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Coordinatore Dottorato:

Chiar.ma Prof.ssa

Valeria Simoncini

Supervisore:

Chiar.mo Prof.

Fausto Ferrari

Esame finale anno 2021





Abstract

In this thesis, the main topic is the study of some free boundary problems,

more precisely the investigation of regularity issues in degenerate elliptic and

parabolic ones. Specifically, three different problems are treated. The first

one is the one-phase Stefan problem, for which the regularity of flat free

boundaries is dealt with by relying on perturbation arguments leading to

a linearization of the problem. This approach is inspired by the elliptic

counterpart. The second problem concerns the question of the existence of

an Alt-Caffarelli-Friedman monotonicity formula in the Heisenberg group.

Following the ideas exploited in the Euclidean setting, a necessary condition

about the existence of such tool in that noncommutative setting is found.

The last problem faced is related to almost minimizers of the p-Laplacian.

In particular, the optimal Lipschitz continuity of almost minimizers, for p

greater or equal than 2, is proved as well as the regularity of the free boundary

is studied.
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Introduction

In this thesis, the main topic is the study of some free boundary problems,

more precisely the investigation of regularity issues in degenerate elliptic and

parabolic ones.

A free boundary problem is a problem that involves some partial differential

equations satisfied in some sense by functions which have to fulfill certain

conditions on unknown domains determined by the functions themselves.

Hence, these domains are a priori unknown and depend on the problem. The

boundaries of such unknown domains, inside the set on which the problem is

stated, determine the so-called free boundary of the solution. We will come

back later on the precise notion of free boundary, which depends on the prob-

lem under consideration. In general, in this kind of problems, we are not only

interested in the regularity of the solutions, but also in the study of the free

boundary properties. Actually, one of the main mathematical challenges is

exactly to understand the regularity of the free boundary.

Free boundary problems naturally arise in several fields, such as physics,

industry, biology, finance and other areas. In general, in these applied prob-

lems, there is a qualitative change of a medium and thus an appearance

of a phase transition, for instance ice to water, liquid to crystal, buying to

selling (assets), active to inactive (biology), blue to red (coloring games),

disorganized to organized (self-organizing criticality), see [1] for some of such

examples. Let us consider a typical free boundary problem given by a block

of melting ice. In this case, the free boundary is the moving interphase sepa-

rating the ice and the water, the PDE controlling the process is given by the
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heat equation and its solution is the temperature distribution. Specifically,

this problem is in the class of Stefan problems, see Chapter 1.

An important feature of such kind of problems is the distinction between

one-phase and two-phase free boundary problems. This characterization de-

pends on whether the solutions of the problem we are looking for are non-

negative or sign-changing. We call positive phase the set where the solution

is positive and in case of a two-phase problem, we call negative phase the set

where the solution is negative as well. An example of a one-phase problem

is the classical one-phase elliptic Bernoulli free boundary problem∆u = 0 in Ω+(u) := {x ∈ Ω : u(x) > 0},

|∇u| = 1 on F (u) := ∂Ω+(u) ∩ Ω,
(0.1)

where Ω is a bounded domain in Rn. The two-phase form is instead
∆u = 0 in Ω+(u) := {x ∈ Ω : u(x) > 0},

∆u = 0 in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),

|∇u+|2 − |∇u−|2 = 1 on F (u) := ∂Ω+(u) ∩ Ω,

(0.2)

with u+ := sup{u, 0} and u− := sup{−u, 0}. In (0.1) and (0.2), F (u) denotes

the free boundary of u, while Ω+(u) and Ω−(u) its positive and negative

phase respectively.

Some free boundary problems can be written as variational inequalities, for

which the solution is obtained by minimizing a constrained energy functional,

see [50], [15] and [71] for an introduction. Specific examples can be found

in [2], and also in Chapter 3 for a free boundary problem involving almost

minimizers.

Among the free boundary problems in a variational formulation, a canonical

example is the classical obstacle problem, whose formulation is the following:

minimize
1

2

ˆ
Ω

|∇v|2 dx among all functions v ≥ ϕ,

given a smooth function ϕ (the “obstacle”), under the further boundary

conditions v|∂Ω
= g, where g is a datum. Here, Ω is a bounded domain in
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Rn. In R2, we can think of the solution v as a “membrane” which is elastic and

constrained to be above ϕ. The Euler-Lagrange equation of the minimization

problem defining the obstacle problem is
v ≥ ϕ in Ω,

∆v ≤ 0 in Ω,

∆v = 0 in the set {v > ϕ},

(0.3)

together with the boundary conditions v|∂Ω
= g. Alternatively, we may take

u := v − ϕ and the problem (0.3) is equivalent to
u ≥ 0 in Ω,

∆u ≤ f in Ω,

∆u = f in the set {u > 0},

(0.4)

where f := −∆ϕ (classically defined since ϕ is smooth). In particular, such

solution u can be found minimizing
ˆ

Ω

(
1

2
|∇u|2 + fu

)
dx among all functions u ≥ 0.

In other words, we can make the obstacle just zero, by adding a right-hand

side f. Coherently, the minimization is now subject to the boundary condi-

tions u|∂Ω
= g̃, with g̃ := g − ϕ.

At this point, the natural question could be: why is the obstacle problem a

free boundary problem? Looking at (0.4), we point out that the condition

∆u = f is required to be satisfied in the set {u > 0}, whose boundary is

unknown, since it depends on the solution u itself. This is exactly the pe-

culiarity of free boundary problems, as stressed in the initial definition. The

set Γu := ∂{u > 0} ∩ Ω is the free boundary of u. Specifically, the obstacle

problem is one of the most motivating examples in the study of free boundary

problems.

Variational inequalities can also be used to define a weak notion of solution

to free boundary problems. As often happens in PDEs, even in free bound-

ary problems, a classical notion of solution is not sufficient for a complete



investigation, for instance in facing the question of the existence. So, one

or more weak notions are needed. Concerning free boundary problems, the

weak notion of viscosity solution has turned out to be very suitable, thanks

to its flexibility. For this purpose, we want to mention the classical contribu-

tion of Luis A. Caffarelli, who introduced an original geometric approach to

the study of the free boundary regularity, exploiting this notion of solution.

Specifically, the use of viscosity solutions was one of the most innovative el-

ements of his work.

The previously mentioned Caffarelli’s approach turned out to be fundamen-

tal to develop the study of free boundary regularity as a research trend in

free boundary problems, and more generally in the field of partial differential

equations. Precisely, he proved in his pioneer work [11] that Lipschitz free

boundaries for problems like (2.2) are C1,α, while in [13] he showed that “flat”

free boundaries are Lipschitz. The key step of the method in [11, 13] consists

in finding a family of comparison subsolutions using supconvolutions on balls

of variable radii. To provide a complete bibliography on Caffarelli’s contri-

bution, we mention [12] and [15] as well. As pointed out before, his work was

a key breakthrough for the comprehension of the free boundary regularity.

Indeed, in the homogeneous case as for [11, 13], regularity results in the spirit

of [11, 13] were subsequently proved for more general operators. In partic-

ular, in [80, 81] Wang considered concave fully nonlinear uniformly elliptic

operators of the form F (D2u). Moreover, [11] was extended by Feldman in

[35, 36] to a class on nonconcave fully nonlinear uniformly elliptic operators

of the type F (D2u,Du) and to certain nonisotropic problems. For operators

with variable coefficients, we recall the work of Cerutti, Ferrari, Salsa, see

[18], and Ferrari, Salsa, see [40, 41]. In addition, Ferrari and then Argiolas,

Ferrari in [37, 3] dealt with a class of fully nonlinear operators of the form

F (D2u, x) with Hölder dependence on x. Concerning higher regularity of the

free boundary, instead, it follows from the classical work of Kinderlehrer and

Nirenberg [59].

More recently, the viscosity theory has been also used by D. De Silva in [26] to
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improve Caffarelli’s approach to obtain the C1,α regularity of flat free bound-

aries for problems in the class of the one-phase nonhomogeneous Bernoulli

problem ∆u = f in B1 ∩ {u > 0},

|∇u| = 1 on F (u) := B1 ∩ ∂{u > 0},
(0.5)

where B1 denotes the open ball of radius 1 and center at 0 in Rn. More

generally, Br(x0) denotes the open ball of radius r and center at x0 in Rn.

For the sake of simplicity, we denote Br = Br(0). We refer to Chapter 1 for

the discussion of her approach and its importance in the investigation of the

free boundary regularity.

To conclude this introduction, we point out that the one-phase problem in

the parabolic setting may take the formut = ∆u in (Ω× (0, T ]) ∩ {u > 0},

ut = |∇u|2 on (Ω× (0, T ]) ∩ ∂{u > 0},

where Ω ⊂ Rn, u : Ω × [0, T ] → R, u ≥ 0. We remark that here the free

boundary ∂{u > 0} involves the time as well, so that the complexity of the

problem increases. We will study in details this problem in Chapter 1.

The thesis is organized as follows. In Chapter 1, we study the regularity of

flat free boundaries for the one-phase Stefan problem based on perturbation

arguments leading to a linearization of the problem, taking inspiration from

the elliptic counterpart developed by De Silva in [26]. In the following chap-

ter, we investigate the existence of an Alt-Caffarelli-Friedman monotonicity

formula, see [2], in the Heisenberg group H1. Lastly, in Chapter 3 we deal

with the extension of the results in [30] to a generalization of the classical

one-phase (Bernoulli) energy functional to each p > 1.





Chapter 1

Free boundary regularity in the

one-phase Stefan problem

This chapter focuses on [28], which I have written together with D. De

Silva and O. Savin. Here, we study the regularity of flat free boundaries for

the one-phase Stefan problemut = ∆u in (Ω× (0, T ]) ∩ {u > 0},

ut = |∇u|2 on (Ω× (0, T ]) ∩ ∂{u > 0},
(1.1)

with Ω ⊂ Rn, u : Ω× [0, T ]→ R, u ≥ 0.

1.1 Some generalities of the Stefan problem

In this section, we provide some generalities about the Stefan problem,

mentioning a bit of the literature on it.

The Stefan problem is one of the most classical and important free bound-

ary problems. It dates back to the 19th century and its name precisely to

around 1890, when the physicist Josef Stefan introduced the general class of

such problems in a series of four papers relating the freezing of the ground

and the formation of sea ice, see [73] for a comprehensive description of the

history of the Stefan problem. The importance of this problem lies in the fact

1



2 1. Free boundary regularity in the one-phase Stefan problem

that it has a physical motivation. Precisely, the Stefan problem describes the

phase transition between solids and liquids, such as the melting of the ice (or

the solidification of the water), see for example [49] and again [73]. In par-

ticular, the one-phase form (1.1) is based on an assumption that one of the

material phases may be neglected. Typically, this is achieved by assuming

that such a phase is everywhere at the phase change temperature and hence

any variation from this temperature leads to a change of phase. As a conse-

quence, we can just focus on the behavior of the other phase. In the setting

of the melting of the ice, u represents the temperature of the water, the re-

gion {u = 0} the unmelted region of ice and the free boundary ∂{u > 0} the

moving interphase separating the ice and the water. Furthermore, the water

satisfies the heat equation and the condition ut = |∇u|2 on ∂{u > 0} is the

law of conservation of energy, which defines the position of the interphase.

Here, ut
|∇u| is the speed of ∂{u > 0}, at t fixed, in the direction −ν, with

ν := ∇u
|∇u| .

The main object of interest in the one-phase Stefan problem (1.1) is the be-

havior of the free boundary ∂{u > 0}.
In problems of this type, free boundaries may not regularize instantaneously.

A two dimensional example in which a Lipschitz free boundary for (1.1)

preserves corners can be found for instance in [15], together with a three di-

mensional one in the more general setting of the two-phase Stefan problem.

For this reason, exactly in such framework of the two-phase Stefan problem,

Athanasopoulos, Caffarelli, and Salsa studied the regularizing properties of

the free boundary under reasonable assumptions. Specifically, in [4] they

showed that Lipschitz free boundaries in space-time become smooth pro-

vided a nondegeneracy condition holds, while in [5] the same conclusion was

established for sufficiently “flat” free boundaries. The techniques were based

on the original work of Caffarelli in the elliptic case we recalled in Introduc-

tion, see [11] and [13]. For the sake of completeness, we provide the two-phase
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formulation of the Stefan problem:

ut = ∆u in (Ω× (0, T ]) ∩ {u > 0},

ut = ∆u in (Ω× (0, T ]) ∩ {u ≤ 0}0,

u+
t

|∇u+|
= |∇u+| − |∇u−| on (Ω× (0, T ]) ∩ ∂{u > 0},

u−t
|∇u−|

= |∇u+| − |∇u−| on (Ω× (0, T ]) ∩ ∂{u > 0},

(1.2)

Ω ⊂ Rn. Here,
u+
t

|∇u+| and
u−t
|∇u−| both represent the speed of the interphase

introduced before. The form (1.2) describes the physical scenario in which

both the two phases can not be neglected and have non-constant zero tem-

perature.

About the one-phase Stefan problem, we mention, at this level, the contri-

bution given by S. Choi and I. C. Kim, who showed in [19] that solutions

regularize instantaneously if the initial free boundary is locally Lipschitz with

bounded Lipschitz constant and the initial data has subquadratic growth.

1.2 A recent approach for the free boundary

regularity in the one-phase Stefan prob-

lem

In this section, we introduce the contents of [28], which we expose in de-

tails in the remaining of the chapter. The approach in [28] relies on pertur-

bation arguments leading to a linearization of the problem. This is inspired

by the elliptic counterpart developed by De Silva in [26]. There, the author

improves Caffarelli’s approach to obtain the C1,α regularity of flat free bound-

aries for problems in the class of the one-phase nonhomogeneous Bernoulli

problem (0.5). Precisely, the strategy in [26] consists of showing that the

graph of a solution u in this class of problems satisfies an “improvement of

flatness” property and then iterating it to achieve the C1,α regularity. As

stressed in the introduction of the thesis, De Silva in [26] exploits the the-
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ory of viscosity solutions. Before focusing on the flexibility of De Silva’s

approach, we give an idea of the notion of viscosity solution, roughly saying

what is a viscosity solution to (0.5). In this regard, a viscosity solution to

(0.5) is essentially a nonnegative continuous function such that its graph can

not be touched by above (resp. below) at a point, locally, by the graph of a

classical strict supersolution to (0.5) (resp. subsolution). Here, by a classical

strict supersolution to (0.5) we mean a sufficiently smooth function which

solves (0.5) with < instead of = . Similarly, we can define a classical strict

subsolution. Moreover, given two continuous functions u, ϕ, intuitively we

say that ϕ touches u from below (resp. above) at a point if the graph of

ϕ touches the graph of u at such a point and it is below (resp. above) the

graph of u in a neighborhood of that point.

As previously anticipated, the techniques in [26] have come out to be very

flexible and have been widely generalized to a variety of free boundary prob-

lems, including two-phase nonhomogeneous problems, “thin” free boundary

problems and minimization problems (see for example [27], [29], [25]), for

which regularity results have not been proved using classical Caffarelli’s ap-

proach yet. As a consequence, it is important to understand how these tech-

niques could be applied in the context of time dependent problems. This has

been exactly the motivation with which De Silva, Savin and I have started

investigating the regularity of flat free boundaries for (1.1), taking inspira-

tion by [26]. At this level, we want to point out that the methods developed

in [28] are suitable to further extensions as well.

Looking now into the details of [28], the result is basically equivalent to the

previously mentioned flatness result in [5]. Specifically, the main theorem

roughly states that a solution to the Stefan problem in a ball of size λ in

space-time which is of size λ and has a “flat free boundary” in space, must

have smooth free boundary in the interior provided that a necessary nonde-

generacy condition holds. The nondegeneracy condition for u requires that u

is bounded below by a small multiple of λ at some point in the domain at dis-

tance λ from the free boundary. Precisely, we assume that u : Ω×[0, T ]→ R+
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solves (1.1) in the viscosity sense. This means that u is continuous and its

graph cannot be touched by above (resp. below) at a point (x0, t0) in a

parabolic cylinder Br(x0) × (t0 − r2, t0], by the graph of a classical strict

supersolution ϕ+ (resp. subsolution). By a classical strict supersolution we

mean that ϕ(x, t) ∈ C2, ∇xϕ 6= 0, and it solvesϕt > 4ϕ in (Ω× (0, T ]) ∩ {ϕ > 0},

ϕt > |∇ϕ|2 on (Ω× (0, T ]) ∩ ∂{ϕ > 0}.
(1.3)

Similarly we can define a strict classical subsolution.

Throughout the chapter, given a space-time function, ∇,∆, and D2 are

computed with respect to the space variable x.

The rigorous statement of the main theorem is as follows.

Theorem 1.1. Fix a constant K (large) and let u be a solution to the one-

phase Stefan problem (1.1) in Bλ × [−K−1λ, 0] for some λ ≤ 1. Assume

that

|u| ≤ Kλ, u(x0, t) ≥ K−1λ for some x0 ∈ B 3
4
λ.

There exists ε0 depending only on K and n such that if, for each t, ∂x{u > 0}
is ε0-flat in Bλ, then the free boundary ∂{u > 0} (and u up to the free

boundary) is smooth in Bλ
2
× [−(2K)−1λ, 0].

Here we use the notation ∂x{u > 0} to denote the boundary in Rn of

{u(·, t) > 0)}, with t fixed. By ∂x{u > 0} is ε0-flat in Bλ we understand

that, for each t, ∂x{u > 0}∩Bλ is trapped in a strip of width ε0λ (the region

between two parallel hyperplanes at distance ε0λ from each other), and u = 0

on one side of this strip while u > 0 on the other side.

The assumption that u is of size λ in a domain of size λ around the free

boundary is natural, since this eventually holds for all classical solutions by

choosing λ small. We point out that in Theorem 1.1 the behavior of the

solution depends strongly on the value of λ. If we scale the domain to unit

size and keep the function u of size 1, then the rescaled function

(x, t) 7→ 1

λ
u(λx, λt), (x, t) ∈ B1 × [−K−1, 0],
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solves a Stefan problem with possibly large diffusion coefficient λ−1λut = 4u in (B1 × (−K−1, 0]) ∩ {u > 0},

ut = |∇u|2 on (B1 × (−K−1, 0]) ∩ ∂{u > 0}.
(1.4)

Theorem 1.1 states that nondegenerate solutions of size 1 of (1.4) which

have ε0- flat free boundaries in B1 are smooth up to the free boundary. We

remark that ε0 is independent of λ, which means that we need to obtain

uniform estimates in λ for the oscillation of the free boundaries of solutions

of (1.4). The results in [28] show that the free boundary has a uniform C1,α

bound in space. On the other hand, the estimates for u in the set where

it is positive depend on the parameter λ. The strategy is to approximate u

with a family of explicit functions la,b which in the direction perpendicular

to the free boundary depend on λ while on the tangential directions to the

free boundary are independent of the parameter λ.

Formally as λ→ 0+, a solution u to (1.4) solves the Hele-Shaw equation.

Estimates for this problem by similar methods as those developed in [28]

were obtained by H. Chang-Lara and N. Guillen in [CG].

To prove main Theorem 1.1, we show that if a solution u satisfies the

hypotheses of Theorem 1.1 then, after a convenient dilation, the flatness

assumption can be extended to the whole function u instead of just the free

boundary. Then Theorem 1.1 is a consequence of the following result.

Theorem 1.2. Fix a constant K (large) and let u be a solution to the one-

phase Stefan problem (1.1) in B2λ × [−2λ, 0] for some λ ≤ 1. Assume that

0 ∈ ∂{u > 0}, and

an(t) (xn − b(t)− ε1λ)+ ≤ u ≤ an(t) (xn − b(t) + ε1λ)+ ,

with

K−1 ≤ an ≤ K, |a′n(t)| ≤ λ−2, b′(t) = −an(t),

for some small ε1 depending only on K and n. Then in Bλ× [−λ, 0] the free

boundary ∂{u > 0} is a C1,α graph in the xn direction.
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The assumption that b′ = −an(t) means that the approximating linear

functions in x, an(t)(xn − b(t))+, satisfy the free boundary condition, while

|a′n(t)| ≤ λ−2 respects the parabolic scaling of the interior equation and

represents that an can change at most o(1) in a time interval of length o(λ2).

We remark that it suffices to prove Theorem 1.2 under the more relaxed

hypotheses

λ ≤ λ0 and |a′n(t)| ≤ c0λ
−2, (1.5)

with λ0, c0 small depending on K, n. We end up in this setting by working

in balls of size τλ with τ sufficiently small, and then relabel τλ by λ and

ε1τ
−1 by ε1.

Theorem 1.2 applies, for example, when u is a perturbation of order o(1)λ

of a traveling wave solution

(eaxn+a2t − 1)+, K−1 ≤ a ≤ K.

In this case we choose an(t) = a, b(t) = −at, and consider λ ≤ λ0 small so

that the difference between the approximating linear part an(t)(xn − b(t))

and the exact solution above is less than 1
2
ε1λ in Bλ.

The proof of Theorem 1.2 is based on linearization techniques. The lin-

earized equation in our setting has the form of an oblique derivative parabolic

problem λvt = tr(A(t)D2v) in {xn > 0},

vt = γ(t) · ∇v on {xn = 0},
(1.6)

with A(t) uniformly elliptic and γn > 0. An important task in our anal-

ysis is to develop Schauder-type estimates for equation (1.6) with respect

to an appropriate distance dλ and to capture both features of the mixed

parabolic/hyperbolic scaling.

The remaining of the chapter is organized as follows. In the next section,

we show that Theorem 1.1 can be deduced from Theorem 1.2. In Section 1.4,

we use a Hodograph transform to obtain an equivalent quasilinear parabolic

equation with oblique derivative boundary condition. In the following sec-

tion, we state an improvement of flatness result Proposition 1.9 for solutions
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of such nonlinear problem, then we show how this implies Theorem 1.2. The

proof of Proposition 1.9 is presented in Section 1.6, and it relies on various

Hölder estimates (with respect to the appropriate distance) for solutions to

the linearized problem associated to the nonlinear problem. Sections 1.7 and

1.8 are devoted to the proofs of such Hölder estimates, while Section 1.9 fo-

cuses on the one dimensional linear problem, which plays an essential role.

The last section contains some general technical results on solutions to the

linear problem.

1.3 From flat free boundaries to flat solutions

In this section, we show that Theorem 1.1 can be reduced to Theorem

1.2.

We assume that the function u satisfies the ε0-flatness hypothesis of the

free boundary from Theorem 1.1 for some λ ≤ 1, and that (0, 0) is a free

boundary point. Precisely, by ∂x{u > 0} is ε0-flat in Bλ we understand that,

for each t, there exists a direction ν such that

∂x{u(·, t) > 0} ∩Bλ ⊂ {|〈x− x0, ν〉| ≤ ε0λ},

and

u = 0 in {〈x− x0, ν〉 ≤ −ε0λ},

u > 0 in {〈x− x0, ν〉 ≥ ε0λ}.

First, we show that in a smaller domain Bηλ × [−ηλ, 0] the whole graph

of u is ηβ- flat, for some small β, provided that ε0 ≤ c(η,K). Then, in this

domain the hypotheses of Theorem 1.2 are satisfied by choosing η sufficiently

small.

We work with the parabolic rescaling of the function u which is defined

in B1 × [−(Kλ)−1, 0] and keeps the function u of unit size:

(x, t) 7→ 1

λ
u(λx, λ2t), (x, t) ∈ B1 × [−(Kλ)−1, 0].
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By abuse of notation we denote this rescaling by u, and then u solves a Stefan

problem with possibly small speed coefficient λ,ut = 4u in (B1 × (−(Kλ)−1, 0]) ∩ {u > 0},

ut = λ|∇u|2 on (B1 × (−(Kλ)−1, 0]) ∩ ∂{u > 0}.
(1.7)

We prove the following main lemma. Universal constants only depend

on n,K. As usual, in the body of the proofs, constants denoted by C may

change from line to line.

Lemma 1.3. Assume that u solves (1.7),

|u| ≤ K, u(x0, t) ≥ K−1 for some x0 ∈ B3/4,

0 ∈ ∂x{u(·, 0) > 0}, and ∂x{u(·, t) > 0} is ε0-flat in B1.

Then for all small η > 0 we have

an(t)
(
xn − b(t)− η1+β

)+ ≤ u ≤ an(t)
(
xn − b(t) + η1+β

)+
in Bη×[−λ−1η, 0],

with β = 1/20 and for c, C > 0 universal,

c ≤ an(t) ≤ C, |a′n(t)| ≤ ηβ−2, b′(t) = −λan(t), b(0) = 0,

provided that ε0 ≤ c(η,K).

When we rescale the conclusion back to the original coordinates, we

obtain that the hypotheses of Theorem 1.2 are satisfied in the cylinder

Bηλ × [−ηλ, 0] with ε1 = ηβ.

We start by proving a result about the location of the free boundary in

time.

Lemma 1.4. Assume u solves (1.7) in B2× [−K−1, 1] and that 0 ≤ u ≤ K.

If u(x, 0) = 0 in B1, then

u(x, t) ≤ C(|x| − 1)+, if t ∈ [−(2K)−1, 0], (1.8)

and

u(x, t) = 0 if |x| < 1− Cλ, t ∈ [0, 1], (1.9)

with C > 0 universal.
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Proof. Since the support of u is increasing with time we deduce that u = 0 in

B1 for all t ∈ [−K−1, 0]. Then, in the annular domain (B2 \B1)× [−K−1, 0],

by the comparison principle, u is less than a multiple of the solution to the

heat equation which equals 0 on ∂B1 × (−K−1, 0], and 1 on the remaining

part of the parabolic boundary. This, together with the boundary regularity

of such solution, implies the estimate (1.8).

Now, for times t ∈ [0, 1] we compare u with

w(x, t) = C0 g(|x| − r(t)), r(t) := 1− C0λt,

with g a 1D function such that g(s) = 0 if s ≤ 0, and for positive s is defined

by the ODE

g′′(s) + 2ng′(s) = 0, g(0) = 0, g′(0) = 1.

Notice that g′ ∈ [0, 1].

We may assume that r(t) ≥ 1/2, otherwise the conclusion (1.9) is trivial

(say for C > 2C0).

The constant C0 is chosen large such that w ≥ u at time t = 0 (by (1.8))

and also on ∂B2 × [0, 1]. We check that w is a supersolution to (1.7); indeed

in {w > 0} we have (recall r(t) ≥ 1/2),

wt = C2
0λg

′ ≥ 0, 4w = C0

(
g′′ +

n− 1

|x|
g′
)
< 0,

and on ∂{w > 0}
wt = λC2

0 = λ|∇w|2.

In conclusion, u ≤ w which gives the desired conclusion (1.9).

Now, we turn to the proof of Lemma 1.3.

Proof of Lemma 1.3. We assume that u satisfies (1.7) in B1 × [−(Kλ)−1, 0],

and ∂x{u > 0} is ε0-flat in B1. Suppose that (0, 0) ∈ ∂{u > 0} and then,

after a rotation,

u(x, 0) > 0 if xn > ε0, and u(x, 0) = 0 if xn < −ε0.
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From (1.8) in Lemma 1.4 (applied to balls tangent to {xn = −ε0}) we find

that u ≤ C(xn + ε0)+ in B1/2 × [−(2K)−1, 0].

We define

uτ :=
1

τ
u(τx, τ 2t), with τ ≥ ε

1/2
0 ,

and, if τ ∈ [ε
1/2
0 , c], then

uτ ≤ C(xn + τ)+ in B1 × [−2, 0]. (1.10)

Notice that uτ satisfies (1.7) with τλ instead of λ. We apply (1.9) of Lemma

1.4 for uτ and obtain that (since (0, 0) ∈ ∂{uτ > 0}),

∂x{uτ > 0} ∩B1/2 intersects {xn ≤ Cλτ}, for all t ∈ [−1, 0]. (1.11)

Moreover, ∂x{uτ > 0} is τ−1ε0-flat in B1, which combined with (1.11) implies

that

∂{uτ > 0} ∩ (B1/2 × [−1, 0]) is included in {xn ≤ C(λτ + τ−1ε0)}. (1.12)

In (B1/2∩{xn > Cτ})× [−1, 0] we compare uτ with the solution w to the

heat equation which equals 0 on {xn = Cτ}, and equals uτ on the remaining

part of the parabolic boundary. Notice that by (1.12), since τ ≥ ε
1/2
0 , uτ > 0

on {xn = Cτ}. From (1.10) we find |uτ − w| ≤ Cτ , and the boundary

regularity of w gives

|uτ − axn| ≤ Cρ3/2 + Cτ ≤ 2Cρ3/2 in B+
2ρ × [−ρ2, 0], (1.13)

for some constant a < C, provided that we choose τ = ρ3/2 with ρ small, to

be made precise later.

We claim that the nondegeneracy assumption u(x0, t) ≥ K−1 for some

x0 ∈ B3/4 implies that a > c. For this we use (1.12) which, in terms of

the function u, implies that ∂x{u(·, t) > 0}, at all times t = −τ 2 ≤ −ε0,

intersects the xn axis at distance at most C(λ|t| + ε0) from the origin. As

for (1.12), using that ∂x{u > 0} is ε0-flat in B1, we obtain that u(x, t) > 0
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if xn > Cε0 + Cλ|t| in B1/2. Now we can use the nondegeneracy condition

with a Hopf-type lemma for the heat equation and obtain

u ≥ c(xn − C(ε0 + λ|t|))+ in B1/4 × [−(4K)−1, 0],

for some c > 0 that depends only on n and K. We use this inequality at time

t = 0 in (1.13) and conclude a > c since τρ > 2τ 2 ≥ 2ε0. We can restate

(1.13) as

(axn − Cη1+ 1
5 )+ ≤ u ≤ (axn + Cη1+ 1

5 )+ in B2η × [−η2, 0],

with η := τρ = ρ5/2.

Similarly, by looking at the points (b(t)en, t) where the free boundary

intersects the xn axis, we obtain that

|b(t)| ≤ C(λ|t|+ ε0) ≤ C0η if t ∈ [−λ−1η, 0],

and in the domain B2C0η × [t− η2, t] we have(
a(t) · (x− b(t)en)− Cη

6
5

)+

≤ u(x, s) ≤
(
a(t) · (x− b(t)en) + Cη

6
5

)+

with c ≤ |a(t)| ≤ C. The flatness assumption of the free boundary in B1

implies

|a(t)− an(t)en| ≤ Cη,

so we may replace a(t) · (x− b(t)en) above by an(t)(xn − b(t)).
The bounds on u above imply that an(t) can vary at most Cη1/5 in an

interval of length η2. We can regularize an(t) by averaging over such intervals

(convolving with a mollifier) and the bounds for u still hold after changing the

value of the constant C. Hence for all t ∈ [−λ−1η, 0], we can find an(t) ∈ R
such that

an(t)
(
xn − b(t)− Cη

6
5

)+

≤ u ≤ an(t)
(
xn − b(t) + Cη

6
5

)+

(1.14)

in B2C0η × [t− η2, t] with

c ≤ an(t) ≤ C, |a′n(t)| ≤ Cη
1
5
−2, |b(t)| ≤ C0η. (1.15)
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It remains to show that we can modify b slightly so that it satisfies the ODE

b′ = −λan. Precisely, we let

b̃′(t) = −λan(t), b̃(0) = 0,

and we show that

|b(t)− b̃(t)| ≤ Cη1+β if t ∈ [−λ−1η, 0], β = 1/10. (1.16)

For this we perturb the family of evolving planes an(t)(xn− b̃(t))+ into a

subsolution/supersolution. Let

d(t) := b̃(t) + C1η
βλt,

with C1 large, to be specified later. We claim that

b(t) ≥ d(t)− 2η1+β. (1.17)

For this we define the function

v := (1− C2η
β) an(t) (h(x− d(t)en))+,

with

h(x) := xn − ηβ−1(|x′|2 − 2nx2
n),

and check that it is a subsolution to our problem (1.7) in the domain

Ω :=
⋃

t∈[−λ−1η,0]

B2η(d(t)en)× {t}.

Notice that in a ball of radius 2η,

h ≤ Cη, |∇h| = 1 +O(ηβ), (1.18)

and the constant C2 = C2(n) is chosen depending only on n such that

v ≤ an(t)(xn − d(t))+, (1.19)

with equality at d(t)en and moreover, when x ∈ ∂B2η(d(t)en)∩{v(x, t) > 0},
the difference between the two functions above is greater than η1+β.
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Next, we check that v is a strict subsolution. In the interior {v > 0},
using (1.15), (1.18), the definition of b̃, we have (for η small)

|vt| ≤ C|a′n|η + C|d′| ≤ Cη−4/5, 4v ≥ cηβ−1 > vt,

and on the free boundary (C ′ depending only on C2, n),

vt = (1− C2η
β)an(−d′)hn, |∇v|2 ≥ (1− C ′ηβ)a2

n.

Since

hn = 1 +O(ηβ), (−d′)an = λa2
n − C1λanη

β,

we can choose C1 large such that vt < λ|∇v|2.

If

b(t0) < d(t0)− 2η1+β for some t0 ∈ [−λ−1η, 0],

then by (1.14) and (1.19) we find that v < u at time t = t0 in B2η(d(t0)en)

∩ {v > 0}. On the other hand v = u at the origin (0, 0). This means that as

we increase t from t0 to 0, the graph of v(·, t) in B2η(d(t)en) ∩ {v > 0} will

touch by below the graph of u for a first time t, and the contact must be an

interior point to B2η(d(t)en) due to the properties (1.14),(1.19) of u and v (in

particular the difference between an(t) (xn−d(t))+ and v is greater than η1+β

on ∂B2η(d(t)en)). This contact point is either on the free boundary ∂{v > 0}
or on the positivity set {v > 0}, and we reach a contradiction since v is a

strict subsolution. The claim (1.17) is proved, hence

b(t) ≥ b̃(t)− Cη1+β if t ∈ [−λ−1η, 0].

The opposite inequality is obtained similarly and the claim (1.16) holds.

Then from (1.14) we deduce that for all η ≤ c small

an(t)
(
xn − b̃(t)− η1+β′

)+

≤ u ≤ an(t)
(
xn − b̃(t) + η1+β′

)+

in Bη × [−λ−1η, 0] with β′ = 1/20 and

c ≤ an(t) ≤ C, |a′n(t)| ≤ ηβ
′−2, b̃′(t) = −λan(t), b̃(0) = 0.
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1.4 The Nonlinear problem

In this section, we use a standard Hodograph transform to reduce our

Stefan problem (1.1) to an equivalent nonlinear problem with fixed boundary

and oblique derivative boundary condition (see (1.23)).

Here and henceforth, for n ≥ 2, given r > 0 we set

Qr := (−r, r)n, Q+
r := Qr ∩ {xn ≥ 0}, Qr(x0) := x0 +Qr,

Cr := (Qr∩{xn > 0})×(−r, 0], Fr := {(x, t)| x ∈ Qr ∩ {xn = 0}, t ∈ (−r, 0]} .

Also, by parabolic cylinders we mean

Pr(x0, t0) := Qr(x0)× (t0 − r2, t0].

1.4.1 The Hodograph transform

As mentioned above, we use a Hodograph transform to reduce the Stefan

problem (1.1) to one with fixed boundary. Precisely, we view the graph of u

in Rn+2

Γ := {(x, xn+1, t)| xn+1 = u(x1, x2, . . . , xn, t)}

as the graph of a possibly multi-valued function ū with respect to the xn

direction

Γ := {(x, xn+1, t)| xn = ū(x1, x2, . . . , xn−1, xn+1, t)}.

We use (y1, . . . , yn) to denote the coordinates (x1, x2, . . . , xn−1, xn+1). Then,

if Du and Dū denote at some point on the graph Γ the gradients with respect

to the first n entries of u and ū, we find

Du = − 1

ūn
(ū1, . . . , ūn−1,−1), ut = − ūt

ūn

D2u = − 1

ūn
(A(Dū))T D2ū A(Dū),

where A(Dū) is a square matrix which agrees with the identity matrix except

on the nth row where the entries are given by the right hand side of Du above.
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The Stefan problem (1.1) in terms of ū can be written abstractly as the

following quasilinear parabolic equation with oblique derivative boundary

condition: ūt = tr(Ā(∇ū)D2ū) in {yn > 0},

ūt = g(∇ū) on {yn = 0},
(1.20)

with Ā(p) symmetric, positive definite as long as pn 6= 0, and gn(p) > 0.

The free boundary of u is given by the graph of the trace of ū on {yn = 0}.
Our goal becomes to show that ū is C1,α with respect to the y′, t variables.

Let us assume that u satisfies the hypotheses of Theorem 1.2 (it is now more

convenient to work in cubes rather than in balls). Below we denote by c, C

various constants depending on K and n. From the flatness assumption∣∣u− an(t)(xn − b(t))+
∣∣ ≤ Cε1λ in Qλ × [−λ, 0], (1.21)

and 0 ∈ ∂{u > 0} implies |b(0)| ≤ Cε1λ which together with |b′| ≤ Cλ gives

|b(t)| ≤ C(ε1 + |t|)λ.

Thus, if (x, t) ∈ Qλ × [−cλ, 0], then (for ε1 possibly smaller), |b(t)| ≤ λ/2

and by (1.21) the domain of definition of ū at time t contains Q+
c̄λ for c̄ small

enough. We conclude that ū is well-defined in Q+
λ̄
× [−λ̄, 0], with λ̄ := c1λ,

c1 sufficiently small.

Moreover, the graph of ū in this set is closed in Rn+2 (since it is obtained

as a rigid motion from the graph of u) and it satisfies equation (1.20) in the

viscosity sense, see Definition 1.6 below.

Remark 1.5. We observe that ū is single-valued in the region yn ≥ Cε1λ,

and possibly multi-valued near yn = 0. Indeed, similarly as above, if t

∈ [t0 − λ2, t0 + λ2], then using the bound for |b′| and (1.5) for |a′|,

|a(t)− a(t0)| ≤ c0, |b(t)− b(t0)| ≤ Cλ2,

hence, if λ0, c0 are smaller than ε1 then∣∣u− an(t0)(xn − b(t0))+
∣∣ ≤ Cε1λ in Qλ × [t0 − λ2, t0 + λ2], (1.22)
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with |b(t0)| ≤ λ/2. By applying interior gradient estimates in parabolic

cylinders included in {u > 0} we find from (1.22) that if

(x0, t0) with x0 ∈ Qλ, t0 > −cλ is in the region Cε1λ ≤ u(x0, t0) ≤ cλ

then

|∇u(x0, t0)− an(t0)en| ≤ (2K)−1.

Finally, the main hypotheses of Theorem 1.2 can be written in terms of

ū as

|ū− (ān(t)yn + b̄(t))| ≤ Cε1λ̄ in Q+
λ̄
× [−λ̄, 0],

b̄′(t) = g(ān(t)en), K−1 ≤ ān ≤ K,

λ̄ ≤ λ̄1, |ā′n| ≤ c̄1λ̄
−2.

Our purpose in this paper is to prove an improvement of flatness result

for solutions of the nonlinear equation (1.20) as above, provided that ε1, λ̄1,

c̄1 are chosen small depending on n and K (see Proposition 1.9 in the next

section). Then Theorem 1.2 can be obtained by iterating such statement.

1.4.2 Assumptions on the nonlinear problem.

We consider solutions to the following problem (for simplicity of notation

we drop the bars in our formulation, and we use x rather than y),ut = F (∇u,D2u) in Cλ,

ut = g(∇u) on Fλ.
(1.23)

We assume that F is linear in D2u, that is F (∇u,D2u) = tr(A(∇u)D2u)

and gn > 0.

We start by stating precisely the notion of viscosity solution, which can

be easily adapted to multi-valued functions u whose graphs are compact sets

of Rn+2.

Definition 1.6. We say that a continuous function u : Cλ → R is a viscosity

subsolution to (1.23) if its graph cannot be touched by above at points in
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Cλ∪Fλ (locally, in parabolic cylinders) by graphs of strict C2 supersolutions

ϕ of (1.23), i.e. ϕt > F (∇ϕ,D2ϕ) in Cλ,

ϕt > g(∇ϕ) on Fλ.
(1.24)

Similarly we can define viscosity supersolutions and viscosity solutions to

(1.23).

We define now a class of linear in x functions that we use throughout this

paper to express the flatness condition.

Definition 1.7. We denote by la,b(x, t) functions which for each fixed t are

linear in the x variable, and whose coefficients in the x′ variable are indepen-

dent of t, and also so that la,b satisfies the boundary condition in (1.23) on

{xn = 0}. More precisely,

la,b(x, t) := a(t) · x+ b(t),

with

a(t) := (a1, . . . , an−1, an(t)), ai ∈ R, i = 1, . . . , n− 1,

and

b′(t) = g(a(t)).

Our main result is to show that if u is a viscosity solution of (1.23) which

is possibly multi-valued near {xn = 0} and is well approximated by la,b in a

cylinder Cλ, i.e.

|u− la,b| ≤ ελ in Cλ,

then in a smaller cylinder Cτλ it can be approximated by another function

lã,b̃ with an error ετ = ετα that improved by a C1,α scaling.

Before formulating this result rigorously in the next section, we state here

the precise hypotheses on F and g. We assume that F (p,M) is uniformly

elliptic in M for each fixed slope p ∈ Rn with pn > 0 and the ellipticity

constants could degenerate as pn → 0+ or |p| → ∞. Precisely, for any given

constant K large there exists Λ large depending on K such that

ΛI ≥ DMF (p,M) ≥ Λ−1I, if p ∈ RK , (1.25)
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with

RK := BK ∩ {pn ≥ K−1} ⊂ Rn. (1.26)

We choose K sufficiently large such that when p is restricted to the set above

we also have

|DpF | ≤ Λ|M |, ‖g‖C1 ≤ Λ, gn ≥ Λ−1. (1.27)

From now on we assume that the constants K and Λ have been fixed

such that (1.25)-(1.27) hold. In fact, for notational simplicity, by possibly

choosing K larger, we can assume that (1.25)-(1.27) hold with Λ = K. We

consider the situation when u is well approximated in Cλ by a function la,b

as above with slopes a(t) belonging to the region RK .

We suppose in addition that u satisfies the Harnack inequality from scale

λ to scale σλ where σ is a small parameter. We denote this property for u

as property H(σ) which is defined in the following way.

Definition 1.8. Given a positive constant σ small, we say that

u has property H(σ) in Cλ

if u (possibly multi-valued) satisfies the following version of interior Harnack

inequality in parabolic cylinders of size r ∈ [σλ, λ].

Let l denote a linear function

l(x) := a · x+ b, with a ∈ Rn, b ∈ R, |a| ≤ K.

If

u ≥ l in Qr(x0)× [t0 − r2, t0 + r2] ⊂ Cλ,

with r ≥ σλ, and

(u− l)(x0, t0) ≥ µ, for some µ ≥ 0,

then

u− l ≥ κµ in Qr/2(x0)×
[
t0 +

1

2
r2, t0 + r2

]
,

for some constant κ depending on n and K (but independent of σ).

Similarly, if u ≤ l we require these inequalities to hold for l − u instead

of u− l.



20 1. Free boundary regularity in the one-phase Stefan problem

Property H(σ) for all σ > 0 is a consequence of the parabolic Harnack

inequality in the case when u is a viscosity solution of (1.23), and in addition

we know that ∇u ∈ RK . However, we will show below that property H(σ)

for some σ small, is satisfied for solutions u which are well approximated by

functions la,b and are graphical with respect to the en direction.

1.5 The iterative statement

In this section, we state the main improvement of flatness result Propo-

sition 1.9, and we show how Theorem 1.2 can be deduced from it. We also

describe the strategy of the proof of Proposition 1.9, and its connection to

the corresponding linearized problem (1.34).

The improvement of flatness statement reads as follows (we use the no-

tation from Subsection 3.2). The rest of the paper will be devoted to its

proof.

Proposition 1.9 (Improvement of flatness). Fix K > 0 large, and assume

F ,g satisfy (1.25)-(1.27). Assume that u is a viscosity solution to (1.23)

possibly multi-valued, which satisfies property H(ε1/2) and

|u− la,b| ≤ ελ in Cλ, with b′(t) = g(a(t)), (1.28)

a(t) ∈ RK , |a′n(t)| ≤ δελ−2,

and

ε ≤ ε0, λ ≤ λ0, λ ≤ δε.

Then there exists lã,b̃ such that

|u− lã,b̃| ≤
ε

2
τλ in Cτλ, b̃′(t) = g(ã(t)),

with

|a(t)− ã(t)| ≤ Cε, |ã′n(t)| ≤ δε

2
(τλ)−2.

Here the constants ε0, λ0, δ, τ > 0 small and C large depend only on n, and

K.
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For the remainder of the section constants depending only on n and K

are called universal, and denoted by ci, Ci.

Remark 1.10. We apply the proposition above to the hodograph transform

of a solution to the original Stefan problem, hence in our case u is graphical

with respect to the en direction. Then (1.28) already implies our hypothesis

that

u satisfies property H(ε1/2) in Cλ.

Indeed, if t ∈ [t0 − λ2, t0 + λ2], then using the bounds for |a′|, |b′|,

|a(t)− a(t0)| ≤ δε, |b(t)− b(t0)| ≤ Cλ2 ≤ Cδελ,

hence

|a(t0) · x+ b(t0)− la,b| ≤ Cδελ in Q+
λ × [t0 − λ2, t0 + λ2]. (1.29)

This shows that u is well approximated in each parabolic cylinder of size λ

by a linear function which is constant in t,

|u− (a(t0) · x+ b(t0))| ≤ 2ελ in Q+
λ × [t0 − λ2, t0 + λ2], (1.30)

with C ≥ an(t0) > c. Since the graph of u coincides with the graph (in the

en direction) of a solution to the heat equation, we can use the standard

Harnack inequality for the heat equation and find that u satisfies property

H(Cε) in Cλ (as we used interior regularity in Remark 1.5). Thus u satisfies

property H(ε1/2) by choosing ε0 smaller if necessary.

This argument shows that if u is graphical with respect to the en direction,

then it is single-valued away from a O(ελ) neighborhood of {xn = 0}.

We now show that Proposition 1.9 implies Theorem 1.2, and the remain-

der of the paper will be devoted to prove Proposition 1.9.

Proof of Theorem 1.2. As discussed in Subsection 1.4.1, Theorem 1.2 is

equivalent to obtaining C1,α estimates on {xn = 0} for the hodograph trans-

form. After relabeling constants if necessary, the hodograph transform does
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satisfy the hypotheses of Proposition 1.9 with ε = ε0, λ ≤ min{δε0, λ0},
a0(t) = (0, 0, . . . , 0, (a0)n(t)) ∈ RK/2. Now Proposition 1.9 can be applied

indefinitely in the cylinders Cλk , λk := λτ k, with ε = εk := ε02−k = C(λ)λαk .

The hypothesis that ak(t) ∈ RK is satisfied (by choosing ε0 smaller if neces-

sary) since

|ak(t)− ak−1(t)| ≤ Cεk, a0(t) ∈ RK/2,

from which we also deduce that

|ak(t)−∇u(0, t)| ≤ Cεk. (1.31)

Hence

|u− lak,bk | ≤ εkλk ≤ C(λ)λ1+α
k in Cλk ,

for all k ≥ 0, and from (1.30) (applied for λk) and (1.31) we deduce that

|∇u(0, t)−∇u(0, s)| ≤ C(λ)|t− s|α/2,

which gives

|ak(t)− ak(s)| ≤ C(λ)λ
α/2
k if t, s ∈ [−λk, 0].

Using that b′k = g(ak) we lastly obtain

|u− (ak(0) · x+ b′k(0)t+ bk(0))| ≤ C(λ)λ
1+α

2
k in Cλk ,

which is the desired conclusion.

1.5.1 Strategy of the proof of the improvement of flat-

ness.

We briefly explain the strategy of the proof of Proposition 1.9. The main

idea is to linearize the equation near la,b. Define w(x, t) the rescaled error by

u(x, t) := la,b(x, t) + ελw

(
x

λ
,
t

λ

)
, (x, t) ∈ Cλ. (1.32)
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Then w is defined in C1, possibly multi-valued near {xn = 0}, and satisfies

by hypothesis

|w| ≤ 1 in C1,

and
λa′n(λt)xn + b′(λt) + εwt(x, t) = F

(
a(λt) + ε∇w, ε

λ
D2w

)
in C1,

b′(λt) + εwt = g(a(λt) + ε∇w) on F1.

(1.33)

We show that w is well approximated by a solution to the linear equation

obtained formally by multiplying the first equation by λε−1 and the second

by ε−1 and then letting ε→ 0, δ → 0. Using |a′| ≤ δελ−2, and λε−1 ≤ δ → 0

we obtain λvt = tr(Aλ(t)D
2v) in C1,

vt = γλ(t) · ∇v on F1,
(1.34)

with

Aλ(t) := A(a(λt)), γλ(t) := ∇g(a(λt)).

Using that A, g ∈ C2(RK), and that |a′| � λ−2 we find

|A′λ(t)| ≤ λ−1, |γ′λ(t)| ≤ λ−1.

The next sections are devoted to the study of the linear problem (1.34), and

to obtain estimates which are uniform with respect to λ. To this aim, we

introduce a distance d between points (x, t) ∈ Rn+1

d((x, t), (y, s))

:= min{|x′ − y′|+ |xn − yn|+ |t− s|1/2, |x′ − y′|+ |xn|+ |yn|+ |t− s|},

which is consistent with the scaling of the equation, so that d is equivalent

with the standard Euclidean distance on the hyperplane xn = 0 and with

the standard parabolic distance far away from this hyperplane. The various

Hölder estimates in the next section are written with respect to this distance

d, or after a dilation of factor λ−1 with respect to the rescaled distance dλ.
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In particular, this allows us to show that solutions v to the linear problem

enjoy an improvement of flatness property in cylinders Cτk , which can be

transferred further to the solutions of the nonlinear problem (1.33).

The relation between solutions w to (1.33) and v to (1.34) is made precise

in the next proposition. It states that w satisfies essentially a comparison

principle with C2 subsolutions/supersolutions v of (1.34) which have bounded

derivatives and second derivatives in x.

Proposition 1.11 (Comparison principle). Let v ∈ C2(Ω) with Ω ⊂ C1

satisfy

|∇v|, |D2v| ≤M,

for some large constant M andλvt ≤ tr(Aλ(t)D
2v)− Cδ in Ω,

vt ≤ γλ(t) · ∇v − δ on F1 ∩ Ω,
(1.35)

with Aλ(t), γλ(t) as above.

Then v is a subsolution to (1.33), as long as C is sufficiently large, uni-

versal, and ε ≤ ε1(δ,M). In particular, if

v ≤ w on ∂Ω \ ({t = 0} ∪ {xn = 0})

then

v ≤ w in Ω.

Similarly, we have the same result for supersolutions by replacing ≤ by

≥ and the − signs in (1.35) by +.

Proof. It is straightforward to show that (1.35) implies the corresponding

inequalities for v (in place of w) in (1.33). We need to use the hypotheses of

Proposition 1.9 and that

λ‖a′‖L∞ + ‖b′‖L∞ ≤ C, |A(a(λt) + ε∇v)− A(a(λt))| ≤ CεM,

|g(a(λt) + ε∇v)− g(a(λt))− ε∇g(a(λt)) · ∇v| ≤ Cε2M2.
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As a consequence, we obtain that if the rescaled error w is close to a C2

solution v of (1.34) on the Dirichlet boundary of a domain Ω ⊂ C1 then v

and w remain close to each other in the whole domain Ω.

Corollary 1.12. Let w be a solution to (1.33) and v ∈ C2 be a solution of

(1.34) in a domain Ω ⊂ C1, with

|∇v|, |D2v| ≤M.

If ε ≤ ε1(δ,M) and

|v − w| ≤ σ on ∂Ω \ ({t = 0} ∪ {xn = 0})

then

|v − w| ≤ σ + Cδ in Ω.

Proof. This follows immediately by applying Proposition 1.11 to

v ± (Cδ(x2
n − t− 2)− σ).

We apply Proposition 1.11 and Corollary 1.12 to functions v for which

M is large, universal. In order to apply Corollary 1.12 we need to show that

w can be well approximated near the boundary of C1/2 by a solution v to

(1.34) with bounded second derivatives in x. We prove that w has essentially

a Hölder modulus of continuity (as δ → 0) with respect to the distance dλ

induced by d, and then we let v be the solution to the Dirichlet problem

(1.34) in C1/2 with boundary data which is sufficiently close to w.

We conclude this section by stating a version of interior Harnack inequal-

ity for w with respect to constants, which is an immediate consequence of

property H(ε1/2) of u in Cλ, see Definition 1.8.

As in (1.29), the error between la,b and a linear function independent of

t in a time-interval of size (λr)2 is Cδελ r2. Then Definition 1.8 implies the

following property for u− la,b.
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If for some constant ω

u− (ω + la,b) ≥ 0 in Qλr(x0)× [t0 − (λr)2, t0 + (λr)2] ⊂ Cλ,

with r ∈ [ε1/2, 1], and

(u− (ω + la,b))(x0, t0) ≥ µελ, for some µ ≥ Cδr2,

then

u− (ω + la,b) ≥
κ

2
µελ in Qrλ/2(x0)×

[
t0 +

1

2
(λr)2, t0 + (λr)2

]
,

with κ the universal constant from Definition 1.8. In terms of w this can be

written as follows.

Interior Harnack inequality for w. If

w ≥ ω in Qr(x0)× [t0 − λr2, t0 + λr2] ⊂ C1,

with ω a constant, r ≥ ε1/2, and

w(x0, t0) ≥ ω + µ, for some µ ≥ Cδr2,

then

w ≥ ω +
κ

2
µ in Qr/2(x0)×

[
t0 +

λ

2
r2, t0 + λr2

]
. (1.36)

1.6 The linearized problem

In this section, we state various estimates for the linear problem (1.34)

which are uniform in the parameter λ ≤ 1 and we use them to prove the

main result Proposition 1.9. We start with introducing the distance dλ with

respect to which such estimates are obtained.
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1.6.1 Definition of the distances d, dλ and the family

of balls Br, Bλ,r.

We define the following distance in Rn+1

d((x, t), (y, s))

:= min{|x′ − y′|+ |xn − yn|+ |t− s|1/2, |x′ − y′|+ |xn|+ |yn|+ |t− s|},

which interpolates between the parabolic distance and the standard one de-

pending on how far points are from {xn = 0}. It is not too difficult to check

that d satisfies the triangle inequality.

For r ≤ 1 and points (y, s) with yn ∈ [0, 1], we define the family of “balls”

of center (y, s) and radius r, which are backwards in time and restricted to

{xn ≥ 0}, and which are consistent with the distance induced by d:

Br(y, s) := Qr(y)× (s− r2, s), if r < |yn|,

Br(y, s) := Q+
r (y)× (s− r, s), if 1 ≥ r ≥ |yn|,

where we recall that

Qr(y) := {x ∈ Rn| |xi − yi| < r}, Q+
r (y) := Qr(y) ∩ {xn ≥ 0}.

Notice that

(x, t) ∈ B2r(y, s) \ Br(y, s) =⇒ d((x, t), (y, s)) ∼ r.

A function v : U → R, with U ⊂ C1, is Hölder with respect to the distance

d if

[v]Cαd := sup
(x,t)6=(y,s)

|v(x, t)− v(y, s)| d((x, t), (y, s))−α <∞.

Equivalently, v ∈ Cα
d (U) if and only if there exists M such that ∀(x, t) ∈ U

osc v ≤Mrα in Br(x, t) ∩ U.
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Rescaling. Assume λ ≤ 1 and we perform a dilation of factor λ−1 which

maps Q+
λ into Q+

1 . We use hyperbolic scaling for the rescaled distance dλ of

d

dλ((x, t), (y, s)) :=
1

λ
d(λ(x, t), λ(y, s))

= min{|x′ − y′|+ |xn − yn|+ λ−1/2|t− s|1/2, |x′ − y′|+ |xn|+ |yn|+ |t− s|}.

The corresponding family of balls induced by dλ denoted by Bλ,r is obtained

by dilating of a factor λ−1 the sizes of the balls Br above and then relabeling

λ−1r by r. We find

Bλ,r(y, s) := Qr(y)× (s− λr2, s), if r < |yn|,

Bλ,r(y, s) := Q+
r (y)× (s− r, s), if λ−1 ≥ r ≥ |yn|,

and notice that Bλ,r(y, s) = Br(y, s) if yn = 0.

As above a function v is Hölder with respect to the distance dλ in U and

write v ∈ Cα
dλ

(U) if there exists M such that

osc v ≤Mrα in Bλ,r(x, t) ∩ U.

1.6.2 Estimates.

Having introduced the distance dλ, we are now ready to state the esti-

mates for the linear problemλvt = tr(A(t)D2v) in C1,

vt = γ(t) · ∇v on F1,
(1.37)

with

K−1I ≤ A(t) ≤ KI, K−1 ≤ γn ≤ K, |γ| ≤ K

λ ∈ (0, 1], |A′(t)| ≤ λ−1, |γ′(t)| ≤ λ−1,

for some large constant K. Here constants depending on n and K are called

universal.

We start with an interior regularity result (see Definition 1.7 of la,b).
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Proposition 1.13 (Interior estimates). Let v be a viscosity solution to (1.37)

such that ‖v‖L∞ ≤ 1. Then

|∇v|, |D2v| ≤ C in C1/2,

and for each ρ ≤ 1/2, there exists lā,b̄ such that

|v − lā,b̄| ≤ Cρ1+α in Cρ,

with

b̄′(t) = γ(t) · ā, |ā′n| ≤ Cρα−1λ−1, |ā| ≤ C,

with α, C universal.

In terms of the Dirichlet problem for (1.37), we define the Dirichlet bound-

ary of C1 as

∂DC1 := ∂C1 ∩
(
{t = −1} ∪ {xn = 1} ∪n−1

i=1 {|xi| = 1}
)
.

Notice that ∂DC1 is different from the standard parabolic boundary since

the points on F1 are also excluded.

Proposition 1.14 (The Dirichlet problem). Let φ be a continuous function

on ∂DC1. Then there exists a unique classical solution v ∈ C2,1(C1) ∩ C0(C̄1)

to the Dirichlet problem (1.37) with v = φ on ∂DC1. Moreover,

|∇v|, |D2v| ≤ C(σ)‖v‖L∞ in Cσ
1 := {dλ((x, t), ∂DC1) ≥ σ},

and if φ is Cα with respect to the distance dλ, then v is also Cα up to the

boundary and

‖v‖Cαdλ ≤ C‖φ‖Cαdλ ,

with C(σ), C universal constants (independent of λ).

Here

‖v‖Cαdλ := ‖v‖L∞ + sup
(x,t)6=(y,s)

|v(x, t)− v(y, s)|dλ((x, t), (y, s))−α.
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The proofs of Propositions 1.13 and 1.14 are based on a Harnack inequal-

ity for solutions to (1.37), which we provide in the next section. The Harnack

inequality holds for more general equations of the same type with measurable

coefficients. It applies also for solutions w to the nonlinear problem (1.33)

up to scale ε1/2. To state it, we recall the definition of the maximal Pucci

operators

M+
K(N) = max

K−1I≤A≤KI
tr AN, M−

K(N) = min
K−1I≤A≤KI

tr AN.

(1.38)

Theorem 1.15 (Hölder continuity). Let v be a viscosity solution to
M+

K(D2v) ≥ λvt ≥M−
K(D2v) in C1,

K−1v−n −Kv+
n −K|∇x′v| ≥ vt ≥ K−1v+

n −Kv−n −K|∇x′v| on F1.

(1.39)

Then v is locally Hölder continuous in C1/2 with respect to the metric induced

by dλ, that is

‖v‖Cαdλ (C1/2) ≤ C‖v‖L∞(C1).

Moreover, if v is continuous up to the boundary and v = φ on ∂DC1 with

φ ∈ Cα
dλ

then v ∈ Cα
dλ

up to the boundary and

‖v‖Cαdλ ≤ C‖φ‖Cαdλ .

The constants α and C depend only on n and K.

Proposition 1.16 (Harnack inequality for w). Assume that u satisfies the

hypotheses of Proposition 1.9 and w is defined as in (1.32). Then

osc
Bλ,r(x0,t0)

w ≤ Crα, ∀(x0, t0) ∈ C1/2, r ≥ C(δ)ε1/2,

provided that δ ≤ c′ universal.
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1.6.3 Proof of Proposition 1.9.

Using the results above we can complete the proof of Proposition 1.9.

Proof of Proposition 1.9. We divide the proof in two steps.

Step 1. We prove that there exists a solution v to (1.34) which approxi-

mates w well in C1/2, that is

|v − w| ≤ Cδ in C1/2,

provided that ε ≤ ε1(δ).

Indeed, by Proposition 1.16 we know that there exists a function φ defined

in C1/2 such that

|w − φ| ≤ δ, ‖φ‖Cαdλ ≤ C. (1.40)

Let v be the solution to (1.34) in C1/2 with v = φ on ∂DC1/2, which exists in

view of Proposition 1.14 and satisfies,

‖v‖Cαdλ ≤ C. (1.41)

Then, if dλ((x, t), ∂DC1/2) ≤ δ1/α, there exists (y, s) on ∂DC1/2 so that (using

(1.41) and (1.40)),

|v(x, t)− φ(y, s)| ≤ Cδ, |w(x, t)− φ(y, s)| ≤ Cδ,

thus,

|v − w| ≤ Cδ on C1/2 ∩ {dλ((x, t), ∂DC1/2) ≤ δ1/α}. (1.42)

In particular

|v − w| ≤ Cδ on ∂DΩ, Ω := C1/2 ∩ {dλ((x, t), ∂DC1/2) > δ1/α}.

On the other hand, by Proposition 1.14,

|∇v|, |D2v| ≤ C(δ) in Ω.

Thus, using Corollary 1.12,

|v − w| ≤ Cδ in Ω,
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which gives the desired claim.

Step 2. Applying Proposition 1.13, to the solution v above, we find that

|w − lā,b̄| ≤ Cρ1+α + Cδ in Cρ,

and

b̄′(t) = γλ(t) · ā, |ā′n| ≤ Cρα−1λ−1, |ā| ≤ C,

with γλ(t) = ∇g(a(λt)). We choose ρ = τ small, universal, and

δ = τ 1+α
2 ,

so that δ ≤ c′ the constant from Proposition 1.16, and

|w − lā,b̄| ≤
1

4
τ in Cτ , |ā′n| ≤

1

4
δ τ−2λ−1.

In terms of the original function u, this inequality implies∣∣∣∣u− (la,b + ελlā,b̄

(
x

λ
,
t

λ

))∣∣∣∣ = ελ

∣∣∣∣w(xλ, tλ
)
− lā,b̄

(
x

λ
,
t

λ

)∣∣∣∣ ≤ ε

4
τλ in Cτλ.

Set

ã(t) := a(t) + ε ā

(
t

λ

)
, b̂(t) := b(t) + ελ b̄

(
t

λ

)
,

then

|u− lã,b̂| ≤
ε

4
τλ in Cτλ,

and

|ã′n| ≤
εδ

λ2

(
1 +

1

4τ 2

)
≤ εδ

2(τλ)2
.

Finally, we define b̃ by the ODE

b̃′ = g(ã), b̃(0) = b̂(0),

and then we have

b̂′ = b′+εb̄′
(
t

λ

)
= g(a(t))+ε∇g(a(t))·ā

(
t

λ

)
= g(ã(t))+O(ε2) = b̃′+O(ε2).
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If t ∈ [−τλ, 0] then

|(b̃− b̂)(t)| ≤ Cε2|t| ≤ ε

4
τλ,

which implies the desired conclusion

|u− lã,b̃| ≤
ε

2
(λτ) in Cτλ,

and ã, b̃ satisfy the required bounds.

1.7 Harnack inequality

In this section, we prove Theorem 1.15 and Proposition 1.16. The key

ingredient is to establish a diminishing of oscillation property. As usual,

universal constants depend on n,K.

Proposition 1.17. Assume that v is a viscosity solution of (1.39) and 0

≤ v ≤ 1 in C1. Then

osc
C1/2

v ≤ 1− c,

with c > 0 universal.

In order to prove Proposition 1.17 we start with a lemma. Let Ω be a

smooth domain in Rn, n ≥ 2, such that

Q̄+
3/4 ⊂ Ω̄ ⊂ Q̄+

7/8,

and call

T := {xn = 0} ∩Q3/4 ⊂ ∂Ω.

Define η(x′) a standard bump function supported on Q′5/8 and equal 1 on

Q′1/2 (here the prime denotes cubes in Rn−1). Let φ satisfy (see (1.38) for the

definition of the Pucci operator),

M−
K(D2φ) = 0 in Ω,

φ = 0 on ∂Ω \ T , φ = η on T ,

and notice that 0 ≤ φ ≤ 1, φ ≥ c on Q+
1/2, and by Hopf lemma φn > 0 on

{xn = 0} ∩ {φ = 0}. The following lemma holds.
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Lemma 1.18. Let v ≥ 0 satisfyM
+
K(D2v) ≥ λvt ≥M−

K(D2v) in C1,

vt ≥ K−1v+
n −Kv−n −K|∇x′v| on F1,

(1.43)

in the viscosity sense. If for some t0 ∈ (−1, 0],

v(x, t0) ≥ s0 φ(x) in Q+
1 , s0 ≥ 0,

then

v(x, t) ≥ s(t)φ(x) in Q+
1 × [t0, 0],

with

s′(t) = −C0s(t), s(t0) = s0, C0 large universal.

Moreover, if s0 ≤ c0 with c0 small universal, and

v

(
1

2
en, t0 + λ/4

)
≥ 1

2
, (1.44)

then

v(x, t0 + λ) ≥ (s0 + c0λ)φ(x).

Proof. For the first part of the claim, since v ≥ 0, it suffices to show that

with our choice of s,

w(x, t) := s(t)φ(x),

is a subsolution to (1.43) in Ω× [t0, 0], that isλwt ≤M
−
K(D2w) in Ω× (t0, 0],

wt ≤ K−1w+
n −Kw−n −K|∇x′w| on {xn = 0} ∩ (Ω× (t0, 0]).

The interior equation is immediately satisfied since s′ ≤ 0 and s ≥ 0. On

{xn = 0}, we need to show that

Cφ+K−1φ+
n −Kφ−n −K|∇x′φ| ≥ 0,

for some large C. By Hopf lemma φn > 0 on {φ = 0} ∩ {xn = 0} and

moreover |∇x′φ| = 0, thus

K−1φ+
n −Kφ−n −K|∇x′φ| = K−1φn > 0 on {φ = 0} ∩ {xn = 0}.
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The same holds in a neighborhood of this set by continuity, and then we can

choose C sufficiently large so that the desired inequality holds.

For the second part, denote for simplicity

ti := t0 + i
λ

4
, i = 1, . . . , 4.

We define

D := {x ∈ Ω| d(x, ∂Ω) > c} ⊂ Ω,

with c small universal such that there exists a C2 function ψ ≥ 0 defined in

Ω \D satisfying

M−
K(D2ψ) ≥ 4 in Ω \D,

and

ψ = 0, |∇ψ| ≥ 1 on ∂Ω, ψ ≤ 1 on ∂D.

An example of such a function is given by ψ = d + Cd2 with C sufficiently

large, where d is the distance function to ∂Ω. In view of (1.44)

v

(
1

2
en, t1

)
≥ 1/2.

Thus, we can use Harnack inequality (after rescaling) to conclude that

v ≥ 2c1 on D × [t2, t4], (1.45)

for some small c1. We claim that at time t = t3,

v(x, t3) ≥ s(t3)φ+ c1ψ in Ω \D. (1.46)

For this we compare v in (Ω \D)× [t2, t3] with

q(x, t) := s(t3)φ+ c1

(
ψ +

t− t3
t3 − t2

)
.

The inequality q ≤ v holds on the boundary of the domain. Indeed (recall

that s is decreasing), on ∂D

q(x, t) ≤ s(t3)φ+ c1 ≤ s0 + c1 ≤ 2c1 ≤ v,
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where in the last inequality we used (1.45), and on ∂Ω or at t = t2 we have

q ≤ s(t3)φ ≤ v.

It remains to check that q is a subsolution for the interior equation. In-

deed,

λqt = 4c1 ≤ c1M−
K(D2ψ) ≤M−

K(D2q),

where we used thatM−
K(N1) +M−

K(N2) ≤M−
K(N1 +N2), and claim (1.46)

is proved.

Next, in the domain (Ω \D)× [t3, t4] we compare v with the subsolution

z(x, t) := (s(t3) + c2(t− t3))φ(x) + c1ψ(x),

with c2 sufficiently small.

The inequality v ≥ z is satisfied at time t = t3 by (1.46), and on ∂D we

have

z ≤ s0 + c2 + c1 ≤ 2c1 ≤ v,

while on ∂Ω \ {xn = 0} we have z = 0 ≤ v. We check that z is a subsolution

of our problem. For the interior inequality we have

λzt = c2λφ ≤ c2 ≤ c1M−
K(D2ψ) ≤M−

K(D2z).

For the boundary condition, on {xn = 0} we get

zt = c2φ ≤ c2 ≤
c1

4
K−1ψn, (1.47)

where in the second inequality we have used that ψn ≥ 1 on ∂Ω ∩ {xn = 0}.
Moreover, since φn ≥ −C on ∂Ω∩{xn = 0}, we get (for s0, c2 small enough),

zn ≥ −
(
s0 + c2

λ

4

)
C + c1ψn ≥

c1

2
ψn,

and lastly (|∇x′ψ| = 0 on {xn = 0})

K|∇x′z| ≤
(
s0 +

c2

4

)
K|∇x′φ| ≤

c1

4
K−1ψn.

Together with (1.47), this gives

zt = c2φ ≤ c2 ≤ K−1zn −K|∇x′z| on {xn = 0}.

In conclusion, at time t = t4 we have v ≥ z in Ω \D and v ≥ 2c1 in D which

gives the desired claim by choosing c0 sufficiently small.
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Remark 1.19. In the proof above we only used the subsolution property for

v

M+
K(D2v) ≥ λvt, (1.48)

in order to extend the inequality (1.44) from one point to (1.45) by apply-

ing the interior parabolic Harnack inequality. Alternately, it is sufficient to

assume that the Harnack inequality holds for v only in a neighborhood of D

and not necessarily up to {xn = 0}.
The rest of the proof is based on comparing v with the explicit C2 sub-

solutions w, q and z which all have bounded second derivatives in the x

variable. Thus the hypothesis that v is a viscosity supersolution of (1.43)

can be slightly relaxed, and require instead, that v only satisfies the compar-

ison principle with respect to the explicit barriers above.

Remark 1.20. The hypothesis (1.48) can be removed completely if instead of

(1.44) we assume a measure estimate∣∣∣∣{v ≥ 1

4

}
∩
(
Q1 ×

[
t0, t0 +

λ

4

])∣∣∣∣ ≥ 1

2

∣∣∣∣Q1 ×
[
t0, t0 +

λ

4

]∣∣∣∣ .
Then, the inequality (1.45) follows directly from the supersolution property

for v and the weak Harnack inequality (see for example [79]).

We are now ready to prove Proposition 1.17.

Proof of Proposition 1.17. Assume that 0 ≤ v ≤ 1, and for half of the

values of

tk := −1 + kλ, so that tk ∈ [−1,−1/2), k = 0, 1, 2, . . . ,

we have

v

(
1

2
en, tk + λ/4

)
≥ 1

2
. (1.49)

We apply Lemma 1.18 repeatedly to the sequence of times tk and obtain

v(x, tk) ≥ skφ, sk := s(tk), s0 = 0,
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with φ given in Lemma 1.18, and

sk+1 ≥ sk + c0λ if (1.49) holds and sk ≤ c0,

or

sk+1 ≥ sk(1− C0λ) otherwise.

Now it follows that sk ≥ c1 for the last value of k so that tk < −1/2, for

c1 appropriately chosen depending on c0, C0. Then we apply the first part of

Lemma 1.18 to obtain

v(x, t) ≥ c̄φ for all t ≥ −1/2,

which gives the desired conclusion, since φ > c on Q+
1/2.

The same arguments show that a similar statement to that of Proposition

1.17 holds for a solution w of (1.33) defined in (1.32). Below is the key lemma

which connects the linear and nonlinear problem and allows us to reduce our

analysis mostly to the linear case.

Lemma 1.21. Assume that u satisfies the hypotheses of Proposition 1.9 and

let w be defined as in (1.32), with −1 ≤ w ≤ 1. Then

osc
C1/2

w ≤ 2(1− c),

with c universal, provided that δ ≤ c′ and ε ≤ ε1(δ).

Proof. We may assume as above that w(en/2, tk + λ/4) ≥ 0 for more than

half the values of k, and then show that w separates from the lower constraint

−1. For this we apply the same argument as above to the function

w̄ := w + 1 + Cδ(2 + t− x2
n) ≥ 0,

for which the relaxed hypotheses of Remark 1.19 hold. Indeed, by (1.36),

w̄ satisfies the required Harnack inequality (1.44) =⇒ (1.45) and, by Propo-

sition 1.11, it satisfies the comparison with the explicit barriers of Lemma

1.18.

We remark that we have only used that u has property H(c′′) in Cλ for

some c′′ small, universal.
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Before we proceed with the proofs of Theorem 1.15 and Proposition 1.16

we provide a boundary version of the diminishing of oscillation Proposition

1.17.

Lemma 1.22. Assume that U is a space-time domain obtained by the inter-

section of n+ 1 half spaces in the x1, . . . , xn−1, xn and t variables,

U := (−∞, z1)× (−∞, z2)× · · · × (−∞, zn)× (−zn+1,∞) ⊂ Rn+1,

with zi ∈ [0, 1].

Assume that v ≥ 0 satisfies
λvt ≥M−

K(D2v) in C1 ∩ U ,

vt ≥ K−1v+
n −Kv−n −K|∇x′v| on F1 ∩ U ,

v ≥ 1
4

on ∂U ∩ C1.

(1.50)

If min zi ≤ 7
8
, then

v ≥ c in C1/2 ∩ U , c universal.

Proof. This follows easily from Lemma 1.18. Indeed, we work with the trun-

cation ṽ := min{v, 1
4
} extended by 1

4
in C1 \U . Then ṽ is a supersolution for

our problem in C1.

If zn+1 < 1, then we can apply directly the first part of Lemma 1.18

for ṽ for some t0 close to −1 and for s0 universal, and obtain the desired

conclusion.

On the other hand, if zn+1 = 1, then zi ≤ 7
8

for some i ≤ n hence for each

time t ∈ [−1, 0] we find ∣∣∣∣{ṽ ≥ 1

4

}
∩Q1

∣∣∣∣ ≥ c|Q1|.

Now the conclusion follows as before, see Remark 1.19.

We are now ready to prove Theorem 1.15.
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Proof of Theorem 1.15. Notice that the rescaling of v

vr(x, t) = v(r x, r t), r ≤ 1,

satisfies again the hypotheses of Theorem 1.15 in C1 with the constant λ

replaced by λr = λr. Proposition 1.17 applied to vr implies that

osc
C1/2

vr ≤ (1− c) osc
C1
vr

which gives (recall that Bλ,r(y, s) = Br(y, s) if yn = 0),

osc
Br/2(0,0)

v ≤ (1− c) osc
Br(0,0)

v.

Similarly, if (y, s) ∈ C1/2 ∩ {xn = 0}, then by considering cylinders centered

at (y, s) we obtain

osc
Br/2(y,s)

v ≤ (1− c) osc
Br(y,s)

v, ∀r ≤ 1/2, (1.51)

which proves the desired oscillation decay on {xn = 0} ∩ C1/2.

If (y, s) ∈ C1/2, then (1.51) applied at ((y′, 0), s) implies

osc
Bλ,r/8(y,s)

v ≤ (1− c) osc
Bλ,r(y,s)

v, if yn ≤ r ≤ 1/4.

In the case when r < yn, then the inequality above follows from the standard

parabolic Harnack inequality applied to v in the interior cylinder Bλ,r(y, s).

The boundary version follows in the same way. Precisely, if (y, s) ∈
C1 ∩ {xn = 0} then we find

osc
Br/2(y,s)∩C1

v ≤ (1− c) osc
Br(y,s)∩C1

v, ∀r ≤ 1,

by applying either Proposition 1.17 or Lemma 1.22 depending whether or

not Bλ,r(y, s) intersects the boundary ∂DC1.

The inequality above can be deduced at all points (y, s) ∈ C1 after replac-

ing r/2 by r/8 on the left hand side. Indeed, if r ≥ yn then it follows from

the inequality above applied at the point ((y′, 0), s), and if r < yn then we

can apply the standard parabolic Harnack inequality or its boundary version

since Bλ,r(y, s) does not intersect {xn = 0}.
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We conclude the section with the proof of Proposition 1.16, that is the

Harnack inequality for w.

Proof of Proposition 1.16. By Lemma 1.21 we find that, in terms of u, we

satisfy again the hypotheses of Proposition 1.9 in Cλ/2 with λ replaced by

λ/2, ε replaced by 2(1− c)ε, and with δ the same. The function a stays the

same while b is modified by a small constant. Moreover, the property H(ε1/2)

of u in Cλ implies that u satisfies property H(2ε1/2) in Cλ/2. We can iterate

this result k times as long as the scale parameter of the property H(2kε1/2)

remains small, universal, and the hypotheses of Lemma 1.21 hold:

2kε1/2 ≤ c′′, δ ≤ c′, 2k(1− c)kε ≤ ε1(δ),

with c′′ small, universal. This means that we can iterate k times if

2kε1/2 ≤ ε2(δ), δ ≤ c′.

In terms of w, we obtain that its oscillation in C2−k is bounded by 2(1− c)k

as long as k satisfies the inequality above. On the other hand for the interior

balls Bλ,r, by (1.36), w satisfies a similar diminishing of oscillation up to scale

r ∼ ε1/2, and the conclusion follows.

1.8 Proof of Proposition 1.13

In this section, we prove Proposition 1.13 by using Theorem 1.15 and the

estimates for the one-dimensional problem which will be proved in Lemma

1.23 of the next section. The constants C in this proof depend on n and K.

Proof of Proposition 1.13. The proof is divided in four steps.

Step 1 - Interior Estimates. Let (y, s) ∈ C1/2. From Theorem 1.15 we

know that

osc
Br(y,s)

v ≤ Crα, r = yn.
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The rescaling

ṽ(x, t) := v(y + rx, s+ r2λt),

solves in Q1 × (−1, 0)

ṽt = tr(Ã(t)D2ṽ), Ã(t) := A(s+ r2λt).

Since |A′| ≤ λ−1, we have |Ã′(t)| ≤ C, and we find by interior estimates that

|ṽn(0, 0)| ≤ C oscQ1×(−1,0) ṽ, from which we deduce

|vn(y, s)| ≤ Crα−1 = Cyα−1
n .

On the other hand, we prove in appendix that the difference of two viscosity

solutions is still a viscosity solution. Thus, the estimates for v can be ex-

tended to the derivatives of v in the xi directions, i = 1, . . . , n − 1. Indeed,

by applying the interior Hölder estimates to discrete differences in the xi

directions, and iterating this we find that

‖Dk
x′v‖ ≤ C(k) in C1/2, ∀k ≥ 1.

In particular, using also the estimate for vn above, we obtain

‖D2
x′v‖ ≤ C, |vin| ≤ Cxα−1

n in C1/2.

Step 2 - Reduction to 1D. Combining the interior estimates with our

assumptions on γ, we obtain that when we restrict v to a two-dimensional

space in which we freeze the x′ variable, say for simplicity x′ = 0, then the

function v((0, xn), t) solves in the xn, t variables the equationvt = 1
λ
{ann(t)vnn + h(xn, t)} in C1,

vt = γn(t)vn + f(t) on F1,
(1.52)

with

|h| ≤ Cxα−1
n , |f(t)| ≤ C,

h(xn, t) :=
∑

(i,j)6=(n,n)

aij(t) vij((0, xn), t), f(t) :=
∑
i<n

γi(t) vi(0, t).
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The boundary condition on F1 is understood in the viscosity sense.

Indeed, if a C1 function ϕ(xn, t) touches v(0, xn, t) by above/below, say

at (0, 0), in Br(0, 0) ⊂ R2, then

ϕ(xn, t) +
∑
i<n

vi(0, 0)xi ± C|(x, t)|1+α

touches v by above/below at the origin in Br(0, 0) ⊂ Rn+1. This follows from

the Cα continuity of vi, i < n, which implies∣∣∣∣∣v(x, t)−

(
v(0, xn, t) +

∑
i<n

vi(0, 0)xi

)∣∣∣∣∣ ≤ C|(x, t)|1+α. (1.53)

Now, we can use Lemma 1.23 a) for v(0, xn, t), where we establish C1,α

estimates for the 1D problem (1.52). We obtain

|v((0, xn), t)− v(0, t)− vn(0, t)xn| ≤ Cx1+α
n ,

which together with (1.53) gives∣∣∣∣∣v −
(
v(0, t) + vn(0, t)xn +

n−1∑
i=1

vi(0, 0)xi

)∣∣∣∣∣ ≤ Cρ1+α in Cρ.

This means that

|v − la,b| ≤ Cρ1+α in Cρ,

with

a(t) := (v1(0, 0), . . . , vn−1(0, 0), vn(0, t)), b(t) := v(0, t),

and

b′ = γn(t)an + f(t) = γ(t) · a+
∑
i<n

γi(t)(vi(0, t)− vi(0, 0)).

Step 3 - Modifying the linear approximation. Next, we modify a

and b slightly into ā, b̄ so that

|v − lā,b̄| ≤ Cρ1+α in Cρ,

and we also satisfy

|ā′(t)| ≤ Cλ−1ρα−2, b̄′ = γ(t) · ā. (1.54)
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By Lemma 1.23 we know that

|an(t)− an(s)| ≤ Cλ−
α
2 |t− s|

α
2 , (1.55)

and by the Hölder continuity of the vi’s,

|b′ − γ(t) · a| ≤
∑
i<n

|γi||vi(0, t)− vi(0, 0)| ≤ C|t|α. (1.56)

Thus, an oscillates Cρα in an interval of length λρ2. We define ā by averaging

a over intervals of this length. More precisely, let η be a standard mollifier in

R with compact support in [−1, 1], and ητ denote its rescaling with support

of size τ . We extend an(t) to be constant for t ≥ 0 and define

ān := an ∗ ηλρ2 , āi := ai, i = 1, . . . , n− 1.

Then (1.55) implies the inequality (1.54) for ā′ and also

|a− ā| ≤ Cρα. (1.57)

We define b̄(t) for t ≤ 0 as

b̄′ = γ(t) · ā, b̄(0) = b(0).

Then, (1.56), (1.57) imply

|(b̄− b)′| ≤ Cρα =⇒ |b̄− b| ≤ Cρ1+α in [−ρ, 0],

and the desired conclusion follows.

Step 4 - Conclusion. The tangential derivatives vi, with i < n, satisfy

the same estimates as v. We find from Step 2 applied to vi that the mixed

derivatives vin must be bounded by a universal bound. This improves the

initial estimate in Step 1, which in turn improves the regularity of f and h in

Step 2. More precisely, by Lemma 1.23 we find that vin satisfies the estimate

(1.59). This holds also for the tangential derivatives of order up to 2. Then

the functions h(x, t) and f(t) in (1.52) satisfy the hypotheses of part b) of

Lemma 1.23. This gives that the remaining second derivative vnn is bounded

as well, and (1.55) holds for α + 1 instead of α. Thus we can replace α by

α + 1 in the bound (1.54) above, and the proposition is proved.
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1.9 Estimates for the 1D case

In this section, we provide the necessary estimates for solutions to the

1D linear problem. The difference with the higher dimensional case is that

now, in the 1D case, the Hölder estimates and the subsequent C1,α and C2,α

estimates can be iterated in parabolic cylinders

Pρ := (0, ρ)× (−ρ2, 0],

and we can use the standard Hölder parabolic norms with respect to the

standard parabolic distance: d((x, t), (y, s)) := |x− y|+ |t− s|1/2. Following

Krylov [60], we denote the corresponding Hölder spaces with respect to this

distance with Ck,α
x,t .

Precisely, we prove the following.

Lemma 1.23 (1D-Estimates). Assume that λ ≤ 1 and w(x, t) is a viscosity

solution in C1 ⊂ R2 of the equationwt = 1
λ
{A(t)wxx + h(x, t)} in C1,

wt = γ(t)wx + f(t) on F1,
(1.58)

with

‖w‖L∞ ≤ 1, K−1 ≤ A(t), γ(t) ≤ K, |A′(t)| ≤ Kλ−1.

a) If

|h| ≤ Kxα−1, |f(t)| ≤ K,

then w ∈ C1,α in the x variable, w ∈ C1 on {x = 0}, and the free boundary

condition is satisfied in the classical sense. More precisely, in C1/2 we have

|w(x, t)− (w(0, t) + xwx(0, t))| ≤ Cx1+α, |wx| ≤ C,

and

|w(y, t)− w(z, s)| ≤ C
(
|y − z|α + λ−

α
2 |t− s|

α
2

)
,

|wx(y, t)− wx(z, s)| ≤ C
(
|y − z|α + λ−

α
2 |t− s|

α
2

)
, (1.59)

with C depending only on K and α.
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b) If in addition in C3/4

|h(y, t)− h(z, s)| ≤ K
(
|y − z|α + λ−

α
2 |t− s|

α
2

)
,

|γ(t)− γ(s)| ≤ Kλ−
α
2 |t− s|

α
2 , |f(t)− f(s)| ≤ Kλ−

α
2 |t− s|

α
2 ,

then in C1/2

|wx(0, t)− wx(0, s)| ≤ Cλ−
1+α

2 |t− s|
1+α

2 , |wxx| ≤ C. (1.60)

After subtracting F (t) :=
´ t

0
f(s)ds from w and replacing h by h− λf(t)

we may assume that f ≡ 0. We work with v(x, t) = w(x, λt), and after

relabeling λt by t in the arguments of A and h, we obtainvt = A(t)vxx + h(x, t) in (0, 1)× (−λ−1, 0],

vt = λγ(t) vx on {x = 0},
(1.61)

with

K−1 ≤ A(t), γ(t) ≤ K, |A′(t)| ≤ K, |h| ≤ Kxα−1. (1.62)

Lemma 1.23 is equivalent to the Lemma 1.24 below, where we establish

the corresponding estimates for v using parabolic scaling.

Lemma 1.24. Assume that v is a viscosity solution of (1.61) in P1 with

λ ≤ 1, and coefficients that satisfy (1.62). Then

‖v‖C1,α
x,t (P1/2) ≤ C(‖v‖L∞(P1) + 1), (1.63)

and the free boundary condition is satisfied in the classical sense. If in addi-

tion

‖h‖C0,α
x,t
, ‖γ‖

C
α
2
t

≤ K,

then

‖v‖C2,α
x,t (P1/2) ≤ C(‖v‖L∞(P1) + 1),

with C depending only on n, K and α.
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Proof. If v solves (1.61) in Pρ then the rescaling

ṽ(x, t) := ρ−βv(ρx, ρ2t)

solves (1.61) in P1 with coefficients

Ã(t) = A(ρ2t), h̃(x, t) = ρ2−βh(ρx, ρ2t), λ̃ = ρλ, γ̃(t) = γ(ρ2t). (1.64)

Notice that the hypotheses on the coefficients are preserved as long as β ≤
1 + α, and moreover λ̃→ 0 as ρ→ 0.

We divide the proof in four steps.

Step 1: Hölder estimates. We show that

‖v‖C0,β
x,t (P1/2) ≤ C

(
‖v‖L∞(P1) + 1

)
,

for some β > 0 small.

Notice that after an initial dilation, we may assume that λ ≤ λ0 is small.

It suffices to prove the following claim.

If v is a viscosity solution of (1.61) then

osc
P1

v ≤ 2 =⇒ osc
Pρ

v ≤ 3

2
, with ρ = c0 small, universal. (1.65)

The Hölder estimate is obtained by iterating this claim in parabolic cylinders

centered on the t axis, while for the interior parabolic cylinders (included in

{x > 0}) we can apply directly the diminishing of oscillation for parabolic

equations.

In order to prove (1.65), we let g(x, t) be the solution to the 1D heat

equation on the real-line

gt = K−1gxx, g(x, 0) = χ(0,∞) − χ(−∞,0). (1.66)

Notice that for all t > 0, in x = 0 we have

g(0, t) = 0, gx(0, t) ≤ Ct−1/2,

and

gt ≤ 0, for x > 0.
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We want to show that if |v| ≤ 1 in P1, then we can improve the upper bound

or lower bound by a fixed amount in the interior, depending on the value of

v at (0,−1), i.e.

|v| ≤ 1 in P1 and v(0,−1) ≤ 0, then v ≤ 1/2 in Pρ, with ρ = c0.

In P1 we compare v with

G(x, t) := C1g(x, t+ 1) +
1

4
(t+ 1)1/2 − C2x

1+α.

We choose C2 and then C1 sufficiently large such that G is a classical super-

solution to (1.61) and G ≥ 1 on the boundary (0, 1]×{−1} and {1}× [−1, 0],

while G(0, 0) = 1/4. Then we find v ≤ G in P1, which gives the claim (1.65)

by choosing c0 sufficiently small.

Step 2: C1,α estimates. We show that (1.63) holds by first establishing

a pointwise C1,α estimate at the origin.

After an initial dilation and after dividing by a large constant, we may

assume that λ ≤ δ, |h| ≤ δxα−1 for some small δ, and ‖v‖L∞(P1) is sufficiently

small.

Claim. If a function l0 (linear in x) of the form

l0 = a0x+ b0(t), b′0 = λγ(t)a0, |a0| ≤ 1, (1.67)

approximates v in Pρ to order 1 + α, i.e.

|v − l0| ≤ ρ1+α in Pρ, ρ ≤ δ,

then we can approximate v to order 1 + α in Pc1ρ by a function l1 as above,

with |a1−a0| ≤ Cρα, and c1 small universal. Then the claim can be iterated

indefinitely by starting with l0 ≡ 0 in Pδ.
We prove the claim by compactness. Notice that v− l0 solves (1.61) with

a slightly modified h that satisfies |h| ≤ δxα−1 + Cδ. This means that the

rescaled error

ṽ(x, t) := ρ−(1+α)(v − l0)(ρx, ρ2t),
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satisfies (1.61) with coefficients as in (1.64). Since ‖ṽ‖L∞ ≤ 1, by Step 1 we

know that

‖ṽ‖C0,β
x,t (P1/2) ≤ C.

This means that if we consider a sequence of δn → 0 and corresponding

solutions vn in Pρn , then we can extract a uniformly convergence subsequence

of the rescalings ṽn in P1/2 such that

ṽn → v̄.

Then the Hölder continuous limit function v̄ is a viscosity solution ofv̄t = Ā v̄xx in P1/2,

v̄t = 0 on {x = 0},

with Ā constant. Since v̄ is constant on the boundary {x = 0}, the C2

estimate for the standard heat equation implies

|v̄ − (āx+ b̄)| ≤ Cτ 2 ≤ 1

2
τ 1+α in Pτ , τ ≤ c1.

This shows that if δ is chosen sufficiently small, then the rescaling ṽ satisfies

the inequality above instead of v̄ which implies

|v − (a1x+ b(t))| ≤ 3

4
(τρ)1+α in Pτρ, τ = c1,

with

a1 = a0 + ραā, b(t) = b0(t) + ρ1+αb̄.

We define b1(t) so that l1 has the form as in (1.67), that is

b′1(t) = λγ(t)a1, b1(0) = b(0).

Then

|(b1−b)′| ≤ C|āρα| ≤ Cρα =⇒ |b1−b| ≤ Cρα(τρ)2 ≤ 1

4
(τρ)1+α in Pτρ,

where we used ρ ≤ δ sufficiently small. In conclusion,

|v − l1| ≤ (τρ)1+α in Pτρ, l1 = a1x+ b1(t),
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and the claim is proved.

We remark that the oscillation of b0(t) which appears in the approxima-

tion function l0 in (1.67) is less than Cρ2 in Pρ. Thus we can modify b0 to

be constant in (1.67) and take l0 to be linear, and then adjust the error ρ1+α

by Cρ1+α. This pointwise C1,α estimate can be applied at other points on

{x = 0}, which combined with interior C1,α estimates for parabolic equations

implies the desired conclusion (1.63).

Step 3. Boundary regularity. We check that v is C1 on {x = 0} and

the boundary condition is satisfied in the classical sense.

For this assume by contradiction that there exists a sequence tk → 0−

such that

1

tk
(v(0, tk)− v(0, 0)) < µ := λγ(0)(vx(0, 0)− η), for some η > 0. (1.68)

For each k, we look at the contact point where the graph of v is touched

by below by a translation of the graph of the classical strict subsolution to

(1.61)

g(x, t) := v(0, 0) + µt+ x

(
vx(0, 0)− 1

2
η

)
+ Cx1+α,

in the domain Dk := [0, c(η)]× [tk, 0].

We choose c(η) small such that gx(x, t) < vx(x, t) in the domain Dk for

all large k. This implies that the contact point must occur on Dk ∩ {x = 0}.
On the other hand, (1.68) gives

v(0, tk)− v(0, 0) > g(0, tk)− g(0, 0)

which shows that the contact point is different than (0, tk) and we reach a

contradiction.

Step 4. C2,α estimates. On {x = 0} we know that vx, γ ∈ Cα/2, and

the boundary condition implies that v(0, t) ∈ C1,α/2. Now we can apply the

standard C2,α Schauder estimates up to the boundary for the heat equation.
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1.10 Viscosity solutions for the linear prob-

lem

In this section, we collect some general facts about viscosity solutions for

the linear problem (1.37) and establish the existence and uniqueness claim

in Proposition 1.14 by Perron’s method. Similar results for different types

of boundary conditions were established by G. Lieberman (see for example

[64]). However, we are not aware of an existence result that applies directly

to the linear problem (1.37). Therefore, for completeness we provide the

details in this case.

Recall that v ∈ C(C1) satisfiesλvt ≤ tr(A(t)D2v) in C1,

vt ≤ γ(t) · ∇v on F1,
(1.69)

in the viscosity sense if v cannot be touched by above at any point (x0, t0)

∈ C1∪F1 in a small neighborhood Br(x0, t0) by a classical strict supersolution

w ∈ C2(Br(x0, t0)). As usually, this definition is equivalent to the one where

we restrict w to belong to the class of quadratic polynomials rather than to

the class of C2 functions.

Another equivalent way is to say that v is a viscosity subsolution of the

parabolic equation in C1, and a viscosity subsolution of the boundary con-

dition on F1. This last condition means that we cannot touch v locally by

above at any point (x0, t0) ∈ F1 by a function w ∈ C1(Br(x0, t0)) (or say w

is a linear function) that satisfies

wt(x0, t0) > γ(t0) · ∇w(x0, t0).

The two definitions are the same since, if w ∈ C1 is as above, and say

(x0, t0) = (0, 0), then a vertical translation of the quadratic polynomial

w(0) + (wt(0)− ε)t+ (∇w(0) + εen) · x+M(|x′|2 − nK2x2
n),

must touch v by above at some interior point (x, t) ∈ Br. Here r is chosen
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sufficiently small and M large, appropriately, and then the polynomial is a

strict supersolution in Br.
We state the comparison principle for viscosity solutions.

Lemma 1.25. Assume v1 is a viscosity subsolution, and v2 a viscosity su-

persolution to (1.37) in C1. If v1 ≤ v2 on ∂DC1 then v1 ≤ v2 in C1.

Corollary 1.26. The difference of two viscosity solutions of (1.37) is also

a viscosity solution of (1.37).

We work with the rescaling w(x, t) = v(x, λt).

First we prove a preliminary result on the evolution in time of a Lipschitz

“trace” w((x′, 0), t) under specific growth assumptions.

Lemma 1.27. Assume that w ≤ 1 satisfieswt ≤M
+
K(D2w) + 1 in (Q1 ∩ {xn > 0})× (0, T ],

1
λ
wt ≤ Kw+

n −K−1w−n +K|∇x′w| on {xn = 0},
(1.70)

and

w((x′, 0), 0) ≤ |x′|2.

Then

w(0, t) ≤ Cλ(t1/2 + t) for t ≥ 0,

with C depending on n and K.

Proof. We compare w with

G(x, t) := g(xn, t) + Cλ(t1/2 + t) + |x′|2 + C(2xn − x2
n),

where g(xn, t) is the solution to the 1D heat equation on the real-line (see

(1.66))

gt = K−1gnn, g(xn, 0) = χ(0,∞) − χ(−∞,0).

It is easy to check that G is a classical supersolution which is above w on the

boundary of our domain, and that gives the desired result.
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Lemma 1.28. Assume that w ≤ 1 satisfies (1.70) in C1 and the trace of w

on {xn = 0} is Lipschitz, i.e.

|∇x′w| ≤ 1 on {xn = 0}.

Then

w((x′, 0), t) ≥ w((x′, 0), 0)− Cλ
2
3 |t|

1
2 if x′ ∈ Q′1/2.

Proof. We prove the inequality for x′ = 0. Since w is Lipschitz the parabola

w(0, t) + Cr2 + r−2|x′|2

is greater than w((x′, 0), t), with r to be specified later. Now we can apply

the previous lemma to the rescaling

w̃(y, s) := w(ry, t+ r2s)− w(0, t)− Cr2,

which solves (1.70) with λ̃ = λr, and obtain that

w̃(0, s) ≤ Cλ̃(s1/2 + s).

This gives

C(r2 + λ|t|
1
2 + λr−1|t|) ≥ w(0, 0)− w(0, t),

and we choose r = (λ|t|)1/3 to get

w(0, t) ≥ w(0, 0)− C(λ|t|
1
2 + (λ|t|)2/3) ≥ w(0, 0)− Cλ

2
3 |t|

1
2 .

Remark 1.29. The proof of Lemma 1.28 shows that we can construct a super-

solution Ḡ(x, t) in C1 such that Ḡ((x′, 0),−1) = |x′|, Ḡ ≥ 1 on the remaining

part of ∂DC1, and so that Ḡ(0, t) ≤ Cλ
2
3 |t| 12 . Similarly, given α > 0, we can

construct a supersolution with Ḡ((x′, 0),−1) = |x′|α, Ḡ ≥ 1 on the remaining

of ∂DC1 and such that Ḡ(0, t) ≤ C(λ|t|)β, for some β depending on α.
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We are now ready to prove our main lemma.

Proof of Lemma 1.25. Let wi(x, t) = vi(x, λt), i = 1, 2, so that w1 is a

subsolution and w2 a supersolution ofwt = tr(A(t)D2w) in {xn > 0},
1
λ
wt = γ(t) · ∇w on {xn = 0},

and we want to show that w1 cannot touch w2 strictly by below at an interior

point. Assume by contradiction that this is the case.

The standard viscosity theory of parabolic equations implies that the

contact point cannot occur in {xn > 0}. Below we denote by C, c various

constants that may depend on wi and λ.

After a translation and a dilation we may assume that in C1

w1 ≤ w2 + µt, w1(0, 0) = w2(0, 0) = 0,

for some µ > 0 small. Without loss of generality we may also assume that

w1/w2 has a semiconvex/semiconcave trace in the x′ variable, that is

D2
x′w1 ≥ −I, D2

x′w2 ≤ I, (1.71)

and also

‖wi‖L∞ ≤ 1 (1.72)

and each wi solves the parabolic equation in the interior. This is achieved

in the following way. First we replace a subsolution w with the standard

regularization using the sup-convolutions in the x′ variable

wε(x, t) = max
y

{
w(y, t)− 1

2ε
|y′ − x′|2

}
,

then we divide wε by a large constant, and in the end we solve the parabolic

equation in the interior of C1 by keeping the same boundary values on the

parabolic boundary. All these operations maintain the subsolution property

of w, and justify the extra assumptions (1.71)-(1.72).
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Moreover, after subtracting from each wi a function of the type a′ ·x′+b(t)
with d

dt
b(t) = λa′ · γ(t) we may assume in addition that

wi(0, 0) = 0, ∇x′wi(0, 0) = 0, (1.73)

and the interior parabolic equations have the form

∂twi = tr(A(t)D2wi) + h(t), |h| ≤ C.

We show that wi(0, t) are differentiable at the origin in the t variable, and that

the derivative of w1 is less than the derivative of w2, which would contradict

our hypothesis that w1 ≤ w2 + µt.

To achieve this we apply Lemma 1.28 several times. By (1.71)-(1.72)-

(1.73) and Lemma 1.28 we find that

w1 ≥ −Cr and w2 ≤ Cr on Pr ∩ {xn = 0}. (1.74)

Since w1 ≤ w2, we can use the pointwise Cα parabolic estimates at the origin

and find that, given any α < 1, we have

osc
Pr
wi ≤ Crα for all r > 0. (1.75)

We can iterate this argument, by working with the rescaling

w̃1(x, t) = r−αw1(rx, r2t),

which satisfies a similar equation with λ̃ = λr, and is such that (1.71)-(1.72)

-(1.73) hold for w̃1. Again by Lemma 1.28 we find

w̃1((x′, 0), t) ≥ −Cr2/3 if x′ ∈ Q′1/2,

hence we improve the estimate (1.74) as

w1 ≥ −Crα+ 2
3 on Pr ∩ {xn = 0}. (1.76)

The same holds for w2 with ≤ instead of ≥ and Crα+ 2
3 instead of −Crα+ 2

3 .

This in turn shows that wi are pointwise Cα+ 2
3 at the origin.



56 1. Free boundary regularity in the one-phase Stefan problem

We modify again each wi by subtracting the corresponding function

∂nwi(0)xn + bi(t), with d
dt
bi = λγn∂nwi(0). Using that ∂n(w1 − w2)(0) ≤ 0,

we find that the inequality w1 ≤ w2 + µt is still valid on {xn = 0}, while

(1.75) holds with rα+2/3 instead of rα. The same argument as above implies

that (1.76) holds again with rα+4/3 instead of rα+2/3. Since α+ 4/3 > 2, this

means that w1(0, t) ≥ −C|t|1+β and w2(0, t) ≤ C|t|1+β for all small t < 0,

which contradicts w1(0, t) ≤ w2(0, t) + µt.

We can lastly conclude the proof of Proposition 1.14.

Proof of Proposition 1.14. The interior C2 estimates in the x variable and

the Hölder estimates up to the boundary were already proved in Proposition

1.13 and Theorem 1.15. It remains to prove existence by Perron’s method.

We assume for simplicity that the boundary data φ is Lipschitz, and the

general case follows by approximation. As usual, we define

v(x, t) := sup
w∈A

w(x, t),

where A is the class of continuous subsolutions on C1 which have boundary

data below φ on ∂DC1. The conclusion that v solves our problem is easily

checked once its continuity has been established.

Claim. For each (x0, t0) ∈ ∂DC1 there exists a subsolution w(x0,t0) which

vanishes at (x0, t0), is below the cone −|(x, t) − (x0, t0)| on ∂DC1 and has a

Hölder modulus of continuity at (x0, t0).

This can be deduced from the proof of Theorem 1.15, where the Hölder

continuity at the boundary was achieved using explicit barriers. More pre-

cisely, as in Lemma 1.18 and Lemma 1.22, for all r ≤ 1/2 we can construct

a subsolution φr defined in B±λ,r(x0, t0) ∩ C1, where

B±λ,r(x0, t0) := {(x, t)| dλ((x, t), (x0, t0)) < r},

so that

φr = 0 on ∂B±λ,r(x0, t0)\(∂DC1∪F1), φr ≤ 1 on ∂B±λ,r(x0, t0)∩∂DC1
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and

φr ≥ c0 on ∂B±λ,r/2(x0, t0).

Then w(x0,t0) is obtained by superposing appropriate multiples of φr for a

dyadic sequence of r = 2−m. We omit the details.

Using the claim we can construct a subsolution φ and supersolution φ

which are Hölder continuous on ∂DC1 and agree with the boundary data φ.

Thus we can restrict the class A of subsolutions to satisfy

φ ≤ w ≤ φ. (1.77)

This shows that the limit v achieves the boundary data φ continuously. More-

over, using (1.77) we can replace each w ∈ A by its maximum among appro-

priate x′ translations

max
y′
{w(x− (y′, 0), t)− C|y′|α},

and remain in the same class. Therefore we may assume that A contains only

subsolutions which are uniformly Hölder continuous in the x′ variable. Using

this together with Remark 1.29, we find that the trace of v on {xn = 0} is

locally Hölder continuous in the x′, t variables. This means that the solution

v̄ to the interior parabolic equation in C1 with boundary data v is continuous

up to the boundary. By the maximum principle v̄ ≥ w for any w ∈ A, and it

is straightforward to check that v̄ ∈ A, hence v = v̄ is continuous in C1.





Chapter 2

An Alt-Caffarelli-Friedman

monotonicity formula in the

Heisenberg group

In this chapter, we investigate the question of the existence of an Alt

-Caffarelli-Friedman monotonicity formula in the Heisenberg group, on which

I have worked together with my advisor Fausto Ferrari. Specifically, Ferrari

and I have written the papers “A new glance to the Alt-Caffarelli-Friedman

monotonicity formula” [38] and “Some remarks about the existence of an

Alt-Caffarelli-Friedman monotonicity formula in the Heisenberg group” [39].

The first one is a review of the classical Alt-Caffarelli-Friedman monotonicity

formula, with exactly a look to our result in the Heisenberg group, while the

second one contains all the details of our work.

59



60 2. An ACF monotonicity formula in the Heisenberg group

2.1 The classical Alt-Caffarelli-Friedman mono-

tonicity formula and its role in the study

of free boundary problems

In this section, we recall the classical Alt-Caffarelli-Friedman monotonic-

ity formula and its importance in the study of free boundary problems.

The Alt-Caffarelli-Friedman monotonicity formula was introduced in [2] as

a fundamental tool for studying the main properties of the solutions of

two-phase free boundary problems.

Looking into [2], the result roughly says that there exists r0 > 0 such that for

every nonnegative u1, u2 ∈ C(B1) ∩H1(B1), if 0 ∈ F (ui), ∆ui ≥ 0, i = 1, 2,

and u1u2 = 0 in B1, then

Φ(r) := r−4

ˆ
Br

|∇u1|2

|x|n−2
dx

ˆ
Br

|∇u2|2

|x|n−2
dx (2.1)

is well defined, bounded and monotone increasing in (0, r0). In [2] the authors

used this result for proving the Lipschitz continuity of critical points of a

functional like

Eλ+, λ−(v) :=

ˆ
Ω

(
|∇v|2 + λ+χ{v>0} + λ−χ{v<0}

)
dx,

with λ+ − λ− 6= 0, defined on a set K ⊂ H1(Ω), where Ω ⊂ Rn is a given

bounded open set and K is determined by some known conditions on v given

on ∂Ω.

In particular, the critical points of the functional Eλ+, λ− , with λ+ = 1 and

λ− = 0 satisfy the two-phase free boundary problem
∆u = 0 in Ω+(u) := {x ∈ Ω : u(x) > 0},

∆u = 0 in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),

|∇u+|2 − |∇u−|2 = 1 on F (u) := ∂Ω+(u) ∩ Ω,

(2.2)

see [2], thus the Lipschitz continuity of critical points of E1, 0 transfers to

solutions of (2.2). More precisely, solutions of (2.2) satisfy, at least in a
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“weak” sense, see [15] for a more general viscosity meaning, the following

property: for every P ∈ F (u)

(u+
ν (P ))2(u−ν (P ))2 = lim

r→0+
Φ(r) ≤ C,

where ν, formally, denotes the unit normal vector to F (u) at the points be-

longing to F (u), with the convention that ν is pointing inside the set Ω+(u)

for u+ as well as inside Ω−(u) for u−. Hence, if one of the two phases, let

say u−, is sufficiently regular at P ∈ F (u), then by Hopf maximum principle

(see [54]) it results u−ν (P ) > 0 so that, as a by-product, u+
ν (P ) has to be

bounded. In this way, the solutions of (2.2) are globally Lipschitz.

As said before, the Alt-Caffarelli-Friedman monotonicity formula turned out

to be a key tool in the comprehension of free boundary problems. Indeed,

after [2] many other important papers on this topic were written. We quote

some of them, without attempting to cite all the literature. Precisely, in [12]

it was proved that the monotonicity formula holds for linear uniformly ellip-

tic operators in divergence form with Hölder continuous coefficients, while in

[14] a formula for nonhomogeneous free boundary problems was discovered.

More recently, in [75] the Riemannian case has been treated and in [69] the

nondivergence form case has been faced. In addition, some very partial re-

sults have been obtained even in the nonlinear case, in lower dimension, see

[32] for the p−Laplacian case. Furthermore, this formula has become increas-

ingly popular for other applications as well. Among these, we recall further

ones to two-phase problems, see [11] for the elliptic homogeneous case, [6]

and [42] for the parabolic homogeneous setting, and [27] for elliptic linear

nonhomogeneous problems. Lastly, we mention some segregation problems,

see for instance [70], [72], [77] and [76].

In view of such extensions of the classical Alt-Caffarelli-Friedman monotonic-

ity formula, the goal of Ferrari and myself has been to investigate if a formula

of this type can hold in the framework of the Heisenberg group. Concerning

other similar formulas about sublaplacians, we find in the literature some im-

portant contributions, see [51] and in particular [53], where the authors deal

with the Almgren frequency function in Carnot groups. Moreover, we quote
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[22] and [21] for further papers in noncommutative settings about other free

boundary problems, precisely the obstacle problem.

2.2 Positioning of the problem in the Heisen-

berg group

In this section, we set the problem of the existence of an Alt-Caffarelli

-Friedman monotonicity formula in the context of the Heisenberg group.

Precisely, it holds, by applying the definition of solution in the sense of the

domain variation to the functional

EHn(v) :=

ˆ
Ω

(
|∇Hnv|2 + χ{v>0}

)
dx,

Ω ⊂ Hn, that the parallel two-phase problem to (2.2) is
∆Hnu = 0 in Ω+(u) := {x ∈ Ω : u(x) > 0},

∆Hnu = 0 in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),

|∇Hnu
+|2 − |∇Hnu

−|2 = 1 on F (u) := ∂Ω+(u) ∩ Ω,

(2.3)

see [34]. We remark that, in this particular noncommutative context, the

gradient jump |∇u+|2 − |∇u−|2 = 1 is governed by the jump of the horizon-

tal gradient ∇Hn . As a first consequence, in this degenerate case associated

with the sublaplacian ∆Hn , a new geometric problem, that in the Euclidean

two-phase problem (2.2) does not exist, appears. As a matter of fact, since

classical smooth free boundaries of (2.3), in principle, might have character-

istic points, the jump of the horizontal gradient of a solution u to (2.3) on

F (u) could not be satisfied pointwise, because the horizontal gradient van-

ishes on characteristic points, see Section 2.4. Moreover, it has been already

proved, see [43, Section 3], that every minimum u of the functional EHn is

endowed by a locally bounded horizontal gradient and satisfies ∆Hnu = 0

in Ω+(u), as well as ∆Hnu = 0 in Ω−(u), even if no words have been spent

about the behavior of the free boundary of these minima. Specifically, here
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it is shown an alternative way of proving that a minimum of the functional

EHn is intrinsically Lipschitz, instead of using the monotonicity formula.

Thus, it seems natural to consider, as a candidate for an Alt-Caffarelli

-Friedman monotonicity formula in the Heisenberg group, the function

Jβ,Hn(r) := r−β
ˆ
BHn
r (0)

|∇Hnu1|2

|ξ|Q−2
Hn

dξ

ˆ
BHn
r (0)

|∇Hnu2|2

|ξ|Q−2
Hn

dξ, (2.4)

where β > 0 is a suitable fixed exponent and 0 ∈ F (ui), i = 1, 2. This func-

tion is indeed the natural one correspondent to (2.1) in the Heisenberg group

Hn, derived substituting Euclidean balls with Koranyi balls, the Euclidean

gradient with the horizontal one, the Euclidean dimension with the homoge-

neous one and recalling that the fundamental solution for the Kohn-Laplace

operator ∆Hn is, up to a constant, |ξ|2−QHn , see Section 2.4 for these notions in

Hn.

Following the main steps of the Euclidean proof, recalled in Section 2.3, in

[39] the main result below is proved.

Theorem 2.1. If there exists a positive number β for which Jβ,H1 is mono-

tone increasing in (0, r0), r0 > 0, for every nonnegative u1, u2 ∈ C(BH1

1 (0))

∩H1
H1(BH1

1 (0)), such that ∆H1ui ≥ 0, 0 ∈ F (ui), i = 1, 2 and u1u2 = 0, then

β ≤ 4.

We point out that such result is stated in the first Heisenberg group only.

This is due to the fact that a monotonicity formula for all the Heisenberg

groups is not proved, but simply that if such a formula holds in H1, then

the right exponent β has to be smaller or equal than 4. Nevertheless, even if

the proof in higher Heisenberg groups would require more efforts, it may be

obtained following the same ideas. On the other hand, the breakthrough that

we would need to conclude that, at least in H1, the sharp exponent β has to

be exactly 4 depends on a long standing open question. As a matter of fact,

the profile of the set that realizes the equality in the isoperimetric inequality

in the Heisenberg group (and as a byproduct the descendant Polya-Szëgo

inequality on the surface of the Koranyi ball of radius one) is still open, see
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for example [17] for an introduction to this problem. We shall discuss better

this topic in Section 2.14. Concerning the same problem in the Euclidean

setting, of course, the question is well understood. However, for the sake of

completeness, in Section 2.3 we recall the steps useful to prove the classical

Alt-Caffarelli-Friedman monotonicity formula and, in particular, we treat a

little bit this subject. In the remainder of the chapter, we expose the details

of [39].

2.3 The Euclidean setting

In this section, following the original papers [2] and [15], we recall the

main steps needed for proving the Alt-Caffarelli-Friedman monotonicity for-

mula in the Euclidean setting.

First, after a straightforward differentiation, it results by (2.1)

Φ′(r) = I1(r)I2(r)r−5

(
−4 + r

(
I ′1
I1

+
I ′2
I2

))
, (2.5)

where

Ii(r) :=

ˆ
Br

|∇ui|2

|x|n−2
dx, i = 1, 2.

By a rescaling argument the problem may be reduced to

Φ′(r) = I1(r)I2(r)r−5

−4 +

ˆ
∂B1

|∇u1|2dσ
ˆ
B1

|∇u1|2

|x|n−2
dx

+

ˆ
∂B1

|∇u2|2dσ
ˆ
B1

|∇u2|2

|x|n−2
dx

 . (2.6)

Precisely, we have

Ii(r) =

ˆ
B1

|∇ui(ry)|2

|ry|n−2
rn dy = r2

ˆ
B1

|∇ui(ry)|2

|y|n−2
dy,

and

Ii(r) =

ˆ r

0

(ˆ
∂Bρ(0)

|∇ui(x)|2

|x|n−2
dσ(x)

)
dρ =

ˆ r

0

( ˆ
∂B1

|∇ui(ρy)|2

ρn−2

ρn−1dσ(y)

)
dρ =

ˆ r

0

ρ

(ˆ
∂B1

|∇ui(ρy)|2 dσ(y)

)
dρ,
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where here y denotes the coordinates on ∂B1. Thus, we get

I ′i
Ii

=

d

dr

ˆ r

0

ρ

(ˆ
∂B1

|∇ui(ρy)|2 dσ(y)

)
dρ

r2

ˆ
B1

|∇ui(ry)|2

|y|n−2
dy

=

r

ˆ
∂B1

|∇ui(ry)|2 dσ(y)

r2

ˆ
B1

|∇ui(ry)|2

|y|n−2
dy

=
1

r

ˆ
∂B1

|∇ui(ry)|2 dσ(y)

ˆ
B1

|∇ui(ry)|2

|y|n−2
dy

,

which implies, if we define

(ui)r(x) :=
ui(rx)

r
, x ∈ B1,

that

I ′i
Ii

=
1

r

ˆ
∂B1

|∇(ui)r(y)|2 dσ(y)

ˆ
B1

|∇(ui)r(y)|2

|y|n−2
dy

,

where (ui)r is defined in B1. As a consequence, if we write y = x and (ui)r

= ui the last equality gives

r
I ′i
Ii

=

ˆ
∂B1

|∇ui(x)|2 dσ(x)

ˆ
B1

|∇ui(x)|2

|y|n−2
dx

,

and so (2.5) becomes (2.6).

Now, if

−4 +

ˆ
∂B1

|∇u1|2dσ
ˆ
B1

|∇u1|2

|x|n−2
dx

+

ˆ
∂B1

|∇u2|2dσ
ˆ
B1

|∇u2|2

|x|n−2
dx

≥ 0

then, from (2.6), Φ′(r) ≥ 0. Hence, in order to prove that previous inequality

holds, the following ratios

Ji(r) :=

ˆ
∂B1

|∇ui|2dσ
ˆ
B1

|∇ui|2

|x|n−2
dx

,
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for i = 1, 2, have to be estimated.

Since the gradient may split in two orthogonal parts involving the radial

part and the tangential part, respectively denoted by ∇ρui and ∇θui, it holds

|∇ui|2 = |∇ρui|2 + |∇θui|2.

Then, we can rewrite Ji as

Ji(r) =

ˆ
∂B1

(
|∇ρui|2 + |∇θui|2

)
dσ

ˆ
B1

|∇ui|2

|x|n−2
dx

. (2.7)

At this point, we estimate the numerator and denominator of (2.7) separately.

About the numerator, we define first

λ(Γi) := inf
v∈H1

0 (Γi)

ˆ
Γi

|∇θv|2dσ
ˆ

Γi

v2dσ

,

where

Γi := {x ∈ ∂B1 : ui(x) > 0}

and λ(Γi), i = 1, 2, is the Rayleigh quotient. By definition of λ(Γi), we thus

obtain, for every βi ∈ (0, 1),

ˆ
∂B1

∣∣∇θui
∣∣2 dσ =

ˆ
Γi

∣∣∇θui
∣∣2 dσ ≥ λ(Γi)

ˆ
Γi

u2
i dσ = (1− βi

+ βi)λ(Γi)

ˆ
Γi

u2
i dσ = βiλ(Γi)

ˆ
Γi

u2
i dσ + (1− βi)λ(Γi)

ˆ
Γi

u2
i dσ,

hence, by Cauchy inequality, we have
ˆ
∂B1

(
|∇ρui|2 + |∇θui|2

)
dσ ≥

ˆ
Γi

|∇ρui|2dσ + βiλ(Γi)

ˆ
Γi

u2
i dσ

+ (1− βi)λ(Γi)

ˆ
Γi

u2
i dσ ≥ 2

(ˆ
Γi

|∇ρui|2dσ
)1/2

(
βiλ(Γi)

ˆ
Γi

u2
i dσ

)1/2

+ (1− βi)λ(Γi)

ˆ
Γi

u2
i dσ.

(2.8)
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Concerning the denominator, instead, we compute

∆(u2
i ) =

n∑
j=1

∂

∂xj

(
2ui

∂ui
∂xj

)
= 2

(
|∇ui|2 + ui∆ui

)
≥ 2 |∇ui|2 ,

since ui∆ui ≥ 0 by the assumptions on ui.

Consequently, we achieve the following estimate

ˆ
B1

|∇ui|2

|x|n−2
dx ≤

(ˆ
Γi

|∇ρui|2 dσ
) 1

2
(ˆ

Γi

u2
i dσ

) 1
2

+
n− 2

2

ˆ
Γi

u2
i dσ. (2.9)

Precisely, the previous inequality follows after two integration by parts,

using the facts that |x|2−n is, up to a multiplicative constant, the fundamental

solution of ∆, and 0 ∈ F (ui), i = 1, 2, and by Hölder inequality, because

ˆ
B1

|∇ui|2

|x|n−2
dx ≤ 1

2

ˆ
B1

∆
(
u2
i

)
|x|2−ndx =

1

2

ˆ
B1

div
(
|x|2−n∇u2

i

)
dx

−
ˆ
B1

∇ |x|2−n · ∇u2
i dx =

1

2

( ˆ
∂B1

|x|2−n∇u2
i ·

x

|x|
dσ −

ˆ
B1

div(u2
i∇ |x|

2−n)dx

+

ˆ
B1

u2
i∆(|x|2−n)dx

)
=

1

2

(ˆ
Γi

2ui∇ρui dσ + (n− 2)

ˆ
Γi

u2
i |x|

1−n dσ

)
≤
(ˆ

Γi

|∇ρui|2 dσ
) 1

2
(ˆ

Γi

u2
i dσ

) 1
2

+
n− 2

2

ˆ
Γi

u2
i dσ.

Now, putting together (2.8) and (2.9), we get, in view of (2.7),

Ji(r) ≥
2(βiλ(Γi))

1
2 ξiηi + (1− βi)λ(Γi)η

2
i

ξiηi + n−2
2
η2
i

,

setting ξi =

(ˆ
Γi

|∇ρui(x)|2 dσ
) 1

2

and ηi =

(ˆ
Γi

u2
i (x)dσ

) 1
2

, which entails

Ji(r) ≥
2(βiλ(Γi))

1
2 ξiηi + (1− βi)λ(Γi)η

2
i

ξiηi + n−2
2
η2
i

=
2(βiλ(Γi))

1
2 + (1− βi)λ(Γi)

ηi
ξi

1 + n−2
2

ηi
ξi

≥ inf
z≥0

2(βiλ(Γi))
1
2 + (1− βi)λ(Γi)z

1 + n−2
2
z

= 2 min

{
λ(Γi)

n− 2
(1− βi), (βiλ(Γi))

1
2

}
.

The last equality easily follows by elementary arguments.



68 2. An ACF monotonicity formula in the Heisenberg group

Now, if it were possible to choose βi ∈ (0, 1) in such a way that

λ(Γi)

n− 2
(1− βi) = (βiλ(Γi))

1
2

we would realize, by denoting αi := (βiλ(Γi))
1
2 , that previous equation is

satisfied if and only if

α2
i + (n− 2)αi − λ(Γi) = 0.

On the other hand, since a function u = ραg(θ), θ := (θ1, . . . , θn−1), is har-

monic in a cone determined by a domain Γ whenever

ρα−2 ((α(α− 1) + α(n− 1))g(θ) + ∆θg) = 0,

we deduce that there exists αi such that

αi(αi − 1) + αi(n− 1) = λ(Γi),

namely

α2
i + (n− 2)αi − λ(Γi) = 0.

By the structure of the equation, it immediately comes out that there always

exists a strictly positive solution αi = αi(Γi), which is called the characteristic

constant of Γi.

Therefore, we have to prove the existence of βi ∈ (0, 1) such that

−(n− 2) +
√

(n− 2)2 + 4λ(Γi)

2
= (βiλ(Γi))

1
2 . (2.10)

Specifically, (2.10) is equivalent to solve

4λ(Γi)

(n− 2) +
√

(n− 2)2 + 4λ(Γi)
= 2(βiλ(Γi))

1
2 ,

that is
2λ(Γi)

1
2

(n− 2) +
√

(n− 2)2 + 4λ(Γi)
= β

1
2
i .

Since the continuous positive function defined in [0,+∞) as

z → z

(n− 2) +
√

(n− 2)2 + z2



2.3 The Euclidean setting 69

is strictly increasing,

(
z

(n−2)+
√

(n−2)2+z2

)
(0) = 0, and sup

[0,+∞)

z

(n−2)+
√

(n−2)2+z2

= 1, we conclude that for every λ(Γi) > 0, there exists βi such that (2.10)

holds. In particular, we get

βi =

(
2λ(Γi)

1
2

(n− 2) +
√

(n− 2)2 + 4λ(Γi)

)2

.

Hence, with the previous choice of βi, if we denote

αi := min

{
λ(Γi)

n− 2
(1− βi), (βiλ(Γi))

1
2

}
,

which is also the exponent corresponding to the eigenvalue given by the

Rayleigh quotient λ(Γi), we conclude that, whenever

α1 + α2 ≥ 2, (2.11)

then Φ′ ≥ 0.

So, for completing this proof, we would need to know that (2.11) holds.

To this end, by [74] we know that αi(Γi) ≥ αi(Γ
∗
i ), where Γ∗i ⊂ ∂B1 is a

spherical cap, namely a set of the form

Γ∗i = ∂B1 ∩ {xn > s} , −1 < s < 1,

such that Hn−1(Γi) = Hn−1(Γ∗i ). Here Hn−1 denotes the (n− 1)-dimensional

Hausdorff measure on ∂B1.

Precisely, it is shown in [74] that if u ∈ C∞(∂B1,R), then
ˆ

∂B1

‖∇u∗‖p dHn−1 ≤
ˆ

∂B1

‖∇u‖p dHn−1 1 ≤ p <∞,

‖∇u∗‖L∞(∂B1) ≤ ‖∇u‖L∞(∂B1) ,

(2.12)

where u∗ is the function associated to u so that u∗ ∈ C0(∂B1,R) is Lipschitz,

depends only on the latitude of the argument, and its image measure on the

Borel sets of R coincides with that of u. More technically speaking, there

exists a monotone decreasing, continuous function g from [0; π] to R such
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that u∗(x) = g(arccos(〈x, x0〉)) for x ∈ ∂B1, with x0 ∈ ∂B1 fixed, and

u#(Hn−1)|B(R)
= u∗#(Hn−1)|B(R)

, where u#(Hn−1) and u∗#(Hn−1) denote the

pushforward measures of u and u∗ respectively. This last condition then

entails ˆ

∂B1

φ ◦ u dHn−1 =

ˆ

∂B1

φ ◦ u∗ dHn−1, (2.13)

for any function φ : R → R µ∗-measurable, where µ∗ is the outer measure

defined on the power set P(R) of R as

µ∗(F ) = inf

{
∞∑
i=1

µ(Ai) : Ai ∈ B(R), F ⊂
∞⋃
i=1

Ai

}
,

with µ = u#(Hn−1)|B(R)
= u∗#(Hn−1)|B(R)

and F ∈ P(R). Hence, choosing

φ = x2 in (2.13), we obtain

ˆ

∂B1

u2 dHn−1 =

ˆ

∂B1

(u∗)2 dHn−1,

which gives, together with (2.12), λ(Γi) ≥ λ(Γ∗i ), and thus, using the expres-

sion of αi(Γi), αi(Γi) ≥ αi(Γ
∗
i ), since u∗ is defined on Γ∗i , if u is defined on

Γi. The fact that Hn−1(Γi) = Hn−1(Γ∗i ) derives from a property of u∗ which

says that

Hn−1(u−1[ρ,∞)) = Hn−1((u∗)−1[ρ,∞)), ∀ρ ∈ R.

On the other hand, from [48] we achieve that αi(Γ
∗
i ) ≥ ψ(si), where

si =
Hn−1(Γ∗i )

Hn−1(∂B1)
and

ψ(s) :=


1
2

log
1

4s
+ 3

2
, 0 < s ≤ 1

4
,

2(1− s), 1

4
≤ s < 1.

(2.14)

is convex and decreasing. Specifically, the proof of this fact is organized in

the following steps.

First of all, we set α(s, n) = α(E), where α(E) is the characteristic constant

of the spherical cap E ⊂ ∂B1, s = Hn−1(E)
Hn−1(∂B1)

, and n is the dimension. At
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this point, Theorem 2 in [48] tells us that α(s, n) is a monotone decreasing

function of n for fixed s, so

α(s,∞) = lim
n→∞

α(s, n) (2.15)

is well-defined and satisfies α(s,∞) ≤ α(s, n) for every n. It is thus sufficient

to show that α(s,∞) ≥ ψ(s) defined in (2.14). To this end, Theorem F in

[48], which is taken by [57], gives us that α ≥ ψ(s), where

s :=

∞̂

h

e−(1/2)t2dt,

with h = h(α) the largest real zero of

F (x) = e−(1/4)x2

Hα

(
x√
2

)
satisfying

d2F

dx2
+

(
α +

1

2
− 1

4
x2

)
F = 0

and
F ′(0)

F (0)
= −21/2 Γ

(
1−α

2

)
Γ
(
−α

2

) ,
where Γ is the Euler gamma function. In particular, Hα(x) is the Hermite’s

function of order α. We denote α here introduced by α(s). Furthermore, the

proof of Theorem 3, again in [48], shows that α(s,∞) defined in (2.15) is

equal to α(s), because

Hn−1(E)

Hn−1(∂B1)

n→∞→
∞̂

h

e−(1/2)t2dt.

Hence, α(s,∞) ≥ ψ(s), and from the argument exposed above α(s, n) ≥ ψ(s)

for every n and for all s ∈ (0, 1).

As a consequence, recalling that si =
Hn−1(Γ∗i )

Hn−1(∂B1)
, i ∈ {1, 2} , s1+s2

2
≤ 1

2
, because

Γ∗1 ∩ Γ∗2 = ∅, thus, since ψ(s) defined in (2.14) is convex and decreasing, we

get

α1+α2 ≥ ψ(s1)+ψ(s2) ≥ 2

(
1

2
ψ(s1) +

1

2
ψ(s2)

)
≥ 2ψ

(
s1 + s2

2

)
≥ 2ψ

(
1

2

)
,



72 2. An ACF monotonicity formula in the Heisenberg group

which lastly gives (2.11).

An alternative proof of this result is given in [15], where, using [7] and [10],

the two authors directly show that α(s1)+α(s2) ≥ 2, exploiting the properties

of α(s) of Theorem F in [48], which is the first Dirichlet eigenvalue on [h,∞)

associated to the Hermite operator

− d2

dx2
+

(
1

4
x2 − 1

2

)
.

2.4 The Heisenberg group

In this section, we introduce the main notation in the Heisenberg group

which we will employ to describe the problem about the existence of an Alt-

Caffarelli-Friedman monotonicity formula in such a group.

We denote by Hn the n-th Heisenberg group, i.e. the set R2n+1, n ∈ N,
n ≥ 1, endowed with the following noncommutative inner law: for every

P ≡ (x1, y1, t1) ∈ R2n+1, M ≡ (x2, y2, t2) ∈ R2n+1, xi ∈ Rn, yi ∈ Rn, i = 1, 2,

we have

P ◦M := (x1 + x2, y1 + y2, t1 + t2 + 2(〈x2, y1〉 − 〈x1, y2〉)),

where 〈·, ·〉 denotes the usual inner product in Rn.

Let Xi = (ei, 0, 2yi) and Yi = (0, ei,−2xi), i = 1, . . . , n, with {ei}1≤i≤n

the canonical basis for Rn.

We exploit the same symbols to denote the vector fields associated with the

previous vectors, that is

Xi = ∂xi + 2yi∂t, Yi = ∂yi − 2xi∂t, i = 1, . . . , n. (2.16)

The commutator between the vector fields is then

[Xi, Yi] := XiYi − YiXi =

−4∂t, i = 1, . . . , n,

0 otherwise.
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Using these vector fields, we can define the intrinsic gradient of a smooth

function u : Hn → R in a point P as

∇Hnu(P ) :=
n∑
i=1

(Xiu(P )Xi(P ) + Yiu(P )Yi(P )). (2.17)

Now, there exists a unique metric on

HHn
P := Span{X1(P ), . . . , Xn(P ), Y1(P ), . . . , Yn(P )}

which makes orthonormal the set of vectors {X1, . . . , Xn, Y1, . . . , Yn}. Thus,

for every P ∈ Hn and for every U, V ∈ HHn
P , U =

n∑
j=1

(α1,jXj(P )+β1,jYj(P )),

V =
n∑
j=1

(α2,jXj(P ) + β2,jYj(P )), we have

〈U, V 〉 =
n∑
j=1

(α1,jα2,j + β1,jβ2,j).

In particular, we get a norm associated with the metric on the space HHn
P ,

which is

|U | =

√√√√ n∑
j=1

(
α2

1,j + β2
1,j

)
.

For example, recalling (2.17), we achieve

|∇Hnu(P )| =

√√√√ n∑
i=1

((Xiu(P ))2 + (Yiu(P ))2). (2.18)

Moreover, if ∇Hnu(P ) 6= 0, then∣∣∣∣ ∇Hnu(P )

|∇Hnu(P )|

∣∣∣∣ = 1.

If ∇Hnu(P ) = 0, instead, we say that the point P is characteristic for the

smooth surface {u = u(P )}. Therefore, for every point M ∈ {u = u(P )}
which is not characteristic, it is well defined the intrinsic normal to the surface

{u = u(P )}. Precisely, we have

ν(M) :=
∇Hnu(M)

|∇Hnu(M)|
.
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Let us introduce in Hn the following gauge norm as well:

|(x, y, t)|Hn := 4
√

(|x|2 + |y|2)2 + t2. (2.19)

For every positive number r, we can set the gauge ball of radius r centered

at 0 as

BHn
r (0) := {P ∈ Hn : |P |Hn < r}.

In the Heisenberg group Hn, a dilation semigroup is defined as follows: for

every r > 0 and for every P = (x, y, t) ∈ Hn, let

δr(P ) := (rx, ry, r2t).

Taken P = (x, y, t), O = (0, 0, 0) ∈ Hn, we define

dK(P,O) := |P |Hn .

In addition, for every P, T ∈ Hn is well defined

dK(P, T ) := |P−1 ◦ T |Hn .

In other words we have a distance dK on Hn, known as the Koranyi distance.

This distance is left invariant, that is for every P, T,R ∈ Hn

dK(R ◦ P,R ◦ T ) = dK(P, T ).

Coherently, BHn
r (0) is known as the Koranyi ball of radius r centered at 0.

At this point, we recall the definition of the fundamental sublaplacian

∆Hn , also known as the Kohn-Laplace operator, which is the correspondent

differential operator on Hn to the classical Laplacian in Rn.

Precisely, the sublaplacian ∆Hn of a smooth function u : Hn → R is

∆Hnu :=
n∑
i=1

(X2
i u+ Y 2

i u). (2.20)

We want to show then a direct computation which somehow justify that

|P |2−QHn is, up to a constant, the fundamental solution of the sublaplacian ∆Hn

in Hn, with the pole in the origin, and Γ(P,R) = c|P−1 ◦R|2−QHn is the general
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fundamental solution, see [44] for the details. For the sake of simplicity, we

may perform our computation assuming that dealing with dK(P,O) = |P |Hn ,
where O = (0, 0, 0), simply because from the left invariance of dK we obtain

dK(P, T ) = dK(T−1 ◦ P, T−1 ◦ T ) = dK(T−1 ◦ P, 0).

Specifically, for every i = 1, . . . , n, we get, according to (2.19) and (2.16),

with P = (x, y, t),

Xi|P |Hn =
1

4
((|x|2 + |y|2)2 + t2)−

3
4 (4(|x|2 + |y|2)xi + 4yit)

= |P |−3
Hn((|x|2 + |y|2)xi + yit)

and

Yi|P |Hn = |P |−3
Hn((|x|2 + |y|2)yi − xit),

namely

Xi|P |Hn = |P |−3
Hn((|x|2 + |y|2)xi + yit),

Yi|P |Hn = |P |−3
Hn((|x|2 + |y|2)yi − xit).

(2.21)

Using these, we achieve

X2
i |P |Hn = −3|P |−4

HnXi|P |Hn((|x|2 + |y|2)xi + yit) + |P |−3
Hn(2x2

i + |x|2 + |y|2

+ 2y2
i ) = −3|P |−7

Hn((|x|2 + |y|2)xi + yit)
2 + |P |−3

Hn(2(x2
i + y2

i ) + |x|2 + |y|2)

and

Y 2
i |P |Hn = −3|P |−7

Hn((|x|2 + |y|2)yi − xit)2 + |P |−3
Hn(2(x2

i + y2
i ) + |x|2 + |y|2),

which give

X2
i |P |Hn = −3|P |−7

Hn((|x|2 + |y|2)xi + yit)
2 + |P |−3

Hn(2(x2
i + y2

i ) + |x|2 + |y|2)

Y 2
i |P |Hn = −3|P |−7

Hn((|x|2 + |y|2)yi − xit)2 + |P |−3
Hn(2(x2

i + y2
i ) + |x|2 + |y|2).

(2.22)

Therefore, by (2.21), we have, recalling (2.18),

|∇Hn|P |Hn|2 = |P |−6
Hn

n∑
i=1

((|x|2 + |y|2)2(x2
i + y2

i ) + t2(x2
i + y2

i ))

= |P |−6
Hn

n∑
i=1

((|x|2 + |y|2)2 + t2)(x2
i + y2

i ) = (|x|2 + |y|2)|P |−2
Hn
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i.e.

|∇Hn|P |Hn|2 = (|x|2 + |y|2)|P |−2
Hn . (2.23)

In parallel, we obtain, by virtue of (2.20), (2.22) and exploiting the compu-

tations done to obtain (2.23),

∆Hn|P |Hn = −3|P |−7
Hn

n∑
i=1

(((|x|2 + |y|2)xi + yit)
2 + ((|x|2 + |y|2)yi − xit)2)

+ |P |−3
Hn

n∑
i=1

(2(|x|2 + |y|2) + 4(x2
i + y2

i )) = −3|P |−7
Hn

n∑
i=1

((|x|2 + |y|2)2(x2
i + y2

i )

+ t2(x2
i + y2

i )) + |P |−3
Hn(2n+ 4)(|x|2 + |y|2) = (2n+ 1)(|x|2 + |y|2)|P |−3

Hn

which yields

∆Hn|P |Hn = (2n+ 1)(|x|2 + |y|2)|P |−3
Hn . (2.24)

Hence, denoting by Q := 2n+ 2 the homogeneous dimension, we get, in view

of (2.23) and (2.24),

∆Hn|P |2−QHn =
n∑
i=1

(Xi((2−Q)|P |1−QHn Xi|P |Hn) + Yi((2−Q)|P |1−QHn Yi|P |Hn))

=
n∑
i=1

((2−Q)(1−Q)|P |−QHn (Xi|P |Hn)2 + (2−Q)|P |1−QHn X2
i |P |Hn + (2−Q)

(1−Q)|P |−QHn (Yi|P |Hn)2 + (2−Q)|P |1−QHn Y 2
i |P |Hn)

= (2−Q)(1−Q)|P |−QHn |∇Hn|P |Hn|2 + (2−Q)|P |1−QHn ∆Hn|P |Hn

= (2−Q)(1−Q)|P |−QHn (|x|2 + |y|2)|P |−2
Hn + (2−Q)|P |1−QHn (2n+ 1)(|x|2 + |y|2)

|P |−3
Hn = (2−Q)|P |−2−Q

Hn (|x|2 + |y|2) (1−Q+ 2n+ 1) = 0,

that is

∆Hn|P |2−QHn = 0.

In conclusion, this computation somehow shows that |P |2−QHn is indeed, up

to a constant, the fundamental solution of the sublaplacian ∆Hn , with the

pole in the origin, and Γ(P,R) = c|P−1 ◦ R|2−QHn is the general fundamental

solution.

Coherently with the classical case of the Laplacian ∆ in Rn, the definition of
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Hn-subharmonic function, as well as the one of Hn-superharmonic function

in a set Ω ⊂ Hn, can be stated directly giving conditions on ∆Hn . Precisely,

we require that ∆Hnu(P ) ≥ 0 for every P ∈ Ω for the Hn-subharmonicity,

and that ∆Hnu(P ) ≤ 0 for every P ∈ Ω for having Hn-superharmonicity. If

u satisfies both ∆Hnu(P ) ≥ 0 and ∆Hnu(P ) ≤ 0 in Ω, which means that

∆Hnu(P ) = 0, we say that u is Hn-harmonic. We refer to [9] for further

details.

Concerning the natural Sobolev spaces to consider in Hn, we refer again

to the literature, see for instance [52]. Here, we simply recall that

L1,2(Ω) := {f ∈ L2(Ω) : Xif, Yif ∈ L2(Ω), i = 1, . . . , n}

is a Hilbert space with respect to the norm

|f |L1,2(Ω) :=

( ˆ
Ω

( n∑
i=1

((Xif)2 + (Yif)2) + |f |2
)
dx

) 1
2

.

Moreover

H1
Hn(Ω) := C∞(Ω) ∩ L1,2(Ω)

|·|L1,2(Ω) .

Now, if E ⊂ Hn is a measurable set, a notion of Hn-perimeter measure

|∂E|Hn has been introduced in [52]. Actually, in [52] the authors work in

a more general setting, but for our purposes we just recall some results in

the framework of the Heisenberg group, the simplest nontrivial example of

Carnot group. We refer to [52], [45], [47], [46] for a detailed presentation.

Precisely, it is sufficient to recall that, if E has locally finite

Hn-perimeter (is a Hn-Caccioppoli set), then |∂E|Hn is a Radon measure

in Hn, which is invariant under group translations and Hn-homogeneous of

degree Q − 1. In addition, the following representation theorem holds, see

[16].

Proposition 2.2. If E is a Hn-Caccioppoli set with Euclidean C1 boundary,

then there is an explicit representation of the Hn-perimeter in terms of the

Euclidean 2n-dimensional Hausdorff measure H2n

PΩ,E
Hn (∂E) =

ˆ
∂E∩Ω

( n∑
j=1

(
〈Xj, nE〉2R2n+1 + 〈Yj, nE〉2R2n+1

))1/2

dH2n,
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where nE = nE(x) is the Euclidean unit outward normal to ∂E and Ω ⊂ Rn

is an open set.

Going into the specific of our notation, in this chapter we will denote with

dσHn the surface element in the Heisenberg group Hn, whose expression in

terms of the Euclidean surface element in R2n dσ is the following, see (2.23):

dσHn(ξ) =
|∇Hn |ξ|Hn|
|∇|ξ|Hn|

dσ(ξ) =

√
|x|2 + |y|2

|ξ|Hn |∇|ξ|Hn|
dσ(ξ).

Next, we recall the statement of the divergence theorem in Hn and the defini-

tion of a Friedrichs mollifier in this framework, together with a convergence

result for mollifiers of Hn–subharmonic functions, see [9] for the last two

statements. Before, we provide the definition of the divergence operator in

Hn.

If b : Hn → R2n is smooth, we denote with divHn the operator

div
Hn

b = div
Hn

(b1, . . . , b2n) =
n∑
i=1

(Xibi + Yibn+i). (2.25)

Proposition 2.3. If E is a regular bounded open set with Euclidean C1

boundary and φ is a horizontal vector field, continuously differentiable on Ω,

then ˆ
E

div
Hn

φ dx =

ˆ
∂E

〈φ, νHn〉dPE
Hn ,

where νHn(x) is the intrinsic horizontal unit outward normal to ∂E, given by

the (normalized) projection of nE(x) on the fiber HHn
x of the horizontal fiber

bundle HHn.

Remark 2.4. The definition of νHn is well-posed, since HHn
x is transversal to

the tangent space of E at x for PE
Hn(∂E)-a.e. x ∈ ∂E (see [65]).

Definition 2.5. Let u : Hn → [−∞,+∞). Let J ∈ C∞0 (Hn), J ≥ 0 such that

supp(J) ⊂ BHn
1 (0) and

´
Hn J = 1. For every positive number ε, we define uε

to be the Friedrichs mollifier of u as

uε(x) = ε−Q
ˆ
Hn
u(−y ◦ x)J(δε−1(y))dy.
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Proposition 2.6. Let u : Hn → [−∞,+∞) be a Hn–subharmonic function.

Then uε ∈ C∞(Hn) is Hn–subharmonic, and uε → u in L1
loc(Hn) as ε→ 0+.

Let us conclude this section with the following fact. Let S(Hn) be the set

of the Hn-subharmonic functions. Then if u ∈ S(Hn),

Lu(ϕ) :=

ˆ
Hn
u(x)∆Hnϕ(x)d, ϕ ∈ C∞0 (Hn), ϕ ≥ 0

is positive, i.e. if u ∈ S(Hn) then ∆Hnu ≥ 0 in the distributional sense.

2.5 Some estimates in the Heisenberg group

In this section, we provide some partial steps useful to obtain a mono-

tonicity formula associated with Jβ,Hn .

Lemma 2.7. There exists a positive constant c = c(Q) such that for every

nonnegative Hn–subharmonic function u ∈ C(BHn
1 (0)), if u(0) = 0, then

ˆ
BHn
ρ (0)

|∇Hnu|2

|ξ|Q−2
Hn

dξ ≤ cρ−Q
ˆ
BHn

2ρ (0)\BHn
ρ (0)

u2 dξ, 0 < ρ <
1

2
.

Proof. For every ε > 0 small, let uε be the Friedrichs mollifier of u as in

Definition 2.5. Then, by hypothesis and Proposition 2.6, we have

∆Hnu
2
ε = 2uε∆Hnuε + 2|∇Hnuε|2 ≥ 2|∇Hnuε|2.

Hence, for every test function ϕ ∈ C∞0 (BHn
1 (0)) we get

ˆ
BHn

1 (0)

u2∆Hnϕ dξ = lim
ε→0

ˆ
BHn

1 (0)

u2
ε∆Hnϕ dξ = lim

ε→0

ˆ
BHn

1 (0)

ϕ∆Hnu
2
ε dξ

≥ lim
ε→0

2

ˆ
BHn

1 (0)

ϕ|∇Hnuε|2dξ = 2

ˆ
BHn

1 (0)

ϕ|∇Hnu|2dξ.

(2.26)

As a consequence, u ∈ H1
loc(B

Hn
1 (0)) and ∆Hnu

2 ≥ 2|∇Hnu|2 as a distribution.
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Let now ψ be a cutoff function, ψ ≡ 1 in BHn
ρ (0), ψ ≡ 0 outside BHn

2ρ (0),

0 < ρ < 1
2
. We also set

γε = ηε ∗ γ, (2.27)

where γ(ξ) = |ξ|2−QHn and ηε is an approximation of the identity. Then, ψγε

is a test function in BHn
ρ (0), so, in view of (2.26) and (2.27), we achieve

2

ˆ
BHn
ρ (0)

ψγε|∇Hnu|2dξ ≤
ˆ
BHn

2ρ (0)

u2∆Hn(ψγε) dξ =

ˆ
BHn

2ρ (0)

u2ψ∆Hnγε dξ

+ 2

ˆ
BHn

2ρ (0)\BHn
ρ (0)

u2〈∇Hnψ,∇Hnγε〉 dξ +

ˆ
BHn

2ρ (0)\BHn
ρ (0)

u2γε∆Hnψ dξ

=

ˆ
BHn

2ρ (0)

u2ψ(ηε ∗∆Hnγ) dξ + 2

ˆ
BHn

2ρ (0)\BHn
ρ (0)

u2〈∇Hnψ, ηε ∗ ∇Hnγ〉 dξ

+

ˆ
BHn

2ρ (0)\BHn
ρ (0)

u2γε∆Hnψ dξ,

which yields the desired conclusion letting ε go to 0, because γ is, up to

a multiplicative constant, the fundamental solution of ∆Hn and thus also

γε → γ in L1
loc(Hn), u(0) = 0, and ψ is a cutoff function.

Lemma 2.8. For every couple of nonnegative Hn-subharmonic functions

ui ∈ C(BHn
1 (0)), i = 1, 2, such that u1u2 = 0 and u1(0) = u2(0) = 0, we

have

J ′β,Hn(1)

Jβ,Hn(1)
=

ˆ
∂BHn

1 (0)

|∇Hnu1|2√
|x|2 + y2

dσHn(κ)

ˆ
BHn

1 (0)

|∇Hnu1|2

|κ|Q−2
Hn

dκ

+

ˆ
∂BHn

1 (0)

|∇Hnu2|2√
|x|2 + y2

dσHn(κ)

ˆ
BHn

1 (0)

|∇Hnu2|2

|κ|Q−2
Hn

dκ

− β.

Moreover, if
J ′β,Hn (1)

Jβ,Hn (1)
≥ 0, then there exists r0 > 0 such that Jβ,Hn is monotone

increasing in (0, r0).

In this statement, dσHn denotes the surface element in the Heisenberg

group Hn, see Section 2.4 for a short introduction and [52], [45].

Proof. It follows from Lemma 2.7 that Jβ,Hn is well defined in (0, 1). Differen-

tiating with respect to r and recalling the co-area formula in the Heisenberg
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group, we obtain

J ′β,Hn(r) = −βr−β−1

ˆ
BHn
r (0)

|∇Hnu1|2

|ξ|Q−2
Hn

dξ

ˆ
BHn
r (0)

|∇Hnu2|2

|ξ|Q−2
Hn

dξ

+ r−β
ˆ
∂BHn

r (0)

|ξ|Hn
|∇Hnu1|2

rQ−2
√
|x|2 + |y|2

dσHn(ξ)

ˆ
BHn
r (0)

|∇Hnu2|2

|ξ|Q−2
Hn

dξ

+ r−β
ˆ
BHn
r (0)

|∇Hnu1|2

|ξ|Q−2
Hn

dξ

ˆ
∂BHn

r (0)

|ξ|Hn
|∇Hnu2|2

rQ−2
√
|x|2 + |y|2

dσHn(ξ)

= −βr−β−1

ˆ
BHn
r (0)

|∇Hnu1|2

|ξ|Q−2
Hn

dξ

ˆ
BHn
r (0)

|∇Hnu2|2

|ξ|Q−2
Hn

dξ

+ r−β
ˆ
∂BHn

r (0)

|∇Hnu1|2

rQ−3
√
|x|2 + |y|2

dσHn(ξ)

ˆ
BHn
r (0)

|∇Hnu2|2

|ξ|Q−2
Hn

dξ

+ r−β
ˆ
BHn
r (0)

|∇Hnu1|2

|ξ|Q−2
Hn

dξ

ˆ
∂BHn

r (0)

|∇Hnu2|2

rQ−3
√
|x|2 + |y|2

dσHn(ξ).

Notice that by a change of variables, denoting κ ∈ ∂BHn
1 (0) as

κ = (κx, κy, kt), with κx, κy ∈ Rn and κt ∈ R, we have thus

J ′β,Hn(r) = −βr−β−1r2Q

ˆ
BHn

1 (0)

|∇Hnu1(δr(κ))|2

|δr(κ)|Q−2
Hn

dκ

ˆ
BHn

1 (0)

|∇Hnu2(δr(κ))|2

|δr(κ)|Q−2
Hn

dκ

+ r−βr2Q−1

ˆ
∂BHn

1 (0)

|∇Hnu1(δr(κ))|2

rQ−3
√
|rκx|2 + |rκy|2

dσHn(κ)

ˆ
BHn

1 (0)

|∇Hnu2(δr(κ))|2

|δr(κ)|Q−2
Hn

dκ

+ r−βr2Q−1

ˆ
BHn

1 (0)

|∇Hnu1(δr(κ))|2

|δr(κ)|Q−2
Hn

dκ

ˆ
∂BHn

1 (0)

|∇Hnu2(δr(κ))|2

rQ−3
√
|rκx|2 + |rκy|2

dσHn(κ)

= −βr−β−1rQ
ˆ
BHn

1 (0)

|∇Hnu1(δr(κ))|2

rQ−2|κ|Q−2
Hn

dκ rQ
ˆ
BHn

1 (0)

|∇Hnu2(δr(κ))|2

rQ−2|κ|Q−2
Hn

dκ

+ r−βr2

ˆ
∂BHn

1 (0)

|∇Hnu1(δr(κ))|2

r
√
|κx|2 + |κy|2

dσHn(κ) rQ
ˆ
BHn

1 (0)

|∇Hnu2(δr(κ))|2

rQ−2|κ|Q−2
Hn

dκ

+ r−βrQ
ˆ
BHn

1 (0)

|∇Hnu1(δr(κ))|2

rQ−2|κ|Q−2
Hn

dκ r2

ˆ
∂BHn

1 (0)

|∇Hnu2(δr(κ))|2

r
√
|κx|2 + |κy|2

dσHn(κ),
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which gives

J ′β,Hn(r) = r−β−1r4
(
− β

ˆ
BHn

1 (0)

|∇Hnu1(δr(κ))|2

|κ|Q−2
Hn

dκ

ˆ
BHn

1 (0)

|∇Hnu2(δr(κ))|2

|κ|Q−2
Hn

dκ

+

ˆ
∂BHn

1 (0)

|∇Hnu1(δr(κ))|2√
|κx|2 + |κy|2

dσHn(κ)

ˆ
BHn

1 (0)

|∇Hnu2(δr(κ))|2

|κ|Q−2
Hn

dκ

+

ˆ
BHn

1 (0)

|∇Hnu1(δr(κ))|2

|κ|Q−2
Hn

dκ

ˆ
∂BHn

1 (0)

|∇Hnu2(δr(κ))|2√
|κx|2 + |κy|2

dσHn(κ)
)
.

(2.28)

Let now vi(κ) := ui(δr(κ))
r

, i = 1, 2. Then ∇Hnvi(κ) = (∇Hnui)(δr(κ)). Hence,

by (2.28), it holds

J ′β,Hn(r) =r−β+3
(
− β

ˆ
BHn

1 (0)

|∇Hnv1|2

|κ|Q−2
Hn

dκ

ˆ
BHn

1 (0)

|∇Hnv2|2

|κ|Q−2
Hn

dκ

+

ˆ
∂BHn

1 (0)

|∇Hnv1|2√
|κx|2 + |κy|2

dσHn(κ)

ˆ
BHn

1 (0)

|∇Hnv2|2

|κ|Q−2
Hn

dκ

+

ˆ
BHn

1 (0)

|∇Hnv1|2

|κ|Q−2
Hn

dκ

ˆ
∂BHn

1 (0)

|∇Hnv2|2√
|κx|2 + |κy|2

dσHn(κ)
)
.

(2.29)

In particular, using this last expression and (2.4), we have

J ′β,Hn(1)

Jβ,Hn(1)
=

ˆ
∂BHn

1 (0)

|∇Hnv1|2√
|κx|2 + |κy|2

dσHn(κ)

ˆ
BHn

1 (0)

|∇Hnv1|2

|κ|Q−2
Hn

dκ

+

ˆ
∂BHn

1 (0)

|∇Hnv2|2√
|κx|2 + |κy|2

dσHn(κ)

ˆ
BHn

1 (0)

|∇Hnv2|2

|κ|Q−2
Hn

dκ

− β.

The fact that it is sufficient to show that
J ′β,Hn (1)

Jβ,Hn (1)
≥ 0 to get that Jβ,Hn

is monotone increasing follows again from (2.29) and (2.4), since by (2.29)

it results J ′β,Hn(r)rβ−3 = J ′β,Hn(1) and by (2.4) Jβ,Hn is always nonnegative

respectively.

In the next section, we reduce ourselves to the simplest case given by H1.
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2.6 Kohn-Laplace operator in spherical coor-

dinates in H1

This section is devoted to represent the Kohn-Laplace operator ∆Hn in

spherical coordinates in the Heisenberg group. As a matter of fact, in order

to obtain some estimates of
J ′β,Hn (1)

Jβ,Hn (1)
, we need to write ∆Hn in terms of radial

coordinates. This issue has been faced in [58] by using an abstract and more

elegant approach, even if very theoretical, see also [56] and [8]. Here, we

describe in details this problem in H1 with explicit computations.

Specifically, we consider the following coordinates in H1


x = ρ

√
sin(ϕ) cos(θ)

y = ρ
√

sin(ϕ) sin θ

t = ρ2 cosϕ.

(2.30)

They mimic the classical polar coordinates in R3. From (2.30), we obtain the

expressions of ρ, ϕ and θ with respect to the cartesian coordinates x, y and

t, that is 
ρ = ((x2 + y2)2 + t2)1/4

θ = arctan
(
y
x

)
ϕ = arccos

(
t
ρ2

)
.

(2.31)

Recalling now from Section 2.4 the vector fields

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, (2.32)

and the operators

∇H1 ≡ (X, Y ), ∆H1 = X2 + Y 2, (2.33)

we want to determine ∇H1ρ, ∇H1θ, ∇H1ϕ, using (2.32), (2.31) and (2.33).
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Lemma 2.9. We have the equalities

∇H1ϕ =
2

ρ(x2 + y2)
(t∇H1ρ+ ρ(−y, x)) ,

∇H1ρ = ρ−3((x2 + y2)x+ ty, (x2 + y2)y − tx),

∇H1θ =
1

x2 + y2
(−y, x).

Proof. Let us begin by calculating

Xϕ = − 1√
1−

(
t
ρ2

)2
X

(
t

ρ2

)
= − 1√

1− t2

ρ4

(
2y

ρ2
− 2ρ−3tXρ

)
= − 2√

ρ4−t2
ρ4

1

ρ2

(
y − tXρ

ρ

)
= − 2ρ2√

ρ4 − t2
1

ρ2

(
ρy − tXρ

ρ

)
=

2

ρ
√
ρ4 − t2

(tXρ− ρy) ,

and

Y ϕ = − 1√
1−

(
t
ρ2

)2
Y

(
t

ρ2

)
= − ρ2√

ρ4 − t2

(
−2x

ρ2
− 2ρ−3tY ρ

)

= − 2√
ρ4 − t2

(
−xρ− tY ρ

ρ

)
=

2

ρ
√
ρ4 − t2

(xρ+ tY ρ) ,

which gives

∇H1ϕ =

(
2

ρ
√
ρ4 − t2

(tXρ− ρy) ,
2

ρ
√
ρ4 − t2

(xρ+ tY ρ)

)
=

2

ρ
√
ρ4 − t2

(tXρ− ρy, xρ+ tY ρ) =
2

ρ(x2 + y2)
(t∇H1ρ+ ρ(−y, x)) . (2.34)

Let us calculate now ∇H1θ. For this purpose, we have

Xθ =
1

1 +
(
y
x

)2X
(y
x

)
=

1

1 + y2

x2

(
− y

x2

)
= − y

x2 + y2

and

Y θ =
1

1 +
(
y
x

)2Y
(y
x

)
=

x2

x2 + y2

(
1

x

)
=

x

x2 + y2
,

which imply

∇H1θ =
1

x2 + y2
(−y, x). (2.35)
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About ∇H1ρ, instead, we exploit (2.21) in the particular case of H1 and it

holds

∇H1ρ = ρ−3((x2 + y2)x+ yt, (x2 + y2)y − xt). (2.36)

Using (2.34), (2.35) and (2.36), we achieve

∇H1ϕ =
2

ρ(x2 + y2)
(t∇H1ρ+ ρ(−y, x)) ,

∇H1ρ = ρ−3((x2 + y2)x+ ty, (x2 + y2)y − tx),

∇H1θ =
1

x2 + y2
(−y, x).

Let us establish, at this point, also the values |∇H1ϕ|2 , |∇H1ρ|2 and

|∇H1θ|2 .

Lemma 2.10. The following relationships hold:

|∇H1ϕ|2 =
4(x2 + y2)

ρ4
, |∇H1ρ|2 =

x2 + y2

ρ2
, |∇H1θ|2 =

1

x2 + y2
.

Proof. According to Lemma 2.9, we obtain first

|∇H1θ|2 =
1

(x2 + y2)2
(y2 + x2) =

1

x2 + y2
. (2.37)

Concerning |∇H1ρ|2 , it comes directly from (2.23) and it holds

|∇H1ρ|2 =
x2 + y2

ρ2
. (2.38)

About |∇H1ϕ|2 , instead, we calculate explicitly and we get, using (2.38) and

Lemma 2.9,

|∇H1ϕ|2 =
4

ρ2(x2 + y2)2
(t2 |∇H1ρ|2 + ρ2(y2 + x2) + 2tρ〈∇H1ρ, (−y, x)〉)

=
4

ρ2(x2 + y2)2

(
t2
x2 + y2

ρ2
+ ρ2(y2 + x2) + 2tρρ−3(−(x2 + y2)yx− y2t+ (x2

+ y2)yx− x2t)

)
=

4

ρ2(x2 + y2)2

(
t2
x2 + y2

ρ2
+ ρ2(y2 + x2)− 2t2

x2 + y2

ρ2

)
=

4

ρ2(x2 + y2)2

(
ρ2(x2 + y2)− t2x

2 + y2

ρ2

)
=

4

ρ2(x2 + y2)

(
ρ4 − t2

ρ2

)
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namely

|∇H1ϕ|2 =
4(x2 + y2)

ρ4
. (2.39)

Putting together (2.37), (2.37) and (2.39), we then achieve the expected

results.

To conclude the computations on∇H1ρ,∇H1θ,∇H1ϕ, we calculate 〈∇H1ϕ,

∇H1ρ〉, 〈∇H1ρ,∇H1θ〉 and 〈∇H1ϕ,∇H1θ〉 as well.

Lemma 2.11. The following equalities hold:

〈∇H1ϕ,∇H1ρ〉 = 0, 〈∇H1ρ,∇H1θ〉 = −cos(ϕ)

ρ
, 〈∇H1ϕ,∇H1θ〉 =

2(x2 + y2)

ρ4
.

Proof. Let us compute 〈∇H1ϕ,∇H1ρ〉, 〈∇H1ϕ,∇H1θ〉 and 〈∇H1ρ,∇H1θ〉, using

Lemma 2.9 and Lemma 2.10. Specifically, we have first

〈∇H1ϕ,∇H1ρ〉 =
2

ρ(x2 + y2)
(t |∇H1ρ|2 + ρ〈(−y, x),∇H1ρ〉)

=
2

ρ(x2 + y2)

(
t
x2 + y2

ρ2
+ ρ−2(−(x2 + y2)yx− y2t+ (x2 + y2)xy − x2t)

)
=

2

ρ(x2 + y2)

(
t
x2 + y2

ρ2
+ ρ−2(−t(x2 + y2))

)
= 0.

(2.40)

Next, we calculate

〈∇H1ρ,∇H1θ〉 =
ρ−3

x2 + y2
(−(x2 + y2)xy − y2t+ (x2 + y2)xy − x2t) = − t

ρ3

= −cos(ϕ)

ρ
.

(2.41)

Concerning 〈∇H1ϕ,∇H1θ〉, lastly, using (2.41), it results

〈∇H1ϕ,∇H1θ〉 =
2

ρ(x2 + y2)2
(tρ−3(−(x2 + y2)xy − y2t+ (x2 + y2)xy − x2t)

+ ρ(y2 + x2)) =
2

ρ(x2 + y2)2
(−t2ρ−3(x2 + y2) + ρ(y2 + x2)) =

2

ρ(x2 + y2)

(−t2ρ−3 + ρ) =
2

ρ(x2 + y2)

(
−t2 + ρ4

ρ3

)
=

2(x2 + y2)

ρ4
.
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Considering this together with (2.40) and (2.41), we obtain the desired rela-

tionships.

We are in position now to compute ∆H1ϕ, ∆H1ρ and ∆H1θ, using Lemma

2.9. In particular, we have the following results.

Lemma 2.12. We have the relationships

∆H1θ = 0, ∆H1ρ =
3(x2 + y2)

ρ3
, ∆H1ϕ =

4 cosϕ

ρ2
.

Proof. We first remark that by Lemma 2.9

∆H1θ =
2xy

(x2 + y2)2
− 2xy

(x2 + y2)2
= 0. (2.42)

About ∆H1ρ, instead, we can employ the formula, see [9],

∆H1f(ρ) = |∇H1ρ|2
(
f ′′ +

Q− 1

ρ
f ′
)
, (2.43)

in the particular case of f(ρ) = ρ and Q = 4, and we achieve, in view of

Lemma 2.10,

∆H1ρ =
x2 + y2

ρ2

3

ρ
=

3(x2 + y2)

ρ3
. (2.44)

About ∆H1ϕ, we obtain, from Lemma 2.9, and by virtue of (2.44) and Lemma

2.10,

∆H1ϕ = X

(
2

ρ(x2 + y2)

)
(tXρ− ρy) +

2

ρ(x2 + y2)
(XtXρ+ tX2ρ− yXρ

− ρXy) + Y

(
2

ρ(x2 + y2)

)
(tY ρ+ ρx) +

2

ρ(x2 + y2)
(Y tY ρ+ tY 2ρ+ xY ρ

+ ρY x) = (tXρ− ρy)

(
− 2

ρ2(x2 + y2)2

)
((x2 + y2)Xρ+ ρ2x) + (tY ρ+ ρx)(

− 2

ρ2(x2 + y2)2

)
((x2 + y2)Y ρ+ ρ2y) +

2

ρ(x2 + y2)
((Xt− y)Xρ− ρXy

+ (Y t+ x)Y ρ+ ρY x) +
2t

ρ(x2 + y2)
∆H1ρ = − 2

ρ2(x2 + y2)2
(t(x2 + y2)(Xρ)2

− ρy(x2 + y2)Xρ+ 2ρxtXρ− 2ρ2xy + t(x2 + y2)(Y ρ)2 + ρx(x2 + y2)Y ρ

2ρytY ρ+ 2ρ2xy) +
6t

ρ4
+

2y

ρ(x2 + y2)
Xρ− 2x

ρ(x2 + y2)
Y ρ



88 2. An ACF monotonicity formula in the Heisenberg group

so that

∆H1ϕ = − 2

ρ2(x2 + y2)2
(t(x2 + y2)((Xρ)2 + (Y ρ)2) + ρ(x2 + y2)(xY ρ− yXρ)

+ 2tρ(xXρ+ yY ρ)) +
6t

ρ4
+

2y

ρ(x2 + y2)
Xρ− 2x

ρ(x2 + y2)
Y ρ = − 2t

ρ2(x2 + y2)

|∇H1ρ|2 − 2x

ρ(x2 + y2)
Y ρ+

2y

ρ(x2 + y2)
Xρ− 4t

ρ(x2 + y2)2
(xXρ+ yY ρ) +

6t

ρ4

+
2y

ρ(x2 + y2)
Xρ− 2x

ρ(x2 + y2)
Y ρ = −2t

ρ4
+

4

ρ(x2 + y2)
(yXρ− xY ρ)

− 4t

ρ(x2 + y2)2
(xρ−3((x2 + y2)x+ yt) + yρ−3((x2 + y2)y − xt)) +

6t

ρ4

=
4t

ρ4
+

4

ρ(x2 + y2)
(yρ−3((x2 + y2)x+ ty)− xρ−3((x2 + y2)y − xt))

− 4t

ρ4(x2 + y2)2
((x2 + y2)x2 + xyt+ (x2 + y2)y2 − yxt) =

4t

ρ4
+

4

ρ4(x2 + y2)

((x2 + y2)yx+ ty2 − (x2 + y2)xy + x2t)− 4t

ρ4
=

4t

ρ4
=

4 cos(ϕ)

ρ2

i.e.

∆H1ϕ =
4 cosϕ

ρ2
.

Putting together this with (2.42) and (2.44), we have the expected relation-

ships.

We complete this section providing the expression of ∆H1u, assuming that

u = ραf(θ, ϕ).

Lemma 2.13. Let u = ραf(θ, ϕ). Then

∆H1u = ρα−2

(
α(α + 2) sin(ϕ)f − 2α(cos(ϕ))

∂f

∂θ
+

1

sin(ϕ)

∂2f

∂θ2

+ 4 sin(ϕ)
∂2f

∂ϕ∂θ
+ 4 sin(ϕ)

∂2f

∂ϕ2
+ 4 cos(ϕ)

∂f

∂ϕ

)
.

Proof. Let us start the proof by computing Xu and Y u. We have

Xu = αρα−1(Xρ)f + ρα
(
∂f

∂θ
Xθ +

∂f

∂ϕ
Xϕ

)
,

Y u = αρα−1(Y ρ)f + ρα
(
∂f

∂θ
Y θ +

∂f

∂ϕ
Y ϕ

)
.
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We are ready now to calculate ∆H1u. Precisely, we achieve

∆H1u = α(α− 1)ρα−2((Xρ)2 + (Y ρ)2)f + αρα−1(X2ρ+ Y 2ρ)f + 2αρα−1

(Xρ)

(
∂f

∂θ
Xθ +

∂f

∂ϕ
Xϕ

)
+ 2αρα−1(Y ρ)

(
∂f

∂θ
Y θ +

∂f

∂ϕ
Y ϕ

)
+ ρα

(
X

(
∂f

∂θ
Xθ +

∂f

∂ϕ
Xϕ

)
+ Y

(
∂f

∂θ
Y θ +

∂f

∂ϕ
Y ϕ

))
= α(α− 1)ρα−2 |∇H1ρ|2 f + αρα−1(∆H1ρ)f + 2αρα−1

(
∂f

∂θ
XρXθ +

∂f

∂ϕ
Xρ

Xϕ+
∂f

∂θ
Y ρY θ +

∂f

∂ϕ
Y ρY ϕ

)
+ ρα

(
X

(
∂f

∂θ

)
Xθ +

∂f

∂θ
X2θ +X

(
∂f

∂ϕ

)
Xϕ

+
∂f

∂ϕ
X2ϕ+ Y

(
∂f

∂θ

)
Y θ +

∂f

∂θ
Y 2θ + Y

(
∂f

∂ϕ

)
Y ϕ+

∂f

∂ϕ
Y 2ϕ

)
= (α(α− 1)ρα−2 |∇H1ρ|2 + αρα−1∆H1ρ)f + 2αρα−1

(
∂f

∂θ
〈∇H1ρ,∇H1θ〉+

∂f

∂ϕ

〈∇H1ρ,∇H1ϕ〉
)

+ ρα
((

∂2f

∂θ2
Xθ +

∂2f

∂ϕ∂θ
Xϕ

)
Xθ +

(
∂2f

∂θ∂ϕ
Xθ +

∂2f

∂ϕ2
Xϕ

)
Xϕ+

(
∂2f

∂θ2
Y θ +

∂2f

∂ϕ∂θ
Y ϕ

)
Y θ +

(
∂2f

∂θ∂ϕ
Y θ +

∂2f

∂ϕ2
Y ϕ

)
Y ϕ+

∂f

∂θ
(X2θ

+ Y 2θ) +
∂f

∂ϕ
(X2ϕ+ Y 2ϕ)

)
= (α(α− 1)ρα−2 |∇H1ρ|2 + αρα−1∆H1ρ)f

+ 2αρα−1

(
∂f

∂θ
〈∇H1ρ,∇H1θ〉+

∂f

∂ϕ
〈∇H1ρ,∇H1ϕ〉

)
+ ρα

(
∂2f

∂θ2
|∇H1θ|2

+ 2
∂2f

∂ϕ∂θ
〈∇H1ϕ,∇H1θ〉+

∂2f

∂ϕ2
|∇H1ϕ|2 +

∂f

∂θ
∆H1θ +

∂f

∂ϕ
∆H1ϕ

)
,

which yields

∆H1u = (α(α− 1)ρα−2 |∇H1ρ|2 + αρα−1∆H1ρ)f + 2αρα−1

(
∂f

∂θ
〈∇H1ρ,∇H1θ〉

+
∂f

∂ϕ
〈∇H1ρ,∇H1ϕ〉

)
+ ρα

(
∂2f

∂θ2
|∇H1θ|2 + 2

∂2f

∂ϕ∂θ
(∇H1ϕ · ∇H1θ) +

∂2f

∂ϕ2

|∇H1ϕ|2 +
∂f

∂θ
∆H1θ +

∂f

∂ϕ
∆H1ϕ

)
.

In particular, using Lemma 2.10, 2.11 and 2.12, we get

∆H1u =

(
α(α− 1)ρα−2x

2 + y2

ρ2
+ αρα−1 3(x2 + y2)

ρ3

)
f − 2αρα−1∂f

∂θ

cosϕ

ρ
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+ ρα
(
∂2f

∂θ2

1

x2 + y2
+ 4

∂2f

∂ϕ∂θ

x2 + y2

ρ4
+
∂2f

∂ϕ2

4(x2 + y2)

ρ4
+
∂f

∂ϕ

4 cos(ϕ)

ρ2

)
= α(α + 2)

(
x2 + y2

ρ2

)
ρα−2f − 2α(cos(ϕ))ρα−2∂f

∂θ
+ ρα−2

(
ρ2

x2 + y2

∂2f

∂θ2

+ 4
x2 + y2

ρ2

∂2f

∂ϕ∂θ
+ 4

x2 + y2

ρ2

∂2f

∂ϕ2
+ 4 cos(ϕ)

∂f

∂ϕ

)
.

Thus, we lastly obtain the desired expression for ∆H1u, since x2+y2

ρ2 = sin(ϕ)

from (2.30).

2.7 eρ, eϕ as orthonormal basis

In this section, we look for the points p = (x, y, t) ∈ H1 where {eρ, eϕ}
is an orthonormal basis of HH1

p, with HH1
p denoting the horizontal vector

space at p ∈ H1, see Section 2.4.

Let p ∈ H1. Let us define

eρ(p) :=

(
∇H1ρ

|∇H1ρ|

)
(p), eϕ(p) :=

(
∇H1ϕ

|∇H1ϕ|

)
(p).

We recall, according to Lemma 2.11, that 〈eρ(p), eϕ(p)〉R2 = 0. Then, when-

ever eρ(p), eϕ(p) exist, we have

span{eρ(p), eϕ(p)} = HH1
p.

As a consequence, in these cases, since {eρ(p), eϕ(p)} is an orthonormal basis,

if u : H1 → R is sufficiently smooth, then

∇H1u(p) = 〈∇H1u(p), eρ(p)〉eρ(p) + 〈∇H1u(p), eϕ(p)〉eϕ(p),

since ∇H1u(p) ∈ HH1
p, and denoting

∇ρ
H1u(p) = 〈∇H1u(p), eρ(p)〉eρ(p), ∇ϕ

H1u(p) = 〈∇H1u(p), eϕ(p)〉eϕ(p),

(2.45)

we have

|∇H1u(p)|2 = 〈∇H1u(p), eρ(p)〉2 + 〈∇H1u(p), eϕ(p)〉2,
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and

|∇H1u(p)|2 = |∇ρ
H1u(p)|2 + |∇ϕ

H1u(p)|2. (2.46)

Lemma 2.14. The couple (∇H1ρ)(p) , (∇H1ϕ)(p) determines a basis of HH1
p,

for every p = (x, y, t), such that x2 + y2 6= 0.

Proof. We look for the points where ∇H1ρ and ∇H1ϕ vanish. We have that

∇H1ρ = 0 ifρ−3((x2 + y2)x+ yt) = 0

ρ−3((x2 + y2)y − xt) = 0
⇐⇒

(x2 + y2)x+ yt = 0

(x2 + y2)y − xt = 0,
(2.47)

which gives, multiplying the first row by y 6= 0 and the second one by x 6= 0,(x2 + y2)yx+ y2t = 0

(x2 + y2)yx− x2t = 0.
(2.48)

Subtracting the second row to the first one in (2.48), we get

0 = y2t+ x2t = (x2 + y2)t,

which implies t = 0, because x 6= 0 and y 6= 0. Now, if t = 0, we obtain, from

the first row in (2.47), (x2 +y2)x = 0, which is a contradiction, recalling that

we have supposed that x 6= 0.

Therefore, suppose that y = 0, and in view of the first row in (2.47), we

have x = 0. Analogously, if we assume x = 0, we achieve, by the second row

in (2.47), y = 0. To sum up, we have ∇H1ρ = 0 in points p = (x, y, t), with

x = 0 and y = 0.

Concerning ∇H1ϕ, we have ∇H1ϕ = 0 if

2

ρ(x2 + y2)
(ρ(−y, x) + t∇H1ρ) = 0,

which immediately yields that x and y can not be equal to 0 at the same

time, so it is equivalent to

ρ(−y, x) + t∇H1ρ = 0,
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that is−ρy + tXρ = 0

ρx+ tY ρ = 0
⇐⇒

−ρy + tρ−3((x2 + y2)x+ yt) = 0

ρx+ tρ−3((x2 + y2)y − xt) = 0

⇐⇒

t((x2 + y2)x+ yt) = ρ4y

t((x2 + y2)y − xt) = −ρ4x,

thus, we have to solvet((x2 + y2)x+ yt) = ρ4y

t((x2 + y2)y − xt) = −ρ4x.
(2.49)

Specifically, multiplying the first row in (2.49) by y 6= 0 and the second one

by x 6= 0, we get t(x2 + y2)xy + t2y2 = ρ4y2

t(x2 + y2)yx− t2x2 = −ρ4x2.
(2.50)

Subtracting the second row in (2.50) to the first one,

(x2 + y2)t2 = (x2 + y2)ρ4,

and dividing by (x2 + y2) 6= 0, recalling that x and y can not be equal to 0

at the same time,

t2 = ρ4,

which implies

|t| = ρ2,

and hence t = ±ρ2. Substituting t = ρ2 in the first row of (2.50), we achieve

ρ2(x2 + y2)yx+ ρ4y2 = ρ4y2,

which gives

ρ2(x2 + y2)yx = 0,

which is a contradiction, since x 6= 0, y 6= 0 and ρ 6= 0. Analogously, if we

take t = −ρ2, we have, always from the first row in (2.50),

−ρ2(x2 + y2)yx+ ρ4y2 = ρ4y2,
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i.e.

−ρ2(x2 + y2)yx = 0,

which is a contradiction, again because x 6= 0, y 6= 0 and ρ 6= 0.

Suppose now that y = 0, and we have, according to the first row in (2.49),

tx3 = 0, which entails t = 0, since x and y can not be equal to 0 at the

same time. At this point, if y = t = 0, we have, by the second row in (2.49),

ρ4x = 0, in other words x = 0, recalling that ρ 6= 0, which is impossible,

since y = 0. Analogously, if we assume x = 0, we have from the second row

in (2.49) that the only possibility is t = 0, but this condition yields, by virtue

of the first row in (2.49), y = 0, which is impossible, because x = 0. To recap,

∇H1ϕ 6= 0, ∀p ∈ H1, where it is well defined, i.e. in points p = (x, y, t) such

that x2 + y2 6= 0.

This fact, together with ∇H1ρ = 0 if x = y = 0, gives that (∇H1ρ)(p) and

(∇H1ϕ)(p) are a basis of HH1
p in points p = (x, y, t) with x2 + y2 6= 0.

2.8 Some crucial estimates in H1

In this section, we show a crucial lower bound for
ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

,

with u ∈ C(BH1

1 (0)) ∩ H1
H1(BH1

1 (0)) nonnegative, and such that u(0) = 0,

∆H1u ≥ 0.

Let us introduce the following notation:

Aρ :=

ˆ
∂BH1

1 (0)

∣∣∇ρ
H1u
∣∣2√

x2 + y2
dσH1(ξ), Aϕ :=

ˆ
∂BH1

1 (0)

∣∣∇ϕ
H1u
∣∣2√

x2 + y2
dσH1(ξ),

Au :=

ˆ
∂BH1

1 (0)

u2
√
x2 + y2 dσH1(ξ).

(2.51)

As in the Euclidean setting, we obtain the following lower bound.
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Lemma 2.15. Let u ∈ C(BH1

1 (0)) ∩H1
H1(BH1

1 (0)) be nonnegative, and such

that u(0) = 0, ∆H1u ≥ 0. Then, the following lower bound holds:

ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

≥ Aρ + Aϕ

Au + A
1/2
u A

1/2
ρ

. (2.52)

Proof. Using (2.46), we get

ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

=

ˆ
∂BH1

1 (0)

∣∣∇ρ
H1u
∣∣2 +

∣∣∇ϕ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

=

ˆ
∂BH1

1 (0)

∣∣∇ρ
H1u
∣∣2√

x2 + y2
dσH1(ξ) +

ˆ
∂BH1

1 (0)

∣∣∇ϕ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

. (2.53)

We now look for an upper bound of

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ.

Specifically, as for the classical Laplacian, we have

∆H1u2 = 2 |∇H1u|2 + 2u∆H1u,

which implies, if u satisfies u∆H1u ≥ 0,

2 |∇H1u|2 ≤ ∆H1u2.

In view of this, we then achieve

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ ≤ 1

2

ˆ
BH1

1 (0)

∆H1u2

|ξ|2H1

dξ. (2.54)

At this point, recalling the definition of divH1 from Section 2.4, it holds

|ξ|−2
H1 ∆H1u2 = div

H1

(
|ξ|−2

H1 ∇H1u2
)
− 〈∇H1 |ξ|−2

H1 ,∇H1u2〉,
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which entails, by virtue of (2.54),

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ ≤ 1

2

ˆ
BH1

1 (0)

div
H1

(
|ξ|−2

H1 ∇H1u2
)
dξ

− 1

2

ˆ
BH1

1 (0)

〈∇H1 |ξ|−2
H1 ,∇H1u2〉 dξ. (2.55)

Now, we have, again as for the classical Laplacian,

∇H1u2 = 2u∇H1u.

Consequently, by the analogue of the divergence theorem in H1, see Section

2.4, we get

ˆ
BH1

1 (0)

div
H1

(
|ξ|−2

H1 ∇H1u2
)
dξ =

ˆ
∂BH1

1 (0)

2 |ξ|−2
H1 u〈∇H1u, νH1〉 dσH1(ξ), (2.56)

where

νH1 =
∇H1ρ

|∇H1ρ|
, (2.57)

with

ρ = |ξ|H1 . (2.58)

In particular, on ∂BH1

1 (0), we have |ξ|H1 = 1, therefore, in view of (2.56), we

obtain

ˆ
BH1

1 (0)

div
H1

(
|ξ|−2

H1 ∇H1u2
)
dξ =

ˆ
∂BH1

1 (0)

2u〈∇H1u, νH1〉 dσH1(ξ). (2.59)

In addition, it results

〈∇H1u2,∇H1 |ξ|−2
H1 〉 = div

H1

(
u2∇H1 |ξ|−2

H1

)
− u2 div

H1

(
∇H1 |ξ|−2

H1

)
. (2.60)

Hence, by the analogue of the divergence theorem in H1, we have

ˆ
BH1

1 (0)

〈∇H1u2,∇H1 |ξ|−2
H1 〉 dξ =

ˆ
∂BH1

1 (0)

u2〈∇H1 |ξ|−2
H1 , νH1〉 dσH1(ξ)

−
ˆ
BH1

1 (0)

u2 div
H1

(
∇H1 |ξ|−2

H1

)
dξ. (2.61)
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As a consequence, by virtue of (2.59) and (2.61), we achieve from (2.55)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ ≤
ˆ
∂BH1

1 (0)

u〈∇H1u, νH1〉 dσH1(ξ)

+
1

2

ˆ
BH1

1 (0)

u2 div
H1

(
∇H1 |ξ|−2

H1

)
dξ − 1

2

ˆ
∂BH1

1 (0)

u2〈∇H1 |ξ|−2
H1 , νH1〉 dσH1(ξ).

(2.62)

At this point, it holds, according to (2.58),

∇H1 |ξ|−2
H1 = −2 |ξ|−3

H1 ∇H1 |ξ|H1 = −2ρ−3∇H1ρ.

which yields, using (2.57),

〈∇H1 |ξ|−2
H1 , νH1〉 = −2ρ−3 |∇H1ρ| . (2.63)

Notice, in particular, that by (2.57) we have

νH1 = eρ. (2.64)

Thus, by virtue of this and (2.63), we obtain from (2.62), also exploiting

(2.45),

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ ≤
ˆ
∂BH1

1 (0)

u〈∇H1u, eρ〉 dσH1(ξ)

+
1

2

ˆ
BH1

1 (0)

u2 div
H1

(
∇H1 |ξ|−2

H1

)
dξ +

ˆ
∂BH1

1 (0)

u2 |∇H1ρ| dσH1(ξ),

which implies

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ ≤
ˆ
∂BH1

1 (0)

(
u〈∇H1u, eρ〉+ u2 |∇H1ρ|

)
dσH1(ξ)

+
1

2

ˆ
BH1

1 (0)

u2 div
H1

(
∇H1 |ξ|−2

H1

)
dξ.

(2.65)

At this point, we know that |ξ|−2
H1 is, up to a multiplicative constant, the

fundamental solution of ∆H1 , and in addition

∆H1 = div
H1
∇H1 ,
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thus

div
H1

(
∇H1 |ξ|−2

H1

)
= ∆H1 |ξ|−2

H1 = δ0,

with δ0 the Dirac delta centered at 0.

Consequently, recalling that u(0) = 0, and therefore also u2(0) = 0, we

achieve

u2 div
H1

(
∇H1 |ξ|−2

H1

)
= u2δ0 = 0 in BH1

1 (0),

which entails, in view of (2.65),ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ ≤
ˆ
∂BH1

1 (0)

(
u〈∇H1u, eρ〉+ u2 |∇H1ρ|

)
dσH1(ξ). (2.66)

In particular, we have from Lemma 2.10

|∇H1ρ| =
√
x2 + y2

ρ
,

which gives

|∇H1ρ| =
√
x2 + y2 on ∂BH1

1 (0).

Substituting this in (2.66), we then getˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ ≤
ˆ
∂BH1

1 (0)

(
u〈∇H1u, eρ〉+ u2

√
x2 + y2

)
dσH1(ξ). (2.67)

Specifically, we can rewrite the right term in (2.67) asˆ
∂BH1

1 (0)

u〈∇H1u, eρ〉
4
√
x2 + y2

4
√
x2 + y2

dσH1(ξ) +

ˆ
∂BH1

1 (0)

u2
√
x2 + y2 dσH1(ξ),

which gives, by Hölder inequality,ˆ
∂BH1

1 (0)

(
u〈∇H1u, eρ〉+ u2

√
x2 + y2

)
dσH1(ξ) ≤

ˆ
∂BH1

1 (0)

u2
√
x2 + y2 dσH1(ξ)

+

( ˆ
∂BH1

1 (0)

u2
√
x2 + y2 dσH1(ξ)

)1/2( ˆ
∂BH1

1 (0)

∣∣∇ρ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

)1/2

.

As a consequence, we have, from (2.67),ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ ≤
ˆ
∂BH1

1 (0)

u2
√
x2 + y2 dσH1(ξ)

+

( ˆ
∂BH1

1 (0)

u2
√
x2 + y2 dσH1(ξ)

)1/2( ˆ
∂BH1

1 (0)

∣∣∇ρ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

)1/2

.

(2.68)
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To recap, we have increased the denominator of (2.53) with (2.68) and using

this, we then obtain from (2.53) the desired lower bound.

Let us introduce now the notation

λϕ(Σ)
:= inf

v ∈H1
0 (Σ)

ˆ
Σ

∣∣∇ϕ
H1v
∣∣2√

x2 + y2
dσH1(ξ)

ˆ
Σ

v2
√
x2 + y2 dσH1(ξ)

, (2.69)

where, in general, Σ ⊂ ∂BH1

1 (0) is a rectifiable set. In particular, for our

purposes, we consider

Σ := ∂BH1

1 (0) ∩ {u > 0}, (2.70)

for u as in Lemma 2.52.

Theorem 2.16. Let u ∈ C(BH1

1 (0))∩H1
H1(BH1

1 (0)) be nonnegative, and such

that u(0) = 0, ∆H1u ≥ 0. Then

ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

≥ 2
(√

1 + λϕ(Σ)
− 1
)
. (2.71)

Proof. First of all, we remark that Au 6= 0, hence the right term in (2.52)

becomes

Aρ + Aϕ

Au + A
1/2
u A

1/2
ρ

=

Aρ
Au

+
Aϕ
Au

1 +

(
Aρ
Au

)1/2
. (2.72)

Substituting it in (2.52) we then achieve

ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

≥

Aρ
Au

+
Aϕ
Au

1 +

(
Aρ
Au

)1/2
. (2.73)
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Furthermore, recalling that u ∈ H1
0 (Σ) and (2.70), we have

Aϕ
Au
≥ λϕ(Σ)

,

which entails, in view of (2.73),

ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

≥

Aρ
Au

+ λϕ(Σ)

1 +

(
Aρ
Au

)1/2
. (2.74)

At this point, if we call

s =
Aρ
Au

, (2.75)

we can rewrite the right term in (2.74) as a function depending on s, precisely

as

F (s) =
s+ λϕ(Σ)

1 +
√
s
, s ∈ R, s > 0.

Our idea is to find the minimum of F to get a lower bound of
ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

.

Specifically, we have

F ′(s) =
1 +
√
s− (s+ λϕ(Σ)

) 1
2
√
s

(1 +
√
s)2

=
(1 +

√
s)2
√
s− s− λϕ(Σ)

2
√
s(1 +

√
s)2

=
2
√
s+ s− λϕ(Σ)

2
√
s(1 +

√
s)2

.

At this point, we notice that the denominator in the expression of F ′ is always

positive, so we have to study the numerator to find the minimum.

In particular, it results

2
√
s+ s− λϕ(Σ)

≥ 0
z=
√
s⇐⇒ 2z + z2 − λϕ(Σ)

≥ 0.

Now, the roots of z2 + 2z − λϕ(Σ)
are

z± = −1±
√

1 + λϕ(Σ)
,
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but because z > 0, we obtain

z2 + 2z − λϕ(Σ)
≥ 0⇐⇒ z ≥ −1 +

√
1 + λϕ(Σ)

,

which implies that

s = z2 =
(
−1 +

√
1 + λϕ(Σ)

)2

is the minimum point of F.

Consequently, we achieve

F (s) ≥ F

((
−1 +

√
1 + λϕ(Σ)

)2
)

=
1 + 1 + λϕ(Σ)

− 2
√

1 + λϕ(Σ)
+ λϕ(Σ)

1− 1 +
√

1 + λϕ(Σ)

= 2
1 + λϕ(Σ)

−
√

1 + λϕ(Σ)√
1 + λϕ(Σ)

= 2
(√

1 + λϕ(Σ)
− 1
)
,

which yields

s+ λϕ(Σ)

1 +
√
s
≥ 2

(√
1 + λϕ(Σ)

− 1
)
,

and thus, using (2.75),

Aρ
Au

+ λϕ(Σ)

1 +

(
Aρ
Au

)1/2
≥ 2

(√
1 + λϕ(Σ)

− 1
)
.

This fact, together with (2.74), then entails the expected lower bound.

We now show an alternative proof of Theorem 2.16, which follows the

approach developed in [15] about the classical Alt-Caffarelli-Friedman mono-

tonicity formula.

We first consider for every β ∈ (0, 1) the following lower bound, recalling the
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definition of λϕ(Σ)
in (2.69), (2.46) and employing the Cauchy inequality:

ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ) ≥
ˆ
∂BH1

1 (0)

∣∣∇ρ
H1u
∣∣2√

x2 + y2
dσH1(ξ) + λϕ(Σ)

ˆ
∂BH1

1 (0)

u2
√
x2 + y2 dσH1(ξ) =

ˆ
∂BH1

1 (0)

∣∣∇ρ
H1u
∣∣2√

x2 + y2
dσH1(ξ) + λϕ(Σ)

β

ˆ
∂BH1

1 (0)

u2
√
x2 + y2 dσH1(ξ) + λϕ(Σ)

(1− β)

ˆ
∂BH1

1 (0)

u2
√
x2 + y2 dσH1(ξ)

≥ 2

(ˆ
∂BH1

1 (0)

∣∣∇ρ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

) 1
2
(
λϕ(Σ)

β

ˆ
∂BH1

1 (0)

u2
√
x2 + y2 dσH1(ξ)

) 1
2

+ λϕ(Σ)
(1− β)

ˆ
∂BH1

1 (0)

u2
√
x2 + y2 dσH1(ξ).

(2.76)

In view of (2.76) and (2.68), it then follows, since Au 6= 0,

ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

≥
2(λϕ(Σ)

β)1/2A
1/2
ρ A

1/2
u + (1− β)λϕ(Σ)

Au

Au + A
1/2
u A

1/2
ρ

=
2(λϕ(Σ)

β)1/2A
1/2
ρ

A
1/2
u

+ (1− β)λϕ(Σ)

1 +
A

1/2
ρ

A
1/2
u

≥ min{(1− β)λϕ(Σ)
, 2(λϕ(Σ)

β)1/2}.

At this point, let β ∈ (0, 1) be such that

(1− β)λϕ(Σ)
= 2(λϕ(Σ)

β)1/2. (2.77)

Then, denoting α := (λϕ(Σ)
β)1/2, we obtain that the previous relationship is

satisfied whenever

α2 + 2α− λϕ(Σ)
= 0. (2.78)

We point out that, from (2.77), it follows

(1− β)
√
λϕ(Σ)

= 2
√
β,
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as well, so that, denoting γ =
√
β, we get√

λϕ(Σ)
γ2 + 2γ −

√
λϕ(Σ)

= 0.

This yields

γ =
−1±

√
1 + λϕ(Σ)√
λϕ(Σ)

,

but, since β > 0, it results

γ =
−1 +

√
1 + λϕ(Σ)√
λϕ(Σ)

= − 1√
λϕ(Σ)

+

√
1 +

1

λϕ(Σ)

.

Now, the function r → −r +
√

1 + r2 is positive in [0,+∞) and since (−r
+
√

1 + r2)′ = −1 + r√
1+r2 < 0 for every r > 0, this function is monotone

decreasing, so that 0 < −r +
√

1 + r2 ≤ 1.

As a consequence, there exists β ∈ (0, 1) given by

β =

−1 +
√

1 + λϕ(Σ)√
λϕ(Σ)

2

such that, when (2.77) is realized, it holds

min{(1− β)λϕ(Σ)
, 2(λϕ(Σ)

β)1/2} = 2
(√

1 + λϕ(Σ)
− 1
)
,

as stated in Theorem 2.16.

2.9 Straightforward computation of the two

basic cases

In this section, we want to state and prove two further lemmas and next

give a generalization of one of them, which will be useful in the proof of

Theorem 2.1.
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Lemma 2.17. If u = x+, then

ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

= 2.

Proof. First of all, we note that

∇H1x+ = χ{x>0},

henceˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

=

ˆ
∂BH1

1 (0)∩{x>0}

1√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)∩{x>0}

1

|ξ|2H1

dξ

. (2.79)

Let us calculate now ˆ
BH1

1 (0)∩{x>0}

1

|ξ|2H1

dξ.

To this end, we apply the change of variables in spherical coordinates, that

is, denoting ξ := (x, y, t),

ξ = T (ρ, ϕ, θ) := (ρ
√

sin(ϕ) cos(θ), ρ
√

sin(ϕ) sin(θ), ρ2 cos(ϕ)), (2.80)

and, since |det JT | = ρ3 and

x = ρ
√

sin(ϕ) cos(θ) > 0⇐⇒ −π
2
< θ <

π

2
, (2.81)

we get

ˆ
BH1

1 (0)∩{x>0}

1

|ξ|2H1

dξ =

ˆ π

0

ˆ π
2

−π
2

ˆ 1

0

ρ3

ρ2
dρdϕdθ = π2

[
ρ2

2

]ρ=1

ρ=0

=
π2

2
. (2.82)

Regarding ˆ
∂BH1

1 (0)∩{x>0}

1√
x2 + y2

dσH1(ξ),

instead, we recall first that, by definition of dσH1 , see Section 2.4, it holds

dσH1(ξ) =

√
x2 + y2

|∇ρ|
dσ(ξ), (2.83)
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hence we achieve
ˆ
∂BH1

1 (0)∩{x>0}

1√
x2 + y2

dσH1(ξ) =

ˆ
∂BH1

1 (0)∩{x>0}

1

|∇ρ|
dσ(ξ). (2.84)

At this point, we consider the following parametrization of ∂BH1

1 (0) :

ξ = K(θ, ϕ) := (
√

sin(ϕ) cos(θ),
√

sin(ϕ) sin(θ), cos(ϕ)). (2.85)

Then, we obtain

dσ(ξ) =

∣∣∣∣∂K∂θ ∧ ∂K∂ϕ
∣∣∣∣ dθdϕ,

which yields

ˆ
∂BH1

1 (0)∩{x>0}

1

|∇ρ|
dσ(ξ) =

ˆ π

0

ˆ π
2

−π
2

1

|∇ρ|

∣∣∣∣∂K∂θ ∧ ∂K∂ϕ
∣∣∣∣ dθdϕ, (2.86)

using (2.81).

In particular, we have

|∇ρ| =
∣∣∣∣14((x2 + y2)2 + t2)−3/4(2(x2 + y2)2x, 2(x2 + y2)2y, 2t)

∣∣∣∣
=

1

2
ρ−3
√

4x2(x2 + y2)2 + 4y2(x2 + y2)2 + t2 =
1

2

√
4(x2 + y2)3 + t2,

that is, according to (2.85),

|∇ρ| |∂BH1
1 (0)

=
1

2

√
4 sin3(ϕ) + cos2(ϕ) in

(
− π

2
,
π

2

)
× [0, 2π).

On the other hand, in view of (2.85), it results∣∣∣∣∂K∂θ ∧ ∂K∂ϕ
∣∣∣∣ =

∣∣∣∣(− sin3/2(ϕ) cos(θ),− sin3/2(ϕ) sin(θ),−cos(ϕ)

2

)∣∣∣∣
=

√
sin3 ϕ+

cos2(ϕ)

4
=

1

2

√
4 sin3 ϕ+ cos2(ϕ),

which thus implies∣∣∣∂K∂θ ∧ ∂K
∂ϕ

∣∣∣
|∇ρ|

= 1 in

(
− π

2
,
π

2

)
× [0, 2π). (2.87)
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Consequently, we have

ˆ π

0

ˆ π
2

−π
2

1

|∇ρ|

∣∣∣∣∂K∂θ ∧ ∂K∂ϕ
∣∣∣∣ dθdϕ = π2,

hence, from (2.84) and (2.86), we get

ˆ
∂BH1

1 (0)∩{x>0}

1√
x2 + y2

dσH1(ξ) = π2. (2.88)

Putting together (2.82) and (2.88), we lastly achieve by (2.79) the expected

result.

Lemma 2.18. If u = t+, then

ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

= 4.

Proof. We point out first that, in this case, we have

∇H1t+ = 2(y,−x)χ{t>0}.

Therefore, it holds

ˆ
∂BH1

1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ
BH1

1 (0)

|∇H1u|2

|ξ|2H1

dξ

=

ˆ
∂BH1

1 (0)∩{t>0}
4
√
x2 + y2 dσH1(ξ)

ˆ
BH1

1 (0)∩{t>0}

4(x2 + y2)

|ξ|2H1

dξ

. (2.89)

Now, let us compute

ˆ
BH1

1 (0)∩{t>0}

4(x2 + y2)

|ξ|2H1

dξ.

Using the change of variables in spherical coordinates (2.80) and noting that

t = ρ2 cos(ϕ) > 0⇐⇒ 0 < ϕ <
π

2
, (2.90)
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we then obtainˆ
BH1

1 (0)∩{t>0}

4(x2 + y2)

|ξ|2H1

dξ =

ˆ π

−π

ˆ π
2

0

ˆ 1

0

4ρ2 sin(ϕ)

ρ2
ρ3 dρdϕdθ = 2π.

(2.91)

In parallel, in view of (2.83), (2.87) and (2.90), we getˆ
∂BH1

1 (0)∩{t>0}
4
√
x2 + y2 dσH1(ξ) = 4

ˆ π

−π

ˆ π
2

0

sin(ϕ) dϕdθ = 8π (2.92)

as well. So, from (2.89), (2.91) and (2.92), we lastly have the desired equality.

Lemma 2.19. For every a, b ∈ R such that a2 + b2 6= 0, let u = (ax + by)+

be defined in BH1

1 (0). Thenˆ

∂BH1
1 (0)

|∇H1u|2√
x2 + y2

dσH1(ξ)

ˆ

BH1
1 (0)

|∇H1u|2

|ξ|2H1

dξ

= 2.

2.10 Proof of Theorem 2.1

In this section, we prove the main result Theorem 2.1, as a consequence

of Lemma 2.8 and Lemma 2.19.

Proof of Theorem 2.1. Let u1 = (ax+by)+ and u2 = (ax+by)−, with a, b ∈ R
such that a2 +b2 6= 0. Then, we employ Lemma 2.17, which holds in the same

way for u2, concluding thatˆ
∂BH1

1 (0)

|∇H1u1|2√
x2 + |y|2

dσH1(κ)

ˆ
BH1

1 (0)

|∇H1u1|2

|κ|Q−2
H1

dκ

+

ˆ
∂BH1

1 (0)

|∇H1u2|2√
x2 + |y|2

dσH1(κ)

ˆ
BH1

1 (0)

|∇H1u2|2

|κ|Q−2
H1

dκ

= 4.

Thus, if β > 4, then u1 = (ax + by)+ and u2 = (ax + by)− satisfy the

hypotheses of Lemma 2.8, but
J ′
β,H1 (1)

Jβ,H1 (1)
< 0 when tested on these choices of u1

and u2. Hence, in order to preserve the increasing monotonicity of Jβ,H1 , we

must assume that β ≤ 4.
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2.11 The case f independent of θ

In this section, we analyze the case of H1-harmonic functions in the form

u = ραf(ϕ), with f a given function depending on ϕ.

First, we recall that in Lemma 2.13 we proved that if u = ραf(θ, ϕ), then

∆H1u = ρα−2

(
α(α + 2) sin(ϕ)f(θ, ϕ)− 2α(cos(ϕ))

∂f

∂θ
+

1

sin(ϕ)

∂2f

∂θ2

+ 4 sin(ϕ)
∂2f

∂ϕ∂θ
+ 4 sin(ϕ)

∂2f

∂ϕ2
+ 4 cos(ϕ)

∂f

∂ϕ

)
. (2.93)

Now, if we evaluate this expression on ∂BH1

1 (0), we get

∆H1u|∂BH1
1 (0)

= α(α + 2) sin(ϕ)f(θ, ϕ)− 2α cos(ϕ)
∂f

∂θ
+

1

sin(ϕ)

∂2f

∂θ2

+ 4 sin(ϕ)
∂2f

∂ϕ∂θ
+ 4 sin(ϕ)

∂2f

∂ϕ2
+ 4 cos(ϕ)

∂f

∂ϕ
. (2.94)

Corollary 2.20. If u = ραf(ϕ), then

∆H1u|∂BH1
1 (0)

= α(α + 2) sin(ϕ)f + 4
∂

∂ϕ

(
sin(ϕ)

∂f

∂ϕ

)
.

Proof. For the sake of simplicity, in the following we will denote ∆H1u|∂BH1
1 (0)

with ∆H1u.

In particular, if f(θ, ϕ) does not depend on θ, i.e. f = f(ϕ), we obtain,

in view of (2.94),

∆H1u = α(α + 2) sin(ϕ)f + 4 sin(ϕ)
∂2f

∂ϕ2
+ 4 cos(ϕ)

∂f

∂ϕ
. (2.95)

At this point, we note that

4 sin(ϕ)
∂2f

∂ϕ2
+ 4 cos(ϕ)

∂f

∂ϕ
= 4

∂

∂ϕ

(
sin(ϕ)

∂f

∂ϕ

)
,

which implies, from (2.95), our thesis.

Corollary 2.20 yields the following lemma as well.
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Lemma 2.21. If α = 2 and we take u = ρ2 cos(ϕ), we have that u is ∆H1

-harmonic, that is ∆H1u = 0, and

8 =

4

ˆ π
2

0

sin(ϕ)((cos(ϕ))′)2 dϕ

ˆ π
2

0

sin(ϕ) cos2(ϕ) dϕ

.

Proof. This result can be found in [56]. However, to help the reader, we give

a straightforward proof of this fact.

First of all, from (2.93), we achieve that if u = ραf(ϕ),

∆H1u = ρα−2

(
α(α + 2) sin(ϕ)f + 4 sin(ϕ)

∂2f

∂ϕ2
+ 4 cos(ϕ)

∂f

∂ϕ

)
.

As a consequence, if u = ρ2 cos(ϕ), we have, because α = 2 and f(ϕ) =

cos(ϕ),

∆H1u = 8 sin(ϕ) cos(ϕ)− 4 sin(ϕ) cos(ϕ)− 4 cos(ϕ) sin(ϕ) = 0.

Now, if u = ραf(ϕ) satisfies ∆H1u|∂BH1
1 (0)

= 0, we have, according to Corol-

lary 2.20,

−4(sin(ϕ)f ′)′ = α(α + 2) sin(ϕ)f,

writing ∂
∂ϕ

(
sin(ϕ) ∂f

∂ϕ

)
= (sin(ϕ)f ′)′, since f is a function depending only on

ϕ, and multiplying both the terms of the equality by η sufficiently smooth

with η
(
π
2

)
= 0, it holds

α(α + 2) sin(ϕ)fη = −4(sin(ϕ)f ′)′η.

Integrating over
[
0,
π

2

]
the previous equality, we then obtain

α(α + 2)

ˆ π
2

0

sin(ϕ)fη dϕ = −4

ˆ π
2

0

(sin(ϕ)f ′)′η dϕ.

In particular, if we choose η = f, we get, because f
(
π
2

)
= 0 by virtue of the

choice of f,

α(α + 2)

ˆ π
2

0

sin(ϕ)f 2 dϕ = −4

([
(sin(ϕ)f ′)f

]ϕ=π
2

ϕ=0

−
ˆ π

2

0

sin(ϕ)f ′f ′ dϕ

)
= 4

ˆ π
2

0

sin(ϕ)(f ′)2 dϕ.
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In addition, in view of this, we also have

α(α + 2) =

4

ˆ π
2

0

sin(ϕ)(f ′)2 dϕ

ˆ π
2

0

sin(ϕ)f 2 dϕ

. (2.96)

At this point, we recall that, from Lemma 2.21, ρ2 cos(ϕ) is H1-harmonic,

where α = 2 and f(ϕ) = cos(ϕ), with cos
(π

2

)
= 0, hence, repeating the

same argument used to achieve the last equality, it results

8 =

4

ˆ π
2

0

sin(ϕ)(cos′(ϕ))2 dϕ

ˆ π
2

0

sin(ϕ) cos2(ϕ) dϕ

.

Now, denoting by Lf := 4(sin(ϕ)f ′)′, and considering the following eigen-

values problem 
Lf + λ sin(ϕ)f = 0, ϕ1 < ϕ < ϕ2

f(ϕ1) = 0,

f(ϕ2) = 0,

(2.97)

it results that α has to satisfy the relationship

α(α + 2) = λ, (2.98)

which is exactly the same one obtained in (2.78). Furthermore, we know,

from the proof of Lemma 2.21, that the identity below is valid:

α(α + 2) =

4

ˆ ϕ0

0

sin(ϕ)(f ′)2 dϕ
ˆ ϕ0

0

sin(ϕ)f 2 dϕ

.
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On the other hand, performing a change of variables τ = π − ϕ, it holds

α(α + 2) =

−4

ˆ π−ϕ0

π

sin(π − τ)(f ′)2(π − τ) dτ

−
ˆ π−ϕ0

π

sin(π − τ)f 2(π − τ) dτ

=

4

ˆ π

π−ϕ0

sin(τ)(f ′)2(π − τ) dτ

ˆ π

π−ϕ0

sin(τ)f 2(π − τ) dτ

.

To sum up, we have achieved

α1(ϕ0)(α1(ϕ0) + 2) =

4

ˆ ϕ0

0

sin(ϕ)(f ′)2 dϕ
ˆ ϕ0

0

sin(ϕ)f 2 dϕ

α1(η0)(α1(η0) + 2) =

4

ˆ π

η0

sin(τ)(f ′)2(π − τ) dτ

ˆ π

η0

sin(τ)f 2(π − τ) dτ

(2.99)

where ϕ0 + η0 = π.

Lemma 2.22. The function

G(ϕ) = α1(ϕ)(α1(ϕ) + 2) + α1(π − ϕ)(α1(π − ϕ) + 2), ϕ ∈ [0, π],

is symmetric with respect to π
2
.

Proof. For every ϕ0 ∈ [0, π
2
] we have

G(ϕ0) = α1(π − (π − ϕ0))(α1(π − (π − ϕ0)) + 2) + α1(π − ϕ0)

(α1(π − ϕ0) + 2) = G(π − ϕ0).

In particular u = ρ2 cos(ϕ) is H1−harmonic in {(x, y, t) ∈ H1 : t ≥ 0}.
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Let us denote, at this point, by λϕ1(ϕ2) the eigenvalue of the problem

(2.97). We note that, in particular, the first eigenvalue λϕ0,ϕ1 is determined

by the Rayleigh quotient given, in this case, by

λϕ1(ϕ2) := inf
f∈H1

0 ((ϕ1,ϕ2))

4

ˆ ϕ1

ϕ0

sin(ϕ)f ′(ϕ)2dϕ

ˆ ϕ1

ϕ0

sin(ϕ)f(ϕ)2dϕ

.

Moreover, we denote with G(ϕ) and h(ϕ) the functions

G(ϕ) := λ0(ϕ) + λϕ(π), ϕ ∈ [0, π].

and

h(ϕ) := 2(
√

1 + λ0(ϕ)− 1) + 2(
√

1 + λ0(π − ϕ)− 1) (2.100)

respectively. Then, we get the following result.

Lemma 2.23. If the minimum value of h corresponds to the configuration

in which the Koranyi ball is split in two parts by the plane t = 0, then

G(ϕ) ≥ 16 and h(ϕ) ≥ 4. In general, assuming only that G(ϕ) ≥ q > 0, we

obtain h(ϕ) ≥ 2(
√

2 + q − 2).

Proof. Let us recall first that, in general, it holds
√
a+ b ≤

√
a +
√
b ≤

√
2
√
a+ b, so from (2.100) it follows

h(ϕ) ≥ 2(
√

2 + λ0(ϕ) + λ0(π − ϕ)− 2) = 2(
√

2 +G(ϕ)− 2). (2.101)

Now, we distinguish two cases, i.e. whether the minimum value of h corre-

sponds to the configuration in which the Koranyi ball is split in two parts by

the plane t = 0 or not. Let us treat the first case. Then, in view of (2.98)

(2.99) and Lemma 2.21, we achieve by definition of G

G(ϕ) = λ0(ϕ) + λϕ(π) = λ0(ϕ) + λ0(π − ϕ) ≥ 2λ0(
π

2
) = 16 (2.102)

which yields, according to (2.101),

h(ϕ) ≥ 2(
√

18− 2) > 2(4− 2) = 4.

In case, instead, we only know that G(ϕ) ≥ q > 0, again by (2.102) we

reach h(ϕ) ≥ 2(
√

2 + q − 2).
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2.12 The case f depending on ϕ and θ

In this section, we deal with the case of H1-harmonic functions whose

expression is u = ραf(θ, ϕ), with f a given function depending on θ, ϕ.

We begin recalling that, according to Lemma 2.13, it holds if u = ραf,

∆H1u = ρα−2

(
α(α + 2) sin(ϕ)f − 2α(cos(ϕ))

∂f

∂θ
+

1

sin(ϕ)

∂f 2

∂θ2

+ 4 sin(ϕ)
∂2f

∂ϕ∂θ
+ 4 sin(ϕ)

∂2f

∂ϕ2
+ 4 cos(ϕ)

∂f

∂ϕ

)
,

which also implies

∆H1u|∂BH1
1 (0)

= α(α + 2) sin(ϕ)f − 2α(cos(ϕ))
∂f

∂θ
+

1

sin(ϕ)

∂f 2

∂θ2

+ 4 sin(ϕ)
∂2f

∂ϕ∂θ
+ 4 sin(ϕ)

∂2f

∂ϕ2
+ 4 cos(ϕ)

∂f

∂ϕ
. (2.103)

Let now

A(θ, ϕ) :=


1

sin(ϕ)
(4 + 2α) sin(ϕ)

−2α sin(ϕ) 4 sin(ϕ)

 . (2.104)

and define

Lθ,ϕ := div
θ,ϕ

(A(θ, ϕ)∇θ,ϕ) , (2.105)

where

∇θ,ϕg =

(
∂g

∂θ
,
∂g

∂ϕ

)
, div

θ,ϕ
G =

∂G1

∂θ
+
∂G2

∂ϕ
, (2.106)

with g : [0, 2π]× [0, π]→ R and G : [0, 2π]× [0, π]→ R2 smooth. Then, the

following lemma is valid.

Lemma 2.24. Let Ωθ,ϕ ⊆ [0, 2π] × [0, π] and T (Ωθ,ϕ) ⊂ ∂BH1

1 (0). If u

= ραf(θ, ϕ) is solution of ∆H1u = 0 in δR(T (Ωθ,ϕ)), R > 0, then

Lθ,ϕf = −α(α + 2) sin(ϕ)f in Ωθ,ϕ,
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with

α(α+ 2) =

ˆ
Ωθ,ϕ

(
1

sin(ϕ)

(
∂f

∂θ

)2

+ 4 sin(ϕ)
∂f

∂θ

∂f

∂ϕ
+ 4 sin(ϕ)

(
∂f

∂ϕ

)2)
dθdϕ

ˆ
Ωθ,ϕ

sin(ϕ)f 2 dθdϕ

.

(2.107)

Proof. First of all, we point out that (2.103) yields if ∆H1u|∂BH1
1 (0)

= 0, with

u = ραf(θ, ϕ),

α(α + 2) sin(ϕ)f − 2α cos(ϕ)
∂f

∂θ
+

1

sin(ϕ)

∂2f

∂θ2
+ 4 sin(ϕ)

∂2f

∂ϕ∂θ

+ 4 sin(ϕ)
∂2f

∂ϕ2
+ 4 cos(ϕ)

∂f

∂ϕ
= 0.

Now, we claim that this equation also implies

α(α + 2) sin(ϕ)f + Lθ,ϕf = 0, (2.108)

with Lθ,ϕ defined as in (2.105). Let us check it. We have by (2.105)

Lθ,ϕ = div
θ,ϕ

(
1

sin(ϕ)

∂

∂θ
+ (4 + 2α) sin(ϕ)

∂

∂ϕ
,−2α sin(ϕ)

∂

∂θ
+ 4 sin(ϕ)

∂

∂ϕ

)
=

1

sin(ϕ)

∂2

∂θ2
+ (4 + 2α) sin(ϕ)

∂2

∂θ∂ϕ
− 2α cos(ϕ)

∂

∂θ
− 2α sin(ϕ)

∂2

∂ϕ∂θ

+ 4 cos(ϕ)
∂

∂ϕ
+ 4 sin(ϕ)

∂2

∂ϕ2
,

in other words

Lθ,ϕ =
1

sin(ϕ)

∂2

∂θ2
+4 sin(ϕ)

∂2

∂θ∂ϕ
−2α cos(ϕ)

∂

∂θ
+4 cos(ϕ)

∂

∂ϕ
+4 sin(ϕ)

∂2

∂ϕ2
,

hence (2.108) indeed holds.

Therefore, if we consider T (Ωθ,ϕ) ⊆ ∂BH1

1 (0), (2.108) in Ωθ,ϕ can be read as

div
θ,ϕ

(Aθ,ϕ∇θ,ϕf) = −α(α + 2) sin(ϕ)f in Ωθ,ϕ,

and, multiplying both the terms of the equality by η sufficiently smooth, with

compact support in Ωθ,ϕ, we get

div
θ,ϕ

(Aθ,ϕ∇θ,ϕf) η = −α(α + 2) sin(ϕ)fη in Ωθ,ϕ.
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Integrating this equality over Ωθ,ϕ, we then achieve

ˆ
Ωθ,ϕ

div
θ,ϕ

(Aθ,ϕ∇θ,ϕf) η dθdϕ = −α(α + 2)

ˆ
Ωθ,ϕ

sin(ϕ)fη dθdϕ.

In particular, if we choose η = f in the previous equality, we have

ˆ
Ωθ,ϕ

div
θ,ϕ

(Aθ,ϕ∇θ,ϕf) f dθdϕ = −α(α + 2)

ˆ
Ωθ,ϕ

sin(ϕ)f 2 dθdϕ. (2.109)

In addition, by the divergence theorem, we obtain

ˆ
Ωθ,ϕ

div
θ,ϕ

(Aθ,ϕ∇θ,ϕf) f dθdϕ =

ˆ
∂Ωθ,ϕ

〈fAθ,ϕ∇θ,ϕf, ν〉 dσ(θ, ϕ)

−
ˆ

Ωθ,ϕ

〈Aθ,ϕ∇θ,ϕf,∇θ,ϕf〉 dθdϕ,

which implies

ˆ
Ωθ,ϕ

div
θ,ϕ

(Aθ,ϕ∇θ,ϕf) f dθdϕ = −
ˆ

Ωθ,ϕ

〈Aθ,ϕ∇θ,ϕf,∇θ,ϕf〉 dθdϕ,

because f has compact support in Ωθ,ϕ by the choice of f.

As a consequence, substituting this in (2.109), we then have

ˆ
Ωθ,ϕ

〈Aθ,ϕ∇θ,ϕf,∇θ,ϕf〉 dθdϕ = α(α + 2)

ˆ
Ωθ,ϕ

sin(ϕ)f 2 dθdϕ. (2.110)

Now, let us note that with 4+2α 6= −2α, namely α 6= −1, from (2.104), Aθ,ϕ

is not symmetric.

Thus, we can consider the symmetrized form of Aθ,ϕ,

ASθ,ϕ :=
Aθ,ϕ + ATθ,ϕ

2
,

and we observe that

〈ASθ,ϕv, v〉 =
1

2
(〈Aθ,ϕv, v〉+ 〈ATθ,ϕv, v〉) =

1

2
(〈Aθ,ϕv, v〉+ 〈v, Aθ,ϕv〉), v ∈ R2,

i.e.

〈ASθ,ϕv, v〉 = 〈Aθ,ϕv, v〉, v ∈ R2.
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Using it, we then achieve from (2.110)

ˆ
Ωθ,ϕ

〈ASθ,ϕ∇θ,ϕf,∇θ,ϕf〉 dθdϕ = α(α + 2)

ˆ
Ωθ,ϕ

sin(ϕ)f 2 dθdϕ. (2.111)

At this point, we look for an explicit expression of ASθ,ϕ.

Specifically, we have, using (2.104),

ASθ,ϕ =
1

2




1

sin(ϕ)
(4 + 2α) sin(ϕ)

−2α sin(ϕ) 4 sin(ϕ)

+


1

sin(ϕ)
−2α sin(ϕ)

(4 + 2α) sin(ϕ) 4 sin(ϕ)




=
1

2


2

sin(ϕ)
4 sin(ϕ)

4 sin(ϕ) 8 sin(ϕ)

 =


1

sin(ϕ)
2 sin(ϕ)

2 sin(ϕ) 4 sin(ϕ)

 .
Consequently, we get

〈ASθ,ϕ∇θ,ϕf,∇θ,ϕf〉 = 〈


1

sin(ϕ)

∂f

∂θ
+ 2 sin(ϕ)

∂f

∂ϕ

2 sin(ϕ)
∂f

∂θ
+ 4 sin(ϕ)

∂f

∂ϕ

 ,

∂f

∂θ

∂f

∂ϕ

〉

=
1

sin(ϕ)

(
∂f

∂θ

)2

+ 2 sin(ϕ)
∂f

∂ϕ

∂f

∂θ
+ 2 sin(ϕ)

∂f

∂θ

∂f

∂ϕ
+ 4 sin(ϕ)

(
∂f

∂ϕ

)2

=
1

sin(ϕ)

(
∂f

∂θ

)2

+ 4 sin(ϕ)
∂f

∂θ

∂f

∂ϕ
+ 4 sin(ϕ)

(
∂f

∂ϕ

)2

.

Substituting this expression in (2.111), it then results the desired equality.

At this point, we remark that if α = 1 and f =
√

sin(ϕ) cos(θ), we get,

in view of (2.103),

∆H1

(
ρ
√

sin(ϕ) cos(θ)
)
|∂BH1

1 (0)
= 3 sin3/2(ϕ) cos(θ) + 2 cos(ϕ)

√
sin(ϕ) sin(θ)

−
√

sin(ϕ) cos(θ)

sin(ϕ)
+ 4 sin(ϕ)

∂

∂ϕ

(
−
√

sin(ϕ) sin(θ)
)

+ 4 sin(ϕ) cos(θ)
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∂

∂ϕ

(
cos(ϕ)

2
√

sin(ϕ)

)
+ 4 cos(ϕ)

cos(ϕ)

2
√

sin(ϕ)
cos(θ) = 3 sin3/2(ϕ) cos(θ) + 2

√
sin(ϕ)

cos(ϕ) sin(θ)−
√

sin(ϕ) cos(θ)

sin(ϕ)
+ 4 sin(ϕ)

(
− cos(ϕ)

2
√

sin(ϕ)
sin(θ)

)
+ 4 sin(ϕ)

(− sin(ϕ)) 2
√

sin(ϕ)− cos(ϕ)

(
cos(ϕ)√

sin(ϕ)

)
4 sin(ϕ)

cos(θ) + 2
cos2(ϕ) cos(θ)√

sin(ϕ)

= 3 sin3/2(ϕ) cos(θ) + 2
√

sin(ϕ) cos(ϕ) sin(θ)− cos(θ)√
sin(ϕ)

− 2
sin(ϕ) cos(ϕ)√

sin(ϕ)

sin(θ)− 2 sin(ϕ)3/2 cos(θ)− cos2(ϕ) cos(θ)√
sin(ϕ)

+ 2
cos2(ϕ) cos(θ)√

sin(ϕ)
=

sin2 ϕ cos(θ)√
sin(ϕ)

+
2 sin(ϕ) cos(ϕ) sin(θ)− cos(θ)− 2 sin(ϕ) cos(ϕ) sin(θ) + cos2(ϕ) cos(θ)√

sin(ϕ)
,

namely

∆H1

(
ρ
√

sin(ϕ) cos(θ)
)
|∂BH1

1 (0)
= 0.

Hence, in view of (2.107), with Ωθ,ϕ = (0, π)× (0, π), we should have

3 =

ˆ
Ωθ,ϕ

(
1

sin(ϕ)

(
∂f

∂θ

)2

+ 4 sin(ϕ)
∂f

∂θ

∂f

∂ϕ
+ 4 sin(ϕ)

(
∂f

∂ϕ

)2)
dθdϕ

ˆ
Ωθ,ϕ

sin(ϕ)f 2 dθdϕ

,

(2.112)

with f =
√

sin(ϕ) cos(θ).

Let us check now that this equality holds. Precisely, we have first

ˆ
(0,π)×(0,π)

sin(ϕ)(
√

sin(ϕ) cos(θ))2 dθdϕ =

ˆ π

0

sin2 ϕ dϕ

ˆ π

0

cos2(θ) dθ,

which implies

ˆ
(0,π)×(0,π)

sin(ϕ)(
√

sin(ϕ) cos(θ))2 dθdϕ =

(
π

2
−
[

sin(2ϕ)

4

]ϕ=π

ϕ=0

)
(
π

2
+

[
sin(2θ)

4

]θ=π
θ=0

)
=
π2

4
,

(2.113)
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since

cos2 τ =
1 + cos(2τ)

2
,

sin2 τ =
1− cos(2τ)

2
.

(2.114)

In parallel, it is also valid

ˆ
(0,π)×(0,π)

(
1

sin(ϕ)

(
∂

∂θ
(
√

sin(ϕ) cos(θ))

)2

+ 4 sin(ϕ)
∂

∂θ
(
√

sin(ϕ) cos(θ))

∂

∂ϕ
(
√

sin(ϕ) cos(θ)) dθdϕ+ 4 sin(ϕ)

(
∂

∂ϕ
(
√

sin(ϕ) cos(θ))

)2)
dθdϕ

=

ˆ
(0,π)×(0,π)

(
sin2(θ)− 2 sin(ϕ) cos(ϕ) cos(θ) sin(θ) + cos2(ϕ) cos2(θ)

)
dθdϕ

=

ˆ
(0,π)×(0,π)

sin2(θ) dθdϕ−
ˆ

(0,π)×(0,π)

sin(2ϕ) cos(θ) sin(θ) dθdϕ

+

ˆ
(0,π)×(0,π)

cos2(ϕ) cos2(θ) dθdϕ,

and thus, from (2.114),

ˆ
(0,π)×(0,π)

(
1

sin(ϕ)

(
∂

∂θ
(
√

sin(ϕ) cos(θ))

)2

+ 4 sin(ϕ)
∂

∂θ
(
√

sin(ϕ) cos(θ))

∂

∂ϕ
(
√

sin(ϕ) cos(θ)) dθdϕ+ 4 sin(ϕ)

(
∂

∂ϕ
(
√

sin(ϕ) cos(θ))

)2)
dθdϕ

= π

ˆ π

0

sin2(θ) dθ −
ˆ π

0

sin(2ϕ) dϕ

ˆ π

0

cos(θ) sin(θ) dθ +

ˆ π

0

cos2(ϕ) dϕ

ˆ π

0

cos2(θ) dθ = π

ˆ π

0

(
1− cos(2θ)

2

)
dθ −

[
−cos(2ϕ)

2

]ϕ=π

ϕ=0

ˆ π

0

cos(θ) sin(θ) dθ

+

ˆ π

0

(
1 + cos(2ϕ)

2

)
dϕ

ˆ π

0

(
1 + cos(2θ)

2

)
dθ = π

(
π

2
−
[

sin(2θ)

4

]θ=π
θ=0

)
+

(
π

2
+

[
sin(2ϕ)

4

]ϕ=π

ϕ=0

)(
π

2
+

[
sin(2θ)

4

]θ=π
θ=0

)
=
π2

2
+
π2

4
=

3

4
π2,

that is

ˆ
(0,π)×(0,π)

(
1

sin(ϕ)

(
∂

∂θ
(
√

sin(ϕ) cos(θ))

)2

+ 4 sin(ϕ)
∂

∂θ
(
√

sin(ϕ) cos(θ))
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∂

∂ϕ
(
√

sin(ϕ) cos(θ)) dθdϕ+ 4 sin(ϕ)

(
∂

∂ϕ
(
√

sin(ϕ) cos(θ))

)2)
dθdϕ =

3

4
π2.

(2.115)

As a consequence, putting together (2.113) and (2.115), we indeed get (2.112).

2.13 Evaluation of λϕ(Σ)
for symmetric caps

In this section, we analyze the behavior of λϕ(Σ)
for symmetric caps. We

observe, at this point, that a symmetric cap with respect to the t−axis may

be described by only using the variable ϕ in the change of variables T, see

(2.80). It is worth to recall now that the Koranyi ball is not symmetric along

all the directions like the Euclidean ball. Precisely, the following results hold.

Lemma 2.25. If u = x+, then

ˆ
∂BH1

1 (0)∩{u>0}

∣∣∇ϕ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

ˆ
∂BH1

1 (0)∩{u>0}
u2
√
x2 + y2 dσH1(ξ)

= 2.

If u = t+, then

ˆ
∂BH1

1 (0)∩{u>0}

∣∣∇ϕ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

ˆ
∂BH1

1 (0)∩{u>0}
u2
√
x2 + y2 dσH1(ξ)

= 8.

As a consequence, it results

λϕ(Σ)
≤ 2,

with Σ = ∂BH1

1 (0) ∩ {u > 0}.

Proof. We start with u = x+. In particular, we want to compute

ˆ
∂BH1

1 (0)∩{u>0}

∣∣∇ϕ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

ˆ
∂BH1

1 (0)∩{u>0}
u2
√
x2 + y2 dσH1(ξ)

.
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Using the parametrization in spherical coordinates of the boundary of unitary

Koranyi ball in (2.85), u = x+ reads on ∂BH1

1 (0)

u = (
√

sin(ϕ) cos(θ))+, (2.116)

which is positive if −π/2 < θ < π/2 by (2.81). At this point, we want to

express
∣∣∇ϕ

H1u
∣∣2 according to (2.116). Let us recall first that if v = ραf(θ, ϕ),

we have

∇H1v = αρα−1∇H1ρf + ρα
(
∂f

∂θ
∇H1θ +

∂f

∂ϕ
∇H1ϕ

)
. (2.117)

Moreover, we know by (2.45) that

∇ϕ
H1v = 〈∇H1v, eϕ〉eϕ,

where eϕ =
∇H1ϕ

|∇H1ϕ| , thus, in view of (2.117), Lemma 2.10 and 2.11, we achieve

∇ϕ
H1v = 〈αρα−1∇H1ρf + ρα

(
∂f

∂θ
∇H1θ +

∂f

∂ϕ
∇H1ϕ

)
,
∇H1ϕ

|∇H1ϕ|
〉eϕ

=
ρα

|∇H1ϕ|

(
∂f

∂θ
〈∇H1θ,∇H1ϕ〉+

∂f

∂ϕ
|∇H1ϕ|2

)
eϕ =

ρα+2

2
√
x2 + y2

(
∂f

∂θ

2(x2 + y2)

ρ4

+
∂f

∂ϕ

4(x2 + y2)

ρ4

)
eϕ,

namely

∇ϕ
H1v = ρα−2

√
x2 + y2

(
∂f

∂θ
+ 2

∂f

∂ϕ

)
eϕ,

which implies

∣∣∇ϕ
H1v
∣∣2 = ρ2(α−2)(x2 + y2)

(
∂f

∂θ
+ 2

∂f

∂ϕ

)2

.

In particular, on ∂BH1

1 (0) this reads, by virtue of (2.85),

∣∣∇ϕ
H1v
∣∣2 |∂BH1

1 (0)
= sin(ϕ)

(
∂f

∂θ
+ 2

∂f

∂ϕ

)2

. (2.118)

Now, the function u = x+ in the spherical coordinates (2.80) has the expres-

sion u = (ρ
√

sin(ϕ) cos(θ))+, which corresponds to the form ραf(θ, ϕ), with
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α = 1 and f =
√

sin(ϕ) cos(θ). Thus, we obtain, according to (2.118),∣∣∇ϕ
H1u
∣∣2 |∂BH1

1 (0)
= sin(ϕ)

(
−
√

sin(ϕ) sin(θ) + 2
cos(ϕ) cos(θ)

2
√

sin(ϕ)

)2

= sin2(ϕ) sin2(θ) + cos2(ϕ) cos2(θ)− 2 cos(ϕ) sin(ϕ) cos(θ) sin(θ)

= (sin(ϕ) sin(θ)− cos(ϕ) cos(θ))2 = cos2(θ + ϕ),

that is ∣∣∇ϕ
H1u
∣∣2 |∂BH1

1 (0)
= cos2(θ + ϕ). (2.119)

Let us recall, moreover, that, from (2.83) and (2.87), it results

dσH1(ξ) =
|∇H1ρ|
|∇ρ|

dσ(ξ) =
√

sin(ϕ) dθdϕ, (2.120)

therefore, exploiting (2.85), (2.116) and (2.119), we get

ˆ
∂BH1

1 (0)∩{u>0}

∣∣∇ϕ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

ˆ
∂BH1

1 (0)∩{u>0}
u2
√
x2 + y2 dσH1(ξ)

=

ˆ π

0

ˆ π
2

−π
2

cos2(θ + ϕ) dθdϕ

ˆ π

0

ˆ π
2

−π
2

sin2(ϕ) cos2(θ) dθdϕ

.

(2.121)

Let us compute, at this point, the numerator and the denominator of the

right hand side in (2.121) separately. In both cases, we use the duplication

formulas recalled in (2.114).

About the numerator, in particular, we have
ˆ π

0

ˆ π
2

−π
2

cos2(θ + ϕ) dθdϕ =
π2

2
. (2.122)

Concerning the denominator, it holds
ˆ π

0

ˆ π
2

−π
2

sin2(ϕ) cos2(θ) dθdϕ =
π2

4
. (2.123)

Consequently, from (2.121), (2.122) and (2.123), we lastly obtain

ˆ
∂BH1

1 (0)∩{u>0}

∣∣∇ϕ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

ˆ
∂BH1

1 (0)∩{u>0}
u2
√
x2 + y2 dσH1(ξ)

= 2.
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Let us deal now with u = t+. In view of (2.85), we achieve u+ = cos(ϕ)+,

which is positive if 0 ≤ ϕ < π/2. Then, keeping in mind (2.118) and (2.120),

we get

ˆ
∂BH1

1 (0)∩{u>0}

∣∣∇ϕ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

ˆ
∂BH1

1 (0)∩{u>0}
u2
√
x2 + y2 dσH1(ξ)

=

8π

ˆ π
2

0

sin(ϕ) sin2(ϕ)dϕ

2π

ˆ π
2

0

cos2(ϕ) sin(ϕ)dϕ

=

8π

ˆ π
2

0

sin(ϕ)(1− cos2(ϕ))dϕ

2π
[
−1

3
cos3 ϕ

]ϕ=π
2

ϕ=0

= 8.

In particular, from the proof of Lemma 2.25 we derive the following corol-

lary as well.

Corollary 2.26. It holds

ˆ
∂BH1

1 (0)∩{u>0}

∣∣∇ϕ
H1u
∣∣2√

x2 + y2
dσH1(ξ)

ˆ
∂BH1

1 (0)∩{u>0}
u2
√
x2 + y2 dσH1(ξ)

=

ˆ
Ωθ,ϕ

sin(ϕ)

(
∂f

∂θ
+ 2

∂f

∂ϕ

)2

dθdϕ

ˆ
Ωθ,ϕ

sin(ϕ)f 2dθdϕ

,

where T (Ωθ,ϕ) = ∂BH1

1 (0) ∩ {u > 0} and u = ραf(θ, ϕ).

2.14 Last considerations

In this section, we expose our last considerations about the question of the

existence of an Alt-Caffarelli-Friedman monotonicity formula in the Heisen-

berg group H1.

In view of Sections 2.12 and 2.11, whenever f satisfies

α(α + 2) sin(ϕ)f(θ, ϕ)− 2α cos(ϕ)
∂f

∂θ
+

1

sin(ϕ)

∂2f

∂θ2
+ 4 sin(ϕ)

∂2f

∂ϕ∂θ

+ 4 sin(ϕ)
∂2f

∂ϕ2
+ 4 cos(ϕ)

∂f

∂ϕ
= 0,

(2.124)
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on Γ ⊂ ∂BH1

1 (0) or

α(α + 2)(sinϕ)f(ϕ) + 4
∂

∂ϕ

(
sin(ϕ)

∂f

∂ϕ

)
= 0

on Γ ⊂ ∂BH1

1 (0) for f depending only on ϕ, then u = ραf(θ, ϕ) is

H1-harmonic in the set

PΓ := {(x, y, t) ∈ H1 : (x, y, t) = δλ(ξ, η, τ), λ > 0, (ξ, η, τ) ∈ Γ},

where δλ(ξ, η, τ) := (λξ, λη, λ2τ), λ > 0, is the dilation semigroup in the

smallest Heisenberg group H1, see Section 2.4. This follows directly by

Lemma 2.13. For instance, if Γ = {(x, y, t) ∈ ∂BH1

1 (0) : x2 + y2 < Mt},
where M > 0 is a constant, then

PΓ = {(x, y, t) ∈ H1 : x2 + y2 < Mt}.

Moreover, if we add a boundary condition to the equation (2.124) by requiring

that f = 0 on ∂Γ, then u = ραf satisfies∆H1u = 0, (x, y, t) ∈ PΓ,

u = 0, (x, y, t) ∈ ∂PΓ.
(2.125)

Of course, if we fix Γ and we assume that f = 0 on ∂Γ as well, then the

equation (2.124) has a solution only for some particular values of α. This

type of problem, in particular, has been faced (the authors having in mind

different applications respect to those in the work of Ferrari and myself) in

[58] and [8], without entering into the details as done in [38], but considering

all the Heisenberg groups Hn.

Now, see Section 2.12, (2.125) can be rewritten as the eigenvalues problemLθ,ϕf = −λ(Γ)f in Ω ⊂ R2,

f = 0 on ∂Ω,
(2.126)
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with T (Ω) = Γ and

λ(Γ) := inf
v∈H1

0 (Ωθ,ϕ)

ˆ

Ωθ,ϕ

Gf (θ, ϕ) dθdϕ

ˆ

Ωθ,ϕ

sin(ϕ)f 2 dθdϕ

, (2.127)

where

Gf (θ, ϕ) :=
1

sin(ϕ)

(
∂f

∂θ

)2

+ 4 sin(ϕ)
∂f

∂θ

∂f

∂ϕ
+ 4 sin(ϕ)

(
∂f

∂ϕ

)2

.

As a consequence, as in the Euclidean framework, we have reduced ourselves

to study Rayleigh quotients to understand if a monotonicity formula can hold

in H1 and, in particular, to deal with the correspondent of the characteristic

number, see Section 2.3 for this notion, in such a noncommutative framework.

Specifically, it would be fundamental to know if the result by [48] recalled

in Section 2.3, that is the cap on ∂B1 having the same Hn−1 measure of

some sets Σ on ∂B1 has the smallest Rayleigh quotient, is true even in the

Heisenberg case. Let us say that we would like to know if there exists a set

Γ∗ ⊂ ∂BH1

1 (0) such that for every Γ ⊂ ∂BH1

1 (0),

P
BH1

1 (0)

H1 (Γ) = P
BH1

1 (0)

H1 (Γ∗),

it results

αH1(Γ) ≥ αH1(Γ∗),

where αH1(Γ) denotes the unique positive solution to the equation

α(α + 2) = λ(Γ),

and λ(Γ) is the first eigenvalue of the problem (2.126) defined as in (2.127).

The existence in the Heisenberg group of the properties of the characteristic

number associated with the set Γ, as far as we know, is still unknown. This

part corresponds to the topic discussed in [74] in the Euclidean setting. Pre-

cisely, just for having an idea about the difficulty in solving the problem, we

remark that

P
BH1

1 (0)

H1 (Γ) =

ˆ
Ω

√
sin(ϕ)dθdϕ,
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where Γ = T ({1} × Ω). At this point, we may decide to symmetrize the set

Ω in many ways. For instance, for every ϕ, we might define Ω∗ϕ in such a way

that

H1(Ω∗ϕ) = 2θϕ = H1(Ωϕ),

and consider Ω∗ := ∪ϕ∈Π2(Ω)Ω
∗
ϕ, where Π2(Ω) := {ϕ : Ωϕ 6= ∅}. Nevertheless,

the lack of an isoperimetric result in the framework of H1 does not permit

to conclude anything.

Trying to recap the situation in H1, first, by Lemma 2.25, we know that,

in general, λϕ(Σ)
≤ 2, where λϕ(Σ)

is the Rayleigh quotient in this context.

In the particular case of functions defined on caps depending only on ϕ,

i.e. in the form u = ραf(ϕ) in what exposed in this chapter, the function

h defined in (2.100) is symmetric with respect to π
2

in [0, π]. However, we

do not know if the minimum of the function h is realized when ϕ = π
2
,

even if this fact would seem natural. In any case, if it were true that the

Koranyi ball is split in two half parts by the plane t = 0 when h realizes

the minimum, which is unfortunately still unknown, then min
ϕ∈[0,π]

h(ϕ) = 8,

since from Lemma 2.21 λ0(π
2
) = 8, see Section 2.11 for all the notation

mentioned. As a consequence, choosing β = 8 in the expression of Jβ,H1 ,

we would achieve, according to Lemma 2.8 and Theorem 2.16, that J8,H1 is

increasing monotone only considering functions defined on caps depending

just on ϕ, since λϕ(Σ)
= λ0(π

2
), by virtue of (2.78) and (2.98). In the more

general case of functions defined on caps depending on both ϕ and θ, the

question is more delicate because in this case λϕ(Σ)
6= λ(Γ), as we can see

from Corollary 2.26 and (2.127).



Chapter 3

Regularity of almost

minimizers for the p-Laplacian

In this chapter, the aim is to investigate some extensions of the results in

[30] to the functional

Jp(u,Ω) :=

ˆ
Ω

(|∇u|p + χ{u>0})dx, p > 1, (3.1)

where Ω is a bounded domain in Rn and u ≥ 0. This functional is, precisely,

a generalization of the classical one-phase (Bernoulli) energy functional

J(u,Ω) :=

ˆ
Ω

(|∇u|2 + χ{u>0})dx,

studied in [30], to each p > 1. We note that J corresponds to J2 in (3.1), so in

the following we will refer to J in this way to exploit just a single definition.

3.1 State of the art for almost minimizers of

J2

In this section, we present the state of the play concerning almost mini-

mizers for J2.

In [30], specifically, the two main theorems concern the optimal Lipschitz

125
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regularity of almost minimizers for J2 and the C1,α regularity of their free

boundary outside a closed singular set of Hausdorff dimension n−5, together

with finite n − 1 dimension. In particular, this last result relies on an im-

provement of flatness theorem, in the spirit of [26], because the authors show

that almost minimizers are “viscosity solutions” in the following more general

sense. Roughly speaking, in this case viscosity solutions satisfy a comparison

principle in a neighborhood of a touching point whose size depends on the

properties of the test functions. This strategy is inspired by [31].

About further literature on almost minimizers for J2, we quote the recent

works [24, 23]. In [24], the authors achieved local Lipschitz continuity of

almost minimizers in the more general case of a two-phase energy functional.

Later, in [23] the authors showed uniform rectifiability of the free boundary,

and in the purely one-phase case they obtained that the free boundary is

C1,α almost-everywhere.

3.2 Regularity issues for almost minimizers

for the p-Laplacian

In this section, we introduce the regularity issues for almost minimizers of

Jp on which I have been working together with Serena Dipierro, my advisor

Fausto Ferrari, and Enrico Valdinoci. Precisely, the optimal Lipschitz regu-

larity of almost minimizers for Jp, p > 2, has been proved. The statement of

this result is the following.

Theorem 3.1. Let u be an almost minimizer for Jp in B1 (with constant κ

and exponent β) with p > 2. Then, it holds

‖∇u‖L∞(B1/2) ≤ C(‖u‖W 1,p(B1) + 1)

with C some constant depending on κ, β and n. In addition, u is uniformly

Lipschitz continuous in a neighborhood of {u = 0} , in other words if u(0) = 0

then

|∇u| ≤ C(n) in Br0 ,
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for some r0 depending on κ, β, n and ‖∇u‖Lp .

About, instead, the free boundary regularity for an almost minimizer to

(3.1), a regularity result has not been proved yet. The trickiest point is re-

lated to a nondegeneracy condition on almost minimizers. Another aspect to

carefully investigate is the possible existence of a Weiss type monotonicity

formula, always for almost minimizers. We refer, for instance, to [62, 63, 61]

for the theory about free boundary problems for the p-Laplace operator.

Furthermore, we cite [82] as a possible reference work in the study of the ex-

istence of the Weiss type monotonicity formula, and we mention [67], which is

related to the behavior of p-harmonic functions of two variables. Concerning,

instead, the other aspects in [30] about the regularity of the free boundary,

most of them are valid also for almost minimizers of (3.1), p > 2.

We provide in the following the details of the study I have been doing with

S. Dipierro, F. Ferrari and Enrico Valdinoci. Let us begin by recalling in

Section 3.3 a few of general things we exploit hereinafter. In Section 3.4,

we show the optimal Lipschitz regularity of almost minimizers for Jp, p > 2.

In the next section, we deal with nondegeneracy properties and in the final

Section 3.6 we focus on the partial regularity of the free boundary.

3.3 Some general facts

In this section, we give some general definitions and results which will be

useful in this chapter.

First, for the sake of completeness, let us provide the definition of the

p-Laplacian.

Definition 3.2. Given a function u : Rn → R ∈ C1, we define the

p-Laplacian of u as

∆pu := div(|∇u|p−2∇u).

We point out that the p-Laplacian can be rewritten as

∆pu = |∇u|p−2

(
∆u+ (p− 2)〈D2u

∇u
|∇u|

,
∇u
|∇u|

〉
)
.
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Now, we recall the definition of the p-harmonic replacement and next, we

state and prove a technical lemma on it.

Definition 3.3. Let u ∈ W 1,p(Br(x)) be given. We say that v ∈ W 1,p(Br(x))

is the p-harmonic replacement of u in Br(x), if

ˆ
Br(x)

|∇v|p dx = min
u−w∈W 1,p

0 (Br(x))

ˆ
Br(x)

|∇w|p dx.

Lemma 3.4. Let Br = Br(x0) ⊂ Rn and let u ∈ W 1,p(Br). Then, if v is the

p-harmonic replacement of u in Br, we have the following inequalities:

(i) if 1 < p < 2, then

ˆ
Br

|∇u−∇v|p dx ≤ C

(ˆ
Br

(|∇u|p − |∇v|p) dx
) p

2

(ˆ
Br

(|∇u|+ |∇v|)pdx
)1− p

2

, C = C(n, p) > 0;

(3.2)

(ii) if p ≥ 2, then

ˆ
Br

|∇u−∇v|p dx ≤ C

ˆ
Br

(|∇u|p − |∇v|p)dx, (3.3)

with C = C(n, p) > 0.

Proof. By definition, v satisfies

ˆ
Br

|∇v|p−2∇v · ∇ϕ dx = 0 (3.4)

for all ϕ ∈ W 1,p
0 (Br), that is v is a weak solution of ∆p(v) = 0.

Now, we want to get an upper bound of

ˆ
Br

|∇u−∇v|p dx.

To this end, let us consider the following family of functions

us(x) = su(x) + (1− s)v(x), 0 ≤ s ≤ 1, (3.5)
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in such a way that u0 = v and u1 = u, and we compute

ˆ
Br

(|∇u|p − |∇v|p) dx =

ˆ
Br

(∣∣∇u1
∣∣p − ∣∣∇u0

∣∣p) dx
=

ˆ
Br

(ˆ 1

0

d

ds
|∇us|p ds

)
dx

=

ˆ
Br

(ˆ 1

0

p |∇us|p−2∇us · ∇(u− v) ds

)
dx,

which gives using (3.4), since u− v ∈ W 1,p
0 (Br),

ˆ
Br

(|∇u|p − |∇v|p) dx = p

( ˆ
Br

(ˆ 1

0

|∇us|p−2∇us · ∇(u− v)ds

)
dx

−
ˆ 1

0

(ˆ
Br

|∇v|p−2∇v · ∇(u− v)dx

)
ds

)
= p

ˆ
Br

(ˆ 1

0

(
|∇us|p−2∇us − |∇v|p−2∇v

)
· ∇(u− v)ds

)
dx.

Let us remark that

us − v = su(x)− sv(x) = s(u(x)− v(x)), (3.6)

thus, from the previous equality, we achieve

ˆ
Br

(|∇u|p − |∇v|p) dx

= p

ˆ 1

0

1

s

( ˆ
Br

(
|∇us|p−2∇us − |∇v|p−2∇v

)
· ∇(us − v)dx

)
ds. (3.7)

At this point, we want to apply to (3.7) the well-known inequality

(|ξ|p−2 ξ − |ζ|p−2 ζ) · (ξ − ζ) ≥ γ

|ξ − ζ|
2 (|ξ|+ |ζ|)p−2 if 1 < p < 2,

|ξ − ζ|p if p ≥ 2,

for any nonzero ξ, ζ ∈ Rn and a constant γ = γ(n, p) > 0.

Precisely, if we choose ξ = ∇us and ζ = ∇v in the inequality above, we
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obtain, by (3.7),ˆ
Br

(|∇u|p − |∇v|p) dx

≥ pγ



ˆ 1

0

1

s

(ˆ
Br

|∇us −∇v|2 (|∇us|+ |∇v|)p−2dx

)
ds,

if 1 < p < 2,ˆ 1

0

1

s

(ˆ
Br

|∇us −∇v|p dx
)
ds,

if p ≥ 2.

(3.8)

Let us analyze the two cases above separately.

First, let us consider the case p ≥ 2. Specifically, from (3.6) and (3.8), we get
ˆ
Br

(|∇u|p − |∇v|p)dx ≥ pγ

ˆ 1

0

sp−1

(ˆ
Br

|∇u−∇v|p dx
)
ds

= γ
[
sp
]s=1

s=0

ˆ
Br

|∇u−∇v|p dx,

namely ˆ
Br

(|∇u|p − |∇v|p)dx ≥ γ

ˆ
Br

|∇u−∇v|p dx. (3.9)

About the case 1 < p < 2, instead, we observe that

|∇us|+ |∇v| ≤ s |∇u|+ (1− s) |∇v|+ |∇v| = s |∇u|+ (2− s) |∇v|
0≤s≤1

≤ 2(|∇u|+ |∇v|),

which yields by (3.6) and (3.8), because p− 2 < 0 if 1 < p < 2,ˆ
Br

(|∇u|p − |∇v|p) dx

≥ pγ

ˆ 1

0

1

s

ˆ
Br

s2 |∇u−∇v|2 2p−2 (|∇u|+ |∇v|)p−2 dx

= C(n, p)

[
s2

2

]s=1

s=0

ˆ
Br

|∇u−∇v|2 (|∇u|+ |∇v|)p−2 dx

i.e. ˆ
Br

(|∇u|p − |∇v|p) dx ≥ C(n, p)

ˆ
Br

|∇u−∇v|2 (|∇u|+ |∇v|)p−2 dx.

(3.10)
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Now, let us consider ˆ
Br

|∇u−∇v|p dx,

and by Hölder’s inequality with Hölder exponent 2/p and conjugate exponent(
2

p

)′
=

2/p

2/p− 1
=

2

2− p
,

we have

ˆ
Br

|∇u−∇v|p dx

=

ˆ
Br

|∇u−∇v|p (|∇u|+ |∇v|)
p(p−2)

2 (|∇u|+ |∇v|)−
p(p−2)

2 dx

≤
(ˆ

Br

|∇u−∇v|2 (|∇u|+ |∇v|)p−2dx

) p
2
(ˆ

Br

(|∇u|+ |∇v|)pdx
)1− p

2

,

which implies, from (3.10),

ˆ
Br

|∇u−∇v|p dx

≤ c(n, p)

(ˆ
Br

(|∇u|p − |∇v|p) dx
) p

2
(ˆ

Br

(|∇u|+ |∇v|)pdx
)1− p

2

.

Let us go on recalling the definition of Campanato spaces and a result

which we will use in the proof of the corollary 3.12, see [55].

Definition 3.5 (Campanato spaces). Let Ω be a bounded open set in Rn,

and let 1 ≤ p < +∞ and λ ≥ 0. We denote by Lp,λ(Ω,Rn) the space of

functions u ∈ Lp(Ω,Rn) such that

[u]pLp,λ := sup
x0∈Ω

ρ>0

ρ−λ
ˆ

Ω(x0,ρ)

|u− ux0,ρ|
p dx < +∞, (3.11)

where

Ωx0,ρ := Ω ∩B(x0, ρ), ux0,ρ :=

 
Ωx0,ρ

u dx.
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Remark 3.6. The quantity [u]Lp,λ is a seminorm in Lp,λ and it is equivalent

to (
sup
x0∈Ω

ρ>0

ρ−λ inf
ξ∈Rn

ˆ
Ω(x0,ρ)

|u− ξ|p dx

)1/p

.

We define then the norm in Lp,λ as

‖u‖Lp,λ := ‖u‖Lp + [u]Lp,λ . (3.12)

For simplicity, let us assume now that Ω = Br(x).

Theorem 3.7. Let Ω = Br(x) and let n < λ ≤ n+ p. The space Lp,λ(Br(x))

is isomorphic to C0,α(Br(x)), with α = λ−n
p
.

3.4 Lipschitz continuity of almost minimizers

for Jp

In this section, we prove the main result Theorem 3.1 about the Lipschitz

continuity of almost minimizers of Jp, p > 2. Let us start by recalling the

definition of almost minimizer for Jp.

Definition 3.8. We say that u is an almost minimizer for Jp in Ω (with

constant κ and exponent β) if u ∈ W 1,p(Ω), u ≥ 0 a.e. in Ω and

Jp(u,Br(x)) ≤ (1 + κrβ)Jp(v,Br(x)). (3.13)

for every ball Br(x) ⊂ Ω such that Br(x) ⊂ Ω and every v ∈ W 1,p(Ω) such

that v = u on ∂Br(x) in the trace sense.

Throughout the chapter, constants depending only on n and p are called

universal and moreover, when u is an almost minimizer, these constants may

depend on κ and β as well. It may happen that we denote with the same

symbol universal constants changing from line to line.

Proceeding in parallel to [30], the first result is the subsequent dichotomy.
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Proposition 3.9. Let u ∈ W 1,p(B1) and assume that

Jp(u,B1) ≤ (1 + σ)Jp(v,B1) (3.14)

for all v ∈ W 1,p(B1) such that v = u on ∂B1. Denote by

a :=

(  
B1

|∇u|p dx
)1/p

. (3.15)

For every ε > 0 small, there exist constants η, M, σ0 (depending on ε) such

that if σ ≤ σ0 and a ≥M then the following dichotomy holds. Either( 
Bη

|∇u|p dx

)1/p

≤ a

2
, (3.16)

or ( 
Bη

|∇u− q|p dx

)1/p

≤ εa, (3.17)

with q ∈ Rn such that
a

2(2p+1)/p
< |q| ≤ C0a, (3.18)

and C0 > 0 universal.

Proof. Let v be the p-harmonic replacement of u in B1. We want to get an

estimate of ˆ
B1

|∇u−∇v|p dx

in terms of a. According to Lemma 3.4, we have to distinguish two cases.

Let us suppose first that p ≥ 2. Then, from (3.3), we achieve, using (3.14),
ˆ
B1

|∇u−∇v|p dx ≤ C

(
Jp(u,B1)−

ˆ
B1

|∇v|p dx
)
≤ C

(
(1 + σ)Jp(v,B1)

−
ˆ
B1

|∇v|p dx
)

= C

(
σ

( ˆ
B1

|∇v|p dx+ |{v > 0} ∩B1|
)

+ |{v > 0} ∩B1|
)

≤ C

(
σ

ˆ
B1

|∇v|p dx+ 1

)
,

which gives, since v is the p-harmonic replacement of u in B1,ˆ
B1

|∇u−∇v|p dx ≤ C

(
σ

ˆ
B1

|∇u|p dx+ 1

)
.
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Taking the average integral of the previous inequality, we then obtain

 
B1

|∇u−∇v|p dx ≤ C

(
σ

 
B1

|∇u|p dx+ 1

)
= C(σap + 1), (3.19)

for C > 0 universal.

Let us assume now that 1 < p < 2. By virtue of (3.2), repeating the same

argument used to get (3.19), we have

ˆ
B1

|∇u−∇v|p dx ≤ C

(
σ

ˆ
B1

|∇u|p dx+ C̃

) p
2
(ˆ

B1

(|∇u|+ |∇v|)pdx
)1− p

2

≤ C2
p
2

(
σ
p
2

(ˆ
B1

|∇u|p dx
) p

2

+ C̃
p
2

)(ˆ
B1

2p(|∇u|p + |∇v|p)dx
)1− p

2

≤ C(n, p)

(
σ
p
2

(ˆ
B1

|∇u|p dx
) p

2

+ 1

)(ˆ
B1

|∇u|p dx+

ˆ
B1

|∇v|p dx
)1− p

2

,

which implies, because v is the p-harmonic replacement of u in B1,

ˆ
B1

|∇u−∇v|p dx ≤ C(n, p)

(
σ
p
2

(ˆ
B1

|∇u|p dx
) p

2

+ 1

)
(

2

ˆ
B1

|∇u|p dx
)1− p

2

= C(n, p)

(
σ
p
2

ˆ
B1

|∇u|p dx+

(ˆ
B1

|∇u|p dx
)1− p

2

)
.

Taking the average integral in the previous inequality, we then have
 
B1

|∇u−∇v|p dx ≤ C(n, p)(σ
p
2ap + (ωn)−

p
2 (ap)1− p

2 )

≤ C(n, p)(σ
p
2ap + (ap)1− p

2 ). (3.20)

At this point, for every p, we know by Theorem 3.19 in [66] that, since v

is the p-harmonic replacement of u in B1, if we fix x ∈ B1/2, then, because

B1/2(x) ⊂ B1,

|∇v|p (x) ≤ sup
B1/4(x)

|∇v|p ≤ C

 
B1/2(x)

|∇v|p dy ≤ C

 
B1

|∇u|p dy,

thus we achieve

|∇v| (x) ≤ C0a, x ∈ B1/2. (3.21)
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Denoting by q := ∇v(0), from (3.21), we hence obtain |q| ≤ C0a, and by

Theorem 2 in [68] we have

 
Bη

|∇v − q|p dx ≤
 
Bη

(
C

(
η

1/2

)α
‖∇v‖L∞(B1/2)

)p
dx ≤ Cηαp ‖∇v‖pL∞(B1/2)

i.e., together with (3.21),

 
Bη

|∇v − q|p dx ≤ C1a
pηαp, ∀η ≤ 1/2, (3.22)

for some 0 < α ≤ 1 and C1 universal.

Now, let us distinguish two cases again. If p ≥ 2, using (3.19) and (3.22), we

get
 
Bη

|∇u− q|p dx ≤
 
Bη

2p(|∇u−∇v|p + |∇v − q|p)dx

≤ 2p(η−nC(σap + 1) + C1a
pηαp),

namely
 
Bη

|∇u− q|p dx ≤ 2pCη−nσap + 2pCη−n + 2pC1a
pηαp, (3.23)

which yields
 
Bη

|∇u|p dx ≤ 4pCη−nσap + 4pCη−n + 4pC1a
pηαp + 2p |q|p (3.24)

as well.

Otherwise, if 1 < p < 2, we have, by virtue of (3.20) and (3.22), and repeating

the same argument to achieve (3.23),

 
Bη

|∇u− q|p dx ≤ 2pCη−nσ
p
2ap + 2pCη−n(ap)1− p

2 + 2pC1a
pηαp, (3.25)

which also gives
 
Bη

|∇u|p dx ≤ 4pCη−nσ
p
2ap + 4pCη−n(ap)1− p

2 + 4pC1a
pηαp + 2p |q|p . (3.26)
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At this point, given ε > 0, we want to show that we can choose η small

(depending on ε) and then σ small and a large depending on η, such that
4pCη−nσap + 4pCη−n + 4pC1a

pηαp ≤ 2pεpap ≤ ap

2p+1 if p ≥ 2,

4pCη−nσ
p
2ap + 4pCη−n(ap)1− p

2 + 4pC1a
pηαp ≤ 2pεpap ≤ ap

2p+1

if 1 < p < 2.

(3.27)

Precisely, first we fix η small in both cases. Then, if p ≥ 2, we can choose

σ = ηn+1 and thus

4pCη−nσap + 4pCη−n + 4pC1a
pηαp = 4pCηap + 4pCη−n + 4pC1a

pηαp,

so we want to choose a such that

4pCηap + 4pCη−n + 4pC1a
pηαp ≤ 2pεpap ⇐⇒ 2pCη−n ≤ ap(εp − 2pCη

− 2pC1η
αp)⇐⇒ a ≥

(
2pCη−n

εp − 2pCη − 2pC1ηαp

)1/p

.

In parallel, if 1 < p < 2, we can choose σ = η(n+1) 2
p , which entails

4pCη−nσ
p
2ap + 4pCη−n(ap)1− p

2 + 4pC1a
pηαp = 4pCηap + 4pCη−n(ap)1− p

2

+ 4pC1a
pηαp,

hence we want to choose a so that

4pCηap + 4pCη−n(ap)1− p
2 + 4pC1a

pηαp ≤ 2pεpap ⇐⇒ ap(εp − 2pCη

− 2pCη−na−
p2

2 − 2pC1η
αp) ≥ 0⇐⇒ εp − 2pCη − 2pCη−na−

p2

2 − 2pC1η
αp

≥ 0⇐⇒ εp − 2pCη − 2pC1η
αp ≥ 2pCη−na−

p2

2

⇐⇒ a
p2

2 ≥ 2pCη−n

εp − 2pCη − 2pC1ηαp
⇐⇒ a ≥

(
2pCη−n

εp − 2pCη − 2pC1ηαp

)2/p2

.

Now, we distinguish two cases according to the size of |q| . In particular, if

|q| ≤ a

2(2p+1)/p
,
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we obtain, in view of (3.24) and (3.27), 
Bη

|∇u|p dx ≤ ap

2p+1
+ 2p

ap

22p+1
=

ap

2p+1
+

ap

2p+1
=
ap

2p
,

and thus ( 
Bη

|∇u|p dx

)1/p

≤ a

2
.

Analogously, repeating the same computation, we achieve the same conclu-

sion from (3.26) and (3.27). Otherwise, we have

a

2(2p+1)/p
< |q| ≤ C0a,

and, by (3.23) and (3.27), we get 
Bη

|∇u− q|p dx ≤ εpap,

i.e. ( 
Bη

|∇u− q|p dx

)1/p

≤ εa.

Analogously, repeating the same argument, according to (3.25) and (3.27),

we obtain same sentence as before.

We want to show now that alternative (3.17) can be “improved” when

ε and σ are sufficiently small, again taking inspiration from [30]. The next

result expresses this fact.

Lemma 3.10. Let u be as in Proposition 3.9 with p ≥ 2 and a ≥ a0 > 0.

Assume also that ( 
B1

|∇u− q|p dx
)1/p

≤ εa, (3.28)

for some ε > 0 and q ∈ Rn such that

a

2(3p+1)/p
< |q| ≤ 2C0a, (3.29)

with C0 > 0 the universal constant in Proposition 3.9.

There exist 0 < α < 1, and corresponding ρ = ρ(α) > 0, ε0 = ε0(α, a0),

c0 = c0(α, a0), such that if

ε ≤ ε0 and σ ≤ c0ε
p,
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then ( 
Bρ

|∇u− q̃|p dx

)1/p

≤ εραa Poincaré-Sobolev

with q̃ ∈ Rn such that

|q − q̃| ≤ C̃εa,

for some C̃ > 0 universal.

Proof. Let v̄ denote the p-harmonic replacement of u in B1/2 and define by

v the competitor v = v̄ in B1/2,

v = u outside B1/2.
(3.30)

Then, since v = u on ∂B1 and v ∈ W 1,p(B1) by (3.30), using the hypotheses

on u, we have

Jp(u,B1) ≤ (1 + σ)Jp(v,B1),

which gives, because v = u outside B1/2,

Jp(u,B1/2) + Jp(u,B1 \B1/2) ≤ Jp(v,B1) + σJp(v,B1) = Jp(v,B1/2)

+ Jp(u,B1 \B1/2) + σJp(v,B1),

that is

Jp(u,B1/2) ≤ Jp(v,B1/2) + σJp(v,B1). (3.31)

Now, rewriting (3.31) in view of definition of Jp, we obtain

ˆ
B1/2

|∇u|p dx+
∣∣{u > 0} ∩B1/2

∣∣ ≤ ˆ
B1/2

|∇v|p dx+
∣∣{v > 0} ∩B1/2

∣∣
+ σJp(v,B1) ≤

ˆ
B1/2

|∇v|p dx+
∣∣B1/2

∣∣+ σJp(v,B1),

which yields

ˆ
B1/2

(|∇u|p − |∇v|p)dx ≤
∣∣{u = 0} ∩B1/2

∣∣+ σJp(v,B1).
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This inequality, by virtue of (3.3), also implies

ˆ
B1/2

|∇u−∇v|p dx ≤ C
∣∣{u = 0} ∩B1/2

∣∣+ CσJp(v,B1), (3.32)

with C = C(n, p) > 0.

Lastly, because v is the p-harmonic replacement of u in B1/2 and is equal to

u outside B1/2, it holds

ˆ
B1

|∇v|p dx+ |{v > 0} ∩B1| ≤
ˆ
B1

|∇u|p dx+ |B1| ≤ ap + C,

so, after relabeling C, we conclude, from (3.32),

ˆ
B1/2

|∇u−∇v|p dx ≤ C
∣∣{u = 0} ∩B1/2

∣∣+ Cσ(ap + 1). (3.33)

Moreover, we claim that ∣∣{u = 0} ∩B1/2

∣∣ ≤ C1ε
p+δ, (3.34)

with C1, δ universal, which gives, by (3.33), after renaming C1,

ˆ
B1/2

|∇u−∇v|p dx ≤ C1ε
p+δ + Cσ(ap + 1). (3.35)

At this point, we want to show that, even if v − q · x is not the p-harmonic

replacement of u − q · x, differently from the classical case (see [30]), it still

satisfies a uniformly elliptic equation in B1/2 with Cγ coefficients, 0 < γ < 1.

Precisely, using (3.28) and (3.35), we get (universal constants can change

from line to line)

ˆ
B1/2

|∇v − q|p dx ≤ 2p
(ˆ

B1/2

|∇u− q|p dx+

ˆ
B1/2

|∇v −∇u|p dx
)

≤ 2p(εpap + C1ε
p+δ + Cσ(ap + 1)),

in other words
ˆ
B1/2

|∇v − q|p dx ≤ 2pεpap + C1ε
p+δ + Cσ(ap + 1).
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Let us assume, at this moment, that σ ≤ c0ε
p, with c0 to be made precise

later. As a consequence, from the previous inequality, we haveˆ
B1/2

|∇v − q|p dx ≤ 2pεpap + C1ε
p+δ + Cc0ε

p(ap + 1),

which implies, since a ≥ a0 > 0 and εp+δ ≤ εp,ˆ
B1/2

|∇v − q|p dx ≤ Cεpap. (3.36)

Specifically, if a0 ≥ 1 this fact easily follows. Otherwise, we can get an

upper bound of Cc0ε
p multiplying and dividing it by ap and then using that

1/ap ≤ 1/ap0.

Furthermore, (3.36) also yields

|∇v − q| ≤ C(εa)ν , (3.37)

where ν is a small exponent, non necessarily 1. This condition however, to-

gether with (3.18) and the fact that a ≥ a0 > 0, guarantees that v − q · x
satisfies a uniformly elliptic equation with Cγ coefficients.

Precisely, let us remark first that q · x is p-harmonic as v, since ∇(q · x) = q,

which is a constant. Let us define now the function F : Rn −→ Rn by

F (z) = |z|p−2 z, (3.38)

and we consider

F (∇v)− F (q) =

ˆ 1

0

d

dt
F (t∇v + (1− t)q)dt,

that is

|∇v|p−2∇v − |q|p−2 q =

ˆ 1

0

d

dt
F (t∇v + (1− t)q)dt. (3.39)

Let us compute explicitly d
dt
F (t∇v + (1− t)q). We have

d

dt
F (t∇v + (1− t)q) = DF (t∇v + (1− t)q)(∇v − q),

which implies, from (3.39),

|∇v|p−2∇v − |q|p−2 q =

ˆ 1

0

DF (t∇v + (1− t)q)(∇v − q)dt,
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namely

|∇v|p−2∇v − |q|p−2 q =

( ˆ 1

0

DF (t∇v + (1− t)q)dt
)

(∇v − q). (3.40)

At this point, applying the divergence to both sides in (3.40), because v and

q · x are both p-harmonic in B1/2, we achieve

div(A(x)(∇v − q)) = 0 in B1/2,

with

A(x) :=

ˆ 1

0

DF (t∇v + (1− t)q)dt.

In particular, in view of (3.29), the fact that a ≥ a0 > 0 and (3.37), v− q · x
satisfies a uniformly elliptic equation in B1/2 with Cγ coefficients, 0 < γ < 1.

Therefore, applying again Theorem 3.19 in [66], we obtain fixing x ∈ B1/4,

since B1/4(x) ⊂ B1/2 and following the argument used to have (3.21),

|∇v − q|p (x) ≤ C

 
B1/2(x)

|∇v − q|p dy,

which yields, using (3.36),

|∇v − q| (x) ≤ C̃εa, x ∈ B1/4. (3.41)

By virtue of this, denoting q̄ the gradient of v − q · x at 0, it holds, again

from Theorem 2 in [68], always because v − q · x solves a uniformly elliptic

equation in B1/2 with Cγ coefficients, recalling the steps done to have (3.22),

 
Bρ

|∇(v − q · x)− q̄|p dx ≤ C2ρ
βpεpap, ∀ρ ≤ 1/4,

with C2 universal and 0 < β ≤ 1, namely, denoting q̃ := q + q̄,
 
Bρ

|∇v − q̃|p dx ≤ C2ρ
βpεpap. (3.42)

We point out that, by (3.41) and the definitions of q̄ and q̃,

|q̃ − q| = |q̄| ≤ C̃εa.
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Putting together now (3.35) and (3.42), we then achieve

 
Bρ

|∇u− q̃|p dx ≤ 2p
(

1

ωnρn
(C1ε

p+δ + Cσ(ap + 1)) + C2ρ
βpεpap

)
,

that is
 
Bρ

|∇u− q̃|p dx ≤ 2pC1ε
p+δρ−n + C̄σ(ap + 1)ρ−n + 2pC2ρ

βpεpap. (3.43)

At this point, we want to choose ρ so that

2pC2ρ
βpεpap ≤ 1

4
ραpεpap, (3.44)

and this is possible only if we take 0 < α < β. Precisely, we have to take ρ

depending on α in such a way that

ρ(β−α)p ≤ 1

2p+2C2

,

in other words

ρ ≤ (2p+2C2)
1

(β−α)p .

Moreover, we want to choose ε small depending on ρ (and thus α) and a0

such that

2pC1ε
p+δρ−n ≤ 1

4
ραpεpap0, (3.45)

and thus we take ε which satisfies

εδ ≤ 1

2p+2C1

ραp+nap0,

i.e.

ε ≤
(

1

2p+2C1

ραp+nap0

)1/δ

.

Lastly, we choose σ small depending on ρ (and hence α) and a0 in such a

way that

C̄σ(ap + 1)ρ−n ≤ 1

4
ραpεp(ap + ap0), (3.46)

which means that we take σ so that

σ ≤ ραp+nεp(ap + ap0)

C̄(ap + 1)
,
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which is coherent with our hypothesis that σ ≤ c0ε
p. Putting together the

choices (3.44), (3.45) and (3.46), we then get, in view of (3.43), since a ≥ a0,

 
Bρ

|∇u− q̃|p dx ≤ 1

4
ραpεpap0 +

1

4
ραpεp(ap + ap0) +

1

4
ραpεpap

≤ 1

4
ραpεpap +

1

2
ραpεpap +

1

4
ραpεpap = ραpεpap,

which gives (  
Bρ

|∇u− q̃|p dx
)1/p

≤ ραεa,

as desired.

It remains to show that (3.34) is true.

To this end, we consider the linear function

l(x) := b+ q · x, b :=

 
B1

u, (3.47)

and we observe that  
B1

(u− l)dx = 0.

Indeed, since q · x is harmonic,

 
B1

(u− l)dx =

 
B1

udx+

 
B1

q · xdx−
 
B1

bdx = b+

 
B1

q · xdx− b

= (q · x)(0) = 0.

As a consequence, by Poincaré inequality, denoting

(u− l)B1 =

 
B1

(u− l)dx,

we achieve

‖u− l − (u− l)B1‖Lp(B1) = ‖u− l‖Lp(B1) ≤ C ‖∇(u− l)‖Lp(B1) ,

with C universal, which entails, from (3.28), because ∇l = q, using (3.47),

 
B1

|u− l|p dx ≤ C

 
B1

|∇u− q|p dx ≤ Cεpap. (3.48)
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Now, since u ≥ 0, l− ≤ |u− l|. Precisely, when l− = 0 it follows immediately,

whereas when l− > 0,

l− = −l ≤ u− l = |u− l| .

Hence, by virtue of (3.48), we have 
B1

(l−)p dx ≤ Cεpap. (3.49)

This fact, together with (3.29), yields

l ≥ c1a in B1/2, (3.50)

with c1 universal and ε small.

Specifically, we first note that l− is subharmonic, because l is harmonic. So,

by Hölder’s inequality with exponent p, we obtain, according to (3.49),

l−(x) ≤
 
B1/4(x)

l−(y)dy ≤ 1∣∣B1/4(x)
∣∣
( ˆ

B1/4(x)

(l−(y))p dy

)1/p ∣∣B1/4(x)
∣∣1−1/p

=

(  
B1/4(x)

(l−(y))p dy

)1/p

≤ Cεa, x ∈ B3/4.

In particular, this condition implies

−l(x) ≤ l−(x) ≤ Cεa, x ∈ B3/4,

in other words

l(x) ≥ −Cεa, x ∈ B3/4. (3.51)

At this point, let us fix x ∈ B1/2 and we consider

y := x− q

4 |q|
.

We remark that

|y| ≤ |x|+
∣∣∣∣ q

4 |q|

∣∣∣∣ < 1

2
+

1

4
=

3

4
,

i.e. y ∈ B3/4, and thus, by (3.51), l(y) ≥ −Cεa. Developing this last inequal-

ity, in view of (3.47), we then have

q · y + b = q ·
(
x− q

4 |q|

)
+ b = q · x− |q|

2

4 |q|
+ b = q · x− |q|

4
+ b ≥ −Cεa,
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which gives, using (3.29),

q · x+ b ≥ |q|
4
− Cεa ≥ a

2(3p+1)/p+2
− Cεa = c1a,

with c1 universal, if
1

2(3p+1)/p+2
− Cε > 0,

namely ε sufficiently small. To recap, we have shown that

q · x+ b ≥ c1a, x ∈ B1/2,

and so, by the arbitrariness of x and definition (3.47), we get (3.50).

Now, dividing u and l by a, we can assume without loss of generality that

a = 1 in (3.28) and (3.50). Moreover, from the Poincaré-Sobolev inequality,

we obtain
( ˆ

B1

|u− l|p
∗
dx

)1/p∗

≤ C

( ˆ
B1

|∇(u− l)|p dx
)1/p

if p < n,

sup
B1

|u− l| ≤ C

( ˆ
B1

|∇(u− l)|p dx
)1/p

if p > n,

(3.52)

with C = C(n, p) universal.

Let us treat the two cases above separately. Let us suppose first that p < n.

Then, recalling (3.52), definition (3.47), and (3.28), we get( ˆ
B1

|u− l|p
∗
dx

)1/p∗

≤ Cε.

Furthermore, exploiting (3.50), we achieve

Cε ≥
( ˆ

B1

|u− l|p
∗
dx

)1/p∗

≥
( ˆ

B1/2∩{u=0}
|u− l|p

∗
dx

)1/p∗

=

( ˆ
B1/2∩{u=0}

|l|p
∗
dx

)1/p∗

≥ c1

∣∣B1/2 ∩ {u = 0}
∣∣1/p∗ ,

which yields ∣∣B1/2 ∩ {u = 0}
∣∣ ≤ Cεp

∗
. (3.53)
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At this point, we recall that

p∗ :=
np

n− p
,

and hence we can rewrite p∗ as

p∗ =
np+ p2 − p2

n− p
= p+

p2

n− p
.

Therefore, calling δ = p2/(n−p), which satisfies δ > 0, since p < n, we lastly

get, according to (3.53), ∣∣B1/2 ∩ {u = 0}
∣∣ ≤ Cεp+δ,

as desired.

Let us assume now that p > n. We note that in this case, in view of (3.52),

we also have, with δ > 0,( ˆ
B1

|u− l|p+δ dx
)1/(p+δ)

≤ sup
B1

|u− l| |B1|1/(p+δ) ≤ C

( ˆ
B1

|∇(u− l)|p dx
)1/p

.

Therefore, we can repeat exactly the same reasoning done in case of p < n

and we obtain the desired result.

It remains to analyze the case p = n. For this purpose, we know by Theorem

7.15 in [54] that since u− l ∈ W 1,n(B1), then

ˆ
B1

exp

(
|u− l|

c1 ‖∇(u− l)‖Ln(B1)

)n/(n−1)

dx ≤ c2 |B1| (3.54)

with c1 = c1(n) and c2 = c2(n). As a consequence, because we know in

general that

ex ≥ cxµ, x, µ > 0,

we also achieve from (3.54), by virtue of (3.47),

ˆ
B1

c

(
|u− l|

c1 ‖∇u− q‖Ln(B1)

)nµ/(n−1)

dx ≤ c2 |B1| ,

which implies, according to (3.28),ˆ
B1

|u− l|nµ/(n−1) dx ≤ C ‖∇u− q‖nµ/(n−1)
Ln(B1) |B1| ≤ Cεnµ/(n−1), (3.55)
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with C universal. In particular, we can choose µ = n and we remark that

n2

n− 1
=
n2 − n+ n

n− 1
= n+

n

n− 1
= n+ δ, δ > 0,

hence, from (3.55),

ˆ
B1

|u− l|nµ/(n−1) dx ≤ Cεn+δ.

Arguing as in case p < n, we eventually get∣∣{u = 0} ∩B1/2

∣∣ ≤ C1ε
n+δ,

with C1, δ universal.

Remark 3.11. We remark that Lemma 3.10 still holds if we replace the lower

bound in (3.29) with the assumption

 
B1

udx ≥ C1a, (3.56)

for C1 universal large enough (depending on C0). Indeed, in the proof of

Lemma 3.10, the lower bound in (3.29) is only used to get (3.50). Therefore,

it is enough to show that (3.50) still holds under the assumption (3.56). To

this end, we first note that, by definition of b in (3.47), the assumption (3.56)

reads

b ≥ C1a.

Hence, using (3.47) and (3.29), we achieve

l(x) = q·x+b ≥ − |q| |x|+C1a ≥ −2C0a
1

2
+C1a = a

(
C1−C0

)
= c1a, x ∈ B1/2,

in other words

l ≥ c1a in B1/2,

if C1 > C0 (from which the dependence of C1 on C0), which is exactly (3.50).

At this point, a corollary of Lemma 3.10 holds.
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Corollary 3.12. Let u be an almost minimizer for Jp in B1 (with constant

κ and exponent β), p > 2 and suppose that u satisfies (3.28)-(3.18), together

with a ≥ a0 > 0. Then, there exist ε0, κ0 depending on β, n and a0, so that if

ε ≤ ε0, κ ≤ κ0ε
2 then

‖u− l‖C1,β/p(B1/2) ≤ Cεa, (3.57)

where C is a universal constant and l is a linear function of slope q. Further-

more, it also holds

‖∇u‖L∞(B1/2) ≤ C̃a, (3.58)

with C̃ universal.

Remark 3.13. In view of (3.57), we have ∇u 6= 0, which implies that u > 0

in B1/2.

Specifically, by (3.57), using the definition of ‖u− l‖C1,β/p(B1/2) and the fact

that l is a linear function with slope q, we obtain

‖∇(u− l)‖L∞(B1/2) = ‖∇u− q‖L∞(B1/2) ≤ Cεa,

which gives

|∇u− q| (x) ≤ Cεa, x ∈ B1/2,

and thus also

|∇u| (x) ≥ |q| − Cεa, x ∈ B1/2.

As a consequence, since (3.18) holds, we get

|∇u| (x) ≥ a

2(2p+1)/p
− Cεa > 0, x ∈ B1/2,

if ε is sufficiently small, which indeed yields ∇u 6= 0 in B1/2.

From this fact, since u is nonnegative, we get that u > 0 in B1/2. Precisely,

because u ≥ 0, if u > 0 in B1/2 was not true, it would mean that there exists

a point x0 ∈ B1/2 such that u(x0) = 0. Since u ∈ C1,β/p(B1/2) by (3.57), we

have now two alternatives. Either u ≡ 0 in B1/2 or x0 is a minimum point

for u. In both cases, however, ∇u(x0) = 0, and this contradicts the fact that

∇u 6= 0 in B1/2.
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Proof of Corollary 3.12. We show first that we can iterate Lemma 3.10 in-

definitely with α = β/p. Indeed, if (q0 := q)(  
Br

|∇u− qk|p dx
)1/p

≤ εrβ/pa, with r = ρk, (3.59)

holds, then the rescaling

ur(x) :=
u(rx)

r
(3.60)

satisfies the hypotheses of Lemma 3.10 with

σr := κrβ, εr := εrβ/p. (3.61)

Precisely, from (3.60) and (3.59), we have( 
Br

|∇u− qk|p dx
)1/p

x=ry
=

(
1

ωnrn

ˆ
B1

|(∇u)(ry)− qk|p rndy
)1/p

(
1

ωn

ˆ
B1

|∇ur(y)− qk|p dy
)1/p

≤ εrβ/pa,

in other words (  
B1

|∇ur − qk|p dy
)1/p

≤ εrβ/pa,

and so ur defined as in (3.60) satisfies (3.28) with εr defined in (3.61). For

the almost minimality condition, see instead Remark 3.14.

Moreover, the conclusion of Lemma 3.10 implies that

|qi+1 − qi| ≤ Cερiβ/pa, i ≤ k − 1, (3.62)

which, together with (3.18), gives that (3.29) is true for any qk, provided that

ε0 is sufficiently small, see Remark 3.15. As a consequence, the rescaling ur

and qk satisfy all the hypotheses of Lemma 3.10 and so we can apply it with

α = β/p to get(  
Bρ

|∇ur − qk+1|p dx
)1/p

≤ ερβ/prβ/pa = ερβ/pρkβ/pa = ερ(k+1)β/pa.

(3.63)
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In particular, in view of (3.60), we can rewrite the left hand side of (3.63) as(  
Bρ

|∇ur − qk+1|p dx
)1/p

=

(  
Bρ

|(∇u)(rx)− qk+1|p dx
)1/p

y=rx
=

(
1

ωnρn

ˆ
Brρ

|∇u(y)− qk+1|p r−ndy
)1/p

r=ρk

=

(  
B
ρk+1

|∇u− qk+1|p dy
)1/p

,

which yields, from (3.63),(  
B
ρk+1

|∇u− qk+1|p dy
)1/p

≤ ερ(k+1)β/pa.

Therefore, (3.59) holds for r = ρk+1 as well and thus it is satisfied for any k.

Now, we want to show that the same conclusion is true for all balls Br(x)

⊂ B3/4, after relabeling ε by Cε if necessary.

Precisely, we fix x ∈ B3/4 and we take B1/4(x). Since x ∈ B3/4, B1/4(x) ⊂ B1,

hence, according to (3.28), we achieve, because q0 := q,(  
B1/4(x)

|∇u− q0|p dy
)1/p

≤ Cεa, x ∈ B3/4,

with C universal. Repeating the reasoning used to obtain (3.59), we then

have(  
Br(x)

|∇u− qk|p dy
)1/p

≤ Cεrβ/pa, with r =
1

4
ρk, x ∈ B3/4. (3.64)

At this point, it remains to show that (3.64) holds for any r such that Br(x)

⊂ B3/4. To this end, we distinguish two cases, i.e. either r > 1/4 or r ≤ 1/4.

Let us assume first that r > 1/4. Then, always from (3.28), we get(  
Br(x)

|∇u− q0|p dy
)1/p

≤
(

1

ωn(1/4)n

ˆ
B1

|∇u− q0|p dy
)1/p

≤ Cεa.

(3.65)

If instead r ≤ 1/4, then ∃k so that

1

4
ρk+1 ≤ r ≤ 1

4
ρk,
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thus, using (3.64), we have(  
Br(x)

|∇u− qk|p dy
)1/p

≤
(

1

ωn(1
4
ρ(k+1))n

ˆ
B 1

4 ρ
k

|∇u− qk|p dy
)1/p

=

(
1

ωn(1
4
ρk)nρn

ˆ
B 1

4 ρ
k

|∇u− qk|p dy
)1/p

≤ Cεrβ/pa,

which gives (  
Br(x)

|∇u− qk|p dy
)1/p

≤ Cεrβ/pa. (3.66)

Consequently, putting together (3.64), (3.65) and (3.66), we lastly achieve(  
Br(x)

|∇u− qk|p dy
)1/p

≤ Cεrβ/pa, Br(x) ⊂ B3/4. (3.67)

From this fact, by virtue of standard Campanato estimates, we then obtain

‖∇u− q0‖C0,β/p(B1/2) ≤ Cεa, (3.68)

from which our claims follow.

We show first this fact and then how we use Campanato estimates to get

(3.68).

About the claim (3.58), from (3.68) we also have

‖∇u− q0‖L∞(B1/2) ≤ Cεa,

which gives, in view of (3.18), since q0 := q,

|∇u| (x) ≤ |∇u− q0| (x) + |q0| ≤ Cεa+ C0a = C̃a, x ∈ B1/2,

if ε is small enough, and thus

‖∇u‖L∞(B1/2) ≤ C̃a.

Concerning claim (3.57), instead, we consider a linear function

l(x) := q0 · x+ b, (3.69)
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in such a way that

b = u(0). (3.70)

Therefore, since u ∈ C1,β/p(B1/2) by (3.68), we can apply the mean value

theorem to u− l in the segment [0, x], with x ∈ B1/2, and we have

(u− l)(x) = (u− l)(0) +∇(u− l)(z) · x, z ∈ [0, x]. (3.71)

In particular, using (3.69) and (3.70), (3.71) can be rewritten as

(u− l)(x) = (∇u− q0)(z) · x,

which entails from (3.68), because x, z ∈ B1/2,

|u− l| (x) ≤ |∇u− q0| (z) |x| ≤ Cεa
1

2
= Cεa,

and hence

‖u− l‖L∞(B1/2) ≤ Cεa.

This fact, together with (3.68), then yields

‖u− l‖C1,β/p(B1/2) ≤ Cεa,

with l a linear function of slope q0 and so of slope q.

We are left with the proof of (3.68). By Theorem 3.7, it is equivalent to show

‖∇u− q0‖Lp,n+β(B1/2) ≤ Cεa,

and from Remark 3.6 this means

‖∇u− q0‖Lp(B1/2) + [∇u− q0]Lp,n+β(B1/2) ≤ Cεa.

In view of (3.28), since q0 := q, we have

‖∇u− q0‖Lp(B1/2) ≤ Cεa. (3.72)

Therefore, it remains to show that

[∇u− q0]Lp,n+β(B1/2) ≤ Cεa.
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Specifically, by virtue of Remark 3.6, it suffices to prove that(
sup

x0∈B1/2

r>0

r−(n+β) inf
ξ∈Rn

ˆ
B1/2(x0,r)

|∇u− q0 − ξ|p dx

)1/p

≤ Cεa.

For this purpose, we fix x0 ∈ B1/2 and by (3.67) we also obtain, for any

Br(x0) ⊂ B1/2,

1

rβ/p

(  
Br(x0)

|∇u− qk|p dx
)1/p

=

(
1

ωnrβ+n

ˆ
Br(x0)

|∇u− qk|p dx
)1/p

≤ Cεa

which yields (
1

rβ+n

ˆ
Br(x0)

|∇u− qk|p dx
)1/p

≤ Cεa,

with C universal. Moreover, we can rewrite this as(
1

rβ+n

ˆ
Br(x0)

|∇u− q0 + (q0 − qk)|p dx
)1/p

≤ Cεa,

so we get in addition(
1

rβ+n
inf
ξ∈Rn

ˆ
Br(x0)

|∇u− q0 + ξ|p dx
)1/p

≤ Cεa, (3.73)

for any Br(x0) ⊂ B1/2.

Now, we note that if r is such that Br(x0) ⊂ B1/2, then by Definition 3.5

B1/2(x0, r) = Br(x0), hence to achieve(
sup

x0∈B1/2

r>0

r−(n+β) inf
ξ∈Rn

ˆ
B1/2(x0,r)

|∇u− q0 − ξ|p dx

)1/p

≤ Cεa,

we also need to know(
1

rβ+n
inf
ξ∈Rn

ˆ
B1/2(x0,r)

|∇u− q0 + ξ|p dx
)1/p

≤ Cεa,

for any Br(x0) * B1/2. To this end, we distinguish two cases. If Br(x0)

* B3/4 this means that r ≥ 1/4, since x0 ∈ B1/2. Thus, in view of (3.28), we
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have, because B1/2(x0, r) ⊂ B1/2 from Definition 3.5,(
1

rβ+n
inf
ξ∈Rn

ˆ
B1/2(x0,r)

|∇u− q0 + ξ|p dx
)1/p

≤
(

1

(1/4)β+n
inf
ξ∈Rn

ˆ
B1/2(x0,r)

|∇u− q0 + ξ|p dx
)1/p

≤
(

ωn
(1/4)β+nωn

ˆ
B1

|∇u− q0|p dx
)1/p

≤ Cεa,

that is (
1

rβ+n
inf
ξ∈Rn

ˆ
B1/2(x0,r)

|∇u− q0 + ξ|p dx
)1/p

≤ Cεa, (3.74)

with C universal. If instead Br(x0) ⊂ B3/4, by (3.67), repeating the same

reasoning to obtain (3.73), we get(
1

rβ+n
inf
ξ∈Rn

ˆ
Br(x0)

|∇u− q0 + ξ|p dx
)1/p

≤ Cεa, (3.75)

with C universal, for these balls as well. Consequently, considering together

(3.73), (3.74) and (3.75), we obtain(
1

rβ+n
inf
ξ∈Rn

ˆ
Br(x0)

|∇u− q0 + ξ|p dx
)1/p

≤ Cεa,

with C universal, for every x0 ∈ B1/2 and for any r, which also gives

1

rβ+n
inf
ξ∈Rn

ˆ
Br(x0)

|∇u− q0 + ξ|p dx ≤ Cεpap,

for every x0 ∈ B1/2 and for every r, and thus

[∇u− q0]pLp,n+β(B1/2)
= sup

x0∈B1/2

r>0

1

rβ+n
inf
ξ∈Rn

ˆ
Br(x0)

|∇u− q0 + ξ|p dx ≤ Cεpap,

i.e.

[∇u− q0]Lp,n+β(B1/2) ≤ Cεa.
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Remark 3.14. We remark that if u is an almost minimizer for Jp in B1 (with

constant κ and exponent β), then the rescaling defined as in (3.60) satisfies

(3.14) with σr := κrβ.

Indeed, by definition of almost minimizer for Jp in B1 (with constant κ and

exponent β), we know that

Jp(u,Br) ≤ (1 + κrβ)Jp(v,Br) (3.76)

for every ball Br ⊂ B1 and for every function v ∈ W 1,p(B1) so that v = u on

∂Br in the trace sense. Now, we take v ∈ W 1,p(B1) such that v = ur on ∂B1

in the trace sense. Then, using (3.60), we have (the equalities are always in

the trace sense)

rv(x) = rv

(
rx

r

)
= u(rx), x ∈ ∂B1,

which means

vr(x) = u(x), x ∈ ∂Br, (3.77)

if we call

vr(x) := rv

(
x

r

)
. (3.78)

As a consequence, from (3.76), we get

ˆ
Br

(|∇u|p + χ{u>0})dx ≤ (1 + κrβ)

ˆ
Br

(|∇vr|p + χ{vr>0})dx. (3.79)

We want to rewrite (3.79) in terms of ur and v. We have, according to (3.60)
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and (3.78),ˆ
Br

(|∇u|p + χ{u>0})dx
x=ry
=

ˆ
B1

(|∇u(ry)|p + χ{ry|u(ry)>0}) r
ndy

= rn
ˆ
B1

(|∇ur(y)|p + χ{ry| rur(y)>0}) dy
r>0
= rn

ˆ
B1

(|∇ur|p + χ{ry|ur(y)>0})dy

= rn
ˆ
B1

(|∇ur|p + χ{y|ur(y)>0})dy = rnJp(ur, B1)

≤ (1 + κrβ)

ˆ
Br

(|∇vr|p + χ{vr>0})dx

= (1 + κrβ)

ˆ
Br

( ∣∣∣∣∇v(xr
)∣∣∣∣p + χ{x| vr(x)>0}

)
dx

x=ry
= (1 + κrβ)

ˆ
B1

( ∣∣∣∣∇v(yrr
)∣∣∣∣p + χ{yr| vr(yr)>0}

)
rndy

= (1 + κrβ)rn
ˆ
B1

(|∇v(y)|p + χ{yr| rv(y)>0})dy

r>0
= (1 + κrβ)rn

ˆ
B1

(|∇v|p + χ{y| v(y)>0})dy = rn(1 + κrβ)Jp(v,B1),

which yields

rnJp(ur, B1) ≤ rn(1 + κrβ)Jp(v,B1), (3.80)

and hence, recalling that σr := κrβ,

Jp(ur, B1) ≤ (1 + σr)Jp(v,B1),

for all v ∈ W 1,p(B1) such that v = ur on ∂B1 in the trace sense.

Remark 3.15. (3.29) holds for any qk by induction on k ≥ 1, provided that

ε0 is sufficiently small. Specifically, according to (3.62), we have with k = 1

|q1 − q0| ≤ Cεa, (3.81)

which yields, using (3.18),

|q1| ≤ |q1 − q0|+ |q0| ≤ Cεa+ C0a ≤ 2C0a, (3.82)

if ε and hence ε0 is sufficiently small. On the other hand, from (3.81), we

also achieve, by virtue of (3.18),

|q1| ≥ |q0| − Cεa ≥
a

2(2p+1)/p
− Cεa ≥ a

2(3p+1)/p
, (3.83)
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if ε and thus ε0 is sufficiently small. Therefore, putting together (3.82) and

(3.83), we obtain that (3.29) holds for q1.

At this point, we suppose that (3.29) is true for qk. By (3.62), we have

|qk+1 − q0| ≤ |qk+1 − qk|+ |qk − qk−1|+ . . .+ |q1 − q0|

≤ Cερkβ/pa+ Cερ(k−1)β/pa+ . . .+ Cεa ≤ Cεa,

So, we can repeat the argument used in case of k = 1, and we get that (3.29)

holds for k + 1 as well. Consequently, (3.29) is satisfied by any qk.

Having proved the previous results, we are now able to show the proof of

main Theorem 3.1.

Proof of Theorem 3.1. First of all, we note that without loss of generality we

can assume that u is an almost minimizer with constant κ̃ = κsβ, which can

be made arbitrary small. Indeed, we can consider the rescaling

us(x) :=
u(sx)

s
,

and the fact follows arguing as in Remark 3.14.

Now, let us choose α = β/p, and a0 = 1 and let ε0 = ε0(β, 1), c0 = c0(β, 1)

be given from Lemma 3.10. Moreover, let η small, M ≥ 1 and σ0 be the

constants from Proposition 3.9 depending on ε = ε0. Let us define at this

point

a(τ) :=

(  
Bτ

|∇u|p dx
)1/p

(3.84)

and we consider the integers k ≥ 0 such that

a(ηk) ≤ C(η)M + 2−ka(1), (3.85)

for C(η) a large constant.

For k = 0, (3.85) is clearly true. Let us also suppose that (3.85) holds for all

k’s. Then, it follows that

a(r) ≤ C(M, η)(1 + a(1)), ∀r < 1. (3.86)
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Precisely, if r < 1, there exists k0 ≥ 0 so that ηk0+1 < r ≤ ηk0 . Therefore, by

(3.84) and (3.85), we get

a(r) ≤
(

1

ωnη(k0+1)n

ˆ
B
ηk0

|∇u|p dx
)1/p

= η−n/pa(ηk0) ≤ η−n/p(C(η)M + 2−k0

a(1)) ≤ η−n/p max(C(η)M, 1)(1 + a(1)) = C(M, η)(1 + a(1)).

Let us assume otherwise that (3.85) is not true for all k’s and let k0 + 1 be

the first integer for which (3.85) fails. We distinguish then two cases. If

a(ηk0) ≤M,

then (3.85) holds for k0 + 1 as well, because, exploiting the steps to obtain

(3.86), we have

a(ηk0+1) ≤ η−n/pa(ηk0) ≤ C(η)M + 2−(k0+1)a(1),

which is a contradiction with the choice of k0. As a consequence,

a(ηk0) > M,

and, in view of Proposition 3.9 (rescaled) it holds that either, from (3.85),

a(ηk0+1) ≤ 1

2
a(ηk0) ≤ C(η)M + 2−(k0+1)a(1),

which yields again a contradiction, or( 
B
ηk0+1

|∇u− q|p dx

)1/p

≤ εa(ηk0), (3.87)

with
a(ηk0)

2(2p+1)/p
< |q| ≤ C0a(ηk0).

Hence, in this case we can apply Corollary 3.12 (rescaled) and we achieve,

since (3.85) is true for k0,

a(r) ≤ C̄a(ηk0) ≤ C(M, η)(1 + a(1)), r ≤ ηk0 . (3.88)
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Indeed, by Corollary 3.12 (rescaled), we have

‖∇u‖L∞(B
ηk0/2

) ≤ C̄a(ηk0).

Therefore, if r ≤ ηk0/2, we get, because (3.85) is true for k0,

a(r) ≤
(  

Br

‖∇u‖pL∞(B
ηk0/2

) dx

)1/p

= ‖∇u‖L∞(B
ηk0/2

) ≤ C(M, η)(1 + a(1)),

which gives

a(r) ≤ C(M, η)(1 + a(1)), r ≤ ηk0/2.

Now, this fact is then true for all r’s such that r ≤ ηk0 , since if r > ηk0/2 we

can repeat the same argument used to achieve (3.86).

On the other hand, if r > ηk0 , we can repeat again the argument to get (3.86)

and it holds

a(r) ≤ C(M, η)(1 + a(1)), r > ηk0 ,

which, together with (3.88), implies again (3.86).

In particular, repeating the same reasoning done to obtain (3.67), we have in

addition that (3.86) holds for all balls with center in B1/2 which are contained

in B1, namely, if we denote

a(r)(x) :=

(  
Br(x)

|∇u|p dy
)1/p

, (3.89)

we have

a(r)(x) ≤ C(M, η)(1 + a(1)(0)), x ∈ B1/2, Br(x) ⊂ B1.

Consequently, we get from (3.89), by virtue of Lebesgue Differentiation The-

orem, since u ∈ W 1,p(B1),

|∇u(x)| = (|∇u(x)|p)1/p = lim
r→0

a(r)(x) ≤ C(M, η)(1 + a(1)(0)) = C(1 + a(1)(0))

= C(1 + ω−1/p
n ‖∇u‖Lp(B1)) ≤ C(1 + ‖u‖W 1,p(B1)),

which yields

‖∇u‖L∞(B1/2) ≤ C(1 + ‖u‖W 1,p(B1)). (3.90)
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So, the first claim is proved.

We prove at this point the second claim. First of all, we observe that if

u(0) = 0, we can never end up in the alternative (3.87), otherwise Corollary

3.12 applies to u and by Remark 3.13 u > 0 in B1/2, which is a contradiction.

Therefore, arguing as above, this implies that (3.85) is true for all k ≥ 0, and

thus

a(ηk) ≤ C,

with C universal depending on ‖∇u‖Lp(B1) , i.e. a(ηk) is uniformly bounded.

Indeed, since

2−ka(1)
k→∞→ 0,

2−ka(1) is bounded by a universal constant depending on ‖∇u‖Lp(B1) , which

gives in view of (3.85) the desired fact.

As a consequence, repeating the same argument used above to achieve (3.90),

we get

|∇u(x)| ≤ C(1 + a(ηk)(0)) ≤ C, x ∈ Bηk/2,

i.e

|∇u| ≤ C in Bηk/2,

with C universal depending on ‖∇u‖Lp(B1) , which is the second claim with

r0 = ηk/2.

3.5 Nondegeneracy

In this section, our goal is twofold. First, we show that almost minimizers

for Jp are well approximated by p-harmonic functions (in their positivity set).

Next, we deal with nondegeneracy properties of almost minimizers, which are

a crucial ingredient to use compactness arguments. Concerning the last topic,

we have already mentioned that it is a tricky point. In particular, a strong

nondegeneracy property in the spirit of [30] has not been proved for almost
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minimizers to (3.1) yet.

Throughout the section, we assume that

‖∇u‖L∞(B1) ≤ K, and Jp(u,B1) ≤ Jp(v,B1) + σ. (3.91)

We note that the second inequality in (3.91) directly comes from the condition

of almost minimality. Indeed, by (3.91), we have

Jp(u,B1) ≤ Kp |B1|+ |B1| = C,

and so the energy inequality

Jp(u,B1) ≤ (1 + σ)Jp(v,B1)

for any v ∈ W 1,p(B1) which agrees with u on ∂B1, can be read as

Jp(u,B1) ≤ Jp(v,B1) + C̃σ,

with C̃ sufficiently large, i.e., relabeling σ, (3.91) holds. The advantage of

(3.91), rather than (3.14), is that the energies cancel in a region where u = v

and (3.91) rescales better, see Remark 3.16 below.

Remark 3.16. The rescaling (3.60) satisfies (3.91) with σr := r−nσ. Precisely,

let us take a function v ∈ W 1,p(B1) such that v = ur on ∂B1. Then, exploiting

the same argument used to have (3.77), it holds u = vr on ∂Br, with vr

defined as in (3.78). As a consequence, because u = vr on ∂Br, we obtain

Jp(u,Br) ≤ Jp(vr, Br) + σ,

which entails, repeating the same computations done to achieve (3.80),

rnJp(ur, B1) ≤ rnJp(v,B1) + σ,

namely

Jp(ur, B1) ≤ Jp(v,B1) + σr

for any v ∈ W 1,p(B1) such that v = ur on ∂B1.
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First, we prove the following lemma, which provides a comparison be-

tween the almost minimizer u and its p-harmonic replacement in the positiv-

ity set of u.

Lemma 3.17. Assume that u satisfies (3.91) and B1 ⊂ {u > 0} . Let v be

the p-harmonic replacement of u in B1. Then

‖u− v‖L∞(B1/2) ≤ c(σ), c(σ)→ 0 as σ → 0. (3.92)

Proof. Since v is the p-harmonic replacement of u in B1, we can use (3.91)

to get

Jp(u,B1) ≤ Jp(v,B1) + σ,

which gives, because B1 ⊂ {u > 0} ,
ˆ
B1

|∇u|p dx+ |B1| ≤
ˆ
B1

|∇v|p dx+ |B1|+ σ

and thus ˆ
B1

|∇u|p dx ≤
ˆ
B1

|∇v|p dx+ σ.

From the last inequality, in view of Lemma 3.4, we then haveˆ
B1

|∇u−∇v|p dx ≤ Cσ, (3.93)

with C universal.

Moreover, we can apply Poincaré inequality to u − v ∈ W 1,p
0 (B1) and we

obtain ˆ
B3/4

|u− v|p dx ≤ Cσ, (3.94)

with u− v uniformly Lipschitz in B3/4, because both u and v are uniformly

Lipschitz in B3/4.

Let us assume now that (3.92) fails. This means that there exists x0 ∈ B1/2

such that |u− v| (x0) ≥ µ and in particular, without loss of generality, we

can suppose (changing u− v in v− u otherwise) (u− v)(x0) ≥ µ, with µ > 0

independent of σ. Thus, by the uniform Lipschitz continuity of u− v, we get

(u− v)(x) ≥ (u− v)(x0)− C |x− x0| ≥ c0µ in Bcµ(x0),
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provided c is small enough. From this and (3.94), we then have

µp+n ≤ Cσ,

which contradicts the hypothesis on µ and so (3.92) holds.

Lemma 3.18. Let u be a function that satisfies (3.91) and suppose B1

⊂ {u > 0}. Let w be a p−harmonic function such that u ≥ w in B1, ∇w 6= 0

and u − w ≥ µ > 0 at 0 for some µ ≤ µ0, µ0 small depending on K. Then

u− w ≥ cµ in B1/2 for some c universal, provided that σ ≤ µn+p+1.

Proof. Let v be the p−harmonic replacement of u in B1. Then recalling

Lemma 3.17, we deduce that in B1/2

−cσ
1

n+p + v ≤ u ≤ v + cσ
1

n+p . (3.95)

As a consequence, we obtain that in B1/2

w ≤ u ≤ v + cσ
1

n+p ,

so that in B1/2

(v + cσ
1

n+p )− w ≥ 0 (3.96)

and, in addition,

(v(0) + cσ
1

n+p )− w(0) ≥ u(0)− w(0) ≥ µ,

namely

(v(0) + cσ
1

n+p )− w(0) ≥ µ. (3.97)

Let v1 := v + cσ
1

n+p . Then v1 is p−harmonic as well. Thus
ˆ
B1/2

〈A(∇v1)− A(∇w),∇ϕ〉dx =

ˆ
B1/2

〈A(∇v)− A(∇w),∇ϕ〉dx = 0,

where A(h) := |h|p−2h. On the other hand

A(∇v)− A(∇w) =

ˆ 1

0

d

dt
A(∇(tv + (1− t)w))dt,



164 3. Regularity of almost minimizers for the p-Laplacian

so that by writing

bij(x) :=

ˆ 1

0

∂

∂hj
Ai(∇(tv + (1− t)w))dt, B(x) := (bij(x))i,j,

we obtain ˆ
B1/2

〈B(x)∇(v1 − w),∇ϕ〉dx = 0,

where

λI ≤ B ≤ ΛI

and

min{1, p− 1}
ˆ 1

0

|∇(tv1 + (1− t)w)|p−2dt =: λ(x) ≤ Λ(x) := max{1, p− 1}
ˆ 1

0

|∇(tv1 + (1− t)w)|p−2dt.

Now, recalling that ∇w 6= 0 it results that B is elliptic and v1 − w ≥ 0, see

(3.96), satisfies div(B(x)∇(v1−w)) = 0 in B1/2. Then by Harnack inequality,

see [64], using (3.97), it follows that in B1/4

CH(v1 − w) ≥ (v1 − w)(0) ≥ µ.

Then, in view of the definition of v1, we have

v + cσ
1

n+p − w ≥ µ

CH
in B1/4

which gives, from (3.95), if σ ≤ µn+p+1,

u− w ≥ v − cσ
1

n+p − w ≥ µ

CH
− 2σ

1
n+p ≥ cµ in B1/4.

Finally, to recap, it results

u− w ≥ cµ in B1/4.
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Remark 3.19. This theorem is different with respect to the harmonic case, see

[30], because the p−Laplace operator is not linear and we need to know that

after the linearization of the operator, the matrix B has to be elliptic. This

hypothesis is satisfied whenever we consider a p−harmonic function whose

gradient does not vanish. In the application, this fact is satisfied for every

polynomial of degree 1.

At this point, we are able to state and prove the weak nondegeneracy

lemma.

Lemma 3.20 (Weak nondegeneracy). Suppose that u satisfies (3.91) for σ

small and B1 ⊂ {u > 0}. Then u(0) ≥ c with c = c(K) > 0.

Proof. Denote by v the p-harmonic replacement of u in B1. Then, in view

of Lemma 3.17, it suffices to show that the statement holds for v. Indeed, if

v(0) ≥ c, c = c(K) > 0, by Lemma 3.17 we have u(0)− v(0) ≥ −Cσ1/(n+p),

which gives

u(0) ≥ v(0)− Cσ1/(n+p) ≥ c− Cσ1/(n+p) = c

if σ is small enough.

Now, let us take ϕ ∈ C∞0 (B1/2) such that ϕ ≡ 1 in B1/4 and 0 ≤ ϕ ≤ 1.

Then, by definition of the p-harmonic replacement, since ϕ ∈ C∞(B1/2),

v(1 − ϕ) = v = u on ∂B1, thus, using again the definition of p-harmonic

replacement, (3.91) and the fact that B1 ⊂ {u > 0}, we get

Jp(v,B1) ≤
ˆ
B1

|∇u|p dx+ |B1| = Jp(u,B1) ≤ Jp(v(1− ϕ), B1) + σ. (3.98)

On the other hand, because v is p-harmonic in B1 and v = u ≥ 0 on ∂B1,

we can apply Comparison Principle, see Theorem 2.15 in [64], and we have

v ≥ 0 in B1. Therefore, we can use Harnack inequality for v and we have

‖v‖L∞(B1/2) ≤ Cv(0), (3.99)

with C = C(n, p). Moreover, the fact that v ≥ 0 in B1 also yields by the

Strong Maximum Principle, see Corollary 2.21 in [64], that v > 0 in B1.
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Precisely, by the Strong Maximum Principle, if ∃ x0 ∈ B1 such that v(x0) = 0,

then, since minB1 v ≥ 0, it means that v ≡ 0 in B1. Hence, because u = v on

∂B1, this entails u ≡ 0 on ∂B1 and so we can choose the zero function as a

test function in (3.91), which gives

Jp(u,B1) ≤ σ,

which is an absurd with σ small, because Jp(u,B1) ≥ |B1| , since u > 0 in

B1. As a consequence, v > 0 in B1.

In parallel, by Theorem 2 in [78], we know that, dividing v by ‖v‖L∞(B1/2) ,

which is positive because v > 0 in B1, and noting that v/ ‖v‖L∞(B1/2) is still

p-harmonic,

|∇v(x)| ≤ C ‖v‖L∞(B1/2) ≤ Cv(0), x ∈ B1/2,

where C depends only on n, p and some other a priori constants, see [78].

Thus, we obtain

‖∇v‖L∞(B1/2) ≤ Cv(0),

which implies from (3.99), after relabeling C if necessary,

‖v‖L∞(B1/2) , ‖∇v‖L∞(B1/2) ≤ Cv(0). (3.100)

We consider, at this point,

ˆ
B1

|∇v|p dx =

ˆ
B1

|∇(v(1− ϕ)) +∇(vϕ)|p dx

=

ˆ
B1

(
|∇(v(1− ϕ))|2 + 2〈∇(v(1− ϕ)),∇(vϕ)〉+ |∇(vϕ)|2

)p/2
dx

=

ˆ
B1\B1/2

|∇(v(1− ϕ))|p dx

+

ˆ
B1/2\B1/4

(
|∇(v(1− ϕ))|2 + 2〈∇(v(1− ϕ)),∇(vϕ)〉+ |∇(vϕ)|2

)p/2
dx

+

ˆ
B1/4

|∇v|p dx,
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so that by the Cauchy-Schwarz inequality we achieve

ˆ
B1

|∇v|p dx ≥
ˆ
B1\B1/2

|∇(v(1− ϕ))|p dx+

ˆ
B1/4

|∇v|p dx

+

ˆ
B1/2\B1/4

||∇(v(1− ϕ))| − |∇(vϕ)||p dx.
(3.101)

Now, let us analyze the term

ˆ
B1/2\B1/4

||∇(v(1− ϕ))| − |∇(vϕ)||p dx.

First, we rewrite it as

ˆ
B1/2\B1/4

||∇(v(1− ϕ))| − |∇(vϕ)||p dx

=

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|≥|∇(vϕ)|}

||∇(v(1− ϕ))| − |∇(vϕ)||p dx

+

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}

||∇(v(1− ϕ))| − |∇(vϕ)||p dx

(3.102)

and we treat the two terms of the right hand side separately. About

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}

||∇(v(1− ϕ))| − |∇(vϕ)||p dx,

since |∇(v(1− ϕ))| < |∇(vϕ)| , it also holds |∇(v(1− ϕ))|p < |∇(vϕ)|p , thus

we have

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}

||∇(v(1− ϕ))| − |∇(vϕ)||p dx

≥
ˆ

(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}
(|∇(v(1− ϕ))|p − |∇(vϕ)|p)dx

=

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}

|∇(v(1− ϕ))|p dx

−
ˆ

(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}
|(∇v)ϕ+ v∇ϕ|p dx,

which yields, from triangle inequality of |·| and keeping in mind that (a+ b)p
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≤ 2p−1(ap + bp) for every a, b ≥ 0 and for every p ≥ 1,

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}

||∇(v(1− ϕ))| − |∇(vϕ)||p dx

≥
ˆ

(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}
|∇(v(1− ϕ))|p dx

− 2p−1

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}

(|(∇v)ϕ|p + |v∇ϕ|p)dx

that is

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}

||∇(v(1− ϕ))| − |∇(vϕ)||p dx

≥
ˆ

(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}
|∇(v(1− ϕ))|p dx

− 2p−1

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}

(|∇v|p|ϕ|p + |v|p|∇ϕ|p)dx.

By this, together with the fact that 0 ≤ ϕ ≤ 1 and ϕ ∈ C∞0 (B1/2), we then

get

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}

||∇(v(1− ϕ))| − |∇(vϕ)||p dx

≥
ˆ

(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}
|∇(v(1− ϕ))|p dx

− C
ˆ

(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}
(|∇v|p + |v|p)dx,

which gives, according to (3.100),

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}

||∇(v(1− ϕ))| − |∇(vϕ)||p dx

≥
ˆ

(B1/2\B1/4)∩{|∇(v(1−ϕ))|<|∇(vϕ)|}
|∇(v(1− ϕ))|p dx− Cv(0)p.

(3.103)

Concerning

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|≥|∇(vϕ)|}

||∇(v(1− ϕ))| − |∇(vϕ)||p dx,
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instead, by Bernoulli’s inequality, because |∇(vϕ)|
|∇(v(1−ϕ))| ≤ 1, we have

||∇(v(1− ϕ))| − |∇(vϕ)||p = |∇(v(1− ϕ))|p
(

1− |∇(vϕ)|
|∇(v(1− ϕ))|

)p
≥ |∇(v(1− ϕ))|p

(
1− p |∇(vϕ)|

|∇(v(1− ϕ))|

)
= |∇(v(1− ϕ))|p

− p |∇(v(1− ϕ))|p−1 |∇(vϕ)| .

In addition, we can apply Young’s inequality for products

ab ≤ am

m
+
bn

n
, a, b ≥ 0, m, n > 1,

1

m
+

1

n
= 1,

with

a = |∇(v(1− ϕ))|)p−1, b = |∇(vϕ)| , m =
p

p− 1
,

and the choice of m entails that

1

n
= 1− p− 1

p
=

1

p
,

i.e.

n = p.

As a consequence, we obtain, repeating the same considerations done to

achieve (3.103),ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|≥|∇(vϕ)|}

||∇(v(1− ϕ))| − |∇(vϕ)||p dx

≥
ˆ

(B1/2\B1/4)∩{|∇(v(1−ϕ))|≥|∇(vϕ)|}
|∇(v(1− ϕ))|p dx

− p
ˆ

(B1/2\B1/4)∩{|∇(v(1−ϕ))|≥|∇(vϕ)|}

(
|∇(v(1− ϕ))|p p− 1

p
+ |∇(vϕ)|p 1

p

)
dx

≥
ˆ

(B1/2\B1/4)∩{|∇(v(1−ϕ))|≥|∇(vϕ)|}
|∇(v(1− ϕ))|p dx

− (p− 1)

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|≥|∇(vϕ)|}

|∇(v(1− ϕ))|p dx− Cv(0)p.

(3.104)

In particular, since

∇(v(1− ϕ)) = (∇v)(1− ϕ)− v∇ϕ,
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we can repeat again the considerations used to get (3.103) and we have

−(p− 1)

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|≥|∇(vϕ)|}

|∇(v(1− ϕ))|p dx ≥ −Cv(0)p,

which implies, from (3.104),

ˆ
(B1/2\B1/4)∩{|∇(v(1−ϕ))|≥|∇(vϕ)|}

||∇(v(1− ϕ))| − |∇(vϕ)||p dx

≥
ˆ

(B1/2\B1/4)∩{|∇(v(1−ϕ))|≥|∇(vϕ)|}
|∇(v(1− ϕ))|p dx− Cv(0)p.

(3.105)

Putting together (3.103) and (3.105), we then obtain, by virtue of (3.101)

and (3.102), since 1− ϕ ≡ 0 in B1/4,

ˆ
B1

|∇v|p dx ≥
ˆ
B1\B1/2

|∇(v(1− ϕ))|p dx+

ˆ
B1/4

|∇v|p dx

+

ˆ
B1/2\B1/4

|∇(v(1− ϕ))|p dx− Cv(0)p ≥
ˆ
B1

|∇(v(1− ϕ))|p dx− Cv(0)p.

Now, combining the last inequalities with (3.98) we achieve

ˆ
B1

|∇v|pdx+

ˆ
B1

χ{v>0} dx ≤
ˆ
B1

|∇v|p dx+ Cv(0)p +

ˆ
B1

χ{v(1−ϕ)>0} dx+ σ,

and, because v > 0 in B1 and again 1− ϕ ≡ 0 in B1/4, it results

ˆ
B1

|∇v|pdx+ |B1| ≤
ˆ
B1

|∇v|p dx+ Cv(0)p + |B1| −
∣∣B1/4

∣∣+ σ

Therefore, we conclude ∣∣B1/4

∣∣ ≤ Cv(0)p + σ,

which gives the thesis for σ sufficiently small.

3.6 Partial regularity of the free boundary

In this section, we deal with the regularity of the free boundary for almost

minimizers of Jp, p > 2.
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3.6.1 Almost minimizers as viscosity solutions

This subsection is devoted to show that almost minimizers satisfy a com-

parison principle with suitable families of sub and supersolutions of the

one-phase free boundary problem∆pu = 0 in {u > 0},

|∇u| = 1 on F (u) := ∂{u > 0}.
(3.106)

As in [30], the difference with the infinitesimal case is that in order to obtain a

contradiction in the proof of the comparison principle, we have to make clear

the size of the neighborhood around the contact point between the solution

and an explicit barrier.

Let us start by providing a viscosity supersolution lemma. Actually, we

have not been able to show this result yet. Specifically, in the proof there

are two tricky points we are still facing and which we will point out for

clarity in the remainder of the proof. Hereinafter, we label the still unproven

results with “Expected”. In particular, these are both direct and indirect

consequences of the following viscosity supersolution lemma (Lemma 3.21)

and the corresponding viscosity subsolution lemma (Lemma 3.23).

Expected Lemma 3.21 (Supersolution). Let u satisfy (3.91) and let P be

a quadratic polynomial such that∥∥D2P
∥∥ ≤ 1, ∆pP ≥ µ,

for some 0 < µ ≤ µ0 small. Suppose also that

either u > 0 or |∇P | ≥ 1 + µ in B1.

Then P cannot stay below u in B1 and touch u by below at a point in B1/2 if

σ ≤ µn+p+1.

We point out that the supersolution Lemma 3.21 is used to get a compar-

ison principles for a function u satisfying (3.91). In particular, one way to

apply Lemma 3.21 can be found in the following version of the comparison

principle for almost minimizers.
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Expected Corollary 3.22 (Comparison principle). Assume that u satisfies

(3.91) and

u ≥ P in a δ-neighborhood of ∂U of some domain U ⊂ B1,

for some quadratic polynomial P such that ‖D2P‖ ≤ δ−1, ∆pP ≥ µ. Let us

suppose also that either u > 0 or |∇P | ≥ 1 + µ in U . If

µn+p+1 ≥ C(K, δ)σ,

then u ≥ P in U .

Proof. Suppose by contradiction that the thesis is not true. This means that

∃ x̄ : u(x̄) < P (x̄). (3.107)

Let us define then

M := min
U

(u− P ) = (u− P )(x0), (3.108)

where x0 exists because u is Lipschitz from (3.91). We remark first that M

is negative by (3.107). Thus, since u ≥ P in a δ-neighborhood of ∂U , x0 ∈ U
at distance greater than δ from ∂U . Moreover, in view of (3.108), we have

P +M ≤ P + u− P = u in U ,

and

(P +M)(x0) = P (x0) + u(x0)− P (x0) = u(x0).

Therefore, P+M touches u by below at x0. Without loss of generality, P+M

is denoted by P. Being dist(x0, ∂U) > δ, Bδ(x0) ⊂ U , so we can rescale the

situation from Bδ(x0) to B1 and contradict Lemma 3.21.

Precisely, we define

ũ(x) :=
u(x0 + δx)

δ
, P̃ (x) :=

P (x0 + δx)

δ
, x ∈ B1. (3.109)

Then, because P touches u by below at x0, P̃ touches ũ at 0. Also, by (3.109),

we achieve

∇P̃ (x) = (∇P )(x0 + δx), D2P̃ (x) = δ(D2P )(x0 + δx),
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which give

∆pP̃ (x) = |(∇P )(x0 + δx)|p−2 δ(∆P )(x0 + δx) + (p− 2) |(∇P )(x0 + δx)|p−4

δ〈(D2P )(x0 + δx)(∇P )(x0 + δx), (∇P )(x0 + δx)〉 = δ(∆pP )(x0 + δx),

To recap, we have for P̃

∇P̃ (x) = (∇P )(x0 + δx), D2P̃ (x) = δ(D2P )(x0 + δx),

∆pP̃ (x) = δ(∆pP )(x0 + δx).
(3.110)

Hence, using the hypotheses on P, we get, according to (3.110),

‖D2P̃‖ = δ
∥∥D2P

∥∥ ≤ δδ−1 = 1,

∆pP̃ (x) = δ(∆pP )(x0 + δx) ≥ δµ,

namely

‖D2P̃‖ ≤ 1, ∆pP̃ ≥ δµ,

and if |∇P | ≥ 1 + µ,

|∇P̃ | = |∇P (x0 + δx)| ≥ 1 + µ ≥ 1 + δµ,

thus from (3.109), either ũ > 0 or |∇P̃ | ≥ 1 + δµ in B1. Finally, by Remark

(3.16), ũ satisfies (3.91) with σ̃ := δ−nσ.

To sum up, all the assumptions of Lemma 3.21 are satisfied by ũ and P̃

with σ̃ and µ̃ := δµ. As a consequence, if σ̃ ≤ µ̃n+p+1, we can apply Lemma

3.21 and the fact that P̃ ≤ ũ in B1 with P̃ touching u by below in 0 gives

a contradiction. It remains to show that σ̃ ≤ µ̃n+p+1 holds. Precisely, we

obtain

σ̃ = δ−nσ ≤ µ̃n+p+1 = µn+p+1δn+p+1

if we suppose µn+p+1 ≥ δ−2n−p−1σ = C(K, δ)σ.

In a similar way, we also have a viscosity subsolution lemma, from which

we can achieve a version of Corollary 3.22 for polynomials P lying above u.
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Expected Lemma 3.23 (Subsolution). Let u satisfy (3.91) and let P be a

quadratic polynomial such that∥∥D2P
∥∥ ≤ 1, ∆pP ≤ −µ,

for some µ > 0 small. Suppose also that

either u > 0 or |∇P | ≤ 1− µ in B1.

Then P+ cannot stay above u in B1 and touch u by above at a point in

B1/2 ∩ {P > 0} if σ ≤ µn+p+1.

Before showing the proofs of Lemma 3.21 and 3.23, we state and prove two

auxiliary lemmas about perturbations of quadratic polynomials as classical

subsolutions to (3.106). In particular, we will use the second one of them in

the proof of Lemma 3.21.

Lemma 3.24. Let Q := c|x−x0|−γ +m, where γ > 0 and m ∈ R. For every

quadratic polynomial P such that∥∥D2P
∥∥ ≤ 1, ∆pP ≥ µ, |∇P | ≥ 1 + µ,

for some 0 < µ ≤ µ0 small, there exist positive constants cµ and Cp such that

if |c| ≤ cµ, then

∆pP̄ ≥
µ

Cp
and |∇P̄ | > 1,

where P̄ (x) := P (x) +Q(x).

Proof. We want to show that we can choose x0 sufficiently large and c small

enough in such a way that ∆pP̄ ≥ µ
Cp
. To this end, we compute

∇Q = −cγ|x− x0|−γ−1 x− x0

|x− x0|

D2Q = −cγ
(
− (γ + 1)|x− x0|−γ−2 x− x0

|x− x0|
⊗ x− x0

|x− x0|
+ |x− x0|−γ−2I

− |x− x0|−γ−1 1

|x− x0|2
(x− x0)⊗ x− x0

|x− x0|

)
= −cγ

(
|x− x0|−γ−2I

− (γ + 2)|x− x0|−γ−2 x− x0

|x− x0|
⊗ x− x0

|x− x0|

)
,
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that is

∇Q = −cγ|x− x0|−γ−1 x− x0

|x− x0|
,

D2Q = cγ|x− x0|−γ−2

(
(γ + 2)

x− x0

|x− x0|
⊗ x− x0

|x− x0|
− I
)
,

which also give

∆Q = cγ|x− x0|−γ−2(γ + 2− n).

To sum up, we have

∇Q = −cγ|x− x0|−γ−1 x− x0

|x− x0|
, ∆Q = cγ|x− x0|−γ−2(γ + 2− n),

D2Q = cγ|x− x0|−γ−2

(
(γ + 2)

x− x0

|x− x0|
⊗ x− x0

|x− x0|
− I
)
.

(3.111)

Now, calculating ∆pP̄ , we get

∆pP̄ = |∇(P +Q)|p−2

(
∆P + ∆Q+ (p− 2)〈D2Qv, v〉+ (p− 2)〈D2P v, v〉

)
,

denoting

v :=
∇(P +Q)

|∇(P +Q)|
. (3.112)

In particular, we can rewrite the expression of ∆pP̄ as

∆pP̄ = |∇(P +Q)|p−2

(
∆P ± (p− 2)〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉+ ∆Q+ (p− 2)〈D2Qv,

v〉+ (p− 2)〈D2P v, v〉
)

= |∇P |p−2

(
∆P + (p− 2)〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉
)

+ (|∇(P +Q)|p−2 − |∇P |p−2)

(
∆P + (p− 2)〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉
)

+ |∇(P +Q)|p−2(p− 2)

(
〈D2P v, v〉 − 〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉
)

+ |∇(P +Q)|p−2

(∆Q+ (p− 2)〈D2Qv, v〉),
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i.e.

∆pP̄ = ∆pP + (|∇(P +Q)|p−2 − |∇P |p−2)

(
∆P + (p− 2)〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉
)

+ |∇(P +Q)|p−2(p− 2)

(
〈D2P v, v〉 − 〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉
)

+ |∇(P +Q)|p−2

(∆Q+ (p− 2)〈D2Qv, v〉).
(3.113)

We treat the terms in (3.113) separately. Let us analyze first

|∇(P +Q)|p−2(p− 2)

(
〈D2P v, v〉 − 〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉
)
.

Specifically, according to the mean value theorem for the function |∇P
+ x|p−2, we achieve

|∇P + x|p−2 = |∇P |p−2 + (p− 2)|∇P + ξ|p−3〈 ∇P + ξ

|∇P + ξ|
, x〉, ξ ∈ [0, x],

where [0, x] represents the segment which connects 0 and x. In particular,

with x = ∇Q, we get

|∇P+∇Q|p−2 = |∇P |p−2+(p−2)|∇P+ξ|p−3〈 ∇P + ξ

|∇P + ξ|
,∇Q〉, ξ ∈ [0,∇Q].

(3.114)

Exploiting the same argument, but for the function

1∣∣∣ ∇P|∇P | + x
∣∣∣ ,

we also obtain

1

|∇P +∇Q|
=

1

|∇P |
∣∣∣ ∇P|∇P | + ∇Q

|∇P |

∣∣∣ =
1

|∇P |

(
1∣∣∣ ∇P|∇P | ∣∣∣ −

∣∣∣∣ ∇P|∇P | + η

∣∣∣∣−2

〈
∇P
|∇P | + η∣∣∣ ∇P|∇P | + η

∣∣∣ , ∇Q|∇P |〉
)

=
1

|∇P |

(
1−

∣∣∣∣ ∇P|∇P | + η

∣∣∣∣−2

〈
∇P
|∇P | + η∣∣∣ ∇P|∇P | + η

∣∣∣ , ∇Q|∇P |〉
)
,
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η ∈
[
0, ∇Q|∇P |

]
, which yields

∇P +∇Q
|∇P +∇Q|

=
∇P +∇Q
|∇P |

(
1−

∣∣∣∣ ∇P|∇P | + η

∣∣∣∣−2

〈
∇P
|∇P | + η∣∣∣ ∇P|∇P | + η

∣∣∣ , ∇Q|∇P | 〉
)

=
∇P
|∇P |

+O(|∇Q|),

since our idea is to let |∇Q| go to 0. As a consequence, putting this condition

together with (3.114), we achieve, by virtue of (3.112),∣∣∣∣|∇(P +Q)|p−2(p− 2)

(
〈D2P v, v〉 − 〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉
)∣∣∣∣ =

(
|∇P |p−2

+ (p− 2)|∇P + ξ|p−3〈 ∇P + ξ

|∇P + ξ|
,∇Q〉

)
(p− 2)

∣∣∣∣〈D2P

(
∇P
|∇P |

+O(|∇Q|)
)
,

∇P
|∇P |

+O(|∇Q|)〉 − 〈D2P
∇P
|∇P |

,
∇P
|∇P |

〉
∣∣∣∣ ≤ (p− 2)

(
|∇P |p−2 + (p− 2)|∇P

+ ξ|p−3|∇Q|
)
O(|∇Q|) ≤ C1|∇P |p−2|∇Q|+ C2|∇P |p−3|∇Q|2,

in other words∣∣∣∣|∇(P +Q)|p−2(p− 2)

(
〈(D2P )v, v〉 − 〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉
)∣∣∣∣

≤ |∇P |p−2|∇Q|(C1 + C2|∇Q||∇P |−1),

(3.115)

because by hypothesis ‖D2P‖ ≤ 1 and |ξ| → 0 if |∇Q| → 0. Concerning the

term

(|∇(P +Q)|p−2 − |∇P |p−2)

(
∆P + (p− 2)〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉
)
,

instead, we get, from (3.114),∣∣∣∣(|∇(P +Q)|p−2 − |∇P |p−2)

(
∆P + (p− 2)〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉
)∣∣∣∣

≤
∣∣∣∣(p− 2)|∇P + ξ|p−3〈 ∇P + ξ

|∇P + ξ|
,∇Q〉

∣∣∣∣ (|∆P |+ (p− 2)

∣∣∣∣D2P
∇P
|∇P |

∣∣∣∣ ∣∣∣∣ ∇P|∇P |
∣∣∣∣ )

which entails∣∣∣∣(|∇(P +Q)|p−2 − |∇P |p−2)

(
∆P + (p− 2)〈D2P

∇P
|∇P |

,
∇P
|∇P |

〉
)∣∣∣∣

≤ (p− 2)2|∇P |p−3|∇Q|(n+ p− 2),

(3.116)
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since ‖D2P‖ ≤ 1 implies |∆P | ≤ n as well and again |ξ| → 0 if |∇Q| → 0.

Lastly, we have to estimate

|∇(P +Q)|p−2(∆Q+ (p− 2)〈D2Qv, v〉).

For this purpose, we recall (3.111) and we obtain, in view of (3.112),

|∇(P +Q)|p−2(∆Q+ (p− 2)〈D2Qv, v〉) = |∇(P +Q)|p−2(tr(D2Q) + (p− 2)

tr(D2Q(v ⊗ v))) = |∇(P +Q)|p−2 tr(D2Q(I + (p− 2)(v ⊗ v)))

≥ |∇(P +Q)|p−2P−1,p−1(D2Q) ≥ |∇(P +Q)|p−2cγ|x− x0|−γ−2(γ + 1− (p− 1)

(n− 1)) ≥ 1

2
|∇P |p−2cγ|x− x0|−γ−2(γ + 1− (p− 1)(n− 1)),

namely

|∇(P +Q)|p−2(∆Q+ (p− 2)〈D2Qv, v〉) ≥ 1

2
|∇P |p−2cγ|x− x0|−γ−2(γ + 1

− (p− 1)(n− 1)),

(3.117)

because |∇Q| → 0.

Therefore, considering together (3.115), (3.116) and (3.117), from (3.113),

(3.111) and the hypothesis ∆pP ≥ µ, it holds

∆pP̄ ≥ µ+ |∇P |p−2|∇Q|
(
− (p− 2)2|∇P |−1(n+ p− 2)− C1 − C2cγ

|x− x0|−γ−1|∇P |−1 +
1

2
|x− x0|−1(γ + 1− (p− 1)(n− 1))

)
,

which gives, if M − 2 < |x− x0| < M, with M very large, and recalling that

|∇P | ≥ 1 + µ,

∆pP̄ ≥ µ+ |∇P |p−2cγ|x− x0|−γ−1

(
− (p− 2)2(n+ p− 2)(1 + µ)−1 − C1

− C2cγ(M − 2)−γ−1(1 + µ)−1 +
1

2
M−1(γ + 1− (p− 1)(n− 1))

)
≥ µ

Cp
,

if M →∞, i.e. x0 is extremely large, and c is sufficiently small as well.

The condition |∇P̄ | > 1 now easily follows by the facts that |∇P | ≥ 1 + µ

and |∇Q| → 0.
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Lemma 3.25. Let Q = cq|x|q + m, where q ≥ 2 and m ∈ R. For every

quadratic polynomial P such that∥∥D2P
∥∥ ≤ 1, ∆pP ≥ µ, |∇P | ≥ 1 + µ,

for some 0 < µ ≤ µ0 small, there exist positive constants cµ and Cp such that

if |cq| ≤ cµ, then

∆pP̄ ≥
µ

Cp
and |∇P̄ | > 1,

where P̄ (x) := P (x) +Q(x).

Proof. Let

P̄ (x) := P (x) +Q(x), (3.118)

where

Q(x) := cq|x|q +m, q ≥ 2. (3.119)

We want to prove that we can choose cq sufficiently small in such a way that

∆pP̄ ≥ µ
Cp
. For this purpose, first, repeating the same computations done to

achieve (3.120), we have

∇Q = cqq|x|q−1 x

|x|
, ∆Q = cqq|x|q−2(q − 2 + n),

D2Q = cqq|x|q−2

(
(q − 2)

x

|x|
⊗ x

|x|
+ I

)
.

(3.120)

Next, since (3.113) is not depending on the particular expression of Q, it is

valid in the same way in this case as well, together with (3.112).

We focus then, as in the proof of Lemma 3.24, on the terms in (3.113). Again,

(3.115) and (3.116) do not rely on the particular expression of Q, so they hold

also in this case. Let us analyze then

|∇(P +Q)|p−2(∆Q+ (p− 2)〈D2Qv, v〉),

and we point out that, repeating the same argument to have (3.117), but

with (3.119), we get, because p > 2,

|∇(P +Q)|p−2(∆Q+ (p− 2)〈D2Qv, v〉) ≥ 1

2
|∇P |p−2cqq|x|q−2(q + n− 2),

(3.121)
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because again we want to let |∇Q| go to 0. Consequently, according to (3.115),

(3.116) and (3.121), we obtain this time from (3.113), (3.120), the hypotheses

∆pP ≥ µ, |∇P | ≥ 1 + µ, µ > 0 and the fact that we ask 1 ≥ |x| ≥ 1
2
,

∆pP̄ ≥ µ+ |∇P |p−2|∇Q|
(
− (p− 2)2|∇P |−1(n+ p− 2)− C1 − C2cqq|x|q−1

|∇P |−1 +
1

2
|x|−1(q + n− 2)

)
≥ µ+ |∇P |p−2|∇Q|

(
− (p− 2)2(1 + µ)−1(n

+ p− 2)− C1 − C2cqq(1 + µ)−1 +
1

2
(q + n− 2)

)
≥ µ+ |∇P |p−2|∇Q|

(−C(n, p)− C1 − C2cqq + C(q, n)),

i.e.

∆pP̄ ≥ µ+ |∇P |p−2|∇Q|(−C(n, p)− C1 − C2cqq + C(q, n)). (3.122)

Now, we distinguish two cases, depending on the sign of

−C(n, p)− C1 − C2cqq + C(q, n).

Precisely, if this is nonnegative then, by (3.122), it directly follows that

∆pP̄ ≥ µ
Cp
, and provided cq is chosen sufficiently small, also |∇P̄ | > 1 is

satisfied. Hence, it remains to consider the case when

−C(n, p)− C1 − C2cqq + C(q, n) < 0.

First, by this we can get a lower bound of (3.122) as

∆pP̄ ≥ µ+ C(P )cqq(−C(n, p)− C1 − C2cqq + C(q, n)), (3.123)

where C(P ) := max
B1

|∇P |p−2 and again because 1 ≥ |x| ≥ 1
2
. Let us focus, at

this point, on the term

C(P )cqq(−C(n, p)− C1 − C2cqq + C(q, n)).

Developing it, we have

−C2C(P )(cqq)
2 + C(P )cqq(−C(n, p)− C1 + C(q, n)),
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and we ask this to be greater or equal to − µ
k(p,q)

, where k(p, q) satisfies

1− 1

k(p, q)
≥ 1

Cp
,

with Cp to be made precise later. Denoting for the sake of simplicity

a := cqq, b := C(P )(−C(n, p)− C1 + C(q, n)),

we need then

−C2C(P )a2 + ab+
µ

k(p, q)
≥ 0,

which is satisfied if

b−
√
b2 + 4C2C(P ) µ

k(p,q)

2C2C(P )
≤ a ≤

b+
√
b2 + 4C2C(P ) µ

k(p,q)

2C2C(P )
.

In particular, since a > 0, the last condition reads

0 < a ≤
b+

√
b2 + 4C2C(P ) µ

k(p,q)

2C2C(P )
.

Therefore, with this choice of a := c(q)q, we achieve from (3.123) ∆pP̄ ≥ µ
Cp
,

and provided cq is chosen enough small, |∇P̄ | > 1 is satisfied as well.

To recap, in both cases, we have ∆pP̄ ≥ µ
Cp

and |∇P̄ | > 1.

As already remarked, we will exploit Lemma 3.25 in the proof of Lemma

3.21. Specifically, we will see that the proofs of Lemma 3.21 and 3.23 follow

the same structure. So, we state the correspondent lemma to Lemma 3.25

which will be employed in the proof of Lemma 3.23.

Lemma 3.26. Let Q = cq|x|q + m, where q ≥ 2 and m ∈ R. For every

quadratic polynomial P such that∥∥D2P
∥∥ ≤ 1, ∆pP ≤ −µ, |∇P | ≤ 1− µ

for some 0 < µ ≤ µ0 small, there exist positive constants cµ and Cp such that

if |cq| ≤ cµ, then

∆pP̄ ≤ −
µ

Cp
and |∇P̄ | < 1,

where P̄ (x) := P (x) +Q(x).
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We now give the proofs of Lemma 3.21 and 3.23. Actually, in these proofs

there is a tricky point we are still facing and which we will point out for clarity

in the proof of Lemma 3.21.

Proof of Lemma 3.21. Let us assume first that u > 0 in B1. Then, the con-

clusion follows by Lemma 3.17. Indeed, let us assume that the thesis of

Lemma 3.21 is not true. This means that P ≤ u in B1 and P touches u by

below at x0 in B1/2. According to Lemma 3.17, we know that

‖u− v‖L∞(B1/2) ≤ c(σ), c(σ)→ 0 as σ → 0, (3.124)

with v the p-harmonic replacement of u in B1. In particular from (3.124),

since u(x0) = P (x0), x0 ∈ B1/2, we get

v(x0)− c(σ) ≤ u(x0) = P (x0), c(σ)→ 0 as σ → 0,

i.e.

v(x0)− c(σ) ≤ P (x0), c(σ)→ 0 as σ → 0. (3.125)

Moreover, because v is the p-harmonic replacement of u in B1, we have that

v = u on ∂B1. Therefore, because P ≤ u in B1 implies (by continuity)

P ≤ u on ∂B1 as well, we obtain P ≤ v on ∂B1. Now, using the comparison

principle for the p−Laplace operator, see [64, Remark at p. 11], we con-

clude that P ≤ v in all of B1, because by hypothesis the polynomial P is a

p−subsolution. Nevertheless, from (3.125) we deduce that it is not possible to

have P < v in whole B1/2, so it has to occur that either P ≡ v in B1/2 or there

exists a sequence of points {xj}j∈N ⊂ B1/2 such that P (xj) = v(xj), but not

P ≡ v in B1/2. The first alternative can not happen, since v is p-harmonic,

whereas P is strictly p-subharmonic (a strict subsolution of the p−Laplace

equation). It remains to analyze the second case. This second alternative is

a little bit tricky and it should follow in view of a compactness argument we

are dealing with. However, let us suppose, for the moment, that even this

second possibility is valid. Therefore, to recap, it can not hold that P < v

in whole B1/2.
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Now we assume by contradiction that there exists a quadratic polynomial

such that u ≥ P, u(x0) = P (x0) for some x0 ∈ B1/2 and |∇P | ≥ 1 + µ. We

know that D2P is bounded, u is Lipschitz and P touches u by below at x0.

As a consequence P is uniformly Lipschitz continuous in B1, with Lipschitz

constant independent from P. Indeed, from the fact that P touches u by

below at x0, we achieve

∇(u− P )(x0) = 0,

which yields, in view of (3.91),

|∇P (x0)| = |∇u(x0)| ≤ K. (3.126)

Moreover, since ‖D2P‖ ≤ 1, we get

|∇P (x)−∇P (x0)| ≤
∥∥D2P

∥∥ |x− x0| ≤ |x|+ |x0| ≤ 2, x ∈ B1,

namely

|∇P (x)−∇P (x0)| ≤ 2, x ∈ B1.

Putting together this condition with (3.126), we then have

|∇P (x)| ≤ |∇P (x0)|+ |∇P (x)−∇P (x0)| ≤ K + 2, x ∈ B1,

which lastly implies that P is uniformly Lipschitz continuous in B1, with

Lipschitz constant independent of P.

Now, instead of perturbing the polynomial with a function w satisfying

∆pw = −1, see for instance [20] for the proof of ∆p|x|
p
p−1 = cp,n, we exploit

the result proved in Lemma 3.25. Indeed we define, similarly to the classical

case,

P̄ := P + µc2(1− |x|2), (3.127)

so that we can apply Lemma 3.25 for q = 2. In particular, we have ∆pP̄ ≥ µ
Cp

and |∇P̄ | > 1. Being P̄ Lipschitz continuous in B1, we achieve that P̄+ is

Lipschitz continuous in B1 as well. Indeed, if either P̄+ = P̄ or P̄ = 0 in
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a couple of points, the Lipschitz continuity is clear. It remains to check the

fact when P̄+(x) = P̄ (x) and P̄+(y) = 0, x, y ∈ B1. In this case, we have

|P̄+(x)− P̄+(y)| = |P̄+(x)| = P̄+(x) = P̄ (x) ≤ P̄ (x)− P̄ (y) ≤ L|x− y|,

namely

|P̄+(x)− P̄+(y)| ≤ L|x− y|, x, y ∈ B1,

since, because P̄+(y) = 0, P̄ (y) ≤ 0, and thus −P̄ (y) ≥ 0. As a consequence,

P̄+ is actually Lipschitz continuous.

By the Lipschitz continuity of P̄+, together with that of u, we then obtain

that

|(P̄+ − u)(x)− (P̄+ − u)(x0)| ≤ L|x− x0| in Bc̄µ(x0),

which gives, in view of (3.127), since u(x0) = P (x0), x0 ∈ B1/2,

(P̄+ − u)(x) ≥ (P̄+ − u)(x0)− L|x− x0| = µc2(1− |x0|2)− L|x− x0|

in other words

P̄+ − u ≥ µ

C1

in Bc̄µ(x0), (3.128)

with c̄ sufficiently small.

At this point, let us set

umax := max{u, P̄+}, umin := min{u, P̄+}, (3.129)

and we remark that

umax = u, umin = P̄+ on ∂B1, (3.130)

because P ≤ u in B1 implies by continuity P ≤ u on ∂B1 as well and

P̄ = P + µc2(1− |x|2) = P ≤ u on ∂B1,

which yields P̄+ ≤ u on ∂B1, since u ≥ 0 everywhere.

Then, using (3.130), we get, according to (3.91),

Jp(u,B1) ≤ Jp(umax, B1) + σ,
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which can be rewritten as

Jp(umin, B1)− Jp(P̄+, B1) ≤ σ. (3.131)

Precisely, by virtue of (3.129), we have

Jp(u,B1)− Jp(umax, B1) =

ˆ
B1∩{u≥P̄+}

(|∇u|p + χ{u>0})dx

+

ˆ
B1∩{u<P̄+}

(|∇u|p + χ{u>0})dx−
ˆ
B1∩{u≥P̄+}

(|∇u|p + χ{u>0})dx

−
ˆ
B1∩{u<P̄+}

(|∇P̄+|p + χ{P̄+>0})dx =

ˆ
B1∩{u<P̄+}

(|∇u|p + χ{u>0})dx

−
ˆ
B1∩{u<P̄+}

(|∇P̄+|p + χ{P̄+>0})dx =

ˆ
B1∩{u<P̄+}

(|∇u|p + χ{u>0})dx

−
ˆ
B1∩{u<P̄+}

(|∇P̄+|p + χ{P̄+>0})dx±
ˆ
B1∩{u≥P̄+}

(|∇P̄+|p + χ{P̄+>0})dx

=

ˆ
B1

(|∇umin|p + χ{umin>0})dx−
ˆ
B1

(|∇P̄+|p + χ{P̄+>0})dx,

which hence entails

Jp(u,B1)− Jp(umax, B1) = Jp(umin, B1)− Jp(P̄+, B1),

and so (3.131) holds.

We claim, at this point, that

Jp(umin, B1)− Jp(P̄+, B1) ≥ µ

Cp

ˆ
B1

(P̄+ − umin)dx.

Then this claim, together with (3.128) and (3.131), lastly implies that

σ ≥ Jp(umin, B1)− Jp(P̄+, B1) ≥ µ

Cp

ˆ
B1

(P̄+ − umin)dx ≥ µ

Cp

ˆ
Bc̄µ

(P̄+

− umin)dx ≥ µ

Cp

ˆ
Bc̄µ(x0)

(P̄+ − u)dx =
µ

Cp

µ

C1

|Bc̄µ(x0)| = cµn+2,

that is σ ≥ cµn+2, which gives a contradiction with the hypothesis σ ≤ µn+p+1

and µ small. As a consequence, Lemma 3.21 holds.

It remains to show that the claim is true. For this purpose, we minimize the

functional

Fp(v) :=

ˆ
B1

(
|∇v|p + χ{v>0} +

µ

Cp
(v − P̄+)

)
dx (3.132)
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among all functions 0 ≤ v ≤ P̄+ which are equal to P̄+ on ∂B1, and we

argue that P̄+ is the minimizer. This fact will yield the claim since umin is

an admissible competitor. Indeed, by (3.132), if P̄+ is the minimizer and

umin is a competitor, we have

Fp(P̄
+) = Jp(P̄

+, B1) ≤ Fp(umin) =

ˆ
B1

(
|∇umin|p + χ{umin>0} +

µ

Cp
(umin

− P̄+)

)
dx = Jp(umin, B1) +

µ

Cp

ˆ
B1

(umin − P̄+)dx,

namely the claim holds.

To prove that P̄+ is actually the minimizer, we first remark that in the region

where the minimizer v is strictly below P̄+, v satisfies in a variational sense

the following problem ∆pv = µ
pCp

in {v > 0},

|∇v|p = 1
p−1

on F (v),
(3.133)

see [61] or [33]. About, instead, the fact that v is also solution of (3.133) in the

viscosity sense, it is a more delicate argument, that we are still investigating.

Let us assume, for the moment, that it is true, as we would expect.

This facts means that v fulfills the comparison principle with the contin-

uous family of functions (P̄ + t)+, which are classical subsolutions to (3.133),

because ∆pP̄ ≥ µ
Cp
, so that ∆pP̄ ≥ µ

pCp
, and |∇P̄ | > 1, see [61] for the de-

tails. In particular, we can increase t from a large negative constant up to

t = 0 and thus we achieve that v ≡ P̄+.

Proof of Lemma 3.23. The proof follows the same scheme of the previous

one, so we only sketch it. Exploiting the same argument used in the proof

of Lemma 3.21, but with opposite inequalities, we get the conclusion in case

u > 0. Therefore, it suffices to assume that |∇P | ≤ 1 − µ and we suppose

that the conclusion does not hold, i.e. u ≤ P+ in B1 and u(x0) = P+(x0)

with x0 ∈ B1/2∩{P > 0}. We define, at this point, as in the proof of Lemma

3.21,

P̄ := P − µc2(1− |x|2), c2 > 0, (3.134)
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so that in this case Lemma 3.26 applies since ‖D2P‖ ≤ 1 and ∆pP ≤ −µ,
and thus we have ∆pP̄ ≤ − µ

Cp
and |∇P̄ | < 1. Setting again

umax := max{u, P̄+}, umin := min{u, P̄+}, (3.135)

we note this time that umin = u on ∂B1, because by continuity u ≤ P+ in

B1 implies u ≤ P+ on ∂B1 as well and in view of (3.134), P+ = P̄+ on ∂B1.

As a consequence, (3.91) yields then

Jp(u,B1) ≤ Jp(umin, B1) + σ,

which can be rewritten as

Jp(umax, B1)− Jp(P̄+, B1) ≤ σ, (3.136)

using the same computation exploited to obtain (3.131).

Furthermore, as before, it turns out that P̄+ is the minimizer of the functional

Fp(v) :=

ˆ
B1

(
|∇v|p + χ{v>0} +

µ

Cp
(P̄+ − v)

)
dx (3.137)

among all competitors v ≥ P̄+ which are equal to P̄+ on ∂B1. The argument

used is again that the minimizer v satisfies the comparison principle with the

continuous family of functions (P̄ + t)+, t ≥ 0, which are in this case classical

supersolutions to ∆pv = − µ
pCp

in {v > 0},

|∇v|p = 1
p−1

on F (v),
(3.138)

because ∆pP̄ ≤ − µ
Cp

and so also ∆pP̄ ≤ − µ
pCp

, and |∇P̄ | < 1. We point out

that v is a viscosity solution to (3.138).

The fact that P̄+ is the minimizer of (3.137) then entails that

σ ≥ Jp(umax, B1)− Jp(P̄+, B1) ≥ µ

Cp

ˆ
B1

(umax − P̄+)dx, (3.139)

hence we are left with the proof that the right hand side is greater than cµn+2

to conclude as above. To this end, we have to distinguish two cases.
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If u(x0) < c2µ
8
, we can deduce first from u(x0) = P+(x0) that P (x0) < c2µ

8
.

In addition, by the mean value theorem, together with the assumption |∇P |
≤ 1− µ < 1, we have

|P (x)− P (x0)| ≤ |x− x0| <
c2µ

8
in B c2µ

8
(x0),

which gives, using P (x0) < c2µ
8
,

P (x) < P (x0) +
c2µ

8
<
c2µ

4
in B c2µ

8
(x0),

namely P < c2µ
4

in B c2µ
8

(x0). In particular, according to (3.134), this fact

then implies

P̄ = P−µc2(1−|x|2) <
c2µ

4
−µc2

(
1−1

4

)
=
c2µ

4
−µc2

3

4
= −c2µ

2
in B c2µ

8
(x0)

i.e. P̄ < 0 in B c2µ
8

(x0), since we can suppose that B c2µ
8

(x0) ⊂ B1/2 provided

µ is small enough. As a consequence, we also obtain

P̄+ ≡ 0 in B c2µ
8

(x0). (3.140)

Now, we distinguish two cases, that is whether u(x0) > 0 or not. Let us

begin with the case u(x0) > 0. Then, provided µ is sufficiently small, we can

assume that u > 0 in whole B c2µ
8

(x0). Therefore, by virtue of Lemma 3.20,

Lipschitz continuity of u, (3.140) and (3.135), since u ≥ 0 everywhere, we

achieve

umax − P̄+ = u ≥ u(x0)− L|x− x0| ≥ c(K)− Lc′µ = c(K)µ

in B ⊂ B c2µ
8

(x0), |B| ∼ µn,

if c′ is small enough, which yields that the right hand side in (3.139) is greater

than cµn+2.

If instead x0 ∈ ∂{u > 0}, the desired conclusion would follow from the

strong nondegeneracy of u, nevertheless we recall that do not have the strong

nondegeneracy for u yet. However, for the moment, we assume that such

property holds . Consequently, we get

max
B c2µ

8
(x0)

u = u(xM) ≥ c(K)
c2µ

8
.



3.6 Partial regularity of the free boundary 189

Now, if we take B = Bc′µ(xM) ⊂ B c2µ
8

(x0) this condition entails, together

with the Lipschitz continuity of u,

u(x) ≥ u(xM)− L|x− xM | ≥ c(K)
c2µ

8
− Lc′µ = c(K)µ in Bc′µ(xM)

if c′ is sufficiently small, and hence, from (3.140), since u ≥ 0 everywhere,

umax − P̄+ = u ≥ c(K)µ in Bc′µ(xM),

which gives that the right hand side in (3.139) is greater than cµn+2.

If u(x0) ≥ c2µ
8
, then, according to the fact that u(x0) = P+(x0) and (3.134),

we achieve u(x0) ≥ P̄+(x0), which gives by continuity u ≥ P̄+ and so u

= umax in Bc′µ(x0). This, together with the Lipschitz continuity of u and P̄+,

lastly yields

(umax − P̄+)(x) ≥ (u− P̄+)(x0)− L|x− x0| ≥ µc2(1− |x0|2)− Lc′µ ≥ cµ

in Bc′µ(x0), in other words

umax − P̄+ ≥ cµ in Bc′µ(x0),

which implies that the right hand side in (3.139) is greater than cµn+2.

3.6.2 Partial regularity of the free boundary

As in the classical case, see [30], this subsection provides the proof of

the main regularity result for the free boundary of almost minimizers. Our

proof is inspired by the techniques developed in [61], which have been largely

inspired by the techniques in [26]. The structure of the subsection will follow

that of the corresponding subsection in [30]. All the results in the current

subsection are expected ones, but not completely proved, since they depend

on both Lemma 3.21 and 3.23. Therefore, as previously anticipated, they are

labeled with “Expected”.

First of all, we present the statement of the main theorem.
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Expected Theorem 3.27 (Flatness implies regularity). Let u be an almost

minimizer for Jp in B1 (with constant κ and exponent β) and assume that

|∇u| ≤ K. Suppose also that |u − x+
n | ≤ ε0 in B1 and 0 ∈ F (u) := ∂{u >

0} ∩B1. Then, if ε0 and κ are small enough depending on β and K, it holds

that F (u) is C1,α in a neighborhood of 0, for some α ≤ β/(n+ p+ 2).

As in the classical case [30], it turns out that Theorem 3.27 is a direct

consequence of an improvement of flatness lemma. The precise statement of

the improvement of flatness lemma is the following.

Expected Lemma 3.28 (Improvement of flatness). Let u satisfy (3.91).

Suppose also that |u − x+
n | ≤ ε in B1, 0 ∈ F (u) and σ in (3.91) satisfies

σ ≤ εn+p+2. Then, given α ∈ (0, 1), there exists η depending on α such that

|u− (x · ν)+| ≤ εη1+α in Bη (3.141)

for some unit direction ν, provided that ε ≤ ε0(K,α) is small enough.

About the proof of Lemma 3.28, instead, we do not provide it immedi-

ately. Before giving it, we point out indeed that due to results in subsection

3.6.1, the proof of Lemma 3.28 follows the scheme of the case of minimizers as

in [61]. In particular, we sketch the details in the following two subsections.

3.6.3 Two properties

Let us define first the ε-scaled function

ūε :=
u− xn
ε

in the set {u > 0} ∩B1, (3.142)

and we introduce the notation

B+
ρ := Bρ ∩ {xn > 0}

Γρ := Bρ ∩ {xn = 0}
(3.143)

We introduce now two properties (P1) and (P2) for the function u which

result to be sufficient for obtaining the approximation of ūε as in (3.142)
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with solutions of the linearized Neumann problemLpū0 = 0 in B+
1/2,

∂ν ū0 = 0 on Γ1/2,
(3.144)

with ν := en and Lp := ∆ + (p − 2)∂nn, and for achieving the improvement

of flatness Lemma 3.28. These properties are written in terms of two small

parameters δ and ε > 0.

(P1) Harnack inequality, (see Theorem 3.2 in [61]).

Given δ > 0, there exists ε0 = ε0(δ) so that if ε ≤ ε0,

u ≥ l+ := (xn + a)+ in Br(x0) ⊂ B1,

with a constant, r ≥ δ, |a| ≤ ε and

u(y) ≥ l+(y) + γε for some y for which Br/2(y) ⊂ {l+ > 0} ∩Br(x0),

for some γ ∈ [δ, 1], then

u ≥ (xn + a+ cγε)+ in Br/2(x0),

with c > 0 universal.

In a similar way, the above is true when we replace ≥ by ≤ and γ by −γ.

(P2) Viscosity property. Given δ > 0, there exists ε0 = ε0(δ) so that if ε ≤ ε0

we cannot have u(x0) = P (x0) and u ≥ P in Bδ(x0) ⊂ B1, where P

is a quadratic polynomial with ‖D2P‖ ≤ δ−1ε, ∆pP ≥ δε, and in the

ball Bδ(x0) either u > 0 or |∇P | > 1 + δε.

In a similar way, the above is true when u ≤ P, ∆pP ≤ −δε and

|∇P | < 1− δε.

At this point, we show that (P1) and (P2) are enough to get the improvement

of flatness property as in [61].

Precisely, we first state and prove a lemma which roughly says that a func-

tion u which satisfies (P1) and (P2), satisfies the improvement of flatness
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property as well. Secondly, we show that if u verifies the hypotheses of the

improvement of flatness Lemma 3.28, then it satisfies (P1) and (P2).

Expected Lemma 3.29. Suppose a family of functions u satisfy properties

(P1) and (P2). If |u− x+
n | ≤ ε in B1 and 0 ∈ F (u), then

|u− (x · ν)+| ≤ εη1+α in Bη

with ν a unit direction, provided that ε ≤ ε1 with ε1 depending on n, α and

the dependence δ 7→ ε0(δ) of properties (P1) and (P2).

Proof. The proof is achieved by compactness. Precisely, we argue by con-

tradiction and we find sequences εk → 0 and a sequence of functions uk

satisfying the assumptions but not the conclusion of Lemma 3.29. Let, at

this point,

ūk :=
uk − xn
εk

in the set {uk > 0} ∩B1. (3.145)

Then, taking εk ≤ ε0(δk) with δk = 2−k, property (P1) together with the

Ascoli-Arzelà theorem produce that (up to a subsequence) the graphs of

ūk converge in the Hausdorff distance to the graph of a Hölder function ū0

defined in the half ball B+
1/2 ∪ Γ1/2, see [61].

Now, we want to show that the property (P2) entails that the function ū0

satisfies (3.144) in the viscosity sense. To this end, we take a quadratic

polynomial Q which touches ū0 from below at some point x0 ∈ B+
1/2 ∪ Γ1/2.

By the convergence of the graphs of ūk to the graph of ū0, this means that

there exist constants ck → 0 such that Q + ck touches ūk from below at

xk → x0 in a fixed neighborhood of x0. In particular, using the definition of

ūk as in (3.145), this also implies that

Pk := xn + εk(Q+ ck) (3.146)

touches uk by below at xk. At this point, we distinguish two cases.

(i) If x0 ∈ B+
1/2, we have to prove that (∆Q+(p−2)Qnn)(x0) ≤ 0. For this

purpose, let us assume by contradiction that ∆Q+(p−2)Qnn > 0. Then,
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choosing δ > 0 sufficiently small, we can assume that ‖D2Q‖ ≤ δ−1,

∆Q + (p − 2)Qnn ≥ C1δ, with C1 to be made precise later, and that

Pk as in (3.146) touches uk from below at xk in a δ-neighborhood Ok
of xk. Without loss of generality, we can assume that Ok = Bδ(xk).

The strategy now is to contradict property (P2) for uk by means of Pk.

We note first that since (x0)n > 0, for k large also (xk)n > 0. Thus, in

view of (3.146), taking δ and εk sufficiently small, we get that Pk > 0

in Bδ(xk). Precisely, because xn > (xk)n − δ and Q ≥ min
Bδ(xk)

Q = C(Q)

in Bδ(xk), we have from (3.146)

Pk > (xk)n − δ + εk(C(Q) + ck) ≥
(x0)n

2
− δ + εk(C(Q) + ck) > 0

in Bδ(xk), if indeed δ and εk are small enough. Moreover, ‖D2Q‖ ≤ δ−1

immediately gives by (3.146) ‖D2Pk‖ ≤ δ−1εk. So, it remains to check

that ∆pPk ≥ δεk. For this, we compute

∆pPk = |∇Pk|p−2(εk∆Q+ (p− 2)|∇Pk|−2〈εkD2Q(en + εk∇Q), en + εk

∇Q〉) = |∇Pk|p−2(εk∆Q+ (p− 2)|∇Pk|−2εk〈D2Qen, en〉+ (p− 2)

|∇Pk|−2(2ε2
k〈D2Qen,∇Q〉+ ε3

k〈D2Q∇Q,∇Q〉))

which yields

∆pPk = |∇Pk|p−2(εk(∆Q+ |∇Pk|−2(p− 2)Qnn) + (p− 2)|∇Pk|−2(2ε2
k

〈D2Qen,∇Q〉+ ε3
k〈D2Q∇Q,∇Q〉)).

(3.147)

Let us analyze the terms in (3.147) separately. About

|∇Pk|p−2εk(∆Q+ |∇Pk|−2(p− 2)Qnn),

we remark first that |∇Pk| → 1 as εk → 0. As a consequence, because

∆Q+ (p− 2)Qnn > 0 by the assumption on Q, we obtain

∆Q+ |∇Pk|−2(p− 2)Qnn → ∆Q+ (p− 2)Qnn > 0 as εk → 0,
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which means by the definition of limit that

∆Q+ |∇Pk|−2(p− 2)Qnn ≥
∆Q+ (p− 2)Qnn

2
≥ C1δ

2
for k large,

that is

∆Q+ |∇Pk|−2(p− 2)Qnn ≥
C1δ

2
for k large. (3.148)

In addition, always since |∇Pk| → 1 as εk → 0, we can assume for

instance that |∇Pk| ≥ 1/2 for these k’s. Hence, using (3.148), we

achieve, because p > 2,

|∇Pk|p−2εk(∆Q+ |∇Pk|−2(p− 2)Qnn) ≥ εk

(
1

2

)p−2
C1δ

2
for k large.

(3.149)

Concerning the term

(p− 2)|∇Pk|p(2ε2
k〈D2Qen,∇Q〉+ ε3

k〈D2Q∇Q,∇Q〉),

instead, we first note that for previous k’s large for which |∇Pk| ≥ 1/2,

it also holds |∇Pk| ≤ 3/2, thus we get for these k’s, because ‖D2Q‖
≤ δ−1 and |∇Q| ≤ C(Q) = max

Bδ(xk)
|∇Q|,

(p− 2)|∇Pk|p(2ε2
k〈D2Qen,∇Q〉+ ε3

k〈D2Q∇Q,∇Q〉) ≥ (p− 2)|∇Pk|p

(−2ε2
k‖D2Q‖|en||∇Q| − ε3

k‖D2Q‖|∇Q||∇Q|) ≥ −(p− 2)

(
3

2

)p
(2ε2

k

δ−1C(Q) + ε3
kδ
−1C(Q)2)

and we ask

−(p−2)

(
3

2

)p
(2ε2

kδ
−1C(Q)+ε3

kδ
−1C(Q)2) ≥ −c1εkδ, with c1 universal.

In other words, we want

(p− 2)

(
3

2

)p
(2ε2

kδ
−1C(Q) + ε3

kδ
−1C(Q)2) ≤ c1εkδ, with c1 universal,
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namely

(p− 2)

(
3

2

)p
(2εkδ

−1C(Q) + ε2
kδ
−1C(Q)2) ≤ c1δ, with c1 universal,

and this is true if εk is sufficiently small, i.e. if k is large enough. To

recap, we have obtained

(p− 2)|∇Pk|p(2ε2
k〈D2Qen,∇Q〉+ ε3

k〈D2Q∇Q,∇Q〉) ≥ −c1εkδ,

with c1 universal and k large.

Putting together this condition with (3.149), we then achieve, by virtue

of (3.147),

∆pPk ≥ εk

(
1

2

)p−2
C1δ

2
− c1εkδ ≥ εkδ,

if C1 is sufficiently large, which gives ∆pPk ≥ δεk.

Therefore, to sum up, we have that Pk touches uk from below in Bδ(xk)

at xk, with ‖D2Pk‖ ≤ δ−1εk, ∆pPk ≥ δεk and uk > 0 in Bδ(xk). This

fact contradicts property (P2) for uk and hence ∆Q+ (p− 2)Qnn > 0

can not happen. As a consequence, ∆Q+ (p− 2)Qnn(x0) ≤ 0.

(ii) If x0 ∈ Γ1/2, we want to show that Qn(x0) ≤ 0. Suppose by contra-

diction that Qn(x0) > 0. Then, proceeding as above, we find that Pk

as in (3.146) touches uk from below in {uk > 0} ∩B2δ(x0) at xk → x0.

Provided δ is sufficiently small, we can assume that Qn(x0) > δ. At this

point, exploiting (3.146), we notice that ∂nPk = 1 + εkQn ≥ 1 + δεk if

again δ is small enough, which thus implies that Qn ≥ δ in {uk > 0}
∩ B2δ(x0). This remark yields that both Pk is increasing in the xn di-

rection and |∇Pk| ≥ ∂nPk ≥ 1 + δεk in {uk > 0} ∩ B2δ(x0), namely

|∇Pk| ≥ 1 + δεk in {uk > 0} ∩ B2δ(x0). In particular, the fact that Pk

is increasing in the xn direction entails that Pk is below uk in a whole

δ-neighborhood of xk, which we can assume to be Bδ(xk). Indeed, if

xk ∈ {uk > 0} ∩ B2δ(x0), it immediately follows from the remark that

{uk > 0}∩B2δ(x0) is open, whereas we need the xn-monotonicity of Pk
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if xk ∈ ({uk > 0} \ {uk > 0}) ∩B2δ(x0), because we only have Pk ≤ uk

in Bδ(xk) ∩ {uk > 0}. Nevertheless, by the xn-monotonicity of Pk and

the fact that |u−x+
n | ≤ εk, Pn ≤ 0 in {uk > 0}

c
∩Bδ(xk). Consequently,

Pk is actually below uk in Bδ(xk).

To recap, we have that Pk touches uk from below in Bδ(xk) at xk,

with Pk satisfying ‖D2Pk‖ ≤ δ−1εk and ∆pPk ≥ εkδ by (i). Hence,

since in addition |∇Pk| ≥ 1 + δεk in {uk > 0} ∩ B2δ(x0), and thus

|∇Pk| ≥ 1 + δεk in Bδ(xk) as well, we contradict property (P2) for uk

again and this implies that Qn(x0) ≤ 0.

A similar argument can be used if a quadratic polynomial Q touches ū0 from

above at some point x0 ∈ B+
1/2∪Γ1/2, exploiting the version of property (P2)

for quadratic polynomials touching from above.

As a consequence, ū0 is actually a viscosity solution to (3.144).

Now, we sketch the conclusion of the lemma, see [61] for the details. Precisely,

from Lemma 2.8 in [61], we know that

|ū0(x)− ū0(0)−∇ū0(0) · x| ≤ C0η
2 in B+

η ∪ Γη, (3.150)

where, specifically, ū0(0) = 0, since ūk(0) = 0 for every k and ūk converge

uniformly to ū0. Therefore, choosing η > 0 sufficiently small depending only

on α and n, we also get by (3.150)

|ū0 − l| ≤
1

2
η1+α in B+

η ∪ Γη.

At this point, we argue as in [61] to obtain that each uk satisfies the conclusion

of Lemma 3.29, which is a contradiction with our assumptions on uk’s.

3.6.4 Properties (P1) and (P2) are satisfied

To get Lemma 3.28 it is enough to show that if σ ≤ εn+p+2 then properties

(P1) and (P2) are satisfied by u. About (P1), in view of Remark 3.16 it is

sufficient to analyze the case Br(x0) = B1 and replace σ by

σ̄ := r−nσ. (3.151)
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Furthermore, we assume a = 0 for simplicity. At this point, we want to apply

Lemma 3.18 to u and xn. Indeed, we know by assumptions of property (P1)

that u ≥ x+
n ≥ xn in B1, with xn p−harmonic and ∇xn 6= 0. In addition, we

also have

u(y) ≥ y+
n + γε for some y for which B1/2(y) ⊂ {x+

n > 0} ∩B1. (3.152)

Hence, we can consider u ≥ xn in B1/2(y) and since B1/2(y) ⊂ {x+
n > 0}∩B1,

it holds, from u ≥ xn in B1/2(y), that B1/2(y) ⊂ {u > 0} as well. As

a consequence, according to (3.152), we can apply Lemma 3.18 to u and

xn with µ = γε provided that σ̄ ≤ µn+p+1. This condition, in particular,

follows by (3.151) and the fact that σ ≤ εn+p+2. Precisely, using (3.151) and

σ ≤ εn+p+2, we achieve

σ̄ = r−nσ ≤ δ−nεn+p+2 ≤ (γε)n+p+1 = µn+p+1,

where γ ≥ δ in the hypotheses of property (P2) and taking ε small depending

on δ, for instance ε ≤ δ2n+p+1. We can then apply Lemma 3.18 to obtain

u ≥ xn + cγε in B1/4(y). (3.153)

We note now that B1/2(y) ⊂ B1 means that |y| ≤ 1/2, so B1/4(y) ⊂ B3/4.

Moreover, the fact that B1/2(y) ⊂ {xn > 0} implies yn = 1/2, from which

we deduce that B1/4(y) ⊂ {xn ≥ 1/4}. To recap, we have B1/4(y) ⊂ B3/4

∩ {xn ≥ 1/4}. Consequently, we can actually extend (3.153) to the whole

B3/4 ∩ {xn ≥ c0(n)}, with c0(n) a universal constant to be fixed, provided

changing c and exploiting that B3/4 ∩ {xn ≥ c0(n)} is bounded. Therefore,

we get, from (3.153),

u ≥ xn + cγε in B3/4 ∩ {xn ≥ c0(n)},

which also gives, because xn ≥ c0(n) > 0,

u ≥ x+
n + cγε in B3/4 ∩ {xn ≥ c0(n)}. (3.154)



198 3. Regularity of almost minimizers for the p-Laplacian

At this point, we want to apply Corollary 3.22 to show that u must be greater

than

P := xn +
c

2
γε(c0 + xn + 2nx2

n − |x′|2) (3.155)

in the cylinder

C := {|xn| ≤ 2c0, |x′| ≤ 1/4}.

To do this, we need that u ≥ P in a δ-neighborhood of ∂C, with ‖D2P‖ ≤ δ−1,

∆pP ≥ µ, µ small, and either u > 0 or |∇P | ≥ 1+µ in C. Let us start checking

the differential conditions on P. Precisely, by virtue of (3.155), we have

∇P = en +
c

2
γε(en + 4nxnen − 2x′) =

(
1 +

c

2
γε(1 + 4nxn)

)
en − cγεx′,

D2P = cγε



−2 0 · · · · · · 0

0 −2 0 · · · 0
... 0

. . .
... 0

...
... 0

. . . 0

0 0 0 0 4n


,

∆P =
c

2
γε(4n− 2(n− 1)) =

c

2
γε(2n+ 2) = cγε(n+ 1).

Then, using the expression of D2P, we get

‖D2P‖ = cγε4n ≤ δ−1, (3.156)

with δ small to be chosen later, provided c and ε are sufficiently small.

In parallel, exploiting the equality for ∇P, we obtain

|∇P |2 =

(
1 +

c

2
γε(1 + 4nxn)

)2

+ (cγε)2|x′|2 ≥
(

1 +
c

2
γε(1− 8nc0)

)2

≥
(

1 +
c

4
γε

)2

= (1 + µ)2 in C,

which yields

|∇P | ≥ 1 + µ in C, (3.157)

taking µ = cγε/4 and c0 such that

1− 8nc0 ≥
1

2
⇐⇒ 8nc0 ≤

1

2
⇐⇒ c0 ≤

1

16n
.
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The conditions above let us to compute ∆pP as well. Indeed, we have

∆pP = |∇P |p−2(∆P + (p− 2)|∇P |−2〈D2P∇P,∇P 〉) = |∇P |p−2(cγε(n+ 1)

+ (p− 2)|∇P |−2〈(−2P1, . . . ,−2Pn−1, 4nPn),∇P 〉) = |∇P |p−2(cγε(n+ 1)

+ (p− 2)|∇P |−2(−2P 2
1 − · · · − 2P 2

n−1 + 4nP 2
n)) = |∇P |p−2(cγε(n+ 1)

+ (p− 2)|∇P |−2(−2|∇P |2 + (4n+ 2)P 2
n)) = |∇P |p−2(cγε(n+ 1)− 2

(p− 2) + (p− 2)|∇P |−2(4n+ 2)P 2
n),

namely

∆pP = |∇P |p−2(cγε(n+ 1)− 2(p− 2) + (p− 2)|∇P |−2(4n+ 2)P 2
n). (3.158)

Let us analyze now the term |∇P |−2P 2
n . Specifically, using the expression of

∇P, we achieve

P 2
n

|∇P |2
=

(
1 +

c

2
γε(1 + 4nxn)

)2

(
1 +

c

2
γε(1 + 4nxn)

)2

+ (cγε)2|x′|2
≥ 1

2
in C,

choosing c and ε small enough, since |xn| ≤ 2c0 and |x′| ≤ 1/4 in C. Exploiting

this inequality, we then obtain, in view of (3.158) and (3.157),

∆pP ≥ |∇P |p−2

(
cγε(n+ 1)− 2(p− 2) + (p− 2)(4n+ 2)

1

2

)
≥ (1 + µ)p−2(cγε(n+ 1) + (p− 2)(2n− 1)) ≥ µ,

i.e.

∆pP ≥ µ,

if µ is sufficiently small. To recap, putting together this last condition with

(3.156) and (3.157), we have ‖D2P‖ ≤ δ−1, |∇P | ≥ 1+µ in C and ∆pP ≥ µ.

So, it remains to show that u ≥ P in a δ-neighborhood of ∂C to can apply

Corollary 3.22 to u and P. To this end, we distinguish two cases. If c0 ≤ xn

≤ 2c0, this fact follows directly from (3.154) if c0 is sufficiently small depend-

ing on n. Precisely, by (3.154) we get, always using (3.155),

P ≤ xn +
c

2
γε(c0 + 2c0 + 8nc2

0) ≤ x+
n + cγε ≤ u in B3/4 ∩ {c0 ≤ xn ≤ 2c0},



200 3. Regularity of almost minimizers for the p-Laplacian

which implies, if we call O a δ-neighborhood of ∂C,

P ≤ u in O ∩ {c0 ≤ xn ≤ 2c0}, (3.159)

provided that c0 is small enough depending on n.

About the complementary case, what we want to prove is a consequence of

the hypothesis

u ≥ x+
n in B1

of Property (P1). Actually, if −2c0 ≤ xn ≤ −c0, provided c and ε are

sufficiently small, we have P ≤ 0 from (3.155) and thus, because u ≥ 0,

u ≥ P in {−2c0 ≤ xn ≤ −c0}. Hence, it remains to consider the case

−c0 < xn < c0. Here, a δ-neighborhood O of ∂C is guaranteed by the fact

that |x′| > 1/4− δ, so we obtain, according to (3.155),

P ≤ xn +
c

2
γε

(
c0 + c0 + 2nc2

0 −
(

1

4
− δ
)2)

≤ x+
n ≤ u,

i.e.

P ≤ u in O ∩ {−c0 < xn < c0},

which yields, together with the considerations above,

P ≤ u in O ∩ {−2c0 ≤ xn < c0}.

This condition and (3.159) then give that P is below u in a δ-neighborhood

of ∂C. As a consequence, we can apply Corollary 3.22 to u and P and we

achieve u ≥ P in C.
Next, we show that this fact entails the conclusion of property (P1). The

strategy is to use u ≥ P in C to get the result on {x′ = 0} and then to slide

it to each x′ in B′1/2.

Specifically, on x′ = 0, by virtue of (3.155) we have

P = xn +
c

2
γε(c0 + xn + 2nx2

n) on {x′ = 0},

thus, from u ≥ P in C we obtain

u ≥ xn +
c

2
γε(c0 + xn + 2nx2

n) on {x′ = 0} ∩ C. (3.160)
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We remark first that, independently from (3.160), when xn ≤ −cγε the fact

that u ≥ (xn+cγε)+ is a direct consequence of u ≥ 0. So, we have to analyze

the case when xn > −cγε. For this purpose, we need (3.160). Indeed, in view

of (3.160), we have with xn > −cγε

u ≥ xn +
c

2
γε(c0 − cγε) = xn + cγε on {x′ = 0, xn > −cγε} ∩ C,

in other words, since u ≥ 0,

u ≥ (xn + cγε)+ on {x′ = 0, xn > −cγε} ∩ C,

taking c and ε sufficiently small. Putting together this with the remark

above, we then achieve

u ≥ (xn + cγε)+ on {x′ = 0} ∩ (C ∪ {xn ≤ −cγε}). (3.161)

In addition, from (3.154), since xn ≥ c0 > 0 and cγε > 0, we get

u ≥ x+
n + cγε = (xn + cγε)+ in B3/4 ∩ {xn ≥ c0(n)},

i.e. also

u ≥ (xn + cγε)+ in B1/2 ∩ {xn ≥ c0(n)},

which implies, together with (3.161) and the definition of C, that

u ≥ (xn + cγε)+ on {x′ = 0} ∩B1/2. (3.162)

Now, we want to extend the result in (3.162) to the whole B1/2. To this end,

we fix x′0 ∈ B′1/2 and we consider the translation of P as in (3.155)

P̃ (x) := P (x′ − x′0, xn).

We note that P̃ (x′0, xn) = P (0, xn), hence we can repeat the reasoning used

before to obtain (3.162) with P̃ instead of P and we have

u ≥ (xn + cγε)+ on {x′ = x′0} ∩B1/2.

Varying x′0 in all of B′1/2, we lastly get the conclusion of property (P1) in the

whole B1/2.
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Concerning property (P2), instead, we exploit Lemma 3.21. Precisely, we

first apply a rescaling of factor δ−1, in other words considering

ũ(x) :=
u(x0 + δx)

δ
, P̃ (x) :=

P (x0 + δx)

δ
, x ∈ B1,

and thus, by virtue of the hypotheses of property (P2), the rescaled polyno-

mial P̃ satisfies, according to (3.110),

‖D2P̃‖ ≤ ε ≤ 1, ∆pP̃ ≥ δ2ε.

Also, always using the hypotheses of property (P2) and (3.110), it holds

either ũ > 0 or |∇P̃ | ≥ 1 + δε ≥ 1 + δ2ε ≥ in B1. As a consequence, we can

apply Lemma 3.21 to ũ and P̃ , with µ = δ2ε, if σ̄ ≤ µn+p+1 and this fact,

recalling (3.151), is true if

σ̄ = r−nσ ≤ δ−nσ ≤ δ−nεn+p+2 ≤ (δ2ε)n+p+1 = µn+p+1,

which means ε ≤ δ2(n+p+1)+n, that is ε small enough depending on δ. There-

fore, property (P2) holds as well.

To recap, both property (P1) and (P2) are satisfied if σ ≤ εn+p+2, and so

Lemma 3.28 holds.

Now, we sketch the proof of Theorem 3.27.

Proof of Theorem 3.27. We first point out that because u is an almost mini-

mizer, it satisfies (3.91) with σ = κ. At this point, given α ∈ (0, β/(n+p+2)],

we take ε0 depending on K,α as determined by Lemma 3.28 and κ ≤ εn+p+2
0 .

Then, in view of Lemma 3.28 and the hypotheses of Theorem 3.27, u satisfies

(3.141) with ε0, in other words

|u− (x · ν)+| ≤ ε0η
1+α in Bη. (3.163)

Let us consider now the rescaling

uη(x) :=
u(ηx)

η
, x ∈ B1,

and, by (3.163), we achieve, writing x = ηy, y ∈ B1,

1

η
|u(ηy)− (ηy · ν)+| ≤ ε0η

α in B1 ⇐⇒ |uη(y)− (y · ν)+| ≤ ε0η
α in B1,
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i.e., relabeling y = x,

|uη − (x · ν)+| ≤ ε0η
α in B1. (3.164)

Furthermore, using Remark 3.14, (3.91) still holds for uη, but with σ̄ := κηβ.

Consequently, we can apply Lemma 3.28 again, but this time for uη, if

σ̄ := κηβ ≤ (ε0η
α)n+p+2,

that is, because κ ≤ εn+p+2
0 , if

ηβ ≤ ηα(n+p+2),

which is true for η sufficiently small for our choice of α. Therefore, repeating

the same argument, we can apply Lemma 3.28 indefinitely and the theorem

follows in a standard way.
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[66] J. Malý and W. P. Ziemer. Fine regularity of solutions of elliptic par-

tial differential equations. Mathematical Surveys and Monographs, 51.

American Mathematical Society, Providence, RI, 1997.

[67] J. J. Manfredi. p-harmonic functions in the plane. Proc. Amer. Math.

Soc., 103 (2): 473–479, 1988.

[68] J.J. Manfredi. Regularity of the gradient for a class of nonlinear possibly

degenerate elliptic equations, Thesis (Ph.D.)–Washington University in

St. Louis, 1986, 58 pp.

[69] N. Matevosyan and A. Petrosyan. Almost monotonicity formulas for

elliptic and parabolic operators with variable coefficients. Comm. Pure

Appl. Math., 64 (2): 271–311, 2011.

[70] B. Noris, H. Tavares, S. Terracini, and G. Verzini. Uniform Hölder
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