

AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa

DOTTORATO DI RICERCA IN

MATEMATICA

Ciclo 34

Settore Concorsuale: 01/A5 – ANALISI NUMERICA

Settore Scientifico Disciplinare: MAT/08 – ANALISI NUMERICA

ORDER REDUCTION OF SEMILINEAR DIFFERENTIAL MATRIX AND

TENSOR EQUATIONS

Presentata da: Gerhardus Petrus Kirsten

Coordinatore Dottorato Supervisore

Valeria Simoncini Valeria Simoncini

Esame finale anno 2021

iii

Abstract
In this thesis, we are interested in approximating, by model order reduction, the solu-
tion to large-scale matrix- or tensor-valued semilinear Ordinary Differential Equations
(ODEs), as well as coupled systems of such equations. Under specific hypotheses on
the linear operators and the considered domain, these types of ODEs often stem from
the space discretization on a tensor basis of semilinear Partial Differential Equations
(PDEs) with a dimension greater than or equal to two. PDEs of this form and their
discrete counterparts play a significant role in the modeling and control of a large
number of complex systems of industrial relevance or scientific interest.

The bulk of this thesis is devoted to the case where the discrete system is a matrix
equation. We consider separately the cases of general Lipschitz continuous nonlinear
functions and the Differential Riccati Equation (DRE) with a quadratic nonlinear
term. In both settings, we construct a pair of left-right approximation spaces that
leads to a reduced semilinear matrix differential equation with the same structure as
the original problem, which can be more rapidly integrated with matrix-oriented inte-
grators. The particular structure of the DRE, however, allows several computational
advantages. More precisely, under certain assumptions on the data, we show that a
reduction process onto rational Krylov subspaces obtains significant computational
and memory savings as opposed to current approaches. Moreover, the nonlinear term
can be explicitly projected onto the low-dimensional space.

In the more general setting, a challenging difference lies in selecting and constructing
the two approximation bases to handle the nonlinear term effectively. In addition,
the nonlinear term also needs to be approximated for efficiency. To this end, in the
framework of the Proper Orthogonal Decomposition (POD) methodology and the
Discrete Empirical Interpolation Method (DEIM), we derive a novel matrix-oriented
reduction process leading to a practical, structure-aware low order approximation
of the original problem. Furthermore, the reduction of the nonlinear term is also
performed utilizing a fully matricial interpolation using left and right projections
onto two distinct reduction spaces, giving rise to a new two-sided version of DEIM.

In the final part of the thesis, we consider the multidimensional setting. Here we
extend the matrix-oriented POD-DEIM algorithm to the tensor setting and illustrate
how we can apply it to systems of such equations. Moreover, we discuss how to
integrate the reduced-order model and, in particular, how to solve the tensor-valued
linear system arising at each timestep of a semi-implicit time discretization scheme.
All proposed methods are supported by numerical experiments on typical benchmark
problems, with comparisons to existing state-of-the-art procedures.

v

Acknowledgements
Writing a thesis of this magnitude, especially in a foreign country, is a daunting task
if not surrounded by a beneficial support structure. I was aware of the challenges
lying ahead when I first arrived in Italy. Still, I would have never imagined how
uncomplicated these three years would end up being. There are many people to
thank for this, but none more than my supervisor Prof. Valeria Simoncini. It has
been an absolute privilege working under her profound leadership. Not only did she
guide me in the best possible academic way to complete my thesis in three years while
offering me many networking and traveling opportunities, but she also cared about
my personal life and happiness in Italy. For that, I am very grateful.

I have been privileged to have been raised by two academically influential parents. I
have never had a fear of studying, thanks to the incredible academic leadership that
they have offered me. It hasn’t been any different in the past three years, despite liv-
ing on other ends of the globe. I am also extremely grateful for how they unselfishly
motivated me to go and live and study abroad. In his absence, I also need to acknowl-
edge my grandfather. His academic aura also greatly encouraged me to work towards
getting a Ph.D. of my own.

Then, I certainly also need to acknowledge the friends I have made in Bologna, as well
as my friends back home. I am a big believer in “work hard, play hard”, and it has
been an absolute pleasure to spend the more relaxed moments in these three years
with the most exciting people who are now scattered all over the world.

Finally, I need to acknowledge the institute of advanced studies (ISA). Prof. Braga
and his colleagues accepted me as an international ISA fellow at the beginning of the
Ph.D. program. This enabled me to live for free in Bologna and offered me exciting
networking opportunities.

vii

Contents

Introduction 3
Motivation and goal . 3
Thesis outline and scope . 7

1 Preliminaries 11
1.1 Notation and preliminary definitions 11
1.2 Matrix and tensor-based discretization of semilinear PDEs 13
1.3 Tools for model order reduction . 16

1.3.1 Krylov subspaces and Arnoldi relations 16
1.3.2 The Proper Orthogonal Decomposition (POD) 18
1.3.3 The Discrete Empirical Interpolation Method (DEIM) 19

2 Matrix Methods for Semilinear ODEs 23
2.1 Semi-Implicit (SI) methods for semilinear ODEs 24

2.1.1 Matrix methods, convergence and stability 24
2.1.2 Implementation details . 29
2.1.3 Numerical comparison the schemes 32

2.2 Matrix methods for the DRE . 34
2.2.1 Fully implicit methods . 35
2.2.2 Splitting methods . 38

2.3 Concluding remarks . 39

3 The Differential Riccati Equation 41
3.1 Order reduction with Krylov-based subspaces 44
3.2 Stopping criterion and the complete algorithm 46
3.3 Stability analysis and error bounds . 48
3.4 Numerical experiments . 52
3.5 Concluding remarks . 61

4 Semilinear ODEs with General Nonlinear Term 63
4.1 Review of POD-DEIM . 64
4.2 A matrix-oriented POD-DEIM algorithm 65

4.2.1 A new two-sided POD . 66
4.2.2 Connections to other matrix-based interpolation POD strategies 69
4.2.3 A dynamic implementation . 70

viii

4.2.4 Approximation of the nonlinear function 71
4.2.5 Efficient treatment of the reduced semilinear ODE 74
4.2.6 Numerical experiments . 77

4.3 Concluding remarks . 85

5 The Multidimensional Setting 87
5.1 POD-DEIM in the Multidimensional Setting 89
5.2 Order reduction of coupled systems of array-valued ODEs 95
5.3 Numerical experiments . 97
5.4 Concluding Remarks . 108

6 Conclusion and Future Work 109

Bibliography 113

ix

List of Figures

2.1 Expected accuracy of the semi-implicit schemes 33
2.2 CPU time comparison between matrix and vector integrators 34
2.3 Typical convergence of BDF methods 38

3.1 sym2d: Convergence history for eksm-dre and rksm-dre 54
3.2 nsym3d: Convergence history for eksm-dre and rksm-dre 54
3.3 chip: Convergence history for eksm-dre and rksm-dre. 54
3.4 flow: Convergence history for eksm-dre and rksm-dre. 55
3.5 rail: Convergence history for eksm-dre and rksm-dre. 55
3.6 Expected accuracy for rksm-dre and split-add4(500) 60

4.1 The three evaluation phases of the refinement procedure. 70
4.2 Initial state, final state and route of F(U1, t) 79
4.3 Initial state, final state and route of F(U2, t) 80
4.4 Snapshot matrix singular value decay for both functions 80
4.5 Average relative error for both functions for increasing p1, p2. 81
4.6 Singular values and average relative error in the vector setting 81
4.7 Number of retained snapshots w.r.t. τ 85

5.1 Investigation of online CPU time w.r.t. relative error 99
5.2 Exact and approximate solutions of the coupled 2D Burgers eq. (1) . . 100
5.3 Exact and approximate solutions of the coupled 2D Burgers eq. (2) . . 101
5.4 Average relative error from the exact solution 101
5.5 2D Offline/online comparison ho-pod-deim and pod-deim 103
5.6 3D offline time comparson between ho-pod-deim and pod-deim . . . 104
5.7 The effect of the t3-sylv linear solver 105

xi

List of Tables

1.1 Summary of basis matrix notation . 11

2.1 Summary of coefficient matrices for different schemes 30
2.2 Coefficients of the s-step BDF method 36

3.1 Relevant information concerning the experimental data 53
3.2 Breakdown of computational time for rksm-dre and eksm-dre . . . 56
3.3 Data for comparisons between projection methods and m.e.s.s. 57
3.4 sym2d: Comparison of rksm-dre, eksm-dre and m.e.s.s. 57
3.5 nsym3d: Comparison of rksm-dre, eksm-dre and m.e.s.s. 58
3.6 flow: Comparison of rksm-dre, eksm-dre and m.e.s.s. 59
3.7 rail: Comparison of rksm-dre, eksm-dre and m.e.s.s. 59
3.8 Comparison of rksm-dre and split-add4(500) 60
3.9 sym2d: Results with rksm-dre, using different refinements. 61

4.1 Leading dimensions and parameters of Algorithm 2s-pod-deim 75
4.2 Offline cost comparison between pod-deim and 2s-pod-deim. 77
4.3 Performance of dynamic, vanilla and vector algorithms for n = 2000. 79
4.4 Performance of dynamic and vector algorithms for n = 1000 83
4.5 CPU time and memory of 2s-pod-deim and pod-deim 84

5.1 Dim. of ho-pod and ho-deim bases obtained for different τ 98
5.2 A comparison of ho-pod-deim to pod-deim for the 2D Burgers eq. . 102
5.3 Basis dimension and relative error for the coupled 3D Burgers eq. . . . 106
5.4 Memory and CPU time required for basis construction and integration 106
5.5 Dim. of ho-pod and ho-deim bases for the cell apoptosis model . . . 108

xiii

List of Algorithms

1.1 One step of standard Block Arnoldi with MGS 17
1.2 DEIM . 20
1.3 Q-DEIM . 21
2.1 Matrix-Oriented Exponential Euler (Eigenvalue decomposition) 31
2.2 s-step BDF method – BDF(s, nt) . 36
3.1 RKSM-DRE . 48
3.2 EKSM-DRE . 49
4.1 Dynamic Selection . 68
4.2 Dynamic Two-Sided POD . 71

xv

List of Abbreviations

2S-DEIM Two Sided Discrete Empirical Interpolation Method
2S-POD Two Sided Proper Orthogonal Decomposition
ARE Algebraic Riccati Equation
BDF Backward Difference Formulae
CFL Courant-Friedrichs- Lewy
DEIM Discrete Empirical Interpolation Method
DRE Differential Riccati Equation
EIM Empirical Interpolation Method
EKSM Extended Krylov Subspace Method
ETD Exponential Time Differencing
HO-DEIM Higher Order Discrete Empirical Interpolation Method
HO-POD Higher Order Proper Orthogonal Decomposition
IMEX IMplicit–EXplicit
MGS Modified Gram Schmidt
ODE Ordinary Differential Equation
PDE Partial Differential Equation
POD Proper Orthogonal Decomposition
RKSM Rational Krylov Subspace Method
SI Semi Implicit
STHOSVD Sequentially Truncated Higher Order Singular Value Decomposition
SVD Singular Value Decomposition

1

Aan Oupa Grootbeer.

3

Introduction

Motivation and goal

Besides theoretical analysis and experimentation, computational science and engineer-
ing disciplines can be seen as the third pillar of the 21st century. It is mentioned in
[45] that

computational science is a rapidly growing multidisciplinary field that uses
advanced computing capabilities to understand and solve complex problems.

A common practice in computational science and engineering involves the efficient
simulation of dynamical systems; this forms a basis for modeling and control of a
large collection of complex systems of industrial importance or scientific interest. A
condensed list of examples includes heat transfer, fluid dynamics, electric circuit anal-
ysis, biological systems, aeronautical engineering, and chemical reactant flows.

These dynamical systems typically stem from the discretization of an underlying par-
tial differential equation (PDE). With the rapid increase in computational power and
industrial demand, two interconnected issues lead to an increase in the complexity of
the discretized models. Firstly, the need for improved accuracy in the approximation
of the continuous problem results in more detail required in the modeling stage. That
is an increase in the dimension of the discrete dynamical system, which results in more
extensive memory requirements and higher computational complexity in the simula-
tion of the model. Secondly, the demand for improved system performance results in
repetitive simulation of different realizations of the complex dynamical system, which
ultimately leads to unmanageably great demands on the available computational re-
sources.

A related issue is that to capture real-life applications’ dynamics efficiently, the con-
sidered models are often nonlinear and even parameter-dependent. It is well-known
that nonlinear models are far more challenging to solve than their linear counterparts,
making the simulation of these large-scale, complex models even more cumbersome.
As a result, alleviating this computational burden – in terms of memory require-
ments and computational complexity – is the foundation of model order reduction;
the derivation of efficient low-dimensional models that can provide similar accuracy
to the high-fidelity model, but at a fraction of the computational complexity. The
success of model order reduction is due to the observation that the solutions of the

4

considered systems are typically not scattered all over the high-dimensional solution
space. Instead, they generally are attracted to a low-dimensional manifold, which can
be well approximated by a low-dimensional (linear) reduced space.

An extensive literature is dedicated towards model order reduction of dynamical sys-
tems of the form

u̇(t) = Lu(t) + f(u, t) + c, u(0) = u0, (1)

where the solution u is a vector withN entries and f is a nonlinear function; see for ex-
ample [11] and the recent survey [25] and the references therein. Standard techniques
for reducing the dimension of (1) rely on constructing a low-dimensional approxima-
tion space based on information obtained from the high-fidelity model. These are
typically referred to as snapshots of the full order model. Then, once the basis vectors
spanning the approximation space have been obtained, the original data is projected
onto the low-dimensional space. As a result, a reduced model of the form (1) can
be rapidly simulated for different realizations of the problem, with a computational
complexity independent of the full dimension N . Nevertheless, despite an extensive
effort towards decreasing the complexity of the reduced model, the overwhelming
computational cost and memory requirements of constructing the basis vectors from
high-fidelity simulations remain a concern.

In this thesis we aim to address precisely this issue. By taking full account of the
structure of the original problem under certain assumptions on the underlying model,
the dynamical system (1) can be recast into an array (i.e., matrix or tensor) formula-
tion, which may lead to a better structural understanding of the problem and reduced
memory requirements. Consequently, we are interested in numerically approximating,
by model order reduction, the solution UUU ∈ S of the following semilinear matrix- or
tensor-valued ordinary differential equation (ODE)

U̇UU(t) = A(UUU(t)) + F(UUU , t) + CCC, UUU(0) = UUU0, t ∈ [0, tf] = T. (2)

Here CCC is a constant term, A : S → R is a linear operator, the function F : S×T → R is
a nonlinear function that can be evaluated elementwise, S is an appropriate functional
space containing the sought after solution, and R is the appropriate matrix or tensor
space, dependent on the dimensions of the discretization. ODEs of this form typically
arise from the discretization of high-dimensional semilinear PDEs (dimension two or
higher) on a tensor basis, for certain choices of the physical domain [51, 123, 142].

The bulk of the thesis is devoted to the setting where UUU(t) is a matrix U(t) ∈ Rn1×n2 .
Accordingly, (2) can be reformulated as the following semilinear matrix differential
equation

U̇(t) = A1U(t) +U(t)A2 + F(U , t) +C, U(0) = U0, (3)

where A1 ∈ Rn1×n1 ,A2 ∈ Rn2×n2 ,C ∈ Rn1×n2 are constant matrices, independent
of t. In this thesis, we develop matrix-oriented order reduction strategies for the

5

problem (3) that leads to a semilinear matrix differential equation with the same
structure as (3), but of significantly reduced dimension. More precisely, we determine
an approximation to U(t) of the type

V1Û(t)V >2 , t ∈ T (4)

where V1 ∈ Rn1×k1 and V2 ∈ Rn2×k2 are matrices to be determined, independent
of time, where k1, k2 � n1, n2 and Û(t) is a far smaller matrix. The function Û(t)

is determined as the numerical solution to the following reduced semilinear matrix
differential problem

˙̂
U(t) = Â1Û(t) + Û(t)Â2 + F(Û , t)

∧

+ Ĉ

Û(0) = V >1 U0V2,
(5)

with Â1 = V >1 A1V1, Â2 = V >2 A2V2, Ĉ = V >1 CV2, and F(Û , t)

∧

is an approximation
to

F̂(Û , t) = V >1 F(V1ÛV
>

2 , t)V2 (6)

if the explicit computation of (6) is not feasible in low-dimension.

For F ≡ 0, the equation (3) simplifies to the differential Sylvester equation, for which
reduction methods have shown to be competitive; see, e.g., [20] and references therein.
If the function F has a special quadratic structure of the form F(U , t) ≡ −U(t)BU(t),
with B ∈ Rn2×n1 , the resulting ODE is known as the Differential Riccati Equation
(DRE), which plays a primal role in the optimal control of linear dynamical systems
with quadratic cost functions [1, 46, 105]. Approximations of the form (4) are also
not unheard of in this quadratic context. Indeed, the authors of [99] and [75] have
independently applied an approximation of the form (4) to approximate the solution
of the DRE, under certain assumptions on the considered data. Their approaches
are realized by applying polynomial and extended Krylov subspaces as approximation
spaces; see, e.g., [11] for further details regarding these approximation spaces. Further-
more, a similar approximation is considered in [21], where the approximation space
stems from the (low-rank) solution of the related Algebraic Riccati Equation (ARE).
Consequently, since approximations of the form (4) are not novel for the DRE, our
contribution towards this quadratic context, which we treat separately from the more
general setting, can rather be formulated as follows:

Contribution 1. We show that, under certain assumptions on the data, a reduc-
tion process onto rational Krylov subspaces obtains great computational and memory
savings as opposed to current approaches. This reduction process is realized by specif-
ically addressing the solution of the reduced differential equation and reliable stopping
criteria, which allows us to obtain accurate final approximations at low memory and
computational requirements.

6

The unique quadratic structure of the DRE simplifies the reduction procedure. This is
because Krylov subspaces which are typically applied to linear equations, approximate
the solution to the quadratic problem well, as discussed in [19, 21, 141, 144], and
the explicit computation of (6) can be done in low dimension. However, in the more
general context, where F is considered as any Lipschitz continuous nonlinear function,
the reduction process is undoubtedly more challenging. A significant difference lies
in the selection and construction of the two matrices V1,V2, to effectively handle
the nonlinear term in (3). In addition, by definition of (6), the reduction of the
nonlinear term requires evaluating F in high dimension before projection onto the
low-dimensional subspace, resulting in a computational cost dependent on the full
space dimension. To this end, the nonlinear function also needs to be approximated
for efficiency.

By stacking the columns of the matrix U(t) one after the other into a long vector,
a collection of existing approaches typically map the matrix-valued problem (3) to
the vectorized dynamical system (1), for which order reduction is a well-established
procedure. Among various methods, the Proper Orthogonal Decomposition (POD)
methodology has been widely employed, as it mainly relies on solution samples, rather
than the a-priori generation of an appropriate basis [27],[24],[82],[104]. Other ap-
proaches include reduced basis methods, see, e.g., [124], and rational interpolation
strategies [10]; see, e.g., [23] for an overview of the most common reduction strategies.
The overall effectiveness of the POD procedure is largely influenced by the capability
of evaluating the nonlinear term within the reduced space, motivating a considerable
amount of work towards this estimation, including quadratic bilinear approximation
[25, 73, 101] and trajectory piecewise-linear approximation [162]. Alternatively, sev-
eral approaches consider interpolating the nonlinear function, such as missing point
estimation [15] and the best points interpolation method [120]. One very successful
approach is the Discrete Empirical Interpolation Method (DEIM) [41], which is based
on the Empirical Interpolation Method (EIM) originally introduced in [17].

As mentioned earlier, a shortcoming of this framework is the massive computational
and storage demand when constructing the reduced model. Even when simulating the
reduced model, several vectors of lengthN need to be stored to lift the low-dimensional
functions back to the full dimension. In this thesis, we strive to contribute precisely to
this shortcoming, focusing on POD for dimension reduction and DEIM to interpolate
the nonlinear function.

Contribution 2. We devise a matrix-oriented POD approach tailored towards the
construction of the matrix reduced problem formulation (5); this is realized with the
generation of the pair V1,V2 of left and right space bases, respectively, for the repre-
sentation in (4). In addition, we develop an adaptive procedure to limit the number of
snapshots that contribute to the generation of the approximation spaces. The reduc-
tion of the nonlinear term is also performed employing a fully matricial interpolation

7

using left and right projections onto two distinct reduction spaces, giving rise to a new
two-sided version of DEIM.

The idea of using left and right reduction bases in a matrix-oriented setting is not
new in the general context of semilinear differential equations (see Section 4.2.2).
Nonetheless, after reduction, these strategies resume the vector form of (5) for inte-
gration purposes, thus losing the structural and computational benefits of the matrix
formulation. We claim that once (5) is obtained, matrix-oriented integrators should
be employed. In other words, by combining matrix-oriented versions of POD,
DEIM, and ODE integrators, we can carry the whole approximation with
explicit reference to the two-dimensional computational domain.

The advantages of the proposed matrix-oriented methodology become even more ap-
parent in the three-dimensional (3D) case. In the final part of the thesis, we explore
precisely this extension to the tensor setting as well as the application to coupled
systems of equations of the form (2). This extension naturally presents some ex-
tra challenges in comparison to the two-dimensional setting. Firstly, the increase in
dimension requires unmanageably large demands on the computational resources, es-
pecially if the system is vectorized. Furthermore, if the system is not vectorized but
instead reduced in such a way that the structure of (2) is preserved, the integration
of such a reduced system is not a trivial task without reverting to vectorization. We
contribute to this challenging problem as follows:

Contribution 3. We investigate the possibility of applying a higher-order POD-
DEIM algorithm to the system (2) to form a tensor-valued reduced model with the
same structure as the original problem. Furthermore, we illustrate how standard ODE
solvers can be applied to tensor-valued differential equations and how to solve the
resulting linear systems. We also discuss how to efficiently treat coupled systems of
equations of the form (2), which typically arise in real-life simulations.

Thesis outline and scope

The thesis is organized as follows:

z Chapter 1 is introductory. We discuss important notation and preliminary defi-
nitions in Section 1.1, and illustrate how to derive the problem (2) from the space
discretization of semilinear evolutive PDEs in Section 1.2. In Section 1.3 we
present some crucial tools for model reduction. More precisely, Krylov subspaces
and their related Arnoldi relations are discussed in Section 1.3.1, whereas the
standard POD and DEIM methods are respectively presented in Sections 1.3.2
and 1.3.3.

8

z Chapter 2 is both introductory and motivational. We present matrix-oriented
versions of standard integrators, tailored towards ODEs of the form (3). Sec-
tion 2.1 is devoted to semi-implicit (SI) matrix methods for general semilinear
ODEs. In particular, in Section 2.1.1 we present the methods, derive their ma-
trix formulations and discuss their convergence and stability properties. The
efficient implementation of the procedures is discussed in Section 2.1.2, and
comparisons to vector-based schemes are presented in Section 2.1.3. Section 2.2
presents matrix methods for the quadratic DRE. More precisely, the fully im-
plicit matrix-oriented BDF methods and splitting schemes are respectively pre-
sented Sections 2.2.1 and 2.2.2. Our conclusions are formulated in Section 2.3.

z Chapter 3 is dedicated towards semilinear ODEs of the form (3) with a special
quadratic nonlinear term, i.e., the DRE. In Section 3.1 we introduce reduction
methods for the DRE and discuss the use of Krylov subspace-based strategies.
In Section 3.2 we devise a stopping criterion for the order reduction methods
and illustrate its vital role in the implementation. Section 3.3 is devoted to
the analysis of matrix properties of the solution, as well as the reduced model,
from a control theory perspective. Several numerical experiments are reported
in Section 3.4, where the new methods are also compared with state-of-the-art
procedures. Our conclusions are discussed in Section 3.5.

z Chapter 4 treats the matrix setting with general nonlinear terms. We first re-
view how the standard POD-DEIM algorithm is applied to systems of the form
(1), after which our new two-sided POD-DEIM algorithm is presented in Sec-
tion 4.2. In particular, the two-sided POD is derived in Section 4.2.1, and in Sec-
tion 4.2.2 we discuss the relation to other matrix-based interpolation strategies.
In Section 4.2.3 we present a dynamical procedure for selecting the snapshots.
Section 4.2.4 is devoted to the crucial approximation of the nonlinear function
by the new two-sided DEIM. The overall new procedure with the numerical
treatment of the reduced differential problem is summarized in Section 4.2.5,
together with technical implementation details and computational costs. Nu-
merical experiments are reported in Section 4.2.6 to illustrate the effectiveness
of the proposed procedure, and our conclusions are presented in Section 4.3.

z In Chapter 5 we extend the procedure from Chapter 4 to three dimensions.
More precisely, in Section 5.1 we extend POD-DEIM to the tensor setting and
discuss several crucial implementational aspects such as time discretization and
the solution of tensor linear systems. We illustrate how the new procedure can be
applied to systems of array-valued ODEs in Section 5.2, and the efficiency of the
method is illustrated by numerical experiments in Section 5.3. Our conclusions
are formalized in Section 5.4.

z The thesis is concluded with a discussion of results, shortcomings and future
research lines in Chapter 6.

9

Since the bulk of the thesis is devoted to the setting where (2) is a matrix equation,
we will retain the matrix notation of (3) throughout the thesis and only revert to
the tensor notation in Chapter 5. See Section 1.1 for a discussion regarding further
notational nuances.

Software

All reported experiments have been performed using MATLAB 9.9 (R2020b) [113]
on a MacBook Pro with 8-GB memory and a 2.3-GHz Intel core i5 processor. The
codes implementing the main algorithms developed in Chapters 3, 4 and 5 can be
downloaded from

https://github.com/Gerhard-Kirsten

Each package includes a driver implementing one of the experiments reported in the
respective chapters together with the source code.

11

Chapter 1

Preliminaries

1.1 Notation and preliminary definitions

Here we overview the main notation used in this thesis and recall some essential
definitions used in the sequel.

General notation.

Scalar quantities are indicated by lower case letters, and vectors are denoted by bold-
face lower case letters. Tensors are given by boldface, curly upper case letters, spaces
by standard upper case letters and operators by standard curly upper case letters.
Matrices are mainly given by boldface upper case letters; however, matrix blocks are
denoted by upper case sans serif font, that is M = [M1,M2]. In denotes the n × n
identity matrix and 0n denotes the n× n matrix of zeros. The subscript n is omitted
if the dimension is clear from the context. For a matrixM , ‖M‖ denotes the matrix
norm induced by the Euclidean vector norm, and ‖M‖F is the Frobenius norm.

Notation used for model reduction.

All reduced dimensional quantities are emphasized with a ‘̂’. In this thesis, we con-
sider several different subspaces for reduced-order modeling. In Table 1.1 we summa-
rize the notation used for the different basis matrices, that is, the matrices containing
the orthonormal basis vectors spanning the respective subspaces. Notice that in order
to avoid ambiguity, we use curly letters for the Krylov subspaces instead of boldface.

Table 1.1: Summary of the different notation used for basis matrices.

Matrix Description Dimension
Vk Krylov subspace basis matrix obtained after k iterations nv
Vvec POD basis matrix in the vector setting k
Φvec DEIM basis matrix in the vector setting p
Vm POD basis matrix in the mth mode km
Φm DEIM basis matrix in the mth mode pm
Vm,i POD basis matrix in the mth mode for the ith equation kmi
Φm,i DEIM basis matrix in the mth mode for the ith equation pmi

12 Chapter 1. Preliminaries

For all reduced quantities stemming from projection onto a Krylov subspace, we will
emphasize the number of iterations needed to obtain the reduced model with a sub-
script k, e.g., M̂k = V>k MVk. In the more general setting (that it, not Krylov
subspaces), the subscript m always refers to the mode (see below) along which the
matrix is acting. Furthermore, to differentiate between time instances used for the
full and reduced models, we respectively use the notation tj and tj . Finally, the
low-rank decomposition of a rank r symmetric matrix M ∈ Rn×n will be written as
M = M `

(
M `

)>, with M ` ∈ Rn×r, where r � n.

Tensor notation and definitions.

For a third-order tensor TTT ∈ Rn1×n2×n3 , the unfolding along the third mode is given
by (see e.g., [97])

TTT (3) =
(
T1,T2, · · · ,Tn2

)
,

where TTT (3) is a matrix in Rn3×n1n2 , and Ti ∈ Rn3×n1 , i = 1, 2, . . . , n2 is called a lateral
slice. The multiplication of a tensor by a matrix, along a specific mode is done via
the m−mode product, which, for a tensor TTT ∈ Rn1×n2×n3 and a matrixM ∈ Rn×nm ,
we express as

QQQ = TTT ×mM ⇐⇒ QQQ(m) = MTTT (m).

The Kronecker product of two matrices M ∈ Rm1×m2 and N ∈ Rn1×n2 is defined as

M ⊗N =

M1,1N · · · M1,m2N

...
. . .

...
Mm1,1N · · · Mm1,m2N

 ∈ Rm1n1×m2n2 ,

and the vec(·) operator maps the entries of a matrix, into a long vector, by stacking
the columns of the matrix one after the other. The vectorization operator is applied
to a third-order tensor via the first mode unfolding. Moreover, we will often make use
of the property

(M ⊗N)vec(X) = vec(NXM>). (1.1)

As a result, if XXX ∈ Rn1×n2×n3 , and X = XXX>(3), then

(L⊗M⊗N)vec (XXX) = vec
(

(M⊗N)XL>
)
. (1.2)

More properties used in the sequel are (see, e.g., [70]): (i) (M ⊗N)> = M> ⊗N>;
(ii) (M1 ⊗N1)(M2 ⊗N2) = (M1M2 ⊗N1N2); (iii) ‖M ⊗N‖2 = ‖M‖2‖N‖2; and
(iv) (M ⊗N)−1 = M−1 ⊗N−1, where property (iv) holds if and only if both M
and N are invertible.

Further preliminary definitions.

A matrix M is stable (sometimes also called Hurwitz) if all its eigenvalues are con-
tained in the left half-open complex plane. A linear dynamical system, ẋ = Ax, is

1.2. Matrix and tensor-based discretization of semilinear PDEs 13

called dissipative if the real matrix A has its field of values contained in the left half
open complex plane. Furthermore, a pair (A,B`), with A ∈ Rn×n, B` ∈ Rn×nb and
nb ≤ n, is said to be stabilizable (or controllable) if the matrix(

B`,AB`, . . . ,An−1B`
)

has full rank, i.e., rank n. A pair (A,C`) is detectable (or observable) if (A>, (C`)>)
is stabilizable.

We define SSS ∈ Rn1×···×nd×ns as a snapshot tensor of order d+1 containing a collection
of ns tensor snapshots of order d. In the well-known case where the snapshots are
vectors, this operation corresponds to collecting the vector snapshots into a snapshot
matrix. Instead, we will sometimes deal with snapshots of higher dimensions, which
results in the definition of a snapshot tensor.

Finally, we will often refer to the offline and online phases of the model reduction
procedure. The offline phase is a computationally demanding phase, typically per-
formed once, where high-fidelity snapshots are determined and processed to construct
the basis vectors spanning the reduced space. Once the reduced model has been de-
termined, it can be rapidly and efficiently simulated for different realizations of the
model in the online phase, preferably with a computational cost independent of the
full space dimension.

1.2 Matrix and tensor-based discretization of semilinear
PDEs

Here we illustrate how, under certain assumptions, semilinear evolutive PDEs can be
discretized and represented in matrix or tensor form. Consider a semilinear evolutive
PDE of the form

ut = L(u) + f(u, t) + c(x), u = u(x, t) with x ∈ Ω ⊂ Rd, t ∈ T, (1.3)

with suitable boundary consitions. We assume that the differential operator L is
linear in u with seperable coefficients, typically a second order operator in the space
variables, while f : Spde × T → R is a Lipschitz continuous nonlinear function, where
Spde is an appropriate space with u ∈ Spde. In this section we illustrate that under
certain hypotheses, the continuous PDE (1.3) can be discretized directly in matrix
(tensor) form when d = 2 (d > 2); see e.g., [51, 123, 142]. In addition to a better
structural interpretation of the discrete quantities, this formulation can also lead to
reduced memory requirements and computational costs.

Standard procedures employ a vector-oriented approach: semi-discretization of (1.3)
in space, such as finite difference and finite element methods, leads to the following

14 Chapter 1. Preliminaries

system of ordinary differential equations (ODEs)

u̇(t) = Lu(t) + f(u, t) + c, u(0) = u0. (1.4)

For t > 0, the vector u(t) contains the representation coefficients of the sought after
solution in the chosen discrete space, L ∈ RN×N accounts for the discretization of the
linear differential operator L and f is evaluated componentwise at u(t). Furthermore
c ∈ RN is a constant vector. If finite differences are the considered space discretization
scheme, then N =

∏d
m=1 nm, where nm is the number of discretization nodes in the

mth spatial direction.

Instead, if L is discretized by means of a tensor basis, such as finite differences on
parallelepipedal domains and certain spectral methods, then the physical domain can
be mapped to a reference hypercubic domain Ω = [a1, b1] × · · · × [ad, bd]. Hence, it
holds that1 (see e.g., [123])

L =

d∑
m=1

Ind
⊗ · · · ⊗

m
Am ⊗ · · · ⊗ In1 ∈ RN×N , (1.5)

where Am ∈ Rnm×nm contains the approximation of the second derivative in the
xm direction. The vector u(t) ∈ RN from (1.4) then represents the vectorization of
the elements of a tensor UUU(t) ∈ Rn1×···×nd , such that u(t) = vec (UUU(t)), and Lu =

vec (A(UUU)), where2

A(UUU) :=
d∑

m=1

UUU ×m Am. (1.6)

Moreover, if the function F : Sten × T → Rn1×···×nd respresents the function f evalu-
ated at the entries of UUU , then it holds that f(u, t) = vec(F(UUU , t)), and (1.4) can be
written in the form

U̇UU(t) = A(UUU(t)) + F (UUU(t), t) + CCC, UUU(0) = UUU0. (1.7)

The boundary conditions are contained in the matrices Am; see, e.g., [51, 123] for the
case where d = 2.

In the latter part of the thesis, we will also consider PDEs with nonlinear functions
depending on the gradient ∇u. In this setting, the nonlinear function in the vectorized
model (1.4) will also depend on the term Du, where D ∈ RN×N accounts for the
discretization of the gradient operator. Under the same assumptions considered above,
it holds that

D =

d∑
m=1

Ind
⊗ · · · ⊗

m
Dm ⊗ · · · ⊗ In1 ∈ RN×N ,

1We display the discretized Laplace operator, but more general operators can also be treated; see,
e.g. [142, Section 3].

2For the case d = 2, (1.6) is a Sylvester operator of the form A1U + UA>2 [142].

1.2. Matrix and tensor-based discretization of semilinear PDEs 15

where Dm ∈ Rnm×nm contains the approximation of the first derivative in the xm di-
rection and Du = vec (D(UUU)), so that the nonlinear function in (1.7) will additionally
depend on the tensor

D(UUU) :=

d∑
m=1

UUU ×mDm.

If, instead, the underlying model is a coupled system of PDEs, the discretization pro-
cedure described above can be applied independently to each equation in the system;
see Chapter 5.

This derivation has focused on parallelepipedal computational domains discretized
using finite differences, which is the setting we will address for the remainder of
this thesis. Achieving a matrix (tensor) formulation of the problem is, however, not
restricted to this setting. In fact, several discretization techniques have been used to
rewrite the discrete problem in array form, as long as a tensor-based decomposition
is used. Apart from finite differences, this includes isogeometric analysis [9, 112, 137],
a collection of spectral methods [63] and certain finite elements [65].

The array formulation of spatial methods for PDEs is also not restricted to simple par-
allelepipedal computational domains. Indeed, a wide range of computational strategies
has been derived to map the physical domain to a simpler reference domain. For ex-
ample, in the case of curved boundaries in two or three dimensions, bilinear projectors
have been used for the mapping; see e.g., [61, 96]. Other PDE-based techniques such
as elliptic grid generators have also been extensively employed, especially for fluid
and air dynamics applications [40, 96, 154]. More recently, conformal mappings have
been applied in [78] to address more general polygonal domains in two dimensions,
and x-normal domains have been tackled using finite elements in [65]. In [112] more
general domains defined through splines or NURBS are considered and the matrix
formulation is achieved through a suitable low-rank factorization of the kernels.

More complex differential operators have also been treated in array form. For example,
differential operators with separable coefficients and non-constant convection terms
have been addressed in [78, 123] using finite differences on rectangular and more
general polygonal domains, whereas in [127] elliptic anisotropic PDEs with stochastic
terms were approximated in matrix form via a Galerkin method.

The extension to more complex domains, operators, and discretization bases, how-
ever, often comes with added difficulties related to time integration and solving the
associated linear systems. One of these drawbacks is that that the resulting matrix
L typically has a more complex structure than in (1.5). For example, the Kronecker
sum may consist of more than d terms and some or all of the identity matrices may
be different from the identity. These additional terms typically account for e.g., the
discretization weights, the geometric contribution of the domain shape, or the con-
vection terms; see e.g., [65, 78, 123]. A more complex structure in (1.5) leads to

16 Chapter 1. Preliminaries

generalized (multiterm) linear matrix or tensor operators when written in array form.
Except for some special cases, the direct solution of these multiterm equations in array
form without vectorization still remains unexplored; see e.g., [142] and the references
therein.

1.3 Tools for model order reduction

This section aims to present three important model reduction tools required in the
later stages of the thesis. More precisely, in Section 1.3.1 we present the most common
Krylov subspaces, together with their related Arnoldi relations. Krylov subspaces
and their properties will play a principal role in Chapter 3 for treating the quadratic
DRE. In Sections 1.3.2 and 1.3.3 we respectively present the standard POD and
DEIM methods. These methods form the backbone of the latter part of this thesis.
In particular, the new algorithms derived in Chapters 4 and 5 are based upon and
compared to the POD and DEIM methods presented here.

1.3.1 Krylov subspaces and Arnoldi relations

Krylov subspaces (in short generically denoted as Kk) that have been explored in the
past years have the form

PKk(A,Z) = range
{

[Z,AZ,A2Z, . . . ,Ak−1Z]
}

polynomial

EKk(A,Z) = range
{

[Z,A−1Z, . . . ,Ak−1Z,A−kZ]
}

extended

RKk(A,Z, sss) = range

{
[Z, (A− s2I)−1Z, . . . ,

k∏
i=2

(A− siI)−1Z]

}
rational,

where A ∈ Rn×n and Z ∈ Rn×nz , with nz � n, is a tall matrix associated with the
given problem. In the rational subspace, sss = {s2, . . . , sk} is a set of properly chosen
real or complex shifts, whose computation can be performed a priori or dynamically
during the generation of the subspace; see [59, 142] for more complete descriptions.

A basis for the Krylov subspaces mentioned above can be obtained by the associated
block Arnoldi algorithm [133, Section 6.12]. Suppose the orthonormal columns of
Vk = [V1, . . . ,Vk] ∈ Rn×nv span the considered Krylov subspace after k iterations of
the respective Arnoldi algorithm. Here nv = kqnz with q = 1 for the polynomial and
rational spaces and q = 2 for the extended space. In Algorithm 1.1 we recall how to
obtain Vk+1 from Vk by one step of the standard block Arnoldi iteration with Modified
Gram-Schmidt (MGS) [133, Section 6.12].

1.3. Tools for model order reduction 17

Algorithm 1.1 One step of standard Block Arnoldi with MGS

1: INPUT: A ∈ Rn×n and Vk = [V1, . . . ,Vk] ∈ Rn×knz

2: OUTPUT: Matrix block Vk+1 ∈ Rn×nz

3: Determine V = AVk;
4: for j = 1, . . . , k do
5: Update V = V − Vj

(
V>j V

)
;

6: end for
7: Orthogonalize V by a skinny QR factorization to determine Vk+1;

Once Vk has been constructed with the appropriate Arnoldi algorithm, the following
Arnoldi-type relation holds,

AVk = VkÂk + Υk + 1Γ
>
k , Âk ∈ Rnv×nv , nv � n, (1.8)

where the actual values of the matrix Γ>k ∈ Rqnz×nv and the orthonormal columns of
Υk + 1 ∈ Rn×qnz depend on the chosen subspace. Moreover, setting Vk + 1 = [Vk,Υk + 1]

we have that Kk + 1 = range(Vk + 1), which shows that Krylov subspaces are nested,
that is Kk ⊆ Kk + 1, resulting in a dimension increase after each iteration. In what
follows, we recall the matrix relations leading to (1.8) for the extended and rational
Krylov subspaces.

Extended Krylov subspace. The extended Krylov subspace EKk(A,Z) takes the form
presented above. The matrix Vk ∈ Rn×2knz whose orthonormal columns spans the
subspace is formed using the extended Arnoldi algorithm [58]. Let

Âk + 1 = V>k + 1AVk =

[
Âk

Âk+1,kE>2k

]
∈ R2(k+1)nz×2knz , (1.9)

where Vk + 1 = [Vk Vk + 1] ∈ Rn×2(k+1)nz , Âk+1,k ∈ R2nz×2nz is the (k+1,k) block of
Âk + 1 and E2k is the last 2nz columns of I2knz . The extended Arnoldi algorithm
produces the Arnoldi-type relation

AVk = Vk + 1Âk + 1 = VkÂk + Vk + 1Âk+1,kE>2k. (1.10)

so that Υk + 1 = Vk + 1 and Γ>k = Âk+1,kE>2k.

Rational Krylov subspace. Given sss = {s2, s3, . . . }, with sj ∈ C+ closed under conju-
gation, the rational Krylov subspace is given by RKk(A,Z, sss) as defined above.

The resulting basis of the rational Krylov subspace after k iterations of the rational
Arnoldi algorithm [130] is given by Vk = [V1, . . . ,Vk] ∈ Rn×knz . We assume here that
the matrix Vk consists of only real numbers; this is further clarified in the latter part
of this section. We also define the matrices Vk + 1 = [Vk,Vk + 1] ∈ Rn×(k+1)nz and the

18 Chapter 1. Preliminaries

matrix

Hk + 1 =

[
Hk

Hk+1,kE>k

]
∈ R(k+1)nz×knz , (1.11)

where Hk+1,k ∈ Rnz×nz and Ek holds the last nz columns of Iknz . The matrix Hk + 1

contains the orthogonalization coefficients obtained during the rational Arnoldi algo-
rithm.

Let Âk = V>k AVk ∈ Rknz×knz . The rational Krylov basis satisfies the Arnoldi-type
relation

AVk = VkÂk + V̌k + 1ŘHk+1,kE>k H
−1
k , (1.12)

so that Υk + 1 = V̌k + 1 and Γ>k = ŘHk+1,kE>k H
−1
k where V̌k + 1 has orthonormal

columns such that

V̌k + 1Ř = Vk + 1sk − (In − VkV>k)AVk + 1 (1.13)

is the skinny QR decomposition of the matrix on the right (see [59, 108]). The rational
Krylov procedure requires as an extra input the (usually real) values s(1)

0 , s
(2)
0 , which

form a rough approximation of the spectral region used to compute the next shift.
The reader is referred to [59, 141] for implementation details.

Construction of an all-real basis. The rational algorithm presented in [59] forms a
complex basis, when the shifts are not all real. In short, when sj ∈ C+, the original
approach would be to use the shift sj to form the next block Vj and to then let the
following shift be given by sj+1 = sj , where sj denotes the complex conjugate of sj .
This results in both Vj and Vj+1 being complex. For real data (see, e.g., Chapter 3),
complex arithmetic can slow down the evaluation of the reduced-order model. If so,
an all-real basis can be constructed following the method introduced in [131], which
works as follows. If the shift sj is complex then the block Wj = (A−sjI)−1Vj−1 is also
complex, hence we split it into its real and complex parts, that is Wj = W

(r)
j + W

(c)
j ı.

The block Vj is then formed by orthogonalizing W
(r)
j with respect to all vectors in

the already computed basis, after which Vj+1 is formed by orthogonalizing W
(c)
j with

respect to all previous vectors in in the computed basis, and in Vj . This determines
the same space, since span{Wj , W̄j} =span{Vj ,Vj+1}.

1.3.2 The Proper Orthogonal Decomposition (POD)

The POD is a well-known technique for reducing the dimensionality of a given dynam-
ical system by projection onto a space determined in a least-squares optimal sense,
based on information from the full order model. More precisely, consider a set of
snapshots ξj = ξ(tj) at ns different time instances (0 ≤ t1 < · · · < tns ≤ tf). Let

S = [ξ1, · · · , ξns] ∈ RN×ns , (1.14)

1.3. Tools for model order reduction 19

and S = range(S) of dimension ds. A POD basis {v1 . . . ,vk} ⊂ RN of dimension
k < ds is a set of orthonormal vectors whose linear span gives the best approximation
of the space S according to the criterion

min
rank{Vvec}=k

ns∑
j=1

‖ξj − VvecV
>

vecξj‖2 s.t. V >vecVvec = Ik,

where Vvec = [v1 . . . ,vk] ∈ RN×k. This basis can be obtained through the singular
value decomposition (SVD) of the matrix S, which we write as S = V ΣW>, with V
and W orthogonal matrices and Σ = diag(σ1, . . . , σns) diagonal with non-increasing
positive diagonal elements. If the diagonal elements of Σ have a rapid decay, the first
k columns of V (left singular vectors) are the most dominant in the approximation
of S. Denoting with Sk = VkΣkW>k the reduced SVD where only the k × k top left
portion of Σ is retained and V ,W are truncated accordingly, then ‖S − Sk‖ = σk+1

[70]. The resulting POD basis matrix is given by Vvec = Vk.

For model reduction of semilinear dynamical systems, the POD is often used in con-
junction with DEIM. This tool for efficiently interpolating a nonlinear function is
presented in the following section.

1.3.3 The Discrete Empirical Interpolation Method (DEIM)

The DEIM procedure was originally introduced in [41] as a discrete variant of the
Empirical Interpolation Method (EIM) from [17]. It is utilized to approximate a
nonlinear vector function f : T → RN by interpolating it onto an empirical basis,
that is,

f(t) ≈ f̃(t) = Φvecf̂(t), (1.15)

where {φ1, . . . ,φp} ⊂ RN is a low dimensional basis, Φvec = [φ1, . . . ,φp] ∈ RN×p and
f̂(t) ∈ Rp, with p � n is the vector of time-dependent coefficients to be determined.
The optimal choice of f̂(t) can be obtained by solving the overdetermined linear system
(1.15) such that

f̂(t) =
(
Φ>vecΦvec

)−1
Φ>vecf(t) and f(t) ≈ Φvec

(
Φ>vecΦvec

)−1
Φ>vecf(t).

If the matrix Φvec has orthonormal columns, we will obtain a projection error of the
form

‖f(t)− f̃(t)‖2 = ‖f(t)−ΦvecΦ
>
vecf(t)‖2,

hence just depending on the quality of the approximation space range(Φvec). Nev-
ertheless, this type of approximation would require evaluating f(t) at all N entries
for each time t before projection onto range(Φvec). The complexity of evaluating
N entries at each t results in a bottleneck when evaluating a nonlinear term within

20 Chapter 1. Preliminaries

a reduced model. Instead, the DEIM aims to determine f̂(t) by interpolating the
nonlinear function at p� n entries.

Let Pvec = [eρ1 , . . . , eρp] ∈ RN×p be a subset of columns of the identity matrix,
named the “selection matrix”. The role of Pvec is to select appropriate rows of the
function f(t) at which it will be interpolated. Therefore, if P>vecΦvec is invertible,
in [41] the coefficient vector f̂(t) is uniquely determined by solving the linear system
P>vecΦvecf̂(t) = P>vecf(t), so that

f̃(t) = Φvecf̂(t) = Φvec(P
>
vecΦvec)

−1P>vecf(t). (1.16)

Since the matrix Pvec is merely responsible for selecting rows, this type of approxima-
tion allows us to evaluate f at only p entries for each t. The row selection is relatively
straightforward if f is evaluated elementwise. In the more general setting where f is
not necessarily evaluated elementwise, this is still achievable; however, more complex
procedures are required; see the discussion in Section 4.2.2 and [41, Section 3.5]. The
quality of the approximation (1.16) has been investigated in [41, Lemma 3.2], where
it is shown that a projection error of the form∥∥∥f(t)− f̃(t)

∥∥∥
2

=

∥∥∥∥(P>vecΦvec

)−1
∥∥∥∥

2

∥∥∥f(t)−ΦvecΦ
>
vecf(t)

∥∥∥
2

(1.17)

is obtained, given that Φvec has orthonormal columns. The approximation’s quality
therefore depends on two factors, namely the quality of the approximation space
and the quality of the interpolation indices, respectively represented by the terms∥∥f(t)−ΦvecΦ

>
vecf(t)

∥∥
2
and

∥∥∥(P>vecΦvec

)−1
∥∥∥

2
.

In most applications the interpolation basis {φ1, . . . ,φp} is selected as the POD basis
of the set of snapshots {f(t1), . . . ,f(tns)}, as described earlier in Section 1.3.2, that
is given the matrix

N = [f(t1), . . . ,f(tns)] ∈ RN×ns , (1.18)

the columns of the matrix Φvec = [φ1, . . . ,φp] are determined as the first p ≤ ns

dominant left singular vectors in the SVD ofN . The matrix Pvec for DEIM is selected
by a greedy algorithm based on the system residual in [41]; see Algorithm 1.2.

Algorithm 1.2 DEIM [41, Algorithm 3.1]

1: INPUT: {φi}pi=1 ⊂ RN
2: OUTPUT: Selection matrix Pvec

3: Determine [∼, ρ1] = max(|φ1|);
4: Φvec = [φ1], Pvec = [eρ1];
5: for i = 2, . . . , p do
6: Compute r = φi −Φvec(P

>
vecΦvec)

−1P>vecφi;
7: Determine [∼, ρi] = max(|r|);
8: Φvec ← [Φvec,φi], Pvec ← [Pvec, eρi];
9: end for

1.3. Tools for model order reduction 21

In [57] the authors showed that a pivoted QR-factorization of Φ>vec may lead to better
accuracy and stability properties of the computed matrix Pvec and ultimately lower
values of

∥∥∥(P>vecΦvec

)−1
∥∥∥

2
. The resulting approach, called q-deim, will be used in the

sequel and is implemented as presented in Algorithm 1.3.

Algorithm 1.3 q-deim [57]

1: INPUT: Φvec ∈ RN×p, p ≤ N
2: OUTPUT: Selection matrix Pvec

3: Perform pivoted QR of Φ>vec so that Φ>vecΠvec = QvecRvec

4: Pvec = Πvec(:, 1 : p)

23

Chapter 2

Matrix Methods for Semilinear
ODEs

The efficient numerical integration of semilinear ODEs has been widely researched,
thanks to the fundamental role that these equations play in studying the time evo-
lution of complex systems. The aim of this chapter is to report on matrix-oriented
schemes that can be used to approximate the solution U(t) ∈ Smat to the following
semilinear matrix differential equation

U̇(t) = A1U(t) +U(t)A2 + F(U , t) +C, U(0) = U0, (2.1)

where A1 ∈ Rn1×n1 ,A2 ∈ Rn2×n2 ,C ∈ Rn1×n2 and t ∈ [0, tf] = T ⊂ R. The function
F : Smat × T → Rn1×n2 is nonlinear, and Smat is an appropriate functional space
containing the sought after solution.

To integrate (2.1) several alternatives can be considered. The standard approach
would be to vectorize the equation and integrate the resulting system of n1n2 semi-
linear ODEs by any suitable ODE solver; see, e.g., [35]. However, this could result in
high computational costs and memory requirements, especially when the considered
coefficient matrices are dense since the well-established iterative methods for sparse
linear systems are ineffective. Instead, in the recent literature, standard ODE solvers
have been applied directly to the ODE in matrix form; see, e.g., [51, 52, 55, 114, 115,
149]. To this end, we present a collection of these matrix methods for solving equations
of the form (2.1). Semilinear equations are characterized by a stiff linear part and a
nonstiff nonlinear part [86, 152]. As a result, explicit time integration schemes are
deemed unsuitable for these problems due to unrealistically small timestep require-
ments to ensure stability, as a result of the Courant-Friedrichs-Lewy (CFL) condition
[152]. On the other hand, fully implicit schemes require the solution of a nonlinear
equation at each timestep, which generally requires the application of an expensive
iterative method.

To this end, Semi-Implicit (SI) schemes have been identified as a good compromise to
treat semilinear differential equations of the form (2.1) efficiently [86, chapter IV.3]. In

24 Chapter 2. Matrix Methods for Semilinear ODEs

particular, they are identified as splitting methods for ODE systems, where the linear
term is treated implicitly to avoid excessively small timesteps, whereas the nonlinear
term is treated explicitly to avoid the application of a nonlinear solver. As a result,
only a single linear system needs to be solved at each timestep.

In Section 2.1 we present the matrix versions of two classes of the most widely used
SI methods. We also discuss the convergence and stability properties of the schemes
and efficient algorithmic implementations, and we compare them numerically.

In the second part of this chapter, that is Section 2.2, we consider the quadratic DRE
separately. This is because the structure of the DRE allows several computational
advantages when it comes to integration [52, 55, 114, 115, 149]. More precisely, we
show how matrix versions of fully implicit schemes and splitting methods can be
efficiently applied to approximate the time evolution of the DRE. We also discuss
some convergence and stability results of the considered methods and illustrate the
expected accuracy of the implicit schemes through a numerical experiment.

In the more general setting (i.e., non-quadratic F), fully implicit methods applied
to (2.1) will require the solution of a nonlinear algebraic matrix equation at each
timestep. To the best of our knowledge, it is unclear how to solve such problems
without reverting to vectorization and applying standard nonlinear solvers, e.g., New-
ton. This is, however, not within the scope of this thesis and will not be further
discussed.

2.1 Semi-Implicit (SI) methods for semilinear ODEs

In this section, we present the matrix-oriented versions of some of the most widely
used SI schemes, that is, Implicit–Explicit (IMEX) methods [14, 132] and exponential
integrators [83, 84]. For the IMEX methods, we consider the single-step IMEX Euler
scheme and the multistep schemes separately, as is generally done in the literature,
whereas we present only the first-order exponential Euler for the exponential time
differencing (ETD) schemes.

2.1.1 Matrix methods, convergence and stability

For all methods, we will first present the scheme in its vectorized form (with N =

n1n2), applied to

u̇(t) = Lu(t) + f(u, t) + c, u ∈ RN , u(0) = u0, (2.2)

with L ∈ RN×N defined as in (1.5) for d = 2, and stepsize h = tf/nt, where nt is the
number of timesteps. We will show how the methods can be recast into matrix form,
after which we will discuss the convergence and stability properties of the methods.

2.1. Semi-Implicit (SI) methods for semilinear ODEs 25

The stability properties of the matrix and vector forms of the schemes, in this setting,
will be equivalent [51]. For the sake of exposition, we let FC(U (j), tj) = F(U (j), tj)+C

and fc(u
(j), tj) = f(u(j), tj) + c for the remainder of the chapter.

Exponential Time Differencing (ETD)

ETD schemes were originally introduced in the setting of electrodynamics [153], but
they have been rederived in several contexts [29, 47, 64, 83, 84, 117]. In [47, 84] it
is stated that exponential integrators are more potent than IMEX schemes. This is
because the stiff, linear part of the equation is treated exactly, resulting in better
stability properties and greater accuracy in the transient solution. Furthermore, the
methods are also preferred to others, such as Integrating Factor (see, e.g., [102]) since
they treat non-transient solutions better. However, from a computational point of
view, this depends on the efficient evaluation of matrix exponentials.

Here we consider the first order exponential Euler scheme, where the approximation
u(j+1) ≈ u(tj+1) to (2.2) is given by the relation

u(j+1) = ehLu(j) + hϕ1(hL)fc(u
(j), tj), j = 0, 1, . . . , nt − 1, (2.3)

where ϕ1(z) = (ez−1)/z is the first phi function [84] and ehL is the matrix exponential.
The relation (2.3) above is more naturally expressed via a two step procedure as

1. Solve Lϕ(j) = ehLfc(u
(j), tj)− fc(u

(j), tj);

2. Evaluate u(j+1) = ehLu(j) +ϕ(j).

In our setting, L = A>2 ⊗In1 +In2⊗A1, for which it holds that ehL = ehA
>
2 ⊗ehA1 [81,

Th.10.9], so that the computation of the exponential of the large matrix L reduces to

ehLu = ehLvec(U) = vec(ehA1UehA2). (2.4)

The two matrices used in the exponential functions now have dimensions n1 and n2

respectively instead of n1n2, so that the computation of the matrix exponential is fully
affordable for moderate dimensions n1 and n2. As a consequence, the integration step
can be performed all at the matrix level, without resorting to the vectorized form.
More precisely (see also [51]), we can compute U (j+1) as

U (j+1) = ehA1U (j)ehA2 +Φ(j), j = 0, 1, . . . , nt − 1, (2.5)

which corresponds to step (2) above, where the matrix Φ(j) solves the following linear
(Sylvester) matrix equation

A1Φ+ΦA2 = ehA1FC(U (j), tj)e
hA2 −FC(U (j), tj), (2.6)

corresponding to the linear system solve in step (1).

26 Chapter 2. Matrix Methods for Semilinear ODEs

Convergence and stability properties.

The convergence of the exponential Euler scheme has been discussed in [83, 84]. In
our setting, that is, stiff ODEs with smooth solutions, the convergence properties of
the exponential Euler method are studied in the classic sense by inserting the exact
solution into the scheme and Taylor expanding to obtain the defects. To obtain
these bounds, the matrix L has to fulfill certain conditions, see [84, Assumption 2.2,
Assumption 2.9]; however, the problems considered in this thesis all fit this framework,
since they stem from the space discretization of reaction-diffusion PDEs [84, Example
2.11]. Therefore, with these assumptions satisfied, as well as the crucial assumption of
Lipschitz continuity of the nonlinear function, the exponential Euler scheme is shown
to have the expected first-order convergence; see [84, Theorem 2.14].

The stability properties of the exponential Euler scheme applied to a scalar test prob-
lem have been studied in [51] and compared to other SI schemes. To this end, consider
the scalar test problem (with ui(t) = (u(t))i)

u̇i(t) = λiui(t) + ηiui(t), (2.7)

where λi is the ith eigenvalue of L and ηi is the ith component modelling the nonlinear
function. If we define λ̃i = hλi and η̃i = hηi, then the exponential Euler scheme
applied to the test equation yields

u
(j+1)
i =

(
eλ̃i +

eλ̃i − 1

λ̃i
η̃i

)
u

(j)
i ,

which yields the stability region

Dexp =

{
(λ̃i, η̃i) ∈ R− × R :

∣∣∣∣∣eλ̃i +
eλ̃i − 1

λ̃i
η̃i

∣∣∣∣∣ ≤ 1

}
⇐⇒ λ̃i

1 + eλ̃i

1− eλ̃i
≤ η̃i ≤ −λ̃i.

See [51] for a plot of this region and discussions regarding timestep restrictions.

IMEX Methods

IMEX methods consist of using implicit methods to advance the linear part of the
equation and explicit methods to advance the nonlinear part of the equation. The first
works on IMEX methods and their stability dates back to the 1980s, see, e.g., [48, 160].
As a result of the bottleneck related to evaluating the matrix exponential in the ETD
schemes, the IMEX schemes were initially introduced as rational approximations to the
exponential integrators, yielding an approximation to the linear part of the equation.
Consequently, these schemes can potentially be more computationally efficient than
their exponential counterparts; however, to the expense of stability and accuracy in
the transient solution, see Example 2.1.

2.1. Semi-Implicit (SI) methods for semilinear ODEs 27

IMEX Euler. Consider the first order IMEX Euler scheme [14, 132]. Suppose u(j+1) ≈
u(tj+1), the IMEX Euler time discretization is given by

u(j+1) − u(j) = h
(
Lu(j+1) + fc(u

(j), tj)
)
,

so that
(IN − hL)u(j+1) = u(j) + hfc(u

(j), tj), j = 0, 1, . . . , nt − 1.

where u(0) = u0.

In a similar way we can rewrite the relation in matrix form, using the fact that
L = A>2 ⊗ In1 + In2 ⊗A1 together with (1.1). More precisely, the IMEX Euler time
discretization to determine U (j+1) can be written as

U (j+1) −U (j) = h
(
A1U

(j+1) +U (j+1)A2 + FC(U (j), tj)
)
,

so that

(In1 − hA1)U (j+1) +U (j+1) (−hA2) = U (j) + hFC(U (j), tj), (2.8)

for j = 0, 1, . . . , nt − 1, where U (0) = U0.

IMEX Multistep methods. Following [86, Chapter IV.4.2], IMEX multistep SBDF
schemes can be derived from fully implicit multistep schemes via an extrapolation
formula. More precisely, consider the fully implicit s-step backward difference formu-
lae (BDF) scheme applied to (2.2), given by

s∑
i=0

αiu
(j+1−i) = hβ

(
Lu(j+1) + fc

(
u(j+1), tj+1

))
, j = s− 1, . . . , nt − 1. (2.9)

The nonlinear term can then be handled explicitly via the extrapolation formula

fc

(
u(j+1), tj+1

)
=

s∑
i=1

γifc

(
u(j+1−i), tj+1−i

)
+O(hq),

which yields

s∑
i=0

αiu
(j+1−i) = hβLu(j+1) + h

s∑
i=1

β∗i fc

(
u(j+1−i), tj+1−i

)
, (2.10)

for j = s− 1, . . . , nt − 1, where β∗i = β(1 + γi). For each j, the unknown term u(j+1)

is determined by solving the linear system

(α0IN − hβL)u(j+1) = −
s∑
i=1

αiu
(j+1−i) + h

s∑
i=1

β∗i fc

(
u(j+1−i), tj+1−i

)
,

28 Chapter 2. Matrix Methods for Semilinear ODEs

where u(0) = u0 and the terms u(1), . . . ,u(j) can be determined via a lower-order
SBDF scheme.

To derive the matrix formulation of the IMEX SBDF schemes, we once again utilize
the Kronecker sum structure of L and (1.1). More precisely, the s-step SBDF time
discretization can be written in matrix form as

s∑
i=0

αiU
(j+1−i) = hβA1U

(j+1) +U (j+1)(hβA2) + h
s∑
i=0

β∗i FC

(
U (j+1−i), tj+1−i

)
,

so that U (j+1) is obtained by solving the Sylvester equation

(α0In1
−hβA1)U (j+1)+U (j+1)(−hβA2) = −

s∑
i=1

αiU
(j+1−i)+h

s∑
i=1

β∗i FC

(
U (j+1−i), tj+1−i

)
,

(2.11)

for j = s − 1, . . . , nt − 1. See, e.g., [14] for the derivation and precise values of the
constants β, αi and β∗i for different s.

Convergence and stability properties.

The convergence and stability properties of the IMEX schemes have been discussed
thoroughly in [86, Chapter IV.4.2], as well as [14, 48]. In [86, Chapter IV.4.2], it is
shown that the IMEX Euler scheme yields a local truncation error of the form

eeuler(tj+1) = −h
2
ü(tj) + h

∂

∂t
f(u(tj), tj) +O(h2).

As a consequence, if the solution u and the nonlinear function f are sufficiently
smooth, that is u ∈ C2 and f ∈ C1 in the second variable, the scheme will admit the
desired first-order accuracy.

Furthermore, once again following [86, Chapter IV.4.2], the higher-order SBDF schemes
admit a truncation error of the form

esbdf(tj+1) = c1h
p ∂

p+1

∂tp+1
u(tj) +O(hp+1) + βc2h

q ∂
q

∂tq
f(u(tj), tj) +O(hq+1),

where p is the order of the BDF scheme and q is the order of the extrapolation scheme,
such that the order of convergence is given by r = min(p, q) [86, Chapter IV.4.2], under
the assumption that u and f are sufficiently smooth. Nevertheless, for the SBDF
schemes the coefficients αi, β and β∗i are chosen so that the method has convergence
order r = s, for an s-step scheme given that the method is stable [14, Theorem 2.1].
Consequently, the multistep schemes indeed admit a higher convergence order than
the one-step scheme, but the regularity requirements to achieve this convergence may
be far more strenuous. See [48] for a more detailed discussion regarding the desired
regularity of the functions.

Regarding stability, for the IMEX Euler scheme ensuring stability in both the implicit
scheme and the explicit scheme will be sufficient [86, Chapter IV.4.2]. To see this,

2.1. Semi-Implicit (SI) methods for semilinear ODEs 29

consider once again the scalar test problem (2.7), then the IMEX Euler scheme yields

u
(j+1)
i =

1 + η̃i

1− λ̃i
u

(j)
i ,

so that stability is ensured if |1+η̃i|
|1−λ̃i|

≤ 1. If we recall that the implicit part of the

scheme is stable for Re λ̃i ≤ 1 and fix this quantity, then the stability for the IMEX
scheme is ensured for |1+ η̃i| ≤ 1, which is precisely the stability region for the explicit
Euler scheme. On the other hand, if we fix |1 + η̃i| ≤ 1, it can be shown that stability
is ensured for Re λ̃i ≤ 1, the stability region of implicit Euler. Therefore, for the
IMEX Euler scheme, ensuring the stability of both the implicit and explicit schemes
is enough to ensure stability. This condition is quite feasible given that the values of
η̃i are generally much smaller than λ̃i for the considered class of equations.

For the higher-order schemes, the stability can be studied by the roots |zs(λ̃i, η̃i)| of
the order s characteristic polynomial related to (2.10). As an example (see also [14,
51, 138]), for s = 2 the second degree characteristic polynomial is given by

(3− 2λ̃i)z
2 − 4(η̃i + 1)z + 1 + 2η̃i = 0,

so that the stability region for s = 2 is given by

Dsbdf2 = {(λ̃i, η̃i) ∈ R− × R : |z2(λ̃i, η̃i)| ≤ 1}.

We refer the reader to [14] for a discussion regarding the stability regions for s ≥ 2,
and to [14, 51] for the derivation of timestep restrictions related to the stability regions
of the IMEX schemes.

2.1.2 Implementation details

All three matrix-oriented schemes discussed in Section 2.1.1 require the solution of a
Sylvester equation of the form

M1 (A1)Y + YM2 (A2) = F̃ (j), Y ∈ Rn1×n2 , (2.12)

at each time iteration, where the linear operatorsM1 : Rn1×n1 → Rn1×n1 andM2 :

Rn2×n2 → Rn2×n2 and the time-dependent matrix F̃ (j) ∈ Rn1×n2 are respectively
defined in Table 2.1 for the three schemes. Here we present some methods to accelerate
the solution of (2.12) at each time instance; see also [51].

An eigenvalue method

Since (2.12) needs to be evaluated for a new right-hand side at each timestep with
time-independent coefficient matrices, the procedure can be sufficiently accelerated

30 Chapter 2. Matrix Methods for Semilinear ODEs

Table 2.1: Summary of M1 (A1), M2 (A2) and F̃ (j) for different
schemes.

Scheme M1 (A1) M2 (A2) F̃ (j)

Exp. Euler A1 A2 ehA1FC(U (j), tj)e
hA2 −FC(U (j), tj)

IMEX Euler In1 − hA1 −hA2 U (j) + hFC(U (j), tj)

IMEX SBDF α0In1 − hβA1 −hβA2 −
∑s

i=1 αiU
(j+1−i) + h

∑s
i=1 β

∗
i FC

(
U (j+1−i), tj+1−i

)

with an a-priori eigenvalue decomposition of the coefficient matrices A1 and A2,
given that they are diagonalizable and that the decompositions are stable. More
precisely, assuming that A1 and A2 are diagonalizable we determine the eigenvalue
decompositions Ak = XkΛkX

−1
k , for k = 1, 2, where Xk is invertible and Λk =

diag
(
λ

(k)
1 , λ

(k)
2 , . . .

)
.

By pre- and post-multiplying (2.12) by X−1
1 and X2 respectively we obtain a trans-

formed Sylvester equation with diagonal coefficient matrices of the form

M1 (Λ1) Ỹ + ỸM2 (Λ2) = G̃(j), Ỹ = X−1
1 Y X2, (2.13)

where G̃(j) = X−1
1 F̃ (j)X2. The solution to (2.13) and consequently (2.12) can then

be explicitly obtained by the elementwise Hadamard product as

Ỹ = Ψ ◦ G̃(j), s.t. Y = X1Ỹ X
−1
2 ,

where the (i, j)th entry of Ψ ∈ Rn1×n2 is defined as the inverted sum of the ith and
jth diagonal elements ofM1 (Λ1) andM2 (Λ2) respectively. More precisely,

Ψi,j =
(
λ

(1)
i + λ

(2)
j

)−1
for exp. Euler,

Ψi,j =
(

1− hλ(1)
i − hλ

(2)
j

)−1
for IMEX Euler,

Ψi,j =
(
α0 − βhλ(1)

i − βhλ
(2)
j

)−1
for IMEX SBDF.

The IMEX schemes require only the solution of the Sylvester equation (2.12) at each
time instance. For the exponential Euler scheme, even further advantages can be
drawn from the a-priori eigenvalue decomposition. Indeed, the full computation of
(2.5) and (2.6) can be performed in the eigenbases resulting in almost negligible costs
for evaluating the matrix exponentials. More precisely, the solution to the Sylvester
equation (2.6) can be determined in a similar fashion to (2.13) so that the relation
(2.5) (with Φ(j) ≡ Y) can be written as

U (j+1) = ehA1U (j)ehA2 +X1Ỹ X
−1
2 = X1

(
ehΛ1X−1

1 U (j)X2e
hΛ2 + Ỹ

)
X−1

2 ,

where we have used the fact that ehAi = Xie
hΛiX−1

i for i = 1, 2. Since Λ1 and
Λ2 are diagonal, the products with the matrix exponentials can be more efficiently

2.1. Semi-Implicit (SI) methods for semilinear ODEs 31

determined elementwise as

ehΛ1

(
X−1

1 U (j)X2

)
ehΛ2 = E ◦

(
X−1

1 U (j)X2

)
, Ei,j = ehλ

(1)
i ehλ

(2)
j .

The same can be done for the products involving the matrix exponentials in the
definition of F̃ (j), in such a way that the right-hand side of (2.13) can be written as

G̃(j) = X−1
1

(
X1e

hΛ1X−1
1 FC(U (j), tj)X2e

hΛ2X−1
2 −FC(U (j), tj)

)
X2

= E ◦
(
X−1

1 FC(U (j), tj)X2

)
−X−1

1 FC(U (j), tj)X2.
(2.14)

The full matrix-oriented exponential Euler scheme, performed with an a-priori eigen-
value decomposition is summarized below in Algorithm 2.1.

Algorithm 2.1 Matrix-Oriented Exponential Euler (Eigenvalue decomposition)

Require: A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , F : Rn1×n2 × T → Rn1×n2 , C ∈ Rn1×n2 ,
U0 ∈ Rn1×n2 , final time tf , number of timesteps nt.

1: Determine the eigenvalue decompositions Ak = XkΛkX
−1
k for k = 1, 2

2: Compute Ei,j = ehλ
(1)
i ehλ

(2)
j and Ψi,j =

(
λ

(1)
i + λ

(2)
j

)−1
and set h = tf/nt

3: for j = 0 to nt − 1 do
4: Compute F̃ (j)

C = X−1
1 FC(U (j), tj)X2 // Project nonlinear term

5: Compute G̃(j) = E ◦ F̃ (j)
C − F̃ (j)

C // Evaluate (2.14)
6: Compute Ỹ = Ψ ◦ G̃(j) // Solve (2.13)
7: Determine U (j+1) = X1

(
E ◦

(
X−1

1 U (j)X2

)
+ Ỹ

)
X−1

2 // Evaluate (2.5)
8: end for
9: return U (j) ≈ U(tj), tj = 0, h, . . . , tf

When the coefficient matrices are nonsymmetric, the stability of the eigenvalue decom-
positions may be a concern. If stability is an issue, one can rather resort to the stable
Schur decompositions of the matrices. The solution of the Sylvester equation (2.12)
can then be efficiently obtained for all methods using the Bartels–Stewart algorithm
[18], which is described below. In this case, the full matrix exponentials will, however,
need to be evaluated for the exponential Euler scheme. In our implementations this
is done with a scaling and squaring algorithm [4, 80], as implemented in the Matlab
function expm for moderate n1 and n2.

The Bartels–Stewart method

The Bartels–Stewart algorithm relies on a Schur decomposition of the coefficient ma-
trices. Since A1 and A2 are considered to be real, the real Schur decompositions
[70] A1 = Q1R1Q

>
1 and A>2 = Q2R2Q

>
2 are computed with Q1 ∈ Rn1×n1 and

Q2 ∈ Rn2×n2 orthogonal. The real Schur decomposition, as opposed to its complex
variant, allows us to avoid complex arithmetic, however this might come at the ex-
pense of R1 and R2 being quasi-triangular instead of triangular. This means that R1

32 Chapter 2. Matrix Methods for Semilinear ODEs

and R2 will have 2 × 2 matrix blocks on the main diagonal in the case of complex
eigenvalues.

By pre- and post-multiplying, the equation by Q>1 and Q2 respectively, the trans-
formed Sylvester equation with (quasi-)triangular coefficient matrices is given by

M1 (R1) Ỹ + ỸM2

(
R>2

)
= Q>1 F̃

(j)Q2, Ỹ = Q>1 Y Q2.

This system can be solved entrywise by substitution to determine Ỹ for triangular R1

and R2. If instead R1 and R2 are quasi-triangular this is handled by solving the 2×2

Sylvester equations corresponding to the 2× 2 blocks on the main diagonal; see, [18]
for more details. The solution can be recovered by the transformation Y = Q1Ỹ Q

>
2 .

If required, we use the built-in MATLAB function lyap for the implementation of the
Bartels–Stewart algorithm.

Further comments

The Sylvester equation (2.12) has a unique solution if and only if the spectra of
M1 (A1) and −M2 (A2) are disjoint; see e.g., [141]. In some settings the spectra of
M1 (A1) and −M2 (A2) may overlap so that (2.12) does not admit a unique solution.
In this case, a relaxation parameter can be introduced to avoid the singularity. This
will also ultimately affect the stability of the considered scheme; see the discussion in
[51, Section 3.2].

Finally, we emphasize that for both the eigenvalue and Bartels–Stewart methods,
only one decomposition of both A1 and A2 is required for all timesteps, since both
matrices do not depend on time. Furthermore, even if adaptive time-stepping is
implemented, it would not be necessary to recompute any decompositions when the
stepsize is updated. Indeed, for the eigenvalue method, only the matrices Ψ and E

will need to be updated, and for the Bartels–Stewart method, the matricesM1 (R1)

andM2

(
R>2
)
will need to be multiplied by a constant and the diagonal terms shifted.

2.1.3 Numerical comparison the schemes

In this section, we experimentally investigate the expected accuracy and computa-
tional efficiency of the matrix-oriented integrators. The presented matrix and vector
schemes have already been compared in [51] for the problem (2.1) with sparse coeffi-
cient matrices. In this thesis, we are, however, concerned with the efficient simulation
of reduced models of the form (2.1), which typically contain dense coefficient matrices
after projection. To this end, we compare the presented schemes in precisely this
setting.

2.1. Semi-Implicit (SI) methods for semilinear ODEs 33

Example 2.1. We consider an ODE of the form (2.1) that stems from the space
discretization of the following semilinear PDE

ut = δ∆u+
sin(πu)2

√
u2 + 0.12

, Ω = [−1, 1]2, t ∈ [0, 1], (2.15)

with zero Dirichlet boundary conditions and initial condition u0 = sin(2πx) cos(2πy).
More precisely, in order to obtain a dense ODE of the form (2.1), we consider a
pseudospectral space discretization of (2.15); see e.g., [156].

First we investigate the expected accuracy of the schemes. To this end, we discretize
(2.15) with n1 = n2 = 30 nodes in each spatial direction, and we construct a reference
solution Uref by applying the Matlab function ode23s with 4000 timesteps to the
vectorized model (2.2) and reshaping the solution vectors into matrices. We display
the accuracy of three of the presented schemes, namely exponential Euler, IMEX Euler
and a 2nd order IMEX SBDF scheme by comparing them to the reference solution via
the relative error measure ‖U (j)

ref − U (j)‖/‖U (j)‖ at 1000 timesteps in the timespan.
The results are presented in Figure 2.1 for δ = 0.05 (left) and δ = 0.001 (right).

0 0.2 0.4 0.6 0.8 1

10
-4

10
-3

10
-2

10
-1

0 0.2 0.4 0.6 0.8 1

10
-4

10
-3

10
-2

10
-1

Figure 2.1: Expected accuracy of the three presented schemes for
δ = 0.05 (left) and δ = 0.001 (right). The solutions are compared to a

reference solution obtained by the Matlab function ode23s.

The figure on the left indicates that when the stiff linear term is more prominent
(that is larger δ), the rational propagators of the two IMEX schemes fail to accurately
capture the movement of the function at the initial transient phase. On the other hand,
the exponential integrator suffices since the linear term is treated exactly. The figure
on the right indicates that decreasing δ improves the IMEX schemes’ performance
compared to the exponential integrator. This illustrates that exponential integrators
are able to handle the stiff linear term in semilinear ODEs efficiently.

To compare the efficiency in terms of computational time, we consider five space
discretization refinements, namely n = {20, 40, 60, 80, 100}, where n = n1 = n2. We
compare the time needed to integrate the discretized model at nt = 1000 equispaced
timesteps in the timespan, between the matrix-oriented and vectorized schemes. The
results are displayed in Figure 2.2.

34 Chapter 2. Matrix Methods for Semilinear ODEs

20 40 60 80 100 120

10
-2

10
0

10
2

10
4

Figure 2.2: CPU time comparison between the matrix-oriented and
vectorized integrators at nt = 1000 timesteps for increasing dimension

n.

Despite the nonsymmetric structure of the dense coefficient matrices, we experienced
no stability issues with an a-priori eigenvalue decomposition of the matrices A1 and
A2. As a consequence, the results of the matrix-oriented schemes are presented for
both the a-priori Schur (Bartels–Stewart) and eigenvalue decompositions, as discussed
in Section 2.1.2, to accelerate the solution of the Sylvester equation (2.12) at each
timestep. For the vectorized form of the integrators, we perform an a-priori pivoted
LU factorization1 to accelerate the linear system solves at each time iteration.

All timings in Figure 2.2 confirm the power of the matrix-oriented schemes. Even if
an a-priori eigenvalue decomposition is not feasible, the matrix-oriented integrators
still significantly outperform the vectorized versions. The eigenvalue decompositions,
however, allow this gap to increase with a further order of magnitude. Moreover, the
bottleneck of evaluating the large matrix exponential in the vectorized exponential
Euler scheme is clear from the figure. Nevertheless, thanks to property (2.4), no
such bottleneck is observed in the matrix setting. Here the matrix exponential in the
vector setting was explicitly calculated using expm since the matrix L is nearly dense.
Instead, one could also consider one of the algorithms for approximating action of
the matrix exponential to a vector; see [37] for a collection and comparison of these
methods. �

2.2 Matrix methods for the DRE

In this section we consider the numerical integration of semilinear ODEs of the form
(2.1) with a special quadratic nonlinear term. That is, we consider a DRE of the form

1For the vector form of the exponential Euler method, we also experimented with an a-priori
eigenvalue decomposition, but we did not experience any acceleration.

2.2. Matrix methods for the DRE 35

U̇(t) = A1U(t) +U(t)A2 −U(t)BU(t) +C, U(0) = U0, (2.16)

where A1 ∈ Rn1×n1 ,A2 ∈ Rn2×n2 , B ∈ Rn2×n1 and C ∈ Rn1×n2 .

The numerical solution of the DRE (especially the small-scale setting) is a well-studied
topic, see, e.g., [52, 114, 115, 149]. Among the explored methods are matrix general-
izations of the BDF methods [55, 114], Rosenbrock methods [28] and splitting methods
[149, 150]. All three methods are well tailored for the small-scale setting and can be
efficiently implemented independent of whether the coefficient matrices are sparse or
dense. In the large–scale setting, however, the matrices B, C and U0 are often as-
sumed to have a low-rank structure. To this end, low-rank versions of these integrators
have been introduced to attack the large-scale setting [107, 115, 150], which are not
presented here; comparisons to these schemes are, however, presented in Section 3.4.
Instead, in this thesis we aim to deal with ODEs of the form (2.16) by first reducing
the dimension and then integrating; see e.g., Chapter 3. Recall that in this setting
fc

(
u(j), tj

)
=
(
U (j) ⊗U (j)

)
vec(B) + c.

2.2.1 Fully implicit methods

Here we consider fully implicit schemes for solving the DRE. The class of methods we
consider are implicit linear multistep schemes, in particular BDF methods. We derive
their matrix formulation and report on their stability and convergence properties.

BDF methods

BDF methods are considered to be the most popular class of linear multistep methods
for treating stiff ODEs. The s-step BDF scheme applied to the vectorized DRE is
given by (2.9), where the αi’s and β are the coefficients of the s-step BDF method
(see e.g., [13]) for s ≤ 6 and are given in Table 2.2 in scaled form so that α0 = 1. Here
u(0) = u0, but more care should be taken to determine the remaining s − 1 initial
values required for an s-step method. More precisely, for a method to have order p
convergence, the initial values must all be determined with O(hp) accuracy, which can
be achieved by recursively applying an s− 1 step method [13].

To derive the matrix-oriented application of BDF schemes to the DRE (2.16) (see also
[55, 114]) we define

F
(
U (j+1)

)
= A1U

(j+1) +U (j+1)A2 −U (j+1)BU (j+1) +C. (2.17)

Then, the approximation U (j+1) of U(tj+1) is given by the implicit relation

U (j+1) =
s∑
i=1

αiU
(j+1−i) + hβF(U (j+1)), j = s− 1, . . . , nt − 1. (2.18)

36 Chapter 2. Matrix Methods for Semilinear ODEs

Table 2.2: Coefficients of the s-step BDF method

p β α1 α2 α3 α4 α5 α6

1 1 1
2 2/3 4/3 −1/3
3 6/11 18/11 −9/11 2/11
4 12/25 48/25 −36/25 16/25 −3/25
5 60/137 300/137 −300/137 200/137 −75/137 12/137
6 60/147 360/147 −450/147 400/147 −225/147 72/147 -10/147

Substituting (2.17) into (2.18) results in the following semilinear matrix equation

−U (j+1) + hβ
(
A1U

(j+1) + U (j+1)A2 −U (j+1)BU (j+1) + C
)

+

s∑
i=1

αiU
(j+1−i) = 0,

which can be reformulated as the following continuous-time ARE

Ã1U
(j+1) +U (j+1)Ã2 −U (j+1)B̃U (j+1) + C̃ = 0, (2.19)

which needs to be evaluated at each time instance. The coefficient matrices are given
by

Ã1 = hβA1 −
1

2
In, Ã2 = hβA2 −

1

2
In, B̃ = hβB, C̃ = hβC +

s∑
i=1

αiU
(j+1−i).

The Riccati equation (2.19) can be solved using “direct” methods based on Schur
decompositions, or the matrix sign function [36, 92]. Otherwise, iterative methods
such as the Newton-Kleinmann iteration are more efficient when (2.19) is slightly
larger [22, 44, 95, 106]; see also [26, 30]. For low-dimensional systems of the form
(2.16), the MATLAB solver icare from the control systems toolbox can be used if
Ã1 = Ã>2 , which solves the generalized eigenvalue problem associated to the corre-
sponding Hamiltonian formulation of the problem [12]. A brief sketch of the s-step
BDF method is reported in Algorithm 2.2. An efficient MATLAB implementation of

Algorithm 2.2 s-step BDF method – BDF(s, nt)

Require: A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , B ∈ Rn2×n1 , C ∈ Rn1×n2 , U0 ∈ Rn1×n2 , final
time tf , number of timesteps nt, initial approximations U (0), . . .U (s−1).

1: h = tf/nt, B̃ = hβB, , Ãi = hβAi − 1
2In for i = 1, 2

2: for j = s− 1 to nt − 1 do
3: C̃ = hβC +

∑s
i=1 αiU

(j+1−i)

4: Solve Ã1U
(j+1) +U (j+1)Ã2 −U (j+1)B̃U (j+1) + C̃ = 0

5: end for
6: return U (j) ≈ U(tj), tj = 0, h, . . . , tf

the s-step BDF scheme for s ≤ 6 can be found in [134].

2.2. Matrix methods for the DRE 37

Convergence and stability properties.

A thorough discussion of the convergence and stability properties of BDF methods
can be found in [13]. The local truncation error of an order p BDF scheme has the
form

ebdf(tj+1) = c1h
p ∂

p+1

∂tp+1
u(tj) +O(hp+1),

which corresponds to that of the SBDF scheme from Section 2.1 without the ex-
trapolation error, as expected. Moreover, as with the SBDF scheme, a convergent
s-step BDF method converges with order p = s given that the solution is sufficiently
differentiable.

The consistency and stability required for an s-step BDF method to be convergent
can be studied by the roots of the characteristic polynomials

ρ(ξ) =

s∑
i=0

αiξ
j+1−i φ(ξ) = βξj+1.

More precisely, the method is consistent if and only if it has order s ≥ 1; that is, it
is consistent if and only if ρ(1) = 0 and ρ′(1) = φ(1) [13, Chapter 5.2.1]. Finally, the
desired 0-stability is obtained if all the roots ξi of the polynomail ρ(ξ) satisfy |ξi| ≤ 1

[13, Theorem 5.1].

We conclude the section by depicting the typical convergence behavior of the BDF
methods in our context. We consider an example from [115], where the n× n matrix
A = A2 = A>1 stems from the spatial finite difference discretization of the following
convection-diffusion equation

∂tu = ∆u− 10xux − 100yuy, u|∂Ω = 0

on Ω = (0, 1)2. The remaining coefficient matrices are given in low-rank form as
B = B`(B`)> and C = (C`)>C`, where B` ∈ Rn×1 and C` ∈ R1×n are given
as described in [115]. The initial condition is taken to be the zero matrix, that is
U0 = 0n. We compare the obtained solution with a “reference” numerical solution
Uref(t) obtained once again by the MATLAB function ode23s, with n = 49. The
convergence behavior for s = 1, 2, 3 and nt timesteps, with nt = 10, 100, 1000 is
displayed in Figure 2.3. The left plot shows the error ‖U(t)−Uref(t)‖ as a function of
t, for different values of nt. The right plot shows the evolution of the (1,1) component
of the solution throughout the time span for the most accurate choice of BDF method,
compared with that of the reference solution. The importance of the accuracy of the
numerical integrator for solving the DRE is discussed in more detail in Chapter 3.

38 Chapter 2. Matrix Methods for Semilinear ODEs

0 0.2 0.4 0.6 0.8 1
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 0.2 0.4 0.6 0.8 1
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Figure 2.3: Typical convergence behavior of BDF methods (left) and
evolution of the U1,1 component of the reference and BDF(3, 1000)

solution (right).

2.2.2 Splitting methods

Matrix-oriented splitting methods give an alternative to the presented BDF schemes
for the DRE [149, 150]. These methods are based on splitting the linear and nonlinear
parts of (2.16); that is, given the functions

F1 (U) = A1U(t) +U(t)A2 +C, and F2 (U) = −U(t)BU(t),

the subproblems

U̇ = F1 (U) , and U̇ = F2 (U) , with U(0) = U0, (2.20)

are considered far easier to solve, since both have closed form solutions and the first
subproblem is affine. Denoting the solution operators of (2.20) by PF1

(t) and PF2
(t)

respectively, the solutions at time t are respectively given by (see [149, Section II])

PF1
(t)U0 = etA1U0e

tA2 +

∫ t

0
esA1CesA2ds and PF2

(t)U0 = (I + tU0B)−1U0.

Then, the respective first (Lie) and second (Strang) order splitting schemes are given
by the time-stepping operators

HLie
h = PF1

(h)PF2
(h), and HStrang

h = PF2

(
h

2

)
PF1

(h)PF2

(
h

2

)
.

Notice that these schemes do not require the solution of a nonlinear ARE at each
time instance. This, however, comes at the cost of evaluating matrix exponentials
and linear system solves. We refer the reader to [149] for further implementation
details regarding the Lie and Strang schemes, including efficient methods for treating
the matrix exponential and for approximating the integral. For higher-order and
adaptive splitting schemes, we refer the reader to [150].

2.3. Concluding remarks 39

Convergence and stability properties.

In [86, Chapter IV.1] the Lie and Strang splitting schemes are respectively shown
to have first and second-order accuracy. The consistency is proven through Taylor
expansions, whereas the stability for small enough h is determined through the local
Lipschitz continuity of the nonlinear term. Nevertheless, the determined error bounds
depend on the matrices involved. Hence, if the coefficient matrices stem from the
space discretization of PDE operators, these error bounds may go to infinity as the
grid is refined. To avoid this, a stiff error analysis is required, as is done for the Lie
splitting scheme in [77] for the case B ≡ I.

2.3 Concluding remarks

The efficient simulation of both large-scale and small-scale semilinear ODEs is fun-
damental for monitoring the time evolution of complex phenomena. This chapter
presented matrix-oriented versions of the most widely used methods for treating semi-
linear ODEs. We have presented SI matrix methods in the first part, where the stiff
linear term is treated implicitly (or exactly), and the nonstiff nonlinear term is treated
explicitly. We have also discussed the convergence and stability properties of the con-
sidered schemes and several essential implementation issues. Among the SI schemes,
it is clear from the literature that the ETD schemes are the preferred, more robust
integrators, given that the efficient evaluation of the matrix exponential or its action
on a vector is feasible. However, this matrix function evaluation can be sufficiently
accelerated by taking advantage of the Kronecker sum structure of the coefficient ma-
trix and writing the relation in matrix form. This will be particularly advantageous
when dealing with small, dense coefficient matrices; see Chapter 4. Furthermore, the
power of the matrix-oriented methods in comparison to their vectorized counterparts
has also been illustrated via a numerical experiment.

In the second part of this chapter, we considered the quadratic DRE. The structure
of the nonlinear quadratic term allows us to efficiently integrate the DRE with fully
implicit schemes and splitting methods. This is because the most common implicit
methods applied to the DRE require the solution of an ARE at each time iteration.
The efficient solution of both large-scale and small-scale AREs is a well-studied topic
(see [26, 30]), and hence solving such a nonlinear system at each timestep is considered
feasible, especially when working with low-dimensional matrices. On the other hand,
the splitting methods allow an efficient implementation with the quadratic nonlinearity
since both the linear and nonlinear subproblems admit exact solution formulas. These
two classes of methods for treating the DRE are also compared in Section 3.4.

41

Chapter 3

The Differential Riccati Equation1

This chapter is devoted to the Differential Riccati Equation (DRE), which can be in-
terpreted as a semilinear ODE, where the nonlinear term has a special quadratic
structure. More precisely, we aim to approximate the solution of the (low-rank)
continuous-time symmetric DRE of the form

U̇(t) = A>U(t) +U(t)A−U(t)B`(B`)>U(t) + (C`)>C`, U(0) = U0, (3.1)

in the unknown matrix U(t) ∈ Rn×n, where U0 = U `
0(U `

0)> and t ∈ [0, tf] = T .
Here, A ∈ Rn×n, B` ∈ Rn×nb , C` ∈ Rnc×n and U `

0 ∈ Rn×no are time invariant, and
nb, nc, no � n. The matrix A is assumed to be very large, sparse, and nonsingular,
whereas B`, C`, and U `

0 have maximum rank. Even though the matrix A is sparse,
the solution U(t) is typically dense and impossible to store when n is large. Under
the considered hypotheses, numerical evidence seems to indicate that U(t) usually
has rapidly decaying singular values; hence a low-rank approximation to U(t) may
be considered, see e.g., [151]. Results on the existence of low-rank solutions for the
(linear) algebraic Sylvester and Lyapunov equations can also be found in [71, 72].

The DRE plays a fundamental role in optimal control theory, filter design theory,
model reduction problems, as well as in differential games [1, 23, 32, 46, 129]. Equa-
tions of the form (3.1) are crucial in the numerical treatment of the linear quadratic
regulator (LQR) problem [1, 46, 105]: given the state equation

ẋ(t) = Ax(t) +B`k(t), y(t) = C`x(t), x(0) = x0 (3.2)

consider the finite horizon case, where the finite time cost integral has the form

J(k) = x(tf)>Kfx(tf) +

∫ tf

0

(
x(t)>(C`)>C`x(t) + k(t)>k(t)

)
dt. (3.3)

The matrix Kf is assumed to be symmetric and nonnegative definite and k(t) ∈
Rnb is a vector of control inputs. Assuming that the pair (A,B`) is stabilizable
and the pair (C`,A) is detectable, the optimal input k̃(t), minimizing (3.3), can

1An earlier version of this chapter has been published in [94].

42 Chapter 3. The Differential Riccati Equation

be determined as k̃(t) = −(B`)>K(t)x̃(t), and the optimal trajectory is subject to
˙̃x = (A−B`(B`)>K(t))x(t). The matrix K(t) is the solution to the DRE

K̇(t) = A>K(t) +K(t)A−K(t)B`(B`)>K(t) + (C`)>C`, K(tf) = Kf . (3.4)

Using a common practice, we can transform (3.4) into the initial value problem (3.1)
via the change of variables U(tf − t) = K(t).

Under certain assumptions, the exact solution of (3.1) can be expressed in integral
form as (see, e.g., [103, Theorem 8])

U(t) = etA
>
U `

0(U `
0)>etA +

∫ t

0

e(t−s)A
> (

(C`)>C` −U(s)B`(B`)>U(s)
)
e(t−s)Ads, (3.5)

so that when t→∞ the DRE reaches a steady-state solution satisfying the ARE

0 = A>U∞ +U∞A−U∞B`(B`)>U∞ + (C`)>C`. (3.6)

Due to its semilinear structure, the DRE is classified as a stiff ODE. The stiffness and
nonlinearity of the DRE are responsible for the difficulties in its numerical solution
even on a small scale (n < 103); see Section 2.2 for a collection of stiff integrators
tailored towards the DRE. In [134], iterative methods are implemented within the
matrix-oriented implicit methods discussed in Section 2.2, allowing for the computa-
tion of an approximate solution to the DRE when n� 103. These algorithms require
the solution of a large algebraic Riccati equation at each timestep, which again raises
big concerns as of storage and computational efforts.

In this thesis we aim to first reduce the dimension of the problem (3.1) and then inte-
grate a low-dimensional problem with the same structure as the original. A promising
idea is to rely on a model order reduction strategy typically used in linear and non-
linear dynamical systems. In this setting, the original system is replaced with

˙̂x(t) = Âkx̂(t) + B̂`
kk(t), y(t) = Ĉ`

kx̂(t), x̂(0) = x̂0 (3.7)

where Âk, B̂
`
k and Ĉ`

k are projections and restrictions of the original matrices onto a
subspace range(Vk) of small dimension. The DRE associated with this reduced order
problem is solved, yielding an optimal corresponding cost function. This strategy
allows for a natural low-rank approximation to the sought after DRE solution U(t)

of the form VkÛk(t)V>k , obtained by interpolating the reduced-order solution Ûk(t) at
selected time instances. One main feature is that a single space is used for all time
snapshots so that the approximate solutions can be kept in factored form with few
memory allocations. See, e.g., [11] for a general presentation of algebraic reduction
methods for linear dynamical systems, and to [141] for a detailed discussion motivating
the reduction approach in the context of the ARE.

A key ingredient for the success of the reduction methodology is the choice of the

Chapter 3. The Differential Riccati Equation 43

approximation space onto which the algebraic reduction is performed; [11] presents
a comprehensive description of various space selections in the dynamical system set-
ting. Following strategies already successfully adopted for the AREs, the authors of
[99] and [75] have independently used polynomial and extended Krylov subspaces as
approximation space, respectively, in the differential setting. A significant character-
istic of these spaces is that their dimension can be expanded iteratively so that if the
determined approximate solution is not sufficiently accurate, the Krylov space can be
enlarged, and the process continued. Several questions remain open in the methods
proposed in [99],[75]. On the one hand, it is well known that polynomial Krylov sub-
spaces require a large dimension to solve real application problems satisfactorily, thus
destroying the reduction advantages. On the other hand, the multiple time stepping
method proposed in [75] only provides an accurate approximation at t = tf , except
when U0 = 0. For U0 = U `

0(U `
0)> 6= 0 of low rank, memory requirements of the

extended method grow significantly. These problems can be satisfactorily solved by
using a general rational Krylov subspace, which is shown in various applications to
supply good spectral information on the involved matrices with much smaller dimen-
sions than the polynomial and extended versions. Such gain has been experimentally
reported in the literature in the solution of the ARE. We show that great computa-
tional and memory savings can be obtained when projecting onto the fully rational
Krylov subspace, and that with appropriate implementation, the extended Krylov
subspace may also be competitive with certain data.

A related issue that has somehow been overlooked in the available literature is the
expected final accuracy and thus the stopping criterion. Time dependence of the DRE
makes the reduced problem trickier to handle than in the purely algebraic case; in
particular, two intertwined issues arise: i) The accuracy of the approximate solution
may vary considerably within the time interval T ; ii) Throughout the reduction process
the reduced ODE cannot be solved with high accuracy and, quite the opposite, low-
order methods should be used to make the overall cost feasible. We analyze these
difficulties in detail, and by exploiting the inherent structure of the reduced-order
model, we derive a two-phase strategy that first focuses on the reduction, then on the
integration, in a way that is efficient for memory and CPU time usage, but also in
terms of final expected accuracy.

We also discuss several algebraic properties of the approximate solution and its relation
both with the solution U(t) for t ∈ T , and with the steady-state solution U∞. These
results continue a matrix analysis started in [99], where positivity and monotonicity
properties of the approximate solution obtained by certain reduction methods are
explored.

44 Chapter 3. The Differential Riccati Equation

3.1 Order reduction with Krylov-based subspaces

In this section, we show how the Krylov subspace methods presented in Section 1.3.1
are applied to the DRE. Krylov-based projection methods were first applied to ARE’s
in [87] (polynomial spaces) and later improved in [79] (extended space) and [144]
(rational spaces). The two rational spaces prove to be far superior to the polynomial
Krylov space in most reduction strategies where they are applied in the literature, as
long as solving linear systems at each iteration is feasible. The DRE has been attacked
in [75] with the extended space, and in [99] with the polynomial space; here, we close
the gap, as far as Krylov subspaces are concerned. In addition, we address several
implementation issues to make the final method computationally reliable and, to the
best of our knowledge, a great competitor among the available methods for large-scale
DRE problems.

The rational Krylov subspace was proposed initially in the eigenvalue context in [130].
Its use in our context is motivated by [144] and later [141], where its effectiveness in
solving the ARE is amply discussed. The approximation effectiveness of this subspace
depends on the choice of shifts sss, and this issue has been investigated in the literature;
see, e.g., [125], [59]. The adaptive choice of shifts was tailored to the ARE in [109]
by the inclusion of information of the term B`(B`)> during the shift selection; see
also [141] for a more detailed discussion2. We used this last adaptive strategy in
our numerical experiments, where the approximate solution at timestep tf is used.
As discussed in Section 1.3.1, this rational Arnoldi algorithm from [59] constructs a
complex-valued basis in the presence of complex shifts. Standard ODE solvers do
not handle complex arithmetic well, hence we implemented an all-real basis using the
method introduced in [131], which has also been presented in Section 1.3.1.

For the DRE, both the rational and extended Krylov subspaces are constructed with
the pair (A>,Z). While for the ARE Z = (C`)>, in the differential context the
starting matrix for generating these spaces is given by Z = [(C`)>,U `

0], where U0 =

U `
0(U `

0)>. Both matrices C` and U `
0 play a crucial role in the closed-form DRE

solution matrix and are thus included to generate the projection space. The idea of
reduction methods is to first, project the large DRE onto the smaller subspace Kk,
then solve the projected equation and finally expand the solution back to the original
space.

Let the columns of Vk ∈ Rn×nv span the considered Krylov subspace and assume that
Vk has orthonormal columns. Following similar reduction methods in the dynamical
system contexts, see, e.g., [11], the reduction process consists of first projecting and
restricting the original data onto the approximation space as

Âk = V>k AVk, B̂`
k = V>k B`, Û `

0,k = V>k U `
0 and Ĉ`

k = C`Vk.

2The Matlab code of the rational Krylov subspace method for ARE is available at
http://www.dm.unibo.it/ s̃imoncin/software

3.1. Order reduction with Krylov-based subspaces 45

Then the following low order DRE needs to be solved,

˙̂
U k(t) = Â>k Ûk(t) + Ûk(t)Âk − Ûk(t)B̂`

k

(
B̂`

k

)>
Ûk(t) +

(
Ĉ`

k

)>
Ĉ`

k

Ûk(0) = Û `
0,k

(
Û `

0,k

)>
,

(3.8)

for t ∈ T . This low-dimensional DRE admits a unique solution for tf < ∞, see e.g.,
[103]. Restrictions on the data to allow for positive, stabilizing solutions are discussed
in more detail in Section 3.3. An approximation to the sought after solution is then
written as

Uk(t) = VkÛk(t)V>k ≈ U(t), t ∈ T. (3.9)

Note that both left and right approximation spaces are given by range(Vk), thanks to
the symmetry of the solution of the DRE (3.1). Furthermore, we stress that Uk(t)

is never explicitly computed, but always referred to via the matrix Vk and the set
of matrices Ûk(t) at given time instances. In fact, the matrices Ûk(t) may also be
numerically low rank, so that at the end of the whole process, a further reduction can
be performed by truncating the eigendecomposition of Ûk(t) for each t.

Remark 3.1. The approach we have derived is solely based on the order reduction
of the dynamical system (3.2). Nonetheless, with some abuse of notation, the reduced
DRE could have been formally obtained through a Galerkin condition on the differential
equation. For t ∈ T let

Rk (t) := U̇k(t)−A>Uk(t)−Uk(t)A+Uk(t)B`(B`)>Uk(t)− (C`)>C`

be the residual matrix for Uk(t) = VkÛkV>k . The matrix Ûk(t) is thus determined by
imposing that the residual satisfies the following Galerkin condition

V>k Rk (t)Vk = 0, t ∈ T, (3.10)

that is, Rk(t) ⊥ Kk in a matrix sense, so that the residual is forced to belong to
a smaller and smaller subspace as Kk grows. Substituting Uk(t) = VkÛk(t)V>k into
the residual matrix, the application of the Galerkin condition results in the projected
system

V>k
(
Vk

˙̂
U k(t)V>k −A>VkÛk(t)V>k − VkÛk(t)V>k A

+ VkÛk(t)V>k B`(B`)>VkÛk(t)V>k − (C`)>C`)Vk = 0,

which corresponds to (3.8). This is rigorous as long as U̇k = Vk

˙̂
U kV>k holds. �

It is crucial to realize that, as opposed to some available methods in the literature
(such as, for instance, [134],[150],[34] and the time-invariant algorithms in [107]),

46 Chapter 3. The Differential Riccati Equation

the approximation space is independent of the time-stepping, that is a single space
range(Vk) is used for all time steps. This provides enormous memory savings whenever
the approximate solution is required at different time instances in T . Theoretical
motivation for keeping the approximation space independent of the time-stepping is
contained in [19, 21], where it is shown that the solution of the DRE lives in an
invariant Krylov subspace.

The class of numerical methods we use for solving the reduced DRE (3.8), that is,
the matrix-oriented BDF methods, has been described in Section 2.2. In the rest of
this paper, we specialize the generic derivation above to the extended and rational
Krylov subspaces, which significantly outperformed polynomial spaces both in terms
of CPU time and memory requirements. More information on these spaces and their
properties are given in Section 1.3.1, where we also discuss the generation of a real
rational Krylov basis in the presence of non-real shifts.

3.2 Stopping criterion and the complete algorithm

To complete the reduction algorithm of Section 3.1, we need to introduce a stopping
criterion. We found that it is crucial to take into account the accuracy of the numerical
method employed to solve the reduced DRE.

To derive our stopping criterion, we were inspired by those in [75, 99], however, we
made some important modifications. In both cited references, the authors assume
that the inner problem (3.8) is solved exactly, which is not true in general. We thus
consider that the numerical method solves the reduced problem with residual matrix
R

(I)
k (t) :=

˙̂
U k(t)−F(Ûk(t)), with F defined as in (2.17), so that the final DRE residual

can be split into two components.
Proposition 3.1. Let Uk(t) = VkÛk(t)V>k be the Krylov-based approximate solution
after k iterations, where Ûk(t) approximately solves the reduced problem (3.8). With
the previous notation, the residual matrix Rk(t) = U̇k(t)− F(Uk(t)) satisfies

‖Rk(t)‖2F = ‖R(I)
k (t)‖2F + 2‖R(O)

k (t)‖2F , (3.11)

where R(I)
k (t) =

˙̂
U k(t)− F(Ûk(t)) and R(O)

k (t) = Γ>k Ûk(t) with Γk as in (1.8).

Proof. Substituting Equation (3.9) into the residual Rk(t) we obtain

Rk(t) = Vk

˙̂
U k(t)V>k −A>VkÛk(t)V>k − VkÛk(t)V>k A

+ VkÛk(t)V>k B`(B`)>VkÛk(t)V>k − (C`)>C`.
(3.12)

3.2. Stopping criterion and the complete algorithm 47

Since (C`)> belongs to range(Vk), we can write (C`)> = Vk

(
Ĉ`

k

)>
. Using (1.8) and

keeping in mind that the subspace is constructed with A> instead of A, we get

Rk(t) = Vk

˙̂
U k(t)V>k − (VkÂ

>
k + Υk + 1Γ

>
k)Ûk(t)V>k − VkÛk(t)(ÂkV>k + ΓkΥ

>
k + 1)

+ VkÛk(t)V>k B`(B`)>VkÛk(t)V>k − Vk

(
Ĉ`

k

)>
Ĉ`

kV>k .

Since Vk + 1 = [Vk,Υk + 1], we can write Rk(t) = Vk + 1Jk(t)V>k + 1, where

Jk(t) =

 ˙̂
Uk(t)− Â>k Ûk(t)− Ûk(t)Âk + Ûk(t)B̂`

k

(
B̂`

k

)>
Ûk(t)−

(
Ĉ`

k

)>
Ĉ`

k Ûk(t)Γk

Γ>k Ûk(t) 0

 .
Let R(I)

k (t) be the residual of the numerical ODE inner solver. Then

Jk(t) =

[
R

(I)
k (t) Ûk(t)Γk

Γ>k Ûk(t) 0

]
.

Since the columns of Vk + 1 are orthonormal,

‖Rk(t)‖2F = ‖Vk + 1Jk(t)V>k + 1‖2F = ‖Jk(t)‖2F
= Tr

(
R

(I)
k (t)>R

(I)
k (t) + 2(Ûk(t)Γk)(Γ>k Ûk(t))

)
,

that is, ‖Rk(t)‖2F = ‖R(I)
k (t)‖2F + 2‖Γ>k Ûk(t)‖2F , and the result follows.

The expression for Jk(t) emphasizes that at each iteration k the matrix Ûk(t) is the
exact solution of

˙̂
U k(t)− Â>k Ûk(t)− Ûk(t)Âk + Ûk(t)B̂`

k

(
B̂`

k

)>
Ûk(t)−

(
Ĉ`

k

)>
Ĉ`

k −R
(I)
k (t) = 0.

Hence, as long as ‖R(I)
k (t)‖F is not very small, the increase of k aims at more and more

accurately approximating a “nearby” differential problem to the truly projected one,
with a term R

(I)
k (t) that varies with k. Hence, Uk(t) = VkÛkV>k is an approximation

not to U(t), but to the solution of a differential problem with an additional term
whose projection onto the space is R(I)

k (t).

Proposition 3.1 also implies that we cannot expect an overall small residual norm if
either of the two partial residual norms ‖R(I)

k (t)‖F , ‖R(O)
k (t)‖F is not small. In par-

ticular, we observe that the two residuals can be made small independently. Therefore
we propose the following practical strategy:

(i) Run the algorithm as presented, with a low-order cheap ODE inner solver (i.e.,
BDF(1, nt) with nt relatively small; see Algorithm 2.2) and use R(O)

k (t) in the
stopping criterion;

(ii) Once completed step (i) after k̂ iterations, use the matrices Âk̂, Ĉ
`
k̂
, B̂`

k̂
and Û `

0,k̂

to refine the ODE inner solution by using a higher-order ODE solver for the

48 Chapter 3. The Differential Riccati Equation

projected system.

The final matrix Ûk̂(t) obtained in step (ii) will provide a more accurate solution
matrix than what would have been obtained at the end of step (i). We emphasize
that any ODE method for small and medium scale DREs could be used at steps (i)
and (ii). Our choice of BDF(1, nt) is due to its good trade-off between accuracy and
computational effort; other approaches could be considered.

To complete the description of the stopping criterion, we recall that R(O)
k (t) depends

on t, so that we need to estimate the integral over the whole time interval by means
of a quadrature formula, that is

∥∥∥∥∫ tf

0
R

(O)
k (γ)dγ

∥∥∥∥
F

=

∥∥∥∥Γ>k ∫ tf

0
Ûk(γ)dγ

∥∥∥∥
F

≈

∥∥∥∥∥∥Γ>k
nt∑
j=1

tf
nt
Ûk(tj)

∥∥∥∥∥∥
F

=: ρk. (3.13)

where the interval T has been divided into nt intervals with nodes tj .

The overall algorithm based on the rational Krylov subspace method (rksm-dre)
is reported in Algorithm 3.1, whereas the extended Krylov (eksm-dre) subspace
method is presented in Algorithm 3.2.

Algorithm 3.1 RKSM-DRE

Require: A ∈ Rn×n, B` ∈ Rn×nb , C` ∈ Rnc×n, U `
0 ∈ Rn×no , tol, tf , nt, s0 =

{s(1)
0 , s

(2)
0 }

(i) Perform reduced QR: [(C`)>, U `
0] = V1Λ1

Set V1 ≡ V1

for k = 2, 3 . . .
Compute the next shift and add it to s0

Compute the next real basis block Vk

Set Vk = [Vk − 1,Vk]
Update Âk = V>k AVk and B̂`

k = V>k B`, Û `
0,k = V>k U `

0 and Ĉ`
k = C`Vk

Integrate Equation (3.8) from 0 to tf using BDF(1, nt)
Compute ρk using (3.13) with Γ>k as in (1.12)
if ρk < tol

go to (ii)
end if

end for
(ii) Refinement: solve (3.8) with a more accurate integrator
Compute Ûk(tj) = Û `

k(tj)Û
`
k(tj)

>, j = 1, . . . , nt using the truncated SVD
return Vk ∈ Rn×k(nc+no) and nt factors Û `

k(tj) ∈ Rk(nc+no)×r, j = 1, . . . , nt

3.3 Stability analysis and error bounds

This section provides a few results on the spectral and convergence properties of the
obtained approximate solution. We first inspect some properties of the asymptotic

3.3. Stability analysis and error bounds 49

Algorithm 3.2 EKSM-DRE

Require: A ∈ Rn×n, B` ∈ Rn×nb , C` ∈ Rnc×n, U `
0 ∈ Rn×no , tol, tf , nt

(i) Perform reduced QR:
(
[(C`)>, U `

0], A−1[(C`)>, U `
0]
)

= V1Λ1

Set V1 ≡ V1

for k = 2, 3 . . .
Compute the next basis block Vk

Set Vk = [Vk − 1,Vk]
Update Âk as in [140] and B̂`

k = V>k B`, Û`,0 = V>k U `
0 and C`

k = C`Vk

Integrate (3.8) from 0 to tf using BDF(1, nt)
Compute ρk using (3.13) where Γ>k = Âm+1,mE>2m
if ρk < tol

go to (ii)
end if

end for
(ii) Refinement: solve (3.8) with a more accurate integrator
Compute Ûk(tj) = Û `

k(tj)Û
`
k(tj)

>, j = 1, . . . , nt using the truncated SVD
return Vk ∈ Rn×2k(nc+no) and nt factors Û `

k(tj) ∈ R2k(nc+no)×r, j = 1, . . . , nt.

matrix solution, which solves the ARE. Then we propose a bound for the error matrix
in an appropriate functional norm.

Properties of the (steady state) ARE

Properties associated with the ARE – as the asymptotic solution to the DRE – are well
known in linear-quadratic optimal control, see, e.g., [46, 105]. In particular, classical
uniqueness and stabilization properties of the solution (see, e.g., [46, Lemma 12.7.2]),
can directly be extended to the reduced DRE (3.8).
Corollary 3.1. Let (Âk, B̂

`
k, Ĉ

`
k) be a stabilizable and detectable system. Let Ûk(t)

be the solution of Equation (3.8) at time t and let Û∞k = limt→∞ Ûk(t). Then Û∞k
is the unique symmetric nonnegative definite solution and the only stabilizing solution
to the (reduced) ARE

0 = Â>k Û
∞
k + Û∞k Âk − Û∞k B̂`

k

(
B̂`

k

)>
Û∞k +

(
Ĉ`

k

)>
Ĉ`

k. (3.14)

Moreover, if the pair (Ĉ`
k, Âk) is observable, Û∞k is strictly positive definite.

We notice that the stabilizability and detectability properties of (Âk, B̂
`
k, Ĉ

`
k) are

not necessarily implied by those on (A,B`,C`). Nevertheless, it is shown in [141]
that if there exists a feedback matrix K, such that the linear dynamical system ẋ =

(A−B`K)x is dissipative, then the pair (Âk, B̂
`
k) is stabilizable. A similar result can

be formulated for the detectability of (Ĉ`
k, Âk), since by duality reasoning, (Ĉ`

k, Âk)

is detectable if
(
Â>k ,

(
Ĉ`

k

)>)
is stabilizable. The question regarding the existence of

50 Chapter 3. The Differential Riccati Equation

such a feedback matrix, with respect to A and B` (A> and (C`)>), is addressed in
[74].

With these results, we can relate the asymptotic solution of the original and projected
problems. Let Uk(t) = VkÛk(t)V>k and Ua

k = VkÛ
∞
k V>k respectively be approximate

solutions to (3.1) and (3.6) by a projection onto range(Vk). If there exist matrices
K1 and K2 such that the systems ẋ = (A −B`K1)x and ẋ = (A> − (C`)>K2)x are
dissipative, then

lim
t→∞

Uk(t) = Vk lim
t→∞

Ûk(t)V>k = VkÛ
∞
k V>k = Ua

k , (3.15)

that is, Ua
k is the steady state solution of Uk(t) when projected onto the same basis.

Under the hypotheses that (A,B`,C`) is a stabilizable and detectable system, there
exists a unique non-negative and stabilizing solution U∞ to Equation (3.6) (see, e.g.,
[103, Theorem 5]). In [141] a bound was derived for the error U∞ − Ua

k in terms of
the matrix residual norm. Here we complete the argument by stating that in exact
arithmetic and if the whole space can be spanned, the obtained approximate solution
equals U∞.
Proposition 3.2. Suppose (A,B`,C`) is stabilizable and detectable. Assume it is
possible to determine k∗ such that dim(range(Vk∗)) = n, and let Ua

k∗
= Vk∗Û

∞
k∗
V>k∗ be

the obtained approximate solution of (3.6) after k∗ iterations. Then, Ua
k∗

= U∞.

Proof. Since Vk∗ is square and orthogonal the projected ARE is given by

0 = V>k∗A
>Vk∗Û

∞
k∗

+ Û∞k∗ V
>
k∗
AVk∗ − Û∞k∗ V

>
k∗
B`(B`)>Vk∗Û

∞
k∗

+ V>k∗(C
`)>C`Vk∗ .

From (A,B`,C`) stabilizable and detectable it follows that (V>k∗AVk∗ ,V>k∗B
`,C`Vk∗)

is also stabilizable and detectable, so that Û∞k∗ ≥ 0 and stabilizing. Multiplying by
Vk∗ (by V>k∗) from the left (right), we obtain 0 = A>Ua

k∗
+Ua

k∗
A−Ua

k∗
B`(B`)>Ua

k∗
+

(C`)>C`, that is, Ua
k∗
≥ 0 is a solution to the original ARE. Since U∞ is the unique

nonnegative definite solution, it must be Ua
k∗

= U∞.

Error bound for the DRE

In this section we derive a bound for the maximum error obtained by the reduction
process, in terms of the residual

Rk(t) = A>Uk(t) +Uk(t)A−Uk(t)B`(B`)>Uk(t) + (C`)>C` − U̇k(t). (3.16)

Note thatRk(t) is the residual matrix with respect to the exact solution of the reduced
differential problem; that is, it also includes the discretization error. A similar bound
on the error has been derived for the nonsymmetric DRE in [7], which used matrix
perturbation techniques from [98].

3.3. Stability analysis and error bounds 51

Proposition 3.3. For t ∈ T let Ek(t) = U(t) − Uk(t) and assume that Ă(t) :=

A−B`(B`)>U(t) is stable for all t ∈ T . Denote

ν := max
t∈T

{∫ t

0
‖ΨĂ>(t, s)‖ ‖ΨĂ(t, s)‖ds

}
,

withΨĂ the state-transition matrix satisfying

∂ΨĂ(t, s)

∂t
=Ă(t)ΨĂ(t, s), ΨĂ(s, s) = In.

If 4ν2‖B`‖2‖Rk‖∞t < 1, then

‖Ek‖∞t ≤ 2ν‖Rk‖∞t ,

where ‖L‖∞t = maxt∈T ‖L(t)‖ for any continuous matrix function L(t).

Proof. By subtracting Equation (3.16) from (3.1) and manipulating terms we obtain

Ėk(t) = (A−B`(B`)>U(t))>Ek(t)+Ek(t)(A−B`(B`)>U(t))+Ek(t)B`(B`)>Ek(t)+Rk(t),

with Ek(0) = 0. Therefore, by the variation of constants formula (see, e.g., [103])

Ek(t) =

∫ t

0
ΨĂ>(t, s)

(
Rk(s) +Ek(s)B`(B`)>Ek(s)

)
ΨĂ(t, s)ds.

Taking norms yields

‖Ek(t)‖∞t ≤ max
t∈T

∫ t

0
‖ΨĂ>(t, s)‖ ‖ΨĂ(t, s)‖

(
‖Rk(s)‖+ ‖Ek(s)‖2‖B`‖2

)
ds,

so that ‖Ek(t)‖∞t ≤ ν
(
‖Rk(t)‖∞t + ‖Ek(t)‖2∞t

‖B`‖2
)
. Solving this quadratic in-

equality yields

‖Ek(t)‖∞t ≤
1−

√
1− 4ν2‖B`‖2‖Rk‖∞t

2ν‖B`‖2
.

The result follows from multiplying and dividing by (1+
√

1− 4ν2‖B`‖2‖Rk‖∞t) and
noticing that at the denominator this quantity can be bounded from below by 1.

We conclude with a remark on the intuitive fact that if the approximation space
spans the whole space, the obtained solution by projection necessarily coincides with
the sought-after solution of the DRE.
Remark 3.2. If it is possible to determine k∗ such that dim(Vk∗) = n, then the
approximate solution Uk∗(t) coincides with U(t) for all t ≥ 0. Indeed, let us write
Uk∗(t) = Vk∗Ûk∗(t)V>k∗ , where Vk∗ is square and orthogonal. The reduced DRE is
given by

˙̂
U k∗ = V>k∗A

>Vk∗Ûk∗ + Ûk∗V>k∗AVk∗ − Ûk∗V>k∗B
`(B`)>Vk∗Ûk∗ + V>k∗(C

`)>C`Vk∗

52 Chapter 3. The Differential Riccati Equation

with Ûk∗ = Ûk∗(t). Multiplying by Vk∗ (by V>k∗) from the left (right), we obtain

U̇k∗(t) = A>Uk∗(t) +Uk∗(t)A−Uk∗(t)B
`(B`)>Uk∗(t) + (C`)>C`,

hence, Uk∗(t) ≥ 0 is a solution of (3.1). Since U(t) is the unique nonnegative definite
solution of (3.1) for any U0 ≥ 0 (see, e.g., [103]), then Uk∗(t) = U(t) for t ≥ 0. �

3.4 Numerical experiments

In this section, we report on our numerical experience with the developed techniques.
We consider two artificial symmetric and nonsymmetric model problems, as well as
three (of which two are nonsymmetric) standard benchmark problems. Information
about the considered data is contained in Table 3.1. For the first two datasets dis-
played in Table 3.1, the matrix A stems from the finite-difference discretization with
homogenous Dirichlet boundary conditions on the unit square and unit cube, respec-
tively. The first matrix (sym2d) comes from the finite difference discretization of
the two-dimensional Laplace operator in the unit square with homogeneous bound-
ary conditions, while the second matrix (nsym3d) stems from the finite difference
discretization of the three-dimensional differential operator

L(u) = exy(ux)x + exy(uy)y + (uz)z + (1 + x)e−xux + y2uy + 10(x+ y)uz,

in the unit cube, with homogeneous boundary conditions. For both datasets, the
matrices B`,C` and U `

0 are selected randomly with normally distributed entries. The
realizations of the random matrices are fixed for both examples using the MATLAB
command rng: for B`,C` and U `

0 we use rng(7), rng(2) and rng(3), respectively.
The following two datasets (chip and flow) are taken from [121], and all coefficient
matrices (Ǎ, B̌`, Č` and M̌) are contained in the datasets, which stem from the
dynamical system

M̌ ˙̌x = Ǎx̌+ B̌`k, y̌ = Č`x̌.

Since M̌ is diagonal and nonsingular, it is incorporated as A = M̌− 1
2 Ǎ M̌− 1

2 , while
B̌` and Č` are updated accordingly to form B` and C`.

The final considered dataset (rail) stems from a semi-discretized heat transfer prob-
lem for optimal cooling of steel profiles3 [24]. We consider the largest of the four
available discretizations (file rail_79841_c60 containing Ǎ, B̌`, Č` and M̌) with
n = 79841. The symmetric and positive definite mass matrix M̌ has a sparsity pattern
very similar to Ǎ. Both matrices are therefore reordered by the same approximate
minimum degree (rksm-dre) or reverse Cuthill-McKee (eksm-dre) permutation to
limit fill-in. The state-space transformation is done using the Cholesky factorization

3Data available at http://modelreduction.org/index.php/Steel_Profile

3.4. Numerical experiments 53

of M̌ . More precisely, let M̌ = ĽMĽ
>
M with ĽM lower triangular, and consider the

transformed state x = Ľ>M x̌. Then

ẋ = Ax+B`k, y = C`x,

with A = Ľ−1
M Ǎ Ľ−>M , B` = Ľ−1

M B̌` and C` = Č` Ľ−>M . These matrices are never
explicitly formed, rather they are commonly applied implicitly by solves with the
factor ĽM at each iteration; see, e.g., [59, 140].

The initial low-rank factors are selected as the zero vector for flow, U `
0 = sina for

chip and U `
0 = cosa for rail, where a ∈ Rn is a vector with entries in [0, 2π]. Other

sufficiently general choices were tried during our numerical investigation however re-
sults did not significantly differ from the ones we report.

Table 3.1: Relevant information concerning the experimental data

Name n p/s/q ||A||F ||B`||F ||C`||F ||U `
0 ||F ||M ||F

sym2d 640000 5/1/1 3.6 · 103 8.0 · 102 1.8 · 103 8.0 · 102 8 · 102

nsym3d 64000 6/1/3 2.0 · 103 2.5 · 102 6.2 · 102 2.8 · 102 2.5 · 102

Name n p/s/q ||Ǎ||F ||B̌`||F ||Č`||F ||U `
0 ||F ||M̌ ||F

chip 20082 5/1/1 2.2 · 106 1.7 · 102 3.3 · 104 1.0 · 102 2 · 10−4

flow 9669 5/1/1 4.5 · 106 2.0 · 104 1.2 · 103 − 6.8 · 100

rail 79841 7/6/1 7 · 10−3 1 · 10−7 6.2 · 100 1.9 · 102 8 · 10−4

Performance of the projection methods. We first investigate the convergence behavior
of the outer solver. The quantity we monitor in our stopping criterion is the backward
error in an integral norm given by

ρk

tf‖C`‖2F + 2ξk + ψk

, (3.17)

with ρk as in (3.13) and

ξk =

∥∥∥∥A>Vk

∫ tf

0
Ûk(γ) dγ

∥∥∥∥
F

and ψk =

∥∥∥∥∫ tf

0
Ûk(γ)V>k B`(B`)>VkÛk(γ)dγ

∥∥∥∥
F

.

The integrals are approximated by a quadrature formula similar to (3.13), and we
note that ξk can be cheaply computed by using the Arnoldi-type relation (1.8).

For all datasets, the stopping tolerance was chosen as 10−7. For the first four datasets,
tf = 1 and bdf(1,10) is used as inner solver. For rail, tf = 4500 (see e.g., [24] for
further details about the setting) and bdf(1,45) is used as inner solver. Figures 3.1
to 3.5 display the convergence of the rational Krylov subspace method (Algorithm 3.1,
rksm-dre) and of the extended Krylov subspace method (Algorithm 3.2, eksm-dre).
The left plots report the history of the backward error as the approximation space
dimension increases, while the right plots display the same history versus the total
computational time (in seconds) as the iterations proceed. We notice that the cost of
the refinement step is not taken into account in these first tests.

54 Chapter 3. The Differential Riccati Equation

0 20 40 60 80 100 120
10

-8

10
-6

10
-4

10
-2

0 5 10 15 20
10

-8

10
-6

10
-4

10
-2

Figure 3.1: sym2d: Convergence history for eksm-dre and rksm-
dre. Left: backward error versus space dimension. Right: backward

error versus computational time.

0 50 100 150 200
10

-8

10
-6

10
-4

10
-2

0 10 20 30 40 50 60
10

-8

10
-6

10
-4

10
-2

Figure 3.2: nsym3d: Convergence history for eksm-dre and rksm-
dre. Left: backward error versus space dimension. Right: backward

error versus computational time.

0 50 100 150
10

-8

10
-6

10
-4

10
-2

0 5 10 15 20 25 30
10

-8

10
-6

10
-4

10
-2

Figure 3.3: chip: Convergence history for eksm-dre and rksm-
dre. Left: backward error versus space dimension. Right: backward

error versus computational time.

For the dataset sym2d, the large algebraic linear system in rksm-dre was iteratively
solved by implementing a block conjugate gradient algorithm, with an inner tolerance
of 10−10, preconditioned with an incomplete Cholesky factorization with drop toler-
ance 10−4. For all other datasets, the MATLAB built-in backslash operator was used.

3.4. Numerical experiments 55

0 100 200 300 400
10

-8

10
-6

10
-4

10
-2

10
0

0 5 10 15 20 25 30
10

-8

10
-6

10
-4

10
-2

10
0

Figure 3.4: flow: Convergence history for eksm-dre and rksm-
dre. Left: backward error versus space dimension. Right: backward

error versus computational time.

0 200 400 600
10

-8

10
-6

10
-4

10
-2

10
0

0 100 200 300 400
10

-8

10
-6

10
-4

10
-2

10
0

Figure 3.5: rail: Convergence history for eksm-dre and rksm-
dre. Left: backward error versus space dimension. Right: backward

error versus computational time.

For eksm-dre the coefficient matrix A used to generate the Krylov space remains
constant; hence a sparse reordered Cholesky (for sym2d and rail) or LU (for all
other datasets) factorization was performed once for all at the start of the algorithm.
Therefore, only sparse triangular solves are required at each iteration. Clearly, the
cost of the initial factorization depends on the size and density of the coefficient ma-
trix. These two cost stages are particularly noticeable in the right plots of Figure 3.2
and Figure 3.3, where the eksm-dre curve starts towards the right of the plot, while
the rest of the computation throughout the iterations is significantly faster.

In the implementation of rksm-dre it is possible to decide a priori whether to use
only real or generically complex shifts. Our experiments showed that complex shifts
were unnecessary for sym2d and nsym3d and, in fact, slowed down convergence when
used. On the other hand, the use of general complex shifts proved to be crucial for
the efficient convergence of rksm-dre for chip and flow. For the symmetric data
in rail no complex shifts were used. We mention in passing that both algorithms
are implemented so that the inner solves of (3.8) and the residual computations are
performed at each iteration; for more demanding data, we would advise a user to

56 Chapter 3. The Differential Riccati Equation

perform these computations only periodically to save on computational time.

Comparing performance, we observe that the two algorithms have alternating leader-
ship in terms of computational time, but that rksm-dre almost consistently requires
half the space dimension of eksm-dre. This behavior is expected as the space di-
mension of eksm-dre increases with twice the number of columns per iteration, in
comparison to rksm-dre. This observation is crucial at the refinement step, where
it could be considerably more expensive to integrate a DRE of dimension 2k(nc +no)

accurately in comparison to a DRE with approximately half the dimension.

To have a clearer picture of how the various steps influence the performance of the
methods, Table 3.2 depicts the overall computational time for the system solves, the
orthogonalization steps, and the integration of the reduced systems for each algorithm.
For eksm-dre the CPU time required for the Cholesky and LU factorizations are
included in the solving time, but indicated in brackets as well. It is particularly
interesting to notice the small percentage of time required by rksm-dre in comparison
to eksm-dre for integrating the reduced system, confirming the comment made in
the previous paragraph.

Table 3.2: A breakdown of the computational time for the considered
methods for the first two datasets.

System Orthogonalisation Integration
Data Method solves (s) steps (s) steps (s)

sym2d
rksm-dre 6.1 6.9 0.4
eksm-dre 8.6 (2.7) 12.1 1.3

nsym3d
rksm-dre 38.3 0.9 0.8
eksm-dre 48.6 (43.5) 1.6 4.0

Comparisons with other BDF based methods. We compare the two projection methods
rksm-dre and eksm-dre with low-rank methods that have been developed following
different strategies. The package m.e.s.s. [134], for instance, can solve Lyapunov and
Riccati equations, and perform model reduction of systems in state space and struc-
tured differential-algebraic form, with time-variant and time-invariant data. For our
purposes, the solvers in m.e.s.s. first discretize the time interval and then solve the
ARE resulting from the ODE solver at each time step. Therefore, the approximation
strategy employed at each time iteration to solve the algebraic problem is entirely
independent, and the obtained low-rank numerical solution needs to be stored sepa-
rately. More precisely, if nt timesteps are performed, the procedure requires solving at
least nt AREs of large dimensions, delivering the corresponding low-rank approximate
solutions. Moreover, the rank of the constant term in the ARE increases with the time
step due to how the ODE solver is structured, further increasing the complexity of
the ARE numerical treatment. In our experiments with m.e.s.s., we only requested

3.4. Numerical experiments 57

the approximate solution at the final stage. If the whole approximate solution ma-
trix is requested at different times, the memory requirements will grow linearly. The
overall strategy appears to be memory and computational time consuming; therefore,
we considered datasets of reduced size for our comparisons, as displayed in Table 3.3.
The considered timespans were left unchanged.

Table 3.3: Data information for comparisons between projection-
based methods and m.e.s.s.

Name n p/s/q ||A||F ||B`||F ||C`||F ||U `
0 ||F ||M ||F

sym2d 40000 5/1/1 1.3 · 103 3.0 · 102 6.7 · 102 3.0 · 102 2 · 102

nsym3d 8000 6/1/3 6.1 · 102 7.7 · 101 1.9 · 102 8.3 · 101 2.8 · 102

Name n p/s/q ||Ǎ||F ||B̌`||F ||Č`||F ||Ǔ `
0 ||F ||M̌ ||F

flow 9669 5/1/1 4.5 · 106 2.0 · 104 1.2 · 103 0 6.8 · 100

rail 20209 7/6/1 4 · 10−3 2.1 · 10−7 6.2 · 100 1.9 · 102 2 · 10−4

Our experimental results are displayed in Tables 3.4 to 3.7; we remark that now also
the refinement cost is taken into account in the projection methods. In all tables, the
code bdf(b, nt) refers to the BDF method implemented in the refinement procedure
of the reduction methods and in the time discretization procedure of m.e.s.s.

Table 3.4: sym2d: Storage and computational time comparison of
rksm-dre, eksm-dre and m.e.s.s.. Reduction phase performed with
bdf(1,10), refinement phase with bdf(2,100). In m.e.s.s. only the
approximate solution at the final time is stored, with no solutions at

intermediate time instances returned.

n-long Min/Max Reduction Refine Tot CPU
Method Vecs rank phase(s) phase(s) time(s)
rksm-dre 54 23/43 1.4 0.15 1.6
eksm-dre 120 23/43 1.7 1.9 3.6
m.e.s.s.-bdf(1,10) 988 58/75 319.9
m.e.s.s.-bdf(2,100) 1032 58/86 4005.4

The tables show the storage requirements in terms of n-length vectors, the minimum
and maximum approximate solution rank (with a truncation tolerance 10−8 for the
projection methods) within the set of solutions, the CPU time break out of projection
and refinement phases for the two projected methods, and finally, the total CPU time.
The stopping tolerance for all algebraic methods – that is, the two projection methods
and the Newton–Kleinmann-type method used in m.e.s.s. to solve each ARE – is set
to 10−7.

In the m.e.s.s. software, the user can either select a stopping tolerance (to be used
for all solvers within the Newton–Kleinmann strategy) or a maximum number of
iterations. We have experimented with both cases, where the maximum number of
iterations was detected (a-posteriori) as the maximum number of iterations required
within m.e.s.s to reach the tolerance of 10−7. Furthermore, in most cases, it was

58 Chapter 3. The Differential Riccati Equation

observed that avoiding the residual computation may slow down the computational
procedure. This is due to the possibility of performing several unnecessary iterations
at some timesteps after the desired accuracy has, in fact, been reached. We, therefore,
only report the results of the more realistic, reliable case where a stopping tolerance
is selected beforehand. Galerkin acceleration is used to boost the performance of
Newton–Kleinmann.

Table 3.5: nsym3d: Storage and computational time comparison of
rksm-dre, eksm-dre and m.e.s.s.. Reduction phase performed with
bdf(1,10), refinement phase with bdf(2,100). In m.e.s.s. only the
approximate solution at the final time is stored, with no solutions at

intermediate time instances returned.

n-long Min/Max Reduction Refine Tot CPU
Method Vecs rank phase(s) phase(s) time(s)
rksm-dre 90 36/66 2.4 2.8 5.2
eksm-dre 180 36/66 2.6 5.4 8.0
m.e.s.s.-bdf(1,10) 1116 71/90 431.0
m.e.s.s.-bdf(2,100) 1152 67/94 4965.0

All numbers in the tables illustrate the large computational costs of m.e.s.s., as
expected by the strategy “first time-discretize, then solve”, whereas both projection
methods require just a few seconds of CPU in most cases.

The storage requirements of both reduction methods are independent of the number
of timesteps where the solution is required. This is because only a few n-long basis
vectors need to be generated and stored, while only the reduced problem solution
Ûk(t) changes at the timesteps t. The memory requirements of m.e.s.s. are mea-
sured as the dimensions of the low-rank factor returned by the Newton-Kleinmann
procedure, before column compression, at the final timestep. The dimension decreases
significantly with the column compression. In our experiments, we only stored the
approximate solution at the last time step; however, memory will be correspondingly
higher if the whole approximation matrix is required at more instances (memory will
thus grow linearly with the number of time instances to be monitored).

We observe that the extended space yields a significantly larger basis than the approx-
imate solution rank it produces. This means that the approximate solution belongs
to a much smaller space than the one constructed by eksm-dre. This is far less so
with rksm-dre. The different behavior confirms what has been already observed for
the two projection methods in the ARE case [144].

3.4. Numerical experiments 59

Table 3.6: flow: Storage and computational time comparison of
rksm-dre, eksm-dre and m.e.s.s.. Reduction phase performed with
bdf(1,10), refinement phase with bdf(2,100). In m.e.s.s. only the
approximate solution at the final time is stored, with no solutions at

intermediate time instances returned.

n-long Min/Max Reduction Refine Tot CPU
Method Vecs rank phase(s) phase(s) time(s)
rksm-dre 175 95/100 11.8 4.5 16.3
eksm-dre 350 95/100 27.4 23.5 50.9
m.e.s.s.-bdf(1,10) 1280 87/106 431.7

Table 3.7: rail: Storage and computational time comparison of
rksm-dre, eksm-dre and m.e.s.s.. Reduction phase performed with
bdf(1,10), refinement phase with bdf(2,100). In m.e.s.s. only the
approximate solution at the final time is stored, with no solutions at

intermediate time instances returned.

n-long Min/Max Reduction Refine Tot CPU
Method Vecs rank phase(s) phase(s) time(s)
rksm-dre 168 153/160 6.4 3.3 9.7
eksm-dre 462 153/160 39.2 5.7 44.9
m.e.s.s.-bdf(1,10) 6345 151/158 705.3
m.e.s.s.-bdf(2,100) 4023 124/158 3396.5

Comparisons with splitting methods. We next compare rksm-dre with the fourth-
order additive splitting method (split-add4(nt)) developed in [150]; see also Sec-
tion 2.2.2 for a discussion on lower-order splitting methods. The main computational
effort in the splitting methods is due to the repeated evaluation of matrix exponentials,
which has been resolved by using a Krylov-based matrix exponential approximation.
Similar to the issue discussed with m.e.s.s. in the previous section, the nt (factored)
solution matrices are independently calculated at each timestep, leading to significant
memory requirements.

To ensure that we are comparing methods with similar approximation accuracies, we
generate reference solutions Uref(tj) for the selected time instances tj . This is done
by using rksm-dre with a stopping tolerance of 10−10, plus a refinement process
with bdf(4, 104) from [134]. To allow for such accurate approximations, we consider
slightly smaller problem dimensions for the first two datasets, and we set p = s = 1

and U0 = 0n.

The input parameters are tailored so that the approximate solutions from different
methods have relatable accuracies. In particular, rksm-dre is solved with an outer
stopping tolerance of 10−6 and with bdf(3,1000) in the refinement process. The
number of timesteps utilized in split-add4 is selected as nt = 500. The expected
approximation errors relative to the reference solution, measured as

‖Uapprox(t)−Uref(t)‖F
‖Uref(t)‖F

,

60 Chapter 3. The Differential Riccati Equation

are illustrated in Figure 3.6 (dataset sym2d in the left plot, dataset nsym3d in the
right plot). The figures indicate that we compare methods having approximation

0 0.2 0.4 0.6 0.8 1
10

-6

10
-4

10
-2

10
0

0 0.2 0.4 0.6 0.8 1
10

-6

10
-4

10
-2

10
0

Figure 3.6: Expected approximation error for rksm-dre and split-
add4(500). Left: Dataset sym2d. Right: Dataset nsym3d.

errors of a similar order. The performance results are contained in Table 3.8 for two
different discretizations of sym2d and nsym3d.

Table 3.8: Storage and computational time comparison of rksm-dre
and split-add4(500). Reduction phase performed with bdf(1,10),
refinement phase with bdf(3,1000). In split-add4 only the approxi-

mate solution at the final time is stored.

n-long Min/Max Tot CPU
Data (n) Method Vecs rank time (s)

sym2d (104)
rksm-dre 8 3/6 0.6

split-add4(500) 28 3/7 34.9

nsym3d (8 · 103)
rksm-dre 10 4/7 2.2

split-add4(500) 36 3/9 37.9

sym2d (9 · 104)
rksm-dre 6 3/4 1.2

split-add4(500) 28 3/7 330.0

nsym3d (2.7 · 104)
rksm-dre 10 4/8 10.1

split-add4(500) 36 3/9 127.8

All numbers indicate the competitiveness of rksm-dre in terms of storage and com-
putational time. The memory requirements for split-add4 is measured as the di-
mension of the solution factor at the final timestep, before column compression. If
the solution is required at more time instances, then these memory requirements will
increase accordingly.

We also mention that we have experimented with the dynamic splitting methods in-
troduced in [115], however, the algorithms proposed by the authors4 in [115] appeared
to be better suited for small to medium size problems.

4We thank Chiara Piazzola for providing us with her Matlab implementation of the method.

3.5. Concluding remarks 61

Table 3.9: sym2d (of size 106): Results with rksm-dre, using differ-
ent refinement strategies. Reduction phase performed with bdf(1,10)

and tolerance 10−8.

Refinement # n-long Soln. Reduction Refinement Tot CPU
Method Vecs rank phase(s) phase(s) time(s)
bdf(2,100) 72 55 37.7 1.1 38.8
bdf(3,1000) 72 55 37.7 9.6 47.3
bdf(4,10000) 72 55 37.7 95.5 133.2
split-add4(500) 72 55 37.7 1.9 39.6
split-add8(500) 72 55 37.7 5.1 42.8
split-adapt8 72 55 37.7 23.1 60.8

Discussion on the refinement step. In previous sections, we have stressed that the two
approximation stages of the projection method are independent, and we have focused
on determining an adequate approximation space. Here we linger over the accuracy
of the second stage, the refinement step. By exploiting the far smaller problem size
of the reduced problem, it is possible to allow for a much more accurate integration
phase than what was done during the iteration of the reduction step. This crucial fact
is already illustrated in the time breakdown of Tables 3.4 to 3.6, where especially for
rksm-dre the refinement phase employs a fraction of the overall computational time
while still allowing for a somewhat accurate final solution.

We next explore in more detail these advantages with rksm-dre on sym2d, where
the discretization was further refined to get a coefficient matrix of dimension 106.
The dimensions of the other corresponding matrices remain as presented in Table 3.1.
We investigate the time taken by DRE solvers with different accuracies to emphasize
the advantages and flexibility of the refinement procedure. Table 3.9 reports the
timings for a refinement step performed by three different bdf methods and three
splitting methods. The 8th order adaptive splitting method (split-adapt8) also
comes from [150] and is performed with a tolerance of 10−7. We emphasize that in
the refinement phase, we have utilized some of the most accurate integrators available,
and nevertheless, the high-dimensional (n = 106) problem is approximated in less than
150 seconds for all integrators.

3.5 Concluding remarks

In this chapter, we have devised a rational Krylov subspace-based order reduction
method for solving the symmetric DRE, providing a low-rank approximate solution
matrix at selected time steps. A single projection space is generated for all time
instances, and the space is expanded until the solution is sufficiently accurate. We
stress that our approach is very general and that it could be applied to subspaces other
than Krylov-based ones, as long as the spaces are nested, so that they keep growing as

62 Chapter 3. The Differential Riccati Equation

the iterations proceed. This methodology could then be employed for more complex
settings, such as parameter dependent problems, where the involved approximation
space may require the inclusion of some parameter sampling.

Like in typical model order reduction strategies, in our methodology time stepping is
only performed at the reduced level so that the integration cost is drastically lower
than what one would have by applying the time stepping on the original large dimen-
sional problem. We have derived a new stopping criterion that takes into account
the different approximation behavior of the algebraic and differential portions of the
problem, together with a refinement procedure that can improve the final approxi-
mate solution by using a high-order integrator. These enhancement strategies have
also been applied to the extended Krylov subspace approach. We have analyzed the
asymptotic behavior of the reduced-order solution to ensure that the generated ap-
proximation behaves like the sought-after time-dependent solution.

Although our numerical results are promising, there are still several open issues as-
sociated with the reduced-order solution of the DRE. In particular, while stability
and other matrix properties associated with the solutions U(t) have been thoroughly
studied [31, 56, 69, 126], the analysis of corresponding properties for the approximate
solution Uk(t) = VkÛk(t)V>k for t ∈ T is still a largely open problem. In [99] some
interesting monotonicity properties have been shown when the polynomial Krylov
subspace is used together with particular ODE solvers; a complete analysis for Uk(t)

in a more general setting would be desirable.

63

Chapter 4

Semilinear ODEs with General
Nonlinear Term

This chapter focuses on the problem where the nonlinear function is no longer quadratic
but rather more general. As demonstrated in the previous chapter, the quadratic
structure of the DRE is beneficial in the sense that Krylov subspace methods can be
used to generate the approximation space and that the nonlinear term can be explic-
itly projected onto the reduced space. However, these two issues are no longer trivial
in the present case and need to be carefully investigated.

To this end, we are interested in numerically approximating the solution U(t) ∈ Smat

to the semilinear matrix differential equation

U̇(t) = A1U(t) +U(t)A2 + F(U , t) +C, U(0) = U0, (4.1)

with similar dimensions and constraints as for (2.1), which arises for instance in the
discretization of two-dimensional partial differential equations of the form

ut = L(u) + f(u, t) + c(x, y), u = u(x, y, t) with (x, y) ∈ Ω ⊂ R2, t ∈ T, (4.2)

and given initial condition u(x, y, 0) = u0(x, y), for certain choices of the physical
domain Ω, as has been demonstrated in Section 1.2.

We aim to approximate the solution of (4.1) by constructing a reduced order model
with the same structure as (4.1) but of much smaller dimension. In this setting, one
challenge is to construct a pair of left-right approximation spaces that capture the
behavior of the nonlinear function well. Furthermore, by definition, general nonlinear
terms can not be explicitly projected onto the low-dimensional space and must first
be evaluated in full dimension before projection. Consequently, it is crucial for the
success of the reduction procedure that the nonlinear term is also approximated for
efficiency.

As discussed in Section 1.2, a large collection of procedures for (4.1) employ a vector-
oriented approach. That is, a vector u(t) ∈ RN contains the representation coefficients

64 Chapter 4. Semilinear ODEs with General Nonlinear Term

of the sought after solution to (4.2) in the discrete space, where u(t) is the solution
to the following system of ODEs:

u̇(t) = Lu(t) + f(u, t) + c, u(0) = u0. (4.3)

See Section 1.2 for further details regarding the origin of (4.3). To reduce the di-
mension and complexity of the problem (4.3) several alternatives can be considered,
as already discussed in the introductory part of the thesis. Nevertheless, in this the-
sis, we are particularly interested in POD-DEIM type order reduction strategies for
semilinear ordinary differential equations [41]. Therefore, in Section 4.1 we review
the standard POD-DEIM method as it is applied to (4.3). Then, in Section 4.2, we
develop a matrix-oriented POD-DEIM order reduction strategy for the problem (4.1)
that leads to a semilinear matrix differential equation with the same structure as (4.1),
but of significantly reduced dimension. This construction is realized with the gener-
ation of a pair of left and right space bases via a novel Two-Sided POD (2s-pod).
Furthermore, the reduction of the nonlinear term is also performed employing a fully
matricial interpolation using left and right projections onto two distinct reduction
spaces, giving rise to a new two-sided version of DEIM. As a result, a fast (offline)
reduction phase where a significant decrease in the problem size is carried out, is fol-
lowed by a light (online) phase where the reduced matrix ODE is integrated over time
with the preferred matrix-oriented method. In particular, we will illustrate that the
structure of the reduced

4.1 Review of POD-DEIM

Consider the system of ODEs (4.3). In Section 1.3.2 we have illustrated how a POD
basis can be constructed from a given set of snapshots. Furthermore, we have illus-
trated in Section 1.3.3 how the DEIM can be used to interpolate a nonlinear function
to avoid evaluating the function in full dimension.

To this end, let uj = u(tj) and consider a set of snapshots {uj}ns
j=1 of the solution of

(4.3). Then the orthoormal columns of Vvec ∈ RN×k, k � N , form a POD basis of
the set of snapshots {uj}ns

j=1, as discussed in Section 1.3.2. As a result, it is possible
to approximate, for t ∈ [0, tf] = T ,the vector u(t) ∈ RN as u(t) ≈ Vvecû(t), where
the vector û(t) ∈ Rk solves the reduced problem

˙̂u(t) = L̂û(t) + f̂(û, t) + ĉ, û(0) = V >vecu0. (4.4)

Here L̂ = V >vecLVvec, f̂(û, t) = V >vecf(Vvecû, t) and ĉ = V >vecc.

Although for k � N problem (4.4) is cheaper to solve than the original one, the
definition of f̂ above requires the evaluation of f(Vvecû, t) at each timestep and at all
N entries, thus still depending on the original system size. This evaluation needs be

4.2. A matrix-oriented POD-DEIM algorithm 65

performed at each timestep and consequently creates a major bottleneck in solving
the reduced order model. For a more detailed discussion regarding this complexity
bottleneck see [41, Section 2.2]. One way to overcome this problem is by means of
DEIM, as discussed in Section 1.3.3. As a result, the nonlinear term in the reduced
model (4.4) is then approximated by

f̂(û, t) ≈ V >vecΦvec(P
>
vecΦvec)

−1P>vecf(Vvecû, t). (4.5)

DEIM is particularly advantageous when the function f is evaluated componentwise,
in which case it holds that P>vecf(Vvecû, t) = f(P>Vvecû, t), so that the nonlinear
function is evaluated only at p � N components. In general, this occurs whenever
finite differences are the underlying discretization method. If more versatile discretiza-
tions are required, then different procedures need to be devised. A discussion of these
approaches is deferred to Section 4.2.2.

4.2 A matrix-oriented POD-DEIM algorithm

In this section, we introduce our novel matrix-oriented POD-DEIM algorithm for
ODEs of the form (4.1), that fully lives in the matrix setting, without requiring a
mapping from Rn1×n2 to RN , so that no vectors of length N = n1n2 need to be
processed or stored.

More precisely, we determine an approximation to U(t) of the type

V1Û(t)V >2 , t ∈ T (4.6)

where V1 ∈ Rn1×k1 and V2 ∈ Rn2×k2 are matrices to be determined, independent of
time. Here k1, k2 � n1, n2. The function Û(t) is determined as the numerical solution
to the following reduced semilinear matrix differential problem

˙̂
U(t) = Â1Û(t) + Û(t)Â2 + F(Û , t)

∧

+ Ĉ

Û(0) = Û (0) := V >1 U0V2,
(4.7)

with Â1 = V >1 A1V1, Â2 = V >2 A2V2, Ĉ = V >1 CV2, and F(Û , t)

∧

is a matrix-oriented
DEIM approximation to

F̂(Û , t) = V >1 F(V1ÛV
>

2 , t)V2. (4.8)

We also discuss several other implementation issues; in particular a dynamic algorithm
is developed to minimize the number of high-dimensional snapshots contributing to
the approximation space.

66 Chapter 4. Semilinear ODEs with General Nonlinear Term

4.2.1 A new two-sided POD

Here we discuss the first crucial step towards the approximation (4.6). That is, we
introduce a novel algebraic formulation that performs a POD at the matrix level,
taking account of the spatial properties of the functions to be approximated, and of
the function changes when time snapshots are captured. The algorithm is tailored
towards dealing with sets of matrices, that is, sets of function in two variables, rather
than vectors in one long variable.

We determine the left and right reduced space bases that approximate the space of
the given snapshots Ξ(t) (either the nonlinear functions or the approximation solu-
tions), so that Ξ(t) ≈ V1Ξ̂(t)V >2 , where V1,V2 have ν1 and ν2 orthonormal columns,
respectively. Their ranges approximate the span of the rows (left) and columns (right)
spaces of the function Ξ(t), independently of the time t. In practice, we wish to have
ν1 � n1, ν2 � n2 so that Ξ̂(t) will have a reduced dimension. A simple way to pro-
ceed would be to collect all snapshot matrices in a single large (or tall) matrix and
generate the two orthonormal bases corresponding to the rows and columns spaces.
Unfortunately, this is way too expensive, both in terms of computational costs and
memory requirements. Instead, we present a two-step procedure that avoids explicit
computations with all snapshots simultaneously. The first step sequentially selects
the most important information of each snapshot matrix relative to the other snap-
shots, while the second step prunes the generated spaces by building the corresponding
orthonormal bases. These two steps can be summarized as follows:

1. Selective collection. Assume i snapshots have been processed and dominant SVD
information retained. For the next snapshot Ξ(ti+1) perform a reduced SVD
and retain the leading singular triplets in a way that the retained singular values
are at least as large as those already kept from previous iterations. Make sure
that at most κ SVD components are retained overall, with κ selected a-priori;

2. Bases pruning. Ensure that the vectors spanning the reduced right and left
spaces have orthonormal columns. Reduce the space dimension if needed.

In the following, we provide the details for this two-step procedure. The strategy that
leads to the selection of the actual time instances used for this construction will be
discussed in Section 4.2.3. To simplify the presentation, and without loss of generality,
we assume n1 = n2 ≡ n.

First step. Let Ξi = Ξ(ti). For the collection of snapshots, we wish to determine a
(left) reduced basis for the range of the matrix S1 ≡ SSS(1) := (Ξ1, . . . , Ξns) ∈ Rn×(n·ns)

and a (right) reduced basis for the range of the matrix S2 ≡ SSS>(2) := (Ξ>1 , . . . ,Ξ
>
ns

)> =

(Ξ1; . . . ; Ξns), where SSS ∈ Rn×n×ns is a snapshot tensor of order three, as defined in
Section 1.1. This is performed by incrementally including leading components of the

4.2. A matrix-oriented POD-DEIM algorithm 67

snapshots Ξi, so as to determine the approximations

S1 ≈ S̃1 := ṼnsΣ̃nsW̃
>
ns
, Ṽns ∈ Rn×κ, W̃ns ∈ Rn·ns×κ

S2 ≈ Š2 := V̌nsΣ̃nsW̌
>
ns
, V̌ns ∈ Rn·ns×κ, W̌ns ∈ Rn×κ.

A rank reduction of the matrices Ṽns and W̌ns will provide the sought-after bases
to be used for time instances other than those of the snapshots. Let κ ≤ n be the
chosen maximum admissible dimension for the reduced left and right spaces. For
i ∈ {1, . . . , ns}, let1

Ξi ≈ ViΣiW
>
i , Vi,Wi ∈ Rn×κ, Σi = diag(σ

(i)
1 , . . . , σ(i)

κ) (4.9)

be the reduced SVD of Ξi corresponding to its dominant κ singular triplets, with
singular values sorted decreasingly. Let Ṽ1 = V1, Σ̃1 = Σ1 and W̃1 = W1. For
each subsequent i = 2, . . . , ns, the leading singular triplets of Ξi are appended to the
previous matrices Σ̃i−1, Ṽi−1 and W̃i−1, that is

S̃1,i = (Ṽi−1, Vi)

(
Σ̃i−1

Σi

)(
W̃>

i−1

W>i

)
≡ ṼiΣ̃iW̃

>
i . (4.10)

After at most ns iterations we will have the final S̃1, with no extra subscript. The
expansion is performed ensuring that the appended singular values are at least as
large as those already present, so that the retained directions are the leading ones
among all snapshots. Then the three matrices Ṽi, W̃i and Σ̃i are truncated so that
the retained diagonal entries of Σ̃i are its κ largest diagonal elements. The diagonal
elements of Σ̃i are not the singular values of S̃1,i, however the adopted truncation
strategy ensures that the error committed is not larger than σκ+1, which we define
as the largest singular value discarded during the whole accumulation process. Since
each column of Ṽns has unit norm, it follows that ‖Ṽns‖ ≤ κ. Moreover, the columns
of W̃ns are orthonormal. Hence ‖S1 − S̃1‖ ≤ κσκ+1.

In particular, this procedure is not the same as taking the leading singular triplets of
each snapshot per se: this first step allows us to retain the leading triplets of each
snapshot when compared with all snapshots, using the magnitude of all singular values
as a quality measure.

A similar strategy is adopted to construct the right basis. Formally,

Š2,i =

(
V̌i−1

Vi

)(
Σ̃i−1

Σi

)(
W̌>

i−1

W>i

)
= V̌iΣ̃iW̌

>
i ; (4.11)

notice that Σ̃i is the same for both S̃1 and Š2, and that the large matrices W̃i and V̌i
are not stored explicitly in the actual implementation. At completion, the following

1Here we drop the bold-face, since these matrices will serve as blocks in the construction of S̃1

and Š2.

68 Chapter 4. Semilinear ODEs with General Nonlinear Term

two matrices are bases candidates for the left and right spaces:

Left: ṼnsΣ̃
1
2
ns , Right: Σ̃

1
2
nsW̌

>
ns
, (4.12)

where the singular value matrices keep track of the relevance of each collected singular
vector, and the square root allows us to maintain the order of magnitude of the
snapshot matrices, when the product of the two left and right matrices is carried out.
Here ns is the total number of snapshots included in the whole procedure, using the
dynamic procedure discussed in Section 4.2.3.

The procedure is described in Algorithm 4.1.

Algorithm 4.1 dynamic selection procedure

1: INPUT: Ξi, Ṽi−1 ∈ Rn×κ, Σ̃i−1 ∈ Rκ×κ, W̌i−1 ∈ Rn×κ, κ
2: OUTPUT: Ṽi ∈ Rn×κ, Σ̃i ∈ Rκ×κ, W̌i ∈ Rn×κ.
3: Compute [Vi,Σi,Wi] = svds (Ξi, κ);
4: Append Ṽi ← (Ṽi−1,Vi), W̌i ← (W̌i−1,Wi), Σ̃i ← blkdiag(Σ̃i−1,Σi);
5: Decreasingly order the entries of (diagonal) Σ̃i and keep the first κ;
6: Order Ṽi and W̌i accordingly and keep the first κ vectors of each;

Second step. We complete the two-sided approximation of the snapshot functions by
pruning the two orthonormal bases associated with the representation (4.12). Let

ṼnsΣ̃
1
2
ns = V ΣW

> and Σ̃
1
2
nsW̌

>
ns

= V̆ Σ̆W̆> (4.13)

be the SVDs of the given matrices. If the matrices Σ and Σ̆ have rapidly decaying
singular values, we can further reduce the low rank approximation of each Ξi. More
precisely, let

V Σ = [V1,VE]

(
Σ1

ΣE

)
, and Σ̆W̆> =

(
Σ̆2

Σ̆E

)[
W̆>2
W̆>E

]
, (4.14)

and let V1 = V1 ∈ Rn×ν1 , and V2 = W̆2 ∈ Rn×ν2 . The final reduced dimensions
ν1 and ν2, that is the number of columns to be retained in the matrices V1 and V2,
respectively, are determined by the following criterion:

‖ΣE‖F ≤
τ

√
nmax

‖Σ‖F and ‖Σ̆E‖F ≤
τ

√
nmax

‖Σ̆‖F (4.15)

for some chosen tolerance τ ∈ (0, 1) and nmax is the maximum number of available
snapshots of the considered function.

We have assumed so far that at least one singular triplet is retained for all Ξ’s. In
practice, it might happen that for some i, none of the singular values is large enough
to be retained. In this case, Ξi does not contribute to the two-sided basis.
Remark 4.1. If Ξi = Ξ(ti) is symmetric for ti ∈ T , the reduction process can
preserve this structure. Indeed, since Ξi is symmetric it holds that Ξi = ViΣiWi

> =

4.2. A matrix-oriented POD-DEIM algorithm 69

ViΣiDiVi
>, with Di diagonal of ones and minus ones. As a consequence, V2 = V1.

Positive definiteness can also be preserved, with Di the identity matrix.

In the following we use the pair (V1,V2), hereafter denoted as two-sided POD (2s-
pod), to approximate the function Ξ(t) for some t 6= ti:

Ξ(t) ≈ V1Ξ̂(t)V >2 (4.16)

with Ξ̂ depending on t. In the setting where Ξ(t) represents the solution functions,
that is U(t), we will retain the notation (V1,V2). However, when Ξ(t) represents the
nonlinear function F(U(t), t), the pair (Φ1,Φ2) will play the role of (V1,V2) in the
approximation (4.16); see Section 4.2.4.

4.2.2 Connections to other matrix-based interpolation POD strate-
gies

The approximation discussed in the previous section is not restricted to problems of
the form (4.1), but rather it can be employed to any POD function approximation
where the snapshot vectors are transformed into matrices, giving rise to a matrix
DEIM methodology. This class of approximation has been explored in the recent
literature, where different approaches have been discussed, especially in connection
with parameter-dependent problems and Jacobian matrix approximation; see, e.g.,
[163],[39], and the thorough discussion in [27]. In the former case, the setting is
particularly appealing whenever the operator has a parameter-based affine function
formulation, while in the Jacobian case, the problem is naturally stated in matrix
terms, possibly with a sparse structure [33],[147]. In the nonaffine case, in [33],[119]
an affine matrix approximation (MDEIM) was proposed by writing appropriate (local)
sparse representations of the POD basis, as is the case for finite element methods. As
an alternative in this context, it was shown in [54] that DEIM can be applied locally
to functions defined on the unassembled finite element mesh (UDEIM); we refer the
reader to [155] for more details and to [8] for a detailed experimental analysis.

In our approach we consider the approximation in (4.16). If Ξ̂(t) were diagonal, then
this approximation could be thought of as an MDEIM approach, since then Ξ(t) would
be approximated by a sum of rank-one matrices with the time-dependent diagonal
elements of Ξ̂(t) as coefficients. Instead, in our setting Ξ̂(t) is far from diagonal,
hence our approximation determines a more general memory saving approximation
based on the low-rank representation given by V1,V2.

Another crucial novel fact of our approach is the following. While methods such as
MDEIM aim at creating a linear combination of matrices, they still rely on the vector
POD for computing these matrices, thus only detecting the leading portion of the left
range space. In our construction, the left and right approximation spaces spanned by
V1,V2, respectively, stem from a subspace selection of the range spaces of the whole

70 Chapter 4. Semilinear ODEs with General Nonlinear Term

snapshot matrix S1 (left space) and S2 (right space); here both spaces are matrix
spaces. In this way, the leading components of both spaces can be captured. In
particular, specific space directions followed by the approximated function during the
time evolution can be more easily tracked (see Example 4.2 in Section 4.2.6) while
maintaining possible symmetries (see Corollary 4.1).

In light of the discussion above, our approach might also be interpreted in terms of the
“local basis” POD framework, see, e.g., [6], where the generality of the bases is ensured
by interpolation onto matrix manifolds. For a presentation of this methodology, we
also refer the reader to the insightful survey [27, section 4.2]. In this context, the
matrices V1,V2 may represent a new truncated interpolation of the matrices in S1 and
S2, in a completely algebraic setting.

4.2.3 A dynamic implementation

We describe an adaptive procedure for selecting the time instances employed in the
first step of the basis construction of Section 4.2.1. This procedure will be used for
the selection of both the solution and the nonlinear function snapshots. The dynamic
procedure starts with a coarse discretization of the time interval (using one-fourth of
the available nodes) and then continues with two successive refinements if needed.

Let nmax be the maximum number of available snapshots of the considered function
Ξ(t), t ∈ [t0, tf], with t0 = 0. A first set I1 of nmax/4 equispaced time instances
in T is considered (symbol ‘?’ in Figure 4.1). If needed, a second set I2 of nmax/4

equispaced time instances are considered (symbol ‘×’), whereas the remaining nmax/2

time instances (symbol ‘�’ and set I3) are considered in the third phase, if needed at
all.

Figure 4.1: The three evaluation phases of the refinement procedure.

The initial 2s-pod basis matrices of dimension κ, i.e. Ṽ1 and W̌1 from Equation (4.12),
are constructed by processing the snapshot Ξ(t0). For all other time instances ti in
each phase, we use the following inclusion criterion

if εi :=
‖Ξ(ti)−Π1Ξ(ti)Π2‖

‖Ξ(ti)‖
> tol then include (4.17)

4.2. A matrix-oriented POD-DEIM algorithm 71

where Π1 and Π2 are orthogonal projections onto the left and right spaces (these
are implicitly constructed by performing a reduced QR decomposition of the current
matrices Ṽi and W̌i on the fly). If a snapshot is selected for inclusion, the leading
singular triplets of Ξ(ti) are appended to the current bases, and the leading κ com-
ponents are retained as in Algorithm 4.1; then the next time instance in the phase is
investigated. If, by the end of the phase, the arithmetic mean of the errors εi in (4.17)
is above tol, it means that the bases are not sufficiently good and we move on to the
next refinement phase. Otherwise, the snapshot selection procedure is ended and the
matrices V and W̆ are computed and pruned by the second step in Section 4.2.1 to
form the final 2s-pod basis matrices V1 ∈ Rn×ν1 and V2 ∈ Rn×ν2 . The full dynamic

procedure to create the 2s-pod approximation space is presented in Algorithm 4.2.

Algorithm 4.2 dynamic 2s-pod

1: INPUT: Function Ξ : T 7→ Rn×n, nmax, tol, κ, phase sets I1,2,3

2: OUTPUT: V1 ∈ Rn×ν1 and V2 ∈ Rn×ν2

3: Compute [V1,Σ1,W1] = svds (Ξ(t0), κ);
4: Let Ṽ1 = V1, W̌1 = W1, Σ̃1 = Σ1;
5: Dynamic selection step :

6: for phase = 1, 2, 3 do
7: for all ti ∈ Iphase do
8: if (4.17) satisfied then
9: Process snapshot Ξ(ti) using Dynamic selection (Algorithm 4.1);

10: Update Ṽi and W̌i;
11: end if
12: end for
13: if

∑
ti∈Iphase εi ≤ tol|Iphase| then

14: break and go to 17;
15: end if
16: end for

17: Bases Pruning:

18: Determine the reduced SVD of ṼnsΣ̃
1
2
ns and Σ̃

1
2
nsW̌

>
ns

in (4.13);
19: Determine the final reduced V1 and V2 as in (4.14) using the criterion (4.15);
20: Stop

4.2.4 Approximation of the nonlinear function

To complete the reduction of the original problem to the small size problem (4.7),

we need to discuss the derivation of the approximation F(Û , t)

∧

. Let {F(tj)}ns
j=1 be

a set of snapshots of the nonlinear function F at times tj , j = 1, . . . , ns. Using
Algorithm 4.2 we compute the two matrices Φ1 ∈ Rn×p1 , Φ2 ∈ Rn×p2 , which play the
role of (V1,V2) in the general approximation (4.16), so as to approximate F(t) as

F(t) ≈ Φ1F̂ (t)Φ>2 , (4.18)

72 Chapter 4. Semilinear ODEs with General Nonlinear Term

with F̂ (t) to be determined. Here p1, p2 play the role of ν1, ν2 in the general de-
scription, and they will be used throughout as basis truncation parameters for the
nonlinear snapshots. By adapting the DEIM idea to a two-sided perspective, the co-
efficient matrix F̂ (t) is determined by selecting independent rows from the matrices
Φ1 and Φ2, so that

P>1 Φ1F̂ (t)Φ>2 P2 = P>1 F(t)P2,

where P1 = [eπ1 , · · · , eπp1
] ∈ Rn×p1 and P2 = [eγ1 , · · · , eγp2

] ∈ Rn×p2 are columns
of the identity matrix of size n. Both matrices are defined similarly to the selection
matrix Pvec from Section 1.3.3, and they act on Φ1,Φ2, respectively. If P>1 Φ1 and
P>2 Φ2 are nonsingular, then the coefficient matrix F̂ (t) is determined by

F̂ (t) = (P>1 Φ1)
−1P>1 F(t)P2(Φ

>
2 P2)

−1.

With this coefficient matrix F̂ (t), the final approximation (4.18) becomes2

F̃(t) = Φ1(P
>
1 Φ1)

−1P>1 F(t)P2(Φ
>
2 P2)

−1Φ>2 =: D1F(t)D>2 . (4.19)

Note that D∗ are oblique projectors. A similar approximation can be found in [146].
In addition to that of the two spaces, an important role is played by the choice of the
interpolation indices contained in P1 and P2. We suggest determining these indices
for the matrices P1 and P2 as the output of q-deim [57] (see also Section 1.3.3) with
inputs Φ1 and Φ2, respectively.

We next provide a bound measuring the distance between the error obtained with the
proposed oblique projection (4.19) and the best approximation error of F in the same
range spaces, where we recall that Φ1 and Φ2 have orthonormal columns. This bound
is a direct extension to the matrix setting of [41, Lemma 3.2].
Proposition 4.1. Let F ∈ Rn×n be an arbitrary matrix, and let F̃ = D1FD>2 , as in
Equation (4.19). Then

‖F − F̃‖F ≤ c1c2 ‖F −Φ1Φ
>
1 FΦ2Φ

>
2 ‖F (4.20)

where c1 =
∥∥(P>1 Φ1)

−1
∥∥

2
and c2 =

∥∥(P>2 Φ2)
−1
∥∥

2
.

Proof. Recall that f = vec(F). Then, by the properties of the Kronecker product

‖F − F̃‖F = ‖vec(F)− vec(F̃)‖2 = ‖f − (D2 ⊗D1)f‖2
=
∥∥∥f − (Φ2 ⊗Φ1)

(
(P2 ⊗ P1)>(Φ2 ⊗Φ1)

)−1
(P2 ⊗ P1)>f

∥∥∥
2

Therefore, by [41, Lemma 3.2],

‖F − F̃‖F ≤
∥∥∥∥((P2 ⊗ P1)>(Φ2 ⊗Φ1)

)−1
∥∥∥∥

2

∥∥∥f − (Φ2 ⊗Φ1)(Φ2 ⊗Φ1)>f
∥∥∥

2

=
∥∥∥(P>1 Φ1)−1

∥∥∥
2

∥∥∥(P>2 Φ2)−1
∥∥∥

2

∥∥∥F −Φ1Φ
>
1 FΦ2Φ

>
2

∥∥∥
F
. �

2If the nonlinear function F(t) is symmetric for all t ∈ T , thanks to Remark 4.1 this approximation
will preserve the symmetry of the nonlinear function.

4.2. A matrix-oriented POD-DEIM algorithm 73

We emphasize that c1, c2 do not depend on time, in case F does. As has been discussed
in [41],[57], it is clear from (4.20) that minimizing these amplification factors will
minimize the error norm with respect to the best approximation onto the spaces
range(Φ1) and range(Φ2). The quantities c1, c2 depend on the interpolation indices.
If the indices are selected greedily, as in [41], then

c1 ≤
(1 +

√
2n)p1−1

‖e>1 Φ1‖∞
, c2 ≤

(1 +
√

2n)p2−1

‖e>1 Φ2‖∞
. (4.21)

If the indices are selected by a pivoted QR factorization as in q-deim, then

c1 ≤
√
n− p1 + 1

√
4p1 + 6p1 − 1

3
, c2 ≤

√
n− p2 + 1

√
4p2 + 6p2 − 1

3
,

which are better bounds than those in (4.21), though still rather pessimistic; see [57].

To complete the efficient derivation of the reduced model in (4.7) we consider that F
is evaluated componentwise, as we assume throughout3, then

P>1 F(V1Û(t)V >2 , t)P2 = F(P>1 V1Û(t)V >2 P2, t),

so that

F̂(Û , t) ≈ V >1 Φ1(P>1 Φ1)−1P>1 F(V1Û(t)V >2 , t)P2(Φ>2 P2)−1Φ>2 V2

= V >1 Φ1(P>1 Φ1)−1F(P>1 V1Û(t)V >2 P2, t)(Φ
>
2 P2)−1Φ>2 V2

=: F(Û , t)

∧

. (4.22)

The matrices V >1 Φ1(P
>
1 Φ1)

−1 ∈ Rk1×p1 and (Φ>2 P2)
−1Φ>2 V2 ∈ Rp2×k2 are indepen-

dent of t, therefore they can be precomputed and stored once for all. Similarly for
the products P>1 V1 ∈ Rp1×k1 and V >2 P2 ∈ Rk2×p2 . Note that products involving the
selection matrices P ’s are not explicitly carried out: the operation simply requires
selecting corresponding rows or columns in the other factor matrix.

Finally, we remark that in some cases the full space approximation matrix may not
be involved. For instance, if F is a matrix function [81] and U(t) is symmetric for all
t ∈ [0, tf], so that U(t) ≈ V1Û(t)V >1 , then, recalling (4.8), it holds that

F̂(Û , t) = V >1 F(V1ÛV
>

1 , t)V1

?
= F(V >1 V1Û , t) = F(Û , t),

where the equality ?
= is due to [81, Corollary 1.34].

3For general nonlinear functions the theory from [41, Section 3.5] can be extended to both matrices
V1 and V2.

74 Chapter 4. Semilinear ODEs with General Nonlinear Term

4.2.5 Efficient treatment of the reduced semilinear ODE

To complete the derivation of the numerical method, we need to determine the time-
dependent matrix Û(t), t ∈ [0, tf] in the approximation V1Û(t)V >2 ≈ U(t), where
V1 ∈ Rn×k1 and V2 ∈ Rn×k2 , k1, k2 � n. The function Û(t) is computed as the

numerical solution to the reduced problem (4.7) with F(Û , t)

∧

defined in (4.22). To
integrate the reduced-order model (4.7) as time t varies, several alternatives can be
considered. The vectorized form of the semilinear problem can be treated with classical
first or second-order semi-implicit methods such as IMEX methods (see, e.g.,[14]) that
appropriately handle the stiff and non-stiff parts of the equation. Nevertheless, as has
been illustrated in Section 2.1, great savings could be obtained by sticking to the
matrix formulation of the reduced problem for the integration phase. As a result,
any of the semi-implicit integrators presented in Section 2.1 can be applied to (4.7),
given that the nonlinear function is sufficiently regular. However, due to the ability to
efficiently treat the matrix exponentials in the reduced model, the ETD scheme was
the most powerful in our experiments. Consequently, the matrix-oriented exponential
Euler scheme (2.5) will be applied in the sequel to determine the approximations
Û (i) ≈ Û(ti), for i = 1, 2, . . . , nt. See Section 2.1 and [51] for details regarding the
efficient implementation of this integrator in our setting.

Concerning the quality of our approximation, error estimates for the full pod-deim

approximation of systems of the form (4.3) have been derived in [43, 163]. A cru-
cial hypotheses in the available literature is that f(u, t) = vec(F(U , t)) be Lipschitz
continuous with respect to the first argument, and this is also required for exponen-
tial integrators. This condition is satisfied for the nonlinear function of our reduced
problem. Indeed, consider the vectorized approximation space V⊗ = V2 ⊗ V1 and the
oblique projector D⊗ = D2 ⊗D1 from (4.19). If we denote by Û(t) the approximate
solution of (4.7), then

‖U(t)− V1Û(t)V >2 ‖F = ‖u(t)− V⊗û⊗(t)‖2, (4.23)

where û⊗(t) = vec(Û(t)) solves the reduced problem

˙̂u⊗(t) = V >⊗ LV⊗û⊗(t) + V >⊗ D⊗f(V⊗û⊗, t) + V >⊗ c.

The error in Equation (4.23) can therefore be approximated by applying the a-priori
[43] or a posteriori [163] error estimate to the vectorized system associated with û.
Moreover, if f(u, t) is Lipschitz continuous, this property is preserved by the reduced
order vector model, since V⊗ has orthonormal columns and ‖D⊗‖ is a bounded con-
stant, as shown in Proposition 4.1; see e.g., [43].

The complete 2s-pod-deim method for the semilinear differential problem (4.1) is
presented in Algorithm 2s-pod-deim. In Table 4.1 we summarize the key dimensions

4.2. A matrix-oriented POD-DEIM algorithm 75

and parameters of the whole procedure. Next follows a technical discussion of the
algorithm and its computational complexity.

Algorithm 2s-pod-deim

INPUT: Coefficient matrices of (4.1), F : Rn×n × [0, tf]→ Rn×n, (or its snapshots),
nmax, κ, and τ , nt, {t}i=0,...,nt .
OUTPUT: V1,V2 and Û (i), i = 0, . . . , nt to implicitly form the approximation
V1Û

(i)V >2 ≈ U(ti)

Offline:
1. Determine V1,V2 for {U}nmax

i=1 and Φ1,Φ2 for {F}nmax
i=1 via Algorithm 4.2 (dy-

namic 2s-pod) using at most ns of the nmax time instances (if not available,
this includes approximating the snapshots {F(ti)}nmax

i=1 , {U(ti)}nmax
i=1 as the time

interval is spanned);
2. Compute Û (0) = V >1 U0V2, Â1 = V >1 AV1, Â2 = V >2 A2V2, Ĉ = V >1 CV2;
3. Determine P1,P2 using q-deim(2s-deim);
4. Compute V >1 Φ1(P

>
1 Φ1)

−1, (Φ>2 P2)
−1Φ>2 V2, P>1 V1 and V >2 P2;

Online:
5. For each j = 1, . . . , nt

(i) Evaluate F(Û (j−1), tj−1)

∧

as in (4.22) using the matrices computed above;
(ii) Numerically solve the matrix equation (2.6) and compute

Û (j) = ehÂ1Û (j−1)ehÂ2 +Φ(j−1);

Table 4.1: Summary of leading dimensions and parameters of Algo-
rithm 2s-pod-deim.

Par. Description
ns Employed number of snapshots

k Dimension of vector POD subspace

p Dimension of vector DEIM approx. space

N Length of u(t), N = n2.

κ Dimension of the snapshot space approximation

ki Dimension of left (i = 1) and right (i = 2) 2s-pod subspaces

pi Dimension of left (i = 1) and right (i = 2) 2s-deim subspaces

n Dimension of square U(t), for n = n1 = n2

Discussion of the algorithm and computational complexity

Here, we compare the computational complexity of the new 2s-pod-deim method
applied to (4.1) with that of standard pod-deim. All discussions are related to Algo-
rithm 2s-pod-deim above.

The offline phase. The first four steps of the presented algorithm define the offline
phase. For the U -set, we considered the matrix-oriented IMEX Euler scheme to
integrate the full order model; see, e.g., [51] and Section 2.1, whereas the snapshot

76 Chapter 4. Semilinear ODEs with General Nonlinear Term

selection is done via the adaptive procedure discussed in Section 4.2.3. Notice that
moving from one phase to the next in Algorithm 4.2 does not require recomputing any
quantities. Indeed, if h∗ is the stepsize of the new phase, we determine U(h∗) from
U(0) and initialize the semi-implicit Euler scheme from there; see also Figure 4.1.

The computational complexity of approximating the κ leading singular triplets with
svds, as required by Algorithm 4.1 is given by the implicitly restarted Lanczos bidi-
agonalization, as implemented in the MATLAB function svds. For each i this cost
is mainly given by matrix vector multiplications with the dense n × n matrix; one
Arnoldi cycle involves at most 2κ such products, together with 2κ basis orthogonal-
izations, leading to O(n2κ + nκ) operations per cycle [16]. The final SVDs for bases
pruning at the end of Algorithm 4.2 are performed with a dense solver, and each has
complexity O(11κ3) [70, p.493]. Furthermore, each skinny QR-factorization required
for the projections Π1 and Π2 in (4.17) has complexity O(2nκ2) [70, p.255]. For
the standard pod-deim algorithm, the reported SVD complexity is the total cost of
orthogonalizing all selected snapshots by means of Gram-Schmidt (see the discussion
in Section 4.2.6), which is O(Nn2

s).

The projected coefficient matrices Â1, Â2, Ĉ and Û0 are computed once for all and
stored in step 2 of Algorithm 2s-pod-deim, with a total complexity of approximately
O(n2(k1 + k2) + n(k1 + k2 + k2

1 + k2
2)), assuming that A1 and A2 are sparse and C

and U0 are dense. This step is called POD projection in Table 4.2.

Step 3 in the Algorithm 2s-pod-deim has a computational complexity ofO(n(p2
1+p2

2))

[57], while the matrices in step 4 need to be computed and stored with computational
complexity O(n(k1 + k2)(p1 + p2) + (p2

1 + p2
2)n + p3

1 + p3
2) in total [41]. This step

is called DEIM projection in Table 4.2. We recall that the products involving the
selection matrices P1 and P2 do not entail any computation.

Finally, for the ETD procedure, an eigenvalue decomposition of each of the reduced
matrices Â1 and Â2 is done once for all, which allows for a significant speedup in the
online integration phase (see Section 2.1), and it has complexity O(9k3

1 +9k3
2) for dense

symmetric4 matrices [70]. This makes the cost of evaluating the matrix exponentials
negligible since all the computations at each iteration online will be performed within
the eigenbases. Furthermore, thanks to the small dimension of the matrices, we also
explicitly compute the inverse of the eigenvector matrices with a cost of O(k3

1 + k3
2),

as required by the online computation.

All these costs are summarized in Table 4.2 and compared with those of the standard
pod-deim offline phase applied to (4.3), as indicated in [41], with dimension N = n2.
All coefficient matrices are assumed to be sparse, and it is assumed that both methods
select ns snapshots via the adaptive procedure. In practice, however, it appears that
the two-sided procedure requires far fewer snapshots than the vectorization procedure;

4If the coefficient matrices were nonsymmetric, this would be more expensive (still of cubic order),
but determining the exact cost is, however still an open problem [70].

4.2. A matrix-oriented POD-DEIM algorithm 77

see, e.g., Table 4.4. The table also includes the memory requirements for the snapshots
and the basis matrices.

Table 4.2: Offline phase: Computational costs (flops) for standard
pod-deim applied to (4.3), and 2s-pod-deim applied to (4.1), and

principal memory requirements. Here N = n2.

Procedure pod-deim dynamic 2s-pod-deim
SVD O(Nn2

s) O(n2κns + nκns + 6nκ2 + 11κ3)

QR – O(nκ2ns)

DEIM O(Np2) O(n(p2
1 + p2

2))

POD projection O(Nk +Nk2) O(n2(k1 + k2) + n(k1 + k2 + k2
1 + k2

2))

DEIM projection O(Nkp+ p2N + p3) O(n(k1 + k2)(p1 + p2) + (p2
1 + p2

2)n+ p3
1 + p3

2)

Snapshot Storage O(Nns) O(nκ)

Basis Storage O(N(k + p)) O(n(k1 + k2 + p1 + p2))

The online phase. The total cost of performing step 6.(i) is O(ω(p1p2) + k1p1p2 +

k1k2p2), where ω(p1p2) is the cost of evaluating the nonlinear function at p1p2 entries.
Step 6.(ii) requires a matrix–matrix product and the solution of the Sylvester equation
(2.6) in the eigenspace; see Algorithm 2.1. The latter demands only matrix–matrix
products, which come at a cost of O(k2

1k2 + k1k
2
2) and two Hadamard products with

complexity O(k1k2); see Algorithm 2.1 for more details. This brings the total com-
plexity of one time iteration online toO(ω(p1p2)+k1p1p2+k1k2p2+k2

1k2+k1k
2
2+k1k2),

which is independent of the original problem size n.

4.2.6 Numerical experiments

In this section, we will illustrate the performance of our matrix-oriented 2s-pod-deim

integrator. First, we analyze the quality of the approximation space created by the
dynamic algorithm on three nonlinear functions with different characteristics, after
which we illustrate the ability of the procedure to capture the underlying geometric
properties of the considered function. Thereafter, we focus on the ODE setting by
comparing the new 2s-pod-deim procedure to the standard pod-deim.

Approximation of a nonlinear function F

We investigate the effectiveness of the proposed dynamic 2s-pod procedure for de-
termining the two-sided approximation space of a nonlinear function. As a reference
comparison, we consider the vector form of the DEIM approximation (hereafter vec-

tor) in Section 1.3.3.

We also include comparisons with a simple two-sided matrix reduction strategy that
uses a sequential evaluation of all available snapshots and the updating of the bases
Φ1 and Φ2 during the snapshot processing. In particular, if [Vi,Σi,Wi] = svds (Fi, κ)

is the singular value decomposition of Fi limited to the leading κ singular triplets,

78 Chapter 4. Semilinear ODEs with General Nonlinear Term

then in this simple approach the basis matrices Φ1 and Φ2 are directly updated by
orthogonal reduction of the augmented matrices(

Φ1,ViΣ
1
2
i

)
∈ Rn×κ1 and

(
Φ2,WiΣ

1
2
i

)
∈ Rn×κ2 (4.24)

respectively, where κ1, κ2 ≥ κ. To make this procedure comparable in terms of mem-
ory to Algorithm 4.1, we enforce that the final dimension νi of each basis satisfies
νi ≤ κ, for i = `, r. We will refer to this as the vanilla procedure for adding a
snapshot to the approximation space; see, for instance, [122] for a similar procedure
in the vector setting.
Example 4.1. Consider the nonlinear functions φi : Ω × [0, tf] → R, Ω ⊂ R2,
i = 1, 2, 3 defined as

φ1(x1, x2, t) = x2√
(x1+x2−t)2+(2x1−3t)2+0.012

, Ω = [0, 2]× [0, 2], tf = 2,

φ2(x1, x2, t) = x1x2
(x2t+0.1)2

+ 2(x1+x2)√
(x1+x2−t)2+(x2

2+x2
1−t2)2+0.012

, Ω = [0, 1]× [0, 1.5], tf = 3,

φ3(x1, x2, t) = x1(0.1+t)

(x2t+0.1)2
+ t2(x1+x2)√

(x1+x2−t)2+(x2
2+x2

1−3t)2+0.012
, Ω = [0, 3]× [0, 3], tf = 5.

Each function is discretized with n = 2000 nodes in each spatial direction to form
three matrix valued functions F (i) : T → Rn×n, for i = 1, . . . , 3, respectively. In
the truncation criterion (4.15), for all functions we set nmax = 60 and τ = 10−3. The
function φ1 shows significant variations at the beginning of the time window, φ3 varies
more towards the right-hand of the time span, while φ2 is somewhere in between.

The approximations obtained with the considered methods are reported in Table 4.3
for κ = 50 and κ = 70, with the following information: For the adaptive snapshot
selection procedure, we indicate the required number of phases and the final total
number ns of snapshot used, the CPU time to construct the basis vectors (time for
Algorithm 4.1 for dynamic and the time for the SVDs (4.24) for vanilla), the final
dimensions ν` and νr and finally, the arithmetic mean of the errors

‖F(tj)−Φ1Φ
>
1 F(tj)Φ2Φ

>
2 ‖

‖F(tj)‖
(4.25)

over 300 equispaced timesteps tj , for each F = F (i), i = 1, 2, 3. For the vector
approach, where we used ns = κ, the reported time consists of the CPU time needed
to perform the SVD of the long snapshots, while the error is measured using the
vector form corresponding to the formula above; see the description at the beginning
of Section 4.2.6.

Between the matrix-oriented procedures, the dynamic procedure outperforms the sim-
plified one in terms of the space dimensions ν1 and ν2, the number of utilized snapshots
ns, and in terms of CPU time, especially when all of the time selection phases are not
required. The error is comparable for the two methods. Not unexpectedly, increasing
κ allows one to save on the number of snapshots ns, though a slightly larger reduced
dimension ν`/νr may occur. The vector method is not competitive for any of the

4.2. A matrix-oriented POD-DEIM algorithm 79

κ = 50 κ = 70

phases time ν1/ν2 error phases time ν1/ν2 error
F alg. (ns) sec. (ns) sec.

φ1
dynamic 2 (9) 3.5 33/39 6 · 10−4 1(7) 4.7 40/50 3 · 10−4

vanilla -(60) 27.6 42/50 6 · 10−4 -(60) 38.8 42/60 3 · 10−4

vector -(50) 35.9 41 1 · 10−3 -(70) 77.3 56 3 · 10−4

φ2
dynamic 3(21) 8.6 45/26 8 · 10−4 2(10) 6.1 48/30 6 · 10−4

vanilla -(60) 25.6 50/37 4 · 10−4 -(60) 39.6 58/37 2 · 10−4

vector -(50) 42.7 36 6 · 10−3 -(70) 91.8 47 2 · 10−3

φ3
dynamic 2(11) 4.4 34/33 1 · 10−3 1(10) 5.9 39/39 3 · 10−4

vanilla -(60) 25.4 46/46 2 · 10−4 -(60) 38.6 46/46 2 · 10−4

vector -(50) 47.1 50 2 · 10−3 -(70) 92.5 64 8 · 10−4

Table 4.3: Example 4.1. Performance of dynamic, vanilla and
vector algorithms for n = 2000.

observed parameters, taking into account that vectors of length n2 need to be stored.
�

Example 4.2. Here we analyze how the proposed 2s-deim strategy is able to capture
the underlying geometric properties of the considered nonlinear function. To this end,
we consider the nonlinear function

f(u) =
1√

u+ 0.12
, (4.26)

for two functions u1 and u2 with different structure, namely

u1(x, y, t) = (x− t)2 + (y − t)2 (4.27)

and
u2(x, y, t) = 10−3x+ (y − t)2 (4.28)

with (x, y) ∈ [0.1, 0.9]2 and t ∈ [0, 0.5]. For this example, f(u1) and f(u2) are dis-
cretized with n = 300 equispaced nodes in each of the space directions. In the figures
below we report the initial state (left), the final state (middle), and the route that the
peak followed from initial state to final state (right), for both discretized functions
F(U1, t) (Figure 4.2) and F(U2, t) (Figure 4.3).

Figure 4.2: The initial state (left), final state (middle) and route
(right) of the function F(U1, t)

The geometrical difference between the two functions is clear from the figures. The
peak of the first function moves diagonally across the state space, where almost all

80 Chapter 4. Semilinear ODEs with General Nonlinear Term

Figure 4.3: The initial state (left), final state (middle) and route
(right) of the function F(U2, t)

movement of the second function is horizontal. We analyze how the difference in geo-
metrical behavior of the two functions is captured by the 2s-deim basis vectors. We
first consider the singular value decay of the left and right approximate snapshot ma-
trices, that is the decay of the diagonal elements of Σ and Σ̆ from (4.13), implemented
here with κ = 70. The singular value decays for both functions appear in Figure 4.4.
The figure indicates that the left and right matrices for F(U1, t) have the same decay

0 10 20 30 40 50 60 70
10

-20

10
-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50 60 70
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Figure 4.4: The decay in the diagonal elements of Σ and Σ̆ for both
functions F(U1, t) (left) and F(U2, t) (right) edit legends

in their singular values, which is expected since the function is symmetric. A more
interesting observation is that for F(U2, t), the decay of the right-hand side snapshot
vectors remain unchanged, but that the singular values of the left-hand side vectors
now decay far more rapidly since there is almost no movement of the function in the
vertical direction within the timespan. These results are mirrored in the error plots of
Figure 4.5, where we plot the average relative error (4.25) for varying values of p1 and
p2 on the generic grid [1, 40] × [1, 40] for both functions F(U1, t) (left) and F(U2, t)

(right).

Consider first the figure on the left. It can be deduced that the fastest route to obtain
a low error is to select p1 = p2 and move down the diagonal of the plot. Notice,
however, that for the second function F(U2, t), i.e., the plot on the right, effectively
the same values of p2 are required for the error decay as on the left, but notice how
rapidly the error decays on the p1 axis since there is practically no movement of the
function in the vertical. This plot indicates that when selecting the 2s-deim indices

4.2. A matrix-oriented POD-DEIM algorithm 81

Figure 4.5: An average relative error mesh for p1, p2 on the generic
grid [1, 40]× [1, 40] for functions (4.27) (left) and (4.28) (right)

we can consider a mere p1 = 2 or p1 = 3 rows of the function, of which p2 column
entries are selected of each for evaluation in the online phase.

We consider the same experiment for the classic vector DEIM approach. In Figure 4.6
we plot the singular values of the snapshot matrix N from (1.18) (left) and average
relative error for increasing p from 1 to 60 (right) for both functions. We notice a

0 50 100 150
10

-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50 60
10

-15

10
-10

10
-5

10
0

Figure 4.6: The singular value decays of the matrix N from (1.18)
(left) and the average relative error of the approximation (1.16) for
increasing p (right) for both functions f(u1, t) = vec(F(U1, t)) and

f(u2, t) = vec(F(U2, t))

slightly accelerated decay of the singular values and the relative error for the second
function, although the change is not nearly as emphasized as in the matrix case, which
indicates how the matrix setting can exploit the geometric structure of the problem.�

Solution approximation of the full problem

Here we report on a selection of numerical experiments with the dynamic 2s-pod-

deim procedure on semilinnear matrix ODEs of the form (4.1). Once again, we
compare the results with a standard vector procedure that applies standard pod-

deim to the vectorized solution and nonlinear function snapshots. In particular, we

82 Chapter 4. Semilinear ODEs with General Nonlinear Term

apply the (vectorized) adaptive procedure from Section 4.2.3 using the error ‖ξξξ −
VvecV

>
vecξξξ‖/‖ξξξ‖ for the selection criterion, where ξξξ is the vectorized snapshot, and Vvec

is the existing pod basis (either for the solution or nonlinear function snapshots).
Notice that in the vector setting, we need to process as many nodes as the final space
dimension, which depends on the tolerance τ . This is because no reduction takes
place.

In all experiments CPU times are in seconds, and all bases are truncated using the
criterion in (4.15). To illustrate the quality of the obtained numerical solution, we
also report on the evaluation of the following average relative error norm

Ē(U) =
1

nt

nt∑
γ=1

‖U (j) − Ũ (j)‖F
‖U (j)‖F

, (4.29)

where Ũ (j) represents either the dynamic approximation, or the matricization of the
vector approximation and U (j) is determined by means of the exponential Euler
method applied to the original problem.

Table 4.4 shows the key numbers for the construction of the bases for both methods.
For either U or F we report the number of phases, the number ns of included
snapshots, and the final space dimensions after the reduction procedure. We first
describe the considered model problem and then comment on the numbers in Table 4.4
and on the detailed analysis illustrated in Table 4.5. We stress that these may be
considered typical benchmark problems for our problem formulation. We also remark
that for some of the experimental settings, the problem becomes symmetric, so that
thanks to Remark 4.1 the two bases could be taken to be the same with further
computational and memory savings. Nonetheless, we do not exploit this extra feature
in the reported experiments.

For all examples the full matrix problem has dimension n = 1000, while the selected
values for κ, nmax and nt are displayed in Table 4.4 and Table 4.5 respectively.
Example 4.3. The 2D Allen-Cahn equation [5]. Consider the equation5

ut = ε1∆u− 1

ε22

(
u3 − u

)
, Ω = [a, b]2, t ∈ [0, tf], (4.30)

with initial condition u(x, y, 0) = u0. The first example is referred to as ac 1. Fol-
lowing [145], we use the following problem parameters: ε1 = 10−2, ε2 = 1, a = 0,
b = 2π and tf = 5. Finally, we set u0 = 0.05 sinx cos y and impose homogeneous
Dirichlet boundary conditions. The second problem (hereafter ac 2) is a mean
curvature flow problem [60] of the form (4.30) with data as suggested e.g., in [88,
Section 5.2.2], that is periodic boundary conditions, ε1 = 1, a = −0.5, b = 0.5,

tf = 0.075, with u0 = tanh

(
0.4−
√
x2+y2

√
2ε2

)
. Following [88, Section 5.2.2] we consider

ε2 ∈ {0.01, 0.02, 0.04}. As ε2 decreases stability reasons enforce the use of finer time
5Note that the linear term −u is kept in the nonlinear part of the operator.

4.2. A matrix-oriented POD-DEIM algorithm 83

discretizations nt, also leading to larger values of nmax and κ, as indicated in Table 4.4
and Table 4.5, where we report our experimental results. �
Example 4.4. Reaction-convection-diffusion equation. We consider the following
reaction-convection-diffusion (hereafter rcd) problem, also presented in [38],

ut = ε1∆u+ (ux + uy) + u(u− 0.5)(1− u), Ω = [0, 1]2, t ∈ [0, 0.3]. (4.31)

The initial solution is given by u0 = 0.3+256 (x(1− x)y(1− y))2, while zero Neumann
boundary conditions are imposed. In Table 4.4 and Table 4.5 we present results for
ε1 ∈ {0.5, 0.05}. �

Table 4.4: Example 4.3: Performance of dynamic and vector al-
gorithms for n = 1000.

pb. nmax/κ Ξ algorithm phases ns ν1/ν2

ac 1 40/50
U

dynamic 1 8 9/2
vector 2 9 9

F dynamic 1 7 10/3
vector 2 9 9

ac 2
ε2 = 0.04 400/50

U
dynamic 1 2 15/15
vector 2 25 25

F dynamic 1 3 27/27
vector 2 40 40

ac 2
ε2 = 0.02 1200/70

U
dynamic 1 3 30/30
vector 1 28 28

F dynamic 1 4 39/39
vector 2 53 53

ac 2
ε2 = 0.01 5000/150

U
dynamic 1 3 62/62
vector 1 43 43

F dynamic 1 5 73/73
vector 2 92 92

rdc
ε1 = 0.5 60/50

U
dynamic 1 3 10/10
vector 1 7 7

F dynamic 1 3 13/13
vector 2 11 11

rdc
ε1 = 0.05 60/50

U
dynamic 1 4 14/14
vector 3 14 14

F dynamic 1 3 17/17
vector 3 34 34

Table 4.4 shows that for both the solution and the nonlinear function snapshots, the
dynamic procedure requires merely one phase and it retains snapshots at only a
few of the time instances. On the other hand, the vector approach typically requires
two or even three phases to complete the procedure. The dimension of the bases is
not comparable for the matrix and vector approaches since these are subspaces of
spaces of significantly different dimensions, namely Rn and Rn2 in the matrix and
vector cases, respectively. Nonetheless, the memory requirements are largely in favor
of the matrix approach, as shown in Table 4.5, where computational and memory
details are reported. In particular, in Table 4.5 the offline timings are broken down
into two main parts. The column basis time collects the cost of the Gram-Schmidt
orthogonalization in the vector setting, and the cumulative cost of Algorithm 4.1
(for both the solution and nonlinear function snapshots) for the dynamic procedure.

84 Chapter 4. Semilinear ODEs with General Nonlinear Term

Table 4.5: Computational time and storage requirements of 2s-pod-
deim and standard vector pod-deim. CPU times are in seconds and

n = 1000.

offline online
basis deim rel.

pb. method time time memory time (nt) memory error

ac 1
dynamic 1.8 0.001 200n 0.009 (300) 24n 1 · 10−4

vector 0.6 0.228 18n2 0.010 (300) 18n2 1 · 10−4

ac 2
0.04

dynamic 0.8 0.005 200n 0.010 (300) 84n 3 · 10−4

vector 8.4 3.745 65n2 0.020 (300) 65n2 2 · 10−4

ac 2
0.02

dynamic 1.8 0.004 280n 0.140 (1000) 138n 2 · 10−4

vector 14.56 5.273 81n2 0.120 (1000) 81n2 3 · 10−5

ac 2
0.01

dynamic 5.3 0.008 600n 0.820 (2000) 270n 5 · 10−4

vector 46.2 13.820 135n2 0.420 (2000) 135n2 2 · 10−4

rdc
0.5

dynamic 0.8 0.001 200n 0.008 (300) 46n 2 · 10−4

vector 0.6 0.277 18n2 0.010 (300) 18n2 1 · 10−4

rdc
0.05

dynamic 0.9 0.001 200n 0.010 (300) 62n 2 · 10−4

vector 4.1 2.297 48n2 0.010 (300) 48n2 1 · 10−4

Column deim time reports the time required to determine the interpolation indices
by q-deim. The “online times” report the cost to simulate both reduced order models
at nt timesteps with the relevant exponential Euler scheme, that is (2.3) for vector

and (2.5) for dynamic. The relative approximation error in (4.29) is also displayed,
together with the total memory requirements for the offline and online parts. The
memory requirements include the storage of all processed snapshots for vector,
whereas for 2s-pod-deim the storage of Ṽi and W̌i from Algorithm 4.1, for both the
solution and nonlinear function snapshots. This quantity is always equal to 4κ · n for
the dynamic setting.

We point out the significant gain in basis construction time for the dynamic pro-
cedure, mainly related to the low number of snapshots employed (cf. Table 4.4).
Furthermore, the dynamic procedure enjoys a massive gain in memory requirements,
for very comparable online time and final average errors.

For the reaction-convection-diffusion example we also analyze the dependence of the
number ns of retained snapshots on the threshold τ of the two procedures, having
fixed nmax = 60. For the vector procedure ns increases as the tolerance τ decreases,
whereas for the dynamic procedure ns remains nearly constant for changing τ . This
ultimately indicates that the offline cost will increase for the vector procedure if a
richer basis is required. �

4.3. Concluding remarks 85

10
-8

10
-6

10
-4

10
-2

0

10

20

30

40

50

60

70

80

Figure 4.7: Example 4.4. n = 1000. Number of retained snapshots
with respect to τ , for ε1 = 0.05.

4.3 Concluding remarks

In this chapter, we have proposed a matrix-oriented pod-deim type order reduction
strategy to efficiently handle the numerical solution of semilinear matrix differen-
tial equations in two space variables. By introducing a novel interpretation of the
POD when applied to functions in two variables, we devised a new two-sided dis-
crete interpolation strategy that can preserve the symmetric structure in the original
nonlinear function and approximate solution. The numerical treatment of the matrix
reduced-order differential problem can take full advantage of both the small dimension
and the matrix framework by exploiting effective exponential integrators. Our very
encouraging numerical experiments show that the new procedure can dramatically
decrease memory and CPU time requirements for the function reduction procedure in
the so-called offline phase. Moreover, we illustrated that the reduced low-dimensional
matrix differential equation can be numerically solved in a rapid online phase without
sacrificing too much accuracy.

In the following chapter, we explore the advantages of the new matrix-oriented pro-
cedure in the 3D setting. Furthermore, we also extend the procedure to treat coupled
systems of equations to tackle problems stemming from real-life simulations.

87

Chapter 5

The Multidimensional Setting1

Several complex real-life phenomena are modeled by semilinear PDEs in high dimen-
sion (d ≥ 2), and also by coupled systems of these PDEs of the form

u̇1 = L1(u1) + f1(∇u1, u1, . . . , ug, t)
...

u̇g = Lg(ug) + fg(∇ug, u1, . . . , ug, t).

(5.1)

Here ui = ui(x, t) ∈ Spde, where Spde is an appropriate space, with x ∈ Ω ⊂ Rd,
t ∈ [0, tf] = T and suitable initial and boundary conditions, for all i = 1, 2, . . . , g. We
restrict our attention to the two-dimensional and three-dimensional cases, that is d =

2, 3. In this setting we assume that Li : Spde → R is linear in ui, typically a diffusion
operator, whereas fi : Spde × T → R is assumed to be nonlinear in (∇ui, u1, . . . ug)

and t. Here we consider, without loss of generality, that any forcing terms of the
form ci(x) are either absent or incorporated into the nonlinear function. PDEs of the
form (5.1) describe mathematical models in several scientific fields, such as chemistry
[53, 158], biology [68, 85, 118] and medicine [139]. For further applications see [110],
[111],[128],[157], and references therein.

The method of lines (MOL) based on space discretizations, such as finite differences
and spectral methods rewrites the system (5.1) as a system of ODEs of the form

u̇1(t) = L1u1(t) + f1(D1u1,u1, . . . ,ug, t),
...

u̇g(t) = Lgug(t) + fg(Dgug,u1, . . . ,ug, t),

(5.2)

where ui ∈ Svec and each function fi : Svec × T → RN represents the function fi

evaluated at the entries of the set of vectors {ui}gi=1 and Diui. In this setting, Li ∈
RN×N accounts for the discretization of the linear operator Li on the selected basis
and Di ∈ RN×N for that of the gradient. In the recent literature several model order
reduction techniques have been applied to reduce the dimension and the complexity

1An earlier version of this chapter is set to appear in J. Comput. Dyn. [93].

88 Chapter 5. The Multidimensional Setting

of the system (5.2); see e.g., [42, 89–91, 100, 135, 161]. This includes methods such
as POD-DEIM, reduced basis methods, as well as reduction methods based on lifting
transformations; see e.g., [73, 101].

Instead, following the procedure described in Section 1.2 for each of the g coupled
equations, if the system (5.1) is discretized on a tensor basis for certain choices of
the physical domain Ω, the discrete system of ODEs (5.2) can be written directly in
matrix or tensor form, so that

U̇UU1 = A1(UUU1) + F1 (D1(UUU1),UUU1,UUU2, · · · ,UUUg, t)
...

U̇UUg = Ag(UUUg) + Fg (Dg(UUUg),UUU1,UUU2, · · · ,UUUg, t) ,

(5.3)

with suitable initial conditions. In this setting, as shown in Section 1.2,

Ai(UUU i) :=

d∑
m=1

UUU i ×m Ami and Di(UUU i) :=

d∑
m=1

UUU i ×mDmi. (5.4)

where Ami ∈ Rnm×nm and Dmi ∈ Rnm×nm contain the approximation of the second
and first derivatives respectively in the xm direction, for i = 1, 2, . . . , g, as well as the
boundary conditions. Moreover, the function Fi : Sten × T → Rn1×···×nd respresents
the function fi evaluated at the entries of the arrays {UUU i}gi=1 and Di(UUU i), where
UUU i ∈ Sten.

This chapter aims to experimentally explore the extension of the 2s-pod-deim al-
gorithm from Section 4.2 to the tensor setting and to illustrate the applicability of
the new method to systems of ODEs to find approximate solutions to the discrete
system of ODEs (5.3). To illustrate this, we do not consider the complete dynamic

algorithm from Section 4.2.3 for constructing the approximation space. Instead, we
consider a simplified version of the algorithm, that is, the vanilla algorithm discussed
in Section 4.2.6.

The idea of constructing low-rank tensor decompositions is certainly not new in the
general context of model reduction of multidimensional or multiparameter problems;
see, e.g., [2, 3, 136]. However, after reduction, the vector form of the reduced problem
is typically retained for the online phase, therefore losing the structural and compu-
tational benefits offered by the tensor form of the problem. Here we aim to retain
the tensor structure of the model for both the reduction and integration phases when
d = 3, resulting in a significant gain in both CPU time and memory requirements for
both the offline and online phases of the procedure (see Example 5.3). We also tailor
the basis construction to the semilinear problem at hand so that only one snapshot
is treated at a time and discarded, rather than performing computations on all snap-
shots simultaneously. See also the discussion in Section 5.1 regarding the relation of
our procedure to the Tucker decomposition.

5.1. POD-DEIM in the Multidimensional Setting 89

To simplify the presentation, we will consider the case where n1 = · · · = nd = n for
the rest of the chapter, so that N = nd. The extension to the more general case where
n1 6= · · · 6= nd is, however, possible.

5.1 POD-DEIM in the Multidimensional Setting

In this section we extend POD-DEIM to the tensor setting. We illustrate the procedure
for systems of the form (5.3) with g = 1 and a gradient-independent nonlinearity. The
extension to the case of general g is presented later in the chapter. In particular, we
want to approximate the solution UUU(t) ∈ Rn×···×n, for t ∈ T , of the equation

U̇UU = A(UUU) + F(UUU , t), UUU(0) = UUU0, (5.5)

by constructing d low-dimensional basis matrices (one for each spatial mode m =

1, . . . , d) Vm ∈ Rn×km , with km � n, to approximate UUU(t) in low dimension, for all
t ∈ T . To this end, given a set of snapshots {UUU(tj)}ns

j=1 with UUU(tj) ∈ Rn×···×n, each
matrix Vm is constructed in order to approximate the left range space of the matrix

SSS(m) =
(
UUU (m)(t1), . . . ,UUU (m)(tns)

)
∈ Rn×nsnd−1

, for m = 1, . . . , d,

where SSS ∈ Rn×···×n×ns is as a snapshot tensor2 of order d+1, as defined in Section 1.1,
containing a collection of all the snapshots and m represents the mode along which
the tensor is unfolded. Forming or storing the matrix SSS(m) is too computationally de-
manding, even for moderate n and ns. Instead, the approximation spaces are updated
one snapshot at a time.

To this end, we determine the sequentially truncated higher order SVD3 (STHOSVD)
[159] of each snapshot UUU(tj), so that UUU(tj) ≈ ΣΣΣ(tj)×d

m=1 V
(j)
m , where V

(j)
m contains

the dominant left singular vectors of UUU (m)(tj), truncated with respect to a tolerance
τ chosen a-priori. Furthermore, ΣΣΣ(tj) is the core tensor related to the STHOSVD of
UUU(tj), and is generally defined as ΣΣΣ(tj) = UUU(tj)×d

m=1(V
(j)
m)>. Note, however, that

in our procedure it is not necessary to explicitly compute the core tensors ΣΣΣ(tj),
since only the matrices V

(j)
m are required. More precisely, the approximation space

range(Vm) in each mode is updated by orthogonal reduction of the augmented matrices(
Vm,V

(j)
m

)
, m = 1, 2, . . . , d,

with respect to τ . If desired, the matrix V
(j)
m can also be weighted by the square

root of the singular values in that mode, as is done in (4.24), to keep track of the
relevance of each of the spatial directions. Through this procedure, each snapshot
can be discarded after it has been processed. We will refer to this as the higher-order

2We emphasize that this large dimensional tensor will never be explicitly formed or stored.
3For the case d = 2, however, we just use the standard MATLAB SVD function.

90 Chapter 5. The Multidimensional Setting

POD (ho-pod) approximation. We call this a higher-order approximation since the
standard POD projection is only a one-sided approximation, whereas this procedure
is two-sided or three-sided for d = 2 and d = 3, respectively.

This type of approximation can also be interpreted as a Tuckerd decomposition (see
e.g., [97, Section 4] and [136]) of the snapshot tensor SSS ∈ Rn×···×n×ns of the form

SSS ≈ ŜSS ×1 V1 ×2 · · · ×d Vd ×d+1 Ins , ŜSS ∈ Rk1×···×kd×ns ,

since the principal components of each of the first d modes are analyzed. Instead of
determining the core tensor ŜSS, which contains a collection of low-dimensional approx-
imations to all the given snapshots, we aim to use the basis matrices to approximate
the solution of (5.5) at time instances other than the ones considered for the snapshots.

More precisely, we look for an approximation to the solution of (5.5) of the form
UUU(t) ≈ ŨUU(t) := ÛUU(t)×d

m=1 Vm, where ÛUU(t) ∈ Rk1×···×kd (km � n) satisfies the low-
dimensional equation

˙̂UUU = Â(ÛUU) + F̂(ÛUU , t), ÛUU(0) = ÛUU0, (5.6)

where

Â(ÛUU) :=
d∑

m=1

ÛUU ×m Âm, Âm = V >m AmVm, ÛUU(0) = UUU0

d

×
m=1

V >m (5.7)

and

F̂(ÛUU , t) = F(ŨUU(t), t)
d

×
m=1

V >m . (5.8)

In a similar fashion to the matrix methods discussed in Chapter 2, the time dis-
cretization of (5.6) can be applied directly to the equation in the matrix or tensor
form. To this end, thanks to the semilinear nature of the equation, we consider the
IMEX 2–SBDF scheme presented in Section 2.1; see e.g., [14, 51]. Any of the other

schemes presented in Section 2.1 can also be considered. To this end, if ÛUU
(j)

is an
approximation of ÛUU(tj), then the linear system

(3 Î − 2hÂ)(ÛUU
(j)

) = Ĝ(ÛUU
(j−1)

, ÛUU
(j−2)

) (5.9)

needs to be solved for each tj , where

Ĝ(ÛUU
(j−1)

, ÛUU
(j−2)

) = 4 ÛUU
(j−1)

− ÛUU
(j−2)

+ 2h

(
2F̂(ÛUU

(j−1)
, tj−1)− F̂(ÛUU

(j−2)
, tj−2)

)
,

and Î : Rk1×···×kd → Rk1×···×kd is the identity operator in the reduced dimension. To
initiate the procedure, ÛUU

(1)
can be determined by an IMEX Euler scheme from the

known array ÛUU
(0)

. For the case d = 2, the linear system (5.9) corresponds precisely to
(2.11) with s = 2 and C ≡ 0. In what follows we discuss how (5.9) is solved for d = 3.

5.1. POD-DEIM in the Multidimensional Setting 91

To solve (5.9) in tensor form for the case d > 3, without reverting to vectorization is
still an open problem to the best of our knowledge.

The solution of the linear system (5.9) in Tensor Form

The solution of (5.9) is not trivial when d ≥ 3, given that the matrices Âm, for
m = 1, . . . , d are necessarily dense due to the projection. Nevertheless, a direct
method specifically designed for dense third-order (i.e., d = 3) tensor linear systems
has recently been introduced in [143] for tensors with a rank-one right-hand side.
Here we illustrate how this method can be applied to solve the linear system (5.9),
accounting for a right-hand side with a rank greater than one. To ease the readability,
we drop the superscript (j) for the description of the inner solver when it is clear from
the context.

By definition, when d = 3, the left hand side of (5.9) can be vectorized as(
Ik3
⊗ 3Ik2

⊗ Ik1
− Ik3

⊗ Ik2
⊗ 2hÂ1 − Ik3

⊗ 2hÂ2 ⊗ Ik1
− 2hÂ3 ⊗ Ik2

⊗ Ik1

)
vec
(
ÛUU
)
.

Therefore, if we let X̂XX = ÛUU
>
(3) ∈ Rk1k2×k3 , then by the use of property (1.2), (5.9) can

be recast into the Sylvester equation(
3 Ik2 ⊗ Ik1 − Ik2 ⊗ 2hÂ1 − 2hÂ2 ⊗ Ik1

)
X̂XX + X̂XX

(
−2hÂ>3

)
= Ĝ. (5.10)

Here Ĝ = Ĝ(X̂XX
(j−1)

, X̂XX
(j−2)

) ∈ Rk1k2×k3 . Due to the large left dimension of this
Sylvester equation, solving this directly is still not feasible. Instead, as is shown in
[143], it is possible to solve a sequence of much smaller Sylvester equations. To this
end, let Â>3 = QRQ> be the real Schur decomposition of Â>3 , with Q ∈ Rk3×k3

orthogonal. Then, if ŶYY = X̂XXQ, it holds that(
3 Ik2 ⊗ Ik1 − Ik2 ⊗ 2hÂ1 − 2hÂ2 ⊗ Ik1

)
ŶYY + ŶYY (−2hR) = ĜQ, (5.11)

where R ∈ Rk3×k3 is upper-triangular4.

To solve (5.11), let ŶYY = (z1, . . . ,zk3) ∈ Rk1k2×k3 and ĜQ = (h1, . . . ,hk3) ∈ Rk1k2×k3 ,
where z`,h` ∈ Rk1k2 . The aim is to determine ŶYY by solving for each column z`
separately. SinceR is upper-triangular, each column z`, for ` = 1, . . . , k3 is determined
by solving(

3 Ik2 ⊗ Ik1 − Ik2 ⊗ 2hÂ1 − 2hÂ2 ⊗ Ik1

)
z` + z` (−2hR`,`) = h` + 2hj`−1, (5.12)

where
j`−1 = (z1, . . . ,z`−1)R`,1:`−1, with j0 ≡ 0. (5.13)

4We assume that A3 has real eigenvalues so that R is upper-triangular. If A3 had complex
eigenvalues we would rather consider the complex Schur decomposition, in which case R ∈ Ck3×k3

would retain the upper-triangular structure.

92 Chapter 5. The Multidimensional Setting

Instead of solving the large linear system (5.12) for each z` we reshape the vectors
in such a way that z` = vec (Z`), h` = vec (H`) and j` = vec (J`) with Z`,H`,J` ∈
Rk1×k2 . Then, as a result of property (1.1), the matrix Z` is the solution of the smaller
Sylvester equation(

(3− 2hR`,`)Ik1 − 2hÂ1

)
Z` +Z`

(
−2hÂ>2

)
= H` + 2hJ`−1, (5.14)

for ` = 1, 2, . . . , k3, which can be efficiently solved by one of the direct methods
discussed in Section 2.1.2.

Finally, recalling that ŶYY = X̂XXQ, the solution of (5.9), unfolded in the third mode, is
then given by the transformation

ÛUU (3) = (Ŷ Q>)> = Q
(
z>1 ; . . . ; z>k3

)
∈ Rk3×k1k2 ,

where each z` for ` = 1, . . . , k3 is determined by solving (5.14) and setting z` =

vec (Z`).

In the particular case where all coefficient matrices are symmetric and positive definite,
the procedure can be even further accelerated; see [143] for further details. We refer
to this inner solver as the t3-sylv solver.

Interpolation of the nonlinear function by ho-deim

To determine the right-hand side Ĝ(ÛUU
(j−1)

, ÛUU
(j−2)

) at each tj , it is required to evaluate
the nonlinear function in full dimension, as per the definition of F̂(ÛUU , t). Instead, we
interpolate the nonlinear function through a higher order version of DEIM. Consider
the d low-dimensional orthonormal matrices Φm ∈ Rn×pm , with pm � n, determined
as the output of ho-pod of the set of nonlinear snapshots {F(UUU(tj), tj)}ns

j=1, for m =

1, 2, . . . , d. Furthermore, consider the d selection matrices Pm ∈ Rn×pm , given as the
output of q-deim with input Φ>m, for m = 1, 2, . . . , d. The ho-deim approximation of
(5.8) is then given by

F̂(ÛUU , t) ≈ F(ŨUU , t)
d

×
m=1

V >m Φm(P>mΦm)−1P>m . (5.15)

If F is evaluated elementwise at the components of ŨUU , then it holds that

F(ŨUU , t)
∧

:= F(ŨUU , t)
d

×
m=1

P>m = F(ŨUU
d

×
m=1

P>m , t). (5.16)

Notice that F is then evaluated at p1p2 · · · pd � nd entries. Next, we remark on a
potential strategy for further reducing the online cost of the procedure. This strategy
is, however, not considered in our implementations.

5.1. POD-DEIM in the Multidimensional Setting 93

Remark 5.1. For certain nonlinear functions, the evaluation of p1p2 · · · pd entries
online may not be feasible. One possibility that can be considered is to further ap-
proximate the ho-deim reduced nonlinear function by a matrix-DEIM (MDEIM) type
of interpolation (see e.g., [33, 119]). More precisely, if we consider the ho-deim ap-
proximations (5.15) and (5.16) then the snapshot matrix Ň = [f̌(t1), . . . , f̌(tns)] ∈
Rp1···pd×ns , can be considered, where

f̌(tj) = vec

(
F(ŨUU , tj)
∧ d

×
m=1

(P>mΦm)−1

)
∈ Rp1···pd .

If we defineMMMq ∈ Rp1×···×pd as the tensorization of the qth column of M̌ ∈ Rp1···pd×p

- the matrix of dominant left singular vectors of Ň - then

F̂(ÛUU , t) ≈
p∑
q=1

cqMMMq

d

×
m=1

V >m Φm, cq =

[(
P̌>M̌

)−1
f

(
P̌>vec

(
ŨUU

d

×
m=1

P>m

)
, t

)]
q

,

where the columns of P̌ ∈ Rp1···pd×p are related to the q-deim interpolation indices
of the matrix M̌ . Note that the nonlinear function is now evaluated at p � p1 · · · pd
entries, even though no vectors of length N need to be stored. This type of approxi-
mation has a couple of drawbacks, however. Firstly, to determine the snapshots f̌(tj),
another (far cheaper) offline phase will be required. Moreover, potential structural
properties such as symmetries, which are preserved by the approximation (5.15), may
be destroyed by the vectorization; see also the discussion in Section 4.2.2.

We next provide an error bound for the ho-deim approximation (5.15), where we
recall that the matrices Φm, for m = 1, 2, . . . , d all have orthonormal columns. This
bound is a direct extension to the tensor setting of [41, Lemma 3.2]. A similar result
is presented in Proposition 4.1 for d = 2.
Proposition 5.1. Let Dm = Φm(P>mΦm)−1P>m , and consider an arbitrary tensor
FFF ∈ Rn×···×n, so that

F̃FF = FFF
d

×
m=1

Φm(P>mΦm)−1P>m = FFF
d

×
m=1

Dm.

Then,

‖FFF − F̃FF‖F ≤ c1c2 · · · cd ‖FFF −FFF
d

×
m=1

ΦmΦ>m‖F (5.17)

where cm =
∥∥(P>mΦm)−1

∥∥
2
, for m = 1, . . . , d.

Proof. Let f = vec(FFF) ∈ RN . Then, by the properties of the Kronecker product

‖FFF − F̃FF‖F = ‖vec(FFF)− vec(F̃FF)‖2 = ‖f − (Dd ⊗ · · · ⊗D1)f‖2

=
∥∥∥f − (Φd ⊗ · · · ⊗Φ1)

(
(Pd ⊗ · · · ⊗ P1)>(Φd ⊗ · · · ⊗Φ1)

)−1
(Pd ⊗ · · · ⊗ P1)>f

∥∥∥
2

94 Chapter 5. The Multidimensional Setting

Therefore, by [41, Lemma 3.2],

‖FFF − F̃FF‖F ≤
∥∥∥∥((Pd ⊗ · · · ⊗ P1)>(Φd ⊗ · · · ⊗Φ1)

)−1
∥∥∥∥

2

∥∥∥f − (Φd ⊗ · · · ⊗Φ1)(Φd ⊗ · · · ⊗Φ1)>f
∥∥∥

2

=
∥∥∥(P>d Φd)−1

∥∥∥
2
· · ·
∥∥∥(P>2 Φ2)−1

∥∥∥
2

∥∥∥(P>1 Φ1)−1
∥∥∥

2

∥∥∥∥∥FFF −FFF
d×

m=1

ΦmΦ>m

∥∥∥∥∥
F

. �

The accuracy of the ho-deim approximation therefore depends on the contraction co-
efficients cm, which are minimized by the use of q-deim; see, e.g., [57]. Furthermore it
depends on the accuracy of the ho-pod bases, given by the term

∥∥∥FFF −FFF×d
m=1 ΦmΦ>m

∥∥∥
F
.

The full offline/online ho-pod-deim reduction procedure for reducing third-order
tensor ODEs is presented below in Algorithm ho-pod-deim. In what follows, we

Algorithm ho-pod-deim for Tensor ODEs, d = 3

Given: Coefficient matrices of (5.5) and function F : Rn×···×n × [0, tf]→ Rn×···×n

Offline:
1. For each j = 1, 2, . . . , ns

(i) Iteratively update {Vm}3m=1 and {Φm}3m=1, for the snapshots UUU(tj) and
F(UUU(tj), tj) respectively as (5.5) is integrated in time and discard the snap-
shots (ho-pod);

2. Compute Âm, for m = 1, 2, 3 and ÛUU(0) from (5.7);
3. Determine {Pm}3m=1 using q-deim (ho-deim);
4. Precompute {V >m Φm(P>mΦm)−1}3m=1 and {P>mVm}3m=1 ;
5. Compute the real Schur decomposition Â>3 = QRQ>;

Online:
6. Determine ÛUU

(1)
from ÛUU

(0)
;

7. For each j = 2, 3, . . . , nt

(i) Approximate F̂(ÛUU
(j−1)

, tj−1) and F̂(ÛUU
(j−2)

, tj−2) as in (5.15) and (5.16)

using the matrices computed above, and evaluate G(ÛUU
(j−1)

, ÛUU
(j−2)

);
(ii) For each ` = 1, 2, . . . , k3:

(a) Evaluate j`−1 using (5.13) and compute H = ĜQ;
(b) Reshape column ` of H into a k1 × k2 matrix to form H` ;
(c) Reshape j`−1 into a k1 × k2 matrix to form J`−1 ;
(d) Solve the Sylvester matrix equation by a direct solver:(

(3− 2hR`,`)Ik − 2hÂ1

)
Z` +Z`

(
−2hÂ>2

)
= H` + 2hJ`−1,

(e) Update Z ← [Z, vec(Z`)];

(iii) Evaluate ÛUU
(j)

(3) = QZ> and reshape it into a k1 × k2 × k3 tensor;

8. Return V1,V2,V3 and {ÛUU
(j)
}nt
j=1, so that ÛUU

(j)
×1 V1 ×2 V2 ×3 V3 ≈ UUU(tj);

illustrate how the discussed higher-order POD-DEIM order reduction strategy can be
applied to coupled systems of ODEs of the form (5.3).

5.2. Order reduction of coupled systems of array-valued ODEs 95

5.2 Order reduction of coupled systems of array-valued
ODEs

Here we illustrate how the ho-pod-deim order reduction scheme presented in the
previous section can be applied to systems of array-valued ODEs of the form (5.3).
Indeed, consider d · g tall basis matrices Vm,i ∈ Rn×kmi with orthonormal columns,
for i = 1, 2, . . . , g and m = 1, 2, . . . , d, where kmi � n. That is, we consider d basis
matrices for each of the g equations in (5.3). Approximations to each UUU i(t), for t ∈ T ,
can then be written as

UUU i(t) ≈ ŨUU i(t) = ÛUU i(t)
d

×
m=1

Vm,i, i = 1, 2, . . . , g.

The functions ÛUU i(t) ∈ Rk1i×k2i×···×kdi are determined as an approximation to the
solution of the reduced, coupled problem

˙̂UUU1 = Â1(ÛUU1) + F̂1

(
D̂1(ÛUU1), ÛUU1, ÛUU2, · · · , ÛUUg, t

)
...

˙̂UUUg = Âg(ÛUUg) + F̂g
(
D̂g(ÛUUg), ÛUU1, ÛUU2, · · · , ÛUUg, t

)
,

(5.18)

where

Âi(ÛUU i) :=
d∑

m=1

ÛUU i ×m Âmi, Âmi = V >m,iAmiVm,i, ÛUU(0) = UUU i0
d

×
m=1

V >m,i (5.19)

and

F̂i
(
D̂i(ÛUU i), ÛUU1, · · · , ÛUUg, t

)
= Fi

(
Di(ŨUU i), ŨUU1, · · · , ŨUUg, t

) d

×
m=1

V >m,i. (5.20)

We use the ho-pod procedure from the previous section to determine the basis matri-
ces. In particular, given the set of snapshot solutions {UUU i(tj)}ns

j=1, the basis matrices
Vm,i ∈ Rn×kmi , m = 1, 2, . . . , d, are determined following the ho-pod procedure from
Section 5.1, for each i = 1, 2, . . . , g.

The reduced order model (5.18), can also be integrated by means of the IMEX

2 - SBDF scheme for systems. Indeed, the ÛUU
(j)

1 , ÛUU
(j)

2 , . . . , ÛUU
(j)

g approximations to
ÛUU1(tj), ÛUU2(tj), . . . , ÛUUg(tj) are determined by solving the linear systems

(3 Î − 2hÂ1)(ÛUU
(j)

1) = Ĝ1

(
{ÛUU

(j−1)

i }gi=1, {ÛUU
(j−2)

i }gi=1

)
...

(3 Î − 2hÂg)(ÛUU
(j)

g) = Ĝg
(
{ÛUU

(j−1)

i }gi=1, {ÛUU
(j−2)

i }gi=1

)
,

(5.21)

96 Chapter 5. The Multidimensional Setting

at each tj , where

Ĝi
(
{ÛUU

(j−1)
i }gi=1, {ÛUU

(j−2)
i }gi=1

)
=4 ÛUU

(j−1)
i − ÛUU

(j−2)
i + 4hF̂i

(
D̂i(ÛUU

(j−1)
i), ÛUU

(j−1)
1 , · · · , ÛUU

(j−1)
g , tj−1

)
− 2hF̂i

(
D̂i(ÛUU

(j−2)
i), ÛUU

(j−2)
1 , · · · , ÛUU

(j−2)
g , tj−2

)
.

Each of the g linear systems in (5.21) can be solved via the procedures set forth in
Section 2.1 for d = 2 and Section 5.1 for d = 3.

Adjacent to the setting discussed in Section 5.1, the nonlinear functions need to be
interpolated to avoid evaluating the functions in full dimension at each timestep.
To this end, we approximate F̂i

(
D̂i(ÛUU i), ÛUU1, · · · , ÛUUg, t

)
in the space spanned by the

columns of the matrices Φm,i ∈ Rn×pmi , m = 1, 2, . . . , d, for each i = 1, 2, . . . g, where
pmi � n. Given the selection matrices Pm,i ∈ Rn×pmi , m = 1, 2, . . . , d, we obtain

F̂i(D̂i(ÛUU i), ÛUU1, . . . , ÛUUg, t) ≈ Fi(Di(ŨUU i), ŨUU1, . . . , ŨUUg, t)
d

×
m=1

V >m,iDm,i, (5.22)

with the oblique projectors

Dm,i = Φm,i(P
>
m,iΦm,i)

−1P>m,i, for m = 1, 2, . . . , d and i = 1, 2, . . . , g.

The basis matrices Φm,i, m = 1, 2, . . . , d are determined via the ho-pod procedure
described in Section 5.1, given the set of nonlinear snapshots

{Fi (Di(UUU i(tj)),UUU1(tj),UUU2(tj), · · · ,UUUg(tj), tj)}ns

j=1 , (5.23)

whereas the selection matrices Pm,i are determined via q-deim with inputs Φ>m,i re-
spectively, for each i = 1, 2, . . . , g. In this chapter we assume that there is a componen-
twise relationship between the arraysUUU1(tj),UUU2(tj), · · · ,UUUg(tj) and the approximation
to the gradient Di(UUU i) in the nonlinear function Fi. Therefore, since the matrix Pm,i
is merely responsible for selecting rows in the respective modes, it holds that

Fi
(
Di(ŨUU i), ŨUU1, . . . , ŨUUg, t

)∧
:= Fi

(
Di(ŨUU i), ŨUU1, . . . , ŨUUg, t

) d

×
m=1

P>m,i

= Fi

(
Di(ŨUU i)

d

×
m=1

P>m,i, ŨUU1

d

×
m=1

P>m,i, . . . , ŨUUg
d

×
m=1

P>m,i, t

)
.

By definition of the operator Di, the first term in the function Fi can be expanded as

Di(ŨUU i)
d

×
m=1

P>m,i =

d∑
m=1

ŨUU i ×m P>m,iDmi, i = 1, 2, . . . , g,

which corresponds to merely selecting the appropriate rows of the matrix approximat-
ing the gradient in each of the d spatial directions.

5.3. Numerical experiments 97

5.3 Numerical experiments

In this section we illustrate the efficiency of the discussed methods via benchmark
problems from Biology and Engineering. For all problems, the accuracy of the reduced
order model is tested through the average error measure

Ē(UUU) =
1

nt

nt∑
j=1

‖UUU (j) − ŨUU
(j)
‖F

‖UUU (j)‖F
, (5.24)

and the truncation of the singular values is done by monitoring the quality of the
approximation in the Frobenius norm. That is, if σ1 ≥ σ2 ≥ · · · ≥ σγ are the singular
values of the matrix that needs to be truncated, then the new dimension ν ≤ γ is
determined as √√√√ γ∑

i=ν+1

σ2
i < τ

√√√√ γ∑
i=1

σ2
i . (5.25)

We first illustrate the efficiency with two examples where d = 2, after which we
investigate two further coupled problems in three dimensions.
Example 5.1. The 2D FitzHugh-Nagumo model (FN). Consider the following classi-
cal problem, given in adimensional form,

u̇1 = δ1∆u1 + α(−u3
1 + u1 − u2), u̇2 = δ2∆u2 + α(βu1 − βηu2), (5.26)

where the functions u1(x, y, t) and u2(x, y, t) model the densities of two species for
t ∈ [0, 1], and x = (x, y) ∈ [−1, 1]2. We refer the reader to, e.g., [66] for a description
of the role of the nonnegative coefficients η, β, and α. For this example we set η =

0.5, β = 2.1, α = 9.65, δ1 = 0.01 and δ2 = 0.1. Furthermore, homogeneous Neumann
boundary conditions are imposed and the initial state is given by

u1(x, y, 0) = (1− x2)(1− y2) sin(2πx) cos(2π(y + 0.3))

u2(x, y, 0) = (1− x2)(1− y2)e− sin(2π(x−0.3)y).

This example investigates the efficiency of the reduced-order model in terms of accu-
racy and online CPU time. To this end, the system (5.26) is discretized with n = 1200

spatial nodes in each direction yielding the form (5.3) . Note that this is equivalent
to the system (5.2) with dimension N = 1 440 000.

In particular, if we let T = tridiag(1,−2, 1) +NB, T ∈ Rn×n, where

NB =
2

3

2 −1/2 · · · 0 0

0 0 · · · · · · 0
...

...
0 0 · · · −1/2 2

 ∈ Rn×n

98 Chapter 5. The Multidimensional Setting

contains the Neumann boundary conditions (see, e.g., [51]), then the coefficient ma-
trices of (5.3) are defined as

A11 = α In +
δ1

`2x
T , A21 = −αβηIn +

δ2

`2x
T , A12 =

δ1

`2y
T , and A22 =

δ2

`2y
T

where `x = `y = 2/(n − 1). Notice that the discretized linear terms αU1 and
−αβηU2 have been incorporated into the coefficient matrices A11 and A21 respec-
ctively. Furthermore the matrix F1(U1,U2, t) stems from evaluating the function
f1(u1, u2) = −αu3

1 elementwise, whereas F2(U1,U2, t) = αβU1 is linear and requires
no ho-deim interpolation. Finally, the remaining linear term in the first equation
−αU2 can be projected explicitly onto range(Vm,1), the ho-pod subspaces of the
first equation for m = 1, 2, . . . , d.

In our experiments we found that ns = 20 equispaced snapshots U1(t) and U2(t) in
the timespan [0, 1] are sufficient for constructing the basis vectors. Furthermore, we
consider four different truncation tolerances, namely τ = {10−2, 10−4, 10−6, 10−8}, for
this experiment. Table 5.1 reports all the basis dimensions obtained for each τ , by
means of (5.25).

Table 5.1: Example 5.1. Dim. of ho-pod and ho-deim bases ob-
tained for different τ . The full order model has dimension n = 1200.

left dim. right dim. left dim. right dim.
τ Ui ho-pod ho-pod ho-deim ho-deim

10−2 U1 7 7 11 11
U2 9 10 – –

10−4 U1 18 20 23 23
U2 19 20 – –

10−6 U1 31 33 32 34
U2 29 31 – –

10−8 U1 43 46 44 47
U2 37 40 – –

In Figure 5.1 (left) we plot the average error (5.24) for both Ũ1 and Ũ2 integrated
from 0 to tf at nt = 300 timesteps, for the different values of τ presented in Table 5.1.
For the error computation, both the full order model and the reduced order model
are integrated with the IMEX 2-SBDF scheme. On the right of Figure 5.1 we plot
the CPU time for integrating the full order model and the reduced order model at
nt = 300 timesteps for decreasing τ . The figures indicate that even when the ho-

pod-deim reduced-order model approximates the full order model with eight digits of
accuracy, the time needed to integrate the model is almost three orders of magnitude
faster.�

In what follows we analyze the efficiency of the offline phase in comparison to the the
standard pod-deim procedure applied to the coupled 2D Burgers equation in [161].

5.3. Numerical experiments 99

10
-8

10
-6

10
-4

10
-2

10
-8

10
-6

10
-4

10
-2

10
-8

10
-6

10
-4

10
-2

10
-2

10
-1

10
0

10
1

10
2

10
3

Figure 5.1: Example 5.1: Average relative error (5.24) (left) and
online computational time (right) of the reduced order model and the

full order model for different values of τ .

Example 5.2. The 2D coupled Burgers equation (BE) [161]. Here we consider the
semilinear 2D coupled Burgers equation given byu̇1 = 1

r∆u1 − u1(u1)x − u2(u1)y

u̇2 = 1
r∆u2 −−u1(u2)x − u2(u2)y

(5.27)

where u1(x, y, t) and u2(x, y, t) (t ∈ [0, 1]) are the velocities to be determined, with
x = (x, y) ∈ [0, 1]2, and r is the Reynold’s number. As is done in [161], we derive
the initial and boundary conditions from the exact traveling wave solution of the 2D
Burgers equation, given by (see e.g., [62])

u1(x, y, t) =
3

4
− 1

4

(
1 + e

r(−4x+4y−t)
32

)−1
u2(x, y, t) =

3

4
+

1

4

(
1 + e

r(−4x+4y−t)
32

)−1
.

We consider the case r = 100 and discretize the model on a grid with n spatial nodes
in each direction, yielding a system of the form (5.3) , with nonlinear functions

Fi(Di(UUU i),UUU1,UUU2, t) = Fi(Di(Ui),U1,U2, t) := (D1iUi) ◦U1 + (UiD
>
2i) ◦U2, (5.28)

for i = 1, 2, where the matrices D1i ∈ Rn×n and D2i ∈ Rn×n contain the coefficients
for a first order centered difference space discretization in the x− and y− directions
respectively (i.e., D1i = D2i = n−1

2 tridiag(−1, 0, 1)), and ◦ is the matrix Hadamard
product. An upwind scheme can also be considered for D1i and D2i, as is typically
done for the coupled Burgers equation, however, in order to reproduce the results of
[161] we consider centered finite differences.

It is also worth motivating the use of DEIM for the nonlinear function (5.28). Indeed,
this type of nonlinearity can also be efficiently treated in the vectorized POD reduced
model by writing it as a tensor (see, e.g., [104]) in order to avoid the use of DEIM.
Nevertheless, in [148, Table I] this idea is compared to that of pod-deim and it is
concluded that for quadratic nonlinearities, the pod-deim model requires considerably

100 Chapter 5. The Multidimensional Setting

Figure 5.2: Example 5.2: u1(x, y, 0.5) discretized with n = 200. The
exact solution (left), the ho-pod-deim approximation (middle), and

the relative error mesh between the two (right).

fewer floating-point operations online for moderate DEIM dimension p. Furthermore,
we use DEIM to reproduce and compare to the results of [161], where it is indeed
used.

As mentioned above, the presented ho-pod-deim order reduction strategy is com-
pared to the standard pod-deim applied to (5.27) in [161]. We did not have access
to the codes of [161], but the pod-deim algorithm was implemented as discussed in
their paper, and the results in terms of basis dimension to accuracy are comparable to
the ones reported in [161]. Moreover, in [161], the reduced-order model is integrated
by a fully implicit scheme, whereas for this experiment, we use the IMEX 2-SBDF
method to integrate both the ho-pod-deim and pod-deim reduced-order models,
which accounts for the faster online phase for pod-deim in comparison to the times
reported in [161].

To this end, we consider four different space discretizations, namely n = {60, 200, 600, 1200},
and compare the computational details of ho-pod-deim to that of pod-deim [161].
Therefore, to ensure stability in the numerical integration we consider nt = 2n discrete
timesteps for integrating the reduced order model. Moreover, to correspond with the
space discretization error, we set τ = 1/n2.

In our experiments, we have observed that the ho-pod-deim strategy requires far
fewer snapshots than pod-deim to construct an equally accurate reduced-order model.
We hypothesize that this is because one matrix snapshot contains information about
several spatial directions in Rn, whereas one vector snapshot only offers information
about one spatial direction in RN . Therefore, to obtain a pod basis of dimension k in
the vectorized setting, at least k snapshots are required, even though one vector in RN

contains many spatial directions from Rn. This corresponds to the behavior seen in
Figure 4.7. To this end, we consider ns = 20 equispaced snapshots for ho-pod-deim

and ns = 100 for pod-deim.

A visual comparison of the accuracy of the ho-pod-deim reduced model at t = 0.5,
when n = 200 is plotted in Figures 5.2 and 5.3 for u1 and u2 respectively. Moreover,
in Figure 5.4 we plot the average relative error through nt = 2n timesteps between
the ho-pod-deim approximation and the exact solution at the relevant nodes, for the

5.3. Numerical experiments 101

Figure 5.3: Example 5.2: u2(x, y, 0.5) discretized with n = 200. The
exact solution (left), the ho-pod-deim approximation (middle), and

the relative error mesh between the two (right).

four different space dimensions n. We investigate the computational load required by
both strategies to achieve this accuracy.

Firstly, we report in Table 5.2 the reduced basis dimensions for ho-pod-deim and
pod-deim for all four space discretizations, as well as the memory requirements.
In particular, for each Ui we report the dimensions k1/k2 (p1/p2) of the ho-pod

(ho-deim) bases and the dimension k (p) of the pod (deim) bases. Moreover, the
reported global memory requirements include the number of stored vectors multiplied
by their length (# · length) in each phase. The table indicates a great reduction in

10
2

10
3

10
-5

10
-4

10
-3

Figure 5.4: Example 5.2: The average relative error through nt = 2n
timesteps between the ho-pod-deim approximation Ũ1(t) (Ũ2(t)) and

the exact solution u1(x, y, t) (u2(x, y, t)).

memory requirements for ho-pod-deim in comparison to pod-deim, but the pod-

deim strategy produces a smaller reduced order model, as is expected from a one-
sided reduction strategy. That is, the pod-deim reduced model requires evaluating
the nonlinear function at merely p entries, whereas the ho-pod-deim reduced model
requires evaluating the nonlinear function at p1 · p2 entries. From Table 5.2 it is clear
that p1 · p2 ≥ p for all n.

We investigate the pros and cons, in terms of computational time, of both strategies
in Figure 5.5. On the left of Figure 5.5 we plot the time needed offline to construct the
basis vectors for both strategies, for increasing n. For ho-pod-deim this includes the
time needed to perform the SVD of each snapshot and the time needed to orthogonalize

102 Chapter 5. The Multidimensional Setting

Table 5.2: A breakdown of the (ho)-pod and (ho)-deim basis di-
mensions and the memory requirements for four different state space

dimensions. Note that τ = 1/n2.

offline online
n algorithm Ui pod dim. deim dim. memory memory

60
ho-pod-deim

U1 9/9 18/18 98n 54n
U2 9/9 18/18 98n 54n

pod-deim [161] U1 5 14 400n2 19n2

U2 4 14 400n2 18n2

200
ho-pod-deim

U1 13/13 24/25 153n 75n
U2 12/12 24/25 153n 73n

pod-deim [161] U1 9 23 400n2 32n2

U2 8 23 400n2 31n2

600
ho-pod-deim

U1 16/17 32/32 196n 97n
U2 16/16 32/32 194n 96n

pod-deim [161] U1 15 28 400n2 43n2

U2 14 28 400n2 42n2

1200
ho-pod-deim

U1 19/19 36/39 219n 113n
U2 19/19 36/39 215n 113n

pod-deim [161] U1 19 31 400n2 50n2

U2 18 31 400n2 50n2

and truncate the new basis vectors for all 8 bases5, whereas for pod-deim this includes
the time to vectorize each snapshot and the time to perform the economy SVD of all
four n2 × ns matrices of snapshots. On the right of Figure 5.5 we report the time
needed to evaluate (5.18) and a POD-DEIM reduced system of the form (5.2) at nt
timesteps online and compare it to the time needed to evaluate the full order model
(5.3) . The timings in Figure 5.5 (right) correspond to the reduced dimensions reported
in Table 5.2.

Figure 5.5 (left) indicates the large gain in offline computational time by the new
strategy, with almost two orders of magnitude difference as n increases. However,
due to the larger reduced dimensions of ho-deim reported in Table 5.2, fractionally
more time is required online, as presented in Figure 5.5 (right). Nevertheless the
online times are very comparable and orders of magnitude lower than the full order
model (5.3) . In problems where the nonlinear term is more expensive to evaluate this
drawback of ho-pod-deim will become more evident, however, and will need to be
further investigated in future work; see also Remark 5.1.

This experiment indicated that a greater accuracy with respect to the exact solution
can be achieved by the discrete ho-pod-deim reduced order model in a fraction of the
offline computational time compared to pod-deim. Moreover the online time remains
comparable, and a large gain in memory requirements is witnessed. �

5Each equation u1 and u2 require four basis matrices when d = 2. Two stemming from the
snapshot solutions {UUU i(tj)}ns

j=1 for the ho-pod dimension reduction and two stemming from the
nonlinear snapshots (5.23) for the ho-deim interpolation.

5.3. Numerical experiments 103

10
2

10
3

10
-1

10
0

10
1

10
2

10
3

10
2

10
3

10
-2

10
0

10
2

10
4

HO-POD-DEIM

POD-DEIM

Full order model

Figure 5.5: Example 5.2: A comparison of the time required offline
for basis construction (left) and online for integration (right) between

ho-pod-deim and pod-deim [161] for increasing n.

In what follows we illustrate the efficiency of the procedure in the multilinear setting.
Example 5.3. The 3D coupled Burgers equation (BE). Here we consider the semilin-
ear 3D coupled Burgers equation (see, e.g., [67]) given by

u̇1 = 1
r∆u1 − u · ∇u1

u̇2 = 1
r∆u2 − u · ∇u2,

u̇3 = 1
r∆u3 − u · ∇u3,

(5.29)

where u1(x, y, z, t), u2(x, y, z, t) and u3(x, y, z, t) are the three velocities to be deter-
mined, with x = (x, y, z) ∈ (0, 1)3 and t ∈ [0, 1]. Furthermore, the system is subject
to homogeneous Dirichlet boundary conditions and initial states

u1(x, y, z, 0) =
1

10
sin(2πx) sin(2πy) cos(2πz)

u2(x, y, z, 0) =
1

10
sin(2πx) cos(2πy) sin(2πz)

u3(x, y, z, 0) =
1

10
cos(2πx) sin(2πy) sin(2πz).

A finite difference space discretization inside the cube yields a system of ODEs of the
form (5.3) , with nonlinear functions given by

Fi(Di(UUU i),UUU1,UUU2,UUU3, t) = (UUU i ×1 D1i) ◦ UUU1 + (UUU i ×2 D2i) ◦ UUU2 + (UUU i ×3 D3i) ◦ UUU3,

for i = 1, 2, 3, whereD1i ∈ Rn×n,D2i ∈ Rn×n andD3i ∈ Rn×n contain the coefficients
for a first order centered difference space discretization in the x−, y− and z− direc-
tions respectively. Furthermore we vary r through the experiment, and calculate the
reduced order model through ns = 50 equispaced snapshots for both ho-pod-deim

and pod-deim.

Firstly, we set r = 10 and consider five different space discretizations, namely n =

104 Chapter 5. The Multidimensional Setting

{50, 80, 100, 150, 200}, and investigate the efficiency of the offline phase of the ho-

pod-deim procedure for systems when d = 3, in comparison to standard pod-deim.
Note that the system (5.3) of dimension n = 200 is equivalent to the system (5.2)
with dimension N = 8 000 000 when d = 3.

The improvement in memory requirements is immediately evident, since the new pro-
cedure requires storing basis vectors of length n, whereas the vectorization procedure
needs to store many basis vectors of length n3, as has been witnessed in Table 5.2 for
d = 2. In Figure 5.6 (left) we compare the computational time needed to determine

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

50 100 150 200 250
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Figure 5.6: Example 5.3: A comparison of the offline time for in-
creasing dimension n, between ho-pod and pod (left) and ho-deim

and deim (right).

the basis vectors, given τ = 10−4, for increasing dimension n. For the new procedure
that includes the time needed to perform the STHOSVD of each snapshot and the
time needed to orthogonalize and truncate the new basis vectors, whereas for pod-

deim this includes the time to vectorize each snapshot and the time to perform the
economy SVD of the n3 × ns matrix of snapshots. The times are added together for
all 18 bases6 required by ho-pod-deim and all 6 bases required by pod-deim. We
explicitly remark that both the STHOSVD and the economy SVD can potentially
be further accelerated by using randomized algorithms; see e.g., [76, 116]. This is,
however, not considered in our experiments.

In Figure 5.6 (right) we compare the time needed to determine the (ho)-deim inter-
polation indices. That is, the cumulative time taken by q-deim for all 9 nonlinear
bases for ho-pod-deim and all 3 nonlinear bases required by pod-deim.

For both pod and deim the improvement in computational time is very evident in
the plots, with a few orders of magnitude difference. For example, on the standard
laptop computer on which these experiments were performed, the ho-pod-deim bases
were created in just more than a minute for n = 200, whereas the computer ran out

6Each equation u1,u2 and u3 requires six basis matrices when d = 3. Three stemming from the
snapshot solutions {UUU i(tj)}ns

j=1 for the ho-pod dimension reduction and three stemming from the
nonlinear snapshots (5.23) for the ho-deim interpolation. For standard pod-deim each equation
requires only two basis matrices, one for dimension reduction and one for deim interpolation, hence
six bases in total.

5.3. Numerical experiments 105

of memory for the vectorization procedure processing 30 snapshots in more than an
hour.

In what follows, we investigate the online phase. We set n = 150 and illustrate
the efficiency of the three-sided reduction procedure, together with the new t3-sylv

method for solving the low-dimensional, dense tensor-valued system of equations. To
this end, we investigate the total time needed for solving all inner linear systems at
nt = 100 timesteps, that is 300 linear systems in total, using t3-sylv and compare it
to the time needed if the system (5.21) is vectorized and solved as a standard (nearly
dense) linear system (Vec-lin). This is done for different values of τ , which result
in different reduced dimensions. In particular, we plot the computational time with
respect to the maximum dimension of the vectorized systems for the different values
of τ . That is, the value max(k1k2k3) on the x−axis is the maximum value value of
k1ik2ik3i for all i = 1, 2, 3, given τ .

For the solution of the vectorized system we perform a reverse Cuthill–McKee re-
ordering of the coefficient matrices, to exploit any remaining sparsity pattern, and
perform an LU decomposition once for all, so that only front- and back-substitution
is required for all system solves. The results are reported in Figure 5.7.

0 500 1000 1500 2000 2500 3000 3500 4000
10

-1

10
0

10
1

10
2

10
3

10
4

Figure 5.7: Example 5.3: A comparison of the time to solve all linear
systems of the form (5.21), for different values of τ , between t3-sylv
and Vec-lin. The x−axis displays the maximum dimension of the three

vectorized equations for different values of τ .

The advantage that the three-sided reduction procedure poses in combination with the
t3-sylv inner solver is evident from Figure 5.7. This figure, together with Figure 5.6
illustrates that much time can be saved offline and online. Without the t3-sylv inner
solver, it is evident that the tensor structure of the coefficient matrices retained by
the three-sided projection would result in expensive, dense linear system solves, which
would cancel the time that has been saved in the offline phase. Nevertheless, with the
availability of the t3-sylv solver, a considerable speedup is seen in both the offline
and online phases, together with a massive gain in memory requirements.

106 Chapter 5. The Multidimensional Setting

Finally, Table 5.3 and Table 5.4 contain the details of the reduced order model, given
n = 150, τ = 10−4 and the error measure (5.24) for increasing values of the Reynold’s
number r. Table 5.3 illustrates that a large reduction in all dimensions is achieved,

Table 5.3: Example 5.3. Dim. of ho-pod and ho-deim bases and
the average error at 300 timesteps for increasing r. The full order

model has dimension n = 150 and τ = 10−4.

error
r u k1 k2 k3 p1 p2 p3 Ē(UUU)

10
u1 4 7 10 7 12 16 1 · 10−4

u2 7 7 7 9 12 13 6 · 10−5

u3 8 12 8 9 16 13 1 · 10−4

100
u1 6 11 15 10 17 20 3 · 10−5

u2 10 11 11 12 17 17 4 · 10−5

u3 10 16 12 12 21 17 4 · 10−5

500
u1 9 15 19 13 23 26 2 · 10−5

u2 11 16 17 14 23 23 3 · 10−5

u3 12 19 16 14 25 23 4 · 10−5

with a very acceptable accuracy over 300 timesteps, even for large r. Nevertheless
it is clear that for larger Reynold’s number the singular value decay in each mode
becomes slower, resulting in larger reduced dimensions. Moreover we mention that
for this same problem, when r = 100, standard pod-deim would require storing 57
vectors of length n3 in the online phase, as opposed to the 245 vectors of length n that
need to be stored for ho-pod-deim. Furthermore, Table 5.4 confirms that even for
large r we observe a large gain in online computational time achieved by the reduced
model.�

Table 5.4: Example 5.3. Memory and CPU time required for basis
construction and integration. The full order model has dimension n =

150 and τ = 10−4.

Online Basis FOM ROM
r memory time(s) time(s) time(s)
10 177n 20 1641 1.9
100 245n 20 1641 2.2
500 318n 20 1641 3.3

Example 5.4. A 3D reaction-diffusion model for cell apoptosis. As a final example
we consider a reaction-diffusion system, orginally introduced in [49] to investigate the
behavior of protein concentrations (in space and time) of a cell apoptosis model in
1D. The model was later extended to higher dimension in [50, Chapter 2.3]. The pro-
teins build a network called “caspase–cascade” and the dynamics, with homogeneous
Neumann boundary conditions, are given by

u̇1 = δ1∆u1 − c4u1 + c1 sin(u3u2), u̇2 = δ2∆u2 − c4u2 + c2u4u
3
1,

u̇3 = δ3∆u3 − c4u3 − c1 sin(u3u2) + c3, u̇4 = δ4∆u4 − c4u4 − c2u4u
3
1 + c3,

(5.30)

5.3. Numerical experiments 107

where u1(x, t), u2(x, t), u3(x, t) and u4(x, t) are four different reactants called Procaspase-
8, Procaspase-3, Caspase-8 and Caspase-3 respectively, with x = (x, y, z) ∈ (0, 1)3 =:

Ω and t ∈ [0, 1]. For the values and derivation of the constants δi and ci we refer the
reader to [50, Chapter 2.3] and we consider the initial condition

(u1, u2, u3, u4) (x, 0) =

(
u

(d)
1 , u

(d)
2 , u

(d)
3 , u

(d)
4

)
for x ∈ Ωext(

u
(`)
1 , u

(`)
2 , u

(`)
3 , u

(`)
4

)
for x ∈ Ωin

,

where Ωext := {x ∈ Ω, r0 ≤ ‖x‖2 ≤ 1} and Ωin := {x ∈ Ω, ‖x‖2 < r0} and we consider
r0 = {0.1, 0.3}. Furthermore, u(`)

i and u(d)
i represent respectively the life and death

states of the reactants and they are defined in [50, Chapter 2.4]. Note that we have
introduced the sin function in equations one and three to also test the strength of the
procedure on non-polynomial nonlinearities.

For the experimental setup we discretize Equation (5.30) with n = 150 nodes in each
of the spatial directions. Therefore, if T ∈ Rn×n is defined as in Example 5.1, this
yields a system of the form (5.3) , with

A1i = −c4In −
δi
`2x
T , A2i =

δi
`2y
T , A3i =

δi
`2z
T , i = 1, 2, 3, 4,

and `x = `y = `z = 1/(n−1), where the additional linear terms have been incorporated
into the matrices A1i. Furthermore, the nonlinear functions F1(UUU1,UUU2,UUU3,UUU4, t) and
F2(UUU1,UUU2,UUU3,UUU4, t) stem from respectively evaluating the nonlinear terms c1 sin(u3u2)

and c2u4u
3
1 elementwise. Notice, furthermore, that F3 = −F1 and F4 = −F2, so that

only two ho-deim bases are required, instead of four. The constant matrices stem-
ming from the discretization of the constant c3 are treated separately. Finally we
consider τ = 10−2 and ns = 30 equispaced snapshots of each UUU i, F1 and F2 in the
timespan.

In Table 5.5 we report, for all four equations and both values of r0, the dimension of
the ho-pod and ho-deim bases, the online memory requirements (# of vectors times
the length, as before), the online time for nt = 300 (for each equation separately) and
the average relative error (5.24).

We observe a significant decrease in the state dimension for both values of r0, with
a very acceptable average relative error in all equations. Equations three and four
require a larger basis than one and two, but in turn, they do not require the additional
cost online of ho-deim interpolation and the evaluation of the nonlinear function.
Furthermore, we observe that all equations can be solved in a rapid online phase,
whereas the full order model needs approximately 4064 seconds to be integrated at
nt = 300 timesteps, independent of r0. �

108 Chapter 5. The Multidimensional Setting

Table 5.5: Example 5.4. Dim. of ho-pod and ho-deim bases and
further computational detalis for τ = 10−2 and n = 150.

pod dim. deim dim. online online
r0 Ui (k1/k2/k3) (p1/p2/p3) memory time (s) error

0.1

U1 2/2/2 5/5/5 21n 1.29 3 · 10−4

U2 2/2/2 3/3/3 15n 1.20 4 · 10−4

U3 18/18/18 – 54n 1.50 3 · 10−4

U4 9/9/9 – 27n 0.63 1 · 10−2

0.3

U1 8/8/8 9/9/9 51n 1.56 3 · 10−4

U2 8/8/8 9/9/9 51n 1.13 3 · 10−4

U3 43/43/42 – 128n 11.25 3 · 10−3

U4 31/31/30 – 92n 4.27 5 · 10−3

5.4 Concluding Remarks

In this chapter, we have illustrated that systems of the form (5.1), with linear operators
with separable coefficients, discretized by a tensor basis on certain domains, can be
treated directly in matrix or tensor form. In this setting, we have extended the pod-

deim model order reduction method to the multilinear setting and illustrated how it
could be used to massively reduce the dimension and complexity of systems of ODEs
in two and three spatial dimensions. Furthermore, some very encouraging numerical
experiments on complex problems such as the 2D and 3D viscous Burgers equation
indicate a dramatic decrease in CPU time and memory requirements in the offline
phase to construct the bases, especially when d = 3.

Nevertheless, the dense Kronecker structure of the reduced-order model obtained by
the ho-pod-deim projection would incur unnecessary computational costs in the on-
line phase when d = 3. To this end, we have shown how the novel t3-sylv linear
system solver from [143] can exploit the structure of the reduced-order model, resulting
in a significant decrease in computational time in the online phase as well.

Future work would entail an analysis of the number of snapshots required by ho-pod-

deim in comparison to pod-deim. It could also be of interest to extend the t3-sylv

solver to higher dimensions so that the ho-pod-deim strategy can be applied to
PDEs with d > 3. Furthermore, the extension to the parameter-dependent setting
can also be considered. This will result in an additional dimension that needs to be
treated. Finally, the presented algorithm can certainly also benefit from a dynamic
implementation as presented for the matrix setting in Section 4.2.3.

109

Chapter 6

Conclusion and Future Work

In this thesis, we have investigated order reduction strategies for semilinear matrix-
and tensor-valued semilinear ODEs, and also systems of such equations. Our frame-
work relies on forming reduced semilinear ODEs with the same structure as the original
problem, depending on far smaller arrays. The framework also encompasses integrat-
ing the reduced model in its array form, which leads to further computational advan-
tages. We first investigated the matrix-valued problem. Under the same framework,
we studied separately the cases of the quadratic differential Riccati equation and of
more general nonlinear functions, with the crucial difference being how the approxi-
mation spaces are chosen and constructed and how the nonlinear term is treated.

In the quadratic setting, thanks to important theoretical results from [19, 21] illus-
trating that the solution of the DRE lives in an invariant Krylov subspace, we have
devised an efficient reduction procedure onto rational Krylov subspaces. In particular,
we have exploited the fact that these spaces are nested to derive a novel two-phase
algorithm consisting of independently constructing the approximation space and re-
fining the accuracy of the final set of solutions. The algorithm relies on a new stopping
criterion that considers the different approximation behavior of the algebraic and dif-
ferential portions of the equation. Numerical experiments on benchmark problems
and comparisons to state-of-the-art methods for solving the DRE have illustrated the
efficiency and reliability of the new procedure.

In the more general setting, the challenge was to determine a pair of left-right approx-
imation spaces that accurately captures the behavior of the nonlinear function, which
also needs to be interpolated for efficiency. To this end, we have proposed a matrix-
oriented pod-deim type order reduction strategy to drastically reduce the discretized
dimension of the considered problem in two space variables, following the framework
described above. The approximation spaces are constructed through a novel interpre-
tation of the POD when applied to functions in two variables, preserving the (possible)
symmetric structure in the original nonlinear function and the approximate solution.
A dynamic procedure has also been proposed to limit the number of high-dimensional
snapshots that contribute to the approximation space. Moreover, a two-sided DEIM
methodology has been derived to handle the nonlinear term in low dimension. Hence,

110 Chapter 6. Conclusion and Future Work

the numerical treatment of the matrix reduced-order differential problem can take full
advantage of both the matrix setting and the small dimension by exploiting effective,
reliable exponential integrators.

In the final part of the thesis, we studied tensor-valued semilinear ODEs and extended
the matrix-oriented POD-DEIM algorithm to the tensor setting. We have illustrated
how to construct the approximation spaces efficiently, how to interpolate the nonlinear
function, and, more importantly, how to integrate the tensor-valued reduced-order
model. Furthermore, we also investigated systems of semilinear ODEs, which allows
us to illustrate the efficiency of the proposed procedure on typical benchmark problems
coming from industrial applications in fields such as Biology and Engineering.

The range of applicability of the presented procedures clearly relies on the ability to
express the underlying problem in matrix or tensor form. For the quadratic DRE, as
it appears in the numerical treatment of the LQR problem, the matrix structure is
inherent. However, in the more general setting, where the ODEs stem from the space
discretization of semilinear PDEs, the resulting structure of the problem is dependent
on i) the computational domain Ω ⊂ Rd; ii) the differential operator L : Spde → R;
iii) the discretization basis.

In this thesis, we have considered problems that stem from simple differential opera-
tors such as the Laplace operator (with a possible constant convection term), solved
on parallelepipedal computational domains discretized by centered finite differences
or spectral methods. The applicability of the proposed algorithms is, however, not
restricted to this setting. As discussed in Section 1.2, more general operators, com-
putational domains, and discretization bases (including certain finite elements) have
already been successfully treated in array form. A future step would be to extend our
framework to also deal with these more demanding problems. For instance, semilinear
PDEs with non-constant convection terms on polygonal domains can be addressed fol-
lowing the framework outlined in [78]. At first glance it seems that the matrix-oriented
reduction framework will be well suited to this setting, however, the time integration
of the reduced model will need to be carefully adapted to deal with special multiterm
semilinear matrix equations, involving Hadamard products.

Another restriction of the algorithms proposed in Chapters 4 and 5 is the number
of nonlinear functional evaluations in the online phase. The numerical experiments
have indicated that the presented algorithms typically have more DEIM interpolation
indices than in the vector setting, due to the tensorized nature of the interpolation.
Despite comparable online times to the vector setting, this could become more restric-
tive with more demanding nonlinear functions. In Remark 5.1 we suggest a possible
alleviation to this restriction, which comes at the cost of losing the tensor structure
of the interpolation. Alleviating this issue without affecting the structure of the ap-
proximation is certainly also a research line that can be explored in future work.

Chapter 6. Conclusion and Future Work 111

In this thesis, we have not considered any parameter-dependencies apart from time.
It is necessary to extend the proposed framework to the parameter-dependent setting
to broaden the range of applicability of the procedures. This will result in extra
dimensions that need to be treated in the HO-POD-DEIM framework, resulting in a
more demanding offline phase and a challenging online phase to deal with parameters
beyond the training setup. This extension could go hand in hand with an adaptation
of the framework to handle finite-element discretizations on tensorized bases with a
careful selection of the norms to deal with more challenging industrial problems.

This work can, furthermore, be expanded in several other directions. In particular, for
the DRE, several open questions remain regarding the stability properties of the ra-
tional Krylov approximate solution in the control theory context. These results could
build on preliminary results presented for the Polynomial Krylov subspace [99]. Fur-
thermore, the HO-POD-DEIM algorithm naturally calls for an extension beyond three
dimensions, which will mainly rely on extending the t3-sylv solver from Section 5.1
to higher dimensions. Finally, the new matrix- and tensor-oriented POD-DEIM algo-
rithms will also benefit from a thorough analysis of the approximations’ quality.

113

Bibliography

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank,Matrix Riccati Equations
in Control and Systems Theory. Birkhauser, Basel, 2003 (cit. on pp. 5, 41).

[2] J. Achterberg, “Model reduction of multidimensional dynamical systems by
tensor decompositions”, Master’s thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, 2008 (cit. on p. 88).

[3] J. V. Aguado, D. Borzacchiello, K. S. Kollepara, F. Chinesta, and A. Huerta,
“Tensor representation of non-linear models using cross approximations”, J.
Sci. Comput., vol. 81, no. 1, pp. 22–47, 2019 (cit. on p. 88).

[4] A. H. Al-Mohy and N. J. Higham, “A new scaling and squaring algorithm for
the matrix exponential”, SIAM J. Matrix Anal. Appl., vol. 31, no. 3, pp. 970–
989, 2010 (cit. on p. 31).

[5] S. M. Allen and J. W. Cahn, “A microscopic theory for antiphase boundary mo-
tion and its application to antiphase domain coarsening”, Acta Metall, vol. 27,
no. 6, pp. 1085–1095, 1979 (cit. on p. 82).

[6] D. Amsallem and C. Farhat, “An online method for interpolating linear para-
metric reduced-order models”, SIAM J. Sci. Comput., vol. 33, no. 5, pp. 2169–
2198, 2011 (cit. on p. 70).

[7] V. Angelova, M. Hached, and K. Jbilou, “Approximate solutions to large non-
symmetric differential Riccati problems with applications to transport theory”,
Numer. Linear Algebra Appl., vol. 27, no. 1, e2272, 2020 (cit. on p. 50).

[8] H. Antil, M. Heinkenschloss, and D. C. Sorensen, “Application of the discrete
empirical interpolation method to reduced order modeling of nonlinear and
parametric systems”, in Reduced order methods for modeling and computational
reduction, Springer, 2014, pp. 101–136 (cit. on p. 69).

[9] P. Antolin, A. Buffa, F. Calabro, M. Martinelli, and G. Sangalli, “Efficient
matrix computation for tensor-product isogeometric analysis: The use of sum
factorization”, Comput. Methods Appl. Mech. Eng., vol. 285, pp. 817–828, 2015
(cit. on p. 15).

[10] A. Antoulas, C. Beattie, and S Gugercin, Interpolatory methods for model re-
duction. SIAM, Philidelphia, 2020 (cit. on p. 6).

[11] A. C. Antoulas,Approximation of large-scale dynamical systems. SIAM, Philidel-
phia, 2005, vol. 6 (cit. on pp. 4, 5, 42–44).

114 Bibliography

[12] W. F. Arnold and A. J. Laub, “Generalized eigenproblem algorithms and soft-
ware for algebraic Riccati equations”, Proceedings of the IEEE, vol. 72, no. 12,
pp. 1746–1754, 1984 (cit. on p. 36).

[13] U. Ascher and L. Petzold, Computer methods for ordinary differential equations
and differential-algebraic equations. SIAM, Philidelphia, 1998 (cit. on pp. 35,
37).

[14] U. M. Ascher, S. J. Ruuth, and B. T. Wetton, “Implicit-explicit methods for
time-dependent partial differential equations”, SIAM J. Numer. Anal., vol. 32,
no. 3, pp. 797–823, 1995 (cit. on pp. 24, 27–29, 74, 90).

[15] P. Astrid, S. Weiland, K. Willcox, and T. Backx, “Missing point estimation in
models described by proper orthogonal decomposition”, IEEE Trans. Autom.
Control, vol. 53, no. 10, pp. 2237–2251, 2008 (cit. on p. 6).

[16] J. Baglama and L. Reichel, “Augmented implicitly restarted Lanczos bidiag-
onalization methods”, SIAM J. Sci. Comput., vol. 27, no. 1, pp. 19–42, 2005
(cit. on p. 76).

[17] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, “An ‘empirical inter-
polation’ method: Application to efficient reduced-basis discretization of partial
differential equations”, C. R. Math. Acad. Sci. Paris, vol. 339, no. 9, pp. 667–
672, 2004 (cit. on pp. 6, 19).

[18] R. Bartels and G. Stewart, “Algorithm 432: Solution of the matrix equation
AX+XB = C”, Comm. ACM, vol. 15, no. 2, pp. 820 –826, 1972 (cit. on pp. 31,
32).

[19] M. Behr, P. Benner, and J. Heiland, “On an invariance principle for the solution
space of the differential Riccati equation”, Proc. Appl. Math. Mech., vol. 18,
no. 1, e201800031, 2018 (cit. on pp. 6, 46, 109).

[20] ——, “Solution formulas for differential Sylvester and Lyapunov equations”,
Calcolo, vol. 56:51, 2019 (cit. on p. 5).

[21] ——, “Galerkin trial spaces and Davison-Maki methods for the numerical so-
lution of differential Riccati equations”, Appl. Math. Comput., p. 126 401, 2021
(cit. on pp. 5, 6, 46, 109).

[22] P. Benner and R. Byers, “An exact line search method for solving generalized
continuous algebraic Riccati equations”, IEEE Trans. Automat Control, vol. 43,
no. 1, pp. 101–107, 1998 (cit. on p. 36).

[23] P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Model reduction and
approximation theory and algorithms. SIAM, Philidelphia, 2017 (cit. on pp. 6,
41).

[24] P. Benner, V. Mehrmann, and D. Sorensen, Dimension Reduction of Large-
Scale Systems. Springer-Verlag, Berlin/Heidelberg, Germany, 2005 (cit. on pp. 6,
52, 53).

[25] P. Benner and T. Breiten, “Two-sided projection methods for nonlinear model
order reduction”, SIAM J. Sci. Comput., vol. 37, no. 2, B239–B260, 2015 (cit.
on pp. 4, 6).

Bibliography 115

[26] P. Benner, Z. Bujanovic, P. Kurschner, and J. Saak, “A numerical comparison
of different solvers for large-scale, continuous-time algebraic Riccati equations
and LQR problems”, SIAM J. Sci. Comput., vol. 42, no. 2, A957–A996, 2020
(cit. on pp. 36, 39).

[27] P. Benner, S. Gugercin, and K. Willcox, “A survey of projection-based model re-
duction methods for parametric dynamical systems”, SIAM Rev, vol. 57, no. 4,
pp. 483–531, 2015 (cit. on pp. 6, 69, 70).

[28] P. Benner and H. Mena, “Rosenbrock methods for solving Riccati differential
equations”, IEEE Trans Autom Control, vol. 58, no. 11, pp. 2950–2956, 2013
(cit. on p. 35).

[29] G. Beylkin, J. M. Keiser, and L. Vozovoi, “A new class of time discretization
schemes for the solution of nonlinear PDEs”, J. Comput. Phys., vol. 147, no. 2,
pp. 362–387, 1998 (cit. on p. 25).

[30] D. A. Bini, B. Lannazzo, and B. Meini, Numerical solution of algebraic Riccati
equations. SIAM, Philidelphia, 2012, vol. 9 (cit. on pp. 36, 39).

[31] R. Bitmead, M. Gevers, I. Petersen, and J. Kaye, “Monotonicity and stabilizability-
properties of solutions of the Riccati difference equation: Propositions, lemmas,
theorems, fallacious conjectures and counterexamples”, Systems & Control Let-
ters, vol. 5, no. 5, pp. 309–315, 1985 (cit. on p. 62).

[32] S. Blanes, “High order structure preserving explicit methods for solving linear-
quadratic optimal control problems and differential games”, Numer. Algor.,
vol. 69, 271––290, 2015 (cit. on p. 41).

[33] D. Bonomi, A. Manzoni, and A. Quarteroni, “A matrix DEIM technique for
model reduction of nonlinear parametrized problems in cardiac mechanics”,
Comput. Methods Appl. Mech. Eng., vol. 324, pp. 300–326, 2017 (cit. on pp. 69,
93).

[34] T. Breiten, S. Dolgov, and M. Stoll, “Solving differential Riccati equations:
A nonlinear space-time method using tensor trains”, Numer. Algebra Control
Optim., vol. 11, no. 3, pp. 407–429, 2021 (cit. on p. 45).

[35] J. C. Butcher and N. Goodwin, Numerical methods for ordinary differential
equations. Wiley Online Library, 2008, vol. 2 (cit. on p. 23).

[36] T. Byers, “Solving the algebraic Riccati equation with the matrix sign function”,
Linear Alg. Appl., vol. 85, pp. 267–279, 1987 (cit. on p. 36).

[37] M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer, “Comparison of soft-
ware for computing the action of the matrix exponential”, BIT Numer. Math.,
vol. 54, no. 1, pp. 113–128, 2014 (cit. on p. 34).

[38] M. Caliari and A. Ostermann, “Implementation of exponential Rosenbrock-
type integrators”, Applied Numerical Mathematics, vol. 59, no. 3-4, pp. 568–
581, 2009 (cit. on p. 83).

[39] K. Carlberg, R. Tuminaro, and P. Boggs, “Preserving Lagrangian structure in
nonlinear model reduction with application to structural dynamics”, SIAM J.
Sci. Comput., vol. 37, no. 2, B153–B184, 2015 (cit. on p. 69).

116 Bibliography

[40] J. E. Castillo, Mathematical aspects of numerical grid generation. SIAM, 1991
(cit. on p. 15).

[41] S. Chaturantabut and D. C. Sorensen, “Nonlinear model reduction via discrete
empirical interpolation”, SIAM J. Sci. Comput., vol. 32, no. 5, pp. 2737–2764,
2010 (cit. on pp. 6, 19, 20, 64, 65, 72, 73, 76, 93, 94).

[42] ——, “Application of POD and DEIM on dimension reduction of non-linear
miscible viscous fingering in porous media”, Math. Comput. Modell. Dyn. Syst.,
vol. 17, no. 4, pp. 337–353, 2011 (cit. on p. 88).

[43] ——, “A state space error estimate for POD-DEIM nonlinear model reduction”,
SIAM J. Numer. Anal., vol. 50, no. 1, pp. 46–63, 2012 (cit. on p. 74).

[44] J. Chehab and M. Raydan, “Inexact Newton’s method with inner implicit pre-
conditioning of algebraic Riccati equations”, vol. 36, no. 2, pp. 955–969, (cit. on
p. 36).

[45] U. S.P.I.T. A. Committee, Computational Science: Ensuring America’s Com-
petitiveness. National Coordination Office for Information Technology Research
& Development, 2005 (cit. on p. 3).

[46] M. J. Corless and A. E. Frazho, Linear systems and control - an operator
perspective. Marcel Dekker, New York, 2003 (cit. on pp. 5, 41, 49).

[47] S. Cox and P. Matthews, “Exponential time differencing for stiff systems”, J.
Comput. Phys., vol. 176, no. 2, pp. 430–455, 2002 (cit. on p. 25).

[48] M. Crouzeix, “Une méthode multipas implicite-explicite pour l’approximation
des équations d’évolution paraboliques”, Numer. Math., vol. 35, no. 3, pp. 257–
276, 1980 (cit. on pp. 26, 28).

[49] M. Daub, S. Waldherr, F. Allgöwer, P. Scheurich, and G. Schneider, “Death
wins against life in a spatially extended apoptosis model”, Biosystems, vol. 108,
pp. 45–51, 2012 (cit. on p. 106).

[50] M. Daub, “Mathematical modeling and numerical simulations of the extrinsic
pro-apoptotic signaling pathway”, PhD thesis, University of Stuttgart, 2013
(cit. on pp. 106, 107).

[51] M. C. D’Autilia, I. Sgura, and V. Simoncini, “Matrix-oriented discretization
methods for reaction–diffusion PDEs: Comparisons and applications”, Comput.
Math. Appl., pp. 2067–2085, 2020 (cit. on pp. 4, 13, 14, 23, 25, 26, 29, 32, 74,
75, 90, 98).

[52] E. Davison and M. Maki, “The numerical solution of the matrix Riccati differ-
ential equation”, IEEE Trans. Autom. Control, pp. 71–73, 1973 (cit. on pp. 23,
24, 35).

[53] A. De Wit, “Spatial patterns and spatiotemporal dynamics in chemical sys-
tems”, in. John Wiley & Sons, Ltd, 1999, pp. 435–513 (cit. on p. 87).

[54] R. Dedden, “Model order reduction using the discrete empirical interpolation
method”, Master’s thesis, TU Delft, 2012 (cit. on p. 69).

Bibliography 117

[55] L. Dieci, “Numerical integration of the differential Riccati equation and some
related issues”, SIAM J. Numer. Anal., vol. 29, no. 3, pp. 781–815, 1992 (cit. on
pp. 23, 24, 35).

[56] L. Dieci and T. Eirola, “Preserving monotonicity in the numerical solution of
Riccati differential equations”, Numer. Math., vol. 74, no. 1, pp. 35–47, 1996
(cit. on p. 62).

[57] Z. Drmač and S. Gugercin, “A new selection operator for the discrete empirical
interpolation method—improved a priori error bound and extensions”, SIAM
J. Sci. Comput., vol. 38, no. 2, A631–A648, 2016 (cit. on pp. 21, 72, 73, 76,
94).

[58] V. Druskin and L. Knizhnerman, “Extended Krylov subspaces: Approximation
of the matrix square root and related functions”, SIAM J. Matrix Anal. Appl.,
vol. 19, no. 3, pp. 755–771, 1998 (cit. on p. 17).

[59] V. Druskin and V. Simoncini, “Adaptive rational Krylov subspaces for large-
scale dynamical systems”, Systems & Control Letters, vol. 60, pp. 546–560, 2011
(cit. on pp. 16, 18, 44, 53).

[60] L. C. Evans and J. Spruck, “Motion of level sets by mean curvature. I”, J.
Differ. Geom., vol. 33, no. 3, pp. 635–681, 1991 (cit. on p. 82).

[61] M. Farrashkhalvat and J. P. Miles, Basic structured grid generation. Butter-
worth & Heinemann, 2003 (cit. on p. 15).

[62] C. A. Fletcher, “Generating exact solutions of the two-dimensional Burgers’
equations”, Int. J. Numer. Methods Fluids, vol. 3, pp. 213–216, 1983 (cit. on
p. 99).

[63] D. Fortunato and A. Townsend, “Fast Poisson solvers for spectral methods”,
IMA Journal of Numerical Analysis, vol. 40, no. 3, pp. 1994–2018, 2020 (cit. on
p. 15).

[64] R. A Friesner, L. Tuckerman, B. Dornblaser, and T. Russo, “A method for ex-
ponential propagation of large systems of stiff nonlinear differential equations”,
J. Sci. Comput., vol. 4, no. 4, pp. 327–354, 1989 (cit. on p. 25).

[65] M. Frittelli and I. Sgura, “Matrix-oriented FEM formulation for stationary and
time-dependent PDEs on x-normal domains”, arXiv preprint arXiv:2109.01173,
2021 (cit. on p. 15).

[66] G. Gambino, M. Lombardo, and M. Sammartino, “Pattern selection in the 2D
FitzHugh–Nagumo model”, Ricerche di Matematica, vol. 68, no. 2, pp. 535–549,
2019 (cit. on p. 97).

[67] Q. Gao and M. Zou, “An analytical solution for two and three dimensional
nonlinear Burgers’ equation”, Appl. Math. Modell., vol. 45, pp. 255 –270, 2017
(cit. on p. 103).

[68] U. Z. George, A. Stéphanou, and A. Madzvamuse, “Mathematical modelling
and numerical simulations of actin dynamics in the eukaryotic cell”, J. Math.
Biol., vol. 66, no. 3, pp. 547–593, 2013 (cit. on p. 87).

118 Bibliography

[69] M. Gevers, R. Bitmead, I. Petersen, and J. Kaye, “When is the solution of the
Riccati equation stabilizing at every instant?”, in Frequency Domain and State
Space Methods for Linear Systems, North-Holland, 1986, pp. 531–540 (cit. on
p. 62).

[70] G. H. Golub and C. F. van Loan, Matrix Computations, Fourth. Johns Hopkins
University Press, Baltimore, 2013 (cit. on pp. 12, 19, 31, 76).

[71] L. Grasedyck, “Existence and computation of low Kronecker-rank approxima-
tions for large linear systems of tensor product structure”, Computing, vol. 72,
no. 3–4, pp. 247–265, Oct. 2004 (cit. on p. 41).

[72] ——, “Existence of a low rank or H-matrix approximant to the solution of a
Sylvester equation”, Numer. Linear Algebra Appl., vol. 11, no. 4, pp. 371–389,
Oct. 2004 (cit. on p. 41).

[73] C. Gu, “QLMOR: A projection-based nonlinear model order reduction ap-
proach using quadratic-linear representation of nonlinear systems”, IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 9, pp. 1307–1320, 2011
(cit. on pp. 6, 88).

[74] N. Guglielmi and V. Simoncini, “On the existence and approximation of a
dissipating feedback”, arXiv preprint arXiv:1811.00069, 2019 (cit. on p. 50).

[75] Y. Güldogan, M. Hached, K. Jbilou, and M. Kurulaya, “Low rank approxi-
mate solutions to large-scale differential matrix Riccati equations”, Applica-
tiones Mathematicae, vol. 45, no. 2, pp. 233–254, 2018 (cit. on pp. 5, 43, 44,
46).

[76] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decompo-
sitions”, SIAM Rev., vol. 53, no. 2, pp. 217–288, 2011 (cit. on p. 104).

[77] E. Hansen and T. Stillfjord, “Convergence analysis for splitting of the abstract
differential Riccati equation”, SIAM J. Numer. Anal., vol. 52, no. 6, pp. 3128–
3139, 2014 (cit. on p. 39).

[78] Y. Hao and V. Simoncini, “Matrix equation solving of PDEs in polygonal
domains using conformal mappings”, J. Numer. Math., vol. 29, no. 3, pp. 221–
244, 2021 (cit. on pp. 15, 110).

[79] M. Heyouni and K. Jbilou, “An extended block Arnoldi algorithm for large-
scale solutions of the continuous-time algebraic Riccati equation”, Electron.
Trans. Numer Anal., vol. 33, pp. 53–62, 2009 (cit. on p. 44).

[80] N. J. Higham, “The scaling and squaring method for the matrix exponential
revisited”, SIAM J. Matrix Anal. Appl., vol. 26, no. 4, pp. 1179–1193, 2005
(cit. on p. 31).

[81] ——, Functions of matrices: theory and computation. SIAM, Philidelphia, 2008
(cit. on pp. 25, 73).

[82] M. Hinze and S. Volkwein, “Proper orthogonal decomposition surrogate models
for nonlinear dynamical systems: Error estimates and suboptimal control”, in

Bibliography 119

Dimension reduction of large-scale systems, Springer-Verlag, Berlin/Heidelberg,
2005, pp. 261–306 (cit. on p. 6).

[83] M. Hochbruck and A. Ostermann, “Explicit exponential Runge–Kutta meth-
ods for semilinear parabolic problems”, SIAM J. Numer. Anal., vol. 43, no. 3,
pp. 1069–1090, 2005 (cit. on pp. 24–26).

[84] ——, “Exponential integrators.”, Acta Numer., vol. 19, pp. 209–286, 2010 (cit.
on pp. 24–26).

[85] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve”, The Journal
of physiology, vol. 117, no. 4, p. 500, 1952 (cit. on p. 87).

[86] W. Hundsdorfer and J. G. Verwer, Numerical solution of time-dependent advection-
diffusion-reaction equations. Springer Science & Business Media, Berlin, Ger-
many, 2013, vol. 33 (cit. on pp. 23, 27, 28, 39).

[87] I. M. Jaimoukha and E. M. Kasenally, “Krylov subspace methods for solving
large Lyapunov equations”, SIAM J. Numer. Anal., vol. 31, no. 1, pp. 227–251,
1994 (cit. on p. 44).

[88] L. Ju, J. Zhang, L. Zhu, and Q. Du, “Fast explicit integration factor methods
for semilinear parabolic equations”, J. Sci. Comput., vol. 62, no. 2, pp. 431–455,
2015 (cit. on p. 82).

[89] B. Karasözen, M. Uzunca, and T. Küçükseyhan, “Model order reduction for
pattern formation in Fitzhugh-Nagumo equations”, in Numerical Mathematics
and Advanced Applications ENUMATH 2015, Springer, 2016, pp. 369–377 (cit.
on p. 88).

[90] ——, “Reduced order optimal control of the convective Fitzhugh–Nagumo
equations”, Comput. Math. Appl., vol. 79, no. 4, pp. 982–995, 2020 (cit. on
p. 88).

[91] B. Karasözen, S. Yıldız, and M. Uzunca, “Structure preserving model order
reduction of shallow water equations”, Math. Methods Appl. Sci., vol. 44, no. 1,
pp. 476–492, 2021 (cit. on p. 88).

[92] C. Kenny, A. Laub, and P. Papadopoulos, “Matrix sign function algorithms for
Riccati equations”, in IMA Conference on Control: Modelling, Computation,
Information, I. C. S. Press, Ed., 1992 (cit. on p. 36).

[93] G. Kirsten, “Multilinear POD-DEIM model reduction for 2D and 3D semilinear
systems of differential equations”, To appear in J. Comput. Dyn., 2021 (cit. on
p. 87).

[94] G. Kirsten and V. Simoncini, “Order reduction methods for solving large-scale
differential matrix Riccati equations”, SIAM J. Sci. Comput., vol. 42, no. 4,
A2182–A2205, 2020 (cit. on p. 41).

[95] D. Kleinman, “On an iterative technique for Riccati equation computations”,
IEEE Trans. Autom. Contr., vol. 13, no. 1, 1968 (cit. on p. 36).

[96] P. Knupp and S. Steinberg, Fundamentals of grid generation. CRC press, 2020
(cit. on p. 15).

120 Bibliography

[97] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications”, SIAM
Rev, vol. 51, no. 3, pp. 455–500, 2009 (cit. on pp. 12, 90).

[98] M. Konstantinov and G. Pelova, “Sensitivity of the solutions to differential
matrix Riccati equations”, IEEE Trans. Autom. Control, vol. 36, no. 2, pp. 213–
215, 1991 (cit. on p. 50).

[99] A. Koskela and H. Mena, “Analysis of Krylov subspace approximation to large
scale differential Riccati equations”, Electron. Trans. Numer. Anal., vol. 52,
pp. 431–454, 2020 (cit. on pp. 5, 43, 44, 46, 62, 111).

[100] B. Kramer, “Model reduction of the coupled Burgers equation in conservation
form”, PhD thesis, Virginia Tech, 2011 (cit. on p. 88).

[101] B. Kramer and K. E. Willcox, “Nonlinear model order reduction via lifting
transformations and proper orthogonal decomposition”, AIAA Journal, vol. 57,
no. 6, pp. 2297–2307, 2019 (cit. on pp. 6, 88).

[102] M. Krusemeyer, Differential Equations. Macmillan College Publishing, New
York, 1994 (cit. on p. 25).

[103] V. Kucera, “A review of the matrix Riccati equation”, Kibernetika, vol. 9, no. 1,
pp. 42–61, 1973 (cit. on pp. 42, 45, 50–52).

[104] K. Kunisch and S. Volkwein, “Control of the Burgers equation by a reduced-
order approach using proper orthogonal decomposition”, J. Optim. Theory
Appl., vol. 102, no. 2, pp. 345–371, 1999 (cit. on pp. 6, 99).

[105] H. Kwakernaak and R. Sivan, Linear optimal control systems. Wiley-interscience,
New York, 1972, vol. 1 (cit. on pp. 5, 41, 49).

[106] P. Lancaster and L. Rodman, The Algebraic Riccati Equations, Oxford, Ed.
Clarendon Press, 1995 (cit. on p. 36).

[107] N. Lang, “Numerical methods for large-scale linear time-varying control sys-
tems and related differential matrix equations”, PhD thesis, Technische Uni-
versitaet Chemnitz, 2017 (cit. on pp. 35, 45).

[108] Y. Lin and V. Simoncini, “Minimal residual methods for large scale Lyapunov
equations”, Applied Num. Math., vol. 72, pp. 52–71, 2013 (cit. on p. 18).

[109] ——, “A new subspace iteration method for the algebraic Riccati equation”,
Numer. Linear Algebra Appl., vol. 22, no. 1, pp. 26–47, 2015 (cit. on p. 44).

[110] P. K. Maini and H. G. Othmer, Mathematical Models for Biological Pattern
Formation, ser. The IMA Volumes in Mathematics and its Applications - Fron-
tiers in application of Mathematics. Springer-Verlag, New York, 2001 (cit. on
p. 87).

[111] H. Malchow, S. Petrovskii, and E. Venturino, Spatiotemporal Patterns in Ecol-
ogy and Epidemiology: Theory, Models, and Simulations. Chapman & Hall,
CRC, London, 2008 (cit. on p. 87).

[112] A. Mantzaflaris, B. Jüttler, B. N. Khoromskij, and U. Langer, “Low rank ten-
sor methods in Galerkin-based isogeometric analysis”, Comput. Methods Appl.
Mech. Eng., vol. 316, pp. 1062–1085, 2017 (cit. on p. 15).

[113] Matlab 7, r2013b, The MathWorks, 2013 (cit. on p. 9).

Bibliography 121

[114] H. Mena, “Numerical solution of differential Riccati equations arising in opti-
mal control problems for parabolic partial differential equations”, PhD thesis,
Escuela Politécnica Nacional, 2007 (cit. on pp. 23, 24, 35).

[115] H. Mena, A. Ostermann, L.-M. Pfurtscheller, and C. Piazzola, “Numerical low-
rank approximation of matrix differential equations”, J. Comput. Appl. Math.,
vol. 340, pp. 602–614, 2018 (cit. on pp. 23, 24, 35, 37, 60).

[116] R. Minster, A. K. Saibaba, and M. E. Kilmer, “Randomized algorithms for
low-rank tensor decompositions in the Tucker format”, SIAM J. Math. Data
Sci., vol. 2, no. 1, pp. 189–215, 2020 (cit. on p. 104).

[117] D. Mott, E. Oran, and B. van Leer, “A quasi-steady-state solver for the stiff
ordinary differential equations of reaction kinetics”, J. Comput. Phys., vol. 164,
no. 2, pp. 407–428, 2000 (cit. on p. 25).

[118] J. Murray, Mathematical biology II: spatial models and biomedical applications.
Springer-Verlag, Berlin, 2001, vol. 3 (cit. on p. 87).

[119] F. Negri, A. Manzoni, and D. Amsallem, “Efficient model reduction of parametrized
systems by matrix discrete empirical interpolation”, J. Comput. Phys., vol. 303,
pp. 431–454, 2015 (cit. on pp. 69, 93).

[120] N. C. Nguyen, A. T. Patera, and J. Peraire, “A ‘best points’ interpolation
method for efficient approximation of parametrized functions”, Int J. Numer.
Methods Eng., vol. 73, no. 4, pp. 521–543, 2008 (cit. on p. 6).

[121] Oberwolfach model reduction benchmark collection. 2003. [Online]. Available:
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Category:

Oberwolfach (cit. on p. 52).
[122] G. M. Oxberry, T. Kostova-Vassilevska, W. Arrighi, and K. Chand, “Limited-

memory adaptive snapshot selection for proper orthogonal decomposition”, Int.
J. Numer. Meth. Eng., vol. 109, pp. 198–217, 2017 (cit. on p. 78).

[123] D. Palitta and V. Simoncini, “Matrix-equation-based strategies for convection–
diffusion equations”, BIT Numer. Math., vol. 56, no. 2, pp. 751–776, 2016 (cit.
on pp. 4, 13–15).

[124] A. T. Patera and G. Rozza, Reduced basis approximation and a posteriori error
estimation for parametrized partial differential equations. MIT Cambridge, MA,
USA, 2007 (cit. on p. 6).

[125] T. Penzl, “A cyclic low-rank Smith method for large sparse Lyapunov equa-
tions”, SIAM J. Sci. Comput., vol. 21, no. 4, pp. 1401–1418, 2000 (cit. on
p. 44).

[126] M. A. Poubelle, R. Bitmead, and M. Gevers, “Fake algebraic Riccati techniques
and stability”, IEEE Trans. Autom. Control, vol. 33, no. 4, pp. 379–381, 1988
(cit. on p. 62).

[127] C. E. Powell, D. Silvester, and V. Simoncini, “An efficient reduced basis solver
for stochastic Galerkin matrix equations”, SIAM J. Sci. Comput., vol. 39, no. 1,
A141–A163, 2017 (cit. on p. 15).

https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Category:Oberwolfach
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Category:Oberwolfach

122 Bibliography

[128] A. Quarteroni, Numerical Models for Differential Problems, ser. MS&A - Mod-
eling, Simulation and Applications. Springer-Verlag, Milan, 2017, vol. 8 (cit. on
p. 87).

[129] W. Reid, Riccati differential equations. Academic Press, New York, 1972 (cit.
on p. 41).

[130] A. Ruhe, “Rational Krylov sequence methods for eigenvalue computation”, Lin.
Alg. Appl., vol. 58, pp. 391–405, 1984 (cit. on pp. 17, 44).

[131] ——, “The rational Krylov algorithm for nonsymmetric eigenvalue problems.
III:Complex shifts for real matrices”, BIT Numer. Math., vol. 34, pp. 165–176,
1994 (cit. on pp. 18, 44).

[132] S. J. Ruuth, “Implicit-explicit methods for reaction-diffusion problems in pat-
tern formation”, J. Math. Biol., vol. 34, no. 2, pp. 148–176, 1995 (cit. on pp. 24,
27).

[133] Y. Saad, Iterative methods for sparse linear systems. SIAM, Philidelphia, 2003
(cit. on p. 16).

[134] J. Saak, M. Köhler, and P. Benner, M-m.e.s.s.-1.0.1 – the matrix equations
sparse solvers library, DOI:10.5281/zenodo.50575, see also:www.mpi-magdeburg.
mpg.de/projects/mess, Apr. 2016 (cit. on pp. 36, 42, 45, 56, 59).

[135] S. Sahyoun and S. M. Djouadi, “Nonlinear model reduction using space vectors
clustering POD with application to the Burgers’ equation”, in 2014 American
Control Conference, IEEE, 2014, pp. 1661–1666 (cit. on p. 88).

[136] A. K. Saibaba, “HOID: Higher order interpolatory decomposition for tensors
based on Tucker representation”, SIAM J. Matrix Anal. Appl., vol. 37, no. 3,
pp. 1223–1249, 2016 (cit. on pp. 88, 90).

[137] G. Sangalli and M. Tani, “Isogeometric preconditioners based on fast solvers for
the Sylvester equation”, SIAM J. Sci. Comput., vol. 38, no. 6, A3644–A3671,
2016 (cit. on p. 15).

[138] I. Sgura, B. Bozzini, and D. Lacitignola, “Numerical approximation of Tur-
ing patterns in electrodeposition by ADI methods”, J. Comput. Appl. Math.,
vol. 236, no. 16, pp. 4132–4147, 2012 (cit. on p. 29).

[139] J. A. Sherratt and M. A. Chaplain, “A new mathematical model for avascular
tumour growth”, J. Math. Biol., vol. 43, no. 4, pp. 291–312, 2001 (cit. on p. 87).

[140] V. Simoncini, “A new iterative method for solving large-scale lyapunov matrix
equations”, SIAM J. Sci. Comput., vol. 29, no. 3, pp. 1268–1288, 2007 (cit. on
pp. 49, 53).

[141] ——, “Analysis of the rational Krylov subspace projection method for large-
scale algebraic Riccati equations”, SIAM J. Matrix Anal. Appl., vol. 37, no. 4,
pp. 1655–1674, 2016 (cit. on pp. 6, 18, 32, 42, 44, 49, 50).

[142] ——, “Computational methods for linear matrix equations”, SIAM Rev., vol. 58,
no. 3, pp. 377–441, 2016 (cit. on pp. 4, 13, 14, 16).

[143] ——, “Numerical solution of a class of third order tensor linear equations”,
BUMI, vol. 13, no. 3, pp. 429–439, 2020 (cit. on pp. 91, 92, 108).

www.mpi-magdeburg.mpg.de/projects/mess
www.mpi-magdeburg.mpg.de/projects/mess

Bibliography 123

[144] V. Simoncini, D. B. Szyld, and M. Monsalve, “On two numerical methods for
the solution of large-scale algebraic Riccati equations”, IMA J. Numer. Anal.,
vol. 34, no. 3, pp. 904–920, 2014 (cit. on pp. 6, 44, 58).

[145] H. Song, L. Jiang, and Q. Li, “A reduced order method for Allen–Cahn equa-
tions”, J. Comput. Appl. Math., vol. 292, pp. 213–229, 2016 (cit. on p. 82).

[146] D. C. Sorensen and M. Embree, “A DEIM induced CUR factorization”, SIAM
J. Sci. Comput., vol. 38, no. 3, A1454–A1482, 2016 (cit. on p. 72).

[147] R. Ştefănescu and A. Sandu, “Efficient approximation of sparse Jacobians for
time-implicit reduced order models”, Int. J. Numer. Methods Fluids, vol. 83,
no. 2, pp. 175–204, 2017 (cit. on p. 69).

[148] R. Ştefănescu, A. Sandu, and I. M. Navon, “Comparison of POD reduced or-
der strategies for the nonlinear 2D shallow water equations”, Int. J. Numer.
Methods Fluids, vol. 76, no. 8, pp. 497–521, 2014 (cit. on p. 99).

[149] T. Stillfjord, “Low-rank second-order splitting of large-scale differential Riccati
equations”, IEEE Trans. Automat. Control, vol. 60, no. 10, pp. 2791–2796, 2015
(cit. on pp. 23, 24, 35, 38).

[150] ——, “Adaptive high-order splitting schemes for large-scale differential Riccati
equations”, Numer. Algor., vol. 78, no. 4, pp. 1129–1151, 2018 (cit. on pp. 35,
38, 45, 59, 61).

[151] ——, “Singular value decay of operator-valued differential Lyapunov and Ric-
cati equations”, SIAM J. Control Optim., vol. 56, no. 5, pp. 3598–3618, 2018
(cit. on p. 41).

[152] J. C. Strikwerda, Finite difference schemes and partial differential equations.
SIAM, Philidelphia, 2004 (cit. on p. 23).

[153] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain
Method. Artech House, Boston, 1995 (cit. on p. 25).

[154] J. Thompson, Z. Warsi, and C. Mastin, Numerical grid generation: foundations
and applications. Elsevier North-Holland, Inc., 1985 (cit. on p. 15).

[155] P. Tiso and D. J. Rixen, “Discrete empirical interpolation method for finite
element structural dynamics”, in Topics in Nonlinear Dynamics, Volume 1,
Springer, 2013, pp. 203–212 (cit. on p. 69).

[156] L. N. Trefethen, Spectral Methods in MatLab. SIAM, Philidelphia, 2000, isbn:
0898714656 (cit. on p. 33).

[157] A. Tveito, H. P. Langtangen, B. F. Nielsen, and X. Cai, Elements of Scientific
Computing, ser. Texts in Computational Science and Engineering. Springer-
Verlag, Berlin, 2010 (cit. on p. 87).

[158] V. K. Vanag, “Waves and patterns in reaction–diffusion systems. Belousov–
Zhabotinsky reaction in water-in-oil microemulsions”, Phys. Usp., vol. 47, no. 9,
p. 923, 2004 (cit. on p. 87).

[159] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, “A new truncation
strategy for the higher-order singular value decomposition”, SIAM J. Sci. Com-
put., vol. 34, no. 2, A1027–A1052, 2012 (cit. on p. 89).

124 Bibliography

[160] J. Varah, “Stability restrictions on second order, three level finite difference
schemes for parabolic equations”, SIAM J. Numer. Anal., vol. 17, no. 2, pp. 300–
309, 1980 (cit. on p. 26).

[161] Y. Wang, I. M. Navon, X. Wang, and Y. Cheng, “2D Burgers equation with
large Reynolds number using POD/DEIM and calibration”, Int. J. Numer.
Methods Fluids, vol. 82, no. 12, pp. 909–931, 2016 (cit. on pp. 88, 98–100, 102,
103).

[162] J. K. White, “A trajectory piecewise-linear approach to model order reduc-
tion of nonlinear dynamical systems”, PhD thesis, Massachusetts Institute of
Technology, 2003 (cit. on p. 6).

[163] D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A posteriori error estimation for
DEIM reduced nonlinear dynamical systems”, SIAM J. Sci. Comput., vol. 36,
no. 2, A311–A338, 2014 (cit. on pp. 69, 74).

	Introduction
	Motivation and goal
	Thesis outline and scope

	Preliminaries
	Notation and preliminary definitions
	Matrix and tensor-based discretization of semilinear PDEs
	Tools for model order reduction
	Krylov subspaces and Arnoldi relations
	The Proper Orthogonal Decomposition (POD)
	The Discrete Empirical Interpolation Method (DEIM)

	Matrix Methods for Semilinear ODEs
	Semi-Implicit (SI) methods for semilinear ODEs
	Matrix methods, convergence and stability
	Implementation details
	Numerical comparison the schemes

	Matrix methods for the DRE
	Fully implicit methods
	Splitting methods

	Concluding remarks

	The Differential Riccati Equation
	Order reduction with Krylov-based subspaces
	Stopping criterion and the complete algorithm
	Stability analysis and error bounds
	Numerical experiments
	Concluding remarks

	Semilinear ODEs with General Nonlinear Term
	Review of POD-DEIM
	A matrix-oriented POD-DEIM algorithm
	A new two-sided POD
	Connections to other matrix-based interpolation POD strategies
	A dynamic implementation
	Approximation of the nonlinear function
	Efficient treatment of the reduced semilinear ODE
	Numerical experiments

	Concluding remarks

	The Multidimensional Setting
	POD-DEIM in the Multidimensional Setting
	Order reduction of coupled systems of array-valued ODEs
	Numerical experiments
	Concluding Remarks

	Conclusion and Future Work
	Bibliography

