
 o

f C
er

at
in

ty
 L

e
ve

l

GSD

None Guess Probable Certain



59 
 

Because of the low sample sizes of some sea state categories, sea state categories 

were pooled to <=2 and >2. The overall trend seen for these two combined categories of 

<=2 and >2 was the same (Figure 3.3). The two categories had similar proportions of no 

identifications (51 and 54%) and the same proportion of certain identifications (6%) 

(Figure 3.3).  

 

Figure 3.3. The percentage of mean certainty levels for dolphin species identifications under 

differing environmental conditions scored during the aerial survey.  
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was recorded in visibility 2 (shallow opaque water) (4%). There were no certain 

identifications in any visibility category. 

The sea state scores of 0, 4 and 5 had small sample sizes (n = 9, n = 1, n = 3 

respectively), so results for turtles, like those for the dolphins, were pooled for sea states 

of <=2 and >2 (Figure 3.4). Unknowns decreased (from 82 to 50%) as sea state 

increased and while probable identifications remained the same (9%). Guesses 

increased from 9% to 41% from category <=2 to >2 (Figure 3.4). Therefore, there was a 

signifanct decline of unknowns and increase of guesses from <=2 to >2 (X2 = 12.61, P 

< 0.05, df = 3, n = 90). Interesting to note that there were no certain identifications in 

this dataset because all the certain turtle identifications came from the GSD of 3 

cm/pixel.  

 

Figure 3.4. The percentage of mean certainty levels for turtles species identifications under 

differing environmental conditions scored during the aerial survey. 
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3.4.3 Agreement of species identification certainty among experts  

There was little variation in certains from experts when all three identified the 

same species (when experts were certain in identifications all three had mentioned the 

same species). When two of the three experts had mentioned the same species more 

variation arose between guesses and probables. When the experts either could not 

identify the animal present in the image or all three experts identified a different 

species, variation in certainty was high (from unknowns to probables). 
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Chapter 4. Discussion:  

In this study, data collected from synchronised flights of an occupied aircraft 

and a UAV during surveys designed to test the detection of dugongs, were used to test 

the detection of dolphins and turtles within Shark Bay, Western Australia. I also 

investigated the effect of the surrounding environmental conditions on the detection of 

both taxa. A human survey consisting of three turtle and three dolphin experts reviewed 

120 images to determine the image ground sampling distance (GSD; four levels from 

1.7 to 3.5 cm/pixel) needed to identify dolphin and turtles to species and the variation in 

identifying species with environmental conditions. Each of these findings is discussed 

in detail below.  

 

4.1 Comparison of sighting rates  

Large numbers of dolphins and turtles were detected from both occupied and 

unoccupied platforms during the aerial survey in Shark Bay. The results from the 

simultaneous surveys demonstrated that the UAV detected significantly more dolphins 

(~ twice as many) than the occupied survey, meaning that UAVs allowed for the 

detection of larger aggregations of individuals then the occupied survey (e.g., Figure 

3.1). The number of turtles detected was similar for both platforms. A number of other 

studies have also found that the UAV platform produces a higher count of individuals 

for grey seals and seabirds than occupied surveying platforms (Johnston, 2019).  

The higher detection rates in the UAV images is probably because during the 

image review process, the reviewer can scroll around the image, zoom in and out, and 

this extra search time makes finding individuals, that make up groups of taxa, much 



63 
 

easier than collecting data during real time observation. In the image review process, 

often an animal was detected and then another next to it etc. making finding larger 

aggregations of individual dolphins possible.  

The number of turtles detected in the two platforms was very similar and did not 

differ significantly, although it was slightly higher from the UAV images than the 

occupied team (368 compared to 312). However, there were two large aggregations of 

turtles observed from the UAV that were not detected from the occupied aircraft; one 

group of 94 and another of 50, while the occupied team spotted 3 and 4 respectively.  

The 144 turtles missed from the occupied teams observation could be due to the 

fact that they could not differentiate between a turtle and possibly a reef bommie or 

other rounded formation. The blind zone of the aircraft (directly underneath the aircraft) 

could have also accounted for missing some of the large aggregations of turtles, but 

from the image review, these two large aggregations spanned over a wide range of 

ocean and would not have been entirely covered by the plane’s blind zone during the 

whole flight path. It was clear in the UAV analysis that the 144 turtles detected were 

definitely turtles, so the occupied team definitely missed these individuals, however it is 

important to note that the removal of the two large aggregations of turtles from the 

UAV survey would mean that the occupied team spotted 312 turtles compared to 224 

from the unoccupied.  

The premise of being better able to detect larger groupings of animals by UAV 

than the occupied team is consistent for both dolphins and turtles. The size of a sea 

turtle is a lot smaller than a dolphin and their morphology (round with small flippers) 

may explain why the occupied observers were unable to spot as many aggregations as 
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the UAV reviewers. The image review process also made it clear, in most instances, 

whether something was a turtle (noticeable head and flippers) or a rock or reef bommie.  

 

4.2 Influence of environmental conditions on detection 

4.2.1 Sea state  

Sea state only affected dolphin detection within this study, not turtle detection. 

The number of dolphins detected in both the occupied and unoccupied platforms 

decreased per unit increase in sea state. Sea state is known to affect sighting rates in 

occupied aerial surveys for dugongs (Hodgson et al., 2013) but other previous marine 

megafauna drone surveys have suggested that sea state did not affect sighting rates of 

bottlenose dolphins, dugongs or humpback whales during their surveys (Fiori et al., 

2017; Kelaher et al., 2020a). Sea state affects the detection for other marine species 

(e.g., dugong) as the motion and appearance of the waves and whitecaps draws the 

observers eye from possibly spotting an individual (Hodgson et al., 2013). Thus, still 

image review mitigates the issue of mobile white caps (Pollock et al., 2006), however, 

even in still image analysis, sea state can affect the detection of dolphins, as the water 

becomes rough and turbulent in the images.  

So, the effect of sea state on dolphin detection within the UAV platform during 

my study, was contrary to expectations from other UAV studies using the same 

Beaufort Sea state scores. Dolphins may be affected by sea state because they occur in 

lower visibility (visibility 3 in deeper water) this deeper water may have more varying 

sea state conditions than shallower, high visibility locations. However, the number of 

turtles detected from the UAV images was not affected by sea state, which was 

consistent with other UAV studies (Fiori et al., 2017; Kelaher et al., 2020a).  
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4.2.2 Cloud cover  

For dolphins, cloud cover also significantly affected detection, as the number of 

dolphins detected from both platforms decreased with every 1 octa increase in cloud 

cover. Cloud cover can be somewhat mitigated within the image review process as the 

brightness of the image can be changed, as well as the contrast (all images within this 

study were reviewed at 100% brightness). Cloud cover affects the amount of light 

penetrating the water column, which affects how deep one can see the animals. Previous 

drone surveys in fine weather and mild overcast conditions have concluded that cloud 

cover did not affect detectability of marine megafauna such as sharks, dolphins, rays 

and sea turtles (Kelaher et al., 2020b). It is possible that the detection of turtles was not 

affected by cloud cover because turtles usually come to the surface waters to bask, and 

in conditions where clouds are blocking UV, turtles remain deeper (Boyer, 1965).  

4.2.3 Visibility  

Detection of both dolphins and turtles in this study was affected by visibility for 

both platforms, but in different ways. For dolphins, sighting rate and detection increased 

in Visibility 3 compared to Visibility 1 and 2. These findings contrast with others in the 

literature: i.e. where visibility reduced the sightability threshold of dolphins and was 

negatively correlated with detection (Lin et al., 2021). However, dolphins probably 

occurred mostly in Visibility 3 because Visibility scores of 1 or 2 indicated quite 

shallow waters and were perhaps not their preferred habitat. Other studies have stated 

that the detection of dolphins may increase in turbid waters because their prey 

congregate in turbid zones to avoid visual predators (Moreno & Mathews, 2018).  

Water clarity seemed to affect the sighting rate of turtles as the number of turtles 

observed in waters with higher visibility scores (i.e., less clear waters) declined 
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compared to those in waters with lower visibility scores (i.e., clearer waters). The 

sighting rate of turtles decreased per unit increase in visibility, in both platforms (Table 

3.3). This is a very common finding in the literature, as visibility accounts for detection 

into the water column (Samuel & Pollock, 1981). Many studies focussing on drone 

surveying found that low visibility affects the detectability and identification of marine 

megafauna negatively ( ; Pollock et al., 2006; Rowat et al., 2009; Kelaher et al., 2020a). 

The difficulty detecting megafauna in turbid waters is due to the fact that the 

sightability threshold is reduced, so under murky and opaque conditions the sightability 

in deeper water becomes shallower (Pollock et al., 2006).  

Overall, there was no difference in the way the environmental conditions 

affected sighting rates from the two platforms. Therefore, both platforms showed the 

same effects, and thus UAVs and occupied surveys are comparable in their survey 

techniques. 

 

4.3 Perception Bias   

The perception probability calculated for both reviewers suggest that they saw 

95% of the available dolphins and turtles for detection, meaning that of the dolphins 

(93) and turtles (312) detected by the occupied aircraft there would have been about 98 

dolphins and 328 turtles available for detection.  

The UAV dugong perception probability (assuming it would be the same for 

dolphins) on average was 89%, meaning that of the dolphins detected by UAV (174) 

they missed 11% of those available (193 dolphins). The perception probability for the 

main turtle reviewer, who had less training and experience then both the occupied 
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observers and the UAV dugong observers, was 74%. Thus, of the turtles detected in the 

UAV, they missed 26% and the estimated number of turtles available was 464 turtles.  

If the perception probability for UAV turtles was closer to the 89% of the UAV 

dolphin observers or 95% of the occupied team, there may have been a significant 

difference between the turtles detected in the two platforms (up to 328 turtles in the 

occupied observation compared to 464 detected in the UAV). The lower perception 

probability for the main turtle reviewer may also suggest that turtles are harder to find in 

the images (of which the GSDs were set for dugongs) compared to dugongs or dolphins.  

 

4.4 Species identification and GSD  

4.4.1 Dolphins 

Three species of dolphin, i.e., bottlenose, humpback, and snubfin, were 

identified in 120 images from Shark Bay to the Northern Territory by three dolphin 

experts. These findings show that dolphin species can successfully be identified in UAV 

images. However, the unidentified dolphins made up 51% of the images.  

If researchers were to accept both probable and certain identifications, experts 

were 75-100% sure of their identifications in 26% of the images, which was only just 

higher than the confidence for turtle identification (17%). The larger morphological 

features and the size of the dolphins compared to the turtles meant that even at the 

lowest GSD in the images tested, identification was more limited for the turtles. The 

main feedback from the experts was that when the dolphins occurred in pods (being 

mono-specific), identification was easier (multiple chances to capture morphological 

features) while a single dolphin made identification difficult. This may also be another 



68 
 

explanation for the higher incidence of species identified for dolphins (behaviourally 

occurring in groups) compared to turtles which mainly appeared as a single animal in 

each image.  

If accepting both probable and certain identifications, at 1.7 cm/pixel experts 

could confidently identify 34% of dolphins and at 3 cm/pixel they could identify 40%. 

This outcome of 40% species detection for dolphins is inadequate as researchers will 

not base a study on 40% identification rates. This means that for better dolphin species 

identification, either higher resolution cameras or the altitude needs to be lowered (<500 

ft) to test GSD levels less than 1.7 cm/pixel.  

The ability of the experts to identify dolphin species was affected by 

environmental conditions throughout the images. As glare increased from category 0 to 

3, certainty in species identification of dolphins also increased. The reflection of light 

on the animals body within the image, created an “outline” of the dolphin. The sun 

reflectance made the identification of a fluke and pectoral fins very easy, helping to 

locate the animals during the image review process (Figure 4.1).  

 

Figure 4.1 Dolphin identified by all three experts as Tursiops aduncus in a glare state of 3. 
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There was no real trend seen between dolphin species identification and changes 

in visibility states, however, all three experts commented that if the dolphins were not 

directly at the surface, depth made identification challenging. Sea state analysis 

indicated a slight decline in unknown identifications of dolphins in sea state of <=2 to 

>2, but nothing statistically significant.      

4.4.2 Turtles 

Three species of turtles, i.e., greens, loggerheads and flatbacks, were identified 

in the 120 images from Shark Bay to the Northern Territory reviewed by the three turtle 

experts. These findings show that the UAV imagery can be used to successfully identify 

turtles. However, the number of unidentified turtles was considerably higher (61%) than 

those that could be identified.  

The certainty of turtle species identification was low, at all GSDs and 

environmental conditions, experts only able to provide species identifications (from 

guesses to certains) in 39% of the images. The expert feedback on turtle species 

identification from the UAV images ranged from seeing the turtles so clear that they 

could identify their gender (mainly males based on tail morphology) while in other 

instances they couldn’t distinguish whether the object was a turtle or a coral bommie. If 

we accept both probable and certain sightings, turtle species could only be identified in 

17% of the images.  

These findings clearly show that it is not possible to identify many turtles 

reliably at GSDs of 3.3-3.5 cm/pixel. If accepting the probable and certain 

identifications at 1.7 cm/pixel, only 34% of turtles were identified and at 3 cm/pixel 

40% were confidently identified to species. 
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So similarly, to the dolphin species identification, the GSD values assessed need 

to be a lot lower then 1.7 cm/pixel (flown at lower altitude <500 ft and/or fitted with 

higher resolution cameras). Thus, with a species identification rate of approximately 

40% ranging from a GSD of 1.7 to 3 cm, researchers have less than a one in two 

confidence in identifying species of turtles. My results are similar to that of another 

study that found no confidence in identifying turtles at GSDs from 2 to 4 cm/pixel 

(Sykora-Bodie et al., 2017).  

To increase the chance of identifying species of turtles, UAVs could be flown at 

lower altitudes. The Ningaloo images provided reasonable certainty in species 

identification (40% probable and certain) with a GSD of 3 cm/pixel. However, it is 

important to note that the GSD may have been high (compared to 1.7 cm/pixel), but the 

images were all flown at the lowest altitude of 250 ft. As mentioned in Chapter 1 GSD 

is a combination of camera resolution, lens size and altitude. The lowest average height 

for UAV surveys of dugongs is 500 ft (Hodgson et al., 2013) therefore for better turtle 

species identification, flying at 200-400 ft may be more ideal. However, as camera 

resolution and lens size affects clarity, improving those two factors may also lower 

GSD for better species identification.  

The identification of turtle species was also affected by environmental 

conditions throughout the images. As glare increased, the proportion of no turtle species 

identifications decreased, while certainty remained relatively the same. Although in 

some instances glare hinders detection and identification, some researchers have found 

that glare has a positive effect on the certainty of sightings (Aniceto et al., 2018). In my 

examination of the images for turtles, I found that under conditions with higher glare, 

the reflection of light from the turtle shell created a “bright outline” of the animal and 

can make the details of the head and flippers clearer.   
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Visibility had no clear influence on the certainty of turtle species identification. 

Overall, no clear pattern was seen in species identification certainty with visibility – it 

was 0%. Sea state saw a decrease in unknowns and increase in identifications in a sea 

state >2 compared to <=2. The effect of sea state was significant on turtle species 

identification, thus, unknowns significantly declined, and guesses increased with 

increasing sea state, this is contrary to my hypothesis. However, I would need a larger 

sample size to assess individual sea state categories on turtle species identification.   

My results suggest that GSD levels of <1.7 cm/pixel is needed to be assessed to 

properly determine if lower GSDs are capable of better dolphin and turtle species 

identifications than just 40%. Assessing the impacts of the environmental covariates at a 

more suitable GSD for both species would create a clearer understanding of the 

influence of covariates on certainty of species identification.   

 

4.5 Limitations  

One major limitation to this study was the fact that the survey area/location used 

was done so to maximise the detection of dugongs. Areas with high seagrass densities 

were chosen as these are the foraging areas and are critical in the diet of dugongs 

(Anderson, 1998; Preen, 1995). Turtles are also herbivorous and relay on seagrass as a 

major dietary item (Garnett et al., 1985; Thomson et al., 2012; Heithaus et al., 2014). 

The selection of seagrass areas is thus likely to be appropriate for surveying turtles 

(Frazier, 1971). Also, the observers within the occupied aircraft would have mainly 

“trained” their eyes to focus on and pick up on dugong morphology (large wide body, 

flattened facial features, 3 m long) and the much smaller, rounded shape of a turtles 

(carapace length of 78 -112 cm) may easily have been missed.  
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Another limiting factor is the high altitude or GSD values used for species 

identification. For both the dolphin and turtle analysis, 3 cm/pixel provided the highest 

species identification rate but 40% is a poor indicator for success and not a good rate to 

base any type of study. Assessing GSD and environmental variables for dolphins and 

turtles needs to be assessed critically from <1.7 cm/pixel to provide better outcomes. 

This does come at a cost however, because aerial surveys are efficient at large spatial 

extents, lowering the GSD of the flight would increase the time needed to cover the 

same area.  

Some of the experts who reviewed the still UAV images had also previously 

been observers in occupied aerial surveys. They stated that identifying species, 

particularly dolphins, was much easier during the real-time occupied flight than from 

still images because the observers were able to see the behaviours displayed and see the 

dolphins from multiple angles. Thus, UAV aerial surveys would probably benefit from 

video capture to enhance species identification (as this would capture similar motion of 

the animal as an occupied survey), followed by the examination of still images to count 

individuals. Some studies have already tested this by comparing three approaches for 

surveys; an occupied helicopter team, UAV video analysis and UAV still image 

analysis (Kelaher et al., 2020b). They found that all three approaches were able to detect 

turtles and dolphins reliably but identifying species was more difficult (Kelaher et al., 

2020b). They suggested that the best method for identifying species was post hoc video 

analysis as fewer animals were missed due to the ability to replay the video (Kelaher et 

al., 2020b).  

Turtle detection has the potential to be advanced by video analysis, using 

multirotor not fixed wing UAVs, the craft can follow individual and small aggregations 

of turtles, hovering at low altitudes (20-30 metres) (Bevan et al., 2015). This low 
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hovering allows for detection of turtle species, following their behaviour in mating and 

copulation as well as even visualizing the dispersion of hatchlings from their nesting 

sites (Bevan et al., 2015). The multirotor, low flying, hover technique may indicate that 

turtle and dolphin UAV detection may need to be separate instead of surveyed 

simultaneously.  

The final limitation of my study was that the sample size of 120 images was 

chosen to not impact the time and work hours of the experts who volunteered to review 

these images. Ideally, more images would have been made available for analysis, with 

more widely ranging environmental conditions and more images within the lower GSD 

categories.  

 

Chapter 5. Conclusion and recommendations   

5.1 Future implementations of UAV in megafauna surveys  

The use of UAV technology in the future looks increasingly promising, as the 

technology improves as well as our understanding of how UAVs serve purpose in 

marine megafauna surveys. The past ten years alone has shown the benefits and reliable 

results that UAVs produce. UAVs are currently most frequently used in assessing the 

abundance and density of easily identifiable marine organisms, such as whales and 

dugong (Johnston, 2019), as my study has shown, it is highly difficult to identify others 

to species such as dolphins and turtles. Researchers can’t assess abundance without 

identifying the animals to species, hence the need to test what GSD is needed for 

species identification. UAVs are also able to fly in much smaller area than occupied 

flights, require fewer personnel, produce less visual and noise disturbance then aircraft 

and are safer (Kelaher et al., 2020b). One major future innovation of UAVs is the use of 
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artificial intelligence to automate the detection of animals and reducing the time it takes 

to review the images captured, making UAVs an even more important tool for 

conservation and management (see 5.3 below).  

 

5.2 Required changes to UAV regulations  

The current rules and regulations surrounding drone and UAV flight make 

megafauna aerial surveys very difficult. By easing these restrictions, surveys and drone 

research in general will become a more straight-forward and simpler process. Some of 

the current UAV regulations imposed by CASA are discussed below, these restrictions 

can be addressed with the right permits and authorisation but makes organising the 

study site and surveying preparation a long, tedious task. Some restrictions include not 

being able to fly a drone out of visual line of sight, which means:   

- Only flying during the day  

- trying to avoid areas of limited visibility (e.g., cloud, fog, or smoke)  

- the drone needs to be seen by the operators’ own eyes  

- not flying around obstacles that would restrict that visual line of sight 

(CASA, 2021b).  

Without proper permits and approvals drones cannot be flown above 120m 

(400ft) or within 5.5km of an airport (CASA requires a buffer distance to surrounding 

aerodromes) (CASA, 2021b). Using drones for work and research purposes, one must 

attain a remote pilot license (RePL) and operate for a business that holds a remotely 

piloted aircraft operators’ certificate (ReOC) (CASA, 2021b). If CASA is able to ease 

these regulations under a research settings, or even make a simple application process 



75 
 

for research applicants, researchers wanting to use drones and UAVs for surveying, 

detecting, and analysing will have a greater opportunity at doing so.  

 

5.3 Automating detection  

The future development of UAVs, especially for research on marine megafauna, 

will focus on automation of detection and rapid identification to provide detailed 

information for assessing population abundance and advice to management (Johnston, 

2019). The image review process is very time consuming compared to real-time data 

collection, i.e., without automation this takes months and even years to produce 

estimates of numbers of individuals, depending on the number of images that need to be 

reviewed. Currently, the time taken to post-process the images form UAVs negates the 

time saved using them compared to traditional occupied aerial surveys (Cleguer et al., 

2021).  

Many researchers and programmers have been focussing on automating the 

detection process of fauna from UAV images, so this cost-prohibitive and time factor 

will be greatly reduced in the future. The use of neural networks has been tested for 

automating detections, specifically convolutional neural networks (CNN) which are 

“deep learning computerisation, inspired by the brains neural networks to aid and 

teach the computer to discriminate and identify objects in complex conditions” (Gray et 

al., 2019). Testing CNNs for marine megafauna surveys has been underway for several 

years and the results are promising, with one test detecting 8-9% more turtles compared 

to manual counts from images (Gray et al., 2019). This CNN approach is still in a 

“training” phase, as large datasets of images are needed to train the computer and to 

mitigate false positives i.e., recording the presence of an individual when none are 
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present, picking up on glare, white caps, or breaking waves as fauna. The training of 

CNNs and mitigation of false positive are some of the biggest current issues facing the 

implementation of CNN for marine faunal surveys (Gray et al., 2019; Mejias et al., 

2013). 

Current research led by Dr Hodgson (Murdoch University) is examining the use 

of automated technology to detect marine megafauna from images using the program 

Dugong Detector. The images detected by myself and other reviewers are being used to 

train the software so that reviewers then only need to examine images where detections 

were identified, instead of reviewing the whole dataset, to mitigate false positives. 

Further improvements in CNN and automated detection software mean that the speed 

and accuracy of detection will be improved, possibly even permitting detection in real-

time and identifying species with confidence (Gray et al., 2019). 

 

5.4 Conclusion  

From my study it is clear that UAV technology is capable of surveying both 

dolphins and turtles within a coastal environment as well as, if not better than traditional 

occupied flight surveys. The UAV payload and the image review process captured more 

dolphins and turtles in total than the occupied survey and detected significantly more 

dolphins (specially Indo-pacific bottlenose and Australian humpback dolphins) than the 

occupied flights. The image review process, which enabled still images to be captured 

and the time allowed to review images, meant that larger aggregations of both dolphins 

and turtles were detected in the unoccupied than occupied survey.  

The three environmental variables that affected detection included cloud cover, 

visibility, and sea state. Cloud cover and sea state negatively affected sighting rates of 



77 
 

dolphins from both UAVs and occupied surveys, while visibility affected dolphins and 

turtles in different ways. Dolphin detection was positively associated with the visibility 

state of 3 while turtle detection declined from visibility states of 1 to 4. The reasons 

behind why dolphins were more visible in visibility 3 could be based on their foraging 

behaviour in more turbid waters, as well as other behavioural mechanisms.  

Increasing glare aided in the species identification of both dolphins and turtles. 

Species identification of dolphins and turtles improved up to visibility 2 and 3. Both the 

turtles and dolphins had better species identification and less unknown identifications in 

sea state score >2 compared to <=2 but due to occupied flights only being conducted in 

Beaufort Sea states of 3 or less, the >2 representation was poor for species identification 

comparison with <=2.  

The GSD allowed species of dolphins and turtle to be detected at 3 cm/pixel 

with 40% confidence. A lower GSD will need to be investigated to provide evidence of 

better species identification at higher resolutions. Repeating the study but with high 

resolution video analysis instead of still image capture and increasing the sample size of 

images analysed within the species identification process would also be valuable.  

The future of UAVs in marine megafauna surveying and research is very 

promising. Overcoming the limitations imposed on UAVs such as aviator regulatory 

bodies, platform endurance and payload capabilities will make UAVs a pivotal tool for 

future research, conservation, and management. Once automated detection algorithms 

are further developed and validated, the advances and uses of this technology will have  

global impacts on the study of wildlife species and conservation assessment and 

management.  
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