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Abstract

In this thesis1, we deal with problems, related to nonlocal operators. In

particular, we introduce a suitable notion of integral operators acting

on functions with minimal requirements at infinity. We also present

results of stability under the appropriate notion of convergence and

compatibility results between polynomials of different orders. The theory

is developed not only in the pointwise sense, but also in viscosity setting.

Moreover, we discover the main properties of extremal type operators,

with some applications. Then using the notion of viscosity solutions

and Ishii-Lions technique, we give a different proof of the regularity of

the solutions to equations involving fully nonlinear nonlocal operators.

In the last part of the thesis we deal with domain variation solutions

and with notions of a viscosity solution to two phase free boundary

problem. We are looking at minima of energy functionals, the latter

involving p(x)-Laplace operator or a non-negative matrix. Apart from

the Riemannian case, we also consider the related Bernoulli functional in

noncommutative framework. Finally, we formulate the suitable definition

of a viscosity solution in Carnot groups.

1My PhD was funded by the project INdAM-DP-COFUND-2015, Grant number 713485
of the “Istituto Nazionale di Alta Matematica” cofunded by Marie Sk lodowska-Curie
Actions.
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Introduction

Overview of the thesis

This thesis is mainly focused on the nonlocal integro-differential operators and

some equations related to such operators. A classical line of investigation

in mathematical analysis and mathematical physics consists in the study of

integro-differential operators. The motivations for this stream of research

come both from theoretical mathematics (such as harmonic analysis, singular

integral theory, fractional calculus, etc.) and concrete problems in applied

sciences (with questions related to water waves, crystal dislocations and the

classical model, option pricing in finance, optimization, minimal surfaces, etc.):

see e.g. the introduction in [20] and the references therein for a number of

explicit motivations and examples.

A special focus of this stream of research deals with integro-differential

operators of the form

Au(x) = P.V.

∫
Rn

(u(x)−u(y))K(x, y) dy = lim
ε↘0

∫
Rn\Bε(x)

(u(x)−u(y))K(x, y) dy.

(0.0.1)

The notation “P.V.” above (which will be omitted in the rest of this paper

for the sake of simplicity) means “in the principal value sense” and takes

into account possible integral cancellations. The action of such operator is to

“weight” the oscillations of the function u according to the kernel K. To make

sense of the expression above, two types of assumptions need to be accounted

for:

X if the kernel K is singular when x = y, the function u needs to be

regular enough near the point x (to allow integral cancellations and take

advantage of the principal value in (0.0.1)),

X the function u needs to be sufficiently well-behaved at infinity (namely,

7
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its growth has to be balanced by the kernel K to obtain in (0.0.1) a

convergent integral at infinity).

Roughly speaking, these two conditions correspond to the request that the

integral in (0.0.1) converges both in the vicinity of the given point x and

at infinity. With respect to this, the regularity condition is necessary for

the local convergence of the integral and it is common to differential (rather

than integral) operators: in a sense, for differential problems the regularity

of u ensures that incremental quotients converge to derivatives and, somewhat

similarly, for integral problems the regularity of u allows the increment inside

the integral to compensate the possible singularity of the kernel. Instead, the

second assumption on the behavior of u at infinity is needed only to guarantee

the tail convergence, it is a merely nonlocal feature and has no counterpart for

the case of differential operators.

Conditions “at infinity” are also technically more difficult to deal with.

First of all, they are more expensive to be computed, since they need to account

for virtually all the values of the given function (while regularity ones deal with

the values in an arbitrarily small region). Furthermore, these conditions are

typically lost after one analyzes the problem at a small scale (since blow-

up procedures alter the behavior of the solutions at infinity, with the aim

of detecting the local patterns). Moreover, it is sometimes difficult to detect

optimal assumptions for nonlocal problems even in very basic and fundamental

questions (see e.g. the open problem after Theorem 3.2 in [45]), hence any

theory based only on “essential” assumptions is doomed to have promising

future developments.

It would be therefore very desirable to develop a theory of integral operators

that does not heavily rely on the conditions at infinity (in spite of the striking

fact that these conditions are needed even in the basic definition of the operator

itself!). To this end, a theory of “fractional Laplacian operators up to polyno-

mials” has been developed in [32, 33], i.e. when K(x, y) = |x − y|−n−2s for

s ∈ (0, 1), to address the case of functions with polynomial growth (see also [53]

for related approaches). By BR we will denote the open ball of radius R

centered at zero and now we will explain the gist of this method. We consider
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the family of cut-offs

χR(x) :=

1, if x ∈ BR;

0, otherwise
(0.0.2)

and apply the operator to the function χRu. Of course, in general, it is

not possible to send R → +∞, since the operator is not well-defined on u,

nevertheless it is still possible to perform such an operation once an appropriate

polynomial is “taken out” from the equation. Given the “rigidity” of the space

of polynomials (which is finite dimensional and easily computable) the method

is flexible and solid, it produces interesting results and can be efficiently

combined with blow-up procedures, see [13,1].

Furthermore, we discuss the nonlocal fully nonlinear equations of the form

Fu(x) = f(x), (0.0.3)

while the right hand side in the expression above is assumed to be bounded.

Equations of this type are widely spread in literature, consider for instance [18],

where the authors adapted techniques, introduced in [15]. Since the operator

F is nonlocal, it possesses the nonlocal features, i.e. long-range interactions.

Moreover, this operator is characterized as a fully nonlinear one, by this we

intend that F is nonlinear with respect to the highest order derivatives. Usually

these derivatives are not given explicitly but represented by a differential

quotient of second order.

It is not known a priori if it is possible to compute the operator in the

classical sense since the considered function u can be not smooth enough. In

order to be able to handle these problems, some useful instruments like weak

solutions were established. In particular, viscosity theory, built by M.C. Cran-

dall and P.-L. Lions ([25], [24]), as we know it now. The idea of the notion

of viscosity solution is to ”pass” derivatives to smooth test functions. This

approach turned out to be extremely helpful, since the only condition for a

potential candidate function, i.e. viscosity solution, is only to be continuous.

Of course, one cannot have all the goods, and there is price to pay: any

smooth function touching the solution from above or below must satisfy the

corresponding differential inequality.

A special place in science occupy free boundary problems. This kind of

problems describe in general a qualitative change of the medium, thus they
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represent a phase transition. The most typical example is a melting block

of ice. A boundary formed from the interface of ice and water is called the

free boundary and usually is unknown in advance so it must be found as part

of the solution. Besides physics, free bouundary problems arise naturally in

biology (switching a state of a cell from active to inactive), finance (procedures

of buying and selling assets) and many others.

On the long term, we are interested in finding a suitable way to formulate

one or two phase free boundary problem in case when nonlocal operators are

involved. Unfortunately, we will not able to achieve the desirable result in

this work but here we make first steps towards the main goal. In other words,

we study the local variational case, taking inspiration from [3], looking at

eventually degenerate operators.

We examine the celebrated paper [3], where the authors look for solutions to

some problems dealing with nonlinear functionals, in the sense of the variation

domain. More precisely, they find the Euler-Lagrange equations that govern

the underlying problem associa-ted with the considered Bernoulli functional:

the so called homogeneous elliptic two phase free boundary problem. The

minima to such functional are endowed with few regularity properties like

global Lipschitz continuity coming from an application of the monotonicity

formula proved in [3].

We point out that very recently a new contribution following the mainstream

of [3] appeared in [26]. In addition, we remark that a different approach about

the inner regularity, that does not use any monotonicity formulas, has been

discussed in [51] about the p−Laplace case.

In our opinion the approach described in [3] is highly not trivial and at

the same time reveals some interesting details that are particularly useful for

further generalizations.

In fact, as a consequence of the ideas contained in the previous seminal

papers, there have been many other achievements about the viscosity solutions

of two phase free boundary problems. From this point of view, talking about

the regularity of the free boundary, we recall [37,21,41,5], respectively dedica-

ted to homogeneous fully nonlinear operators, homogeneous linear operators

with variable coefficients, homogeneous linear operators with bounded first

order terms and homogeneous fully nonlinear operators with flat boundaries.

Successively, after the fundamental contribution introduced in [27], many

other inhomogeneous cases about two phase problems have been faced in [28,
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29,30]. The technique used in [27] turned out to be particularly flexible and has

been extended to other one phase inhomogeneous cases that are not covered

by previously cited papers yet, see the recent progress contained in [56, 55] in

the variational one phase case.

Other important achievements concerning the viscosity approach to non-

linear degenerate operators, still adapting the ideas introduced in [27], can be

found, for example, in [56].

In Chapter 1, we recall some basic facts and results about different types

of nonlocal operators. Specifically, we will discuss the Marchaud derivative

and the Riesz fractional derivative in Section 1.1. Then we concentrate on the

fractional Laplace operator and its properties in 1.2, comparing similarities and

differences with other fractional derivatives. Later, in Section 1.3, we will talk

about the viscosity approach of solving differential equations and necessary

tools for dealing with solutions which are not regular enough. Finally, prelimi-

nary notions of noncommutative framework are presented in Section 1.4.

In Chapter 2, we discuss the described “up to a polynomial” setting.

Precisely, in the forthcoming Section 2.1 we face the core of this work introdu-

cing the main definitions for integral operators “up to a polynomial” and

present their fundamental properties. The corresponding Dirichlet problem

will be discussed in Section 2.2. While Sections 2.1 and 2.2 focus on the

pointwise definition of this generalized notion of operators, Section 2.3 is

devoted to the corresponding viscosity theory. Finally, in Section 2.4, we

put in evidence the future possible developments of the introduced theory in

a noncom-mutative framework that will be the goal of a forthcoming project.

In Chapter 3, we prove interior regularity of solutions to fully nonlinear

nonlocal equations. First, we recall the extremal type operators in Section 3.1.

Secondly, in Section 3.2 we examine the suitable notion of uniform ellipticity

and then demonstrate the Lipschitzianity of solutions and their higher regula-

rity, see Theorem 3.2.5 and Theorem 3.2.6, respectively.

In Chapter 4, we try to find the correct formulation of viscosity solution

to a two phase free boundary problem in noncommutative groups, that we

also mainly presented in [36]. We put in evidence that local operators may

be understood as a particular case of nonlocal operators, as shown in [31] and

(1.2.8). In Section 4.1 we recall the definition of a viscosity solution to two

phase free boundary problem. Then, we look at the simplest one dimensional

Euclidean case in Section 4.2 and discover the modulus of continuity of solutions
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in the Heisenberg group in Section 4.3. Later, the technique is applied to a

functional containing a nonnegative matrix in Section 4.4, while Section 4.5

and Section 4.6 are dedicated to the study of the problem in Carnot groups

and a nonlinear Euclidean case, respectively. We conclude the chapter with

some outcomes and a summary in Section 4.7.
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Notations

• Rn is the space of reference, n ∈ N is the dimention of the space.

• α is the multi-index (α1, . . . , αn), αi ∈ N for i = 1, . . . , n. We usually

denote multi-indices by Greek letters unless otherwise specified.

• BR(x0) is the n-dimentional open ball centered at x0 of radius R > 0,

i.e.

BR(x0) = {x ∈ Rn s.t. |x− x0| < R}.

BR is the ball BR(x0) centered at x0 = 0.

• N0 the set of natural numbers with zero, that is N ∪ 0.

• Ωc is the complementary set Rn \ Ω for a given Ω ⊆ Rn.

• (fg)(x) is the short way to write f(x)g(x).

• ωn−1 denotes the (n − 1)-dimentional measure of the unit sphere Sn−1,

namely

ωn−1 =
2πn/2

Γ(n
2
)
. (0.0.4)

• S(Rn) is the Schwartz space of smooth functions rapidly decaying at

infinity with all their derivatives, precisely

S(Rn) :=

{
f ∈ C∞(Rn) | ∀α, β ∈ N0 sup

x∈Rn
|xα∂βf(x)| < +∞

}
.

• We use standard notations for the Fourier and inverse Fourier trasform.

To be clear, we denote by ξ ∈ Rn the frequency variable and define the

Fourier transform of a function f ∈ L1(Rn) as

Ff(ξ) = f̂(ξ) :=

∫
Rn

f(x)e−ix·ξdx.

Similarly, inverse Fourier transform is given by

F−1f(x) = f̌(x) :=
1

(2π)n

∫
Rn

f(ξ)eix·ξdξ.
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• Given two colomn vectors h, q ∈ Rn, we denote by h⊗q = hqT their outer

product, defined as a matrix. In index notation (h⊗ q)ij = (a)ij = hiqj.

• Γ(z) stands for the Gamma function

Γ(z) :=

∞∫
0

tz−1e−tdt, for any z ∈ (0,+∞).

• B(x, y) denotes the Beta function

B(x, y) :=

1∫
0

tx−1(1− t)y−1dt

or an alternative integral representation

B(x, y) =

∞∫
0

tx−1

(1 + t)x+y
dt (0.0.5)

for any positive x and y. Moreover, there exists a representation formula

via Gamma function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, (0.0.6)

which can be sometimes extremely useful.

• By F (a, b, c, z) we mean the Gauss hypergeometric function, given by

the series

F (a, b, c, z) := 1 +
∞∑
k=1

a · · · (a+ k − 1)b · · · (b+ k − 1)

c · · · (c+ k − 1)

zk

k!
,

which is convergent for |z| ≤ 1.

• A function u : Ω → (−∞,∞] is called lower semicontinuous and we

denote it by u ∈ LSC(Ω) if

lim inf
y→x

u(y) := lim
r→0

inf
y∈Br(x)\{x}

u(y) ≥ u(x).

Analogously, we call a function u : Ω→ [−∞,∞) upper semicontinuous
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and we denote it by u ∈ USC(Ω) if

lim sup
y→x

u(y) := lim
r→0

sup
y∈Br(x)\{x}

u(y) ≤ u(x).
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Chapter 1

Preliminaries

1.1 Fractional derivatives

The appeared notion of differentiation immediately gave birth to a thought

that there might be a way to define differentiation dsf(x)
dxs

of noninteger orders

s. In the end of seventeenth century famous mathematicians like G. W. Leibniz

and J. Bernoulli asked themselves whether it is possible to take a derivative

of a function of order 1/2. In the sequel, L. Euler, P.-S. marquis de Laplace

and then J.-B. J. Fourier proposed diverse ideas for fractional differentiation,

among which various integral representations, like

dsf(x)

dxs
=

1

2π

∞∫
−∞

λsdλ

∞∫
−∞

f(t) cos
(
λx− tλ+ s

π

2

)
dt.

A true pioneer N. H. Abel introduced, as it is clear to us now, the operation

of fractional differentiation

x∫
a

ϕ(t)dt

(x− t)s
= f(x) for s ∈ (0, 1) and x > a,

thus beginning a new epoch of integro-differentiation. It was followed by a

number of papers by J. Liouville, where he suggested a fractional integration

formula for all functions f(x) =
∑∞

i=1 aie
bix, representable by a series. Later,

he suggested a definition of the fractional derivative to be a limit of a difference

quotient. In the middle of nineteenth century G. F. B. Riemann published a

work containing one of the main formulas of fractional integration since that

17
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time, given by
1

Γ(s)

∫ x

0

ϕ(t)

(x− t)1−sdt

for any positive x. Later, Hj. Holmgren and A. K. Grünwald with A. V. Letnikov

independently investigated and developed the introduced by Riemann definition

of fractional integration, being

Dsf(x) = lim
y→0

(∆s
yf)(x)

ys
:= lim

y→0

∞∑
j=0

−sΓ(j − s)
Γ(1− s)Γ(j + 1)

f(x− jy)
1

ys
.

A further development was made by N. Y. Sonin, who found an extension

for the Cauchy formula for fractional powers in the second part of nineteenth

century. At the end of twentieth century J. S. Hadamard brought new fresh

ideas to fractional calculus, defining the differentiation in complex plane in

terms of an analytic function’s Taylor series. The exact definition is the

following expression

Dsf(z) =
∞∑
j=0

cj
Γ(j + 1)

Γ(j + 1− s)
(z − z0)j−s,

where cj := 1
j!
f (j)(z0). Soon after this, the new century began with a contribu-

tion of H. K. H. Weyl, which consisted in dealing with fractional integration for

periodic functions, accomplished by a convolution with a special function. An

important role in fractonal calculus history played a paper by A. Marchaud,

where the author considered for the first time a new form of fractional differen-

tiation.

Here we finish exploring briefly the historical part and address an interested

reader to [60] for a meaningful historic outline about the fractional calculus.

We continue by recalling a basic fractional derivative called Marchaud

fractional derivative (refer to [66]). Precisely, take s ∈ (0, 1) and consider

functions f ∈ L∞(R) ∩ C0,α(R), where s < α ≤ 1. Thus left and right

Machaud fractional derivative of order s are defined by

Ds
±f(x) =

s

Γ(1− s)

∞∫
0

f(x)− f(x∓ y)

y1+s
dy. (1.1.1)

If f ∈ L∞(R) ∩ C0,α(R), then Marchaud fractional derivatives are well

defined. Indeed, denoting k(s) := s
Γ(1−s) , we have that, for the left Marchaud
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fractional derivative,∣∣∣∣∣∣k(s)

∞∫
0

f(x)− f(x− y)

y1+s
dy

∣∣∣∣∣∣
≤ ‖f‖L∞(R)k(s)

∞∫
0

1

y1+s
dy + ‖f‖C0,αk(s)

1∫
0

1

y1+s−α < +∞.

It is possible to extend the notion of Marchaud fractional derivatives for

any s ∈ R+. Indeed, one recalls the following expression for left and right

Marchaud fractional derivatives of order s:

Ds
±f(x) :=

{s}
Γ(1− {s})

∞∫
0

f [s](x)− f [s](x∓y)

y1+{s} dy, (1.1.2)

where [s] and {s} denote the integer and fractional parts of s, respectively.

As a possible generalization of the Marchaud fractional derivative, one

could consider the hypersingular integrals (see [52], chapter 2). For this, we

first introduce a centered finite difference of a function f(x) of order l with a

step y ∈ Rn centered at the point x ∈ Rn, defined as

∆l
yf(x) =

l∑
j=0

(−1)j
(
l

j

)
f

(
x+

(
l

2
− j
)
y

)
. (1.1.3)

One could define the non-centered difference in a similar way, namely,

∆l
yf(x) =

l∑
j=0

(−1)j
(
l

j

)
f(x− jy).

In this work we deal only with centered differences to avoid complications in

writing although it is possible also to consider non-centered differences as well.

The introduced notion of a finite difference is helpful when one defines

Dsf(x) :=
1

dn(l, s)

∫
Rn

∆l
yf(x)

|y|n+2s
dy, s ∈

(
0,
l

2

)
, (1.1.4)

which can be seen as a generalization to multiple dimensions of the Marchaud
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fractional derivative. The constant dn(l, s) is given by

dn(l, s) :=

∫
Rn

(ei
ζ1
2 − e−i

ζ1
2 )l

|ζ|n+2s
dζ. (1.1.5)

When the difference is centered, we assume its order l to be always an even

number. This fact and why the hypersingular integrals are also called Riesz

fractional derivatives of order 2s can be explained by the following lemma.

Lemma 1.1.1. It holds that

Dsf(x) = F−1(|ξ|2sf̂(ξ)). (1.1.6)

Proof. Taking the Riesz derivative (1.1.4) and applying the Fourier transform,

we get

F(Dsf(x)) =
1

dn(l, s)

l∑
j=0

(−1)j
(
l

j

)∫
Rn

F(f(x+ ( l
2
− j)y))

|y|n+2s
dy

=
1

dn(l, s)

l∑
j=0

(−1)j
(
l

j

)
f̂(ξ)

∫
Rn

eiξ·(j−
l
2

)y

|y|n+2s
dy.

(1.1.7)

Notice that

(e−iξ·
y
2 − eiξ·

y
2 )l =

l∑
j=0

(−1)j
(
l

j

)
eiξ·(j−

l
2

)y,

and from (1.1.7) it yields

F(Dsf(x)) =
1

dn(l, s)
f̂(ξ)

∫
Rn

(e−iξ·
y
2 − eiξ· y2 )l

|y|n+2s
dy.

Now, we change the variable z = |ξ|y and get

F(Dsf(x)) =
1

dn(l, s)
|ξ|2sf̂(ξ)

∫
Rn

(e−i
ξ
|ξ| ·

z
2 − ei

ξ
|ξ| ·

z
2 )l

|z|n+2s
dz.

Since the integral in the right hand side is rotationally invariant with respect

to ξ, we are allowed to consider a rotation Je1 := ξ/|ξ|, which sends e1 =

(1, 0, . . . , 0) into ξ/|ξ|. Then, denoting by JT the transpose of rotation and
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ζ := JT z, we find

F(Dsf(x)) =
1

dn(l, s)
|ξ|2sf̂(ξ)

∫
Rn

(e−iJe1·
z
2 − eiJe1· z2 )l

|z|n+2s
dz

=
1

dn(l, s)
|ξ|2sf̂(ξ)

∫
Rn

(e−ie1·
ζ
2 − eie1· ζ2 )l

|z|n+2s
dz

=
1

dn(l, s)
|ξ|2sf̂(ξ)

∫
Rn

(e−i
ζ1
2 − ei

ζ1
2 )l

|ζ|n+2s
dζ

(1.1.8)

Now we set

dn(l, s) :=

∫
Rn

(e−i
ζ1
2 − ei

ζ1
2 )l

|ζ|n+2s
dζ (1.1.9)

and check that dn(l, s) never turns out to be zero. Using the Euler’s formula

eiθ = cos θ + i sin θ, we rewrite the integral in (1.1.9) in the following form:

dn(l, s) =

∫
Rn

(
−2i sin

ζ1

2

)l
dζ

|ζ|n+2s

= (−1)l2l−2sil
∫
Rn

sinl ζ̃
dζ̃

|ζ̃|n+2s
.

(1.1.10)

Equality (1.1.10) shows that the integral vanishes when l is an odd number.

Thus, taking finite differences of only even order, we see the validity of (1.1.6).

The explicit expression for dn(l, s) is known and we provide it here for the

reader’s convenience.

Lemma 1.1.2. The constant dn(l, s) in (1.1.4) is explicitly given by

dn(l, s) =
π1+n/2 kl(2s)

22sΓ(1 + s)Γ(n
2

+ s) sin(sπ)
, (1.1.11)

and kl(s) is

kl(s) := 2

l/2∑
j=0

(−1)j−1

(
l

j

)(
l

2
− j
)s
. (1.1.12)
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Proof. We start by splitting dn(l, s) in lower dimensional integrals, i.e.

dn(l, s) =

∫
R

(ei
ζ1
2 − e−i

ζ1
2 )ldζ1

∫
Rn−1

dζ̃

(ζ2
1 + |ζ̃|2)

n+2s
2

=

∫
R

(ei
ζ1
2 − e−i

ζ1
2 )l|ζ1|−1−2sdζ1

∫
Rn−1

dω

(1 + |ω|2)
n+2s

2

,

(1.1.13)

where we used the change of variable ω = ζ̃/ζ1 in the last equality. The

(n− 1)-dimensional integral can be found by passing to polar coordinates,

∫
Rn−1

dω

(1 + |ω|2)
n+2s

2

= ωn−2

∞∫
0

r̃n−2

(1 + r̃2)
n+2s

2

dr̃

=
ωn−2

2

∞∫
0

r̃
n−3

2

(1 + r)
n+2s

2

dr

=
ωn−2

2
B

(
n− 1

2
,
1 + 2s

2

)
,

(1.1.14)

where in the last identity we used the definition of beta function in the integral

form (0.0.5). Thus, recalling the explicit value of the measure of the sphere

(0.0.4), we combine (1.1.13) with (1.1.14) to get

dn(l, s) =
π
n−1

2 Γ(1+2s
2

)

Γ(n+2s
2

)

∫
R

(ei
ζ1
2 − e−i

ζ1
2 )l

|ζ1|1+2s
dζ1

=
2π

n−1
2 Γ(1+2s

2
)

Γ(n+2s
2

)

∞∫
0

(ei
ζ1
2 − e−i

ζ1
2 )l

ζ1+2s
1

dζ1

=
2l+1ilπ

n−1
2 Γ(1+2s

2
)

Γ(n+2s
2

)

∞∫
0

sinl ζ1
2

ζ1+2s
1

dζ1

=
2l+1−2silπ

n−1
2 Γ(1+2s

2
)

Γ(n+2s
2

)

∞∫
0

sinl ζ

ζ1+2s
dζ.

(1.1.15)

It remains to simplify the integral, involving sine. To do this, we exploit the

binomial theorem and obtain that

sinl ζ =
1

(2i)l

l∑
k=0

(
l

k

)
ei(l−2k)ζ =

1

(2i)l

l∑
k=0

(
l

k

)
(cos (l − 2k)ζ + i sin (l − 2k)ζ).



1.1. FRACTIONAL DERIVATIVES 23

Thanks to the identity for binomial coefficients

l∑
j=0

(−1)j
(
l

j

)
= 0

and their symmetry, we get

sinl ζ =
1

(2i)l

l∑
k=0

(−1)k
(
l

k

)
cos 2

(
l

2
− k
)
ζ

=
1

(2i)l

l/2∑
j=−l/2

(−1)l/2−j
(

l

l/2− j

)
cos 2jζ

= 2−l
(
l

l/2

)
− 21−l

l/2∑
j=1

(−1)j−1

(
l

l/2− j

)
cos 2jζ

= 21−l
l/2∑
j=1

(−1)j−1

(
l

l/2− j

)
(1− cos 2jζ).

(1.1.16)

Therefore, we can integrate by parts the integral in (1.1.15) and get

∞∫
0

sinl ζ

ζ1+2s
dζ = 21−l

l/2∑
j=0

(−1)j−1

(
l

l/2− j

)
j

s

∞∫
0

sin 2jζ

ζ2s
dζ. (1.1.17)

Now we claim that

∞∫
0

sin jζ

ζ2s
dζ =

πj2s−1

2 sin(πs)Γ(2s)
. (1.1.18)

Indeed, the definition of gamma function yields

∞∫
0

sin jζ

ζ2s
dζ =

1

2i
(−ij)2s−1Γ(1− 2s)− 1

2i
(ij)2s−1Γ(1− 2s)

= − π

sin(2πs)Γ(2s)

j2s−1(i2s−1 − (−i)2s−1)

2i

= − π

sin(2πs)Γ(2s)
j2s−1 sin

π

2
(2s− 1)

=
πj2s−1

2 sin(πs)Γ(2s)
,

(1.1.19)
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which proves (1.1.18), as stated. Thus, (1.1.18) together with (1.1.17) give

∞∫
0

sinl ζ

ζ1+2s
=

22s−lπ

sin(πs)Γ(1 + 2s)

l/2∑
j=0

(−1)j−1

(
l

l/2− j

)
j2s. (1.1.20)

Furthermore, we observe that

l/2∑
j=1

(−1)j−1

(
l

l/2− j

)
j2s =

1

2
(−1)l/2kl(2s),

which produces
∞∫

0

sinl ζ

ζ1+2s
=

(−1)l/222s−l−1π

sin(πs)Γ(1 + 2s)
kl(2s). (1.1.21)

Hence (1.1.11) immediately follows by inserting (1.1.21) into (1.1.15).

1.2 Fractional Laplace operator

In this section we recall the basic notations and useful results related to the

fractional Laplace operator and fractional Sobolev spaces. An interested reader

can find more details on the topic in [12] or in [31]. The fractional Laplace

operator of a function u : Rn → R can be defined in several ways (see [54]), here

we give the one in principal value sense, that is, for any parameter s ∈ (0, 1)

we consider

(−∆)su(x) : = c(n, s)P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

= c(n, s) lim
ε→0

∫
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy,

(1.2.1)

where c(n, s) is a positive dimentional constant, given by

c(n, s) :=
22sΓ(n

2
+ s)

πn/2|Γ(−s)|
. (1.2.2)

Observe that there is a singularity in the integral above when y approaches x,

and in this case one cannot expect to have integrability. To be the operator
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(1.2.1) well posed, we take u in Schwartz space S(Rn), so that∫
Rn

|u(x)− u(y)|
|x− y|n+2s

dy =

∫
B1(x)

|u(x)− u(y)|
|x− y|n+2s

dy +

∫
Bc1(x)

|u(x)− u(y)|
|x− y|n+2s

dy

≤ C

∫
B1(x)

|x− y|2

|x− y|n+2s
dy + 2‖u‖L∞(Rn)

∫
Bc1(x)

1

|x− y|n+2s
dy

= C

1∫
0

1

ρ2s
dρ+ 2‖u‖L∞(Rn)

∞∫
1

1

ρ1+2s
dρ < +∞.

(1.2.3)

It is worth to mention that definition (1.2.1) is well posed for less regular

functions, namely u ∈ L1
s(Rn) where the space

L1
s(Rn) :=

u ∈ L1
loc(Rn) s.t.

∫
Rn

|u(t)|
1 + |t|n+2s

dt < +∞

 (1.2.4)

is endowed naturally with the norm

‖u‖L1
s(Rn) :=

∫
Rn

|u(t)|
1 + |t|n+2s

dt.

Locally u should be C2s+ε for some small ε > 0 when s ∈ (0, 1/2) and C1,2s+ε−1

if s ∈ [1/2, 1). Another expression for the fractional Laplace operator can

be obtained from the given earlier definition (1.2.1). Precisely, one does the

changes of variables z̃ = x− z and t̃ = t− x to get

(−∆)su(x) = c(n, s) lim
ε→0

∫
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy

=
c(n, s)

2
lim
ε→0

 ∫
Rn\Bε(x)

u(x)− u(z)

|x− z|n+2s
dz +

∫
Rn\Bε(x)

u(x)− u(t)

|x− t|n+2s
dt


=
c(n, s)

2
lim
ε→0

 ∫
Rn\Bε

u(x)− u(x− z̃)

|z̃|n+2s
dz̃ +

∫
Rn\Bε

u(x)− u(x+ t̃)

|t̃|n+2s
dt̃


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=
c(n, s)

2
lim
ε→0

∫
Rn\Bε

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy

=
c(n, s)

2

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy.

(1.2.5)

Formula (1.2.5) shows that fractional Laplacian is a special case of Riesz

derivative (1.1.4) when the finite difference is of the second order, namely

l = 2. Indeed, using the properties of gamma function we check the value of

the constants:

1

dn(2, s)
= −

22s+1Γ(1 + s)Γ(n
2

+ s) sin(sπ)

π1+n/2

= −
22s+1Γ(1 + s)Γ(n

2
+ s)

πn/2Γ(s)Γ(1− s)
=

22s+1Γ(n
2

+ s)

πn/2Γ(−s)
= −c(n, s)

2
,

as stated.

Using the standard notions of Fourier and inverse Fourier transform, we

recall a basic fact about the classical Laplace operator. Indeed, operating with

only definitions, we see that, for some u ∈ S(R),

−∆u(x) = −∆(F−1(û))(x) = −∆

 1

(2π)n

∫
Rn

û(ξ)eix·ξdξ


=

1

(2π)n

∫
Rn

|ξ|2û(ξ)eix·ξdξ = F−1(|ξ|2û(ξ)),

(1.2.6)

which shows that the classical Laplacian acts as a multiplier of |ξ|2 in a

Fourier space. Another way to see the nature of the fractional Laplacian is to

characterize it via the Fourier transform.

Lemma 1.2.1. For any u ∈ S(Rn) it holds that

(−∆)su(x) = F−1(|ξ|2sû(ξ)). (1.2.7)

In other words, the identity (1.2.7) tells that the fractional Laplace operator

can be seen as a pseudo-differential operator with symbol |ξ|2s. Thus (1.2.6)

with (1.2.7) explain the connection between the classical and the fractional
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Laplacians. Presicely, for any u ∈ S(Rn), it holds

lim
s→1

(−∆)su = −∆u

and lim
s→0

(−∆)su = u,
(1.2.8)

giving that the classical Laplace operator is the limit case of the fractional one

as s→ 1.

In the celebrated paper [17] the authors give description of the fractional

Laplace operator viewed as a solution to a harmonic extension problem to the

upper half space which maps the boundary condition of the Dirichlet type to

the Neumann condition. Roughly speaking, the fractional Laplacian, being a

nonlocal operator, can be seen as a local operator in the higher-dimensional

half-space. In other terms, we call U : Rn × (0,+∞) → R the extension

function that solvesdiv(y1−2s∇U(x, y)) = 0, (x, y) ∈ Rn × (0,+∞),

U(x, 0) = u(x).

Then it turns out that the solution also satisfies

−c(s) lim
y→0+

y1−2s∂yU = (−∆)su,

where the constant c(s) depends only on s and explicitly given by (refer to

[69])

c(s) = 22s−1 Γ(s)

Γ(1− s)
.

1.3 Viscosity solutions

This section is dedicated to the known results and definitions in viscosity

theory, which will be much used throughout the current work. We introduce

a family of linear nonlocal operators as

Lu(x) =

∫
Rn

(2u(x)− u(x+ t)− u(x− t))K(t)dt =

∫
Rn

∆2
tu(x)K(t)dt, (1.3.1)

where the integral can be possibly evaluated in the principle value sense. Notice

that assuming the symmetry condition on the kernel repeating the calculations,
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similar to (1.2.5), one recognizes that the considered family of operators (1.3.1)

is a special case of the family (0.0.1).

Definition 1.3.1. A function u, continuous in Ω, is said to be a subsolution

(supersolution) to Lu = f , and we write Lu ≤ f (Lu ≥ f), if every time all

the following happen

• x is any point of Ω;

• U is a neighborhood of x in Ω;

• ϕ is some C2 function in U ;

• ϕ(x) = u(x);

• ϕ(y) ≥ u(y) (ϕ(y) ≤ u(y)) in U ;

then if we let

v :=

ϕ, in U

u, in Rn \ U
(1.3.2)

we have Lv(x) ≤ f(x) (resp. Lv(x) ≥ f(x)). A solution is a function u which

is both a subsolution and a supersolution.

Definition of a viscosity solution is continuously connected with the notion

of a function touching from above or below, that we give immediately.

Definition 1.3.2. We say that a function ϕ touches function u from above

(below) at a point x ∈ Ω, if

ϕ(x) = u(x)

and ϕ(y) ≥ u(y) (ϕ(y) ≤ u(y)) in case y 6= x.

Smooth touching from above or below functions are often called test functions.

It is also worth noting that whenever u−ϕ attains a local maximum at a point

x0 ∈ Ω, it holds (u− ϕ)(x0) = 0.

Remark 1.3.3. Let us give an example of the object of our interest in the

simplest possible case in one dimension. Set Ω = (−1, 1) and

Fu(x) = −u′′.
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Then the function u(x) = ax+ b is a solution, being

Fu(x) = −(ax+ b)′′ = 0.

While w(x) = ax2 + bx+ c, with a ≥ 0, is a subsolution, since

Fw(x) = −(ax2 + bx+ c)′′ = −2a ≤ 0,

we have that v(x) = −ax2 + bx+ c is a supersolution, since

Fv(x) = −(−ax2 + bx+ c)′′ = 2a ≥ 0.

It may happen that only the terms up to the second order play the role in

the definition of viscosity solutions. For this reason, tools like semi jets have

been developed in the literature.

Definition 1.3.4. Let (p,X) ∈ Rn × Sn and x̂ ∈ Ω. We say that (p,X) ∈
J2,+u(x̂) if it holds that

u(x) ≤ u(x̂) + p · 〈x− x̂〉1
2
〈X(x− x̂), x− x̂〉+ o(|x− x̂|2).

Similarly, (p,X) ∈ J2,−u(x̂) if

u(x) ≥ u(x̂) + p · 〈x− x̂〉1
2
〈X(x− x̂), x− x̂〉+ o(|x− x̂|2)

holds true.

Sometimes it is convenient also to consider a kind of a ”closure” of a semi

jet. This leads us to another

Definition 1.3.5. We say that

(p,X) ∈ J+,2
u(x̂)

if there exist a sequence (pi, Xi) ∈ J2,+u(xi) such that (xi, pi, Xi)→ (x̂, p,X).

Analogously, one defines

(p,X) ∈ J−,2u(x̂)

if there exist a sequence (pi, Xi) ∈ J2,−u(xi) such that (xi, pi, Xi)→ (x̂, p,X).
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For the reader’s convenience, we state the Theorem of Sums (refer to [23]

or [24]), which is the main tool in the method which we call the Ishii-Lions

method. The precise statement of the theorem reads as follows.

Theorem 1.3.6. Let Ωi be a locally compact subset of Rni for i = 1, . . . , k,

Ω = Ω1 × · · · × Ωk,

ui is USC(Ωi), and ϕ be twice continuously differentiable in a neighborhood of

Ω. Set

h(x) = u1(x1) + · · ·+ uk(xk) for x = (x1, · · · , xn) ∈ Ω,

and suppose x̂ = (x̂1, . . . , x̂k) ∈ Ω is a local maximum of h − ϕ relative to Ω.

Then for each ε > 0 there exists Xi ∈ Sni such that

(Dxiϕ(x̂), Xi) ∈ J
2,+
ui(x̂i) for i = 1, . . . , k,

and the block diagonal matrix with entries Xi satisfies

−
(

1

ε
+ ‖D2ϕ(x̂)‖

)
I ≤


X1 . . . 0
...

. . .
...

0 . . . Xk

 ≤ D2ϕ(x̂) + ε(D2ϕ(x̂))2,

where n = n1 + · · ·+ nk.

In the theorem above by the norm of a symmetric matrix we mean the

supremum of moduli of all eigenvalues of the matrix. To be exact,

‖D2ϕ(x̂)‖ = sup{|λ| : λ is an eigenvalue of D2ϕ(x̂)}.

1.4 Carnot groups

This section is dedicated to the basic information about Carnot groups and

the Heisenberg group, being the simplest possible case, although it is not easy

at all. We denote by Hn the set R2n+1, n ∈ N, (x, y, t) ∈ R2n+1, endowed

with the noncommutative inner law such that for every (x1, y1, t1) ∈ R2n+1,

(x2, y2, t2) ∈ R2n+1, xi ∈ Rn, yi ∈ Rn, i = 1, 2 :

(x1, y1, t1) ◦ (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + 2(x2 · y1 − x1 · y2)),
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and xi · yj denote the usual inner product in Rn. We call Hn the Heisenberg

group of order n.

Let Xi = (ei, 0, 2yi) and Yi = (0, ei,−2xi), i = 1, . . . , n, where {ei}1≤i≤n is

the canonical basis for Rn. We use the same symbol to denote the vector fields

associated with the introduced vectors so that for i = 1, . . . , n

Xi = ∂xi + 2yi∂t,

Yi = ∂yi − 2xi∂t.

The commutator between the vector fields is

[Xi, Yi] = −4∂t,

otherwise it is equal to 0. The intrinsic gradient of a smooth function u in a

point P is

∇Hnu(P ) =
n∑
i=1

(Xiu(P )Xi(P ) + Yiu(P )Yi(P )).

There exists a unique metric on HHn(P ) = span{X1, . . . , Xn, Yi, . . . , Yn} that

makes orthonor-mal the set of vectors {X1, . . . , Xn, Yi, . . . , Yn}. Thus, for every

P ∈ Hn and for every U,W ∈ HHn(P ), U =
∑n

j=1(α1,jXj(P ) + β1,jYj(P )),

V =
∑n

j=1(α2,jXj(P ) + β2,jYj(P )) the scalar product of two vector fields is

defined by

〈U, V 〉 =
n∑
j=1

(α1,jα2,j + β1,jβ2,j).

In particular, we get a norm associated with the metric on

span{X1, . . . , Xn, Yi, . . . , Yn} and

|U | =

√√√√ n∑
j=1

(
α2

1,j + β2
1,j

)
.

For example, the norm of the intrinsic gradient of the smooth function u in P

is

|∇Hnu(P )| =

√√√√ n∑
i=1

((Xiu(P ))2 + (Yiu(P ))2).
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Moreover, if ∇Hnu(P ) 6= 0 the norm of

∇Hnu(P )

|∇Hnu(P )|

is equal to one.

If ∇Hnu(P ) = 0 then we say that the point P is characteristic for the

smooth surface {u = u(P )}. Hence for every point P ∈ {u = u(P )}, that

it is not characteristic, it is well defined the intrinsic normal to the surface

{u = u(P )} as follows:

ν(P ) =
∇Hnu(P )

|∇Hnu(P )|
.

We introduce in the Heisenbeg group Hn the following gauge norm:

dG(x, y, t) ≡ ||(x, y, t)|| = 4
√

(|x|2 + |y|2)2 + t2. (1.4.1)

In particular for every positive number r the gauge ball of radius r centered

in 0 is

B(0, r) = {P ∈ Hn : ‖P‖ < r}.

In the Heisenberg group a group of dilation is also defined as follows: for every

r > 0 and for every P ∈ Hn let

δr(P ) = (rx, ry, r2t).

If P ∈ Hn and

V ∈ g = span(Lie){Xi, Yj, [Xi, Yj] : i, j = 1, . . . , n}

we set ϑ(V,P )(s) := exp[sV ](P ) (s ∈ R), i.e., ϑ(V,P ) denotes the integral curve

of V starting from P and it turns out to be a 1-parameter subgroup of Hn.

The Lie group exponential map is defined by

exp : g 7−→ Hn, exp(V ) := exp[V ](1).

The map exp is an analytic diffeomorphism between g and Hn. One has

ϑ(V,P )(s) = P ◦ exp(sV ) ∀ s ∈ R.
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In particular we remark that if U ∈ HHn(P ), then

ϑ(U,P )(t) = P ◦ exp(sU)

is horizontal.

Indeed, we say that a path ϕ : [−τ, τ ] → Hn in the Heisenberg group is

horizontal if ϕ′(s) ∈ HHn(ϕ(s)) for almost all s ∈ [−τ, τ ].

Concerning the natural Sobolev spaces to consider in the Heisenberg group

Hn, we refer to the literature, see for instance [46]. Here, we only recall that

L1,2(Ω) := {f ∈ L2(Ω) : Xif, Yif ∈ L2(Ω), i = 1, . . . , n}

is a Hilbert space with the norm

|f |L1,2(Ω) =

(∫
Ω

( n∑
i

(Xif)2 + (Yif)2
)

+ |f |2dx

) 1
2

.

Moreover,

H1
Hn(Ω) = C∞(Ω) ∩ L1,2(Ω)

|·|L1,2(Ω) .

H1
Hn,0(Ω) = C∞0 (Ω)

|·|L1,2(Ω) .

Of course, on the Sobolev-Poincaré inequalites there exists a wide literature,

see e.g., [50,44,58]. However, here we shall recall only the following one in the

Heisenberg group for every u ∈ H1
Hn,0(Br), namely∫

Br

|u(x)|dx ≤ Cr

∫
Br

|∇Hnu(x)|dx,

see also [46] for isoperimetric and Sobolev inequalities in more general situations.

In general, this presentation makes sense also for a larger set of stratificated

noncommutative structures: the Carnot groups. In fact, let (G, ◦) be a group

and there exist {gi}1≤i≤m, m ∈ N, m ≤ N ∈ N, vector spaces such that,

g1

⊕
g2

⊕
· · ·
⊕

gm = g ≡ RN ≡ G

and

[g1, g1] = g2, [g1, g2] = g3, . . . , [g1, gm−1] = gm,
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where

[g1, gm] = 0.

In this case we say that G is a stratified Carnot group of step m.

Moreover, for every

x ∈ G ≡ RN = Rk1 × . . .Rkm ,

m∑
j=1

ki = N,

and for every λ > 0 is defined the anisotropic dilation

δλ(x) = (λx(1), λ2x(2), . . . , λmx(m)), where x(j) ∈ Rkj , j = 1, . . . ,m

such that, if Z1, . . . , Zk1 ∈ g1 are left invariant vector fields and Zj(0) = ∂
∂xj |x=0

,

j = 1, . . . , k1, then

rank(Lie{Z1, . . . , Zk1})(x) = N, (Hörmander condition)

for every x ∈ RN ≡ G. Let us consider the sublaplacian on the stratified

Carnot group G given by

∆G =

k1∑
j=1

X2
j . (1.4.2)

In particular, there exists a N×k1 matrix σ such that σ ·σT is a N×N matrix

such that

div(σ · σT∇·) = ∆G. (1.4.3)

Moreover,

σT∇u =

k1∑
j=1

XjuXj ≡ ∇g1u,

the so called horizontal gradient of u. Hence

A = σ · σT .

The Heisenberg group H1 is an example of Carnot group of step 2. In fact,

g1 = span{X, Y }, g2 = span{[X, Y ]}, [g1, g2] = {0}
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and the Lie algebra of the Heisenberg group is obtained as

g = span(Lie){X, Y, [X, Y ]} = g1

⊕
g2.

Exploiting the cited representation of the sublaplacians (1.4.3), it results that

〈A∇u,∇u〉RN = 〈σ · σT∇u,∇u〉RN = 〈σT∇u, σT∇u〉Rk1 ≡ 〈∇Gu,∇Gu〉Rk1 ,

where ∇Gu ≡ σT∇u =
∑k1

j=1 XjuXj is the horizontal gradient in the Carnot

group G. Thus the definition by completion of the Sobolev spaces with respect

to the norm

||u||H1,2(G) :=

√∫
Ω

〈A∇u,∇u〉RN +

∫
Ω

u2 ≡

√∫
Ω

〈∇Gu,∇Gu〉Rk1 +

∫
Ω

u2

is the same.

We spend few words about the Carnot-Charathéodory distance. To do

this goal, we recall, see e.g. [9], that if {X1, . . . XN} are vector fields in Rn,

a piecewise regular path η : [0, T ] → Rn is said subunit, with respect to the

family {X1, . . . XN}, if for every ξ ∈ Rn

〈η′(t), ξ〉2 ≤
N∑
j=1

〈Xj(η(t)), ξ〉2, for a.e. t ∈ [0, T ].

Let us denote by D := D({X1, . . . XN}) the set of all the subunit paths.

Proposition 1.4.1 (Chow-Rashevsky). Let G = (Rn, ◦, δλ) be a Carnot group

with the Lie algebra g and let {X1, . . . XN} be a family of vector fields in Rn.

If

g = Lie{X1, . . . XN},

then for every x, y ∈ Rn there exists η ∈ D such that η(0) = x, η(T ) = y,

moreover

dCC(x, y) := inf{T > 0 : there exists η : [0, T ]→ Rn, η ∈ D, η(0) = x, η(T ) = y}

is a distance called the Carnot-Charathéodory distance associated with

{X1, . . . XN} and dCC(·, 0) is a homogeneous norm on G.

In the case of the Heisenberg group, there exist positive constants C1, C2 > 0
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such that for every P ∈ Hn

C1‖P‖Hn ≤ dCC(P, 0) ≤ C2‖P‖Hn .

The same equivalence may be extended to Carnot groups, simply by considering

the right homogeneous norm versus the Carnot-Charathéodory distance in the

considered group G. In addition, a strong maximum principle holds, see [10],

even if ∆G is a degenerate operator.

Proposition 1.4.2. Let u be such that ∆Gu ≥ 0 in Ω ⊂ G is an open set and

G is a group whose Lie algebra g satisfies the Hörmander condition. Then the

supremum of u can not be realized in Ω unless u is constant.



Chapter 2

“Up to a polynomial”

framework

The goal of this chapter is twofold: on the one hand, we review and extend

the theory developed in [32,33], on the other hand, we generalize the previous

setting in order to include much more general classes of kernels (in particular,

kernels which are not necessarily scaling invariant). Besides its interest in

pure mathematics, this generalization has a concrete impact on the study of

interaction potentials of interatomic type arising in molecular mechanics and

materials science, such as the Morse potential [62]

K(x, y) = e−2(|x−y|−1) − e−(|x−y|−1), (2.0.1)

the Buckingham potential [11]

K(x, y) = e−|x−y| − 1

|x− y|6
, (2.0.2)

as well as their desingularized forms obtained by setting

Kε(x, y) := min

{
1

ε
, K(x, y)

}
.

Other classical potentials arising in probability and modelization include also

the Gauss kernel

K(x, y) = e−|x−y|
2

, (2.0.3)

the Abel kernel

K(x, y) = e−|x−y|, (2.0.4)

37



38 CHAPTER 2. “UP TO A POLYNOMIAL” FRAMEWORK

the mollification kernel

K(x, y) =

e
− 1

1−|x−y|2 if |x− y| < 1,

0 if |x− y| ≥ 1
(2.0.5)

and the class of kernels comparable to that of the fractional Laplacian

λ

|x− y|n+2s
≤ K(x, y) ≤ Λ

|x− y|n+2s
(2.0.6)

for s ∈ (0, 1) and Λ ≥ λ > 0.

The theory of integral operators that we develop is broad enough to include

the kernels above (and others as well) into a unified setting. The operators

will be suitably defined “up to a polynomial”, in a sense that will be made

precise in Definition 2.1.7. This framework relies on a suitable decomposition

of the integral operator with respect to cut-off functions that is showcased

in Theorem 2.1.2. This setting is stable under the appropriate notion of

convergence, as it will be detailed in Proposition 2.1.17, and it presents nice

compatibility results between polynomials of different orders, as it will be

pointed out in Corollary 2.1.19 and Lemma 2.1.20. We also stress that the

generalized notion of operators that we deal with is “as good as the classical

one” in terms of producing solutions for the associated Dirichlet problem:

indeed, as it will be clarified in Theorem 2.2.1, the solvability of the classical

Dirichlet problem in the class of functions with nice behavior at infinity is

sufficient to ensure the solvability of the generalized Dirichlet problem for the

operator defined “up to a polynomial”.

To develop this theory, we mainly focused on the case of sufficiently smooth

(though not necessarily well-behaved at infinity) functions. This choice was

dictated by three main reasons. First of all, we aimed at developing the core of

the theory by focusing on its essential features, rather than complicating it by

additional difficulties. Moreover, we intended to split the complications arising

from the possible lack of smoothness of the solutions with those produced by

their behavior at infinity, consistently with the initial discussion presented right

after (0.0.1). Additionally, we stress that the generality of kernels addressed by

our theory goes far beyond the ones of “elliptic” type, therefore a comprehensive

regularity theory does not hold in such an extensive framework.

However, one can also recast our theory in terms of viscosity solutions.
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For this, since viscosity theory relates to maximum principles, one needs the

additional assumption that the kernel has a sign. In particular, in this context

one can obtain a viscosity definition of operators “up to a polynomial” (see

Definition 2.3.2) and discuss its stability properties under uniform convergence

(see Lemma 2.3.7) and the consistency properties with respect of polynomials

of different degree (see Corollary 2.3.8 and Lemma 2.3.9). When the structure

is compatible with both settings, the pointwise framework and the viscosity

one are essentially equivalent (see Lemma 2.3.6). Furthermore, for kernels

comparable with that of the fractional Laplacian a complete solvability of the

Dirichlet problem can be obtained (see Theorem 2.3.13).

2.1 Definitions and main properties

The mathematical setting in which we work is the following. For every ϑ ∈
[0, 2], we define Cϑ as the set of functions u ∈ L1

loc(Rn) such that

u ∈



C(B4) ∩ L∞(B4) if ϑ = 0,

Cϑ(B4) if ϑ ∈ (0, 1),

C0,1(B4) if ϑ = 1,

C1,ϑ−1(B4) if ϑ ∈ (1, 2),

C1,1(B4) if ϑ = 2.

(2.1.1)

Furthermore, for all m ∈ N0 and all ϑ ∈ [0, 2], we introduce Km,ϑ as the space

of kernels K = K(x, y) such that

for all y ∈ Bc
3, the map x ∈ B1 7→ K(x, y) is Cm(B1) (2.1.2)

and

∫
Rn

min{|x− y|ϑ, 1} |K(x, y)| dy < +∞ for all x ∈ B1. (2.1.3)

If ϑ ∈ (1, 2] we require additionally that every K ∈ Km,ϑ satisfies

K(x, x+ z) = K(x, x− z) for all x, z ∈ B1. (2.1.4)
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Given K ∈ Km,ϑ, we consider the space Cϑ,K of all the functions u ∈ Cϑ for

which∑
|α|≤m−1

∫
BR\B3

|u(y)| |∂αxK(x, y)| dy < +∞ for all R > 3 and x ∈ B1

(2.1.5)

and

∫
Bc3

|u(y)| sup
|α|=m
x∈B1

|∂αxK(x, y)| dy < +∞. (2.1.6)

Remark 2.1.1. We observe that these assumptions are satisfied by the kernel

in (2.0.1) for every n, by the kernel in (2.0.2) with n = 5 and by all the

corresponding desingularized kernels for every n. The kernels in (2.0.3), (2.0.4)

and (2.0.5) also satisfy these assumptions for every n. The kernel in (2.0.6)

satisfies (2.1.3) for every n and every ϑ ∈ (2s, 2].

In this setting, we have the following results that show the role played by

a cut-off function in the computation of the operator in (0.0.1) on functions

in Cϑ,K :

Theorem 2.1.2. Let m ∈ N0, ϑ ∈ [0, 2], K ∈ Km,ϑ and u ∈ Cϑ,K. Let

also τ : Rn → [0, 1] be compactly supported and such that τ = 1 in B3.

Then, there exist a function fu,τ : Rn → R and a polynomial Pu,τ of degree

at most m− 1 such that

A(τu) = Pu,τ + fu,τ (2.1.7)

in B1. In addition, fu,τ can be written in the following form: there exists

ψ : B1 ×Bc
3 → R, with

sup
x∈B1

|∂γxψ(x, y)| ≤ C sup
x∈B1

m≤|η|≤m+|γ|

|∂ηxK(x, y)|, (2.1.8)

for every γ ∈ Nn and for a suitable constant C > 0 depending on m, n and |γ|,
such that

fu,τ = f1,u + f2,u + f ∗u,τ , (2.1.9)
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where

f1,u(x) :=

∫
B3

(
u(x)− u(y)

)
K(x, y) dy,

f2,u(x) := u(x)

∫
Bc3

K(x, y) dy

and f ∗u,τ (x) :=

∫
Bc3

τ(y)u(y)ψ(x, y) dy.

(2.1.10)

Proof. We observe that

f1,u and f2,u are well-defined and finite for every x ∈ B1. (2.1.11)

To check this, we first consider the case in which ϑ ∈ [0, 1]. In this case, for

every x ∈ B1 and y ∈ B3,

|u(x)− u(y)| ≤ C|x− y|ϑ,

for some C > 0, and thus

|f1,u(x)| ≤
∫
B3

∣∣u(x)− u(y)
∣∣ |K(x, y)| dy ≤ C

∫
B3

|x− y|ϑ |K(x, y)| dy

≤ C

(∫
B3∩B1(x)

|x− y|ϑ |K(x, y)| dy +

∫
B3\B1(x)

|K(x, y)| dy
)
,

up to renaming C > 0, and this shows that f1,u is well-defined and finite,

thanks to (2.1.3).

If instead ϑ ∈ (1, 2] we claim that, since u ∈ Cϑ, there exists a constant

L > 0 such that for all |z| sufficiently small (say z ∈ B1) we have that

|2u(x)− u(x+ z)− u(x− z)| ≤ L|z|ϑ. (2.1.12)

Indeed, in this case we know that u ∈ C1,ϑ−1(B4) and thus

|2u(x)− u(x+ z)− u(x− z)| = |(u(x)− u(x+ z)) + (u(x)− u(x− z))|

=

∣∣∣∣−∫ 1

0

∇u(x+ tz) · z dt+

∫ 1

0

∇u(x− tz) · z dt
∣∣∣∣
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≤
∫ 1

0

|∇u(x+ tz)−∇u(x− tz)| |z| dt

≤ C

∫ 1

0

|x+ tz − (x− tz)|ϑ−1|z| dt = C

∫ 1

0

tϑ−1|z|ϑ−1|z| dt = C|z|ϑ,

(2.1.13)

up to relabeling C at every step. This establishes (2.1.12).

Now, we notice that

f1,u(x) =

∫
B3

(
u(x)− u(y)

)
K(x, y) dy

=

∫
B1(x)

(
u(x)− u(y)

)
K(x, y) dy +

∫
B3\B1(x)

(
u(x)− u(y)

)
K(x, y) dy

=: I1 + I2.

(2.1.14)

Using (2.1.4) and (2.1.12), we obtain that∣∣∣∣∫
B1(x)

(
u(x)− u(y)

)
K(x, y) dy

∣∣∣∣
=

1

2

∣∣∣∣∫
B1

(
u(x)− u(x+ z)

)
K(x, x+ z) dz

+

∫
B1

(
u(x)− u(x− z)

)
K(x, x− z) dz

∣∣∣∣
=

1

2

∣∣∣∣∫
B1

(
2u(x)− u(x+ z)− u(x− z)

)
K(x, x+ z) dz

∣∣∣∣
≤ 1

2

∫
B1

∣∣2u(x)− u(x+ z)− u(x− z)
∣∣ |K(x, x+ z)| dz

≤ L

2

∫
B1

|z|ϑ |K(x, x+ z)| dz

≤ L

2

∫
B1

|z|ϑ |K(x, x+ z)| dz.

As a consequence,

|I1| ≤
L

2

∫
B1

|z|ϑ |K(x, x+ z)| dz, (2.1.15)

which is finite, thanks to (2.1.3).
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Furthermore,

|I2| ≤
∫
B3\B1(x)

(
|u(x)|+ |u(y)|

)
|K(x, y)| dy

≤ 2‖u‖L∞(B4)

∫
B3\B1(x)

|K(x, y)| dy,

which is finite, in light of (2.1.3). This, together with (2.1.14) and (2.1.15),

proves that f1,u is well-defined and finite in the case ϑ ∈ (1, 2].

Also, f2,u is well-defined and finite for every ϑ ∈ [0, 2], thanks to (2.1.3).

These observations establish (2.1.11).

As a consequence, for any x ∈ B1, we can write

A(τu)(x)

=

∫
B3

(
(τu)(x)− (τu)(y)

)
K(x, y) dy +

∫
Bc3

(
(τu)(x)− (τu)(y)

)
K(x, y) dy

=

∫
B3

(
u(x)− u(y)

)
K(x, y) dy + u(x)

∫
Bc3

K(x, y) dy −
∫
Bc3

(τu)(y)K(x, y) dy

= f1,u(x) + f2,u(x)−
∫
Bc3

(τu)(y)K(x, y) dy.

(2.1.16)

Now, in light of the assumption in (2.1.2), we are allowed to use

Proposition 5.34 in [22] (see also e.g. Theorem 4 on page 461 of [72]) and we

find that

K(x, y) =
∑

|α|≤m−1

∂αxK(0, y)
xα

α!
− ψ(x, y),

where

ψ(x, y) := −
∑
|α|=m

mxα

α!

∫ 1

0

(1− t)m−1∂αxK(tx, y) dt. (2.1.17)
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As a consequence,

∫
Bc3

(τu)(y)K(x, y) dy =

∫
Bc3

(τu)(y)

 ∑
|α|≤m−1

∂αxK(0, y)
xα

α!
− ψ(x, y)

 dy

=
∑

|α|≤m−1

(∫
Bc3

(τu)(y)∂αxK(0, y) dy

)
xα

α!
−
∫
Bc3

(τu)(y)ψ(x, y) dy.

(2.1.18)

Now, we set, for every |α| ≤ m− 1,

θτ,α :=

∫
Bc3

(τu)(y)
∂αxK(0, y)

α!
dy. (2.1.19)

Suppose that the support of τ is contained in some ball BR with R > 3, and

thus

|θτ,α| ≤
∫
BR\B3

∣∣∣∣(τu)(y)
∂αxK(0, y)

α!

∣∣∣∣ dy ≤ 1

α!

∫
BR\B3

|u(y)|
∣∣∂αxK(0, y)

∣∣ dy.
(2.1.20)

We stress that the coefficients θτ,α are well-defined, thanks to (2.1.5).

Hence, setting

Pu,τ (x) := −
∑

|α|≤m−1

θτ,αx
α (2.1.21)

we have that Pu,τ is a polynomial in x of degree at most m− 1. Plugging this

information into (2.1.18), we obtain that∫
Bc3

(τu)(y)K(x, y) dy = −Pu,τ (x)−
∫
Bc3

(τu)(y)ψ(x, y) dy.

Now, we notice that, for all x ∈ B1 and all y ∈ Bc
3,

|(τu)(y)ψ(x, y)| ≤ C|u(y)| sup
|α|=m
z∈B1

|∂αxK(z, y)|,

for some C > 0, possibly depending on m and n. The last function lies

in L1(Bc
3), thanks to (2.1.6), and therefore, recalling the definition of f ∗u,τ

in (2.1.10), we have that

f ∗u,τ is well-defined and finite. (2.1.22)
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With this setting, we have that∫
Bc3

(τu)(y)K(x, y) dy = −Pu,τ (x)− f ∗u,τ (x),

and therefore, plugging this information into (2.1.16) and recalling (2.1.9), we

obtain (2.1.7).

Hence, to complete the proof of Theorem 2.1.2, it remains to check (2.1.8).

For this, recalling the definition of ψ in (2.1.17), we have that, for all x ∈ B1

and all y ∈ Bc
3,

∂γxψ(x, y) =
∑
|α|=m

∫ 1

0

cα(t) ∂γx (xα ∂αxK(tx, y)) dt

=
∑
|α|=m

∫ 1

0

cα(t)
∑
β≤γ

(
γ

β

)
∂βx (xα) ∂γ−βx (∂αxK(tx, y)) dt

=
∑
|α|=m

∫ 1

0

cα(t)
∑
β≤γ

(
γ

β

)
∂βx (xα) t|γ−β| ∂α+γ−β

x K(tx, y) dt,

where cα(t) := m
α!

(1− t)m−1. Here β ≤ γ means that β1 ≤ γ1, · · · , βn ≤ γn and

we used the notation (
γ

β

)
=

(
γ1

β1

)
× · · · ×

(
γn
βn

)
.

Hence,

|∂γxψ(x, y)| ≤ C sup
z∈B1

m≤|η|≤m+|γ|

|∂ηxK(z, y)|,

for some C > 0 depending on m, n and |γ|. This establishes (2.1.8).

Remark 2.1.3. For m = 0, the result in Theorem 2.1.2 holds true, simply by

taking Pu,τ := 0 and ψ(x, y) := K(x, y).

Remark 2.1.4. Notice that the right hand side of (2.1.8) may be infinite and

in this case (2.1.8) is obviously true. On the contrary, if the right hand side

of (2.1.8) is finite, then the quantity on the left hand side of (2.1.8) is bounded

as well.

Corollary 2.1.5. Let m ∈ N0, ϑ ∈ [0, 2], K ∈ Km,ϑ, u ∈ Cϑ,K and R > 3. Let
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τR : Rn → [0, 1] be supported in BR, with τR = 1 in B3, and such that

lim
R→+∞

τR = 1 a.e. in Rn. (2.1.23)

Then, there exist a function fu : Rn → R and a family of polynomials Pu,τR,

which have degree at most m− 1, such that

lim
R→+∞

[A(τRu)(x)− Pu,τR(x)] = fu(x) (2.1.24)

for any x ∈ B1. More precisely, we have that

fu = f1,u + f2,u + f3,u, (2.1.25)

where f1,u and f2,u are as in (2.1.10) and

f3,u(x) :=

∫
Bc3

u(y)ψ(x, y) dy. (2.1.26)

Proof. We apply Theorem 2.1.2 with τ := τR for any fixed R, and then send

R → +∞. Indeed, by (2.1.8) (used here with γ := 0), for any x ∈ B1 and

y ∈ Bc
3 we have

∣∣(τRu)(y)ψ(x, y)
∣∣ ≤ C|u(y)| sup

|η|=m
z∈B1

|∂ηxK(z, y)|,

for some C > 0 and the latter function of y lies in L1(Bc
3), thanks to (2.1.6).

Consequently, we use (2.1.10), (2.1.23) and the Dominated Convergence

Theorem, thus obtaining that

lim
R→+∞

f ∗u,τR = lim
R→+∞

∫
Bc3

(τRu)(y)ψ(x, y) dy =

∫
Bc3

u(y)ψ(x, y) dy = f3,u(x).

Accordingly, taking the limit in (2.1.7) we obtain (2.1.24). Also, the claims

in (2.1.25) and (2.1.26) follow from (2.1.10).

Remark 2.1.6. It is also interesting to point out that, when τR := χR, the

limit in (2.1.24) is uniform for x ∈ B1. Indeed, by (2.1.7) and (2.1.8), for
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all R2 > R1 > 4,

sup
x∈B1

∣∣∣[A(τR1u)(x)− Pu,τR1
(x)]− [A(τR2u)(x)− Pu,τR2

(x)]
∣∣∣

≤ sup
x∈B1

∫
BR2
\BR1

|u(y)| |ψ(x, y)| dy

≤ C

∫
BR2
\BR1

|u(y)| sup
|η|=m
z∈B1

|∂ηxK(z, y)|,

which is as small as we wish, owing to (2.1.6). This observation will be further

expanded in Lemma 2.1.13.

We are now ready to introduce the formal setting to deal with general

operators defined “up to a polynomial”:

Definition 2.1.7. Let m ∈ N0, ϑ ∈ [0, 2], K ∈ Km,ϑ, u ∈ Cϑ,K and f : B1 → R
be bounded and continuous. We say that

Au
m
= f in B1

if there exist a family of polynomials PR, with degPR ≤ m− 1, and functions

fR : B1 → R such that

A(χRu) = fR + PR (2.1.27)

in B1, with

lim
R→+∞

fR(x) = f(x). (2.1.28)

Remark 2.1.8. In order to show the connection of the introduced setting with

the developed theories in the literature, we will compute a simple example.

Take m = 2, ϑ = 2 in dimension n = 1, together with K(x, y) = |x − y|−1−2s

and s = 1/2, so that Au = (−4)1/2u. We consider u(x) = x2, then for all
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x ∈ (−1, 1) and a fixed R > 2 we get

(−4)1/2(χR(x)x2) =

R∫
−R

χR(x)x2 − χR(y)y2

|x− y|2
dy +

∫
R\(−R,R)

χR(x)x2 − χR(y)y2

|x− y|2
dy

=

R∫
−R

x2 − y2

(x− y)2
dy +

−R∫
−∞

x2

(x− y)2
dy +

∞∫
R

x2

(x− y)2
dy

= −2R︸︷︷︸
PR

−2x ln

∣∣∣∣R− xR + x

∣∣∣∣+ x2

(
1

R + x
+

1

R− x

)
︸ ︷︷ ︸

fR

.

Therefore fR → 0 as R→ +∞, and we obtain

(−4)1/2x2 2
= 0.

Remark 2.1.9. We observe that (2.1.27) is considered here in the pointwise

sense. This is possible, since the setting in (2.1.1) suffices for writing the

equation pointwise (recall (2.1.11) and (2.1.22)). A viscosity theory is also

possible by appropriate modifications of the setting (in particular, to pursue

a viscosity theory, to be consistent with the elliptic framework, one would

need the additional assumption that the kernel is nonnegative). For instance,

for fractional elliptic equations a viscosity approach is useful to establish

existence results by the Perron method, which combined with fractional elliptic

regularity theory for viscosity solutions often provides the existence of nice

solutions for the Dirichlet problem (see e.g. [68]). The viscosity setting will be

discussed in Section 2.3.

Remark 2.1.10. From Definition 2.1.7 one immediately sees that for all j ∈ N
and K ∈ Km,ϑ ∩ Km+j,ϑ,

if Au
m
= f, then Au

m+j
= f,

in B1, since polynomials of degree at most m−1 are also polynomials of degree

at most m+ j − 1.

Remark 2.1.11. From Definition 2.1.7 and Corollary 2.1.5 (used here with

τR := χR, in the notation of (0.0.2)), we can write Au
m
= fu in B1 for any K ∈

Km,ϑ and u ∈ Cϑ,K .
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Remark 2.1.12. We observe that from Definition 2.1.7 it follows that any

polynomial of degree less than or equal to m − 1 can be arbitrarily added

to fR and subtracted from PR in (2.1.27), hence, for any polynomial P with

degP ≤ m− 1 we have that

if Au
m
= f, then Au

m
= f + P

in B1.

We now investigate in further detail the convergence properties of the

approximating source term fR.

Lemma 2.1.13. Let m ∈ N0, ϑ ∈ [0, 2] and K ∈ Km,ϑ. Let u ∈ Cϑ,K, f

and fR be as in Definition 2.1.7.

Then, if R′ > R > 4 we have that

inf ‖fR′ − fR − P‖L∞(B1) ≤
∫
BcR

|u(y)| sup
|α|=m
x∈B1

|∂αxK(x, y)| dy, (2.1.29)

where the inf in (2.1.29) is taken over all the polynomials P with degree at

most m− 1.

Proof. We define v := (1− χ4)u. In this way v = 0 in B4 and |v| ≤ |u|, so

v ∈ Cϑ,K . (2.1.30)

Moreover, if R > 4,

(χR − χ4)u = (χR − χ4)v.

Hence, from (2.1.27),

A((χR−χ4)v) = A((χR−χ4)u) = fR−f4 +PR−P4 = fR−f4 + P̃R, (2.1.31)

where P̃R := PR − P4 is a polynomial of degree at most m− 1.

We also remark that, due to (2.1.30), we can use Theorem 2.1.2 here on the

function v. More specifically, using Theorem 2.1.2 on the function v (twice,
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once with τ := χR and once with τ := χ4), we obtain that

A((χR − χ4)v) = Pv,χR − Pv,χ4 + fv,χR − fv,χ4

= P̄v,χR + (f1,v + f2,v + f ∗v,χR)− (f1,v + f2,v + f ∗v,χ4
)

= P̄v,χR + f ∗v,χR − f
∗
v,χ4

= P̄v,χR +

∫
BR\B4

u(y)ψ(x, y) dy

(2.1.32)

in B1, where P̄v,χR := Pv,χR − Pv,χ4 is a polynomial of degree at most m − 1.

Comparing the right hand sides of (2.1.31) and (2.1.32), we obtain that in B1

fR = f4 + P ∗R +

∫
BR\B3

u(y)ψ(x, y) dy,

where P ∗R := P̄v,χR − P̃R is a polynomial of degree at most m− 1.

Therefore, for any R′ > R,

fR′ − P ∗R′ − fR + P ∗R =

(
f4 +

∫
BR′\B3

u(y)ψ(x, y) dy

)

−
(
f4 +

∫
BR\B3

u(y)ψ(x, y) dy

)
=

∫
BR′\BR

u(y)ψ(x, y) dy

and, as a consequence,

‖fR′ − P ∗R′ − fR + P ∗R‖L∞(B1) = ‖ΨR′,R‖L∞(B1), (2.1.33)

where

ΨR′,R(x) :=

∫
BR′\BR

u(y)ψ(x, y) dy.

From (2.1.8) and Remark 2.1.6, we know that

‖ΨR′,R‖L∞(B1) ≤ sup
x∈B1

∫
BR′\BR

|u(y)||ψ(x, y)| dy

≤
∫
BR′\BR

|u(y)| sup
|α|=m
x∈B1

|∂αxK(x, y)| dy ≤
∫
BcR

|u(y)| sup
|α|=m
x∈B1

|∂αxK(x, y)| dy.
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This and (2.1.33) imply that

‖fR′ − P ∗R′ − fR + P ∗R‖L∞(B1) ≤
∫
BcR

|u(y)| sup
|α|=m
x∈B1

|∂αxK(x, y)| dy,

which gives (2.1.29).

Next result deals with the stability of the equation under uniform convergence

(and this can be seen as an adaptation to our setting of the result contained

e.g. in Lemma 5 of [19]).

Lemma 2.1.14. Let ϑ ∈ [0, 2] and K ∈ K0,ϑ. For every k ∈ N, let uk ∈ Cϑ,K
and fk be bounded and continuous in B1. Assume that

Auk = fk (2.1.34)

in B1, that

fk converges uniformly in B1 to some function f as k → +∞, (2.1.35)

that

uk converges in B4 to some function u as k → +∞

in the topology of



L∞(B4) if ϑ = 0,

Cϑ(B4) if ϑ ∈ (0, 1),

C0,1(B4) if ϑ = 1,

C1,ϑ−1(B4) if ϑ ∈ (1, 2),

C1,1(B4) if ϑ = 2.

and that

lim
k→+∞

∫
Rn\B3

∣∣u(y)− uk(y)
∣∣|K(x, y)| dy = 0, (2.1.36)

for every x ∈ B1.

Then,

Au = f

in B1.
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Proof. Let x0 ∈ B1 and ρ > 0 such that Bρ(x0) b B1. We claim that

lim
k→+∞

∫
Bρ(x0)

(
uk(x0)− uk(y)

)
K(x0, y) dy =

∫
Bρ(x0)

(
u(x0)− u(y)

)
K(x0, y) dy.

(2.1.37)

For this, we distinguish two cases. If ϑ ∈ [0, 1], we observe that∣∣∣∣∣
∫
Bρ(x0)

(
uk(x0)− uk(y)

)
K(x0, y) dy −

∫
Bρ(x0)

(
u(x0)− u(y)

)
K(x0, y) dy

∣∣∣∣∣
≤

∫
Bρ(x0)

∣∣(uk − u)(x0)− (uk − u)(y)
∣∣ |K(x0, y)| dy

≤ ‖uk − u‖Cϑ(B4)

∫
Bρ(x0)

|x0 − y|ϑ |K(x0, y)| dy

≤ C ‖uk − u‖Cϑ(B4)

for some C > 0, thanks to (2.1.3), and this proves (2.1.37) in this case.

Hence, to complete the proof of (2.1.37), we now assume that ϑ ∈ (1, 2].

In this case, we recall (2.1.4) and we see that, for k sufficiently large,∫
Bρ(x0)

(
uk(x0)− uk(y)

)
K(x0, y) dy

=
1

2

∫
Bρ

(
uk(x0)− uk(x0 + z)

)
K(x0, x0 + z) dz

+
1

2

∫
Bρ

(
uk(x0)− uk(x0 − z)

)
K(x0, x0 − z) dz

=
1

2

∫
Bρ

(
2uk(x0)− uk(x0 + z)− uk(x0 − z)

)
K(x0, x0 + z) dz,

and a similar computation holds with u instead of uk. Consequently, recalling

also (2.1) (used here with uk − u in place of u),∣∣∣∣∣
∫
Bρ(x0)

(
uk(x0)− uk(y)

)
K(x0, y) dy −

∫
Bρ(x0)

(
u(x0)− u(y)

)
K(x0, y) dy

∣∣∣∣∣
≤ 1

2

∫
Bρ

∣∣2(uk − u)(x0)− (uk − u)(x0 + z)− (uk − u)(x0 − z)
∣∣ |K(x0, x0 + z)| dz

≤
‖uk − u‖C1,ϑ−1(B4)

2

∫
Bρ

|z|ϑ |K(x0, x0 + z)| dz

≤ C ‖uk − u‖C1,ϑ−1(B4),
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for some C > 0, thanks to (2.1.3), and this completes the proof of (2.1.37).

We now claim that

lim
k→+∞

∫
B3\Bρ(x0)

(
uk(x0)−uk(y)

)
K(x0, y) dy =

∫
B3\Bρ(x0)

(
u(x0)−u(y)

)
K(x0, y) dy.

(2.1.38)

To prove it, we use (2.1.3) to conclude that∣∣∣∣∣
∫
B3\Bρ(x0)

(
uk(x0)− uk(y)

)
K(x0, y) dy −

∫
B3\Bρ(x0)

(
u(x0)− u(y)

)
K(x0, y) dy

∣∣∣∣∣
≤ C ‖uk − u‖L∞(B4)

∫
B3\Bρ(x0)

|K(x0, y)| dy

≤ C ‖uk − u‖L∞(B4)

up to renaming C > 0 from line to line, and this establishes (2.1.38).

Furthermore, using (2.1.3),∣∣∣∣∫
Rn\B3

(
uk(x0)− uk(y)

)
K(x0, y) dy −

∫
Rn\B3

(
u(x0)− u(y)

)
K(x0, y) dy

∣∣∣∣
≤

∫
Rn\B3

∣∣uk(x0)− u(x0)
∣∣ |K(x0, y)| dy +

∫
Rn\B3

∣∣uk(y)− u(y)
∣∣|K(x0, y)| dy

≤ C ‖uk − u‖L∞(B4) +

∫
Rn\B3

∣∣uk(y)− u(y)
∣∣|K(x0, y)| dy,

which is infinitesimal thanks to (2.1.36).

Gathering together this, (2.1.37) and (2.1.38), we conclude that Auk(x0)→
Au(x0) as k → +∞. From this, (2.1.34) and (2.1.35) we obtain the desired

result.

Remark 2.1.15. We observe that condition (2.1.36) cannot be dropped from

Lemma 2.1.14. Indeed, if s ∈ (0, 1) and

R 3 x 7→ uk(x) := −
χ(k,k2)(x)x2s

log k

we have that uk → 0 =: u locally uniformly and that, for each x ∈ (−1, 1),

∫
R

uk(x)− uk(y)

|x− y|1+2s
dy =

1

log k

∫ k2

k

y2s

(y − x)1+2s
dy =: fk(x).
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We stress that, if x ∈ (−1, 1) and y > k,

y − x ≥ y − 1 =
k − 1

k
y +

y

k
− 1 ≥ k − 1

k
y

and

y − x ≤ y + 1 =
k + 1

k
y − y

k
+ 1 ≤ k + 1

k
y.

As a result, if x ∈ (−1, 1),

fk(x) ≤ k1+2s

(k − 1)1+2s

1

log k

∫ k2

k

y2s

y1+2s
dy =

k1+2s

(k − 1)1+2s

and

fk(x) ≥ k1+2s

(k + 1)1+2s

1

log k

∫ k2

k

y2s

y1+2s
dy =

k1+2s

(k + 1)1+2s
,

thus fk → 1 =: f uniformly in (−1, 1). This example shows that

(−∆)suk = fk → f = 1 6= 0 = (−∆)su.

A natural question is whether the stability result in Lemma 2.1.14 carries

over directly to the setting introduced in Definition 2.1.7. The answer is in

general negative, as pointed out by the following counterexample:

Proposition 2.1.16. Let k ∈ N. Let

uk(x) :=

0 if x ∈ (−∞, k],

kx if x ∈ (k,+∞)

and

fk(x) :=
kx

k − x
+ k log

k

k − x
.

Then,

√
−∆uk

1
= fk in (−1, 1), (2.1.39)

uk converges to zero locally uniformly, (2.1.40)

lim
k→+∞

∫
R\(−1,1)

|uk(y)|
|y|2+a

dy = 0 for all a > 1, (2.1.41)

fk(x) converges to 2x uniformly in [−1, 1]. (2.1.42)
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Proof. Let R > k and uk,R(x) := uk(x)χ(−R,R)(x). Then, if x ∈ (−1, 1),∫
R

uk,R(x)− uk,R(y)

|x− y|2
dy = k

∫ R

k

y

(y − x)2
dy

=
kx

k − x
− kx

R− x
+ k log(R− x)− k log(k − x)

=
kx

k − x
− kx

R− x
+ k log

R− x
R

+ k logR + k log
k

k − x
− k log k

= fk(x) + k log
R− x
R
− kx

R− x
+ k logR− k log k.

Since the term k logR−k log k is a constant in x (hence a polynomial of degree

zero) and the function k log R−x
R
− kx

R−x goes to zero as R→ +∞, the identity

above proves (2.1.39).

Additionally, the claim in (2.1.40) is obvious and, if a > 1,

lim
k→+∞

∫
R\(−1,1)

|uk(y)|
|y|2+a

dy = lim
k→+∞

k

∫ +∞

k

dy

y1+a
=

1

a
lim

k→+∞

1

ka−1
= 0,

thus establishing (2.1.41).

Furthermore, for every x ∈ [−1, 1], if k is large enough,

|fk(x)− 2x| ≤
∣∣∣∣ kx

k − x
− x
∣∣∣∣+

∣∣∣∣k log
k

k − x
− x
∣∣∣∣ =

∣∣∣∣ x2

k − x

∣∣∣∣+

∣∣∣∣∣k
∫ k

k−x

1

dt

t
− x

∣∣∣∣∣
≤ 1

k − 1
+

∣∣∣∣∣k
∫ 1+ x

k−x

1

dt

t
− kx

k − x

∣∣∣∣∣+

∣∣∣∣ kx

k − x
− x
∣∣∣∣

≤ 2

k − 1
+ k

∣∣∣∣∣
∫ 1+ x

k−x

1

dt

t
−
∫ 1+ x

k−x

1

dt

∣∣∣∣∣ ≤ 2

k − 1
+ k

∫ 1+ 1
k−1

1− 1
k−1

|1− t|
t

dt

≤ 6

k − 1
,

which gives (2.1.42).

Concerning the example in Proposition 2.1.16, notice in particular that,

in (−1, 1),
√
−∆uk

1
= fk

k → +∞
−−−−→ 2x

1

6= 0 =
√
−∆0,

showing that some care is necessary to pass Definition 2.1.7 to the limit and

additional assumptions are needed to exchange the order in which different

limits are taken.
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From the positive side, as an affirmative counterpart of the counterexample

in Proposition 2.1.16, we provide the following stability result for the setting

of Definition 2.1.7:

Proposition 2.1.17. Let m ∈ N0, ϑ ∈ [0, 2] and K ∈ Km,ϑ. For every k ∈ N,

let uk ∈ Cϑ,K and fk be bounded and continuous in B1. Assume that

Auk
m
= fk in B1, (2.1.43)

that

fk converges uniformly in B1 to some function f as k → +∞,

that

uk converges in B4 to some function u as k → +∞

in the topology of



L∞(B4) if ϑ = 0,

Cϑ(B4) if ϑ ∈ (0, 1),

C0,1(B4) if ϑ = 1,

C1,ϑ−1(B4) if ϑ ∈ (1, 2),

C1,1(B4) if ϑ = 2,

(2.1.44)

that

lim
k→+∞

sup
x∈B1
R>4

∫
BR\B1(x)

(
(u− uk)(x)− (u− uk)(y)

)
K(x, y) dy = 0 (2.1.45)

and that

lim
R→+∞

sup
k∈N

∫
Rn\BR

|uk(y)| sup
|η|=m
z∈B1

|∂ηxK(z, y)| dy = 0. (2.1.46)

Then,

Au
m
= f in B1. (2.1.47)

To prove Proposition 2.1.17, we establish a uniqueness result in the spirit

of Lemma 1.2 of [32]:

Lemma 2.1.18. Let m ∈ N0, ϑ ∈ [0, 2], K ∈ Km,ϑ and u ∈ Cϑ,K. Let f1
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and f2 be bounded and continuous in B1. Suppose that

Au
m
= f1 and Au

m
= f2 in B1. (2.1.48)

Then, there exists a polynomial of degree at most m − 1 such that f1 −
f2 = P .

Proof. In light of (2.1.48) and Definition 2.1.7, we have that there exist two

families of polynomials P 1
R and P 2

R, with degree at most m− 1, such that, for

every x ∈ B1,

lim
R→+∞

(
A(χRu)(x)− P 1

R(x)
)

= f1(x)

and lim
R→+∞

(
A(χRu)(x)− P 2

R(x)
)

= f2(x).

As a consequence, for every x ∈ B1,

f1(x)− f2(x) = lim
R→+∞

(
A(χRu)(x)− P 1

R(x)
)
− lim

R→+∞

(
A(χRu)(x)− P 2

R(x)
)

= lim
R→+∞

(
P 2
R(x)− P 1

R(x)
)
.

We remark that P 2
R−P 1

R is a polynomial of degree at most m−1. Accordingly,

we can use Lemma 2.1 of [32] to conclude that f1−f2 is a polynomial of degree

at most m− 1. This establishes the desired result.

Proof of Proposition 2.1.17. We exploit the setting of Corollary 2.1.5 with τR :=

χR. In this way, for each k, we find a function fuk : Rn → R and a family of

polynomials Puk,R, which have degree at most m− 1, such that, in B1,

lim
R→+∞

[A(χRuk)(x)− Puk,R(x)] = fuk(x). (2.1.49)

As a matter of fact (recall the footnote on page 46), we see that, for every x ∈
B1 and every k ∈ N,∣∣∣A(χRuk)(x)− Puk,R(x)− fuk(x)

∣∣∣ ≤ C

∫
Rn\BR

|uk(y)| sup
|η|=m
z∈B1

|∂ηxK(z, y)| ≤ 1

R
,

(2.1.50)

as long as R is sufficiently large, thanks to (2.1.46).

Comparing (2.1.49) with Definition 2.1.7, we thus conclude that Auk
m
= fuk

in B1. This and (2.1.43), together with the uniqueness result in Lemma 2.1.18,
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yield that fuk = fk + P̃k for a suitable polynomial P̃k of degree at most m− 1.

Consequently, setting P̃uk,R := Puk,R + P̃k, we have that, by (2.1.50),∣∣∣A(χRuk)(x)− P̃uk,R(x)− fk(x)
∣∣∣ ≤ 1

R
. (2.1.51)

Now, we claim that, given R > 4,

lim
k→+∞

sup
B1

∣∣∣A((u− uk)χR)∣∣∣ = 0. (2.1.52)

To this end, we calculate that, for each x ∈ B1,∣∣∣A((u− uk)χR)(x)
∣∣∣

=

∣∣∣∣∫
B1(x)

(
(u− uk)(x)− (u− uk)(y)

)
K(x, y) dy

+

∫
BR\B1(x)

(
(u− uk)(x)− (u− uk)(y)

)
K(x, y) dy

+

∫
Rn\BR

(u− uk)(x)K(x, y) dy

∣∣∣∣
≤

∣∣∣∣∫
B1(x)

(
(u− uk)(x)− (u− uk)(y)

)
K(x, y) dy

∣∣∣∣
+

∣∣∣∣∫
BR\B1(x)

(
(u− uk)(x)− (u− uk)(y)

)
K(x, y) dy

∣∣∣∣
+ ‖u− uk‖L∞(B1)

∫
Rn\BR

|K(x, y)| dy

and hence (2.1.52) follows from (2.1.3), (2.1.37) (used here with ρ := 1; notice

that we can use (2.1.37) in this setting in light of (2.1.44)) and (2.1.45).

Thus, in light of (2.1.52), given R > 4 we can find kR ∈ N such that

sup
B1

∣∣∣A((u− ukR)χR
)∣∣∣ ≤ 1

R
. (2.1.53)

We define fR := fkR and PR := P̃ukR ,R. We stress that PR is a polynomial of
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degree at most m− 1. Moreover, for every x ∈ B1,∣∣∣A(χRu)(x)− fR(x)− PR(x)
∣∣∣

≤
∣∣∣A((u− ukR)χR

)
(x)
∣∣∣+
∣∣∣A(χRukR)(x)− fR(x)− PR(x)

∣∣∣
≤ 1

R
+
∣∣∣A(χRukR)(x)− fkR(x)− P̃kR(x)

∣∣∣ ≤ 2

R

thanks to (2.1.50) and (2.1.53), which proves (2.1.47).

A consequence of Lemmata 2.1.13 and 2.1.14 is the following equivalence

result:

Corollary 2.1.19. Let ϑ ∈ [0, 2], K ∈ K0,ϑ and u ∈ Cϑ,K. Let f be bounded

and continuous in B1.

Then

Au = f in B1

is equivalent to

Au
0
= f in the sense of Definition 2.1.7.

Proof. Suppose that Au = f in B1. Then, for R > 10,

A(χR/2u)(x) = Au(x)− A((1− χR/2)u)(x)

= f(x) +

∫
Rn

(1− χR/2(y))u(y)K(x, y) dy
(2.1.54)

for every x ∈ B1. Now, we set

w := (χR − χR/2)u.

We observe that w = 0 in B4, so we can exploit Theorem 2.1.2 to w (applied

here with m = 0) and get that, for any x ∈ B1,

A((χR − χR/2)u)(x) = Aw(x)

= f1,w + f2,w + f ∗w,χR(x) =

∫
BR\B3

w(y)ψ(x, y) dy =

∫
BR\BR/2

u(y)ψ(x, y) dy.

(2.1.55)
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Hence, from (2.1.54) and (2.1.55), we find that

A(χRu)(x) = A((χR − χR/2)u)(x) + A(χR/2u)(x)

=

∫
BR\BR/2

u(y)ψ(x, y) dy + f(x) +

∫
Rn

(1− χR/2(y))u(y)ψ(x, y) dy

=: fR(x)

(2.1.56)

for every x ∈ B1. We remark that fR → f in B1 as R → +∞, thanks to

(2.1.8) (used here with m = 0 and γ = (0, . . . , 0)) and (2.1.6).

Now we recall Definition 2.1.7 (here with m = 0 and PR = 0) and we

conclude that Au
0
= f in B1, as desired.

Conversely, we now suppose that Au
0
= f in B1. From Definition 2.1.7

and the fact that m = 0, we have that PR is identically zero, and so we can

write that A(χRu) = fR in B1, with fR → f in B1 as R → +∞. We observe

that χRu approaches u locally uniformly in Rn. Also, we can use here Lemma

2.1.13: in this way, we find that

‖fR′ − fR‖L∞(B1) ≤
∫
BcR

|u(y)| sup
x∈B1

|K(x, y)| dy.

Therefore, we send R′ → +∞ and obtain that, for any x ∈ B1,

|f(x)− fR(x)| = lim
R′→+∞

|fR′(x)− fR(x)|

≤ lim
R′→+∞

‖fR′ − fR‖L∞(B1) ≤
∫
BcR

|u(y)| sup
x∈B1

|K(x, y)| dy.

As a consequence, recalling (2.1.6) (here withm = 0) we have that fR converges

to f uniformly in B1 as R → +∞. From this, we can exploit Lemma 2.1.14

and conclude that Au = f , as desired.

A natural question deals with the consistency of the operator setting for

functions that are sufficiently well-behaved to allow definitions related to two

different indices: roughly speaking, in the best possible scenario, if we know

that Au
m
= f and j ≤ m, can we say that Au

j
= f? Posed like this, the

answer to this question is negative, since, after all, in light of Lemma 2.1.18,

the function f is uniquely defined only “up to a polynomial”. Nevertheless,

the answer becomes positive if we take into account this additional polynomial
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normalization, as stated in the next result:

Lemma 2.1.20. Let j,m ∈ N0, with j ≤ m, ϑ ∈ [0, 2] and K ∈ Kj,ϑ ∩ Km,ϑ.

Let f be bounded and continuous in B1 and let u ∈ Cϑ,K such that

Au
m
= f (2.1.57)

in B1.

Then, there exist a function f̄ and a polynomial P of degree at most m−1,

such that f̄ = f + P and Au
j
= f̄ in B1.

Proof. Let v := (1− χ4)u and w := χ4u. We notice that v, w ∈ Cϑ,K . Hence,

since K ∈ Kj,ϑ, recalling Remark 2.1.11, (2.1.10), (2.1.25) and (2.1.26), we can

write that

Av
j
= fv =

∫
Bc4

u(y)ψ(x, y)

in B1. That is, by Definition 2.1.7,

A(χRv) =

∫
Bc4

u(y)ψ(x, y) dy + ϕ̃R +QR, (2.1.58)

for some ϕ̃R such that ϕ̃R → 0 in B1 as R → +∞ and a polynomial QR of

degree at most j − 1.

Furthermore, by (2.1.57), and recalling Definition 2.1.7, we get that

A(χRu) = f + ϕR + PR, (2.1.59)

for some ϕR such that ϕR → 0 if R→ +∞ and a polynomial PR with degPR ≤
m− 1. Therefore, subtracting (2.1.58) from (2.1.59), we obtain

f+ϕR+PR−
∫
Bc4

u(y)ψ(x, y) dy−ϕ̃R−QR = A(χR(u−v)) = A(χRw). (2.1.60)
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We notice that, for every x ∈ B1 and every R > 4,

A(χRw)(x) =

∫
Rn

(χRw(x)− χRw(y))K(x, y) dy

=

∫
BR

(w(x)− w(y))K(x, y) dy +

∫
Rn\BR

w(x)K(x, y) dy

=

∫
B4

(w(x)− w(y))K(x, y) dy +

∫
Rn\B4

w(x)K(x, y) dy

=

∫
Rn

(χ4w(x)− χ4w(y))K(x, y) dy = A(χ4w)(x).

As a consequence of this and (2.1.60), we have that, in B1,

f + ϕR + PR −
∫
Bc4

u(y)ψ(x, y) dy − ϕ̃R −QR = A(χ4w).

This shows that the limit

lim
R→+∞

(ϕR + PR − ϕ̃R −QR)

exists. As a result, the limit

lim
R→+∞

(PR −QR)

exists. Then, exploiting Lemma 2.1 in [32] we conclude that

lim
R→+∞

(PR −QR) = P,

for some polynomial P of degree at most m− 1.

Now we set f̄ := f + P and SR := ϕR + PR − QR − P , and we see that

SR → 0 as R→ +∞. Thus, from (2.1.59) we obtain that

A(χRu) = f̄ + SR +QR

in B1. Since the degree of QR is at most j − 1, this shows that Au
j
= f̄ in B1,

as desired.
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2.2 The Dirichlet problem

In this section we consider the existence problem for equations involving general

operators that are defined “up to a polynomial”. The main result is the

following:

Theorem 2.2.1. Let m ∈ N0, ϑ ∈ [0, 2], K ∈ K0,ϑ ∩ Km,ϑ and u ∈ Cϑ,K.

Assume that u0 ∈ L1
loc(B

c
1) satisfies (2.1.5) and (2.1.6) and f : B1 → R is

bounded and continuous in B1.

Additionally, suppose that for any f̃ : B1 → R which is bounded and

continuous in B1 and any ũ0 ∈ L1(Bc
1) there exists a unique solution ũ ∈ Cϑ

to the Dirichlet problem Aũ = f̃ in B1,

ũ = ũ0 in Bc
1.

(2.2.1)

Then, there exists a function u ∈ Cϑ,K such thatAu
m
= f in B1,

u = u0 in Bc
1.

(2.2.2)

Also, the solution to (2.2.2) is not unique, since the space of solutions of (2.2.2)

has dimention Nm, with

Nm :=
m−1∑
j=0

(
j + n− 1

n− 1

)
. (2.2.3)

Proof. To begin with, we prove the existence of solutions for (2.2.2). To do

this, we define

u1 := χBc4 u0 and ũ0 := χB4\B1 u0.

Since u1 vanishes in B4 and K ∈ Km,ϑ, we can write Au1
m
= fu1 in B1, for some

function fu1 , due to Remark 2.1.11.

We now consider the solution of (2.2.1) with f̃ := f−fu1 . Therefore, using
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Remark 2.1.10 and Corollary 2.1.19 we obtain thatAũ
m
= f̃ in B1,

ũ = ũ0 in Bc
1.

Then, we set u := u1 + ũ and we get that Au = Au1 +Aũ
m
= fu1 + f̃ = f in B1.

Moreover, we have that u = u1 + ũ0 = u0 in Bc
1, that is u ∈ Cϑ,K is solution of

(2.2.2). This establishes the existence of solution for (2.2.2).

Now we prove that solutions of (2.2.2) are not unique and determine the

dimension of the corresponding linear space. For this, we notice that for any

polynomial P with degP ≤ m − 1 there exists a unique solution ũP ∈ Cϑ of

the problem AũP = P in B1,

ũP = 0 in Bc
1,

(2.2.4)

due to the existence and uniqueness assumption for (2.2.1). This is equivalent

to say that AũP
0
= P in B1, thanks to Corollary 2.1.19. Using Remark 2.1.10,

we obtain that AũP
m
= P in B1. Thus, applying Remark 2.1.12, we obtain that

ũP is a solution of AũP
m
= 0 in B1,

ũP = 0 in Bc
1.

(2.2.5)

From this it follows that if u is a solution of (2.2.2), then u + ũP is also a

solution of (2.2.2).

Viceversa, if u and v are two solutions of (2.2.2), then w := u − v is a

solution of Aw
m
= 0 in B1,

w = 0 in Bc
1.

Here we can apply Lemma 2.1.20 with j := 0 thus obtaining that Aw
0
= P in

B1, where P is a polynomial of degP ≤ m− 1. Using again Corollary 2.1.19,

one deduces that Aw = P in B1,

w = 0 in Bc
1.

(2.2.6)

Therefore, the uniqueness of the solution of (2.2.6), confronted with (2.2.4),

gives us that w = ũP , and thus v = u+ ũP .

This reasoning gives that the space of solutions of (2.2.2) is isomorphic to
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the space of polynomials with degree less than or equal to m − 1, which has

exactly dimension Nm, given by (2.2.3) (see e.g. [34]).

2.3 A viscosity approach

Up to now, we focused our attention on the case of equations defined pointwise.

In principle, this requires functions that are “sufficiently regular” for the

equation to be satisfied at every given point. However, a less restrictive

approach adopted in the classical theory of elliptic equations is to consider

weaker notions of solutions (and possibly recover the pointwise setting via an

appropriate regularity theory): in this spirit, a convenient setting, which is

also useful in case of fully nonlinear equations, is that of viscosity solutions,

which does not require a high degree of regularity of the solution itself since the

equation is computed pointwise only at smooth functions touching from either

below or above (see e.g. [15] for a thorough discussion on viscosity solutions).

In this section, we recast the setting of general operators defined “up to a

polynomial” into the viscosity solution framework. To this end, we proceed as

follows. For all m ∈ N0 and ϑ ∈ [0, 2], we define K+
m,ϑ as the space of kernels

K = K(x, y) verifying (2.1.2), (2.1.3) and (2.1.4), and such that

K(x, y) ≥ 0 for all x ∈ B1 and y ∈ Rn. (2.3.1)

Given K ∈ K+
m,ϑ, we consider the space VK of all the functions

u ∈ L1
loc(Rn) ∩ C(B4) ∩ L∞(B4) for which

∑
|α|≤m−1

∫
BR\B3

|u(y)| |∂αxK(x, y)| dy < +∞ for all R > 3 and x ∈ B1

(2.3.2)

and

∫
Bc3

|u(y)| sup
|α|=m
x∈B1

|∂αxK(x, y)| dy < +∞. (2.3.3)

Remark 2.3.1. Notice that if (2.3.1) holds true and K ∈ Km,ϑ for some m ∈
N0 and some ϑ ∈ [0, 2], then K ∈ K+

m,ϑ.

In the viscosity framework we introduce the following definition.
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Definition 2.3.2. Let m ∈ N0, ϑ ∈ [0, 2], K ∈ K+
m,ϑ, u ∈ VK and f : B1 → R

be bounded and continuous. We say that

Au
m
= f in B1 in the viscosity sense

if there exist a family of polynomials PR, with degPR ≤ m − 1, and bounded

and continuous functions fR : B1 → R such that

A(χRu) = fR + PR (2.3.4)

in B1 in the viscosity sense, with

lim
R→+∞

fR(x) = f(x) uniformly in B1. (2.3.5)

Remark 2.3.3. We point out that the limit in (2.3.5) is assumed to hold

uniformly (this is a stronger assumption than the one in (2.1.28) that was

assumed for the pointwise setting, and it is taken here to make the setting

compatible with the viscosity method, see e.g. the proof of the forthcoming

Corollary 2.3.8). See also [1] for related observations.

Remark 2.3.4. We observe that, for all j ∈ N and K ∈ K+
m,ϑ ∩ K

+
m+j,ϑ,

if Au
m
= f, then Au

m+j
= f

in B1 in the viscosity sense of Definition 2.3.2.

Remark 2.3.5. From Definition 2.3.2 it follows that any polynomial of degree

less than or equal to m−1 can be arbitrarily added to fR and subtracted from

PR in (2.3.4), hence, for any polynomial P with degP ≤ m− 1 we have that

if Au
m
= f, then Au

m
= f + P

in B1 in the viscosity sense of Definition 2.3.2.

We now establish that when the structure is compatible with the both the

settings in Definitions 2.1.7 and 2.3.2, the pointwise and viscosity frameworks

are equivalent:

Lemma 2.3.6. Let m ∈ N0, ϑ ∈ [0, 2], K ∈ Km,ϑ, u ∈ Cϑ,K and f : B1 → R



2.3. A VISCOSITY APPROACH 67

be bounded and continuous. If (2.3.1) holds true and u is a solution of

Au
m
= f in the sense of Definition 2.1.7,

then K ∈ K+
m,ϑ, u ∈ VK and it is a solution of

Au
m
= f in the viscosity sense of Definition 2.3.2.

Conversely, let m ∈ N0, ϑ ∈ [0, 2], K ∈ K+
m,ϑ, u ∈ VK and f : B1 → R be

bounded and continuous. If K ∈ Km,ϑ and u ∈ Cϑ,K is a solution of

Au
m
= f in the viscosity sense of Definition 2.3.2,

then u is a solution of

Au
m
= f in the sense of Definition 2.1.7.

Proof. Assume that u is a solution of Au
m
= f in B1 in the sense of

Definition 2.1.7. It follows that there exist a family of polynomials PR with

degPR ≤ m− 1 and functions fR such that

A(χRu) = fR + PR (2.3.6)

pointwise in B1. Since u ∈ Cϑ,K we have that also u ∈ VK . Moreover, we have

that K ∈ K+
m,ϑ, due to (2.3.1) and Remark 2.3.1.

Now we observe that if v ∈ Cϑ and vanishes outside B2, g is a bounded and

continuous function, and Av = g pointwise in B1, then also

Av = g in B1 in the viscosity sense. (2.3.7)

To check this, let ϕ be a smooth function touching v from below at some

point x0 ∈ B1. Then, we have that v(y) − ϕ(y) ≥ 0 = v(x0) − ϕ(x0) for

all y ∈ Rn and therefore, by (2.3.1),

Aϕ(x0) =

∫
Rn

(ϕ(x0)− ϕ(y))K(x0, y) dy

≥
∫
Rn

(v(x0)− v(y))K(x0, y) dy = Av(x0) = g(x0).
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Similarly, if ϕ touches v from above, one obtains the opposite inequality, and

these observations complete the proof of (2.3.7).

As a consequence of (2.3.6) and (2.3.7), we obtain that

A(χRu) = fR + PR

in B1 in the viscosity sense.

Hence, to finish the first part of the proof, we show that

fR → f uniformly in B1. (2.3.8)

For this, we observe that, in light of Remark 2.1.11, we can write Au
m
= fu

in B1 in the sense of Definition 2.1.7. That is, recalling Corollary 2.1.5, there

exist functions fu,R and a family of polynomials Pu,τR , which have degree at

most m− 1, such that

A(χRu) = fu,R + Pu,χR (2.3.9)

pointwise in B1.

Furthermore, using Lemma 2.1.13, we have that, if R′ > R > 4, there exists

a polynomial PR,R′ of degree at most m− 1 such that

‖fu,R′ − fu,R − PR,R′‖L∞(B1) ≤
∫
BcR

|u(y)| sup
|α|=m
x∈B1

|∂αxK(x, y)| dy. (2.3.10)

We now claim that

PR,R′ = 0. (2.3.11)

Indeed, by a careful inspection of the proof of Lemma 2.1.13, one can notice

that the polynomial PR,R′ is explicit and, denoting by v := (1 − χ4)u, it is

equal to

Pv,χR′ − Pu,χR′ − Pv,χR + Pu,χR ,

where we have used the notation of Theorem 2.1.2. In particular, recalling the

notation in formulas (2.1.19) and (2.1.21), we have that the coefficients of the
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polynomial PR,R′ are given by∫
Bc3

(χR′v)(y)
∂αxK(0, y)

α!
dy −

∫
Bc3

(χR′u)(y)
∂αxK(0, y)

α!
dy

−
∫
Bc3

(χRv)(y)
∂αxK(0, y)

α!
dy +

∫
Bc3

(χRu)(y)
∂αxK(0, y)

α!
dy

=

∫
BR′\B4

u(y)
∂αxK(0, y)

α!
dy −

∫
BR′\B3

u(y)
∂αxK(0, y)

α!
dy

−
∫
BR\B4

u(y)
∂αxK(0, y)

α!
dy +

∫
BR\B3

u(y)
∂αxK(0, y)

α!
dy

= −
∫
B4\B3

u(y)
∂αxK(0, y)

α!
dy +

∫
B4\B3

u(y)
∂αxK(0, y)

α!
dy

= 0,

for every |α| ≤ m− 1, which proves (2.3.11).

Hence, using the information of formula (2.3.11) into (2.3.10), we obtain

that fu,R converges to fu uniformly in B1.

Now, as a consequence of (2.3.6) and (2.3.9), we have that

lim
R→+∞

(
Pu,χR − PR

)
= lim

R→+∞

(
fR − fu,R

)
= f − fu (2.3.12)

in B1. Therefore, in light of Lemma 2.1 in [32], we have that the convergence

in (2.3.12) is uniform in B1. Furthermore,

‖fR − f‖L∞(B1) ≤ ‖fR − fu,R + fu − f‖L∞(B1) + ‖fu,R − fu‖L∞(B1).

These considerations prove (2.3.8) and therefore, the first part of the proof is

complete.

Now take K ∈ K+
m,ϑ and a solution u ∈ Cϑ,K to Au

m
= f in B1 in the viscosity

sense of Definition 2.3.2. We have that there exist a family of polynomials PR

with degPR ≤ m− 1 and functions fR such that

A(χRu) = fR + PR in B1 in the viscosity sense. (2.3.13)

Our objective is now to check that

the equation in (2.3.13) holds true in the pointwise sense as well. (2.3.14)
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Indeed, once this is established, we can send R→ +∞ and conclude that

Au
m
= f in the pointwise sense of Definition 2.1.7. To prove (2.3.14), we

use a convolution argument. We pick ρ ∈ (0, 1) and we define vε to be the

convolution of χRu against a given mollifier ηε. We also denote by gε the

convolution of fR + PR against ηε and we remark that, if ε is small enough,

then Avε = gε in Bρ in the viscosity sense, and actually also in the pointwise

sense, since vε is smooth and can be used itself as a test function in the viscosity

definition. Hence, we can take any point x0 ∈ Bρ and conclude that

lim
ε→0

∫
Rn

(vε(x0)− vε(y))K(x0, y) dy

= lim
ε→0

Avε(x0) = lim
ε→0

gε(x0) = fR(x0) + PR(x0). (2.3.15)

We now claim that, for all R > 5,

lim
ε→0

∫
Rn

(vε(x0)−vε(y))K(x0, y) dy =

∫
Rn

(χR(x0)u(x0)−χR(y)u(y))K(x0, y) dy.

(2.3.16)

We stress that, once this is proved, then (2.3.14) would follow directly from

(2.3.15). Hence, our goal now is to check (2.3.16). We perform the argument

when ϑ ∈ (1, 2] (the argument when ϑ ∈ [0, 1] being similar and simpler, not

requiring any additional symmetrization). We exploit (2.1.4) to see that

2

∫
B1(x0)

(vε(x0)− vε(y))K(x0, y) dy

=

∫
B1

(vε(x0)− vε(x0 + z))K(x0, x0 + z) dz

+

∫
B1

(vε(x0)− vε(x0 − z))K(x0, x0 − z) dz

=

∫
B1

(
2vε(x0)− vε(x0 + z)− vε(x0 − z)

)
K(x0, x0 + z) dz.

(2.3.17)

Also, since u ∈ Cϑ,K (and we are supposing ϑ ∈ (1, 2]), for all z ∈ B1,

|2vε(x0)− vε(x0 + z)− vε(x0 − z)| =
∣∣∣∣∫ 1

0

(
∇vε(x0 + tz)−∇vε(x0 − tz)

)
· z dt

∣∣∣∣
≤ |z|

∫ 1

0

∣∣∣∇vε(x0 + tz)−∇vε(x0 − tz)
∣∣∣ dt

= |z|
∫ 1

0

∣∣∣∣∫
Bε

∇(χRu)(x0 + tz − ζ)ηε(ζ) dζ −
∫
Bε

∇(χRu)(x0 − tz − ζ)ηε(ζ) dζ

∣∣∣∣ dt
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≤ |z|
∫ 1

0

∫
Bε

|∇(χRu)(x0 + tz − ζ)−∇(χRu)(x0 − tz − ζ)| ηε(ζ) dζ dt

≤ C|z|ϑ
∫ 1

0

∫
Bε

ηε(ζ) dζ dt

= C|z|ϑ,

for some C > 0.

From this and the Dominated Convergence Theorem, recalling (2.1.3), we

deduce from (2.3.17) that

lim
ε→0

2

∫
B1(x0)

(vε(x0)− vε(y))K(x0, y) dy

=

∫
B1

lim
ε→0

(
2vε(x0)− vε(x0 + z)− vε(x0 − z)

)
K(x0, x0 + z) dz

=

∫
B1

(
2(χRu)(x0)− (χRu)(x0 + z)− (χRu)(x0 − z)

)
K(x0, x0 + z) dz

= 2

∫
B1(x0)

(
(χRu)(x0)− (χRu)(y)

)
K(x0, y) dy.

Using again the Dominated Convergence Theorem, one deduces (2.3.16) from

the previous equation, as desired.

Next result shows the stability of the equation under the uniform convergence

in the viscosity sense. To this end, we will also assume other mild conditions on

the kernel. First of all, we assume a continuity hypothesis in the first variable,

that is we suppose that

for all y ∈ Rn and all x0 ∈ B3 \ {y}, lim
x→x0

K(x, y) = K(x0, y). (2.3.18)

Additionally, we assume a local integrability condition outside a possible singula-

rity of the kernel and a locally uniform version of condition (2.1.3), namely we

suppose that

for all x0 ∈ B3 and all r > 0,

∫
Rn\Br(x0)

sup
x∈B3\Br(y)

|K(x, y)| dy < +∞

(2.3.19)

and ∫
B3

sup
x∈B1

|x− y|2 |K(x, y)| dy < +∞. (2.3.20)
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Lemma 2.3.7. Let ϑ ∈ [0, 2]. Let K ∈ K+
0,ϑ satisfying (2.3.18), (2.3.19)

and (2.3.20). For every k ∈ N, let uk ∈ VK and fk be bounded and continuous

in B1. Assume that

Auk = fk (2.3.21)

in B1 in the viscosity sense, that

fk converges uniformly in B1 to some function f as k → +∞,

that

uk converges uniformly in B4 to some function u ∈ VK as k → +∞ (2.3.22)

and that

lim
k→+∞

∫
Rn\B3

∣∣u(y)− uk(y)
∣∣ sup
x∈B1

|K(x, y)| dy = 0. (2.3.23)

Then,

Au = f

in B1 in the viscosity sense.

Proof. Let x0 ∈ B1 and ρ > 0 such that Bρ(x0) b B1. Let ϕ ∈ C2(Bρ(x0))

with ϕ = u outside Bρ(x0). Suppose that v := ϕ − u has a local maximum

at x0.

We define, for every k ∈ N,

εk := ‖u− uk‖L∞(B1) +
1

k

and

ϕk(x) :=

ϕ(x)−√εk |x− x0|2 in Bρ(x0),

uk(x) in Rn \Bρ(x0).

We let vk := ϕk − uk and xk ∈ Bρ(x0) be such that

vk(xk) = max
Bρ(x0)

vk.
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We observe that

|xk − x0|2 =
ϕ(xk)− ϕk(xk)√

εk

=
v(xk)− vk(xk) + u(xk)− uk(xk)√

εk

≤ v(x0)− vk(x0) + εk√
εk

=
ϕ(x0)− ϕk(x0)− u(x0) + uk(x0) + εk√

εk

=
−u(x0) + uk(x0) + εk√

εk

≤ 2
√
εk.

Thus, since εk is infinitesimal due to (2.3.22), we have that xk converges to x0

as k → +∞ and, in particular, the function vk has an interior maximum at xk.

This and (2.3.21) give that

0 ≤ Aϕk(xk)− fk(xk) ≤ Aϕk(xk)− f(x0) + |f(x0)− f(xk)|+ ‖f − fk‖L∞(B1).

(2.3.24)

Now we claim that

lim
k→+∞

∫
Bρ(x0)

(
ϕk(xk)− ϕk(y)

)
K(xk, y) dy =

∫
Bρ(x0)

(
ϕ(x0)− ϕ(y)

)
K(x0, y) dy.

(2.3.25)

To this end, we first observe that

ϕk(xk)− ϕk(y) =ϕ(xk)− ϕ(y) +
√
εk|y − x0|2 −

√
εk|xk − x0|2

=ϕ(xk)− ϕ(y) +
√
εk(2x0 − xk − y) · (xk − y).

(2.3.26)

We define

F (y) := sup
x∈B1

|x− y|2 |K(x, y)| (2.3.27)

and we observe that F ∈ L1(B3), thanks to (2.3.20). Accordingly, by the

absolute continuity of the Lebesgue integrals, for all ε > 0 there exists δ > 0

such that if the Lebesgue measure of a set Z ⊂ B3 is less than δ, then∫
Z

F (y) dy ≤ ε. (2.3.28)
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We recall (2.1.4) and we see that, for k sufficiently large,∫
Bρ/2(xk)

(
ϕk(xk)− ϕk(y)

)
K(xk, y) dy

=
1

2

∫
Bρ/2

(
ϕk(xk)− ϕk(xk + z)

)
K(xk, xk + z) dz

+
1

2

∫
Bρ/2

(
ϕk(xk)− ϕk(xk − z)

)
K(xk, xk − z) dz

=
1

2

∫
Bρ/2

(
2ϕk(xk)− ϕk(xk + z)− ϕk(xk − z)

)
K(xk, xk + z) dz

=
1

2

∫
Bρ(x0)

χBρ/2(xk)(y)
(
2ϕk(xk)− ϕk(y)− ϕk(2xk − y)

)
K(xk, y) dy.

Thus, for all y ∈ Bρ(x0) we define

ζk(y) :=
1

2
χBρ/2(xk)(y)

(
2ϕk(xk)− ϕk(y)− ϕk(2xk − y)

)
K(xk, y)

and we point out that

|ζk(y)| ≤ 1

2

∣∣∣(ϕk(xk)− ϕk(y)
)

+
(
ϕk(xk)− ϕk(2xk − y)

)∣∣∣ |K(xk, y)|

=
1

2

∣∣∣∣(∫ 1

0

∇ϕk
(
txk + (1− t)y

)
dt

−
∫ 1

0

∇ϕk
(
txk + (1− t)(2xk − y)

)
dt

)
· (xk − y)

∣∣∣∣ |K(xk, y)|

=

∣∣∣∣∣
∫ 1

0

(
(1− t)

∫ 1

0

D2ϕk

(
τ
(
txk + (1− t)y

)
+ (1− τ)

(
txk + (1− t)(2xk − y)

))
dτ
)
dt (xk − y) · (xk − y)

∣∣∣∣∣ |K(xk, y)|

≤ C |xk − y|2 |K(xk, y)|

≤ C F (y),

where the notation in (2.3.27) was used. In particular, since F ∈ L1(B3)

by (2.3.20), we can exploit the absolute continuity of the Lebesgue integrals

(see (2.3.28)) and deduce that for all ε > 0 there exists δ > 0 such that if the

Lebesgue measure of a set Z ⊂ Bρ(x0) is less than δ, then∫
Z

|ζk(y)| dy ≤ Cε.
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Hence, recalling (2.3.18), we utilize the Vitali Convergence Theorem and obtain

that

lim
k→+∞

∫
Bρ(x0)

ζk(y) dy =

∫
Bρ(x0)

lim
k→+∞

ζk(y) dy

=
1

2

∫
Bρ/2(x0)

(
2ϕ(x0)− ϕ(y)− ϕ(2x0 − y)

)
K(x0, y)

which proves that

lim
k→+∞

∫
Bρ/2(x0)

(
ϕk(xk)−ϕk(y)

)
K(xk, y) dy =

∫
Bρ/2(x0)

(
ϕ(x0)−ϕ(y)

)
K(x0, y) dy.

(2.3.29)

Now, for every y ∈ Rn \Bρ/2(x0) we define

ηk(y) :=
(
ϕk(xk)− ϕk(y)

)
K(xk, y).

We observe that, if k is sufficiently large, for every y ∈ B3 \Bρ/2(x0),

|ηk(y)| ≤ C sup
x∈B3\Bρ/4(y)

|K(x, y)|,

which belongs to L1(Bρ(x0) \Bρ/2(x0)) due to (2.3.19).

Consequently, by (2.3.18) and the Dominated Convergence Theorem,

lim
k→+∞

∫
Bρ(x0)\Bρ/2(x0)

(
ϕk(xk)− ϕk(y)

)
K(xk, y) dy = lim

k→+∞

∫
Bρ(x0)\Bρ/2(x0)

ηk(y) dy

=

∫
Bρ(x0)\Bρ/2(x0)

lim
k→+∞

ηk(y) dy =

∫
Bρ(x0)\Bρ/2(x0)

(
ϕ(x0)− ϕ(y)

)
K(x0, y) dy.

This and (2.3.29) show the validity of (2.3.25).

Having completed the proof of (2.3.25), we now claim that

lim
k→+∞

∫
Rn\Bρ(x0)

(
ϕk(xk)−ϕk(y)

)
K(xk, y) dy =

∫
Rn\Bρ(x0)

(
ϕ(x0)−ϕ(y)

)
K(x0, y) dy.

(2.3.30)

Indeed, for all y ∈ Rn \Bρ(x0) we set

µk(y) :=
(
ϕk(xk)−ϕk(y)

)
K(xk, y) =

(
ϕ(xk)−

√
εk|xk−x0|2−uk(y)

)
K(xk, y).
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If y ∈ B3 \Bρ(x0) and k is sufficiently large, then, by (2.3.22),

|µk(y)| ≤ C (1 + |u(y)|) |K(xk, y)| ≤ C (1 + ‖u‖L∞(B3)) sup
x∈B3\Bρ/2(y)

|K(x, y)|

and the latter function belongs to L1(B3 \Bρ(x0)) owing to (2.3.19).

This, (2.3.18), (2.3.22) and the Dominated Convergence Theorem lead to

lim
k→+∞

∫
B3\Bρ(x0)

(
ϕk(xk)− ϕk(y)

)
K(xk, y) dy

=

∫
B3\Bρ(x0)

lim
k→+∞

(
ϕ(xk)−

√
εk|xk − x0|2 − uk(y)

)
K(xk, y) dy

=

∫
B3\Bρ(x0)

(
ϕ(x0)− u(y)

)
K(x0, y) dy.

(2.3.31)

In light of (2.3.3) and (2.3.23) we also remark that, for large k,∫
Rn\B3

|uk(y)| sup
x∈B1

K(x, y) dy

≤
∫
Rn\B3

∣∣u(y)− uk(y)
∣∣ sup
x∈B1

K(x, y) dy +

∫
Rn\B3

|u(y)| sup
x∈B1

K(x, y) dy

≤ 1 +

∫
Rn\B3

|u(y)| sup
x∈B1

K(x, y) dy ≤ C,

(2.3.32)

up to renaming C once again. Furthermore, if y ∈ Rn \B3 and δk :=
∣∣ϕ(xk)−

ϕ(x0)
∣∣+
√
εk, we have that δk is infinitesimal as k → +∞ and∣∣∣(ϕk(xk)− ϕk(y)

)
K(xk, y)−

(
ϕ(x0)− u(y)

)
K(x0, y)

∣∣∣
≤

(∣∣ϕ(xk)− ϕ(x0)
∣∣+
√
εk + |uk(y)− u(y)|

)
|K(xk, y)|

+
∣∣ϕ(x0)− u(y)

∣∣ ∣∣K(x0, y)−K(xk, y)
∣∣

≤ δk sup
x∈B1

|K(x, y)|+ |uk(y)− u(y)| sup
x∈B1

|K(x, y)|

+ C (1 + |u(y)|)
∣∣K(x0, y)−K(xk, y)

∣∣
≤ δk sup

x∈B1\B1(y)

|K(x, y)|+ |uk(y)− u(y)| sup
x∈B1

|K(x, y)|

+ C (1 + |u(y)|)
∣∣K(x0, y)−K(xk, y)

∣∣.
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Gathering this information, (2.3.19) and (2.3.23), we find that

lim
k→+∞

∫
Rn\B3

∣∣∣(ϕk(xk)− ϕk(y)
)
K(xk, y)−

(
ϕ(x0)− u(y)

)
K(x0, y)

∣∣∣ dy
≤ lim

k→+∞
C

∫
Rn\B3

(1 + |u(y)|)
∣∣K(x0, y)−K(xk, y)

∣∣ dy.
(2.3.33)

We also point out that, if y ∈ Rn \B3,

(1 + |u(y)|)
∣∣K(x0, y)−K(xk, y)

∣∣ ≤ 2(1 + |u(y)|) sup
x∈B1\B1(y)

|K(x, y)|

and the latter function belongs to L1(Rn \B3), thanks to (2.3.3) and (2.3.19).

The Dominated Convergence Theorem and (2.3.18) thereby give that

lim
k→+∞

∫
Rn\B3

(1 + |u(y)|)
∣∣K(x0, y)−K(xk, y)

∣∣ dy = 0.

This and (2.3.33) yield that

lim
k→+∞

∫
Rn\B3

∣∣∣(ϕk(xk)− ϕk(y)
)
K(xk, y)−

(
ϕ(x0)− u(y)

)
K(x0, y)

∣∣∣ dy = 0,

which, combined with (2.3.31), proves (2.3.30).

By combining (2.3.25) and (2.3.30), we deduce that Aϕk(xk) → Aϕ(x0)

as k → +∞. As a result, by passing to the limit in (2.3.24), we conclude

that Aϕ(x0) ≥ f(x0).

Similarly, one sees that if the function ϕ − u has a local minimum at x0

then Aϕ(x0) ≤ f(x0).

Corollary 2.3.8. Let ϑ ∈ [0, 2]. Let K ∈ K+
0,ϑ satisfying (2.3.18), (2.3.19)

and (2.3.20) and u ∈ VK. Let f be bounded and continuous in B1.

Then

Au = f in B1

in viscosity sense is equivalent to

Au
0
= f in B1

in the viscosity sense of Definition 2.3.2.
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Proof. Suppose first that Au = f in B1 in viscosity sense. For every R > 5,

we define

fR(x) := f(x) +

∫
BcR

u(y)K(x, y) dy.

Notice that

sup
x∈B1

|fR(x)− f(x)| ≤
∫
BcR

|u(y)| sup
x∈B1

K(x, y) dy,

which is infinitesimal, thanks to (2.3.3) (used here with m := 0), and thus fR

converges to f uniformly in B1.

Our objective is to prove that A(χRu) = fR in B1 in the viscosity sense

(from which we obtain thatAu
0
= f inB1 in the viscosity sense of Definition 2.3.2).

To check this claim, we pick a point x0 ∈ B1 and touch χRu from below by

a test function ϕ at x0, with ϕ = χRu outside B2. We define ψ := ϕ+(1−χR)u

and we observe that ψ touches u by below at x0 and that ψ = u outside B2.

As a result, Aψ(x0) ≥ f(x0) and therefore

fR(x0) = f(x0) +

∫
BcR

u(y)K(x0, y) dy

≤ Aψ(x0) +

∫
BcR

u(y)K(x0, y) dy

=

∫
Rn

(ψ(x0)− ψ(y))K(x0, y) dy +

∫
BcR

u(y)K(x0, y) dy

=

∫
Rn

(ϕ(x0)− ψ(y))K(x0, y) dy +

∫
BcR

u(y)K(x0, y) dy

=

∫
BR

(ϕ(x0)− ϕ(y))K(x0, y) dy +

∫
BcR

(ϕ(x0)− ψ(y))K(x0, y) dy

+

∫
BcR

u(y)K(x0, y) dy

= Aϕ(x0) +

∫
BcR

(ϕ(y)− ψ(y))K(x0, y) dy +

∫
BcR

u(y)K(x0, y) dy

= Aϕ(x0).

Similarly, if ϕ touches χRu from above, then Aϕ(x0) ≤ fR(x0). These observa-

tions entail that A(χRu) = fR in B1 in the viscosity sense.

This proves one of the implications of Corollary 2.3.8. To prove the other,

we assume now that Au
0
= f in B1 in the viscosity sense of Definition 2.3.2.

Then, we find fR : B1 → R such that A(χRu) = fR in B1 in viscosity sense,
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with fR converging to f uniformly in B1. We remark that

lim
R→+∞

∫
Rn\B3

∣∣u(y)− (χRu)(y)
∣∣ sup
x∈B1

|K(x, y)| dy = 0,

thanks to (2.3.3) (used here with m := 0) and the Dominated Convergence

Theorem.

We can therefore apply Lemma 2.3.7 and conclude that Au = f in B1 in

the sense of viscosity, as desired.

In the next result we state the viscosity counterpart of Lemma 2.1.20 (its

proof is omitted since it is similar to the one of Lemma 2.1.20, just noticing

that the functions v and χRw − χ4w vanish in B4, hence the viscous and

pointwise setting would equally apply to them).

Lemma 2.3.9. Let j,m ∈ N0, with j ≤ m, ϑ ∈ [0, 2] and K ∈ K+
j,ϑ ∩ K

+
m,ϑ.

Let f be bounded and continuous in B1 and let u ∈ VK such that

Au
m
= f (2.3.34)

in B1.

Then, there exist a function f̄ and a polynomial P of degree at most m− 1

such that f̄ = f + P and Au
j
= f̄ in B1.

2.3.1 Applications

Next, as a possible application, we show a specific case in which the existence

of solution to a Dirichlet problem is guaranteed. For this, we consider a family

of kernels comparable to the fractional Laplace operator, as follows. For any

s ∈ (0, 1), given real numbers Λ ≥ λ > 0, we consider the family of kernels K

as defined in (2.0.6). We suppose that

there exists m ∈ N0 such that condition (2.1.2) is satisfied. (2.3.35)

We also assume that condition (2.1.4) holds true and that K is translation

invariant, i.e.

K(x+ z, y + z) = K(x, y) for any x, y, z ∈ Rn. (2.3.36)
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With this, we have that K belongs to K+
m,ϑ, with m as in (2.3.35) and for

every ϑ ∈ (2s, 2]. Moreover, it also satisfies (2.3.19) and (2.3.20).

We introduce the fractional Sobolev space

Hs(B1) :=

{
u ∈ L2(B1) :

∫∫
R2n\(Bc1×Bc1)

(u(x)− u(y))2K(x, y) dy < +∞

}

and, given g ∈ Hs(B1), the class

Jg(B1) :=
{
u ∈ Hs(B1) : u = g in Bc

1

}
.

We use this class to seek solutions to the Dirichlet problem (see [63]). More

precisely, the following result can be proved by using the Direct Methods of

the Calculus of Variations and the strict convexity of the functional.

Proposition 2.3.10. Let K be as in (2.0.6), (2.1.4), (2.3.35) and (2.3.36).

Let f ∈ L2(B1) and g ∈ Hs(B1). Then, there exists a unique minimizer of the

functional

E(u) :=
1

4

∫∫
Rn×Rn

(u(x)− u(y))2K(x, y) dx dy −
∫
B1

f(x)u(x) dx (2.3.37)

over Jg(B1).

In addition, u ∈ Jg(B1) is a minimizer of (2.3.37) over Jg(B1) if and only

if it is a weak solution of Au = f in B1,

u = g in Bc
1,

(2.3.38)

that is, for every ϕ ∈ C∞0 (B1),

1

2

∫∫
Rn×Rn

(
u(x)− u(y)

)(
ϕ(x)− ϕ(y)

)
K(x, y) dx dy =

∫
B1

f(x)ϕ(x) dx.

The next result is a generalization of Theorem 2 in [67], which shows the

global continuity of weak solutions of an equation which includes the operator

of our interest.

Proposition 2.3.11. Let K be as in (2.0.6) (2.1.4), (2.3.35) and (2.3.36). Let
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f ∈ L∞(B1) and g ∈ Cα(Rn) for some α ∈ (0,min{2s, 1}). Assume that

|g(x)| ≤ C|x|α for all x ∈ Rn \B1.

Let also u ∈ Jg(B1) be a weak solution of

Au = f in B1. (2.3.39)

Then, u ∈ C(Rn).

Proof. First of all, we exploit Proposition 2.3.10 with g := 0 to find a weak

solution v of Av = f in B1,

v = 0 in Bc
1.

By Proposition 7.2 in [65] (see also [47] for related results), we have that v ∈
C(Rn).

Let now w := u− v. We see that w is a weak solution ofAw = 0 in B1,

w = u = g in Bc
1.

We thus exploit Theorem 1.4 in [6] and find that w ∈ C(Rn). From these

observations, we find that u = v + w ∈ C(Rn), as desired.

With this, we can now prove that, in this setting, week solutions are also

viscosity solutions.

Proposition 2.3.12. Let K be as in (2.0.6) (2.1.4), (2.3.18), (2.3.35) and (2.3.36).

Let f be bounded and continuous in B1 and g ∈ Cα(Rn) for some α ∈
(0,min{2s, 1}). Assume that

|g(x)| ≤ C|x|α for all x ∈ Rn \B1. (2.3.40)

Let also u ∈ Jg(B1) be a weak solution ofAu = f in B1,

u = g in Bc
1.

(2.3.41)

Then, u is a viscosity solution of (2.3.41).
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Proof. By Proposition 2.3.11, we know that u ∈ C(Rn).

Now, we take a point x0 ∈ B1 and a function ρ ∈ C∞0 (B1, [0, 1]) and we

consider an even mollifier ρε := ε−nρ(x/ε), for any ε ∈ (0, 1). We set uε := u∗ρε
and fε := f ∗ ρε (where we identified f with its null extension outside B1).

We claim that

Auε = fε in the weak sense in any ball Br(x0) such that Br(x0) b B1.

(2.3.42)

To prove this, we take a ball Br(x0) such that Br(x0) b B1 and a function ϕ ∈
C∞0 (Bρ(x0)). We observe that∫

Rn

( ∫∫
R2n

(u(x+ z)− u(y + z))(ϕ(x)− ϕ(y))ρε(z)K(x, y) dx dy

)
dz

=

∫
Bε

( ∫∫
R2n\(Bcr(x0)×Bcr(x0))

(u(x+ z)− u(y + z))

× (ϕ(x)− ϕ(y))ρε(z)K(x, y) dx dy) dz

≤ ε
−n

2

∫
Bε

( ∫∫
R2n\(Bc1×Bc1)

(u(x)− u(y))2K(x, y) dx dy

+

∫∫
R2n\(Bc1×Bc1)

(ϕ(x)− ϕ(y))2K(x, y) dx dy

)
dz

< +∞,
(2.3.43)

thanks to (2.3.36).

Therefore, Tonelli’s Theorem gives us that the function

(x, y, z) ∈ R2n × Rn 7→ (u(x+ z)− u(y + z))(ϕ(x)− ϕ(y))ρε(z)K(x, y)

lies in L1(R2n×Rn). One can interchange the order of integration in (2.3.43),

thanks to Fubini’s Theorem, and exploit the definition of uε to obtain∫
Rn

( ∫∫
R2n

(u(x+ z)− u(y + z))(ϕ(x)− ϕ(y))ρε(z)K(x, y) dx dy

)
dz

=

∫∫
R2n

( ∫
Rn

(u(x+ z)− u(y + z))(ϕ(x)− ϕ(y))ρε(z)K(x, y) dz

)
dx dy

=

∫∫
R2n

(uε(x)− uε(y))(ϕ(x)− ϕ(y))K(x, y) dx dy.

(2.3.44)
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Then, we can use Fubini’s Theorem once again to get∫
Rn
fε(x)ϕ(x) dx

=

∫
Rn

( ∫
Rn
f(x+ z)ρε(z)ϕ(x) dx

)
dz

=

∫
Bε

( ∫
Rn
f(x̃)ϕ(x̃− z)ρε(z)dx̃

)
dz

(2.3.45)

=
1

2

∫
Bε

( ∫∫
R2n

(u(x̃)− u(ỹ))(ϕ(x̃− z)− ϕ(ỹ − z))ρε(z)K(x̃, ỹ)dx̃dỹ

)
dz

=
1

2

∫
Rn

( ∫∫
R2n

(u(x+ z)− u(y + z))(ϕ(x)− ϕ(y))ρε(z)K(x, y) dx dy

)
dz

=
1

2

∫∫
R2n

(uε(x)− uε(y))(ϕ(x)− ϕ(y))K(x, y) dx dy,

(2.3.46)

since the kernel K is translation invariant and u satisfies (2.3.41) in weak sense.

This shows (2.3.42).

Now, given Br(x0) b B1, we show that

the map Br(x0) 3 x 7→
∫
Rn

(uε(x)− uε(y))K(x, y) dy is continuous. (2.3.47)

For this, we let xk be a sequence converging to a given point x ∈ Br(x0) and

we define

ζk(z) := (2uε(xk)− uε(xk + z)− uε(xk − z))K(0, z).

Since uε is smooth and its growth at infinity is controlled via (2.3.40), we know

that

|2uε(xk)− uε(xk + z)− uε(xk − z)| ≤ Cε min{|z|2, |z|α},

for some Cε > 0. For this reason and (2.0.6),

|ζk(z)| ≤ Cε min{|z|2, |z|α}
|z|n+2s

,

up to renaming Cε and therefore we are in the position of applying the Dominated
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Convergence Theorem and conclude that

lim
k→+∞

∫
Rn

(2uε(xk)− uε(xk + z)− uε(xk − z))K(0, z) dz

=

∫
Rn

(2uε(x)− uε(x+ z)− uε(x− z))K(0, z) dz.

In view of (2.1.4) and (2.3.36), this proves (2.3.47).

We also observe that

Auε = fε pointwise in any ball Br(x0) such that Br(x0) b B1. (2.3.48)

Indeed, by (2.1.4), (2.3.42) and (2.3.47), if x ∈ Br(x0) and ϕ ∈ C∞0 (Br(x0)),∫
Rn
fε(x)ϕ(x) dx =

∫∫
R2n

(uε(x)− uε(y))ϕ(x)K(x, y) dx dy.

Since ϕ is arbitrary, we arrive at

fε(x) =

∫
Rn

(uε(x)− uε(y))K(x, y) dy,

from which we obtain (2.3.48).

We also have that

Auε = fε in the viscosity sense in any ball Br(x0) such that Br(x0) b B1.

(2.3.49)

For this, we take a smooth function ψ touching, say from below, the function uε

at some point p ∈ Br(x0). Since the kernel K is positive (thanks to (2.0.6))

and recalling (2.3.48), we have that

fε(p) =

∫
Rn

(uε(p)− uε(y))K(p, y) dy =

∫
Rn

(ψ(p)− uε(y))K(p, y) dy

≤
∫
Rn

(ψ(p)− ψ(y))K(p, y) dy = Aψ(p).

This and a similar computation when ψ touches from above give (2.3.49).

We also remark that uε and fε converge uniformly to u and f , respectively,

in any ball Br(x0) b B1, due to Theorem 9.8 in [71]. In addition, by (2.3.40),
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we see that, for every y ∈ Rn \B3r(x0),

|uε(y)| ≤
∫
Bε

|u(y − z)|ρε(z) dz ≤ C

∫
Bε

|y − z|αρε(z) dz ≤ C|y|α,

up to renaming C > 0. As a consequence of this and (2.0.6), we have that, for

every y ∈ Rn \B3r(x0),

|u(y)− uε(y)| sup
x∈Br(x0)

K(x, y) ≤ C|y|α sup
x∈Br(x0)

1

|x− y|n+2s
≤ C

|y|n+2s−α ,

up to relabeling C > 0. Since α < min{2s, 1}, this function is in L1(Rn \
B3r(x0)), and therefore we exploit the Dominated Convergence Theorem to

obtain that

lim
ε↘0

∫
Rn\B3r(x0)

|u(y)− uε(y)| sup
x∈B1

K(x, y) dy = 0.

Consequently, condition (2.3.23) is satisfied, and therefore we can apply

Lemma 2.3.7, thus obtaining that Au = f in the viscosity sense, as desired.

With this preliminary work, we can now address the existence of solutions

for a Dirichlet problem in a generalized setting.

Theorem 2.3.13. Let K be as in (2.0.6) (2.1.4), (2.3.18), (2.3.35) and (2.3.36).

Let f be bounded and continuous in B1 and g ∈ Cα(Rn) for some α ∈
(0,min{2s, 1}). Assume that

|g(x)| ≤ C|x|α for all x ∈ Rn \B1.

Then, there exists a function u ∈ VK such thatAu
m
= f in B1,

u = g in Bc
1.

(2.3.50)

Also, the solution to (2.3.50) is not unique, since the space of solutions of

(2.3.50) has dimension Nm, with

Nm :=
m−1∑
j=0

(
j + n− 1

n− 1

)
.
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Proof. Firstly, we prove the existence of solutions for (2.3.50). For this goal,

we set

u1 := χBc4 g and g̃ := χB4\B1 g.

Since u1 is identically zero in B4 and K ∈ K+
m,ϑ, we can write Au1

m
= fu1

in B1 in both pointwise and viscosity sense, for some function fu1 , due to

Remark 2.1.11 and Lemma 2.3.6.

We now define f̃ := f − fu1 and consider the Dirichlet problem given byAũ = f̃ in B1,

ũ = g̃ in Bc
1.

(2.3.51)

By Proposition 2.3.10, we find that (2.3.51) has a unique weak solution ũ.

Moreover, thanks to Proposition 2.3.12, we get that ũ is a viscosity solution

of (2.3.51).

Furthermore, by Remark 2.3.4 and Corollary 2.3.8 we obtain thatAũ
m
= f̃ in B1,

ũ = g̃ in Bc
1.

Now, we set u := u1 + ũ and we get that Au = Au1 +Aũ
m
= fu1 + f̃ = f in B1.

Moreover, we have that u = u1 + g̃ = g in Bc
1. These observations give that

is u is solution of (2.3.50). This proves the existence of solution for (2.3.50).

Now, we focus on the second part of the proof. Namely we establish that

solutions of (2.3.50) are not unique and we determine the dimension of the

corresponding linear space. For this, we notice that, exploiting Propositions 2.3.10

and 2.3.12, one can find a unique solution ũP of the problemAũP = P in B1,

ũP = 0 in Bc
1.

(2.3.52)

Furthermore, AũP
0
= P in B1, due to Corollary 2.3.8. Using Remark 2.3.4, we

obtain that AũP
m
= P in B1. Moreover, from Remark 2.3.5, we obtain that ũP

is a solution of AũP
m
= 0 in B1,

ũP = 0 in Bc
1.

(2.3.53)
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This yields that if u is a solution of (2.3.50), then u+ ũP is also a solution of

(2.3.50).

Viceversa, if u and v are two solutions of (2.3.50), then w := u − v is a

solution of Aw
m
= 0 in B1,

w = 0 in Bc
1.

Here we can apply Lemma 2.3.9 with j := 0 thus obtaining that Aw
0
= P in

B1, where P is a polynomial of degP ≤ m − 1. We use Corollary 2.3.8 one

more time to find that Aw = P in B1,

w = 0 in Bc
1.

(2.3.54)

Therefore, the uniqueness of the solution of (2.3.54), confronted with (2.3.52),

gives us that w = ũP , and thus v = u+ ũP .

This reasoning gives that the space of solutions of (2.3.50) is isomorphic to

the space of polynomials with degree less than or equal to m − 1, which has

dimension Nm, given by (2.2.3).

2.4 Further possible developments

Another interesting application of the setting “up to a polynomial” can be its

possible extension to the noncommutative groups, in particular, to the Carnot

groups. Now we will introduce the fractional operator of our interest in the

spirit of the fractional Laplace operator (1.2.1), leaving apart the subsequent

theory that will be cultivated in a forthcoming research project.

In the paper [40], see Theorem 3.11, the authors found a representation for

the sub-Laplacian in an arbitrary Carnot group G. Precisely, given a parameter

s ∈ (0, 1), they introduced

R̃−2s(x) :=
s

|Γ(−s)|

+∞∫
0

h(t, x)

t1+s
dt, (2.4.1)

where the heat kernel h(t, x) : (0,+∞) × G → [0,+∞) is the fundamental

solution of the heat operator ∂t −∆G (refer to [43]). Moreover, the following

result holds true.
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Theorem 2.4.1. Let s ∈ (0, 1) and u ∈ S(G). Then

−(−∆G)su(x) = P.V.

∫
G

(u(y)− u(x))R̃−2s(y
−1x)dy, (2.4.2)

where ∆G is defined as in (1.4.2).

Observe that the kernelR−2s(x), being a positive and homogeneous function

of degree −2s − Q and smooth in G \ {0}, satisfies all the properties of a

homogeneous norm, if taken to the power − 1
Q+2s

. Hence, one can set

‖x‖s := R̃
− 1
Q+2s

−2s (x) (2.4.3)

and thus

−(−∆G)su(x) = P.V.

∫
G

u(y)− u(x)

‖y−1x‖Q+2s
s

dy.

Remark 2.4.2. We stress that the norm (2.4.3) is equivalent to the associated

homogeneous group norm. For example, in the Heisenberg group Hn the norms

(2.4.3) and (1.4.1) are equivalent.

Theorem 2.4.3. Let u ∈ S(G) and W (t, x) be a solution of the heat diffusion

problem ∂tW = ∆GW, in (0,+∞)×G,

W (0, x) = u(x).
(2.4.4)

Then

−(−∆G)su(x) =
2s

|Γ(−s)|

+∞∫
0

t−s−1(W (t, x)− u(x))dt. (2.4.5)

Proof. We know by [4] that W (t, x) is obtained by the convolution of the heat

kernel h(t, x) with u, namely

W (t, x) =

∫
G

h(t, y−1x)u(y)dy

is a solution to the problem (2.4.4). Using this and the property of heat kernel∫
G

h(t, x)dx = 1 for any t > 0,
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we compute

+∞∫
0

t−s−1(W (t, x)− u(x))dt =

+∞∫
0

t−s−1

∫
G

h(t, y)u(y−1x)dy − u(x)

∫
G

h(t, y)dy

 dt

=

+∞∫
0

∫
G

t−s−1h(t, y)(u(y−1x)− u(x))dydt

=

∫
G

(u(y−1x)− u(x))

+∞∫
0

t−s−1h(t, y)dtdy

=
|Γ(−s)|

s

∫
G

(u(y−1x)− u(x))R̃−2s(y)dy =
|Γ(−s)|

s

∫
G

u(y−1x)− u(x)

‖y‖Q+α
s

dy

=
|Γ(−s)|

2s

∫
G

u(xy) + u(y−1x)− 2u(x)

‖y‖Q+α
s

dy.

(2.4.6)

Notice, that following the idea of (1.2.5), we obtain that

−(−∆G)su(x) =

∫
G

u(xy) + u(y−1x)− 2u(x)

‖y‖Q+α
s

dy.

This and (2.4.6) yield

+∞∫
0

t−s−1(W (t, x)− u(x))dt = −|Γ(−s)|
2s

(−∆G)su(x),

thus proving (2.4.5).
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Chapter 3

Nonlinear equations

In this chapter we will take a closer look at fully nonlinear operators. In

particular, we consider operators of extremal type and also more general

operators later therein.

3.1 Extremal type operators

An important example of a nonlinear operator are extremal operators of Pucci

type. This section is dedicated to showcase some properties of these operators

and their connection with classical functions.

To start with, let us introduce some notions that will be used throughout

the current chapter. For some fixed positive real numbers λ and Λ, such that

0 < λ ≤ Λ, we define the set of quadratic, symmetric, positively defined

matrices as

Aλ,Λ = {A(x) ∈ Sn | 0 < λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for all ξ ∈ Rn}.

Then, it is convenient to introduce the set

Er := {x ∈ Rn | ‖
√
A−1x‖ ≤ r}

and the extremal operators of Pucci type

M+
λ,Λ(D2u(x)) = sup

A∈Aλ,Λ
Tr(A(x)D2u(x)),

M−λ,Λ(D2u(x)) = inf
A∈Aλ,Λ

Tr(A(x)D2u(x)).

91
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For a fixed s ∈ (0, 1) we define

Ls
Au(x) = c(n, s)

∫
Rn

2u(x)− u(x+ y)− u(x− y)

< A−1y, y >
n+2s

2

dy

det
√
A
,

where c(n, s) is the constant, introduced in (1.2.2). We remark that the

introduced operator is indeed the general case of fractional Laplacian, that

is, when Λ = λ = 1 we obtain A = I and

1

2
Ls
Iu(x) =

1

2
c(n, s)

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy = (−∆)su(x). (3.1.1)

However, the main objects of our interest are the following extremal operators

of Pucci type:

P−,s(u) := − sup
A∈Aλ,Λ

c(n, s)

∫
Rn

2u(x)− u(x+ y)− u(x− y)

< A−1y, y >
n+2s

2

dy

det
√
A

= − sup
A∈Aλ,Λ

Ls
Au(x), (3.1.2)

P+,s(u) := − inf
A∈Aλ,Λ

c(n, s)

∫
Rn

2u(x)− u(x+ y)− u(x− y)

< A−1y, y >
n+2s

2

dy

det
√
A

= − inf
A∈Aλ,Λ

Ls
Au(x), (3.1.3)

Next result shows basic properties of extremal operators and, in particular,

the behavior of operators when the parameter s approaches one.

Theorem 3.1.1. Let Λ ≥ λ > 0 and n ≥ 2. For any u ∈ C∞0 (Rn) the

following statements hold:

(i) P+,s(u) = −c(n, s)
∫
Rn

( λ
Λ

)n/2λs(∆2
yu(x))+ − (Λ

λ
)n/2Λs(∆2

yu(x))−

|y|n+2s
dy;

(ii) P−,s(u) = −c(n, s)
∫
Rn

(Λ
λ

)n/2Λs(∆2
yu(x))+ − ( λ

Λ
)n/2λs(∆2

yu(x))−

|y|n+2s
dy;

(iii) P−,s(−u) = −P+,s(u) and P+,s(−u) = −P−,s(u);

(iv) P−,s is concave whereas P+,s is convex;
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(v) lim
s→1−

P+,s(u) = −2M−λ,Λ(D2u(x));

(vi) lim
s→1−

P−,s(u) = −2M+
λ,Λ(D2u(x)).

Proof. (i) We begin the chain of equalities

P+,s(u) = − inf
A∈Aλ,Λ

LsAu(x) = − inf
A∈Aλ,Λ

(−LsA(−u)(x)) = sup
A∈Aλ,Λ

LsA(−u)(x)

= sup
A∈Aλ,Λ

c(n, s)

∫
Rn

(∆2
yu(x))+ − (∆2

yu(x))−

< A−1y, y >
n+2s

2

dy

det
√
A

= c(n, s)

∫
Rn

(Λ
λ )n/2Λs(∆2

yu(x))+ − ( λΛ)n/2λs(∆2
yu(x))−

|y|n+2s
dy.

Finally, using the fact that f+ = (−f)− , we arrive to the last equalities

P+,s(u) = c(n, s)

∫
Rn

(Λ
λ

)n/2Λs(∆2
yu(x))− − ( λ

Λ
)n/2λs(∆2

yu(x))+

|y|n+2s
dy

= −c(n, s)
∫
Rn

( λ
Λ

)n/2λs(∆2
yu(x))+ − (Λ

λ
)n/2Λs(∆2

yu(x))−

|y|n+2s
dy.

Thus (i) is proved as well as (ii) in the same way with infimum and supremum

exchanged.

(iv) Using both the definition of P+,s and the definition of convexity we write

for any t ∈ [0, 1]

P+,s (tu+ (1− t)v)

= − inf
A∈Aλ,Λ

c(n, s)

2

∫
Rn

∆2
y

(
tu+ (1− t)v

)
< A−1y, y >

n+2s
2

dy

det
√
A

≤ − inf
A∈Aλ,Λ

c(n, s)

2

∫
Rn

2tu(x)− tu(x+ y)− tu(x− y)

< A−1y, y >
n+2s

2

dy

det
√
A

− inf
A∈Aλ,Λ

c(n, s)

2

∫
Rn

2(1− t)v(x)− (1− t)v(x+ y)− (1− t)v(x− y)

< A−1y, y >
n+2s

2

dy

det
√
A

= tP+,s(u) + (1− t)P+,s(v).

This shows the convexity of P+,s and one proves the concavity of P−,s in the

same way only changing the inequality signs.
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(v) We notice that∣∣∣∣∣∣∣
∫

Rn\E1

2u(x)− u(x+ y)− u(x− y)

< A−1y, y >
n+2s

2

dy

det
√
A

∣∣∣∣∣∣∣
≤ 4‖u‖L∞(Rn)

∫
Rn\E1

1

|(
√
A)−1y|n+2s

dy

det
√
A

= 4‖u‖L∞(Rn)

∫
Rn\B1

1

|z|n+2s
dz = 4‖u‖L∞(Rn)ωn−1

∞∫
1

1

ρ1+2s
dρ =

2ωn−1

s
‖u‖L∞(Rn).

Then, knowing the behaviour of the dimentional constant,

lim
s→1−

c(n, s)

s(1− s)
=

4n

ωn−1

(refer to Corollary 4.2 in [31]), we get

lim
s→1−

c(n, s)

2

∫
Rn\E1

2u(x)− u(x+ y)− u(x− y)

< A−1y, y >
n+2s

2

dy

det
√
A

= 0. (3.1.4)

Furthermore, with the help of Cauchy-Swartz inequality, we have that∣∣∣∣∣∣
∫
E1

2u(x)− u(x+ y)− u(x− y)− < D2u(x)y, y >

< A−1y, y >
n+2s

2

dy

det
√
A

∣∣∣∣∣∣
≤ ‖u‖C3(Rn)

∫
B1

|y|3

|(
√
A)−1y|n+2s

dy

det
√
A

= ‖u‖C3(Rn)

∫
B1

|
√
Az|3

|z|n+2s
dz

≤ ‖u‖C3(Rn)

∫
B1

‖
√
A‖3|z|3

|z|n+2s
dz = ‖u‖C3(Rn)

∫
B1

‖
√
A‖3|z|3

|z|n+2s
dz

= ωn−1‖u‖C3(Rn)‖
√
A‖3

1∫
0

1

ρ2s−2
dz =

ωn−1

3− 2s
‖u‖C3(Rn)‖

√
A‖3.

(3.1.5)
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Recalling again the Taylor formula for u at the point x, we get

lim
s→1−

c(n, s)

2

∫
E1

2u(x)− u(x+ y)− u(x− y)

< A−1y, y >
n+2s

2

dy

det
√
A

= lim
s→1−

c(n, s)

2

∫
E1

< D2u(x)y, y >

< A−1y, y >
n+2s

2

dy

det
√
A
. (3.1.6)

On the other hand, we have∫
E1

< D2u(x)y, y >

< A−1y, y >
n+2s

2

dy

det
√
A

=

∫
B1

< D2u(x)
√
Az,
√
Az >

|z|n+2s
dz

=

∫
B1

<
√
AD2u(x)

√
Az, z >

|z|n+2s
dz

(3.1.7)

Then, denoting M(x) :=
√
AD2u(x)

√
A, we see that for i 6= j,∫

B1

mij(x)yi · yjdy = 0. (3.1.8)

From the other hand, for any fixed i, we have∫
B1

mii(x)y2
i

|y|n+2s
dy = mii(x)

∫
B1

y2
i

|y|n+2s
dy = mii(x)

∫
B1

y2
1

|y|n+2s
dy

=
mii(x)

n

n∑
k=1

∫
B1

y2
k

|y|n+2s
dy =

mii(x)

n

∫
B1

|y|2

|y|n+2s
dy

=
mii(x)ωn−1

2n(1− s)
.

(3.1.9)

Finally, putting together (3.1.4), (3.1.6), (3.1.7), (3.1.8) and (3.1.9), we end

up with

lim
s→1−

P+,s(u) = lim
s→1−

− inf
A∈Aλ,Λ

c(n, s)

∫
E1

2u(x)− u(x+ y)− u(x− y)

< A−1y, y >
n+2s

2

dy

det
√
A


= lim

s→1−

− inf
A∈Aλ,Λ

c(n, s)

∫
E1

< D2u(x)y, y >

< A−1y, y >
n+2s

2

dy

det
√
A


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= lim
s→1−

− inf
A∈Aλ,Λ

c(n, s)

∫
B1

<
√
AD2u(x)

√
Az, z >

|z|n+2s
dz



= lim
s→1−

− inf
A∈Aλ,Λ

c(n, s)

∫
B1

n∑
i=1

mii(x)z2
i

|z|n+2s
dz


= − inf

A∈Aλ,Λ
lim
s→1−

c(n, s)ωn−1

2n(1− s)

n∑
i=1

mii(x) = −2 inf
A∈Aλ,Λ

n∑
i=1

mii(x)

= −2 inf
A∈Aλ,Λ

Tr(A(x)D2u(x)).

This is the desired result and (vi) is proved analogously.

3.1.1 Applications

This section is devoted to possible applications of extremal operators and shows

their importance with connection to special functions, such as Gamma and

Beta functions (refer to Chapter 6 in [2]).

Let s ∈ (0, 1) and p > −1. We define

u(n)
p (x) = (1− |x|2)p+, x ∈ Rn,

v(n)
p (x) = (1− |x|2)p+xn, x ∈ Rn.

(3.1.10)

Lemma 3.1.2. For any s ∈ (0, 1), p > −1 and any x ∈ Rn it holds that

P−,su(n)
p (x) = −2

c(n, s)B(−s, p+ 1)Λs

Γ(n
2
)

(Λπ

λ

)n
2

2F1

(
s+

n

2
,−p+ s,

n

2
; |x|2

)
,

P−,sv(n)
p (x)

= −2
c(n+ 2, s)B(−s, p+ 1)πn/2+1Λs

Γ(n
2

+ 1)

(Λ

λ

)n
2

2F1

(
s+

n

2
+ 1,−p+ s,

n

2
+ 1; |x|2

)
,

Moreover, it holds that

P+,su(n)
p (x) = −2

c(n, s)B(−s, p+ 1)λs

Γ(n/2)

(λπ
Λ

)n
2

2F1

(
s+

n

2
,−p+ s,

n

2
; |x|2

)
,
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P+,sv(n)
p (x)

= −2
c(n+ 2, s)B(−s, p+ 1)πn/2+1λs

Γ(n/2 + 1)

(λ
Λ

)n
2

2F1

(
s+

n

2
+ 1,−p+ s,

n

2
+ 1; |x|2

)
.

Proof. We recall the relation between the fractional Laplace operator and the

operator LA (3.1.1), i.e.

(−4)su(x) =
1

2
Ls
Iu(x) =

c(n, s)

2

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy.

Using this and Theorem 1 in [35], we compute,

P−,su(n)
p (x) = − sup

A
Ls
Au

(n)
p (x)

= −2 sup
A
c(n, s)

∫
Rn

2u
(n)
p (x)− u(n)

p (x+ y)− u(n)
p (x− y)

〈A−1y, y〉n+2s
2

dy

det
√
A

= −2
(Λ

λ

)n
2
Λs

∫
Rn

2u
(n)
p (x)− u(n)

p (x+ y)− u(n)
p (x− y)

|y|n+2s
dy

= −2
(Λ

λ

)n
2
Λs(−4)su(n)

p (x) =

= −2
c(n, s)B(−s, p+ 1)Λs

Γ(n/2)

(Λπ

λ

)n
2

2F1

(
s+

n

2
,−p+ s,

n

2
; |x|2

)
.

(3.1.11)

In particular, it shows that if p = s+ 1, then

P−,su
(n)
s+1(x) = −2

c(n, s)B(−s, s+ 2)Λs

Γ(n/2)

(Λπ

λ

)n
2

2F1

(
s+

n

2
,−1,

n

2
; |x|2

)
= 22s+1

(Λ

λ

)n
2
Λs Γ(s+ 2)Γ

(n
2

+ s
)

Γ
(n

2

)−1
(

1−
(

1 +
2s

n

)
|x|2
)
.

If p = s we have

P−,su(n)
s (x) = −2

c(n, s)B(−s, s+ 1)Λs

Γ(n/2)

(Λπ

λ

)n
2

2F1

(
s+

n

2
, 0,

n

2
; |x|2

)
= −2

4sΓ
(
n
2

+ s
)

Γ(−s)Γ(s+ 1)

πn/2|Γ(−s)|Γ(1) Γ
(
n
2

) (Λπ

λ

)n
2
Λs · 1

= 22s+1
(Λ

λ

)n
2
Λs Γ(s+ 1)Γ

(n
2

+ s
)

Γ
(n

2

)−1

.

(3.1.12)
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Moreover, using the same reasoning, we get for v
(n)
p ,

P−,sv(n)
p (x) = − sup

A
Ls
Av

(n)
p (x)

= −2 sup
A
c(n, s)

∫
Rn

2v
(n)
p (x)− v(n)

p (x+ y)− v(n)
p (x− y)

〈A−1y, y〉n+2s
2

dy

det
√
A

= −2
(Λ

λ

)n
2
Λs

∫
Rn

2v
(n)
p (x)− v(n)

p (x+ y)− v(n)
p (x− y)

|y|n+2s
dy

= −2
(Λ

λ

)n
2
Λs(−4)sv(n)

p (x)

= −2
c(n+ 2, s)B(−s, p+ 1)πn/2+1Λs

Γ(n/2 + 1)

(Λ

λ

)n
2

2F1

(
s+

n

2
+ 1,−p+ s,

n

2
+ 1; |x|2

)
.

(3.1.13)

When p = s we have

P−,sv(n)
s (x) = 22s+1

(Λ

λ

)n
2
Λs Γ(s+ 1)Γ

(n
2

+ s+ 1
)

Γ
(n

2
+ 1
)−1

xn.

As a consequence of Lemma 3.1.2, we get the next nice corollary.

Corollary 3.1.3. If n = 1 and p = s we have

P−,s(1− x2)s = −2ΛsΓ(2s+ 1).

Proof. Notice that the matrix A in this case becomes a number a and we get

Ls
au(x) = c(1, s)

+∞∫
−∞

2u(x)− u(x+ y)− u(x− y)

〈a−1y, y〉 1+2s
2

dy√
a

=
c(1, s)

a
1
2a−

1+2s
2

+∞∫
−∞

2u(x)− u(x+ y)− u(x− y)

|y|1+2s
dy = 2as(−4)su(x).

Table 1 in [35] tells us that for x ∈ (−1, 1) holds

(−4)s(1− x2)s = Γ(2s+ 1).
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Thus for x ∈ (−1, 1) we calculate

P−,s(1−x2)s = − sup
a

Ls
a(1−x2)s = − sup

a
2as(−4)s(1−x2)s = −2ΛsΓ(2s+1).

3.2 Regularity of solutions to fully nonlinear

equations

In this section we prove the main products of this chapter, which are the

regularity results of solutions to fully nonlinear equations. We consequently

prove the Lipschitz and C1,1 regularity of solutions, using the method of H.

Ishii and P. Lions.

Given s ∈ (0, 1), we consider the space of functions

G :=

u : Rn → R, s.t. u ∈ C(Rn) and

∫
Rn

|u(t)|
1 + |t|n+2s

dt < +∞

 .

Also, we take the family of operators (1.3.1) and set the following class of

linear operators for any s ∈ (0, 1) and given Λ ≥ λ > 0:

L :=

{
L

∣∣∣∣ K ≥ 0 and symmetric: c(n, s)
λ

|t|n+2s
≤ K(t) ≤ c(n, s)

Λ

|t|n+2s

}
.

(3.2.1)

Definition 3.2.1. Given a family of operators L, we set

M−
L u(x) := inf

L∈L
Lu(x),

M+
L u(x) := sup

L∈L
Lu(x).

For a nonlocal operator F we state the uniform ellipticity property and

recall some other notions that are crucial to formulate the main results of this

section.

Definition 3.2.2. We say that F : G → R is uniformly elliptic in Ω if for
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any x, y ∈ Ω and u, v ∈ G such that if there exist ε > 0 such that∣∣∣∣∣∣∣
∫

Bε(x)

∆2
tu(x)

|t|n+2s
dt

∣∣∣∣∣∣∣ < +∞ and

∣∣∣∣∣∣∣
∫

Bε(y)

∆2
tv(y)

|t|n+2s
dt

∣∣∣∣∣∣∣ < +∞,

then we have

M−
L (u(x)− v(y)) ≤ Fu(x)− Fv(y) ≤M+

L (u(x)− v(y)).

Definition 3.2.3. We call an operator F : G→ R convex if for any two given

functions u, v ∈ G and all t ∈ [0, 1] it holds that

F (tu+ (1− t)v) ≤ tFu+ (1− t)Fv.

Definition 3.2.4. An operator F : G→ R is said to be nonnegatively homoge-

neous if for all r ≥ 0 and a given u ∈ G it holds that

F (ru) = rFu.

Next result shows that the solutions of a fully nonlinear nonlocal equation

are Lipschitz, provided that the operator satisfies the homogeneity and uniform

ellipticity property.

Theorem 3.2.5. Let F : G→ R be nonnegatively homogeneous of degree one

and uniformly elliptic in the sense of Definition 3.2.2. Let also f be bounded

and continuous in B1 and u ∈ L∞(Rn) ∩ C(Rn) be a viscosity solution to

Fu(x) = f(x) in B1. (3.2.2)

Then for all x, y ∈ B1/2

|u(x)− u(y)| ≤ L|x− y| (3.2.3)

for some positive constant L.

Proof. Without loss of generality we assume that

0 ≤ u ≤ 1 in B1.
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Otherwise divide (3.2.2) by ‖u‖L∞(B1), and denote f̃ := f/‖u‖L∞(B1), thus

obtaining, thanks to homogeneity,

Fv(x) = f̃(x),

which has the structure of the original equation.

Let L, L̃ be positive constants and

ϕ(x, y) := L|x− y| − L̃|x− y|3/2

for any x, y ∈ B1.

Now choose ζ ∈ B1/4 and set, for all x, y ∈ B1,

Φ(x, y) = u(x)− u(y)− ϕ(x, y)− 2|x− ζ|2.

Now we prove that Φ ≤ 0 (refer to [48] or [64] for additional details). For this

goal suppose that there exist x̂, ŷ ∈ B1 such that

sup
B1×B1

Φ(x̂, ŷ) > 0. (3.2.4)

Observe that ϕ(x̂, ŷ) 6= 0. Otherwise, take L > 2L̃ and suppose

ϕ(x̂, ŷ) = L|x̂− ŷ|

(
1− L̃

L
|x̂− ŷ|1/2

)
= 0.

It follows that x̂ = ŷ and thus Φ ≤ 0, giving us a contradiction with (3.2.4).

Now we notice that if L > 4L̃ is large enough and (x̂, ŷ) ∈ ∂(B1 × B1),

then ϕ(x̂, ŷ) > 0, giving us that

ϕ(x̂, ŷ) + 2|x̂− ζ|2 = L|x̂− ŷ|

(
1− L̃

L
|x̂− ŷ|1/2

)
+ 2|x̂− ζ|2 ≥ 1,

and thus Φ(x̂, ŷ) ≤ 0, that yields a contradiction with (3.2.4). As a consequence,

we have that (x̂, ŷ) /∈ ∂(B1 ×B1).

Therefore, we can use the Theorem of Sums 1.3.6, i.e. there exist X, Y ∈ Sn
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such that

(Dxϕ(x̂, ŷ), X) ∈ J2,+(
u(x̂)− 2|x̂− ζ|2

)
,

(−Dyϕ(x̂, ŷ), Y ) ∈ J2,−
u(ŷ),(

X 0

0 −Y

)
≤ D2ϕ(x̂, ŷ) + µ(D2ϕ(x̂, ŷ))2.

(3.2.5)

By definition, (Dxϕ(x̂, ŷ), X) ∈ J2,+(
u(x̂)− 2|x̂− ζ|2

)
can be written as

u(x)− 2|x− ζ|2 ≤ u(x̂)− 2|x̂− ζ|2 + 〈Dxϕ(x̂, ŷ), x− x̂〉+ 1

2
〈X(x− x̂), x− x̂〉,

u(x) ≤ u(x̂)+〈Dxϕ(x̂, ŷ), x−x̂〉+2〈x, x−x̂〉+2〈x̂−2ζ, x−x̂〉+1

2
〈X(x−x̂), x−x̂〉,

u(x) ≤ u(x̂) + 〈Dxϕ(x̂, ŷ), x− x̂〉+ 〈2x̂− 4ζ, x− x̂〉+ 〈2x̂, x− x̂〉+ 2|x− x̂|2

+
1

2
〈X(x− x̂), x− x̂〉,

u(x) ≤ u(x̂) + 〈Dxϕ(x̂, ŷ), x− x̂〉+ 〈4x̂−4ζ, x− x̂〉+ 1

2
〈(X+ 4I)(x− x̂), x− x̂〉.

As a consequence, from (3.2.5) we conclude

(Dxϕ(x̂, ŷ) + 4x̂− 4ζ,X + 4I) ∈ J̄2,+u(x̂),

(−Dyϕ(x̂, ŷ), Y ) ∈ J̄2,−u(ŷ),

and

(
X 0

0 −Y

)
≤ D2ϕ(x̂, ŷ) + µ(D2ϕ(x̂, ŷ))2. (3.2.6)

Now we compute, recalling that |x̂− ŷ| 6= 0,

Dϕ(x̂, ŷ) =

(
L

|x̂− ŷ|
− 3L̃

|x̂− ŷ|1/2

)(
x̂− ŷ
ŷ − x̂

)
,

D2ϕ(x̂, ŷ) =

(
M −M
−M M

)
,

where

M =

(
L

|x̂− ŷ|
− 3L̃

|x̂− ŷ|1/2

)
I +

(
3L̃

|x̂− ŷ|1/2
− L

|x̂− ŷ|

)
x̂− ŷ
|x̂− ŷ|

⊗ x̂− ŷ
|x̂− ŷ|

.
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Furthermore,

(D2ϕ(x̂, ŷ))2 = 2

(
M2 −M2

−M2 M2

)
,

where we denoted

M2 =

(
L

|x̂− ŷ|
− 3L̃

2|x̂− ŷ|1/2

)2

I

+

(
L

|x̂− ŷ|
− 3L̃

2|x̂− ŷ|1/2

)(
3L̃

4|x̂− ŷ|1/2
− L

|x̂− ŷ|

)
x̂− ŷ
|x̂− ŷ|

⊗ x̂− ŷ
|x̂− ŷ|

+

(
3L̃

4|x̂− ŷ|1/2
− L

|x̂− ŷ|

)2
x̂− ŷ
|x̂− ŷ|

⊗ x̂− ŷ
|x̂− ŷ|

=

(
L

|x̂− ŷ|
− 3L̃

2|x̂− ŷ|1/2

)2

I

+

(
L

|x̂− ŷ|
− 3L̃

4|x̂− ŷ|1/2

)(
3L̃

4|x̂− ŷ|1/2

)
x̂− ŷ
|x̂− ŷ|

⊗ x̂− ŷ
|x̂− ŷ|

.

In particular, taking ξ ∈ Rn and inequality (3.2.6), we see that

(
ξ ξ

)(X 0

0 −Y

)(
ξ

ξ

)

≤
(
ξ ξ

)( M −M
−M M

)(
ξ

ξ

)
+ µ

(
ξ ξ

)( M2 −M2

−M2 M2

)(
ξ

ξ

)
,

which is exactly

ξT (X − Y )ξ ≤ 0. (3.2.7)

This means that all the eigenvalues of the matrix X − Y are nonpositive.

Observe also that using vectors
(
ξ 0

)T
and

(
0 ξ

)T
, we get from (3.2.6),

ξTXξ ≤ ξT (M + µM2)ξ,

−ξTY ξ ≤ ξT (M + µM2)ξ.
(3.2.8)
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Notice now that, if ξ =
x̂− ŷ
|x̂− ŷ|

, then

2

(
x̂− ŷ
|x̂− ŷ|

)T
(M + µM2)

x̂− ŷ
|x̂− ŷ|

= − 3L̃

2|x̂− ŷ|1/2
+ 4µ

(
L2

|x̂− ŷ|2
− 9LL̃

|x̂− ŷ|3/2
+

27L̃2

16|x̂− ŷ|

)
. (3.2.9)

The factor

L2

|x̂− ŷ|2
− 9LL̃

|x̂− ŷ|3/2
+

27L̃2

16|x̂− ŷ|
=

(
L

|x̂− ŷ|
− 9L̃

8|x̂− ŷ|1/2

)2

+
27L̃2

64|x̂− ŷ|

is positive, which yields that we can choose µ such that

4µ

(
L2

|x̂− ŷ|2
− 9LL̃

|x̂− ŷ|3/2
+

27L̃2

16|x̂− ŷ|

)
<

L̃

2|x̂− ŷ|1/2
.

This, (3.2.6) and (3.2.9) lead us to the fact that

one of the eigenvalues of X − Y is negative. (3.2.10)

Now, take r1, r2 > 0 such that Br1(x̂), Br2(ŷ) b B1, and set

v(x) :=


u(x̂) + 〈Dxϕ(x̂, ŷ) + 4(x̂− ζ), x− x̂〉

+1
2〈(X + 4I)(x− x̂), x− x̂〉+ o(|x− x̂|2), if x ∈ Br1(x̂);

u(x), if x /∈ Br1(x̂).

w(y) :=

u(ŷ)− 〈Dyϕ(x̂, ŷ), y − ŷ〉+ 1
2〈Y (y − ŷ), y − ŷ〉+ o(|y − ŷ|2), if y ∈ Br2(ŷ);

u(y), if y /∈ Br2(ŷ).

Since u is a viscosity solution to (3.2.2), we find that

Fv(x̂) ≤ f(x̂), (3.2.11)

Fw(ŷ) ≥ f(ŷ). (3.2.12)
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Then (3.2.11), (3.2.12) and the uniform ellipticity property 3.2.2 give

0 ≥ Fv(x̂)− Fw(ŷ)− f(x̂) + f(ŷ)

≥M−
L (v(x̂)− w(ŷ))− 2‖f‖L∞(B1).

(3.2.13)

Now, we fix r < min{r1, r2} and use (3.2.13), obtaining

0 ≥ inf
L∈L

L(v(x̂)− w(ŷ))− 2‖f‖L∞(B1)

≥ inf
K

(∫
Br

(∆2
t v(x̂)−∆2

tw(ŷ))K(t)dt+

∫
Bcr

(∆2
t v(x̂)−∆2

tw(ẑ))K(t)dt

)
− 2‖f‖L∞(B1),

(3.2.14)

where the notation of the centered difference (1.1.3) has been exploited. Recall that

the functions v, w are smooth in small neighborhoods of x̂, and ŷ, respectively.

Hence, we can apply the Taylor formula in (3.2.14) and get

0 ≥ inf
K

∫
Br

〈(Y −X − 4I)t, t〉K(t)dt + inf
K

∫
Bcr

(∆2
tv(x̂)−∆2

tw(ẑ))K(t)dt

− 2‖f‖L∞(B1).

(3.2.15)

Set M = (mij) := Y −X − 4I, and observe that for i 6= j,∫
Br

mij · ti · tj ·K(t)dt = 0, (3.2.16)

due to positivity and symmetry of the kernel.

In particular, for any fixed i, we have∫
Br

miit
2
i K(t)dt =

∫
Br

miit
2
i K(t)dt =

∫
Br

miiv(x)t21K(t)dt

=
n∑
k=1

∫
Br

mii

n
t2kK(t)dt =

∫
Br

mii

n
|t|2K(t)dt.

(3.2.17)

Taking use of (3.2.7) and (3.2.10), and then exploiting (3.2.16) and (3.2.17),
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we have that (3.2.15) becomes

0 ≥ Tr(Y −X − 4I)
1

n
inf
K

∫
Br

|t|2K(t)dt

− 8‖u‖L∞(Rn) sup
K

∫
Bcr

K(t)dt− 2‖f‖L∞(B1)

≥ L̃

|x̂− ŷ|1/2
λcn,s
n

∫
Br

1

|t|n+2s−2
dt− 4λcn,s

∫
Br

1

|t|n+2s−2
dt

− 8‖u‖L∞(Rn)Λcn,s

∫
Bcr

1

|t|n+2s
dt− 2‖f‖L∞(B1).

(3.2.18)

All integrals in (3.2.18) are convergent, due to the fact that s ∈ (0, 1).

Moreover, the right hand side of (3.2.18) becomes positive, since

L̃

|x̂− ŷ|1/2
→ +∞

as L̃→ +∞, which gives us a contradiction.

Hence, we proved that Φ(x, y) = u(x)−u(y)−ϕ(x, y)− 2|x− ζ|2 ≤ 0, that

yields (3.2.3), setting ζ = x.

In fact, we are able to prove that the solutions of an equation involving a

fully nonlinear operator are even more regular, as the following result shows.

Theorem 3.2.6. Let F : G → R be convex, nonnegatively homogeneous of

degree one and uniformly elliptic in the sense of Definition 3.2.2. Let also

f be bounded and continuous in B1 and u ∈ L∞(Rn) ∩ C(Rn) be a viscosity

solution to

Fu(x) = f(x) in B1. (3.2.19)

Then for all x, y ∈ B1/2∣∣∣∣u(x) + u(y)− 2u

(
x+ y

2

)∣∣∣∣ ≤ L1|x− y|2 (3.2.20)

for some positive constant L1.

Proof. Without loss of generality we assume that

0 ≤ u ≤ 1 in B1.

Otherwise one divides (3.2.19) by ‖u‖L∞(B1) and denotes f̃ := f/‖u‖L∞(B1),
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obtaining by virtue of homogeneity

Fv(x) = f̃(x),

which has the structure of the original equation.

Let L1, L2, L3, L4 be positive constants and

ϕ(x, y, z) := L1|x− y|2 − L2|x− y|5/2 + L3|x+ y − 2z| − L4|x+ y − 2z|3/2

for any x, y, z ∈ B1.

Now choose ζ ∈ B1/2, and set, for all x, y, z ∈ B1,

Φ(x, y, z) = u(x) + u(y)− 2u(z)− ϕ(x, y, z)− 2|x− ζ|2.

We shall show now that Φ ≤ 0. For this goal suppose that there exist x̂, ŷ, ẑ ∈
B1 such that

sup
B1×B1×B1

Φ(x̂, ŷ, ẑ) > 0. (3.2.21)

Observe that ϕ(x̂, ŷ, ẑ) 6= 0. Otherwise, take L1 > 2L2 and L3 > 4L4. If

ϕ(x̂, ŷ, ẑ)

= L1|x̂−ŷ|2
(

1− L2

L1

|x̂− ŷ|1/2
)

+L3|x̂+ŷ−2ẑ|
(

1− L4

L3

|x̂+ ŷ − 2ẑ|1/2
)

= 0,

then it follows that x̂ = ŷ = ẑ and thus Φ ≤ 0, giving us a contradiction with

(3.2.21).

Now we notice that if L1, L3 are large enough and (x̂, ŷ, ẑ) ∈ ∂(B1×B1×B1),

then ϕ(x̂, ŷ, ẑ) > 0, giving us that

ϕ(x̂, ŷ, ẑ) + 2|x̂− ζ|2 = L1|x̂− ŷ|2
(

1− L2

L1

|x̂− ŷ|1/2
)

+ L3|x̂+ ŷ − 2ẑ|
(

1− L4

L3

|x̂+ ŷ − 2ẑ|1/2
)

+ 2|x̂− ζ|2 ≥ 2,

and therefore Φ(x̂, ŷ, ẑ) ≤ 0, that yields (x̂, ŷ, ẑ) /∈ ∂(B1×B1×B1). Furthermore,

we can use the Theorem of Sums (1.3.6) and state that there existX, Y, Z ∈ Sn

such that

(Dxϕ(x̂, ŷ, ẑ) + 4(x̂− ζ), X + 4I) ∈ J̄2,+u(x̂),
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(Dyϕ(x̂, ŷ, ẑ), Y ) ∈ J̄2,+u(ŷ),

(Dzϕ(x̂, ŷ, ẑ), Z) ∈ −2J̄2,−(u(ẑ)),

X 0 0

0 Y 0

0 0 Z

 ≤ D2ϕ(x̂, ŷ, ẑ) + µ(D2ϕ(x̂, ŷ, ẑ))2. (3.2.22)

Now we compute, assuming |x̂− ŷ| 6= 0 and |x̂+ ŷ − 2ẑ| 6= 0,

Dϕ(x̂, ŷ, ẑ) = 2L1

x̂− ŷŷ − x̂
0

− 5

2
L2|x̂− ŷ|1/2

x̂− ŷŷ − x̂
0



+L3|x̂+ŷ−2ẑ|−1

 x̂+ ŷ − 2ẑ

x̂+ ŷ − 2ẑ

−2x̂− 2ŷ + 4ẑ

−3

2
L4|x̂+ŷ−2ẑ|−1/2

 x̂+ ŷ − 2ẑ

x̂+ ŷ − 2ẑ

−2x̂− 2ŷ + 4ẑ

 .

(3.2.23)

We also calculate the Hessian matrix of ϕ at the point (x̂, ŷ, ẑ). Namely, we

denote

ẽ :=
x̂− ŷ
|x̂− ŷ|

and ē :=
x̂+ ŷ − 2ẑ

|x̂+ ŷ − 2ẑ|
and obtain

D2ϕ(x̂, ŷ, ẑ) = 2L1


I −I 0

−I I 0

0 0 0

− 5

4
L2|x̂− ŷ|−3/2


x̂− ŷ
ŷ − x̂

0

⊗

x̂− ŷ
ŷ − x̂

0



− 5

2
L2|x̂− ŷ|1/2


I −I 0

−I I 0

0 0 0



− L3|x̂+ ŷ − 2ẑ|−3


x̂+ ŷ − 2ẑ

x̂+ ŷ − 2ẑ

−2x̂− 2ŷ + 4ẑ

⊗


x̂+ ŷ − 2ẑ

x̂+ ŷ − 2ẑ

−2x̂− 2ŷ + 4ẑ



+ L3|x̂+ ŷ − 2ẑ|−1


I I −2I

I I −2I

−2I −2I 4I


(3.2.24)
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− 3

2
L4|x̂+ ŷ − 2ẑ|−1/2


I I −2I

I I −2I

−2I −2I 4I



+
3

4
L4|x̂+ ŷ − 2ẑ|−5/2


x̂+ ŷ − 2ẑ

x̂+ ŷ − 2ẑ

−2x̂− 2ŷ + 4ẑ

⊗


x̂+ ŷ − 2ẑ

x̂+ ŷ − 2ẑ

−2x̂− 2ŷ + 4ẑ



= (2L1 −
5

2
L2|x̂− ŷ|1/2)


I −I 0

−I I 0

0 0 0

− 5

4
L2|x̂− ŷ|−3/2


x̂− ŷ
ŷ − x̂

0

⊗

x̂− ŷ
ŷ − x̂

0


− (L3|x̂+ ŷ − 2ẑ|−3 − 3

4
L4|x̂+ ŷ − 2ẑ|−5/2)

×


x̂+ ŷ − 2ẑ

x̂+ ŷ − 2ẑ

−2x̂− 2ŷ + 4ẑ

⊗


x̂+ ŷ − 2ẑ

x̂+ ŷ − 2ẑ

−2x̂− 2ŷ + 4ẑ



+ (L3|x̂+ ŷ − 2ẑ|−1 − 3

2
L4|x̂+ ŷ − 2ẑ|−1/2)


I I −2I

I I −2I

−2I −2I 4I



= (2L1 −
5

2
L2|x̂− ŷ|1/2)︸ ︷︷ ︸
a


I −I 0

−I I 0

0 0 0

− 5

4
L2|x̂− ŷ|1/2︸ ︷︷ ︸

b


ẽ

−ẽ
0

⊗

ẽ

−ẽ
0



+ (−L3|x̂+ ŷ − 2ẑ|−1 +
3

4
L4|x̂+ ŷ − 2ẑ|−1/2)︸ ︷︷ ︸

c


ē

ē

−2ē

⊗


ē

ē

−2ē



+ (L3|x̂+ ŷ − 2ẑ|−1 − 3

2
L4|x̂+ ŷ − 2ẑ|−1/2)︸ ︷︷ ︸

d


I I −2I

I I −2I

−2I −2I 4I

 .

(3.2.25)

Let us denote

ã := 8L2
1 − 20L1L2|x̂− ŷ|1/2 +

25

2
L2

2|x̂− ŷ|,

b̃ := −5L1L2|x̂− ŷ|−3/2 +
25

4
L2

2|x̂− ŷ|−1|x̂− ŷ|2,

c̃ :=
25

8
L2

2|x̂− ŷ|,
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and

p̃ := 6L2
3|x̂+ ŷ − 2ẑ|−2 − 9L3L4|x̂+ ŷ − 2ẑ|−3/2 +

27

8
L2

4|x̂+ ŷ − 2ẑ|−1,

q̃ := −12L2
3|x̂+ ŷ − 2ẑ|−2 + 27L3L4|x̂+ ŷ − 2ẑ|−3/2 − 27

2
L2

4|x̂+ ŷ − 2ẑ|−1,

d̃ := 6L2
3|x̂+ ŷ − 2ẑ|−2 − 18L3L4|x̂+ ŷ − 2ẑ|−3/2 +

27

2
L2

4|x̂+ ŷ − 2ẑ|−1.

With this notation, we can find the square of the Hessian matrix (D2ϕ(x̂, ŷ, ẑ))2.

Indeed, naming by v := x− y and w := x+ y − 2z, we compute,

 I −I 0

−I I 0

0 0 0

 ·
 v

−v
0

⊗
 v

−v
0



=

 v

−v
0

⊗
 v

−v
0

 ·
 I −I 0

−I I 0

0 0 0

 = 2

 vvT −vvT 0

−vvT vvT 0

0 0 0

 ,

 I −I 0

−I I 0

0 0 0


2

= 2

 I −I 0

−I I 0

0 0 0

 ,

 I −I 0

−I I 0

0 0 0

 ·
 w

w

−2w

⊗
 w

w

−2w



=

 w

w

−2w

⊗
 w

w

−2w

 ·
 I −I 0

−I I 0

0 0 0

 =

0 0 0

0 0 0

0 0 0

 ,
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−I I 0

0 0 0

 ·
 I I −2I

I I −2I

−2I −2I 4I



=

 I I −2I

I I −2I

−2I −2I 4I

 ·
 I −I 0

−I I 0

0 0 0

 =

0 0 0

0 0 0

0 0 0

 ,

 v

−v
0

⊗
 v

−v
0

 ·
 w

w

−2w

⊗
 w

w

−2w



=

 w

w

−2w

⊗
 w

w

−2w

 ·
 v

−v
0

⊗
 v

−v
0

 =

0 0 0

0 0 0

0 0 0

 ,

 I I −2I

I I −2I

−2I −2I 4I

 ·
 v

−v
0

⊗
 v

−v
0



=

 v

−v
0

⊗
 v

−v
0

 ·
 I −I −2I

I I −2I

−2I −2I 4I

 =

0 0 0

0 0 0

0 0 0

 ,

 I I −2I

I I −2I

−2I −2I 4I

 ·
 w

w

−2w

⊗
 w

w

−2w



=

 w

w

−2w

⊗
 w

w

−2w

 ·
 I −I −2I

I I −2I

−2I −2I 4I



= 6

 wwT wwT −2wwT

wwT wwT −2wwT

−2wwT −2wwT 4wwT

 ,
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
 v

−v
0

⊗
 v

−v
0




2

= 2

 (vvT )2 −(vvT )2 0

−(vvT )2 (vvT )2 0

0 0 0

 ,


 w

w

−2w

⊗
 w

w

−2w




2

= 6

 (wwT )2 (wwT )2 −2(wwT )2

(wwT )2 (wwT )2 −2(wwT )2

−2(wwT )2 −2(wwT )2 4(wwT )2

 ,

 I I −2I

I I −2I

−2I −2I 4I


2

= 6

 I I −2I

I I −2I

−2I −2I 4I

 .

Thus we get

(D2ϕ(x̂, ŷ, ẑ))2

= ã

 I −I 0

−I I 0

0 0 0

+ b̃

 ẽẽT −ẽẽT 0

−ẽẽT ẽẽT 0

0 0 0



+ c̃

 (ẽẽT )2 −(ẽẽT )2 0

−(ẽẽT )2 (ẽẽT )2 0

0 0 0



+ p̃

 (ēēT )2 (ēēT )2 −2(ēēT )2

(ēēT )2 (ēēT )2 −2(ēēT )2

−2(ēēT )2 −2(ēēT )2 4(ēēT )2



+ q̃

 ēēT ēēT −2ēēT

ēēT ēēT −2ēēT

−2ēēT −2ēēT 4ēēT

+ d̃

 I I −2I

I I −2I

−2I −2I 4I

 .

(3.2.26)

Notice also that

ξT ẽẽT ξ ≤ |ξ|2,

ξT ēēT ξ ≤ |ξ|2.
(3.2.27)

Moreover, all matrices in (3.2.26) are nonnegatively definite. Indeed, for
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example, taking the matrix  ẽẽT −ẽẽT 0

−ẽẽT ẽẽT 0

0 0 0


we calculate that

(ẽẽT )ẽ = ẽ(ẽT ẽ) = 1 · ẽ,

which shows that the matrix has eigenvalue one of multiplicity one, and eigenvalue

zero of multiplicity 3n−1. This yields that the considered matrix is nonnegatively

definite. Similarly, one proves that other matrices in (3.2.26) are nonnegatively

definite, as stated.

On the one hand, multiplying both sides of (3.2.22) by the vector (ξ, ξ, ξ)T ,

we get that

X + Y + Z ≤ 0. (3.2.28)

From the other hand, the inequality (3.2.22) (we use

ξ0
0

,

0

ξ

0

 and

0

0

ξ

,

respectively) gives us

〈ξTX, ξ〉 ≤ a|ξ|2 − b|ξT ẽ|2 + c|ξT ē|2 + d|ξ|2

+ µ(ã|ξ|2 + b̃|ξT ẽ|2 + c̃|ξT ẽẽT |2 + p̃|ξT ēēT |2 + q̃|ξT ē|2 + d̃|ξ|2),

〈ξTY, ξ〉 ≤ a|ξ|2 − b|ξT ẽ|2 + c|ξT ē|2 + d|ξ|2

+ µ(ã|ξ|2 + b̃|ξT ẽ|2 + c̃|ξT ẽẽT |2 + p̃|ξT ēēT |2 + q̃|ξT ē|2 + d̃|ξ|2),

〈ξTZ, ξ〉 ≤ 4c|ξT ē|2 + 4d|ξ|2

+ µ(4p̃|ξT ēēT |2 + 4q̃|ξT ēēT |2 + 4d̃|ξ|2).

(3.2.29)

Observe that, fixed L1 > 100L2, L3 > 100L4, and recalling that

|x̂− ŷ|1/2 < 2 and |x̂+ ŷ − 2ẑ| < 4,

one has that

a = 2L1 −
5

2
L2|x̂− ŷ|1/2 > 200L2 − 5L2 = 195L2 > 0,

d = L3|x̂+ ŷ − 2ẑ|−1 − 3

2
L4|x̂+ ŷ − 2ẑ|−1/2
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= L3|x̂+ ŷ − 2ẑ|−1/2(|x̂+ ŷ − 2ẑ|−1/2 − 3L4

2L3

),

=
97

200
L3|x̂+ ŷ − 2ẑ|−1/2 > 0,

c = −L3|x̂+ ŷ − 2ẑ|−1 +
3

4
L4|x̂+ ŷ − 2ẑ|−1/2

= −L3|x̂+ ŷ − 2ẑ|−1/2(|x̂+ ŷ − 2ẑ|−1/2 − 3L4

4L3

),

<
197

400
L3|x̂+ ŷ − 2ẑ|−1/2 < 0.

The same idea can be applied to estimate (D2ϕ(x̂, ŷ, ẑ))2, that is,

ã = 2(2L1 −
5

2
L2|x̂+ ŷ − 2ẑ|1/2)2 > 2 · 1952L2

2 > 0,

b̃ = −5L1L2|x− y|1/2 +
25

4
L2

2|x̂− ŷ| = −L2|x̂− ŷ|1/2(5L1 −
25

2
L2

2|x− y|1/2)

< −475L2
2|x̂− ŷ|1/2 < 0,

p̃ = 6(L3|x̂+ ŷ − 2ẑ|−1 − 3

4
L4|x̂+ ŷ − 2ẑ|−1/2)2

> 6

(
197

400

)2

L2
3|x̂+ ŷ − 2ẑ|−1 > 0.

(3.2.30)

In a similar way we estimate also the remaining coefficients,

q̃ = −12L3|x̂+ ŷ − 2ẑ|−2 + 27L3L4|x̂+ ŷ − 2ẑ|−3/2 − 27

2
L2

4|x̂+ ŷ − 2ẑ|−1

= −12

(
L3|x̂+ ŷ − 2ẑ|−1 − 27

24
L4|x̂+ ŷ − 2ẑ|−1/2

)2

+ 12

(
27

24

)2

L2
4|x̂+ ŷ − 2ẑ|−1 − 27

2
L2

4|x̂+ ŷ − 2ẑ|−1

< −12

(
1183

24

)2

L2
2|x̂+ ŷ − 2ẑ|−1 + 12

(
27

24

)2

L2
4|x̂+ ŷ − 2ẑ|−1

− 27

2
L2

4|x̂+ ŷ − 2ẑ|−1 < 0,

d̃ = 6

(
L3|x̂+ ŷ − 2ẑ|−1 − 3

2
L4|x̂+ ŷ − 2ẑ|−1/2

)2

> 6

(
197

200

)2

L2
3|x̂+ ŷ − 2ẑ|−1 > 0.
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To sum up, we have that

a, b, d, ã, c̃, p̃, d̃ are positive, whereas

c, b̃, q̃ are negative.

This, (3.2.29) and (3.2.27) together yield

〈ξTX, ξ〉 ≤ (a+ d+ µ(ã+ c̃+ p̃+ d̃))|ξ|2 + c|ξT ē|,

〈ξTY, ξ〉 ≤ (a+ d+ µ(ã+ c̃+ p̃+ d̃))|ξ|2 + c|ξT ē|,

〈ξTZ, ξ〉 ≤ (4d+ µ(4p̃+ 4d̃))|ξ|2 + 4c|ξT ē|.

(3.2.31)

Now, summing inequalities (3.2.31), and then taking ξ = ē, we obtain

〈ē(X + Y + Z), ē〉 ≤ (2a+ 6d+ µ(2ã+ 2c̃+ 6p̃+ 6d̃))|ē|2 + 6c|ē|2

= 2a+ 6d+ 6c+ µ(2ã+ 2c̃+ 6p̃+ 6d̃)

= 4L1 − 5L2|x̂− ŷ|1/2 + 6L3|x̂+ ŷ − 2ẑ|−1 − 9L4|x̂+ ŷ − 2ẑ|−1/2

− 6L3|x̂+ ŷ − 2ẑ|−1 +
9

2
L4|x̂+ ŷ − 2ẑ|−1/2 + µ(2ã+ 2c̃+ 6p̃+ 6d̃)

= 4L1 − 5L2|x̂− ŷ|1/2 −
9

2
L4|x̂+ ŷ − 2ẑ|−1/2 + µ(2ã+ 2c̃+ 6p̃+ 6d̃),

(3.2.32)

where we used |ē| = 1 in the first equality.

Notice, that 2ã+ 2c̃+ 6p̃+ 6d̃ is positive, so we can choose µ such that

µ(2ã+ 2c̃+ 6p̃+ 6d̃) <
9

4
L4|x̂+ ŷ − 2ẑ|−1/2. (3.2.33)

From (3.2.32) and (3.2.33), it follows that, if L4 is very large, then

〈ē(X + Y + Z), ē〉 < 4L1 − 5L2|x̂− ŷ|1/2 −
9

4
L4|x̂+ ŷ − 2ẑ|−1/2 < 0, (3.2.34)

which shows that one of the eigenvalues of X + Y + Z is negative.

Now, take r1, r2, r3 > 0 such that Br1(x̂), Br2(ŷ), Br3(ẑ) b B1, and set

v(x) :=


u(x̂) + 〈Dxϕ(x̂, ŷ, ẑ) + 2k(x̂− ζ), x− x̂〉

+1
2〈(X + 2kI)(x− x̂), x− x̂〉+ o(|x− x̂|2), if x ∈ Br1(x̂),

u(x), if x /∈ Br1(x̂),
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w(y) :=

u(ŷ) + 〈Dyϕ(x̂, ŷ, ẑ), y − ŷ〉+ 1
2〈Y (y − ŷ), y − ŷ〉+ o(|y − ŷ|2), if y ∈ Br2(ŷ),

u(y), if y /∈ Br2(ŷ),

h(z) :=

u(ẑ) + 〈Dzϕ(x̂, ŷ, ẑ), z − ẑ〉+ 1
2〈−

1
2Z(z − ẑ), z − ẑ〉+ o(|z − ẑ|2), if z ∈ Br3(ẑ),

u(z), if z /∈ Br3(ẑ).

Since u is a viscosity solution to (3.2.19), we find that

Fv(x̂) ≤ f(x̂), (3.2.35)

Fw(ŷ) ≤ f(ŷ), (3.2.36)

Fh(ẑ) ≥ f(ẑ). (3.2.37)

Then (3.2.35), (3.2.36), (3.2.37) and convexity give

0 ≥ Fv(x̂) + Fw(ŷ)− 2Fh(ẑ)− (f(x̂) + f(ŷ)− 2f(ẑ))

≥ 2F

(
v(x̂) + w(ŷ)

2

)
− 2Fh(ẑ)− 3‖f‖L∞(B1).

(3.2.38)

Moreover, due to the uniform ellipticity property 3.2.2,

2F

(
v(x̂) + w(ŷ)

2

)
− 2Fh(ẑ) ≥ 2M−

L

(
v(x̂) + w(ŷ)

2
− h(ẑ)

)
. (3.2.39)

Now, we fix r < min{r1, r2, r3} and use (3.2.38) together with (3.2.39), obtaining

0 ≥ inf
L∈L

L(v(x̂) + w(ŷ)− 2h(ẑ))− 3‖f‖L∞(B1)

≥ inf
K

(∫
Br

(∆2
t v(x̂) + ∆2

tw(ŷ)− 2∆2
th(ẑ))K(t)dt

+

∫
Bcr

(∆2
t v(x̂) + ∆2

tw(ẑ)− 2∆2
th(ẑ))K(t)dt

)
− 3‖f‖L∞(B1).

(3.2.40)

Recall that the functions v, w, h are C2 in small neighborhoods of x̂, ŷ and ẑ,
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respectively. Hence, we can apply the Taylor formula in (3.2.40) and get

0 ≥ inf
K

∫
Br

〈−(X + 2kI + Y + Z)t, t〉K(t)dt

+ inf
K

∫
Bcr

(∆2
tv(x̂) + ∆2

tw(ẑ)− 2∆2
th(ẑ))K(t)dt− 3‖f‖L∞(B1). (3.2.41)

Set M = (mij) := −(X + 4I + Y + Z), and observe that for i 6= j,∫
Br

mij · ti · tj ·K(t)dt = 0. (3.2.42)

In particular, for any fixed i, we have∫
Br

miit
2
i K(t)dt =

∫
Br

miit
2
i K(t)dt =

∫
Br

miiv(x)t21K(t)dt

=
n∑
k=1

∫
Br

mii

n
t2kK(t)dt =

∫
Br

mii

n
|t|2K(t)dt.

(3.2.43)

Taking use of (3.2.28) and (3.2.34), and then exploiting (3.2.42) and (3.2.43),

we continue the chain of inequalities (3.2.41),

0 ≥ −Tr(X + Y + Z + 4I)
1

n
inf
K

∫
Br

|t|2K(t)dt

− 12‖u‖L∞(Rn) sup
K

∫
Bcr

K(t)dt− 3‖f‖L∞(B1)

≥
(
−4L1 + 5L2|x̂− ŷ|1/2 +

9

4
L4|x̂+ ŷ − 2ẑ|−1/2

)
λcn,s
n

∫
Br

1

|t|n+2s−2
dt

+ 4λcn,s

∫
Br

1

|t|n+2s−2
dt− 12‖u‖L∞(Rn)Λcn,s

∫
Bcr

1

|t|n+2s
dt− 3‖f‖L∞(B1).

(3.2.44)

This shows that the right hand side of (3.2.44) becomes positive, since

−4L1 + 5L2|x̂− ŷ|1/2 +
9

4
L4|x̂+ ŷ − 2ẑ|−1/2 → +∞

as L4 → +∞, which gives us a contradiction.

Hence, we proved that

Φ(x, y, z) = u(x) + u(y)− 2u(z)− ϕ(x, y, z)− 2|x− ζ|2 ≤ 0,
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that yields (3.2.20) setting ζ = x.



Chapter 4

Domain variation solutions

In this final chapter we deal with some advanced properties associated with

local operators. In fact, as we pointed out in (1.2.8), local operators may be

considered as a special case of nonlocal operators.

4.1 Domain variation solutions

In this section, following the ideas described in [3], we would like to find

the right formulation of the two phase free boundary problems arising from

Bernoulli type functionals when we consider nonnegative matrices of variable

coefficients or a nonlinear dependence both on the gradient of the solutions

and on the variable x.

This would be a first step before starting to face the one-phase problems

governed by degenerate operators, even possibly defined on noncommutative

groups.

We have in mind two concrete examples respectively given by the Kohn-

Laplace operator in the Heisenberg group and the p(x)−Laplace operator.

Since the p−Laplace case has been discussed in [57] as well, so that it results

also interesting to understand the behavior of the p(x)−Laplace operator. We

remind that the p−Laplace operator is defined as

∆p := div(|∇ · |p−2∇),

while the p(x)−Laplace operator is

∆p(x) := div(|∇ · |p(x)−2∇),

119
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where the function p satisfies 1 < p(x) <∞.

Of course, ∆p(x) = ∆p when p(x) is constant and p(x) ≡ p.

The Kohn-Laplace operator in H1 is defined as

∆H1u(x, y, t) =
∂2u

∂x2
+
∂2u

∂y2
+ 4y

∂2u

∂x∂t
− 4x

∂2u

∂y∂t
+ 4(x2 + y2)

∂2u

∂t2
(4.1.1)

and even if it is linear, it results to be degenerate elliptic.

In particular, using an intrinsic interpretation of the geometric objects

entering in the description of the noncommutative underlying structure H1,

it is possible to obtain an intrinsic formulation of the two phase problem.

We recall that the Kohn-Laplace operator is degenerate. Indeed, its lowest

eigenvalue is always zero. As a consequence, it is important to understand

what is the right condition to require to put on the free boundary in case we

wish to formulate the problem in a viscosity sense.

The theory of the viscosity solutions has been applied to the study of free

boundary problems, like
∆u = f, in Ω+(u) := {x ∈ Ω : u(x) > 0},
∆u = f, in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),
(u+

n )2 − (u−n )2 = 1 on F(u) := ∂Ω+(u) ∩ Ω,

(4.1.2)

since [14], for homogeneous problems, by Luis Caffarelli. Here Ω ⊂ Rn is

an open set, and f ∈ C0,α ∩ L∞(Ω), while u+
n formally denotes the normal

derivative at the points belonging to F(u), where n is the unit normal in those

points whenever this makes sense, pointing inside Ω+(u), as well as u−n denotes

the normal derivative to the set F(u) and n is the unit normal to the set F(u)

at the point x ∈ F(u) pointing inside Ω−(u).

If, in case F(u) were C1, even supposing for simplicity that f ≡ 0, then

u would satisfy ∆u = 0 in Ω+(u) ∪ Ω−(u). On the other hand, u ∈ C(Ω)

is a viscosity solution, so that ∆u = 0 in Ω+(u) and ∆u = 0 in Ω−(u) in

the classic sense and the problem (4.1.2) may be reduced to two Dirichlet

problems. However the assumption on the level set F(u) := ∂Ω+(u) ∩ Ω can

not be formulated in a classical fashion, because F(u) is an unknown of the

problem. In principle, the set F(u) might be very irregular and the notion

of solution would not make sense in the classical meaning, so that has to be

weakened.
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On the contrary, we suppose exactly that the fact itself of knowing that u

satisfies the free boundary problem should imply that u is endowed with some

further regularity properties. Thus, assuming only that F(u) is Lipschitz, the

solution of the Dirichlet problem in a neighborhood of the free boundary may

be a priori no better than a Hölder continuous function until the boundary.

Hence, it appears clear that we can not give a pointwise classical formulation

of the problem on the free boundary. For avoiding this loop, in [14] a viscosity

notion of solution was introduced. In that case the boundary condition is

supposed to be fulfilled only where a weak normal exists, see [16].

The definition of solution of the problem (4.1.2) can be stated, in a viscosity

sense, see [28] and the original statement in [14] or in [16] as well, in the

following way.

A continuous function u is a solution to (4.1.2) if

(i) ∆u = f in a viscosity sense in Ω+(u) and Ω−(u);

(ii) let x0 ∈ F(u). For every function v ∈ C(Bε(x0)), ε > 0 such that

v ∈ C2(B+(v)) ∩ C2(B−(v)), being B := Bε(x0) and F(v) ∈ C2, if v

touches u from below (resp. above) at x0 ∈ F(v), then

(v+
n (x0))2 − (v−n (x0))2 ≤ 1 (resp. (v+

n (x0))2 − (v−n (x0))2 ≥ 1).

Moreover, also the following notion of strict comparison subsolution (super-

solution) plays a fundamental role in the regularity theory of one/two-phase

free boundary problems, see [27]: a function v ∈ C(Ω) is a strict comparison

subsolution (supersolution) to (4.1.2) if v ∈ C2(Ω+(v)) ∩ C2(Ω−(v)) and

(i) ∆v > f (resp. ∆v < f) in a viscosity sense in Ω+(v) ∪ Ω−(v);

(ii) for every x0 ∈ Ω, if x0 ∈ F(v) then

(v+
n (x0))2−(v−n (x0))2 > 1 (resp. (v+

n (x0))2−(v−n (x0))2 < 1, v+
n (x0) 6= 0).

As a consequence, a strict comparison subsolution v cannot touch a viscosity

solution u from below at any point in F(u) ∩ F(v). Analogously, a strict

comparison supersolution v cannot touch a viscosity solution u from above at

any point in F(u) ∩ F(v).
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We are mainly interested in viscosity solution, but the natural definition of

two-phase free boundary problems is usually determined by looking for local

minima of functionals like

E(v) =

∫
Ω

(
|∇v|2 + χ{v>0} + 2fv

)
dx (4.1.3)

defined on subsets of H1(Ω) satisfying some fixed conditions, for instance

assumed on the boundary of Ω and on the sign of the functions themselves.

In [3] exactly this approach has been followed for functionals, associated

with the Laplace operator like (4.1.3), in the homogeneous case. As a conse-

quence, to local minima u of (4.1.3) (supposing f = 0) in [3] have been

determined the conditions that have to be satisfied on the free boundary,

morally the set {x ∈ Ω : u(x) = 0}.
Since we are interested in problems governed by other operators with

respect to the Euclidean laplacian, like nonlinear ones and, overall possibly

degenerate, we wish, at first, to understand what is the right condition to put

on the free boundary, for the problem in a non-divergence form, in a degenerate

setting.

In fact, the free boundary F(u) is an unknown of the problem and for this

reason we need to start from the energy functional that describes the problem

in the variational setting for obtaining the non-divergence case.

With this aim, we discuss the notion of domain variation solution assuming

that the energy functionals that we wish to study may be associated with

degenerate operators like the p(x)-Laplace operator ∆p(x), that is a generali-

zation of the most popular p−Laplace operator when the function p(x) is

constant or operators like div(A(x)∇), supposing that the matrix A satisfies

〈A(x)ξ, ξ〉 ≥ 0 for every ξ ∈ Rn whenever A is a smooth matrix of coefficients.

For the notion of solution in the sense of variation domain and applications

we refer to [70].

At the end of our discussion we conclude that in any Carnot group the two

phase problem assumes the following nonvariational form:
∆Gu = f, in Ω+(u) := {x ∈ Ω : u(x) > 0},
∆Gu = f, in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),
|∇Gu

+|2 − |∇Gu
−|2 = 1, on F(u) := ∂Ω+(u) ∩ Ω,

(4.1.4)

where ∆G is a sublaplacian in a Carnot group G, see Section 1.4 for the
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definitions of Carnot groups and the associated notation, and Section 4.4 for

a little more general presentation of the result.

We remark here, however, that now the condition posed on free boundary

is governed by an intrinsic jump of gradients, see Section 1.4 and, for the

one-phase case, see [42].

Moreover, in the case of the p(x)−Laplacian, the functional becomes

Ep(x)(u) =

∫
Ω

(
|∇v|p(x) + χ{v>0} + p(x)fv

)
dx,

so that we obtain:
∆p(x)u = f, in Ω+(u) := {x ∈ Ω : u(x) > 0},
∆p(x)u = f, in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),
|∇u+|p(x) − |∇u−|p(x) = 1

p(x)−1
, on F(u) := ∂Ω+(u) ∩ Ω,

(4.1.5)

see also Section 4.6 for a slightly more general setting of the problem.

We complete our analysis in Section 4.7 stating the suitable notion of

viscosity solutions for problems like (4.1.4) and (4.1.5). In the case (4.1.4)

the characteristic points introduce new difficulties in the application of the

approach used in [27]. Regarding the notion of viscosity solution we refer to

[15,24,7].

In the next section, for describing the meaning of domain variation solution,

we deal with the simplest case in one dimension.

4.2 One dimensional Euclidean case

Before entering the details of our subject we consider the basic heuristic

example in the one dimension for the following functional

E(v) =

1∫
−1

(v′2 + χ{v>0} + 2fv)dx,

where

χ{v>0} =

{
1, x ∈ {v > 0},
0, x ∈ {v ≤ 0},
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and v ∈ K = {w ∈ H1([−1, 1]) : w(−1) = a, w(1) = b} being a, b

assigned values to the boundary. Moreover, we assume, for simplicity, that

f ∈ C0,γ([−1, 1]).

We are interested in those functions which become minima or critical values

for E perturbing the set of definition in a neighborhood of the points where v

vanishes. In mathematical language, for every function v ∈ K and for every

function ϕ ∈ C∞0 (]− 1, 1[) we consider the function v(x) = vϕε (x+ εϕ(x)). We

shall simply write vε := vϕε to avoid the cumbersome notation. It is clear that

τε = I + εϕ is an application that transforms [−1, 1] in itself whenever ε is

sufficiently small. We say that v is a variational domain solution whenever

d

dε
E(vε)

∣∣∣∣
ε=0

= 0.

To do this, we consider

E(vε) =

1∫
−1

(v′2ε (y) + χ{vε>0}(y) + 2f(y)vε(y))dy. (4.2.1)

Since τε is invertible whenever ε is small we obtain (τ−1
ε )′(y) = (τ ′ε(x))−1, being

x = τ−1
ε (y) and

τ ′ε(x) = 1 + εϕ′(x),

(τ−1
ε )′(y) =

1

1 + εϕ′(τ−1
ε (y))

.

This implies that for ε→ 0

(τ−1
ε )′(y) = 1− εϕ′(τ−1

ε (y)) + o(ε).

We perform the change of variable y = τε(x) so that:

E(vε) =

1∫
−1

(
v′2ε (τε(x)) + χ{vε>0}(τε(x)) + 2f(τε(x))vε(τε(x))

)
τ ′ε(x)dx

=

1∫
−1

(
v′2ε (τε(x)) + χ{vε>0}(τε(x)) + 2f(τε(x))vε(τε(x))

)
(1 + εϕ′(x))dx

(4.2.2)
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and, since v′(x) = v′ε(τε(x))τ ′ε(x) = v′ε(τε(x))(1 + εϕ′(x)), we get

E(vε)

=

1∫
−1

[v′2(x)(1 + εϕ′(x))−2 + χ{vε>0}(τε(x)) + 2f(τε(x))v(x)](1 + εϕ′(x))dx

=

1∫
−1

[v′2(x)(1− εϕ′(x) + o(ε))2 + χ{vε>0}(x+ εϕ(x))

+ 2f(τε(x))v(x)](1 + εϕ′(x))dx

=

1∫
−1

[v′2(x)(1− 2εϕ′(x) + o(ε)) + χ{vε>0}(x+ εϕ(x))](1 + εϕ′(x))dx

+ 2

1∫
−1

f(τε(x))v(x)(1 + εϕ′(x))dx.

(4.2.3)

In other words,

E(vε)

= E(v) +

1∫
−1

−εv′2(x)ϕ′(x) + [χ{vε>0}(x+ εϕ(x))(1 + εϕ′(x))− χ{v>0}(x)]dx

+ 2ε

1∫
−1

(f(x)v(x)ϕ′(x) + f ′(x)v(x)ϕ(x))dx+ o(ε)

= E(v) +

1∫
−1

−εv′2(x)ϕ′(x) + [χ{vε>0}(x+ εϕ(x))− χ{v>0}(x)]dx

+ ε

1∫
−1

χ{vε>0}(x+ εϕ(x))ϕ′(x)dx

+ 2ε

1∫
−1

(f(x)ϕ′(x) + f ′(x)ϕ(x))v(x)dx+ o(ε).

(4.2.4)

Hence, integrating by parts and recalling that ϕ is a compactly supported
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function, we obtain

E(vε) = E(v) +

1∫
−1

−εv′2(x)ϕ′(x)dx+ ε

1∫
−1

χ{vε>0}(x+ εϕ(x))ϕ′(x)dx

+ 2(f(1)ϕ(1)v(1)− f(−1)ϕ(−1)v(−1))− 2ε

1∫
−1

f(x)ϕ(x)v′(x)dx+ o(ε)

= E(v) +

1∫
−1

−εv′2(x)ϕ′(x)dx+ ε

1∫
−1

χ{vε>0}(x+ εϕ(x))ϕ′(x)dx

− 2ε

1∫
−1

f(x)ϕ(x)v′(x)dx+ o(ε).

(4.2.5)

As a consequence, if v is a local minimum for the functional E in K, then

0 ≤ E(vε)− E(v)

ε
= −

1∫
−1

v′2(x)ϕ′(x)dx+

1∫
−1

χ{vε>0}(x+ εϕ(x))ϕ′(x)dx

− 2

1∫
−1

f(x)ϕ(x)v′(x)dx+ o(1).

(4.2.6)

Moreover, it also results that for every ϕ ∈ C∞0 (]− 1, 1[) we have

lim
ε→0

E(vε)− E(v)

ε
= 0.

Hence, if v is a local minimum for E on K, then v is a domain variational

solution.

As a consequence, we have obtained that a local minimum has to satisfy

the following relationship:

−
1∫

−1

v′2(x)ϕ′(x)dx− 2

1∫
−1

f(x)ϕ(x)v′(x)dx+

1∫
−1

χ{v>0}(x)ϕ′(x)dx = 0,

for every ϕ ∈ C∞0 (]− 1, 1[).
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On the other hand, for every ϕ ∈ C∞0 (−1, 1) such that supp(ϕ) ⊂ {vε > 0}
or supp(ϕ) ⊂ int{vε ≤ 0} it follows from the previous relation that v′′ = f(x)

in ]− 1, 1[\{x ∈]− 1, 1[: v(x) = 0} because v is a local minimum for E , (we

will proof this property below in a more general case).

As a consequence,

− lim
δ→0

xδ∫
−1

v′2(x)ϕ′(x) + 2f(x)ϕ(x)v′(x)dx− lim
ε→0

1∫
xε

v′2(x)ϕ′(x) + 2f(x)ϕ(x)v′(x)dx

− lim
ε→0
δ→0

xδ∫
xε

v′2(x)ϕ′(x) + 2f(x)ϕ(x)v′(x)dx+

1∫
−1

χ{v>0}(x)ϕ′(x)dx = 0,

(4.2.7)

for every ϕ ∈ C∞0 (]− 1, 1[) and ε, δ > 0, we consider the sets {v(x) < −ε} and

{v(x) > δ}. Then integrating by parts we obtain from (4.2.7), keeping in mind

that meas1({v = 0}) = 0,

lim
δ→0

xδ∫
−1

2 (v′′(x)− f(x)))ϕ(x)v′(x)dx− lim
δ→0

[v′2(x)ϕ(x)]x=xδ
x=−1

+ lim
ε→0

1∫
δε

2 (v′′(x)− f(x)))ϕ(x)v′(x)dx− lim
ε→0

[v′2(x)ϕ(x)]x=1
x=xε

+

1∫
−1

χ|{v>0}(x)ϕ′(x)dx = 0,

(4.2.8)

where v(xε) = −ε and v(xδ) = δ.

Thus, from (4.2.8), we get

− lim
δ→0

[v′2(x)ϕ(x)]x=xδ
x=−1 − lim

ε→0
[v′2(x)ϕ(x)]x=1

x=xε +

1∫
−1

χ|{v>0}(x)ϕ′(x)dx = 0,

(4.2.9)

or

− lim
δ→0

v′2(xδ)ϕ(xδ) + lim
ε→0

v′2(xε)ϕ(xε) +

1∫
x0

ϕ′(x)dx = 0. (4.2.10)
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This implies, for every ϕ ∈ C∞0 (−1, 1), denoting by x0 the free boundary, that

is v(x0) = 0,

(
− (v−)′2(x0) + (v+)′2(x0)

)
ϕ(x0)− ϕ(x0) = 0.

Hence, it results

(v+)′2(x)− (v−)′2(x) = 1, on {v = 0}.

In this way, we have obtained the free boundary condition associated with

the Euler-Lagrange equations to local minima of the functional E in the non-

homogeneous case, (of course assuming that the free boundary is a set of

measure zero). We also proved that, at least in one dimension, the free

boundary condition does not depend on the non-homogeneous term f .

4.3 The Bernoulli functional in the Heisenberg

group

In this section, following the scheme of [3] we make some computations in the

Heisenberg group Hn, but using the same arguments, the final results apply

also to Carnot groups. In particular, here we recall that local minima of our

functionals are globally continuous. Let

JHn(v) =

∫
Ω

(
|∇Hnv|2 + q2(x)λ2(v) + 2fv

)
dx, v ∈ K

be the functional that we will study, where q2(x) 6= 0,

λ2(v) =

{
λ2

1, if v < 0,

λ2
2, if v > 0,

(4.3.1)

and λ2(v) is lower semicontinuous at v = 0; it is assumed that λ2
i > 0 and

Λ = λ2
1 − λ2

2 6= 0. Here is

K = {v ∈ L1
loc(Ω) : ∇Hnv ∈ L2(Ω), v = u0 on S ⊂ ∂Ω}

and Ω ⊂ Rn is a domain.
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There exists a unique solution to the following Dirichlet problem{
∆HnvR = 0, in BR,

vR = u, on ∂BR.
(4.3.2)

If u realises a minimum for JHn , then for every ball Br ⊂ Ω we get:∫
Br

(
|∇Hnu|2 + q2(x)λ2(u) + 2fu

)
dx ≤

∫
Br

(
|∇Hnvr|2 + q2(x)λ2(vr) + 2fvr

)
dx.

Hence by the Poincaré inequality we obtain∫
Br

(
|∇Hnu|2 − |∇Hnvr|2

)
dx ≤

∫
Br

(
q2(x)λ2(vr)− q2(x)λ2(u)

)
+ 2f(vr − u)dx

≤ C(λ1, λ2, Q)rQ + 2

∫
Br

f(vr − u)dx.

On the other hand,∫
Br

〈∇Hn(u− vr),∇Hn(u+ vr)〉dx

=

∫
Br

|∇Hn(u− vr)|2 + 2

∫
Br

〈∇Hn(u− vr),∇Hnvr〉

=

∫
Br

|∇Hn(u− vr)|2 − 2

∫
Br

f(u− vr)dx

and ∫
Br

〈∇Hn(u− vr),∇Hn(u+ vr)〉dx =

∫
Br

(
|∇Hnu|2 − |∇Hnvr|2

)
dx.

Hence

∫
Br

|∇Hn(u− vr)|2 =

∫
Br

(
|∇Hnu|2 − |∇Hnvr|2

)
dx+ 2

∫
Br

f(u− vr)dx.

That is, by Hölder inequality

∫
Br

|∇Hn(u− vr)|2 ≤ C(λ1, λ2, Q)rQ + 4‖f‖LQ(Br)

(∫
Br

|(u− vr)|2
)1/2

r
Q−2

2
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and, recalling Sobolev-Poincaré inequality one more time, we get∫
Br

|∇Hn(u− vr)|2 ≤ C(λ1, λ2, Q)rQ + c′‖f‖LQ(Br)

(∫
Br

|∇Hn(u− vr)|2
)1/2

r
Q
2 .

Thus, applying Cauchy inequality we get for ε > 0∫
Br

|∇Hn(u− vr)|2 ≤ C(λ1, λ2, Q)rQ +
c′

2ε
‖f‖2

LQ(Br)
rQ +

c′ε

2

∫
Br

|∇Hn(u− vr)|2

that implies(
1− c′ε

2

)∫
Br

|∇Hn(u− vr)|2 ≤ C(λ1, λ2, Q, ε̄, ‖f‖LQ(Br(0)))r
Q,

where

C(λ1, λ2, Q, ε̄, ‖f‖LQ(Br)) := C(λ1, λ2, Q) +
c′

2ε
‖f‖2

LQ(Br)
.

Thus, by fixing ε̄ > 0 such that 1 − ε
2
c′ > 1

2
we conclude that there exists a

constant C̄ := C̄(λ1, λ2, ε̄, ‖f‖LQ(Ω), Q) such that∫
Br

|∇Hn(u− vr)|2 ≤ C̄rQ.

As a consequence, in analogy with the Euclidean case, we can not expect

on u more than a modulus of continuity ruled by the Carnot-Charathéodory

distance like, see the argument used by [3, 61,57]:

|u(x)− u(y)| ≤ CdCC(x, y)

∣∣∣∣log

(
1

dCC(x, y)

)∣∣∣∣ ,
for every x, y ∈ K, dCC(x, y) < 1

2
.

The existence of a global Lipschitz intrinsic modulus of continuity may be

faced having a monotonicity formula. In H1, see some partial results obtained

in [39,38].
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4.4 Domain variation solutions for a non-negative

matrix

In this section we face the general case with variable coefficients.

Let us consider the functional

EA(v) =

∫
Ω

(
〈A(x)∇v,∇v〉+M2(v, x) + 2fv

)
,

where 〈A(x)ξ, ξ〉 ≥ 0 for every x ∈ Ω, for every ξ ∈ Rn, and

M(u, x) = q(x)(λ+χ{u>0} + λ−χ{u<0}),

where λ+, λ− are non-negative numbers and q 6≡ 0 is a function.

We define τε(x) = x + εϕ(x) for some ϕ ∈ C∞0 (Ω,Rn). Recalling Section

1.4 we remark that A might be one of the matrices that are associated with a

sublaplacian.

Lemma 4.4.1. Let u ∈ K be a local minimum of EA. Then u satisfies

div(A(x)∇u(x)) = f in Ω \ {u = 0}.

Proof. For every ϕ ∈ C∞0 (Ω \ {u = 0}) and for every ε > 0 sufficiently small,

it results

EA(u+ εϕ) =

∫
Ω

〈A(x)∇u,∇u〉dx+ 2ε

∫
Ω

〈A(x)∇u,∇ϕ〉dx

+ ε2

∫
Ω

〈A(x)∇ϕ,∇ϕ〉dx+

∫
Ω

M2(u+ εϕ, x)dx+ 2

∫
Ω

f(u+ εϕ)dx

= EA(u) + 2ε

∫
Ω

〈A(x)∇u,∇ϕ〉dx+ 2ε

∫
Ω

fϕdx+ o(ε2).

As a consequence,

EA(u+ εϕ)− EA(u)

ε
= 2

( ∫
Ω

〈A(x)∇u,∇ϕ〉dx+

∫
Ω

fϕ

)
dx+ o(ε)

and

lim
ε→0+

EA(u+ εϕ)− EA(u)

ε
= 2

( ∫
Ω

〈A(x)∇u,∇ϕ〉dx+

∫
Ω

fϕdx

)
= 0,

(4.4.1)

that is div(A(x)∇u(x)) = f in Ω \ {u = 0} in the weak sense.
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Theorem 4.4.2. Let u be a local minimum of EA and measn({u = 0}) = 0.

Then u is a domain variation solution and for every ϕ ∈ C0(Ω,Rn)

lim
ε→0

∫
∂{−ε<u}

〈ϕ, ν〉(M2 − 〈A(x)∇u+,∇u+〉)dS

+ lim
δ→0

∫
∂{u<δ}

〈ϕ, ν〉(M2 − 〈A(x)∇u−,∇u−〉)dS = 0.

Proof. Denoting by uε the function such that uε(τε(x)) = u(x) where τε(x) =

x+ εϕ(x), ϕ ∈ C∞0 (Ω,Rn) and assuming that A is smooth, we get

J(uε) =

∫
Ω

(
〈A(y)∇uε(y),∇uε(y)〉+M2(uε(y), y) + 2f(y)uε(y)

)
dy

=

∫
Ω

(
〈A(τε(x))∇uε(τε(x)),∇uε(τε(x))〉+M2(u(τε(x)), τε(x))

+ 2f(τε(x))uε(τε(x))) |detJτε|dx.

On the other hand, since

Jτε(x) = I + εJϕ,

then

detJτε = 1 + εTr(Jϕ) + o(ε),

for ε→ 0. Moreover,

∇u(x) = ∇(uε(τε(x)) = ∇uε(τε(x))Jτε(x),

hence

Jτε(x)−1∇u(x) = ∇uε(τε(x)).

Keeping in mind that

Jτε(x)−1 = I − εJϕ+ o(ε),

we conclude that

Jτε(x)−1∇u(x) = (I − εJϕ+ o(ε))∇u(x) = ∇u(x)− εJϕ∇u(x) + o(ε)
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and since A is smooth we get

A(τε(x)) = A(x) + εJA(x)ϕ+ o(ε).

As a consequence,∫
Ω

(
〈(A(x) + εJA(x)ϕ+ o(ε))Jτε(x)−1∇u(x), Jτε(x)−1∇u(x)〉

+ M2(u(x), τε(x)) + 2f(τε(x))u(x)
)
|detJτε|dx

=

∫
Ω

(
〈(A(x)Jτε(x)−1∇u(x), Jτε(x)−1∇u(x)〉

+ M2(u(x), τε(x)) + 2f(τε(x))u(x)
)
|detJτε|dx

+ ε

∫
Ω

(
〈(JA(x)ϕ+ o(ε))Jτε(x)−1∇u(x), Jτε(x)−1∇u(x)〉

)
|detJτε|dx

=

∫
Ω

(
〈(A(x)∇u(x),∇u(x)〉+M2(u(x), τε(x)) + 2f(τε(x))u(x)

)
|detJτε|dx

− 2ε

∫
Ω

〈A(x)∇u(x), Jϕ∇u(x)〉|detJτε|dx+ ε

∫
Ω

〈JA(x)ϕ∇u,∇u〉|detJτε|dx.

Hence

dJ(uε)

dε

∣∣∣∣
ε=0

=

∫
Ω

〈(A(x)∇u(x),∇u(x)〉+M2(u(x), x) + 2f(x)u(x)〉)Tr(Jϕ)dx

− 2

∫
Ω

〈A∇u, Jϕ∇u〉dx+

∫
Ω

〈JAϕ∇u,∇u〉dx

+

∫
Ω

(
〈∇xM

2(u(x), x), ϕ〉+ 2〈∇f(x), ϕ〉u
)
dx

=

∫
Ω

〈(A(x)∇u(x),∇u(x)〉+M2(u(x), x)〉)Tr(Jϕ)dx

− 2

∫
Ω

〈A∇u, Jϕ∇u〉dx+

∫
Ω

〈JAϕ∇u,∇u〉dx

+

∫
Ω

〈∇xM
2(u(x), x), ϕ〉dx− 2

∫
Ω

f(x)〈ϕ,∇u〉dx

=

∫
Ω

div
((
〈A(x)∇u(x),∇u(x)〉dx+M2(u, x)

)
ϕ− 2〈ϕ,∇u〉A∇u

)
dx.

Since u is a local minimum, then

− dJ(u(x+ εϕ(x)))

dε

∣∣∣∣
ε=0

=
dJ(uε)

dε

∣∣∣∣
ε=0

= 0,
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that is u is a domain variation solution. Hence, for every ϕ ∈ C1
0(Ω,Rn) we

have:

dJ(uε)

dε

∣∣∣∣
ε=0

=

∫
Ω

〈(A(x)∇u(x),∇u(x)〉+M2(u(x), x)〉)divϕdx− 2

∫
Ω

〈A∇u, Jϕ∇u〉dx

+

∫
Ω

〈JAϕ∇u,∇u〉dx+

∫
Ω

〈∇xM
2(u(x), x), ϕ〉dx− 2

∫
Ω

f(x)〈ϕ,∇u〉dx

= 0.

Now, let us consider now Ω = {x ∈ Ω : u < −ε} ∪ {x ∈ Ω : u > δ} ∪ {x ∈
Ω : −ε ≤ u ≤ δ}, where ε, δ > 0. Then, integrating by parts and denoting

Ωε,δ(u) = {x ∈ Ω : −ε ≤ u ≤ δ} as well as

Rε,δ :=

∫
Ωε,δ(u)

〈(A(x)∇u(x),∇u(x)〉+M2(u(x), x)〉)divϕdx

− 2

∫
Ωε,δ(u)

〈A∇u, Jϕ∇u〉dx+

∫
Ωε,δ(u)

〈JAϕ∇u,∇u〉dx

+

∫
Ωε,δ(u)

〈∇xM
2(u(x), x), ϕ〉dx− 2

∫
Ωε,δ(u)

f(x)〈ϕ,∇u〉dx,

we get

0 = −
∫

Ω∩{u<−ε}
〈∇〈(A(x)∇u(x),∇u(x)〉+M2(u(x), x)〉), ϕ〉dx

+

∫
∂{u<−ε}

〈A(x)∇u(x),∇u(x)〉+M2(u(x), x)〈ϕ, ν〉dσ

−
∫

Ω∩{u>δ}
〈∇〈(A(x)∇u(x),∇u(x)〉+M2(u(x), x)〉), ϕ〉dx

+

∫
∂{u>δ}

〈A(x)∇u(x),∇u(x)〉+M2(u(x), x)〈ϕ, ν〉dσ

− 2

∫
Ω∩({u>δ}∪{u<−ε})

〈A∇u, Jϕ∇u〉dx

+

∫
Ω∩({u>δ}∪{u<−ε})

〈JAϕ∇u,∇u〉dx+

∫
Ω∩({u>δ}∪{u<−ε})

〈∇xM
2(u(x), x), ϕ〉dx

− 2

∫
Ω∩({u>δ}∪{u<−ε})

f(x)〈ϕ,∇u〉dx+Rε,δ.

Thus, by recalling that u satisfies div(A∇u) = f(x) in Ω \ {u = 0} we get,
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denoting u+ := sup{u, 0} and u− := sup{−u, 0},

0 = lim
ε→0

∫
∂{−ε<u}

〈ϕ, ν〉(〈A(x)∇u+,∇u+〉+M2)dS

+ lim
δ→0

∫
∂{u<δ}

〈ϕ, ν〉(〈A(x)∇u−,∇u−〉+M2)dS

− 2

(
lim
ε→0

∫
∂{−ε<u}

〈ϕ, ν〉〈A(x)∇u+,∇u+〉dS

+ lim
δ→0

∫
∂{u<δ}

〈ϕ, ν〉〈A(x)∇u−,∇u−〉dS
)
,

(4.4.2)

because by hypothesis measn({u = 0}) = 0 so that limε,δ→0Rε,δ = 0.

Finally (4.4.2) leads to

0 = lim
ε→0

∫
∂{−ε<u}

〈ϕ, ν〉(M2 − 〈A(x)∇u+,∇u+〉)dS

+ lim
δ→0

∫
∂{u<δ}

〈ϕ, ν〉(M2 − 〈A(x)∇u−,∇u−〉)dS.

In conclusion, we have obtained, whenever measn{u = 0} = 0, that
div(A(x)∇u) = f in Ω+(u) := {x ∈ Ω : u(x) > 0},

div(A(x)∇u) = f in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),

〈A∇u+,∇u+〉 − 〈A∇u−∇u−〉 = q2(x)Λ on F(u) := ∂Ω+(u) ∩ Ω.

(4.4.3)

where Λ := λ2
+ − λ2

−. In the case of the Heisenberg group this reads as follows

(see Section 4.5 for the details and further generalizations),
∆Hnu = f in Ω+(u) := {x ∈ Ω : u(x) > 0},

∆Hnu = f in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),

|∇Hnu
+|2 − |∇Hnu

−|2 = q2(x)Λ on F(u) := ∂Ω+(u) ∩ Ω.

(4.4.4)
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4.5 Some comments about the Heisenberg group

and Carnot groups

We compute 〈A(x)∇u,∇u〉 assuming that

A =

 1, 0, 2y

0, 1, −2x

2y, −2x, 4(x2 + y2)

 .
Then

〈A∇u,∇u〉 =

 Xu

Y u

2y ∂u
∂x
− 2x∂u

∂y
+ 4∂u

∂t
(x2 + y2)

 · ∇u
= Xu

∂u

∂x
+ Y u

∂u

∂y
+

(
2y
∂u

∂x
− 2x

∂u

∂y

)
∂u

∂t
+ 4(

∂u

∂t
)2(x2 + y2)

= (Xu)2 − 2yXu
∂u

∂t
+ (Y u)2 + 2xY u

∂u

∂t

+

(
2y
∂u

∂x
− 2x

∂u

∂y

)
∂u

∂t
+ 4

(
∂u

∂t

)2

(x2 + y2) = (Xu)2 + (Y u)2

= |∇H1u|2 = 〈∇H1u,∇H1u〉H1 .

Notice that

div(A(x)∇u(x)) = X2u+ Y 2u = ∆H1u = divH1(∇H1u) = X(Xu) + Y (Y u).

It is possible to give another example for the Engel group. In this case we

have:

g1

⊕
g2

⊕
g3,

where

g1 = span{X1, X2}, g2 = span{X3}, g3 = span{X4},

[X1, X2] = X3, [X1, X3] = X4,
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X1 =
∂

∂x1

− x2
∂

∂x3

− x3
∂

∂x4

, X2 =
∂

∂x2

, X3 =
∂

∂x3

, X4 =
∂

∂x4

,

xy = (x1 + y1, x2 + y2, x3 + y3 − y1x2, x4 + y4 +
1

2
y2

1x2 − y1x3).

Moreover,
1, 0

0, 1

−x2, 0

−x3, 0


[

1, 0, −x2, −x3

0, 1, 0, 0

]
=


1, 0, −x2, −x3

0, 1, 0, 0

−x2, 0, x2
2, x2x3

−x3, 0, x2x3, x2
3

 .

In this case,

∆E = X2
1 +X2

2 .

We can generalize this remark. Indeed, see Section 1.5-(A3) in [9], it is well

known that every sublaplacian ∆G =
∑n1

i=1 Z
2
i on a group G can be written in

divergence form as

∆G = div(A(x)∇),

where

A = σ(x)σT (x) (4.5.1)

and σ is the n× n1 matrix whose columns are given by the coefficients of the

vector fields Z1, . . . , Zn1 .

We conclude that the two-phase problems for Carnot sublaplacians have

to satisfy, whenever measG({u = 0}) = 0, the following condition on the free

boundary

0 = lim
ε→0

∫
{−ε<u}

〈ϕ, ν〉(M2 − |∇Gu
+|2)dS + lim

δ→0

∫
{u<δ}

〈ϕ, ν〉(M2 − |∇Gu
−|2)dS,
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where |∇Gu|2 =
∑n1

i=1(Ziu)2. Then
∆Gu = f, in Ω+(u) := {x ∈ Ω : u(x) > 0},
∆Gu = f, in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),
|∇Gu

+|2 − |∇Gu
−|2 = q2(x)(λ2

+ − λ2
−) := q(x)Λ, on F(u) := ∂Ω+(u) ∩ Ω,

(4.5.2)

where, whatever the function u is sufficiently smooth, it results:

|∇Gu|2 = 〈A(x)∇u,∇u〉 = 〈σT∇u, σT∇u〉Rn1

and

∇Gu(x) := σT (x)∇u(x) =

n1∑
k=1

Zku(x)Zk(x).

In the case of H1, the functions like α(ax+ by)+ − β(ax+ by)−, where

a2 + b2 > 0, a, b ∈ R are fixed, as well as α, β ∈ R, α, β > 0, satisfy the

two-phase homogeneous problem
∆H1u = 0, in Ω+(u) := {x ∈ Ω : u(x) > 0},
∆H1u = 0, in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),
|∇H1u+|2 − |∇H1u−|2 = (a2 + b2)(α2 − β2), on F(u) := ∂Ω+(u) ∩ Ω.

(4.5.3)

In this case the free boundary F(u) is the set {(x, y, t) ∈ H1 : ax + by = 0}
that does not have characteristic points.

4.6 Nonlinear case: p(x)−Laplace operator

Now our attention is attracted by the functional

J(u) =

∫
Ω

(
a(|∇u|, x) +M2(u, x) + p(x)f(x)u(x)

)
dx,

where

M(u, x) = q(x)(λ+χ{u>0} + λ−χ{u<0})

and a is a function that we shall introduce in a while.

We define τε(x) = x + εϕ(x) where ϕ ∈ C∞0 (Ω,Rn). Then, denoting by uε
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the function such that uε(τε(x)) = u(x), we get

J(uε) =

∫
Ω

(
a(|∇uε(y)|, y) +M2(uε(y), y) + p(y)f(y)uε(y)

)
dy

=

∫
Ω

(
a(|∇uε(τε(x))|, τε(x)) +M2(u(τε(x)), τε(x))

+ p(τε(x))f(τε(x))uε(τε(x))) |detJτε|dx.

On the other hand, exploiting the notation of the case, described in

Section 4.4, we obtain

J(uε) =

∫
Ω

(
a(|Jτε(x)−1∇u(x)|, τε(x)) +M2(u(x), τε(x))

+ p(τε(x))f(τε(x))u(x)) |detJτε|dx

=

∫
Ω

(
a(|∇u(x)− εJϕ∇u(x) + o(ε)|, τε(x)) +M2(u(x), τε(x))

+ p(τε(x))f(τε(x))u(x)
)
|detJτε|dx.

In the case when a(b, c) = bp(c), denoting

Ep(x)(u) :=

∫
Ω

(
|∇u|p(x) +M2(u, x) + p(x)f(x)u(x)

)
dx,

we get, from the Taylor expansion,

a(|∇u(x)− εJϕ∇u(x) + o(ε)|, τε(x)) = |∇u(x)− εJϕ∇u(x) + o(ε)|p(τε(x))

= |∇u(x)− εJϕ∇u(x) + o(ε)|p(x)+ε〈∇p(x),ϕ(x)〉+o(ε)

= |∇u(x)− εJϕ∇u(x) + o(ε)|p(x)|∇u(x)− εJϕ∇u(x) + o(ε)|ε〈∇p(x),ϕ(x)〉+o(ε)

which leads

a(|∇u(x)− εJϕ∇u(x) + o(ε)|, τε(x))

=(|∇u(x)|2 − 2ε〈Jϕ∇u(x),∇u(x) + o(1)〉+ o(ε))
p(x)

2

× |∇u(x)− εJϕ∇u(x) + o(ε)|ε〈∇p(x),ϕ(x)〉+o(ε)

=
(
|∇u(x)|p(x) − εp(x)〈Jϕ∇u(x),∇u(x)〉|∇u(x)|p(x)−2 + o(ε)

)
× exp{ε(〈∇p(x), ϕ(x)〉+ o(1)) log(|∇u(x)− εJϕ∇u(x) + o(ε)|)}
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=
(
|∇u(x)|p(x) − εp(x)〈Jϕ∇u(x),∇u(x)〉|∇u(x)|p(x)−2 + o(ε)

)
× exp

(
ε(〈∇p(x), ϕ(x)〉+ o(1)) (log(|∇u(x)|)

+ log
(
1− ε〈Jϕ∇u(x),∇u(x)〉+ o(ε)

)) )
,

that is

a(|∇u(x)− εJϕ∇u(x) + o(ε)|, τε(x))

=
(
|∇u(x)|p(x) − εp(x)〈Jϕ∇u(x),∇u(x)〉|∇u(x)|p(x)−2 + o(ε)

)
× (1 + ε〈∇p(x),∇ϕ(x)〉 log |∇u(x)|+ o(ε)))

=|∇u(x)|p(x) + ε
(
|∇u(x)|p(x)〈∇p(x), ϕ(x)〉 log |∇u(x)|

− p(x)〈Jϕ∇u(x),∇u(x)〉|∇u(x)|p(x)−2
)

+ o(ε).

As a consequence,

Ep(x)(uε) =

∫
Ω

(
|∇u(x)|p(x) + ε

(
|∇u(x)|p(x)〈∇p(x),∇ϕ(x)〉 log |∇u(x)|

− p(x)〈Jϕ∇u(x),∇u(x)〉|∇u(x)|p(x)−2
)

+ o(ε))

+M2(u(x), τε(x)) + (p(x) + ε〈∇p(x), ϕ〉+ o(ε))f(τε(x))u(x)
)
|detJτε|dx,

so that

Ep(x)(uε)

=

∫
Ω

(
|∇u(x)|p(x) +M2(u(x), x) + p(x)f(x)u(x)

)(
1 + εTr(Jϕ) + o(ε)

)
dx

+ ε

∫
Ω

(
|∇u(x)|p(x)〈∇p(x), ϕ(x)〉 log | ∇u(x)|

− p(x)〈Jϕ∇u(x),∇u(x)〉|∇u(x)|p(x)−2 + u(x)〈∇p(x), ϕ〉f(x)
)

(
1 + εTr(Jϕ) + o(ε)

)
dx

+ ε

∫
Ω

(
p(x)〈∇f(x), ϕ〉u(x) + 〈∇M2(u(x), x), ϕ〉

)
(

1 + εTr(Jϕ) + o(ε)
)
dx+ o(ε).
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Thus it follows that

Ep(x)(uε) = Ep(x)(u) + ε
{∫

Ω

(
|∇u(x)|p(x) +M2(u(x), x) + p(x)f(x)u(x)

)
Tr(Jϕ)dx

+

∫
Ω

(
|∇u(x)|p(x)〈∇p(x), ϕ(x)〉 log |∇u(x)| − p(x)〈Jϕ∇u(x),∇u(x)〉|∇u(x)|p(x)−2

+ 〈∇p(x), ϕ〉u(x)f(x) + p(x)u(x)〈∇f(x), ϕ〉+ 〈∇M2(u(x), x), ϕ〉
)
dx
}

+ o(ε).

Thus, recalling that u is a minimum, we can conclude that

lim
ε→0

Ep(x)(uε)− Ep(x)(u)

ε
= 0.

Thus we deduce, recalling Tr(Jϕ) = div(ϕ), that

0 =

∫
Ω

(
|∇u(x)|p(x) +M2(u(x), x) + p(x)f(x)u(x)

)
div(ϕ)dx

+

∫
Ω

(
|∇u(x)|p(x)〈∇p(x), ϕ(x)〉 log |∇u(x)| − p(x)〈Jϕ∇u(x),∇u(x)〉|∇u(x)|p(x)−2

+ 〈∇p(x), ϕ〉u(x)f(x) + p(x)u(x)〈∇f(x), ϕ〉+ 〈∇M2(u(x), x), ϕ〉
)
dx,

(4.6.1)

that is also

0 =

∫
Ω

(
|∇u(x)|p(x) +M2(u(x), x)

)
div(ϕ)dx

+

∫
Ω

(
|∇u(x)|p(x)〈∇p(x), ϕ(x)〉 log | ∇u(x)| − p(x)〈Jϕ∇u(x),∇u(x)〉|∇u(x)|p(x)−2

+ 〈∇M2(u(x), x), ϕ〉 − f(x)p(x)〈∇u, ϕ〉
)
dx.

(4.6.2)

Hence, integrating by parts, recalling that div(|∇u|p(x)−2∇u) = f in Ω \
F (u), considering Ω = {x ∈ Ω : u < −ε} ∪ {x ∈ Ω : u > δ} ∪ {x ∈ Ω : −ε ≤
u ≤ δ}, where ε, δ > 0, recalling that Ωε,δ(u) = {x ∈ Ω : −ε ≤ u ≤ δ} and,

denoting by

Rε,δ :=

∫
Ωε,δ(u)

(
|∇u(x)|p(x) +M2(u(x), x)

)
divϕ−

∫
Ωε,δ(u)

p(x)〈∇Jϕ∇u(x),∇u(x)〉

+

∫
Ωε,δ(u)

|∇u(x)|p(x)〈∇p(x), ϕ(x)〉 log |∇u(x)|+
∫

Ωε,δ(u)

〈∇xM
2(u(x), x), ϕ〉
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−
∫

Ωε,δ(u)

p(x)f(x)〈ϕ,∇u〉,

we get

0 = lim
ε→0
δ→0

{∫
∂{u<−ε}

〈n, ϕ〉
(

(1− p(x))|∇u(x)|p(x) +M2(u(x), x)
)
dS

+

∫
∂{u>δ}

(1− p(x))〈n, ϕ〉
(
|∇u(x)|p(x) +M2(u(x), x)

)
dS +Rε,δ

}
.

This result that implies

0 = lim
ε→0
δ→0

{∫
∂{u<−ε}

〈n, ϕ〉
(

(1− p(x))|∇u(x)|p(x) +M2(u(x), x)
)
dS

+

∫
∂{u>δ}

〈n, ϕ〉
(

(1− p(x))|∇u(x)|p(x) +M2(u(x), x)
)
dS
}
,

because we assumed that measn{u = 0} = 0, so that limε→0,δ→0Rε,δ = 0.

As a consequence, the natural pointwise condition on the free boundary {u =

0} is

(p(x)− 1)|∇u+|p(x) − (p(x)− 1)|∇u−|p(x) = q2(x)(λ2
+ − λ2

−).

Usually, previous condition is written as well as

(u+
n )p(x) − (u−n )p(x) = q2(x)

λ2
+ − λ2

−

p(x)− 1
,

where u+
n and u−n denote the normal derivatives, computed considering n

pointing inside to Ω+(u) and Ω−(u) respectively, at the points of the set {u =

0}, of course whenever this fact makes sense. In fact for every x ∈ {u = 0},
and such that ∇u(x) 6= 0, we have:

un(x) = 〈∇u(x),
∇u(x)

|∇u(x)|
〉 = |∇u(x)|.
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In conclusion, the two phase problem can be formulated in viscosity sense as:
∆p(x)u = f, in Ω+(u) := {x ∈ Ω : u(x) > 0},
∆p(x)u = f, in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),
|∇u+|p(x) − |∇u−|p(x) = q2(x) Λ

p(x)−1
, on F(u) := ∂Ω+(u) ∩ Ω,

(4.6.3)

being Λ := λ2
+ − λ2

−.

4.7 Conclusions

Starting from the condition on the free boundary that we have obtained, in

Carnot groups for the two phase problems, we ask ourselves if a comparison

result may work in this framework. Following the mentioned viscosity approach

introduced in [27,28,29,30], the first thing to prove seems to be the existence

of a comparison result. From this point of view, it is natural to recall the

properties arising from the Hopf maximum principle. About this subject

in Carnot groups, we cite [8], for a detailed study, for a discussion in the

Heisenberg group, and [59] for a generalization to the Carnot groups. In fact

in [8], see Lemma 2.1, the authors remark that if a set Ω satisfies the inner

intrinsic ball property, namely if P0 ∈ ∂Ω is such that there exists a Koranyi

ball BH1

R (Q) ⊂ Ω, such that P0 = ∂BH1

R (Q) ∩ ∂Ω, u satisfies ∆H1u(P ) ≥ 0 and

u(P ) > u(P0) for every P ∈ BH1

R (P0) ∩ Ω, then

lim
t→0+

f(P0)− f(P0 − th)

t
< 0,

where h denotes any exterior direction to ∂Ω at P0; moreover, in case if ∂f(P0)
∂h

exists, then ∂f(P0)
∂h

< 0. In this order of ideas the right definition of a viscosity

solution for (4.1.4) may be the following one.

Unfortunately, if the contact point between the set and the ball is realized

in a characteristic point, then ∂f
∂h

= 0 at the characteristic points along all

the horizontal admissible directions h ∈ HHn, that is ∇Hnf = 0 at the

characteristic points.

We denote by ν the intrinsic normal to F(v) at x0 ∈ F(v) and, as usual,

v+
ν (x0) and v−ν (x0) represent the horizontal derivatives with respect to the inner

intrinsic normal ν to Ω+(v) and to Ω−(v) respectively.

We are in position to state the definition of solution of a two-phase free
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boundary problem in a simpler case like (4.1.4) as follows:

Definition 4.7.1. We say that u ∈ C(Ω) is a solution to (4.1.4) if:

(i) ∆Gu = f in a viscosity sense in Ω+(u) and Ω−(u);

(ii) let x0 ∈ F(u). For every function v ∈ C(Bε(x0)), ε > 0 such that v ∈
C2(B+(v))∩C2(B−(v)), being B := Bε(x0) and F(v) ∈ C2, if v touches

u from below (resp. above) at x0 ∈ F(v), and x0 is not characteristic for

F(v), then

(v+
ν (x0))2 − (v−ν (x0))2 ≤ 1 (resp. (v+

ν (x0))2 − (v−ν (x0))2 ≥ 1).

Moreover, the following notion of strict comparison subsolution (superso-

lution) plays a fundamental role, at least in the Euclidean setting, see [27,28].

Here below we state it in the framework of Carnot groups.

Definition 4.7.2. We say that a function v ∈ C(Ω) is a strict comparison

subsolution (supersolution) to (4.1.4) if: v ∈ C2(Ω+(v)) ∩ C2(Ω−(v)) and

(i) ∆Gv > f (resp. ∆Gv < f) in a viscosity sense in Ω+(v) ∪ Ω−(v);

(ii) for every x0 ∈ F(v), if x0 is not characteristic for F(v), then

(v+
ν (x0))2 − (v−ν (x0))2 > 1 (resp. (v+

ν (x0))2 − (v−ν (x0))2 < 1.

As a consequence, we obtain the following result.

Theorem 4.7.3. No strict viscosity subsolution v of (4.1.4) can touch a

solution u from below at no point in F(u) ∩ F(v) that is noncharacteristic

for F(v). Analogously, no strict comparison supersolution v of (4.1.4) can

touch a viscosity solution u from above at points belonging to F(u)∩F(v) that

are noncharacteristic for F(v).

Proof. It follows by the definitions of solution and strict sub/supersolution in

G.

Corollary 4.7.4. Let v and u be respectively a strict subsolution and a solution

of (4.1.4) in G. If v ≤ u in Ω and F(v) is a noncharacteristic set then v < u

in Ω.

Let w and u be respectively a strict supersolution and a solution of (4.1.4)

in G. If w ≥ u in Ω and F(w) is a noncharacteristic set, then w > u in Ω.
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Proof. Suppose that strict subsolution of (4.1.2) such that v ≤ u. Then such

point x0 can not be inside Ω+(u) ∪ Ω−(u) because, on the contrary, from

∆Gv −∆Gu ≥ f(x)− f(x) = 0

in Ω+(u) ∪ Ω−(u) and v − u realizing a maximum at x0 we would introduce

a contradiction with the maximum principle. Then this contact point x0 ∈
F(u) ∩ F(v), and, by the definition of strict subsolution, this fact can not

happen.

As a consequence there might exist solutions u, v of (4.1.4) such that v ≤ u,

u 6≡ v but u, v might touch in a characteristic point x0 ∈ F(u) ∩ F(v).

In fact it is well known that a Hopf maximum principle in the Heisenberg

group formulated simply substituting to the normal derivative at a boundary

point the intrinsic (horizontal) normal derivative fails, since they may exist

characteristic points on a C1 surface. For instance, sets with genus 0 (without

holes) having smooth boundary have always characteristic points belonging

to the boundary. As a consequence, there can not exist solutions of (4.1.2)

satisfying flux condition pointwise on the free boundary, when F(u) is the

boundary of a set of genus 0.

Here we give some examples of solutions in H1. Let u be a solution of

a two phase problem (4.1.2) in a set A ⊂ R2 satisfying the same condition

|∇u+|2 − |∇u−|2 = 1 (in the Euclidean setting) on F(u) := A ∩ ∂A(u). Then

ũ(x, u, t) = u(x, y) is a solution of (4.1.4) in the cylinder Ω = A× (a, b), when

G = H1.

In the case of the p(x)−Laplace operator characteristic points do not exist.

So that the definition of solution of the simpler problem (4.1.5), in the viscosity

sense, is the following one, keeping in mind that we denote by n the normal to

F(v) at x0 ∈ F(v) and, by v+
n (x0) and v−n (x0) we denote the normal derivatives

with respect to the inner normal n to Ω+(v) and to Ω−(v) respectively.

Definition 4.7.5. Let u ∈ C(Ω). We say that u is a solution to (4.1.5) if:

(i) ∆p(x)u = f in a viscosity sense in Ω+(u) and Ω−(u);

(ii) for every x0 ∈ F(u) and for every function v ∈ C(Bε(x0)), ε > 0 such

that v ∈ C2(B+(v))∩C2(B−(v)), being B := Bε(x0) and F(v) ∈ C2 and

∇v(x0) 6= 0,
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if v touches u from below (resp. above) at x0 ∈ F(v), then

(v+
n (x0))2 − (v−n (x0))2 ≤ 1 (resp. (v+

n (x0))2 − (v−n (x0))2 ≥ 1).

In this case, even if we consider only non-degenerate points where ∇v 6= 0

on F(u), the Hopf maximum principle holds in the classical sense, so that, we

introduce the following strict comparison notion of subsolution/supersolution.

Definition 4.7.6. v ∈ C(Ω) is a strict comparison subsolution (supersolution)

to (4.1.5) if: v ∈ C2(Ω+(v)) ∩ C2(Ω−(v)) and

(i) ∆p(x)v > f (resp. ∆p(x)v < f) in a viscosity sense in Ω+(v) ∪ Ω−(v);

(ii) for every x0 ∈ F(v), if ∇v(x0) 6= 0, then

(v+
n (x0))2 − (v−n (x0))2 > 1 (resp. (v+

n (x0))2 − (v−n (x0))2 < 1.

As a consequence we obtain the following result.

Theorem 4.7.7. No strict viscosity subsolution v of (4.1.5) can touch a

solution u from below. Analogously, no strict comparison supersolution v of

(4.1.5) can touch a viscosity solution u from above.

Proof. The proof immediately follows applying the definitions (4.7.5), (4.7.6),

because of inner maximum principle and via the Hopf maximum principle

since, in the last case, the gradient on that contact boundary points can not

be 0.
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