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Abstract

Dead-reckoning via encoders on wheeled-mobile robots is a simple but inaccurate method to estimate position. 

The major drawback of encoders is wheel slippage errors that accumulate over time. This problem is often 

addressed by using additional sensors such as compass, gyroscope, or GPS. This paper details the integration and 

effectiveness of a relatively low-cost solution using an electronic compass to reduce positioning error on a wheeled 

tricycle mobile robot. A customised Visual Studio program has been developed to adjust the settings of the 

electronic compass and integrate it with the Visual Studio based robot control system. The electronic compass 

heading data is fused with the encoder odometry heading data in three different ways: simple fusion, linear 

weighted fusion, and Kalman filter fusion. Simple fusion and linear weighted fusion rely on parameters 

determined from angular acceleration and angular velocity, respectively. The Kalman filter uses variance data for 

the encoders and electronic compass to determine an optimal heading. Experiments have been conducted in an 

indoor corridor environment to evaluate and compare the various fusion methods. Position error is successfully 

reduced and is sufficient to locate the robot within the corridor.

Keywords:

Mobile robots; Position estimation; Sensor fusion; Electronic compass; Indoor navigation; 

1. Introduction

Point-to-point or waypoint navigation in mobile robots commonly relies on a robot’s position. It involves utilising 

the current position of the robot and moving to a target location based on a navigation strategy or algorithm. The 

navigation strategy could be based purely on reactive control (Chand 2015), (Pandey 2017), (Baklouti et al. 2017), 

(Boujelben et al. 2017) or incorporate deliberative control (global path planner based) (Chand and Carnegie 2011), 

(Patle et al. 2019), (Zhang 2019). Global path planners are well-suited for navigation in known environments. 
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However, in dynamic environments where obstacle positions are unknown or can change, reactive control is 

incorporated to handle uncertainties. The reactive control often includes some form of obstacle avoidance for 

moving around obstacles to reach the target location.

A key component of wheeled mobile robot navigation in the real world is position estimation. While moving from 

an initial position to a target location, a robot needs to know where it is to adjust actuator commands for movement. 

One of the simplest and cheapest ways to estimate position is through dead-reckoning via encoders (Lee-Johnson 

et al. 2007). Encoders are quick at estimating position and can function satisfactorily over short distances (up to 

approximately 10 metres). However, wheel slippage errors accumulate over time and eventually dead-reckoning 

becomes unreliable for position estimation on its own. Other sensors such as compasses, inertial measurement 

units (IMUs), global positioning system (GPS), beacons, or cameras need to be incorporated for improving 

position estimation.

Sensor fusion is the process of combining data from multiple sensors into meaningful information. In robot 

navigation, algorithms are used to combine data from complementary and/or redundant sensors for position 

estimation. A variety of sensors and a range of algorithms such as Kalman filtering, rule-based techniques, 

Bayesian theory, fuzzy logic, or neural networks can be used (Kam et al. 1997), (Fung et al. 2017), (Mohamed et 

al. 2018).

Chen and Zhang (2017) presented a novel method for indoor mobile robot navigation that fuses odometry and 

electronic compass data. Two calibration methods are utilised to calibrate odometry and compass errors, 

respectively. A complex adaptive neuro-fuzzy inference system (ANFIS) implemented in MATLAB is used to 

calibrate the compass. Following calibration, a fusion algorithm based on an adaptive extended Kalman filter 

(AEKF) combines the odometry and compass data. The fusion algorithm is evaluated via experiments which 

compare odometry only navigation with odometry and compass navigation. Error is reduced by a factor of 

approximately ten.

An omnidirectional mobile robot for intelligent manufacturing that fuses data from four wheel encoders and a 

Kinect visual sensor is described in (Qian et al. 2017). The extended Kalman filter (EKF) algorithm is used 

recursively to integrate the data from the wheel encoders and the Kinect sensor. The frequency of position 

estimation is based on the frame rate and processing of the visual sensor (30 Hz). A complex process is used to 

compare colour and depth (RGB-D) images for measuring three-dimensional position and posture increments. 

Indoor production line rectangular path experiments show that the average deviation of distance is 207 mm. 
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Alatise and Hancke (2017) also used vision data to supplement mobile robot pose estimation. Data from a six 

degrees of freedom (6-DoF) inertial sensor which consists of a 3-axis accelerometer and a 3-axis gyroscope is 

fused with monocular vision-based object detection algorithm data using the EKF algorithm. Speeded-up robust 

feature (SURF) and random sample consensus (RANSAC) algorithms recognise objects from images. The IMU-

based pose estimation itself includes fusion of the accelerometer and gyroscope data using the Kalman filter. This 

in turn reduces drifts and errors. The experimental setup comprised a small four-wheel drive (4WD) mobile robot 

with an Arduino 101 microcontroller. Camera images and IMU data are sent to a PC via USB cable. Consequently, 

image processing and pose estimation is performed offline using MATLAB. This is a drawback since the robot 

remains tethered to a PC. The RMS error of pose estimation is within 0.14 m. 

Khatib et al. (2020) presented a low-cost method for wheeled robot navigation in indoor and outdoor 

environments. Probabilistic approaches are used to combine sensor data from low-cost visual/inertial sensors. A 

Microsoft Kinect stream depth sensor extracts landmarks for indoor navigation. This information is fused with 

wheel odometry data via the EKF algorithm. A reduced inertial sensor system and GPS are employed for outdoor 

navigation. The absolute error for trajectory tracking is within 0.3 m accuracy based on experiments in indoor and 

outdoor environments. 

A pair of tricycle robots has previously been designed and constructed for cooperative tasks (Carnegie et al. 2005). 

The robots have been constructed at a relatively low-cost of approximately US$2000. These robots have a variety 

of sensors such as wheel encoders, infrared rangefinders, and GPS. They also employ a hybrid navigation system 

with reactive and deliberative control for traversing an environment. Experiments in an outdoor rectangular sports 

field environment showed that the robots can use GPS data to form a closed loop. However, GPS is not suitable 

for indoor navigation. Hence, this paper investigates the relatively low-cost option of adding electronic compass 

modules to the robots for indoor navigation. Low-cost in this research implies not relying on cameras and their 

associated expensive complex software (such as MATLAB for image processing), memory use, and processing 

requirements. 

2. Method

2.1. Overview of Robot Hardware

One of the tricycle robots is shown in Figure 1. The front two wheels drive the robot via an electric motor and a 

mechanical differential. A single steering wheel at the rear controls rotational movement. There are shaft encoders 
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on the left and right wheels for position estimation. A GPS sensor is mounted for outdoor navigation. The robot 

is powered by a pair of 12 V deep cycle batteries and an onboard computer runs the robot’s control system. The 

control system is explained further in section 2.4.

Figure 1. Tricycle robot hardware.

2.2. Electronic Compass Selection

The robot’s onboard computer is a small form factor desktop PC that can support multiple devices via USB 

connection. USB port to standard DB9 serial port converters are readily available for interfacing RS-232 based 

devices to the computer. Three-axis electronic compass modules are widely available and preferred since the robot 

may have to navigate uneven or inclined terrain. Some commercially available electronic compass modules have 

been reviewed for implementation on the robots. These included the KVH C100 Compass Engine (KVH 2019), 

Devantech CMPS14 compass module (Robot-Gear 2009), and Honeywell HMR3300 compass module (Digi-Key 

2021).

The KVH C100 compass engine is a standalone sensor that is suitable for industrial applications. It has ±0.5º RMS 

accuracy when level, can be interfaced via RS-232 serial port, but has a high cost of approximately US$800. On 

the other hand, the Devantech CMPS14 module is much cheaper (approximately US$45) with less functionality 

and is better suited to hobby use. The Honeywell HMR3300 module has features such as tilt compensation, 

onboard filtering, various operational commands, 0.5º repeatability, RS-232 interfacing, and costs approximately 

US$620. Hence, the HMR3300 compass module has been selected for implementation on the robots. 

2.3. Compass Interface Design and Integration

To allow connection to the robot’s computer through a USB to RS-232 converter, the serial UART interfacing 

protocol has been used (Cawley 2006). The designed interface board incorporates a MAX232 serial transceiver 

to convert the logic level serial data to higher voltage for transmission over the serial line. A schematic diagram 

of the board is shown in Figure 2. It includes an onboard regulated 5 V power supply that gets input from the 

robot’s 12 V batteries.   

Figure 2. Schematic diagram of compass interface board.
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The compass module and associated electronics is housed securely within a small blue ABS plastic enclosure as 

shown in Figure 3(a). The enclosure is empirically mounted on a non-metallic (wooden) pole at a height of 0.6 m 

above the other electronics and motors to minimise electromagnetic interference (Figure 3(b)). 

Figure 3. Compass module. (a) Enclosure; (b) Placement on robot

The software to test functionality of the compass module has been developed using Visual C++. This ensures 

compatibility with the existing robotic control system that is also programmed using Visual C++. A screenshot of 

the program developed for calibration and data logging is shown in Figure 4. The first section on the top left 

enables compass data acquisition and logging to a text file. Next to that section, the user can poll the compass 

module for its current configuration. Adjacent to this, there are controls for resetting the compass and exiting the 

program. The second and third rows of the program window permit adjustments such as compass calibration, 

declination angle setting, baud rate setting, system and magnetic filter setting, and z-axis offset. Further details of 

the operational commands to communicate with the compass module are available in (Digi-Key 2021).

Figure 4. Compass module demo and setup software.

2.4. Robot Control System Overview

The hybrid reactive deliberative control system is illustrated in Figure 5. It consists of several modules for sensing 

(information extraction and sensor fusion), modelling (localisation, environment map), planning (path planner) 

and actuation (reactive control, low level motion control/execution). The hierarchy of the modules also gives an 

indication of the temporal decomposition of control ranging from real-time to on-demand. The navigation system 

(Chand and Carnegie 2011) relies on the current position to determine wheel speeds for navigating to a target 

location. It is based on a combination of the Vector Field Histogram (Ulrich and Borenstein 1998) and Dynamic 

Window (Fox et al. 1997) methods. The path planner for deliberative control is based on a modified version of 

the A* path planning algorithm for grid maps (Pearl 1984), (Chand and Carnegie 2011).

Figure 5. Overview of robot control system.

The control system is implemented as a Visual C++ graphical user interface (GUI) program with buttons and tabs 

for various features (Figure 6). The left side of the GUI has the buttons for switching between manual and 

Page 5 of 29 Drone Systems and Applications (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

D
ro

ne
 S

ys
t. 

A
pp

l. 
D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

20
2.

14
.3

3.
23

7 
on

 0
2/

20
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



6

autonomous control, as well as the option for data logging. On the right side, there are several tabs, including the 

important hardware and control tabs. In the hardware tab, the status of the various sensors and communication 

ports are displayed. The control tab enables position to be set or reset, and also facilitates the selection of sensor 

fusion algorithms for position estimation. 

Figure 6. Robot control system program. (a) Main controls and hardware tab; (b) Control tab

2.5. Position Estimation

This paper assumes that the mobile robot will travel in planar motion encountered in an indoor building or flat 

outdoor terrain. In environments with uneven or elevated terrain, GPS data could also be utilised for position 

estimation and a modified approach similar to Khatib et al. (2020) could be used. The tricycle drive robot has 

encoders on the front left and front right wheels. Thus, the position (x, y) is estimated with respect to the mid-

point between the front wheels (Figure 7). This can be easily translated to the centre of the robot via an offset 

distance yoff in the robot’s reference frame. The estimation process of the robot’s posture using the odometers is 

described by equations (1)-(5) below:

(1)𝑑𝜃𝑒(𝑘) =
1
𝑤(𝑑𝑠𝑙(𝑘) ― 𝑑𝑠𝑟(𝑘))

(2)𝑑𝑠(𝑘) =
1
2(𝑑𝑠𝑙(𝑘) + 𝑑𝑠𝑟(𝑘))

(3)𝜃𝑒(𝑘) = 𝜃𝑒(𝑘 ― 1) + 𝑑𝜃𝑒(𝑘)

(4)𝑥(𝑘) = 𝑥(𝑘 ― 1) + 𝑑𝑠(𝑘)𝑠𝑖𝑛 (𝜃𝑒(𝑘) + 𝜃𝑒(𝑘 ― 1)
2 )

(5)𝑦(𝑘) = 𝑦(𝑘 ― 1) + 𝑑𝑠(𝑘)𝑐𝑜𝑠 (𝜃𝑒(𝑘) + 𝜃𝑒(𝑘 ― 1)
2 )

Where: x(k), y(k) : robot position estimated from encoders at the kth instant

θe(k): robot heading estimated from encoders at the kth instant

w : distance between the two drive wheels

dθe(k), ds(k) : variations of the robot’s heading angle and displacement  between the kth and 

(k−1)th sample instant
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dsl(k), dsr(k) : displacement of the left and right wheels between the kth and (k−1)th sample 

instant

Figure 7. Reference point for position estimation of the tricycle robot.

Heading values from the compass module are denoted as c. The in-built filter on the compass module is used to 

reduce heading noise. Three methods for combining compass heading c and encoder heading e into a fused 

heading f have been implemented: simple fusion (threshold-based), linear weighted fusion, and Kalman filter 

(Welch and Bishop 2001) fusion. The fused heading f replaces encoder heading e in equations (4) and (5), and 

the robot’s position (xf, yf) is calculated as:

(6)𝑥𝑓(𝑘) = 𝑥𝑓(𝑘 ― 1) + 𝑑𝑠(𝑘)𝑠𝑖𝑛 (𝜃𝑓(𝑘) + 𝜃𝑓(𝑘 ― 1)
2 )

(7)𝑦𝑓(𝑘) = 𝑦𝑓(𝑘 ― 1) + 𝑑𝑠(𝑘)𝑐𝑜𝑠 (𝜃𝑓(𝑘) + 𝜃𝑓(𝑘 ― 1)
2 )

2.5.1. Simple Fusion

Simple fusion uses a threshold based on angular acceleration (8). If the absolute angular acceleration α is below a 

threshold αt then the fused heading f is determined by the compass module c. Otherwise, the fused heading is 

determined based on encoder readings e. The rationale for this is that the in-built compass filter introduces delays 

in estimating heading while the robot is turning.

(8)𝜃𝑓 = {𝜃𝑐,  |𝛼| < 𝛼𝑡
𝜃𝑒,  |𝛼| ≥ 𝛼𝑡

2.5.2. Linear Weighted Fusion

Linear weighted fusion uses weightings to combine encoder heading e and compass heading c into the fused 

heading f (9).  The encoder heading weighting is denoted as ke and compass heading weighting is denoted as kc. 

The weightings vary as a function of the robot’s angular velocity ω and are unit interval values (10),(11). This 

function could be a linear or non-linear function. Like simple fusion, the rationale for the variable weights is based 

on the motion of the robot. Sharp and sudden turns cause delays in compass heading change. 

(9)𝜃𝑓 = 𝑘𝑒.𝜃𝑒 + 𝑘𝑐.𝜃𝑐
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8

 (10)𝑘𝑒 = 𝑓(𝜔)

 (11)𝑘𝑐 = 1 ― 𝑘𝑒

2.5.3. Kalman Filter Fusion

The Kalman filter (Welch and Bishop 2001) is an optimal filter that employs a set of equations to implement a 

predictor-corrector type estimator. It achieves optimality by minimising the estimated error covariance. The 

ongoing Kalman filter cycle is illustrated in Figure 8. First, the time update part of the cycle predicts the state and 

error covariances for the next state. Following this, the measurement update part of the cycle applies corrections 

to the prediction by computing the Kalman gain, updating the estimate with a measurement, and updating the 

error covariance.

Figure 8. Kalman filter cycle.

The process model for heading is governed by the difference equation presented in (3). Essentially, the next 

heading estimate is the current estimate plus the change in heading determined from the left and right wheel 

displacements (encoders). A process variance Q is assumed for error covariance prediction. Hence, the time update 

equations for the next state and error covariance are denoted by (12) and (13), respectively.

 (12)𝜃 ―
𝑘 = 𝜃𝑘 ― 1 +𝑑𝑠(𝑘)

 (13)𝑃 ―
𝑘 = 𝑃𝑘 ― 1 +𝑄

In the measurement update phase, the Kalman gain is computed (14) and the compass heading zk is employed to 

update the estimate (15). Hence,  is the equivalent fused heading f. The error covariance is also updated using 𝜃𝑘

the Kalman gain (16). 

 (14)𝐾𝑘 = 𝑃 ―
𝑘 (𝑃 ―

𝑘 + 𝑅) ―1

 (15)𝜃𝑘 = 𝜃 ―
𝑘 + 𝐾𝑘(𝑧𝑘 ― 𝜃 ―

𝑘 )

 (16)𝑃𝑘 = (1 ― 𝐾𝑘)𝑃 ―
𝑘

3. Results and Discussion
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3.1. Experiment Configurations

An indoor corridor environment has been used to evaluate the various position estimation methods. In the 

experiments, the robot moves around the long section of the corridor similar to a patrol robot. It is remotely 

controlled (manually) via a joystick attached to a laptop computer. Markers on the corridor floor provide 

waypoints for navigation and ground truth data. Figure 9 illustrates the corridor environment with the waypoints 

marked as magenta circles. A single data set with the different fusion methods applied in post-processing is utilised 

to achieve the most directly comparable results by eliminating manual control variations.

 

Figure 9. Indoor corridor environment with waypoints.

The threshold value for simple fusion has been selected based on the dynamic characteristics of the robot. Multiple 

tests of the robot in straight and circular paths within the dimensions of the corridor were used to estimate typical 

values of angular acceleration. Based on the collected data, the threshold for simple fusion is empirically set to 

0.37 rad/s2.   

Three types of encoder heading weighting functions have been selected for linear weighted fusion. These 

weighting functions are: linear (17), non-linear piecewise (18), and fuzzy rule-based (Table 1). The membership 

functions for the input and output of the fuzzy approach are shown in Figure 10. Each of the three encoder 

weighting functions is illustrated in Figure 11. The main purpose of the functions is to give preference to the 

compass heading when the robot has low angular velocity. Weights and threshold values for each function have 

been empirically selected based on manual operation of the robot in the corridor and labs.

(17)𝑘𝑒 = 0.5|𝜔|

 (18)𝑘𝑒 = { 1                                                ,                      |𝜔| ≥ 1.4
0.7073|𝜔|3 ― 13.99|𝜔|2 + 35.71|𝜔| ― 8.482

16 ,   |𝜔| > 0.5 𝑎𝑛𝑑 |𝜔| < 1.4
3.958𝑒0.2608|𝜔| + 0.002262𝑒12.98|𝜔|

16 ,                      |𝜔| ≤ 0.5 

Table 1. Fuzzy weighting function rules.

Figure 10. Membership functions of the fuzzy weighting function. (a) Input; (b) Output
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Figure 11. Three encoder heading weighting functions for linear weighted fusion. (a) Linear; (b) Non-
linear piecewise; (c) Fuzzy

Kalman filter fusion requires values for process variance Q and measurement variance R. The encoder provides 

good accuracy over short distances (<= 5 m). From straight line tests with a maximum speed of 0.3 m/s to reduce 

wheel slippage, the standard deviation was determined to be approximately 1.5º. Thus, the process variance Q is 

approximately 2.25º. On the other hand, the compass provides reliable readings over long distances. Its standard 

deviation is approximately 3º. Hence, the measurement variance R is approximately 9º.

3.2. Position Estimation Results

3.2.1. Encoder Only

Relying solely on the encoders for position estimation produces large errors as shown in Figure 12. The estimated 

position drifts beyond the corridor walls and is clearly insufficient for robot navigation.

Figure 12. Position estimation using encoders only.

3.2.2. Simple Fusion

Figure 13 shows the position estimation results when simple fusion is used. The estimated position remains within 

the boundaries of the corridor. However, uncertainties in the encoders and compass cause deviations from the 

waypoints. Figure 14 illustrates the difference between the compass measurement and fused heading. As expected, 

variations occur when the angular acceleration is large enough to cause the fused heading to be equal to the 

encoder heading.

Figure 13. Position estimation using simple fusion.

Figure 14. Difference between compass measurement and simple fusion heading.

3.2.3. Linear Weighted Fusion

The results for linear weighted fusion are shown in Figure 15 and Figure 16. Similar to simple fusion, the position 

estimates remain within the boundaries of the corridor. The trajectory of the robot’s estimated travel is similar for 

all three types of encoder heading weighting functions. However, the difference between compass measurement 

and fused heading is smaller when the linear encoder heading weighting function is used. This doesn’t necessarily 

indicate superior results since the in-built compass filter introduces delays in measuring heading while the robot 
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is turning. The other two encoder weighting functions (non-linear piecewise and fuzzy) can provide increased bias 

to the encoder heading while the robot is turning.

Figure 15. Position estimation using linear weighted fusion with encoder heading weighting functions. (a) 
Linear; (b) Non-linear piecewise; (c) Fuzzy

Figure 16. Difference between compass measurement and linear weighted fusion heading. (a) Linear; (b) 
Non-linear piecewise; (c) Fuzzy

3.2.4. Kalman Filter Fusion

Using the Kalman filter for encoder and compass heading fusion produces the estimated position shown in Figure 

17. This result is similar to the other methods and the estimated position remains within the boundaries of the 

corridor. The resulting variation between the compass heading and fused heading is shown in Figure 18. The 

difference between compass measurement and fused heading is larger than all three types of linear weighted 

fusion. This indicates that a higher weighting is provided to the encoder heading at low angular speeds as well as 

at higher angular speeds. This is likely due to the process variance (encoder variance) being smaller than the 

measurement variance (compass variance) over short distances.

Figure 17. Position estimation using the Kalman filter

Figure 18. Difference between compass measurement and Kalman filter fusion heading

3.2.5. Overall Comparison

For an overall comparison, the estimated positions produced by each fusion method have been plotted on a single 

graph and magnified to view the similarity at various sections of the corridor. Figure 19 highlights the estimated 

position in the upper section of the corridor. The estimated position in the middle section of the corridor is 

compared in Figure 20. Figure 21 illustrates the estimated positions towards the end of path. All three figures 

show the red and magenta lines corresponding to simple fusion and Kalman filter fusion tracking closest to the 

waypoints. Table 2 details the maximum error, mean error, and standard deviation from all waypoints. The lowest 

errors have been achieved for simple fusion and the Kalman filter.
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Table 2. Error analysis from all waypoints

F

Figure 19. Upper section of corridor comparison

Figure 20. Middle section of corridor comparison

Figure 21. End of path comparison. (a) Second last waypoint; (b) Last waypoint

3.2.6. Discussion

The position estimation results are sufficient for indoor corridor navigation in applications such as 

patrol/surveillance robots. The system can be improved by using sensors such as beacons to apply further 

corrections to positions over long periods of navigation. For example, there could be a beacon located at one end 

of the corridor that updates position data and resets the overall error after the robot loops around the corridor. Due 

to the robot being a custom-made in-house device, there are deviations in straight line travel due to steering wheel 

sensor and actuator noise. Occasionally, there are delays in communicating commands from the laptop base station 

to the robot. This can also produce fluctuations in the robot’s path. 

Simple fusion and linear weighted fusion rely on empirical measurements of angular acceleration and angular 

velocity to adjust the preference for using the encoder heading for position estimation. On the other hand, the 

Kalman filter relies on empirical measurements of the encoder heading estimate variance and the compass 

measurement variance. While the results are adequate for indoor corridor navigation using the conventional single 

model Kalman filter, an interacting multiple model (IMM) estimator could be applied to filter the entire trajectory 

rather than just heading. This would require the robot to employ constant turn and constant velocity motion. In 

the current implementation and in a dynamic environment this may not always be feasible.

Compared with other position estimation methods reviewed in section 1, the developed system produces slightly 

greater errors for indoor navigation without the use of a vision sensor. Alatise and Hancke (2017) used vision data 

to supplement mobile robot pose estimation and their RMS error for pose estimation is within 0.14 m. The low-

cost method for wheeled robot navigation developed by Khatib et al. (2020) produces an absolute error for 

trajectory tracking within 0.3 m. Qian et al. (2017) also use a visual sensor to achieve an average deviation of 

0.207 m from rectangular indoor production line paths. 

The implementation and results presented in this paper do not assume the presence of magnetic objects or 

obstacles. However, there may have been magnetic objects present in the building. Any effects have been 

Page 12 of 29Drone Systems and Applications (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

D
ro

ne
 S

ys
t. 

A
pp

l. 
D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

20
2.

14
.3

3.
23

7 
on

 0
2/

20
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



13

minimised by calibrating the compass before experimentation. The various parameters and thresholds employed 

in sensor fusion have been tuned for the robot used in the experiments. While the robot has a fixed operating speed 

range, changing the operating speed could influence thresholds and parameters. This could require re-calibration 

or re-turning via traversing standard paths. 

4. Conclusion

Position estimation is an important part of point-to-point navigation for mobile robots. This paper has presented 

a relatively low-cost solution for using an electronic compass to reduce positioning error on a wheeled tricycle 

mobile robot. The low-cost solution does not rely on cameras and associated expensive complex software such as 

MATLAB for image processing. Cost is also reduced by developing an in-house interface board and customised 

Visual Studio software for the electronic compass. 

The electronic compass heading data has been fused with the encoder odometry heading data in three different 

ways: simple fusion, linear weighted fusion, and Kalman filter fusion. Simple fusion relies on a single threshold 

parameter determined from angular acceleration. For linear fusion, three encoder heading weighting functions 

based on angular velocity have been evaluated: linear, non-linear piecewise, and fuzzy. The primary purpose of 

the encoder heading weighting function is to give higher preference to the electronic compass heading when the 

robot is not turning. Kalman filter fusion uses variance data for the encoders and electronic compass to determine 

an optimal heading. Experiments have been conducted in an indoor corridor environment to evaluate and compare 

the various fusion methods. Position error has been successfully reduced and is sufficient to locate the robot within 

the corridor.

Future improvements to the system could include the addition of exteroceptive sensors such as beacons to apply 

corrections over long periods of navigation. One or two beacons at the extreme boundaries of the corridor could 

be used to update position information and the reset the overall position error when the robot loops around the 

corridor. Incorporating a single axis gyroscope could provide a direct measurement of angular velocity to improve 

performance. A more expensive compass or a custom filter could also be used to improve performance by reducing 

lag. Additional future work can include the investigation of performance in static and dynamic obstacle 

environments.

Page 13 of 29 Drone Systems and Applications (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

D
ro

ne
 S

ys
t. 

A
pp

l. 
D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

20
2.

14
.3

3.
23

7 
on

 0
2/

20
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



14

Acknowledgements 

The author would like to thank the University of Waikato and Victoria University of Wellington for laboratory 

and equipment access to conduct the research.

Competing Interests 

The author declares there are no competing interests.

Funding 

This research was supported by University of Waikato internal research funding.

References

ALATISE, M. B. and HANCKE, G. P. 2017. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data 
and Vision Data Using an Extended Kalman Filter. Sensors, 17, 2164.

BAKLOUTI, E., AMOR, N. B., and JALLOULI, M. 2017. Reactive control architecture for mobile robot 
autonomous navigation. Robotics and Autonomous Systems, 89, 9-14.

BOUJELBEN, M., REKIK, C., and DERBEL, N. 2017. A reactive approach for mobile robot navigation in static 
and dynamic environment using fuzzy logic control. International Journal of Modelling, Identification 
and Control, 27, 293-302.

CARNEGIE, D., PAYNE, A., and CHAND, P. 2005. The Design of a Pair of Identical Mobile Robots to 
Investigate Cooperative Behaviours. In: V. KORDIC, A. L. A. M. M. (ed.) Cutting Edge Robotics. 
Croatia: IntechOpen.

CAWLEY, C. 2006. The Enhancement of a Multi-Terrain Mechatron for Autonomous Outdoor Applications. 
Master of Science MSc Thesis, University of Waikato.

CHAND, P. Fuzzy reactive control for wheeled mobile robots.  2015 6th International Conference on Automation, 
Robotics and Applications (ICARA), 17-19 Feb. 2015 2015 New Zealand. IEEE, 167-172.

CHAND, P., and CARNEGIE, D. 2011. Development of a navigation system for heterogeneous mobile robots. 
International Journal of Intelligent Systems Technologies and Applications, 10, 250-278.

CHEN, W., and ZHANG, T. 2017. An indoor mobile robot navigation technique using odometry and electronic 
compass. International Journal of Advanced Robotic Systems, 14, 1729881417711643.

DIGI-KEY. 2021. HMR3300 [Online]. New Zealand: Digi-Key. Available: 
https://www.digikey.co.nz/en/products/detail/honeywell-aerospace/HMR3300/396917 [Accessed 20 
September 2021].

FOX, D., BURGARD, W., and THRUN, S. 1997. The dynamic window approach to collision avoidance. IEEE 
Robotics & Automation Magazine, 4, 23-33.

FUNG, M. L., CHEN, M. Z. Q., and CHEN, Y. H. Sensor fusion: A review of methods and applications.  2017 
29th Chinese Control And Decision Conference (CCDC), 28-30 May 2017 2017. 3853-3860.

KAM, M., XIAOXUN, Z., and KALATA, P. 1997. Sensor fusion for mobile robot navigation. Proceedings of the 
IEEE, 85, 108-119.

KHATIB, E. I. A., JARADAT, M. A. K., and ABDEL-HAFEZ, M. F. 2020. Low-Cost Reduced Navigation 
System for Mobile Robot in Indoor/Outdoor Environments. IEEE Access, 8, 25014-25026.

Page 14 of 29Drone Systems and Applications (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

D
ro

ne
 S

ys
t. 

A
pp

l. 
D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

20
2.

14
.3

3.
23

7 
on

 0
2/

20
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



15

KVH. 2019. C100 Compass Engine - Innovative Stand-alone Heading Sensor [Online]. USA. Available: 
https://kpp-public.s3.amazonaws.com/DATASHEET+-+C100+Compass+Engine [Accessed 20 
September 2021].

LEE-JOHNSON, C. P., CHAND, P., and CARNEGIE, D. A. Applications of an Adaptive Hierarchical Mobile 
Robot Navigation System.  Australasian Conference on Robotics and Automation, 10-12 December 2007 
Brisbane, Australia. ARAA.

MOHAMED, A., REN, J., EL-GINDY, M., LANG, H., and OUDA, A. 2018. Literature survey for autonomous 
vehicles: sensor fusion, computer vision, system identification and fault tolerance. International Journal 
of Automation and Control, 12, 555-581.

PANDEY, A. 2017. Mobile robot navigation and obstacle avoidance techniques: A review. International Robotics 
& Automation Journal, 2, 96-105.

PATLE, B. K., BABU L, G., PANDEY, A., PARHI, D. R. K., and JAGADEESH, A. 2019. A review: On path 
planning strategies for navigation of mobile robot. Defence Technology, 15, 582-606.

PEARL, J. 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solving, Reading, MA, Addison-
Wesley.

QIAN, J., ZI, B., WANG, D., MA, Y., and ZHANG, D. 2017. The Design and Development of an Omni-
Directional Mobile Robot Oriented to an Intelligent Manufacturing System. Sensors, 17, 2073.

ROBOT-GEAR. 2009. Devantech CMPS14 - Tilt Compensated Compass Module [Online]. Australia: Robot 
Gear. Available: https://www.robotgear.com.au/Product.aspx/Details/6782-Devantech-CMPS14-Tilt-
Compensated-Compass-Module [Accessed 20 September 2021].

ULRICH, I., and BORENSTEIN, J. VFH+: reliable obstacle avoidance for fast mobile robots.  Proceedings of the 
1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), 20-20 May 
1998 1998. IEEE, 1572-1577 vol.2.

WELCH, G., and BISHOP, G. 2001. SIGGRAPH Course 8 - An Introduction to the Kalman Filter, California, 
USA, ACM.

ZHANG, J. A 2019. Hybrid Reactive Navigation Strategy for a Non-holonomic Mobile Robot in Cluttered 
Environments.  2019 Chinese Control Conference (CCC), 27-30 July 2019 China. IEEE, 3839-3844.

Page 15 of 29 Drone Systems and Applications (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

D
ro

ne
 S

ys
t. 

A
pp

l. 
D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

20
2.

14
.3

3.
23

7 
on

 0
2/

20
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



16

Table 1. Fuzzy weighting function rules.

Rule Input |𝝎| Output 𝒌𝒆 Rule Weight

1 Low Low 1

2 High High 1

Table 2. Error analysis from all waypoints

Fusion 
Method

Simple fusion Linear fusion 
with linear 
encoder 
weighting 
function

Linear fusion 
with non-linear 
piecewise 
encoder 
weighting 
function

Linear fusion 
with fuzzy 
encoder 
weighting 
function

Kalman filter

Maximum 
error (m)

0.443 0.479 0.473 0.473 0.452

Mean error 
(m) 

0.299 0.327 0.313 0.313 0.302

Standard 
Deviation (m)

0.145 0.117 0.133 0.132 0.143
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Figure Captions 

Figure 1. Tricycle robot hardware.

Figure 2. Schematic diagram of compass interface board.

Figure 3. Compass module. (a) Enclosure; (b) Placement on robot

Figure 4. Compass module demo and setup software.

Figure 5. Overview of robot control system.

Figure 6. Robot control system program. (a) Main controls and hardware tab; (b) Control tab

Figure 7. Reference point for position estimation of the tricycle robot.

Figure 8. Kalman filter cycle.

Figure 9. Indoor corridor environment with waypoints.

Figure 10. Membership functions of the fuzzy weighting function. (a) Input; (b) Output

Figure 11. Three encoder heading weighting functions for linear weighted fusion. (a) Linear; (b) Non-

linear piecewise; (c) Fuzzy

Figure 12. Position estimation using encoders only.

Figure 13. Position estimation using simple fusion.

Figure 14. Difference between compass measurement and simple fusion heading.

Figure 15. Position estimation using linear weighted fusion with encoder heading weighting functions. (a) 

Linear; (b) Non-linear piecewise; (c) Fuzzy

Figure 16. Difference between compass measurement and linear weighted fusion heading. (a) Linear; (b) 

Non-linear piecewise; (c) Fuzzy

Figure 17. Position estimation using the Kalman filter

Figure 18. Difference between compass measurement and Kalman filter fusion heading

Figure 19. Upper section of corridor comparison

Figure 20. Middle section of corridor comparison

Figure 21. End of path comparison. (a) Second last waypoint; (b) Last waypoint
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Figure 1. Tricycle robot hardware.

Figure 2. Schematic diagram of compass interface board.
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(a) (b)

Figure 3. Compass module. (a) Enclosure; (b) Placement on robot

Figure 4. Compass module demo and setup software.
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Figure 5. Overview of robot control system.

(a) (b)

Figure 6. Robot control system program. (a) Main controls and hardware tab; (b) Control tab

Page 20 of 29Drone Systems and Applications (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

D
ro

ne
 S

ys
t. 

A
pp

l. 
D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

20
2.

14
.3

3.
23

7 
on

 0
2/

20
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



21

Figure 7. Reference point for position estimation of the tricycle robot.

Figure 8. Kalman filter cycle.

Time Update (Prediction)

1. Predict next state  (12)𝜃 ―
𝑘

2. Predict error covariance  (13)𝑃 ―
𝑘

Measurement Update (Correction)

1. Compute Kalman gain  (14)𝐾𝑘

2. Update estimate with measurement  𝜃𝑘
(15)

3. Update error covariance (16)

Initial Estimates
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Figure 9. Indoor corridor environment with waypoints.

(a) (b)

Figure 10. Membership functions of the fuzzy weighting function. (a) Input; (b) Output
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Figure 11. Three encoder heading weighting functions for linear weighted fusion. (a) Linear; (b) Non-
linear piecewise; (c) Fuzzy
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Figure 12. Position estimation using encoders only.

Page 23 of 29 Drone Systems and Applications (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

D
ro

ne
 S

ys
t. 

A
pp

l. 
D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

20
2.

14
.3

3.
23

7 
on

 0
2/

20
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



24

-15 -10 -5 0 5 10 15 20
0

5

10

15

20

25

30

Simple fusion position

x coordinate (m)

y 
co

or
di

na
te

 (
m

)

Figure 13. Position estimation using simple fusion.
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Figure 14. Difference between compass measurement and simple fusion heading.
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Figure 15. Position estimation using linear weighted fusion with encoder heading weighting functions. (a) 
Linear; (b) Non-linear piecewise; (c) Fuzzy

Page 25 of 29 Drone Systems and Applications (Author Accepted Manuscript)

© The Author(s) or their Institution(s)

D
ro

ne
 S

ys
t. 

A
pp

l. 
D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

20
2.

14
.3

3.
23

7 
on

 0
2/

20
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



26

0 200 400 600 800 1000 1200
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Difference between compass measurement and fused heading

data sample

de
gr

ee
s

0 200 400 600 800 1000 1200
-8

-6

-4

-2

0

2

4

6
Difference between compass measurement and fused heading

data sample

de
gr

ee
s

(a) (b)

0 200 400 600 800 1000 1200
-8

-6

-4

-2

0

2

4

6
Difference between compass measurement and fused heading

data sample

de
gr

ee
s

(c)

Figure 16. Difference between compass measurement and linear weighted fusion heading. (a) Linear; (b) 
Non-linear piecewise; (c) Fuzzy
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Figure 17. Position estimation using the Kalman filter
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Figure 18. Difference between compass measurement and Kalman filter fusion heading
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Figure 19. Upper section of corridor comparison

0 1 2 3 4 5 6 7 8 9 10

16

17

18

19

20

21

22

23

x coordinate (m)

y 
co

or
di

na
te

 (
m

)

simple fused
linear weighted: linear
linear weighted: non-linear piecewise
linear weighted: fuzzy
Kalman filter

Figure 20. Middle section of corridor comparison
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Figure 21. End of path comparison. (a) Second last waypoint; (b) Last waypoint
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