
Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

Ingegneria elettronica, telecomunicazioni e tecnologie
dell’informazione

Ciclo 29

Settore Concorsuale: Area 09 - Ingegneria industriale e dell’informazione > 09/G - Ingegneria dei
sistemi e bioingegneria > 09/G1 Automatica

Settore Scientifico Disciplinare: Area 09 - Ingegneria industriale e dell’informazione >
ING-INF/04 Automatica

Scene Mapping and Understanding by
Robotic Vision

Candidato: Daniele De Gregorio

Coordinatore Dottorato Supervisore

Vanelli Coralli, Alessandro Di Stefano, Luigi

 Co-Supervisore

 Melchiorri, Claudio

Esame finale anno 2018

I would like to dedicate this thesis to my Father who is so far away from me, to my
Mother who is so close to me, to the family in which i was born and finally to Giulia

the family i choose.

Table of contents

Introduction 1

I Mapping with a Robot 3

1 Mapping: state of the art 5
1.1 Mapping and Robotics . 5
1.2 Data Structures . 7

1.2.1 Dense 3D Volume . 7
1.2.2 Octree . 10
1.2.3 Voxelhashing . 12
1.2.4 Skimap . 14

1.3 Environment Representation . 16
1.3.1 Occupancy Grid . 16
1.3.2 Truncated Signed Distance Function 20

2 Small scale mapping for industrial robotic: RobotFusion 25
2.1 Rationale . 25
2.2 Reconstruction and Recognition for Grasp 27
2.3 Method description . 28

2.3.1 Multi-view reconstruction via RobotFusion 29
2.3.2 Plane-based segmentation 31
2.3.3 Extraction of grasp points 34

2.4 Grasping experiments . 36

3 Large scale mapping for mobile robotic: SkiMap 41
3.1 Rationale . 41
3.2 Mapping Data Structure . 42

3.2.1 Tree of SkipLists . 42
3.2.2 Voxel indexing . 46

vi Table of contents

3.2.3 Parallelization . 46
3.2.4 Radius search . 47

3.3 Salient features of Skimap . 48
3.3.1 Ground tracking and 2D querying 48
3.3.2 Map continuous update on pose graph optimization 49

3.4 Experiments . 51
3.4.1 Implementation details . 51
3.4.2 Results . 51

3.5 Skimap extensions . 53

4 Sparse semantic mapping for robotic manipulation: SkiMap++ 57
4.1 Introduction and related works . 57
4.2 Offline pipeline . 59

4.2.1 Built-in Model Database Compression 63
4.3 Online pipeline . 63

4.3.1 Frame Integration Module 66
4.3.2 Local Hypotheses Estimation Module 68
4.3.3 Global Instance Retrieval Module 70

4.4 Experimental results . 72
4.4.1 SK17: a new dataset for multi-view Object Recognition . . . 72
4.4.2 Quantitative results . 72
4.4.3 Qualitative results . 74

II Machine Teaching made easy 77

5 Using robot to train Deep Networks: ROARS 79
5.1 Train a Deep Network for Object Detection 79
5.2 Method description . 81

5.2.1 The input dataset . 82
5.2.2 The augmented reality pen 83
5.2.3 Objects Pose refinement . 85
5.2.4 Generate Training Data . 87

5.3 Experimental evaluation . 87
5.3.1 Datasets and evaluation metrics 88
5.3.2 Annotation Study . 89
5.3.3 Object Detector Test . 91
5.3.4 Viewpoint Coverage . 94

5.4 Extension of ROARS . 96

Table of contents vii

III Conclusions 97

Conclusions and future work 99

List of papers 103

List of Supplementary Video Material 105

List of figures 107

List of tables 117

References 119

Introduction

Although life has existed for several billion years, animals advanced enough to make
good use of vision have only been around for little more than half a billion years (Land
and Nilsson, 2012). Similar fate has concerned – somehow proportionally – Computer
Vision and Robotics. The first mechanical Automaton concept was found in a Chinese
text written in the 3rd century BC (Needham, 1974), while Computer Vision began
in the late 1960s. Therefore, visual perception applied to machines (i.e. the Machine
Vision) is a young and exciting alliance.

When robots came in, however, the new field of Robotic Vision was born, and these
two terms begun to be erroneously interchanged. In short, we can say that Machine
Vision is an engineering domain, which concern the industrial use of Vision for tasks
like quality control, automatic inspection, counting systems, rejection machines or
robot guidance. The Robotic Vision, instead, is a research field that tries to incorporate
robotics aspects in computer vision algorithms. Visual Servoing (Chaumette and
Hutchinson, 2007), for example, is one of the problems that cannot be solved by
computer vision only.

Accordingly, a large part of this work deals with boosting popular Computer Vision
techniques by exploiting robotics: e.g. the use of kinematics to localize a vision sensor,
mounted as the robot end-effector, in order to realize a kind of moving eye. Following
the terminology used by Muis and Ohnishi (2005), this work concerns the study of the
eye-on-hand configuration, where the robot behaves as hand and the vision sensor as eye.
The eye-on-hand configuration largely solves the Camera Localization problem that
is one of the largest headache in applications like Augmented Reality or Environment
Mapping, because through kinematics we can compute the exact 6 DoF pose of every
artifact rigidly attached to a robotic agent. At the same time, however, this kind of
configuration allows not only to know the location of the eye but also to explore the
environment in a controlled manner: e.g. so as to move the sensor if something is
occluding the visual field.

The remainder of this thesis is dedicated to the counterparty, i.e. the use of computer
vision to solve real robotic problems like grasping objects or navigate avoiding obstacles.
In particular, Part I concerns the Mapping, namely the ability of a robotic agent to build

2 Table of contents

a virtual representation (the model) of the surrounding environment. Chapter 1 presents
a brief survey about data structures most widely used in robotics to create a map of
the environment, thereby providing the necessary background to understand the rest
of the first part. Chapter 2 describes an heuristic approach through which is possible
to grasp unknown object by reasoning over a map of the workspace only, without the
need for an object detection stage. Chapter 3 introduces SkiMap, a completely new
sparse data structure, designed for multi-core CPUs, used both for robotic mapping and
as a general purpose 3D spatial index, which is faster, for certain tasks, compared to
similar solutions. Chapter 4 exploits the aforesaid SkiMap data structure to prove how it
is possible to pursue Object Detection and Pose Estimation by reasoning over a sparse
3D map of features in real-time on a CPU.

Part II deals with the Machine Teaching field, described by Simard et al. (2017),
by introducing a new method to train an artificial intelligence by deploying Robotic
Vision1.

Notations

In this work we will intensively use the notation ATB 2 R4⇥4 to define a 3D reference
frame (briefly RF) B expressed in the base A, or the equivalent roto-translation operator.
For this reason, for example, the symbol 0Tcamera will mean the RF of the camera in
the zero reference frame. Same consideration will be applied to other operators like
rotations ARB, or geometric primitives like vectors ApB. This notation allows the correct
composition of spatial transformations by matching previous right-subscript with the
next left-subscripts, for example:

ATD =A TB ·B TC ·C TD (1)

1Filing a patent application concerning this technique is currently under consideration by the Univer-
sity Of Bologna.

Part I

Mapping with a Robot

Chapter 1

Mapping: state of the art

1.1 Mapping and Robotics

Most robotic applications require a sufficiently rich perception of the environment
in order to carry out high-level tasks e.g. manipulation with an industrial robot or
navigation with a mobile one or, why not, both together. This kind of perception is
realized through suitable sensors and algorithms. As for the former, laser rangefinders
have traditionally been employed to capture a planar view (2D) of the surroundings,
while visual sensors, and in particular RGB-D 1 cameras, are becoming more and more
widespread on account of their potential to model the environment in 3D. In the space
of algorithms, instead, we can explore several solutions grouping them by their level of
representation required by the specific robotic task.

For what concern mobile robots, as described in Thrun et al. (2005), the classical
mapping approach for the navigation task is the 2D occupancy grid. Accordingly,
sensors measurements (coming, typically, from a planar laser scanner) are fused into
a 2D Grid wherein each Tile (i.e. a square chunk of the space) contains an occu-
pancy probability which can be interpreted as the likelihood that the tile belongs to
an obstacle. Many robot navigation systems, often referred to as Grid-Based SLAM
(Simultaneous Localization And Mapping), rely on this 2D occupancy grid as in the
popular work of Grisetti et al. (2007) that can be considered as a baseline for robot
navigation, provided that many commercial solutions employ them. Yet, planar sensing
and related 2D mapping may not be reliable enough due to defective reconstruction
of the environment, e.g. when dealing with a MAV (micro aerial vehicle) for indoor
navigation, or, more generally with any Mobile Robot that cannot be modeled as a
bi-dimensional agent2. A conceptually straightforward approach to pursue 3D mapping

1https://en.wikipedia.org/wiki/Kinect , https://en.wikipedia.org/wiki/PrimeSense
2http://www.willowgarage.com/pages/pr2/overview

https://en.wikipedia.org/wiki/Kinect
https://en.wikipedia.org/wiki/PrimeSense
http://www.willowgarage.com/pages/pr2/overview

6 Mapping: state of the art

when deploying sensors, e,g. visual sensors, capable of delivering 3D measurements
would consist in extending the occupancy map to a 3D Volume by cutting the space into
Voxels (i.e. small cubes), like in the early work of Roth-Tabak and Jain (1989), each
of which storing the probability for an obstacle to be located therein. More generally
the information stored in a Tile or in a voxel is application-dependent, for example in
the mapping framework of Hornung et al. (2013) a Voxel can contain information like
{Occupied,Free,Unexplored}; in the 6-DoF SLAM system of Endres et al. (2014),
instead, each voxel contains also Color information.

(a) 2D Map from Game Of Life (b) 2D Map from Minesweeper

(c) 3D Map of the Standford Bunny (d) 3D Map from Minecraft

Table 1.1 (a) A simple 2D Map from the Game Of Life of Conway (1970): here each Tile
stores only boolean information {1 = occupied;0 = f ree}; (b) A more complex 2D Map from
the windows game Minesweeper: hear each Tile contains at least 11 values {0 = void; [1,8] =
adiacency;9 = bomb;10 = unexplored;11 = f lag}; (c) A simple 3D Volume representing the
Standford Bunny: also here the volume stores only boolean information {1 = occupied;0 =
f ree}; (d) A complex 3D Volume from the popular game Minecraft: each voxel here can map
up to 300 different values (terrain, water, wood etc.).

Table 1.1 depicts popular 2D and 3D mapping strategies – not directly linked
with robotic but – very useful to understand the trade-off between the richness of

1.2 Data Structures 7

representation and the memory footprint: for example in Table 1.1a and Table 1.1c,
where the stored information is boolean, just 1 bit is necessary for each Tile or Voxel; in
richer maps like Table 1.1d, where we need to store 300 distinct values approximately,
we need at least dlog2(300)e = 9 bits. It is rather intuitive that the more complex is
the representation of the environment, the larger is the memory footprint of the model,
but it is important to say that also choosing the correct data structure, on the basis of
which our 2D/3D model is built, may affect – dramatically – the performances of our
representation. For this reason, in the reminder of this chapter we will examine the
state of the art of both Data Structure (Section 1.2) and Environment Representation
(Section 1.3) in the robotic field.

For what concern the Data Structure, it is important to say that several authors
investigated the use of non-cubic subdivision of the space, like Ryde and Brünig (2009)
and Fridovich-Keil et al. (2017); but this topic is not directly treated in this work.

1.2 Data Structures

As mentioned earlier, the richness of our environment representation affects heavily the
memory footprint of our model but the data structure which contains them is equally
undermining the efficiency. For this reason in the following sections we will examine
the most important data structures deployed as fundamental bricks for several mapping
solutions in the robotic vision field, More precisely, in Section 1.2.1 we will introduce
the simplest one that represents the foundations in all our considerations; in Section 1.2.2
we will describe the Octree, one of the most used sparse data structure not only in the
robotic field but in the computer graphics field in general; in Section 1.2.3 we will
present the Voxel Hashing technique, that is in a better position in terms of memory
efficiency and in Section 1.2.4 we will introduce briefly our novel data structure referred
as SkiMap (De Gregorio and Di Stefano, 2017) which will be explained in detail in
Chapter 3.

1.2.1 Dense 3D Volume

The model of the environment through a Dense 3D Volume is represented by a 3D
volumetric grid, superimposed over the entire space, with cubic voxels as base unit.
As depicted in Figure 1.1 the 3D space is discretized in small polyhedric units with
side r. This kind of 3D Volume cannot be not infinite so we need to define a maximum
extension for each dimension of that grid: for the sake of simplicity we can use a cubic
volume with side of s = ss = sy = sz. So it is simple to compute how many voxels
belong to our environment model:

8 Mapping: state of the art

1D Array

Fig. 1.1 A dense 3D Grid with side s and resolution of r: the entire volume is populated of
voxels regardless of whether or not they map an occupied portion of the space (the blue voxel).
The corresponding data structure usually is a simple 1D Array. The size of the array is s3

r3 .

|V|= sxsysz

r3 =
s3

r3 (1.1)

where V= {vi =
h

arux bruy cruz

i
| a,b,c 2

⇥
0, ..., imax

⇤
}, with imax the max allowed

index, in each dimension, which complies, for example for the x axis, with the condition:
imaxrux < sx < (imax +1)rux. So the coordinates of each voxel vi are integer multiples
of r given

h
ux uy uz

i
a basis of R3. Thereby setting out r and

h
ux uy uz

i
then the

vector
h

a b c
i

indexes each voxel in the 3D lattice described by V.

vi = r
h

a b c
i
2

64
ux

uy

uz

3

75= va,b,c (1.2)

realizing that just one linear index i is not enough to correctly identify a 3D voxel.
More precisely there is a simple conversion between a linear index to a 3D index:
i = a+ b(s

r)+ c(s
r)

2; this conversion is useful whenever we decide to store our 3D
Voxel Grid in a linear data structure like a common 1D Array (and vice versa).

Now we have a model able to transform – or, better, discretize – each random point
p =

h
px py pz

i
2 R3 with a voxel va,b,c with the equation:

1.2 Data Structures 9

r(p) =
h

a b c
i
= d

h
px py pz

i

r
e (1.3)

discovering that r :R 7!Z+ is actually a quantization of the space. In simple terms each
point p will be mapped into the nearest voxel’s center vi. In Figure 1.2, a continuous set
of points belonging to the surface of the Standford Bunny 3D model are discretized over
two 3D lattices with two different resolution r1,r2, showing how the discretization level
affects the original model. An important consideration is required here: 3D features
smaller that the resolution will disappear during the mapping procedure, as the bunny’s
eye; so when we design our mapping solution we need to be sure that our discretization
process does not remove information of the environment necessary for the addressed
high level task.

Thus, the Dense 3D Volume is a model with a very high memory footprint but also
with a very rich geometrical content and the lowest time complexity in accessing voxels
(O(1)). Each voxel knows its neighborhood: e.g. the voxel Va+1,b,c is near the voxel
Va,b,c. On the other hand, however, the space complexity (Arora and Barak, 2009) of the
data structure is O(n = s3

r3) so it does not take into account occupied or void space but
grows with the cube of the side of the mapped volume. To understand exactly what the
memory footprint is let us consider an application similar to Table 1.1d, where we need
to store in each voxel an integer (4 bytes) representing the voxel semantic type (e.g.
terrain, road, wall etc.) and imagine to map an environment with a side of s = 100m
(100 meters) with a resolution of r = 0.05m (5 centimeters) the memory usage will be
S = 4 1003

0.053 = 32GB (GigaBytes); this is surely not a solution for large-scale environment
mapping but, thanks to the dense structure, is quite compliant with GPGPU architectures
(Newcombe et al. (2011) used it for the very popular KinectFusion SLAM system).

Fig. 1.2 The Standford Bunny in its original version and with the discretization over a 3D Voxel
Grid with two different resolutions r1 < r2.

10 Mapping: state of the art

3D Representation Data Structure

Tree

0 1 2 3 4 5 6 7

Fig. 1.3 An Octree graphical representation with its equivalent data structure. This model can
be represented as a Tree with precisely 8 children for each middle node. Only filled leafs (blue
cube) stores useful informations, everything else can be represented as simple pointer.

1.2.2 Octree

An octree, in contrast with the 3D Dense Volume, is a sparse data structure used for
spatial subdivision of the 3D space. With reference to Figure 1.3, we can see the 3D
representation of an octree with its equivalent data structure that is a simple 8-ary tree
(a tree where each node has exactly 8 children). The Octree can be seen as a recursive
partition of the space: the whole map is a big cube with side s subdivided in 8 smaller
cubes (octants) with side s/2 and so on. More generally the size of each level si =

si�1
2 .

With reference to Wilhelms and Van Gelder (1992) we can see this kind of data structure
as a Branch-on-Need tree: we can effectively subdivide a region of the space only
if that region contains information about environment. This technique allows us to
save a lot of memory (space complexity) compared to a dense data structure at the
expense – obviously – of the time complexity. In fact the simple addressing system
seen in Section 1.2.1 can not be applied here because the accessing procedure of a
tree is more complex: if we are searching for the position of a generic point p then at
each level, starting from the root node (the biggest cube), we need to compute which
of the eight children contains the query point. Addressing each children with a simple
index cl 2 {0, ...,7} (i.e. the children at level l) we can build the entire path to a generic
voxel vi by an iterative search: vi = vc0,c1,...,cd where d is the max depth chosen for the
octree model. In this case, the time complexity, for a random search performed through
the tree, is logarimic: O(log(n)) = O(d) and it’s proportional – only – to the depth

1.2 Data Structures 11

of the representation. Although the computation of the exact space complexity of an
octree depends on the sparsity of the environment, we can use a visual metaphor to
understand the memory savings compared with the dense approach: looking at both
Figure 1.1 and Figure 1.3 and considering that a white cube occupies the same ammount
of memory despite its size, it is clear that a dense structure contains much more blocks
than an octree. In order to quantify these savings, we can rely on the experiments
carried-out by Hornung et al. (2013) which use the Octree as base data structure for
their mapping framework Octomap: mapping the Freiburg Campus3 with a volume of
sx = 292m⇥ sy = 167m⇥ sz = 28m with a resolution r = 0.1m the occupied memory is
about 1.3Gb compared to the 5Gb of a dense grid (computed by Equation 1.1).

A distinctive feature of an Octree is the multi-resolution query: if we want to visit
the whole tree structure up to the max depth dmax we will obtain the maximum richness
of representation, but at the same time we want to stop our visit to the depth dmax�1 we
will obtain a less refined representation – saving time – of our map; to understand this
we can look at Figure 1.2 where the rightmost bunny is the result of a visit down to a
depth below the max depth that is represented instead by the middle bunny.

In conclusion with the Octree model we have reduced the memory footprint of
our environment representation to the detriment of time efficiency and richness of
geometrical information content (two adjacent voxels may have two different octants as
parent resulting in an indirect relationship).

3http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/

12 Mapping: state of the art

3D Representation Data Structure

Hash Table

Keys Buckets

Fig. 1.4 A VoxelHashing 3D representation is completely void aside the occupied portion of the
space (compare it with Figure 1.1 and Figure 1.3). The related data structure is an Hash Table
where each entry is a Voxel Block (in this case 2⇥2⇥2, but could also be just a single Voxel)
list; the lateral list data structure (the right arrows pointing nothing) is mandatory to tackle the
problem of the collisions in the hashing procedure (Bellare and Rogaway, 1993).

1.2.3 Voxelhashing

The basic idea of the Voxel Hashing approach is to avoid both the dense structure
(Section 1.2.1) and the hierarchical structure (Section 1.2.2) reducing in this way both
space and time complexity. Thus, as depicted in Figure 1.4, there is no superstructure
around our target voxels and this result is achieved thanks to the Spatial Hashing
technique well described by Teschner et al. (2003) or García et al. (2011) in their works.
First of all we need to discretize the space like in Section 1.2.1, so for a random point
p we can use Equation 1.3, chosing a target resolution r, to obtain a set of integer
indices. For the sake of simplification, we can define this set of indices as

h
x y z

i
as

if they were integer 3D coordinates. The spatial hashing idea is to design a function
H(x,y,z) = h 2 {0, ...,n},n 2 Z+ in order to map our 3D integer coordinates to a
linear index of an Hash Table, where our voxel data is stored. Obviously the function
H : Z3 7! [0,n) (with n 2 Z+ is the size of the hash table) is a one-way function, that
is, a function which cannot be inverted for the simple reason that the cardinality of the
image of H is kept smaller than

��Z3
��. An example hash function could be:

H(x,y,z) = (xp1 � yp2 � zp3) mod n (1.4)

1.2 Data Structures 13

where p1, p2, p3 are large prime numbers and � is the bit-wise xor operator (Teschner
et al., 2003). Hence if we want to store information about a point p we first compute
the related hash table index h = H(p) then we retrieve the corresponding table value
where are stored our custom data (e.g. Occupancy, Color etc.). This is a sort of
packing procedure able to compress a 3D space into a linear space, but with several
drawbacks. First of all the function H(·) – that is not perfect – could result in a collision
(H(p1) = H(p2) with p1 6= p2) increasing in this way the time complexity to retrieve
our correct data because we need to store in the same entry of the hashtable more than
one voxel and, in addition, is not enough to save only environmental information in a
voxel but also geometrical information (i.e. its implicit 3D coordinate) is needed, in
contrast with a Dense Volume or an Octree where the accessing procedure of a voxel
implies directly the knowledge of its 3D position in the space (the Equation 1.3 is –
lossy – invertible). Another drawback is the loss of the geometrical information content
in the hash table: two voxel of the same entry in the hash table could be very distant
in the 3D space because the function H(·) is a sort of Random Oracle (Bellare and
Rogaway, 1993) that remove any spatial relation intrinsically linked with voxel integer
coordinates.

To summarise, the VoxelHashing technique is the best data structure with regard
to the memory footprint for very large environment mapping and for well-designed
hash function is also very good in the access operation because, on the assumption that
collisions are very infrequent, the cost is O(1), i.e. the same as a Dense Grid. The
tradeoff here is the lack of possibility to perform a spatial query over the data structure:
for example if we want to know which voxel are in the neighborhood of a target query
point the only chance is to perform a Brute Force – costly – search over the hashtable.
In the intereseting work of Nießner et al. (2013), where the richness of reconstruction is
preferable to the geometrical structure of the environment, the Voxel Hashing technique
was well exploited for the first time for a very comprehensive reconstruction of several
large scale scenes in real-time with a GPU, where space (complexity) is more important
than time.

14 Mapping: state of the art

3D Representation Data Structure

Tree of Lists

Fig. 1.5 A SkiMap 3D graphic representation. Compare it with Figure 1.1, Figure 1.3 and
Figure 1.4. The related data structure is a tree with max depth 3 and where real voxels are
represented by the leaves. Inner nodes of the structure represent the projection of the 3D
information onto the x� y plane.

1.2.4 Skimap

We proposed a completely new sparse data structure (De Gregorio and Di Stefano,
2017), dubbed SkiMap, similar in performance to the Octree model but with several key
aspects that make it better in several robotic-oriented tasks. The overall SkiMap method
will be described in detail in Chapter 3, instead here we will focus on its data structure
so as to compare it with the other solutions described in this chapter.

Figure 1.5 represents the hierarchical 3D and 2D superstructure of SkiMap hidden be-
hind voxel data. The complete structure is a Tree of List where each list is – conceptually
– parallel to one of the vectors

h
ux uy uz

i
forming a basis of R3. To be more precise,

there is just one list along ux, than for each of its nodes we have many lists along uy and
iteratively the same procedure for the nodes along uz. Also with this approach, the first
step to store information about a random point p is the discretization of the 3D space by
Equation 1.3, obtaining the 3D integer indices

h
x y z

i
. Then we need to perform a

search over the tree of lists that can be splitted in three sub-searches sx,sy,sz, each of
which occurring along one dimension, i.e. sk denotes the search for p along the k axis.
So, the overal search is the composition in reverse order s(r(p)) = sz(sy(sx(r(p)))):
in other words we first search the x node corresponding to the projection of p over the
axis ux, the y node along the projection over uy and the same with z,uz. The novel
idea, in this kind of approach, is to employ an efficient data structure to represent the

1.2 Data Structures 15

G
eo

m
et

ric
al

 In
fo

rm
at

io
n

Co
nt

en
t

Memory Footprint

Ra
nd

om
 A

cc
es

s
Sp

ee
d

Memory Footprint

Sp
at

ia
l Q

ue
ry

 S
pe

ed

Memory Footprint

VoxelHashing

VoxelHashing

VoxelHashing

DenseGrid DenseGrid DenseGrid

Octree
Octree Octree

SkiMap SkiMap

SkiMap

Fig. 1.6 These plots represent a qualitative comparison between SkiMap and other algorithms,
mainly against Octree that is the target competitor. The comparison is just qualitative and is
coming from experiments of the Chapter 3 to give an idea of benefits of SkiMap especially
dealing with Spatial Queries.

lists (or better the Ordered linked lists) in order to minimize the access time. Had we
used a simple list, we would have needed a linear time to find an element, running
into the worst performances O(n) compared to O(log(n)) of the Octree or to O(1) for
both Dense and VoxelHashing. It was for this reason that, in SkiMap, we employed
the SkipList, introduced by Pugh (1990), that is a valid alternative to Balanced Trees.
This data structure ensures – probabilistically – a logarithmic time O(log(n)) for basic
operations like insert,modify and delete. In detail the correct computational complexity
is O(3log(n)) because in each search we involve at least 3 lists (one for each dimension)
so SkiMap is theoretically slower than an Octree but thanks to the high parallelizable
architecture it turns out faster in practice. This high parallelization is very useful also to
perform very fast spatial queries, a key feature of this mapping algorithm. In Chapter 3
we will explain in detail how SkiMap is faster and why, in addition to other unique
features that make it a valid solution for environment mapping in Mobile Robotics.

A very general graphical classification of the abovementioned mapping structures,
compared with SkiMap, is depicted in Figure 1.6.

16 Mapping: state of the art

RGB-D Sensor

Fig. 1.7 A live snapshot from the system described by Maier et al. (2012). The right image
depicts a graphical representation of a voxel grid mapping the occupancy of the environment
represented in the left picture. Each voxel will be displayed only if its occupancy information q
is over a given threshold qth, and its color maps its height w.r.t. the ground.

1.3 Environment Representation

As mentioned at the beginning of this chapter, other than the hidden data structure of
a map representation, the information content itself affects the richness of the model.
In this section we will examine some of the most used representation in the field of
Robotic Vision. The representation in this case is just the information content stored in
each voxel, be it one of a Dense Grid (Figure 1.1) or of any other kind of data structure,
and could be anything useful to represent the mapped environment. As seen in Table 1.1
just a numerical information could be sufficient in several applications, in particular in
the robotic field we will see how different environment representation lead to different
detail level based on the specific task for the robot.

1.3.1 Occupancy Grid

One of the simplest approach is to store in the voxels a sort of occupancy information,
considering that the map will be continuously updated with measurements coming from
a generic 3D sensor. We can define, in general terms, a sensor measurement (sensor =
camera for simplicity), at time t, like a set of 3D points camPt = {p0, ..., pn} and a set
of corresponding rays camUt = {r0, ...,rn} with pi,ri 2 R3. Defining the sensor pose, at
time t, as mapTcamt = (mapRcamt ,

map tcamt) (i.e. the pose of the camera camt in the map
reference frame) we can easily compute the point-to-ray conversion as:

mappi =
map tcamt +

map Rcamt ·cam rt =
map tcamt +

map rt (1.5)

campi =
h

0 0 0
i
+ I ·cam rt =

cam rt (1.6)

1.3 Environment Representation 17

Fig. 1.8 This is a graphical representation of a 3D grid, of a teddy bear on a swivel chair, where
each voxels tries to map the real color of the corresponding portion of the environment.

So a generic ray ri is the vector connecting the corresponding point pi and the sensor
center, which overlap each other when represented in the sensor reference frame. For
the simplest occupancy grid scheme we can use just a binary information {0,1} where
0 means free and 1 means occupied. We need, then, to retrieve the voxel indices
vi = r(mappi) corresponding to a measured point mappi, where r(·) is the a generic
voxelization function (Equation 1.3), and update its content setting V (vi) = 1, where
V (vi) represents the voxel content corresponding to indices vi.

The above mentioned binary-occupancy mapping scheme is quite unhelpful in a
real robotic scenario, because in the real world the occupancy is more of a continuous
stochastic variable. As explained by Maier et al. (2012) and Hornung et al. (2013),
which are focused on generic non-static environment, the probability P(vi |map p1:t) that
a voxel vi is occupied at time t is recursively computed given all sensor measurement
mapp1:t = {mapp1, ...,map pt}. Consistent with considereations introduced by Moravec
and Elfes (1985), we can transform the occupancy probability with a logOdds formu-
lation translating this complex recursive computation in a frame-by-frame – faster –
update function for each voxel as:

18 Mapping: state of the art

V (vi)1:t =V (vi)1:t�1 +V (vi)t (1.7)

In this way each voxel is updatable over time, in a continuous manner, in order to
react to the changes in the environment. Aside from the details of this probabilistic
occupancy model, well explained in Hornung et al. (2013), we can focus on the voxel
data. In case the occupancy probability can be represented with a continuous variable
q, e.g. a float variable, and, as depicted in Figure 1.7, by taking into account only
voxels with q � qth, where qth is a user-defined threshold, we can produce a graphical
representation of the environment. In the aforementioned figure each voxel is painted
with a color that does not depend on the q value but on the z component of the index
vi: hotter color means higher voxel w.r.t. the ground. If, conversely, we want to store
in each voxel the real color information, as depicted in Figure 1.8, we need a more
complex data structure associated with each voxel and in addition a more sophisticated
update strategy compared to the Equation 1.7. For example, the new voxel data could be
(q,r,g,b) with q the usual occupancy probability and r,g,b 2 R the three components
of the color information, with a fourfold increase in the memory footprint. In this case,
however, the update strategy is no longer straightforward: for example the color of the
voxel at time t +1 cannot be computed as follows:

h
r g b

i

t+1
=
h

r g b
i

t
+
h

r g b
i

new
(1.8)

since this is a divergent approach, which distorts color information. For this reason
we need to provide our voxel with an addition information w that is called weight and
hence the new voxel data is < (q,r,g,b),w >. In this case we can perform a weighted
update of our data in this way (using l =

h
r g b

i
)):

lt+1 =
ltwt + lnewwnew

wt +wnew

wt+1 = wt +wnew

(1.9)

This weighted update can be applied to every data structure that needs to be updated in
a conservative way and will be clearer in the Section 1.3.2.

To conclude, if we use 4 bytes for a generic float variable and we want to store a
map composed by 108 voxels (e.g. a dense grid over a typical room using a resolution
r = 0.01m) we need:

• 1⇥108 = 100 MBytes for a binary-occupancy grid;

• 4⇥108 = 400 MBytes for a continuous occupancy grid (q as voxel data);

1.3 Environment Representation 19

• 20⇥ 108 = 2 GBytes for a continuous occupancy grid with color information
(< (q,r,g,b),w > as voxel data).

The latter example reveals that the memory footprint of a representation is directly
proportional to the number of Voxels, for this reason choosing the correct data structure
(Section 1.2) for modelling the space is a crucial design aspect when we deal with an
high level of details.

20 Mapping: state of the art

-1 -0.7 -0.6 -0.3 0 0.2 0.5 1

-1 -0.8 -0.7 -0.5 -0.2 0.1 0.2 0.3

-1 -0.9 -0.6 -0.5 -0.3 0 0.2 0.3

-1 -0.9 -0.7 -0.4 -0.3 0 0.2 0.3

-1 -0.9 -0.6 -0.3 -0.25 0 0.2 0.3

-1 -0.9 -0.5 -0.3 -0.2 0.1 0.3 0.5

-1 -0.9 -0.5 -0.2 -0.1 0.2 0.4 0.6

-1 -0.8 -0.7 -0.2 0 0.3 0.5 1

Sensor

Volume
Surface

Ray

Fig. 1.9 This figure represent a bi-dimensional representation of a 3D grid which stores SDF
values. A generic ray ri crosses the surface, of a random object, running through the entire
mapped volume. In each voxel crossed by the ray we store the metric distance between the
center of that voxel and the nearest intersected surface, we can notice that voxels to the right,
belonging to the free space, contain a positive growing values moving away from the surface;
conversely the voxels to the left contains negative degressive values.

1.3.2 Truncated Signed Distance Function

Occupancy grid has been popular in robotics for several years – and it is still now
– but it can be considered as a simple overlap of sensor measurements over time.
Although the measurements were merged together through Bayesian updates to produce
a continuous representation rather than a binary occupancy map, there is no a real
smoothed representation of surfaces in the environment. Newcombe et al. (2011) for
the first time use another approach to densely fuse RGB-D measurement (where RGB
means a simple 2D color image and D means also a depth information of the scene
for each pixel) in a 3D dense grid by exploiting a non-parametric representation of the
environment named Signed Distance Function or briefly SDF. The SDF, introduced by
Curless and Levoy (1996), can be described as follows:

SDF: looking at Figure 1.9 we can see that the SDF is, however, a grid-based repre-
sentation where in each voxels we are going to amalgamate clues about Surfaces storing
the distance of the target voxel w.r.t. to the nearest surface by using positive values to
represent free space and negative values for occupied (or occlued) space. In the image
a ray ri (see Equation 1.5), starting from the sensor and running through the space,
intersects the surface of an object represented as a simple green curve. Each voxels

1.3 Environment Representation 21

along the ray’s path stores the metric distance w.r.t. to the red intersection point. Same
procedure will be repeated for each ray originated by the sensor.

As argued by Hernández et al. (2007), if our sensor produces rays ri (and corre-
sponding points pi) with a Gaussian noise model we can build the optimal surface
reconstruction only by averaging the SDF representation of measurement over time.
The averaging procedure is described by Equation 1.9 considering as voxel data ds, that
is the exact signed distance function computed during current measurement, associated
with a weight w. Figure 1.10 shows the quality of reconstruction achieved with this
simple procedure despite sensor noise.

The Truncated Signed Distance Function (or TSDF) is a variant of the SDF where
the update of the voxels along the ray’s path is truncated after a certain distance beyond
the surface (and in many variants also before). This is done for many reason: first of
all to save time by updating only a subset of the entire 3D Grid; the second and very
important reason is that the voxels behind a surface surely reside into the object of
belonging but it is highly likely that they could belong to something else because this
portion of the space is considered occluded by the object itself. Conversely, this is not
true for the voxels between the object and the sensor that are surely a portion of free
space.

A disadvantage (or an advantage as stated by Newcombe et al. (2011)) is that
the information about the environment is encoded in this generic continuous function
D(x,y,z) = D(vi) 2 R over the space that is obviously discretized over voxels coordi-
nates, more formally is a discrete scalar field. Figure 1.11 depicts this function with
a colormap: in this case we can easily see that the surface does not intersect, in most
cases, the center of the voxels (black dots). Hence, to retrieve the real surface, we need
to perform a sort of interpolation over discretized data, to be more precise we need to
analyze the zero-crossing of this scalar field. One of the most used solution is Marching
Cube, introduced by Lorensen and Cline (1987), which consists, as the name suggests,
in a moving cube (enclosing 8 voxels) over the grid that analyzes zero-crossing events
inside the corresponding portion of the field trying to produce the polygon (or multiple
polygons) needed to best represent the part of the related isosurface (i.e. a surface
over the field with constant value, in this case zero). The Marching Cube procedure is
not fast but produces a solid mesh that can be used for robotic tasks such as: obstacle
avoidance with potential fields (Khatib, 1986), path planning for welding/painting and
stable objects grasp. For visualization purposes, instead, as depicted in Figure 1.10 we
can produce a current view of the environment through a raycasting procedure that is
obviously faster than Marching Cube but less descriptive in geometrical sense (a raycast
is a 2.5D representation of the environment and not a full 3D reconstruction). The

22 Mapping: state of the art

Fig. 1.10 Samples from the work of Newcombe et al. (2011). The rightmost image represents
outcome of a raycasting procedure over the SDF volume, it resembles a mesh but is only a 2.5D
representation of the vantage point. In the middle image a colormap tints the surface according
to the normals direction. The first image depicts a single noisy, and incomplete, output of the
RGB-D sensor.

raycasting however is well exploited also for more complex tasks (camera localization
(Newcombe et al., 2011)) thanks to the hidden capability of the SDF to represent also
surface normals that can be directly derived analyzing the gradient of the SDF itself.

1.3 Environment Representation 23

Fig. 1.11 A bi-dimensional representation of a SDF field interpolated in order to produce a
continuous heatmap where hotter colors represent occupied volume and colder colors maps free
space. The real surface, represented by the black curve, could lie in any point of the lattice
despite the discretization introduced by the voxelization procedure.

Chapter 2

Small scale mapping for industrial
robotic: RobotFusion

2.1 Rationale

Object recognition and 3D pose estimation are key tasks in industrial applications
requiring autonomous robots to understand the surroundings and pursue grasping and
manipulation (Papazov, Haddadin, Parusel, Krieger, and Burschka, 2012). Indeed,
manipulation mandates estimation of the 6 Degree-Of-Freedom (6-DoF) pose (position
and orientation) of the objects with respect to the base coordinate system of the robot.
This pose estimation should be not only robust to clutter, occlusion and sensor noise,
but also efficient to avoid slowing down the manipulation process.

Most object recognition and pose estimation algorithms rely on matching 2D or 3D
features between off-line 3D models (either sets of 3D scans or CAD models) and scene
measurements in the form of depth or RGB-D images. In particular, exploitation of
color and depth cues from RGB-D images through suitable integration of texture-based
and 3D features can yield quite remarkable performance across a variety of benchmark
RGB-D datasets as shown by Aldoma et al. (2013) or Xie et al. (2013).

Although providing compelling results on standard benchmarks, the above men-
tioned multi-stage, multi-modal, feature-based pipelines turn out unsuited to practical
real-time industrial applications due to exceedingly slow execution times. Furthermore,
due to reliance on a single vantage point, these approaches may fail when the sought
objects are captured under high levels of occlusion (Aldoma et al., 2011) and/or their
shape and texture do not appear distinctive enough in the chosen view. Finally, an
additional nuisance that may hinder performance of such approaches is represented by
the high sensor noise affecting the depth frame provided as as input to the algorithms,

26 Small scale mapping for industrial robotic: RobotFusion

which tends to distort significantly the 3D surfaces and often cause holes and artifacts
(Nguyen et al., 2012).

In this chapter, we investigate on the use of an RGB-D sensor mounted on top of
a robotic arm to explore the surrounding environment in order to gather and process
together RGB-D frames taken from different vantage points. This approach holds
the potential to tackle the aforementioned issues inherent to perception from a single
viewpoint, as also highlighted by the recent multi-view object recognition approach of
Fäulhammer et al. (2015), who proved how multi-view information can increase recog-
nition accuracy and robustness by the integration of features from different viewpoints.
In our work, we aim at 3D object reconstruction and grasping within a typical industrial
robotics environment, namely a robotic arm performing pick-and-place operations on
objects laying on planar surfaces such as workbenches, conveyor belts or positioners.
The only working assumptions underpinning our approach consist in the robot being
endowed with a highly accurate and repeatable encoder system (as it is typically the
case of industrial robotic arms) and in objects laying on a plane. In these settings, we
leverage on the high accuracy of robot encoders to automatically fuse together different
views. First, at each vantage point we collect and fuse together multiple frames within a
voxelized 3D representation, so to smooth out 3D data without distorting the underlying
object geometries. Then, the views taken from different vantage points are merged
together into a Truncated Signed Distance Function (TSDF) representation: we dub
our approach Robot Fusion on account of its affinity to the well-known Kinect Fusion
system of Newcombe et al. (2011). Successively, we introduce a segmentation approach
based on the planar assumption that allows for quick computation of grasping points
without the need to carry out object recognition. Finally, the obtained grasping points
are deployed to perform grasping via the robotic gripper mounted on the arm.

The novel contributions of this work thus concern: i) the Robot Fusion approach to
reconstruct 3D objects by leveraging on robot encoders and TSDF representations, ii)
an algorithm to segment objects out of a planar surface, iii) an algorithm to compute
grasping points from surfaces without requiring any previous object recognition step.
We report experimental results that demonstrate the effectiveness and accuracy of the
proposed object reconstruction and segmentation stages, as well as the ability to attain
good grasping points that enable to perform grasping successfully in cluttered scenes
comprising several objects of diverse shapes.

2.2 Reconstruction and Recognition for Grasp 27

2.2 Reconstruction and Recognition for Grasp

On-line fusion of the range images gathered by a moving sensor to achieve 3D recon-
struction of the environment is a key task for RGB-D SLAM (Simultaneous Localization
and Mapping) frameworks. Among prominent approaches, Kinect Fusion by New-
combe et al. (2011) or the work of Whelan et al. (2014) attain a highly accurate 3D
reconstruction of the environment by fusing the depth measurements taken from differ-
ent viewpoints alongside with camera movement into an occupancy map, i.e. a discrete
voxel grid where each cell may either be void or contain the distance from the nearest
surface via a Truncated Signed Distance Function (TSDF) (See Section 1.3.2).

Besides mapping, the other key task in SLAM frameworks consists in sensor
localization. Purposely, the Iterative Closest Point (ICP) algorithm is widely deployed
to align the current depth image with respect to either the previous one or the global
map. However, due to the algorithm allowing to estimate successfully small motions
only, ICP is prone to failure when the incoming frames get processed at a pace that turns
out too slow compared to sensor movements. To overcome this issue, sparse matching
of 2D/3D features or dense, direct matching of image intensities may be deployed to
coarsely align the current depth image prior to running ICP (Engel et al., 2014). Several
other methods, such as the one of Kehl et al. (2014), rely on optimization of a global
cost function to estimate all sensor poses coherently. Although very effective, these
approaches are unsuited to real-time industrial robotics due to excessive running times,
such as e.g. several minutes (Kehl et al., 2014).

Differently, we address the SLAM localization task by relying on the high accuracy
and repeatability of the robot encoders as well as on forward kinematics, as explained
in details in Section 2.3.2. This leads to a fast and highly accurate 3D reconstruction
step which is conducive to estimate a reliable set of grasping points on the reconstructed
surfaces in absence of any information concerning the types of objects present in the
scene. Indeed, estimating a set of contact point providing a stable grasp based only on
3D geometry mandates very accurate 3D reconstruction of surfaces, as figured out by
Montana (1991).

As for approaches aimed at grasping and manipulation based on grasp point de-
tection, methods that try to estimate grasp points on unknown objects from a single
range image have been proposed by Yun Jiang and Moseson, S. and Saxena, A. (2011)
and Popović et al. (2010). These works are based on edge analysis and estimate the
approach position of the gripper with respect to the target object (i.e., no estimation of
the individual grasp points). Unfortunately, these methods can deal with thin objects
or thin object parts only in scenes with low occlusion levels, both constraint due to the
inherent limitations of relying on a single viewpoint already described in Section 2.1.

28 Small scale mapping for industrial robotic: RobotFusion

Another issue with these approaches is that the grasp configuration is computed for
grippers with a simple geometry, like parallel grippers. Indeed, as stated by Popović
et al. (2010), using a complex gripper, like a five fingered anthropomorphic hand, re-
quires shaping it as a parallel gripper to achieve successful grasp. Another possible
approach consists in estimating directly the grasp points on the object surface and
compute, via inverse kinematics, the position and orientation of the gripper. Saut and
Sidobre (2012) describes how it can be hard to achieve a grasp configuration for a
multi-finger anthropomorphic hand in real-time, and similar conclusions are drawn by
Hang et al. (2014). Thus, these methods are suitable to autonomous grasping based
on offline estimation of grasp points on known objects, an object recognition stage to
detect object instances and associated poses, a final strategy to choose automatically the
optimal grasp configuration querying a database.

2.3 Method description

This Section describes in detail the main stages of the proposed system. As already
mentioned, our approach relies on typical assumptions for industrial manipulation
and pick-and-place, i.e. the presence of a high precision industrial robotic arm and
a planar workbench holding objects. In Section 2.3.1 we illustrate how forward and
inverse kinematics can be employed to accurately compute the camera 6-DoF pose with
respect to the robot main coordinate system regardless of the mounting point used on
the robotic arm, this effectively replacing the visual data-based localization necessary
to perform SLAM reconstruction of the scene. Then, we show how to attain accurate
multi-view 3D reconstruction by fusing together range images within a voxelized
TSDF representation. In Section 2.3.2, we propose a segmentation approach based
on a novel plane extraction method, dubbed HeightMap, which estimates all scene
planes orthogonal to a given gravity vector. This results in a small and predictable
computational time, which compares favorably to RANSAC-based plane fitting and
allows for segmenting effectively the individual objects from the previously obtained
3D reconstruction. Finally, in Section 2.3.3, we describe our proposed method for grasp
points extraction from the 3D surface of segmented objects, which does not require an
explicit object recognition stage. In particular, grasp points and grasp approach position
are computed by leveraging on the object Canonical Reference Frame and so to avoid
collisions between the robotic arm and the environment.

2.3 Method description 29

2.3.1 Multi-view reconstruction via RobotFusion

We assume to deploy an industrial robot with high accuracy and repeatability (i.e.
⇡ 0.05mm ISO TC 184SC 2 Robots and robotic devices (2015)). High accuracy means
that we can impose a 6-DoF end effector pose 0TEE with high precision in a dexterous
workspace:

0TEE =

"
0REE

0pEE

0 1

#

In our system, the end effector is an RGB-D camera (i.e. an Asus Xtion) with a 3D-
printed housing, this yielding an unknown transformation between the robot wrist and
the 3D coordinate system attached to the camera (i.e. the camera coordinate system):

0TEE =0 TW ·W TEE (2.1)

While 0TW is the result of a simple application of forward kinematic equations on
the target robot, W TEE is estimated during an offline calibration stage by means of a
fiducial marker having a known 3D pose, 0TM, in the main robot coordinate system.
To accomplish this, we use an Augmented Reality Framework (Garrido-Jurado et al.
(2014)) to estimate the pose of the fiducial marker w.r.t. the camera coordinate system:
CamTM =EE TM, thereby closing the loop in the equation

0TW ·W TEE ·EE TM =0 TM (2.2)

in order to estimate the unknown transformation between the wrist and the camera

W TEE =W T0 ·0 TM ·M TEE (2.3)

Now, each point, campi, belonging to the point cloud camP = {p1, ..., pn} acquired
by the RGB-D sensor can be expressed as:

0pi =
0 TEE ·EE pi (2.4)

Hence, for each new view gathered alongside robot movement, we can directly obtain
a point cloud registered into the main robot coordinate system without the need to
estimate any alignment transformation with respect to the previously acquired clouds.

A 3D object reconstruction algorithm needs multiple range images from different
viewpoints to build an unified representation of the surface of the target object. State-
of-the-art SLAM techniques pursuing accurate and dense scene reconstruction, such
as e.g. Newcombe et al. (2011) and Bylow et al. (2013), first localize the camera

30 Small scale mapping for industrial robotic: RobotFusion

Fig. 2.1 Kinematics chain to compute the transformation between the wrist and the camera
(W TEE).

and then merge each newly acquired range image into a global representation of the
environment based on a Truncated Signed Distance Function (TSDF) defined on a voxel
grid. Therein, each voxel either is void or stores the signed distance from its center to
the nearest surface.

We adopt the same TSDF representation. However, as described, we do not need
to carry out an explicit camera localization step as we can seamlessly integrate depth
measurements into a global voxel grid by deploying robot kinematics. It is worthwhile
pointing out that the use of a TSDF-based representation allows our system to fuse
together seamlessly not only acquisitions from diverse viewpoints, but multiple range
images taken from the same vantage point alike. The latter process turns out highly
effective to counteract the significant amount of noise that typically affects the RGB-D
data acquired by consumer depth cameras.

To minimize the amount of calculations, we update only the voxels visible from the
current vantage point (view frustum) rather than the entire grid 1. Moreover, we rely on
an octree representation of the voxel grid, this decreasing memory requirements signifi-
cantly (Steinbrucker et al., 2013). Thanks to the reduced computational complexity, and
unlike most previous works on dense volumetric mapping that leverage on GP-GPU
acceleration, we can run efficiently our reconstruction system on the CPU, this being
a beneficial trait as regards its potential implementation on the compact embedded
platforms often deployed in industrial environments.

1https://github.com/sdmiller/cpu_tsdf

https://github.com/sdmiller/cpu_tsdf

2.3 Method description 31

To assess quantitatively the accuracy provided by the proposed RobotFusion ap-
proach based on fusing depth measurements into a TSDF within a viewpoint and across
viewpoints, we created a synthetic setup in the Gazebo simulator integrated in the
ROS framework 2. In particular, we simulated an industrial robot equipped with an
RGB-D sensor and a table-top scene. As the simulation environment provides noiseless
RGB-D data, we implemented a noise model similar to that proposed by Nguyen et al.
(2012). In the experiments, we compared the reconstructions provided by RobotFusion
to those that one would achieve by simply stitching together the point clouds from the
different vantage points into the global coordinate system of the robot, which is also
straightforwardly attainable by deploying robot kinematics. Figure 2.2a shows that
the proposed approach can achieve smooth and accurate 3D reconstructions as well as
how the devised fusion process provides a significantly higher accuracy with respect to
simple stitching of the point clouds. Figure 2.2c pertains a reconstruction experiment
carried out with real data: while RobotFusion can recover the object’s surface accurately,
the reconstruction created by stitching together the points clouds shows many gross
errors due to sensor noise. Eventually, Figure 2.2b concerns en experiment aimed at
evaluating the benefits brought in by fusing together multiple depth images at each
viewpoint: the reconstruction error tends to decrease and then stabilize as more and
more depth images get fused at a single viewing position. As such, it turns out beneficial
to deploy a sufficient number of images (e.g. 10-15) to effectively smooth out noise and
minimize the reconstruction error.

2.3.2 Plane-based segmentation

Industrial robots can be mounted only in three standard positions: floor, wall, ceiling
(seldom at 45 degrees). Thus, we can always calculate the relation between the gravity
vector and the z-axis of the robot in the robot (or world) coordinate system. For
example, in a floor-mounted robot the gravity vector is parallel and opposite to the
z-axis: g =

h
0 0 �z

i
.

Hence, given a point cloud P = {p1, ...,pn} and the associated set of normals
N = {n1, ...,nn}, we extract the points belonging to planes orthogonal to the gravity
vector by creating a 1-D histogram H = {S1, ..,Sk} where each bin represents a subset
(or slice) of points belonging approximately to the same plane. More precisely, assuming
a floor-mounted robot and denoting the slice-size (histogram bin-size) as l :

pi 2 S j () ni · (�g)< cos(a), j = b pz,i
l

c (2.5)

2http://www.ros.org/

http://www.ros.org/

32 Small scale mapping for industrial robotic: RobotFusion

(a)

(b)

(c)

Fig. 2.2 (a) Synthetic data. Left: original 3D CAD model used as ground truth. Center:
reconstruction by stitching point clouds. Right: TSDF-based reconstruction by RobotFusion.
Colors encode the metric error w.r.t. the ground truth at reconstructed surface points. (b) Mean
square error in function of the number of views for the 3 different models of the Figure 2.2c.
The proposed TSDF-based approach obtains an increasing accuracy with a higher number of
frames captured in each robot poses (in this case 12 robot poses around object). (c) Real data.
Left: original 3D object. Center: reconstruction by stitching point clouds. Right: TSDF-based
reconstruction by RobotFusion.

2.3 Method description 33

(a) (b)

(c)

Fig. 2.3 (a) Side view of a point cloud representing a table-top scene, with four objects. Accord-
ingly, the bin of the histogram reported on the right hand-side corresponding to the table is the
highest one, while object surfaces tend to report much smaller bin values. (b) Execution times
of plane extraction algorithms while increasing the point cloud size. (c) Example of horizontal
planes extracted by a single run of the proposed HeightMap segmentation algorithm.

a being an arbitrary angular threshold used to define the maximum allowed plane incli-
nation w.r.t the gravity vector and to withstand the presence of noise on the computed
normals.

As illustrated in Figure 2.3a, for a floor-mounted robot histogram H highlights the
position along the gravity axis of possible horizontal planes. By defining Szmin, j,Szmax, j

as, respectively, the minimum and maximum z coordinates in slice S j, we can extract
planes by selecting subsets of points belonging to those histogram bins that report a
value over a pre-defined threshold. We call this approach as HeightMap segmentation.

Remarkably, plane extraction methods such as those based on RANSAC have no
predictable execution time (Rahul Raguram, Jan-Michael Frahm, Marc Pollefeys, 2008)
due to their intrinsic randomized-iterative nature. This is also the case of the 1-Point
RANSAC approach by Tombari et al. (2014), which enables to estimate dominant planes
by means of a 1-point (rather than 3) RANSAC plane fitting by exploiting the normal
associated to each point. Conversely, the proposed HeightMap approach enjoys a
deterministic and fast execution time, due to its complexity being linear in the size of
the point cloud.

34 Small scale mapping for industrial robotic: RobotFusion

Figure 2.3b reports the running times yielded by different plane extraction methods,
namely HeightMap, standard RANSAC and 1-point RANSAC, in experiments carried
out in the simulated working environment already described in Section 2.3.1. As we
can see, HeightMap is the fastest approach and features a linear growth of the measured
execution time with respect to the point cloud size. Figure 2.3c shows an example
of the horizontal planes extracted by the HeightMap method from a point cloud. It
is worth pointing out that a single run of the method allows to extract all the sought
parallel planes, while getting an equivalent result by RANSAC-based approaches would
require multiple iterations. On a broader level, we wish to point out that HeightMap
may be applied to extract planes orthogonal to any arbitrarily oriented gravity-vector.
Purposely, the point cloud may require a rotation to align one axis (e.g. the z-axis) to
the considered gravity-vector.

Under the previously highlighted assumption of objects placed on a planar support,
plane extraction provides a strong cue to segment the individual objects. Indeed, the
largest plane extracted by HeightMap can be quite safely assumemed to represent the
workbench and thus simply removed from the point cloud. Thereby, the objects become
disconnected one to another and the points belonging to each object’s surface can be
identified straightforwardly by standard tools such as Euclidean Clustering 3.

2.3.3 Extraction of grasp points

The goal of the proposed grasp point extraction approach is to estimate directly grasp
points on the object surface regardless of the gripper shape (or regardless of the number
of fingers in case of a robotic hand) by means of an efficient iterative algorithm. Our
main approach to reduce the complexity of grasp point estimation on a 3D surface is
to reduce the solution space from 3D to 2D, so to be able then to apply well known
planar grasp algorithms as studied by Ponce and Faverjon (1991), Ferrari and Canny
(1992), Bicchi and Kumar (2000). Planar grasp algorithms require a 2D polygon as
input: to deal with this, we reuse the HeightMap segmentation technique proposed in
Section 2.3.2 applied on a single object cluster rather than on the point cloud of the
entire 3D scene. Figure 2.4a shows the proposed pipeline to compute grasp points in
the robot coordinate system, which is described in the following.

Principal axes To begin with, each 3D object cluster is sliced along its principal axes.
To obtain these stable axes, we compute the EigenValue Decomposition (EVD) of the
covariance matrix of each object cluster, as described by Salti et al. (2014), which yields
three repeatable directions.

3 http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php

http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php

2.3 Method description 35

(a)

(b)

Fig. 2.4 (a) Proposed pipeline for grasp points extraction. Each subset of the polygon points
(defined as Grasping Points) will be validated through N validation stages. In addition to
fixed constraints, the user can choose custom constraints for a specific task. (b) Graphical
representation of a 3D object passing through the previous pipeline until it reaches a valid grasp
point configuration.

Slicer The algorithm selects a slice and projects the points onto a plane orthogonal to
the slicing axis. To simplify the obtained shape, the system computes the concave hull
of the slice, this yielding a 2D polygon suitable to the next stages.

Grasp Point Extraction At this stage, N points are randomly extracted from the poly-
gon boundary (in practice, only the first points are randomly extracted, the remaining
ones are chosen so to avoid useless point subsets, e.g. adjacent points).

Validation The extracted grasp points are then evaluated through several stages. The
first stage checks for geometrical constraints: if the detected grasp points lie outside
of the gripper (or robotic hand) workspace, the grasp points are removed. This can be
carried out, e.g., by checking if the distance between 2 grasp points is larger than the
maximum opening of a parallel gripper. The second stage checks for robot workspace
constraints, by evaluating whether grasp points can be reached in a dexterous portion of
the workspace. The third stage evaluates collision constraints, by checking if the gripper,
with the 6-DOF pose relative to the grasp points, would collide with environment. In

36 Small scale mapping for industrial robotic: RobotFusion

addition, custom constraints can also be further added to refine grasp points in case of
specific tasks or manipulators, by adding additional validation stages.

Grasp point removal If one of the validation stages fails, the set of grasp points is
removed for the current 2D polygon. Conversely, if no validation stage fails, since
the grasp points are already in the robot coordinate system , the system can directly
compute the full inverse kinematic chain from the grasp points to the robot base, so that
a trajectory planner can be instructed to easily allow the robot approach the object and
carry out the grasp.

Of course, given the greedy and iterative nature of this algorithm, the determined
solution may not be the optimal one, and the system may also fail to find a feasible
solution if the required iterations exceed the maximum number of allowed iterations.

2.4 Grasping experiments

The entire pipeline comprising 3D reconstruction, plane-based segmentation and ex-
traction of grasp points was tested in real grasping experiments dealing with 8 scenes
created by placing several objects (between a set of 8) on a planar support, as illustrated
in Figure 2.5b. The experimental setup consists of an Industrial Robot, i.e. a Comau
Smart Six with six degrees of freedom and an accuracy and repeatability lesser than
0.05 mm. The end effector, shown in Figure 2.5a, is a dual-use tool: the first part of the
tool is an Asus Xtion RGB-D sensor, the second part a two finger Robotic Hand with
three contact point providing a more stable grasp compared to a simple parallel gripper
with only two contact points.

Each scene was tested 5 times and in each experiment the robot had to grasp all
the objects present in the scene. Accordingly, a binary outcome (Success or Failure)
was reported for each possible grasp depending on whether or not the robot succeeds in
grasping the object and placing it into a bin. Thus, Success requires all the stages in
our pipeline to work effectively, while a Failure may be ascribed to a variety of causes,
such as missing an object because of a wrong segmentation or an unstable grasp (e.g.
the robot does not picks up the object or the object falls while being moved towards the
bin) due imprecise extraction of the grasping points.

Table 2.1 summarizes the results of our grasping experiments. In particular, for each
of the 8 objects, the last two columns report the number of possible grasps within the
40 experiments (5 tests for each of the 8 scenes) as well as the percentage of successful
ones. Each row depicts also two examples of grasps performed by the robot together
with the associated contact points computed by the algorithm described in Section 2.3.3.

2.4 Grasping experiments 37

It is worth highlighting that, as each object was placed in the different scenes according
to different poses (see the pictures in Table 2.1), those automatically determined by
our algorithm are not simple caging grasps but, indeed, stable predetermined grasp
configurations. The overall success rate over all the grasping experiments turned out
to be 96,56 %, with the failures mainly due to imprecise localization of the grasping
points.

A qualitative evaluation of the system is presented in these two videos: Video1 4 ,
Video2 5 . The first footage presents the evaluation setup used in previous experiments
using a 2.5-fingers gripper. In the second video, instead, a real scenario with a 3-fingers
gripper shows the high repeatability of the proposed approach, also with a multi-shape
gripping organ and two fixed cameras.

4https://www.youtube.com/watch?v=ECXamfIaPcQ
5https://www.youtube.com/watch?v=Y1FaBE54E5A

https://www.youtube.com/watch?v=ECXamfIaPcQ
https://www.youtube.com/watch?v=Y1FaBE54E5A
https://www.youtube.com/watch?v=ECXamfIaPcQ
https://www.youtube.com/watch?v=Y1FaBE54E5A

38 Small scale mapping for industrial robotic: RobotFusion

Asus Xtion RGB-D Camera

3D Printed Gripper
(a)

(b)

Fig. 2.5 (a) End Effector used during the experiments. The top part is an Asus Xtion RGB-D
Sensor, the bottom part is the Gripper: a two finger robotic hand with three contacts points
(C1,C2,C3). (b) Two sample scenes of our grasping experiments.

2.4 Grasping experiments 39

Table 2.1 Grasping Results

Object
Type

Grasp carried by the robot and corre-
sponding grasp configuration

Possible
Trials

Success
(%)

Ball 20 100

Bottle 20 100

Box 20 100

Cup 30 95

Cylinder 20 100

Milk 30 100

Showergel 20 75

Winepack 30 100

Fig. 3.1 SkiMap encodes seamlessly a full 3D reconstruction of the environment (left), a height
map (center) and a 2D occupancy grid (right). The three representations can be delivered on-line
with decreasing time complexity. The displayed maps have been obtained on the Freiburg
Campus dataset.

Chapter 3

Large scale mapping for mobile
robotic: SkiMap

3.1 Rationale

As stated in the Chapter 1 several work are focused on the mapping task and address
issues such as memory efficiency, quite mandatory to enable navigation in large spaces,
and time efficiency, which concerns creating on-line the representation required by the
navigation system, such as a 2D occupancy grid to plan a path through the environment
or a 3D reconstruction to avoid obstacles reliably while a robot moves around or a 2.5
(aka height) map to assess free space at the flight altitude of a MAV (Micro Aerial
Vehicle). Along this latter research line, in this chapter we will focus on mapping
and present a novel approach, dubbed SkiMap, introduced in Section 1.2.4, which is
particularly time efficient and flexible enough to support seamlessly different kinds of
representations that may be delivered on-line according to the application requirements,
as depitcted in the Figure 3.1.

42 Large scale mapping for mobile robotic: SkiMap

Another favorable trait of our mapping framework is the ability to erode and fuse
back measurements in real-time upon receiving optimized poses from the sensor local-
ization module in order to improve the accuracy of the map. Indeed, many recent sensor
localization algorithms based on visual data can perform pose optimization on-line, e.g.
upon detection of a loop closure, which holds the potential to continuously improve
the map as long as sensor measurements may be injected therein according to the new
optimized poses rather than the old ones.

Our framework has been implemented as a ready-to-use ROS (Quigley et al., 2009)
package freely distributed for research and education purposes1. The package can be
configured either to achieve mapping in conjunction with any external sensor localiza-
tion module or as a full-fledged SLAM system like Slamdunk, developed by Fioraio
and Di Stefano (2015), or ORBSLAM2 from Mur-Artal and Tardós (2017).

3.2 Mapping Data Structure

In this section we explore the SkiMap algorithm in its entirety, describing the key data
structure as well as how to carry out mapping differently from standard approaches like
Octree or 3D Grid. Furthermore, we highlight the inherent parallelism of the proposed
data structure, which is conducive to notably improved time efficiency in key tasks
dealing with robot navigation.

3.2.1 Tree of SkipLists

SkiMap relies on the basic concept of grouping voxels within a tree as outlined in
Figure 3.2. The actual voxels are nodes at depth 3, which are grouped into nodes at
depth 2 according to equal quantized (x,y) coordinates, the nodes at depth 2 in turn
grouped into nodes at depth 1 according to equal quantized x coordinates. However,
adopting a classical tree structure to realize the concept illustrated in Figure 3.2 would
not be efficient because of the unbounded number of siblings at each depth level (unlike
the octree, in turn, where each node has always 8 children). Indeed, should the children
of each node be stored in a ordinary list, performing a random access would exhibit
O(n) complexity. To overcome this efficiency issue, we adopted a rather uncommon
data structure called SkipList and proposed by Pugh (1990). As shown in Figure 3.3 a
SkipList is apparently similar to an Ordered Linked List, but the former also stashes a
super-structure aimed at bringing the computational complexity associated with random
access from O(n) down to O(logn). In a SkipList elements are kept ordered, and thus,

1https://github.com/m4nh/skimap_ros

https://github.com/m4nh/skimap_ros

3.2 Mapping Data Structure 43

Fig. 3.2 Tree structure to group voxels according to their coordinates. The maximum depth of
the tree is 3, nodes with depth d3 being voxels while those with depths d1,d2 being transient
nodes. Nodes at depths d1,d2 store only integer numbers representing the associated quantized
coordinate, while voxels (blue nodes) can be deployed to store user data, such as for example
Occupancy Probability (Thrun et al., 2005).

Fig. 3.3 The visible part of a SkipList is identical to a LinkedList. The hidden segment of a
SkipList shall ensure a random access complexity of O(logn) rather than O(n).

44 Large scale mapping for mobile robotic: SkiMap

Fig. 3.4 Grouping voxels into a Tree of SkipLists. Each voxel (blue box) is linked to the
rootNode by a yNode (green tile) which in turn is linked to a xNode (red tile).

compared to an ordinary list, insertion time grows from O(1) to O(logn) due to each
insertion requiring a search.

Figure 3.4 shows the actual realization of the concept illustrated in Figure 3.2. A
first SkipList keeps track of quantized x coordinates, thereby realizing depth level 1 of
Figure 3.2; the items of the first SkipList are referred to as xNodes and colored in red;
each xNode is in turn a SkipList which keeps track of quantized y coordinates, thus
implementing depth level 2 of Figure 3.2; the items in these nested SkipLists are dubbed
yNodes (green); eventually, each yNode is a SkipList of zNodes (blue), which represent
the actual voxels and provide the containers for any kind of user data. Therefore, the
concept shown in Figure 3.2 is realized by a novel data structure that may be thought of
as a Tree of SkipLists. It is worth pointing out that with the proposed data structure the
coordinates of a voxel can be obtained by iterating through its predecessors and thus
need not to be stored in the containers together with user data; for example for the voxel
referred to as z3 in Figure 3.4, iterating back through predecessors provides coordinates

3.2 Mapping Data Structure 45

SkipList Depth Integration Time Visiting Time Memory

4 56 ms 215 ms 432 MB

8 29 ms 269 ms 588 MB

16 29 ms 215 ms 900 MB

32 32 ms 259 ms 1524 MB

64 33 ms 258 ms 2743 MB

Table 3.1 Analysis of SkipList depth: tests performed on Freiburg Campus dataset with a
resolution of 0.05m. The Table reports the average computation time to integrate new sensor
measurements (⇠180k points), the average time for a full visit of the map and the memory
footprint of the map.

(x0,y1,z3). A similar technique is used in Octomap to avoid coordinates storage in the
leaves of the octree as clarified by Hornung et al. (2013).

As a detailed description of the SkipList is outside the scope of this thesis and can
be found in the work of Pugh (1990), we conclude this section with a brief review of its
key concepts related to this topic. A SkipList is a multi-level linked-list in which the
first level is a list containing all the elements ordered by a Key (each node being a pair
< Key,Value >); level i contains about half elements of level i�1, still ordered by Key.
Similarly to a Binary Tree, a search is performed starting from level i = imax down to
i = 1 in O(logn), at the expense of memory footprint (due to replicated elements).

Depth (i.e. number of levels) is a parameter of the SkipList to be chosen based
on application settings. Indeed, there exists an upper limit beyond which one gets no
further benefits in terms of timing performance while significantly increasing memory
footprint. As reported in Table 3.1, this is vouched also by our experimental findings.

46 Large scale mapping for mobile robotic: SkiMap

3.2.2 Voxel indexing

As each node of our data structure is addressable by a Key, we can use it to map
real world coordinates to quantized indexes just as it would happen in a 3D Grid.
Thus, extending the concepts introduced in Equation 1.3, to retrieve the voxel v ="

Ix Iy Iz

#
2 Z corresponding to a 3D point p =

"

x y z

#
2 R3:

Ix =
jx

r

k
, Iy =

jy
r

k
, Iz =

jz
r

k
(3.1)

r denoting, as usual, voxel resolution. Unlike a 3D Grid, however, we can use also
negative indexes as they represent Keys of a map rather than simple indexes of an array.
This is important for mapping applications as, more often than not, the ground reference
of the map (aka Zero Reference Frame) is not known a priori.

With our data structure, querying for a voxel f (Ix, Iy, Iz) = v consists in executing
the iterative query h(g(f (Ix), Iy), Iz) = v. Thus, with reference to Figure 3.4:

• f (•) retrieves a red tile / xNode

• g(•) retrieves a green tile / yNode

• h(•) retrieves a blue box / zNode / Voxel

Each of three query function f (•),g(•),h(•) can result in either a Hit or a Miss.
Moreover, each generic function f(f (Ix)) may be performed concurrently because it
involves separate branches of the SkipList Tree (see again Figure 3.4). In simple terms
each sub-tree related to a xNode is completely separated by its siblings, for this reason
each of them can be accessed concurrently.

3.2.3 Parallelization

As highlighted in the previous section, the proposed data structure inherently provides
for a high degree of parallelization. Besides, even a single SkipList may enable a certain
level of parallelization by using locks on nodes, as introduced by Pugh (1998). However,
we decided to exploit only the high parallelism among voxel indexing operations
enabled by our data structure while not deploying also the lock-based technique to
further parallelize accessed within a SkipList, mainly to maintain a lean and simpler
code and secondly due to lock-based algorithm being often unpredictable, which makes
them unsuited to real-time tasks.

As already mentioned the operations involving separated branches of the first level
of our SkipList Tree, that is f (Ixi) 6= f (Ix j)! xi 6= x j, can be performed in parallel. We
can classify all the possible operations on the data structure into two main categories:

3.2 Mapping Data Structure 47

• Visiting Operations: Visiting the whole tree (i.e. reaching each voxel of the map)
consists in visiting all first-level nodes in parallel and collecting the results:

p(G) =
last

Â
i= f irst

p(f (Ixi)) (3.2)

• Updating Operation: upon performing a generic update operation we cannot
know in advance whether it will produce a new allocation or a deallocation or
it will just update the content of an existing voxel without performing further
search. To ensure that an update operation is not concurrent over others we can
reuse again the previous technique: we assume that two update operations do not
conflict if they belongs to two separate first level branches. In a typical application
scenario we are given a set of sensor measurement to be integrated into the map:
a set of 3D points: C = {(x,y,z)}. Hence, we can group these points in subsets
according to their first quantized coordinates

C =
max[

i=min
Cxi |Cxi : {

jx
r

k
= Ixi} (3.3)

so to perform the integration operation dealing with each of the subsets in parallel
while ensuring no concurrent memory access.

This kind of parallelization is useful not only to improve timing performance but
also in scenarios in which map updates may occur from separated sensors in separated
chunks, for example in multi-agent localization and mapping Parker et al. (2013). For
the record, parallelization across yNodes is also possible but may lead to a computational
overhead due to only xNodes being extensive. Nonetheless, we plan to investigate on a
possible deeper parallelization of the computation.

3.2.4 Radius search

In a SkipList the Nearest Neighbor Search is straightforward: when we search for a Key
in the list we always know the previous and next Keys present in the set, even when the
searching Key is missing. A Radius Search around a target index is performed collecting
all the elements between two indexes Ir� , Ir+ obtained starting from a center index and
computing the boundaries with discrete radius dimension:

Ir+ , Ir� = I ±
�

radius
resolution

⌫
(3.4)

48 Large scale mapping for mobile robotic: SkiMap

as a SkipList is an ordered linked-list, iterating from Ir� to Ir+ allows for executing
the search with O(k) time complexity, k being the number of elements within the
range (Range Search). We can extend this approach to each of the SkipLists present
in our Tree, so to perform a Range Search along each x,y,z dimension and obtain a
Box Search. Then, filtering all the points found within the Box based on the distance
from the box center allows for fetching a Sphere and thus achieve a Radius Search.
As it will be shown in Section 3.4, thanks to the parallelization approach enabled by
our data structure and discussed in previous section, our method outperforms standard
implementation of search algorithms such as the KD-Tree or Octree.

3.3 Salient features of Skimap

In this section we present some additional modules deployed in our mapping system not
essential to the core SkiMap data structure itself but that make this mapping framework
somewhat unique, especially as regards Section 3.3.1.

3.3.1 Ground tracking and 2D querying

Although our proposal may be considered a generic 3D Mapping framework, it has
been conceived to address robot navigation scenarios. Therefore, we found it useful
to endow the framework with a module dedicated to tracking the ground plane. Thus,
upon activation of the ground tracking module, the camera mounted on-board the robot
must get a shot of the ground plane in the very first frame. The main plane found in
the first frame is treated as the ground plane, which allows for classifying easily all the
3D points sensed in the successive frames as either ground or obstacle points. This
technique permits also to set the Zero Reference Frame of our map in the centroid of the
first floor, thereby ensuring that z coordinates are zero near the ground. More generally,
if the core SkiMap algorithm may be provided with measured points classified as ground
or obstacles, they can be integrated in the map differently, and, in particular, so as to
reduce the time complexity to integrate the former. Indeed, with reference to Figure 3.4,
integrating a ground point boils down to allocating or updating only a green tile/yNode
rather than a voxel, which implies reaching just depth level 2 of our SkipList Tree,
whilst integrating obstacle points would require going deeper to reach level 3.

We can make the same point as visiting through the SkipList Tree: should we
wish to retrieve only the information about ground in order to obtain a 2D Map we
would need to visit the tree only up to depth level 2, thereby reducing time complexity
dramatically as vouched by Figure 3.8 . The figure shows also that the ability to create
extremely rapidly a 2D view of the 3D Map is peculiar to SkiMap, a classical approach

3.3 Salient features of Skimap 49

like the Octree being much slower due to the need to visit all voxels and project them
on the ground in order to retrieve a 2D Map.

3.3.2 Map continuous update on pose graph optimization

Fig. 3.5 The Pose History consists of a set of queues associated with Sensor Measurements
(SM). This structure allows for linking diffent poses to any SM so to keep track of which pose
has been used to integrate them into the map as well as of the existence of newer ones possibly
produced by the on-line pose optimization process. For example, at time t2 the history linked to
SM0 shows that the mesaurements have been fused into the map according to P0 but there exists
a newer pose, i.e. P2: the Pose Integrator may choose to erode SM0 from the map according to
P0 and fuse measurements back according to P2, marking then the latter as the last integrated
pose for SM0. Conversely, the last pose and last fused pose associated with SMn do coincide, so
no action would be taken by Pose Integrator fot those measurements.

What we call Map Update is the procedure to fuse new sensor measurements in the
model of the environment, i.e. the Map. In a real scenario the update procedure cannot
rely on an unidirectional workflow, because for several reason we may need to remove
from the Map past data. For the abovementioned reason, the Map Update cannot be
a Lossy procedure but need to preserve temporal information in order to reverse any
update.

The idea of Erosion of past sensor measurements and Fusion (or Integration) of
new ones in a voxel grid was first introduced by Fioraio et al. (2015). The integration
procedure, described by Curless and Levoy (1996), allows to fuse sensor measurement in
a voxel grid according to a weight; for example, to integrate the occupancy probability:

50 Large scale mapping for mobile robotic: SkiMap

P0(v) =
P(v)W (v)+ pi(v)wi(i)

W (v)+wi(v)
,W 0(v) =W (v)+wi(v) (3.5)

where P0(v),P(v) are the new and old occupancy probability of voxel v, respectively.
W 0(v),W (v) the new and the old weight. As proposed in Fioraio et al. (2015), the
Erosion process consists in just inverting the integration process:

P0(v) =
P(v)W (v)� pi(v)wi(i)

W (v)�wi(v)
,W 0(v) =W (v)�wi(v) (3.6)

Erosion and fusion of sensor measurements may be deployed in conjunction with any
sensor localization module capable of delivering optimized poses, e.g. upon detection
of a loop closure. Thereby, the map may be updated by removing sensor measurements
according to old poses and fusing them back according to the new, optimized poses. Our
mapping system supports this feature by overriding simple plus and minus operation
for the generic data type associated with each voxel, which allows the user to handle
any desired kind of measurement (Occupancy Probability, SDF, RGB) in order to
implement Equation 3.5 and Equation 3.6, provided that the operation of integrating
new measurement in the global map is reversible.

However, though a sensor tracker typically produces poses at a certain controlled
and approximately fixed pace (e.g. at every new sensor measurement or a controlled
subset of them), optimized poses are delivered asynchronously with respect to such
a regular rhythm, e.g. because a loop closure has been detected, and may happen to
compete with live tracking as concerns updating the map. Therefore, as illustrated in
Figure 3.5, we have endowed SkiMap with a Pose Manager capable to create a Pose
History: the system treats live poses and optimized poses seamlessly by inserting them
in a set of queues, each associated with the sensor measurements (e.g. a depth image)
taken at a certain time stamp; a Pose Integrator chooses from the Pose History a subset
of poses and integrates the associated sensor measurements in the voxel map; if the pose
that’s about to be integrated is an optimized one, its predecessor will be eroded from
the map first. The choice of the subset of poses to be integrated into the map occurs
according to the following criteria:

• live poses must be integrated as soon as possible.

• among optimized poses, those spatially closer to the current live pose are picked
first.

• the upper bound of the subset cardinality is fixed to ensure predictable computa-
tion time.

3.4 Experiments 51

3.4 Experiments

3.4.1 Implementation details

SkiMap is implemented in C++ and wrapped in a ROS package, so to maximize its
portability and usability in the robotics community. Thanks to widespread use of C++
Generics, theSkiMap data structure is contained in a couple of header files. Furthermore
C++ Generics enable to chose Data Type to represent coordinates: for example, in
our current implementation we have chosen short as index data type allowing values
in range [�32.768,32.768], which results in a map of 655.36m along each dimension
with a resolution of 0.01m, according to Equation 1.3. Also voxels are templetized so to
allow the user to store whatever information therein, provided that the data structure,
representing custom voxel content, respects the assumption described in Section 3.3.2.

3.4.2 Results

The SkiMap mapping framework has been evaluated using some heterogeneous datasets
categorized as follows:

• Medium-sized datasets captured with RGB-D sensors (Sturm et al., 2012).

• Public large-sized datasets captured with laser scanners mounted on pan-tilt units
(Freiburg Campus 2, New College by Smith et al. (2009)).

• Small and Medium-sized datasets captured in our Lab through RGB-D sensor on
mobile robots (Figure 3.11).

The public datasets are endowed with ground truth camera poses, while in the experi-
ments concerning our datasets we deploy Slamdunk (Fioraio and Di Stefano, 2015) to
track the camera. Thus, the quantitative evaluation reported in Figure 3.6, Figure 3.7,
Figure 3.8, Figure 3.9 deals with the first two categories only - because of the availability
of ground poses - and concerns a comparison between SkiMap and the Octree3 that
is, to the best of our knowledge, the foremost mapping solution, provided with spatial
queries, in terms of memory efficiency. To attain a more comprehensive assessment,
for each dataset we have considered multiple map resolutions,i.e. 0.05m, 0.1m and
0.2m. In Figure 3.9 we have considered also the kd-tree4 because of its wide adoption

2Courtesy of B. Steder, available at http://ais.informatik.uni-freiburg.de/projects/datasets/
fr360/

3version used: https://github.com/OctoMap/octomap
4version used: http://pointclouds.org/

https://github.com/OctoMap/octomap
http://pointclouds.org/

52 Large scale mapping for mobile robotic: SkiMap

in spatial search tasks such as radius search. All the experiments have been run on a
5th generation Intel Core i7.

First we have assessed basic tasks like “Integrating New Measurements” (Figure 3.6)
and “Visiting the Map" (Figure 3.7), finding out that SkiMap is almost always more
efficient than the Octree. Figure 3.8 highlights how the 2D Query feature introduced
in Section 3.3.1 enables to outperform the Octree in obtaining a similar representation.
A qualitative example of the 2D Query feature can also be seen in Figure 3.10, with
the ground correctly reconstructed; it is worthwhile pointing out here that, as vouched
by Figure 3.8, obtaining this kind of representation by performing per-voxel projection
to ground would imply a significantly higher time complexity. Finally, Figure 3.9 is
about the timing performance of the radius search task, quite relevant, e.g., for the
sake of avoiding obstacles while navigating within the workspace under reconstruction
Figure 3.9 points out the much higher efficiency of SkiMap with respect to both Octree
and kd-tree, even without considering the initialization time to build the spatial index
required by the kd-tree which is not accounted for in the aforementioned figure. As
for memory occupancy, Table 3.2 highlights how SkiMap tend to be almost as efficient
as the Octree in case of large environments while providing less memory savings with
smaller workspaces.

As for the experiments dealing with datasets taken in our Lab, we used two mobile
robots, namely Youbot (Bischoff et al., 2011) and Tiago 5, equipped with a Asus Xtion
RGB-D sensor and, rather than relying on ground truth information, deployed SlamDunk
(Fioraio and Di Stefano, 2015) to track the robot/camera 6-DOF pose and fuse sensor
measurements into the map according to the estimated poses. Furthermore, leveraging
on the Pose Optimization module offered by SlamDunk, we can realize the Map Update
feature of SkiMap (see Section 3.3.2). Both robots were operated manually, in small
(Youbot) and large (Tiago) sized environments within our Lab, so to collect and fuse
together multiple sensor measurements in order to reconstruct a map of the explored
workspace. Figure 3.11 depicts examples of reconstructed maps with and without
the Map Update process enabled by SlamDunk’s Pose Optimization module. It is
worthwhile pointing out that with our approach the optimized maps are not attained
off-line within a post-processing step but built in real-time as described in Section 3.3.2.

This Video 6 presents a qualitative evaluation of all the SkiMap relevant parts, by
exploiting real mobile robots to perform medium-large scale environment reconstruc-
tion.

5http://tiago.pal-robotics.com/
6https://www.youtube.com/watch?v=MverWmFAgkg

https://www.youtube.com/watch?v=MverWmFAgkg
http://tiago.pal-robotics.com/
https://www.youtube.com/watch?v=MverWmFAgkg

3.5 Skimap extensions 53

3.5 Skimap extensions

So far we have described a novel mapping approach mainly devoted to robot navigation.
The primary objective was to provide an efficient mapping framework suitable to real-
time applications in embedded robotics platforms. Thus, unlike approaches that focus
on dense and accurate 3D reconstruction, such as e.g. Dai et al. (2016), our method is
aimed at building as efficiently as possible the kinds of representation required to support
robot navigation effectively. Moreover, the framework can also provide some basic
form of semantic information, such as telling apart ground and obstacles. In the next
chapter we describe how to enrich the degree of semantic perception accommodated by
SkiMap by incorporating detection of certain object instances Fioraio and Di Stefano
(2013), e.g. items to be picked or manipulated by the robot.

54 Large scale mapping for mobile robotic: SkiMap

Dataset Type Memory Saving wrt 3D Grid

Resolutions

0.05m 0.1m 0.2m

Freiburg Campus

292⇥167⇥28m3

octree 98.75% 96.21% 90.61%

skimap 98.52% 94.28% 83.33%

New Dataset College

250⇥161⇥33m3

octree 99.74% 99.00% 96.76%

skimap 99.77% 98.84% 95.30%

Freiburg Long Office

23⇥25⇥10m3

octree 90.50% 84.71% 74.91%

skimap 82.62% 71.30% 54.63%

Table 3.2 Percentage of memory savings with respect to a full 3D grid.

3.5 Skimap extensions 55

Fig. 3.6 Time to integrate new measurements into the map with increasing number of total
points. The first three datasets deal with RGB-D sensors (⇠ 320k points per scan) while the
last one was acquired by a Laser Scanner mounted on Pan-Tilt unit (⇠ 180k points per scan).
SkiMap provides inferior performance in the last dataset due to the scans featuring very spread
and distant points (up to 50m).

Fig. 3.7 Time to visit the whole map. Visiting in this case means the retrieval of the whole
voxels set e.g. for visualization purposes or for global navigation path planning.

Fig. 3.8 Comparison between 3D and 2D reconstructions. The Octree requires the same time to
perform a full 3D or a 2D reconstruction because in both cases it needs to iterate over all the 3D
points. SkiMap, instead, turns out faster than the Octree in obtaining a 3D map as well as much
faster in creating a 2D map thanks to the 2D Query feature.

Fig. 3.9 Time to perform a radius search with increasing of radius size. SkiMap outperforms
both the Octree and the kd-tree on all datasets.

56 Large scale mapping for mobile robotic: SkiMap

Fig. 3.10 A Map built from Corridor Dataset collected in Octomap (Hornung et al., 2013).
SkiMap allows for efficiently detecting the ground and, without further computational cost,
discard higher obstacles like the roof (red voxels in the left image) and labeling the ground
voxels as navigable (white regions in the right image).

Fig. 3.11 The first row concerns a small room (5m⇥4m⇥3m) reconstructed by Youbot in eye-
on-hand configuration. The second row represents a medium-size environment (8m⇥35m⇥3m)
reconstructed by Tiago through an RGB-D camera mounted on the head. The middle column
highlights the significant improvement in reconstruction accuracy provided by the real-time map
optimization process.

Fig. 4.1 Large-scale map reconstructed online by SkiMap++ through a mobile robot equipped
with an head-mounted RGB-D camera. Purple spheres represent areas found alongside with
reconstruction which are likely to contain object instances. Magnified circles represent outcomes
of the final Instance Estimation Algorithm, which is performed in the aforementioned areas only.
The whole map is acquired by relying on the robot’s own odometry in order to track camera
poses over time.

Chapter 4

Sparse semantic mapping for robotic
manipulation: SkiMap++

4.1 Introduction and related works

In previous chapters we have discussed how autonomous robots may rely on suitable
mapping modules to navigate within an unknown space (Chapter 3) or to manipulate
unknown objects (Chapter 2). In this chapter we are concerned with extending SkiMap
(described in Chapter 3) to enrich the representation to the level of semantics, i.e. so as
to go beyond pure geometric mapping and incorporate information to enable detection
of certain objects as well as estimation of their 6-DoF poses in the world space. This
novel type of semantic mapping might be useful, e.g., to support an autonomous robot
that would navigate within an unknown environment while seeking for certain objects

58 Sparse semantic mapping for robotic manipulation: SkiMap++

that, if found, should be picked, as it might occur, for example, in some service or
rescue scenarios.

In literature, many works tackled the problem of 3D object detection and pose
estimation from RGB-D images. Such techniques can be split between those relying
on a single view to perform detection like Wohlhart and Lepetit (2015), Chi Li et al.
(2016) or Brachmann et al. (2016); and those techniques deploying multiple images
from several vantage points to ascertain whether an object is located in the observed
scene and compute its pose. Multi-view object detection pipelines have been presented
Thomas et al. (2006), who track feature points across views to determine the location
and pose of the objects of interest jointly. Collet and Srinivasa (2010) propose to handle
each view independently and then perform a global refinement. Civera et al. (2011)
detect object instances in a sequence of images by means of SURF correspondences
(Bay et al., 2006) and insert such objects into a map refined by a SLAM (Simultaneous
Localization and Mapping) algorithm. This work introduced the idea of integrating
the object detection into a SLAM pipeline to increase resilience of object localization
with respect to the partial occlusions occurring in a single view: by reconstructing a
consistent model of the 3D scene, and performing the detection therein, one can robustly
identify the instances of interest by exploiting -possibly partial- evidence accumulated
over time.

Object detection and 6-DoF pose estimation from 3D data may be achieved by
detecting 3D keypoints, then computing and matching 3D descriptors between the
current scene and a set of 3D models as described in Aldoma et al. (2013, 2012); Rusu
et al. (2010); Salti et al. (2014). A different approach is due to Lai et al. (2014, 2012),
who project per-pixel object probabilities from RGB-D frames onto voxels to obtain a
semantic labeling of the scene, though in this work object poses are not estimated.

Alternatively, one can augment a SLAM pipeline to account for the task of object
instance detection: the works of Salas-Moreno et al. (2013) and Fioraio and Di Stefano
(2013) were among the first papers to propose leveraging on recognized object instances
as a means to improve the consistency of the SLAM process and vice-versa. Tateno
et al. (2016) propose to rely on a framework that simultaneously deploys a SLAM
algorithm (used to obtain a reconstruction of the scene), a segmentation algorithm and
an object recognition algorithm, so as to match descriptors to such segments to provide
accurate and stable 6-DoF poses for the objects of interest. Li et al. (2016) also rely
on the idea of synergistic exploitation of SLAM reconstructions for object detection,
in order to improve scene understanding. This task is accomplished by fusing object
hypotheses from single frames (possibly depicting partially-occluded instances) into a
Global Semantic Map, as introduced by Tateno et al. (2015).

4.2 Offline pipeline 59

This chapter follows the above-mentioned line of work by presenting a novel frame-
work, referred to as SkiMap++, which allows for simultaneous recognition of objects
and reconstruction of the environment as explored by a mobile agent. By accumulating
evidence for objects into an extensible, real-time, mapping system, SkiMap++ can
detect the presence of objects of interest in a 3D reconstruction of the scene and estimate
their 6-DoF pose. The name is – obviously – inherited from the mapping framework
introduced in Chapter 3.

This chapter is divided essentially in two main sections: the first section describes
how to train our system with N generic target objects (Offline Pipeline Section 4.2);
then the second section describes how the system employs the outcome from the first
training procedure to perform object recognition and pose estimation during real-time
operation (Online Pipeline Section 4.3).

Why SkiMap? The SkiMap++ framework is based on the SkiMap structure, which
we introduced in Chapter 3 to realize efficient real-time mapping of large scale environ-
ments. Among the key features of this proposal are: Suited for large scale environments,
thanks to a low memory footprint; Fast random voxel access O(logn); Equipped with
several components implementing the Fusion/Erosion technique from Fioraio et al.
(2015), so as to optimize the map on-line alongside with reconstruction; Ability to
perform radius-based search with better performance than Octree(Meagher, 1982) and
Kd-Tree (Bentley, 1975). The flexibility of the SkiMap data structure allow us to
adopt it in the SkiMap++ pipeline in order to store not only the map of the explored
workspace but also the kind of data instrumental to the Object Recognition task, i.e., in
our proposal, 2D Features, Object Hypotheses and Guessed Instances. These additional
data-types need to be queried and updated in real-time and at the same time they need
to be stored in a map as large as the mapped environment. Thus, SkiMap++ relies on
continuous update of these heterogeneous maps and schedules queries on them so as to
speculate on 6-DOF Objects Poses.

4.2 Offline pipeline

The SkiMap++ object recognition approach is based on detection of sparse 2D features,
that are then matched against a pre-trained Object Database, to achieve full 6-DoF
pose estimation of target objects alongside with reconstruction of the environment.
The matching component is built upon a Random Forest Classification system able to
predict, given a 2D feature descriptor, to which object the feature belongs to together
with the coordinates of the voxel – in the object reference frame – in which the said
feature was found during the training phase. Brachmann et al. (2014) investigated the

60 Sparse semantic mapping for robotic manipulation: SkiMap++

Fig. 4.2 Each object feature looks differently depending on the vantage point. Experimental
results show that fusing together, inside the same voxel, multiple descriptors computed from
different viewpoints yields a Descriptor Matrix representing a multi-modal distribution in the
descriptors space Rn. A 2D visualization of descriptors obtained by t-SNE (Maaten and Hinton,
2008) highlights how these different descriptors tend to concentrate into a few clusters.

Decision Forest approaches to predict, from a given feature, the object class and its
position in the model reference frame. Formally:

p(c|d) p(y|c) (4.1)

namely the decision forest predicts the class c 2 C – given a feature d 2 Rn, the
n-dimensional feature space – as well as the probability of object point y – in the
object coordinate system – given class c. Indeed, the prediction p(y|c) in the second
step is achieved by storing, at training time, all feature positions in the leaf of the
decision trees, filling a multi-modal distribution in R3 discretized over a 5⇥5⇥5 fixed
grid. Furthermore, by adopting a dense feature approach, the technique introduced by
Brachmann et al. (2014) can predict during the online phase, the eligible object class
and its internal point given a generic pixel (input images are densely described).

In SkiMap++ we exploited a similar approach, but focused on the analysis of the
multi-modal distribution in the descriptor space Rn, a distribution that grows during
the database acquisition of each region of the target object model. As can be seen
in Figure 4.2, if we observe a target object from different vantage points, the same
keypoint (e.g. the one belonging to the eye of the Toy Robot) is likely to show different
appearances depending on the point of view. Multiple appearances in the descriptor
space yield different descriptor vectors d 2 Rn modeled as a Mixture of Multi-Variate

4.2 Offline pipeline 61

Fig. 4.3 The stacking procedure used in SkiMap++ to create the Object Dataset and train the
associated Classifier which can then be used on-line to perform object recognition. Column a)
shows the reconstructed RGB Volumes of two objects (A Bottle of Detergent and a Toy Robot
respectively). Column b) depicts the Descriptors Voxels Volume containing descriptions of
multiple appearances as Figure 4.2. Column c) shows equally sized voxels stacks, ordered by
cardinality, for each object. Finally, in d), voxels stacks are merged into a global Classes Stack
that will represent the prediction target for the forest training process.

distributions over Rn. In the experiment outlined in Figure 4.2 we use SURF features
(Bay et al., 2006) to detect and describe keypoints, resulting in a R64 descriptor space.
As shown in in Figure 4.2, given an object feature we employed the t-SNE technique,
presented by Maaten and Hinton (2008), to analyze the distribution of descriptors
dealing with different vantage points and found that these tend to form a small number
of clusters. In this way is possible to display a the Descriptor Matrix (i.e. a matrix
M 2Rn⇥m whose columns are m samples belonging to the descriptor space Rn) to prove
that descriptors are condensed around a bunch of means.

We deploy a classifier trained to predict from keypoint descriptors the 3D voxel –
in the object coordinate system – wherein the 3D feature originating is likely to falls
within. To achieve this, we exploit SkiMap also during the database creation phase,
so to build multiple voxel maps for each object: one fuses RGB data (to obtain an
user-friendly object representation, see column a) in Figure 4.3) while another one
fuses together descriptors in such a way that each voxel stores a Descriptor Matrix
(we will use interchangeably the terms Descriptor Voxel and Descriptor Matrix Voxel,
see column b) in Figure 4.3). Figure 4.6 illustrates this dualism between RGB voxels

62 Sparse semantic mapping for robotic manipulation: SkiMap++

and the corresponding Descriptor Voxels. We denote a class c 2C for each Descriptor
Voxel, determining a mapping function that from c allows us to easily compute the
corresponding point in the object coordinate frame. We then train a Random Decision
Forest to predict, given a target 2D feature, the object class as well as the voxel
containing it:

p(c|d) v(c) = v j (4.2)

we replace the second part of Equation 4.1 with a deterministic function to compute
the exact voxel given a predicted class c. To avoid confusion we need to define the
difference between a predicted class and the labels used in the semantic labeling
procedure: the label is l 2 {0,1, ...m�1} where m is the number of training objects; a
class, instead, predicts both the object as well as the voxel therein, c2 {0,1, ...,m⇤k�1}
where k is the size of subset of Descriptor Voxels choosen among all object’s voxels.
We can easily convert a class in the corresponding label:

l = bc
k
c (4.3)

but not vice-versa because the b·c operator makes it a lossy procedure. As the number
of Descriptor Voxels could be very large we need to choose k carefully: in our system
we choose to stack the Descriptor Voxels of each object ordered by their cardinality,
then keeping those containing more cues. Figure 4.3 shows a sample object database
(containing only two models) to clarify the process to convert each voxel into a class
and vice-versa:

v(c) = v j o(vj) = oi = l (4.4)

with oi the index of the object containing voxel vj, in other terms: the label. Interestingly,
this process might be thought of as a Local-to-Global indexing conversion. Having
obtained a set of classes, each of which originated by a d 2 Rn vector, we can train a
decision forest classifier according to the standard procedure described by Criminisi
and Shotton (2013). Without any loss of information, we reduce the memory footprint
of Descriptor Voxels by computing the means of the relative mixture of gaussian (e.g.
centroids in Rn of each eligible cluster, as highlighted in the t-SNE representation shown
in Figure 4.2). As the number of clusters is not known a-priori, we adopt the Mean Shift
clustering approach by Cheng (1995).

The aforementioned compression procedure is very useful also to validate the
prediction of the Random Forest. If we define {m0, ...,ms} as the set of clusters
computed with Mean Shift, with mi 2 Rn, and we have the Classifier prediction c

4.3 Online pipeline 63

originated by the feature d 2Rn, we can easily retrieve the corresponding set of clusters
associated with the voxel v j = v(c) (Equation 4.4). With:

dmin = min
mi

d (d,mi) (4.5)

we can compute the cluster mi with the minimum distance dmin, defining a generic
distance function d (·), to the starting descriptor d. Choosing a custom threshold dth, we
can discard every prediction with dmin > dth by assuming that the prediction is wrong
because the descriptor d belongs to an alien cluster mi not present into the targer voxel.
The study of the correct distance function d (·) is not present in this work but we can
say that the best function may be the Mahalanobis distance, described by Mahalanobis
(1936), which, however, requires the storage of the covariance matrix of hundreds of
samples, at the detriment of the compression; in our experiments we used the simple L2
distance which however improve classification performances.

It is worth pointing out that the proposed SkiMap++ framework is detector-agnostic.
In fact, in our implementation the adopted 2D feature detector-descriptor is just a
parameter of the system, as k the number of classes per object. In Section 4.4 we show
some results while varying these parameters.

4.2.1 Built-in Model Database Compression

In object recognition pipelines based on 2D feature detection, the recognition rates turn
out quite negatively affected by discrepancies between off-line and on-line conditions
such as different light sources. So to strengthen the algorithm, we deemed useful to
provide more evidence into the database: in our experiments, for example, we evaluated
the performance and memory footprint of whole system while adding more amd more
evidence. Intuitively, in SkiMap++ more visual cues only leads to increasing cardinality
of each voxel in the Descriptor Volume without increasing – meaningfully – the memory
footprint (shown in Figure 4.4), which would be the case if we stored each single RGB-
D frame of the object’s scan. Thanks to Mean Shift clusters analysis we can further
compress the amount of stored information by saving only clusters centers.

4.3 Online pipeline

64 Sparse semantic mapping for robotic manipulation: SkiMap++

Fig. 4.4 For an object in the dataset many variants may be acquired. In the figure each variant
is intended as a full rotation around the object with the RGB-D camera in different conditions,
e.g. in this figure from the Front or from the Top with an angle of 45�, and so on. Each variant
enriches the object description by filling Descriptor Voxels with additional evidences. Clustering
the descriptors ensures the further decrease of memory footprint compared to the usage of all
descriptors computed from the raw RGB-D frames. Storing the clustered representation of
Descriptors is necessary to verify Classifier prediction as described in Section 4.2,Equation 4.5.

4.3
O

nline
pipeline

65

Fig. 4.5 SkiMap++ online pipeline. First, new frames are integrated in two separate maps, one for RGB data and the other for labels. A local active sphere
is generated according to the current camera pose, this sphere is used to query the label map to obtain objects matches and compute local hypotheses.
Such hypotheses will be fused into another map. Given a target region inside the Hypotheses Map, the last phase of the pipeline entails the identification
of the hypothesis with highest score, performing a radius search of similar hypotheses and merging them together to estimate and refine the final 6-DOF
pose. Refined hypotheses shall be considered as object Instances and will be fused again in a global instances map.

66 Sparse semantic mapping for robotic manipulation: SkiMap++

In this section we examine the SkiMap++ pipeline from acquisition of a the new
frame to the final object instance recognition and pose-estimation. As depicted in
Figure 4.5, the work-flow is subdivided into three macro blocks each of which affecting
a different SkiMap volume. In the next subsections each block will be explained in
detail. To summarize: the input data for the SkiMap++ recognition pipeline is a generic
pair (RGB-D frame, camera pose), regardless of how they are generated; RGB-D data
are integrated into a SkiMap RGB Volume according to the associated pose in order to
reconstruct the environment. Simultaneously, sparse 2D features are extracted from the
current frame and processed by the Random Forest Classifier, built with the procedure
described in Section 4.2, in order to predict Labels which will be fused into an associated
semantic SkiMap Volume (Section 4.3.1): Figure 4.6 illustrated the dualism between
RGB and Labels volumes.

For each Camera Pose an Active Sphere can be derived, so as to outline a local area
of interest, over labels volume, on which formulate hypotheses about objects, whose
hypotheses will in turn be fused into a further SkiMap (Section 4.3.2). Finally we
can perform a 3D query on the last Hypotheses Map to retrieve final object instances,
resulting from the aggregation of Hypotheses in the neighbourhood of the queried point.

4.3.1 Frame Integration Module

The first stage of SkiMap++ is the Frame Integration block: this sub-component of the
system is responsible of two main, independent, mapping tasks.

The first task is to build the RGB Volume, just as in the original SkiMap approach
(Chapter 3). Accordingly, colour information is fused into a RGBWeightedVoxel data
structure implementing weighted sum/subtraction operations. As mentioned in the
related chapter, this is a peculiar trait of SkiMap, which allows the system to integrate
new sensor measurements or de-integrate past data marked as invalid.

The second – and more important for the purposes of this chapter – task is the
computation of a semantic map, which leverages again on the SkiMap data structure.
This semantic map is fed with Labels predicted trough the Random Forest described
in Section 4.2, using as input data the 2D Sparse Features detected in the current
frame. Figure 4.6 illustrates a portion of the semantic map in which voxels are coloured
according to the predominant Label within. In this case, in fact, unlike a RGBWeight-
edVoxel that could be merged by mixing colours, labels cannot be naively aggregated
because of their categorical nature. Thus, the semantic map adopts as base element a
MultiLabelVoxel implementing the sum/subtraction operations, as follows:

Vi = {hl,wii : l 2 L,wi 2 Z+
0 } (4.6)

4.3 Online pipeline 67

Fig. 4.6 The left part depicts a portion of environment reconstructed through SkiMap++ contain-
ing the multimeter object (the first object in Figure 4.12), fusing RGB-D Frames captured from
multiple vantage points. On the right, the corresponding semantic map obtained by fusing Labels
is shown instead. For visualisation purposes, voxels in the latter representation are coloured
depending on object to which they belong. In this case, brown voxels are those belonging to the
multimeter.

V1 ±V2 =V3 !V3 = {hl,w1 ±w2i} (4.7)

Equation 4.6 describes a generic MultiLabelVoxel Vi as a MultiSet, namely a Set
with repetitions, of classes l 2 L with cardinality wi (i.e. repetition counter). This
notation is necessary to allow a Label to be fused into a Voxel repeatedly, without losing
the cardinality information; furthermore we allow two Voxels to be merged together
through the lossless procedure described by Equation 4.7). Such kind of Voxel shall be
equipped with a method to retrieve the maximal ordered pair: hl,wii in order to fetch
the largest Label and its weight during the matching phase.

The main purpose of the subsystem described above is to provide a – searchable
– semantic map through which we can retrieve all labels belonging to a given object.
In the next section we will detail how to speculate on object 6-DoF pose hypotheses
starting from a local map of labels.

68 Sparse semantic mapping for robotic manipulation: SkiMap++

Fig. 4.7 The right part of the image depicts the Active Sphere on which we build the 3D Hough
space. For each three random correspondences we can project an Object Reference Frame ob jTi
inside the sphere computing the relative Reference Frame HTob j in the Hough coordinate space
and cast votes for the object base in the relative bin: in the figure the first match (blue arrows) and
the second match (red arrows) project the object base in the same bin (green square). The other
bin (red box) represents an hypotheses brought in by a false positive. Had the three hypotheses
voted for their own centroid instead of the base, the associated bin would have accounted a
distorted number of votes taking into account as inliers the relatively rotated matches, coming
from the false positive hypotheses.

4.3.2 Local Hypotheses Estimation Module

The second module of SkiMap++ depends on the Camera Pose from which it derives
an Active Sphere. In particular, the goal is to compute a reference frame MTS (Map to
Sphere) relative to the camera frame MTC (Map to Camera) falling into its frustum:

MTS =
M TC ·C Ttz (4.8)

where CTtz is a translation along the z-axis. Such translation could be fixed (for example
in our experiments to 1m) or could be computed by analysing scene conditions (e.g. by
computing the nearest point in depth image). This global reference frame MTS is used
to perform a radius search on the Labels Map, allowing the system to build a per-frame
Local Space on which to perform Hypotheses Estimation, rather than attempt this task
on the whole map, thus ensuring bounded time complexity for subsequent stages of the
process. The outcome of a radius search on the Labels Map is a set of Voxels of type
MultiLabelVoxels, described in Equation 4.6. SkiMap allows, during a search, to enrich
User Data stored in Voxels with their coordinates, by obtaining a subset:

4.3 Online pipeline 69

H =
[

Ci⇢C
Hi = {(ci,p) : ci 2Ci} (4.9)

where H is the set of pairs (c,p) containing a predicted class c and a point p
representing the center of the associated voxel. As it can be seen from Equation 4.9,
the set H can be split into many similar subsets, one for each object, with Ci containing
only the predicted classes from the i-th object. For each pair (c,p), we can apply
Equation 4.4 to retrieve:

o(v(c))! (oi,v j) (4.10)

generating the new pair (oi,v j), where v j 2 R3 represents the center of the j-th
voxel of the i-th object. By iterating this approach, we estimate a set of 3D matches
{(c,p),(oi,v j)}! {(p,v j)} suited to 6-DoF pose estimation of the target object within
the Local Space. In simple terms on the current Labels map, reasoning about a single
object, for each voxel we have the coordinates of the voxel’s center and by means of
the associated class we can retrieve the coordinates of the center of the voxel, in the
original model, as close as to the scene voxel (close in terms of the 2D descriptor).

We employ a fast and robust technique to estimate 6-DoF pose of the objects under
occlusion and clutter. This problem was addressed also by Tombari and Di Stefano
(2012) with promising results in comparison with other competitors involved in 3D
free-form object recognition problem. The most important feature in this approach is to
reduce the Hough-problem complexity from 6 to 3 dimensions, discarding the rotational
part of pose estimation implicitly covered by the voting process. Unfortunately the
scheme of Tombari and Di Stefano (2012) requires the estimation of a Local Reference
Frame per feature, since each feature should cast a vote independently from others. The
estimate of a Local RF is a computationally onerous procedure, not suited to real-time
application, but at the same time the approach has been proven valid. We thus built a
new, hybrid, approach drawing inspiration also from the work of Den Hollander and
Hanjalic (2007). This approach relies on the 3-Point Ransac/Hough-voting scheme
described as follows:

3-Point Ransac/Hough-voting scheme: given Mi = {(p,v j)}, the set of matches
involving object i in the current Local Space, we pick m random subsets RMi ⇢ Mi

with |RMi |= 3. Each set of such 3 points p 2 RMi outlines a Reference Frame through
which we can project an instance of object i in the Local Space (i.e. in the Map
reference frame) MTob j and cast a vote for its centroid (or any rigid point attached to
it, for example its base) in the associated bin of a 3D Hough Space built right on the

70 Sparse semantic mapping for robotic manipulation: SkiMap++

Fig. 4.8 On the left, a sample of a classical Hypotheses Voxel containing many computed
Reference Frames. On the right, the distribution of their orientations represented with axix angle
notation in a SO(3) group. With high probability inliers will be grouped together in a cluster,
the centroid of which can be inferred as the best candidate for the final resulting orientation of
the instance.

Active Sphere. To increase the performance of this voting scheme, differently from
the approach of Tombari and Di Stefano (2012), we do not vote for the centroid of
the projection of the object in the scene, but for its base, thus ensuring that every false
positive with inferred centroid near the real object pose will score far from the correct
bin. In Figure 4.7 the voting scheme procedure is depicted graphically.

As mentioned above, the final aim of the Local Hypotheses Estimation component is
to fuse hypotheses in a new map, so as to store spatial information about these guesses.
The base unit of this new SkiMap structure is a HypothesesVoxel consisting of a simple
set V = {(th,Rh,oi)} of tuples where th represents the position of the hypothesis in
map reference frame, Rh its rotation in the same space and oi the identifier of the object
being considered. More precisely, a 6-DoF Hypothesis should be stored at least in a R6

space, but following the approach of Tombari and Di Stefano (2012) we store them in
a R3 space via their translational component, preserving each orientation Rh as is, to
deploy them in a further refinement step.

4.3.3 Global Instance Retrieval Module

The last module of SkiMap++ is mainly dedicated to refining the hypotheses coming out
from the previous stage. Starting from the MTS = (MRS,M pS) Active Sphere reference

4.4 Experimental results 71

Fig. 4.9 This figure portrays a frame taken from a real-time scan of one scene of the dataset.
RGB Reconstruction is carried out with two different resolutions: 0.005m for left object and
0.01m for right object. Hypotheses (purple boxes) are contained with HypothesesVoxels of
0.03m instead. Finally the Instances (orange boxes) are grouped in 0.05m InstancesVoxels.

frame, we can perform again a neighborhood search on Hypotheses Map based on a
target object oi:

r(MpS,oi) = {(thk ,Rhk ,oi),k 2 [0,m)} (4.11)

where the result of the search operation r(·) is a set of m hypotheses in the neighborhood
of the point MpS. Since this resulting subset may contain some outliers, we cannot
simply average the outcome in a R6 space. Therefore, once again, we can adopt a
statistical approach analyzing the orientation distribution of these hypotheses in the
SO(3) group of the axis angle representation of them (Figure 4.8 clarifies this issue).
To infer the final Instance (tI,RI,oi) of the object oi in the scene we can choose as
orientation RI the centroid of the largest cluster in the orientation space and by simply

averaging positions tI =
1
m

m
Â

k=1
thk of the corresponding hypotheses (dubbed inliers).

Finally, also the found Instances will be integrated into a further SkiMap structure
in units called InstancesVoxels, a simple extension of HypothesesVoxels. Figure 4.9
illustrates graphically, by means of a real frame captured from SkiMap++ execution,
the difference between Hypotheses and Instances.

72 Sparse semantic mapping for robotic manipulation: SkiMap++

4.4 Experimental results

In this section we first describe the dataset used in our experiments. Next we show some
quantitative results obtained from the aforementioned dataset while varying some key
parameters involved in SkiMap++ pipeline. Finally we present a qualitative evaluation
of the algorithm.

4.4.1 SK17: a new dataset for multi-view Object Recognition

To test the whole SkiMap++ framework we have tried to find suitable public dataset
without success. The same type of search performed by Li et al. (2016) ended up in the
same conclusion. The main reasons are the absence of 6-DoF ground truth of objects
or the low frame density. Also the proposed dataset in the latter study is not still fully
available to be used with our approach (missing RGB-D frames for objects). For this
reason we developed a brand new dataset comprising 12 Objects and 5 Medium/Large
Scale Scenes. The Camera, an Asus Xtion, is tracked by the Vicon Motion Capture
System (Vicon Motion Systems, LA, USA) which provides a precision of the order of
magnitude of 1cm. The 6-DoF ground truth of the objects in each scene was manually
labelled in a global reference frame centered on the floor of each scene (Precision of
ground truth has the same resolution of the smallest RGB map attainable by the SkiMap
approach (i.e. about 0.005m).

Table 4.1 Here a complete list of all objects in our dataset. The table shows a comparison
between two best sets of parameters, tuned during our tests of Skimap++ running over the SK17
dataset, varying the 2D Descriptor. The percentages represent the recall after a complete round
within every scene.

Boxgreen Boxmouse Boxred Chamo Cupgreen Cupred Detergent Glue Korn Multimeter Robot Talc Fps

SIFT 33% 100% 35% 100% 75% 75% 100% 100% 100% 100% 78% 75% 6

SURF64 0% 50% 87% 100% 0% 0% 100% 100% 100% 100% 75% 75% 20

4.4.2 Quantitative results

In this subsection we examine the performance of SkiMap++ in terms of precision/recall
computed on all the 5 scenes of the dataset by taking into account all the objects
instances present within the environment and by counting a True Positive when we
do find the instance with a maximum translational error under 0.03m and maximum
rotational error of 10� in comparison with their ground truth. Figure 4.10 shows the
accuracy of the system by varying some key parameter. As observed from the first plot,
by increasing the number of classes trained per-object (i.e. the number of Descriptors

4.4 Experimental results 73

Fig. 4.10 These plots show precision/recall while varying some key parameters like: (a) Number
of trained classes per object; (b) differences between 2D Feature detectors; (c) size of the
random forest while using the same descriptor. The overall result shown here is over 80.0/80.0
precision/recall index.

Fig. 4.11 This plot shows the importance of Multi-View based Object Recognition. Decreasing
the number of vantage points(i.e. decreasing fps and so the number of frames) the accuracy falls
down to zero.

74 Sparse semantic mapping for robotic manipulation: SkiMap++

Fig. 4.12 Real-time Augmented Reality enabled by stable 6-DOF pose.

Voxels taken into account to grow decision trees) we can achieve higher performance,
but what also stands out is that after a certain number of classes the accuracy starts to
decrease. Intuitively this is due to the under-fitting problem in the Random Forest that
would need to grow in size to learn more labels to be classified. The second plot shows
a simple comparison between 2D Features that reflects their intrinsic characteristics.
The last plot addresses the inverse problem seen in the first graph: the curves show that
keeping the detector fixed and increasing the size of the Random Forest (e.g. 24x24
means a forest of 24 trees with depth 24) we can slightly increase accuracy at the
expense of prediction time. Overall, Figure 4.10 shows a precision/recall index over
80/80 in the best position within parameters space. Moreover Figure 4.11 highlights the
key feature of this Multi-View Object Recognition approach: the higher is the density
of frames (and therefore the number of vantage points), the larger is the accuracy of
the system. The latter result is justified by a series of important factors, such as: an
high frame rate helps to merge an higher number of evidences; many vantage points can
be lost if the frame rate is low when camera movements are fast and without allowing
for the fact that the multi-view approach is the only solution for occlusion. Finally, the
Table 4.1 lists an overview on accuracy based on single objects among all scenes; it
should be noted that the score of the object Boxgreen is very low because it is the only
object with an overall dimension comparable to Voxels Resolutions (about 5cm on the
longest side), which renders pose estimation very challenging.

4.4.3 Qualitative results

We provide here also some qualitative results to show that SkiMap++ is suited to real
settings. Figure 4.1 shows a large scale environment fully reconstructed by means of
a mobile robot by relying on its odometry system to track the camera pose. In this
environment we placed some objects, taken from our dataset, and the robot successfully
found them while mapping the workspace. Other qualitative samples are shown in
.Figure 4.13 and Figure 4.12: the latter illustrates also the interesting Augmented Reality

4.4 Experimental results 75

Fig. 4.13 Large scale map (dataset scene) fully reconstructed by SkiMap++ with Object In-
stances identified by purple bounding boxes.

attainable thanks to the high stability of the object hypotheses in the global reference
frame yielded by SkiMap++. This Video 1 presents multiple run-time executions of
SkiMap++ in a real scenario with both a Mobile Robot and a Motion Tracking System
to estimate camera pose.

1https://www.youtube.com/watch?v=ki_Lbl4lEIY

https://www.youtube.com/watch?v=ki_Lbl4lEIY
https://www.youtube.com/watch?v=ki_Lbl4lEIY

Part II

Machine Teaching made easy

Augmented Reality Pen

Virtual Boxes

Robot

Save

Random
Viewpoint

VirtualBox 0
VirtualBox 1
VirtualBox 2
VirtualBox 3
VirtualBox 4
VirtualBox 5
VirtualBox 6

Refinement GUI

Move/Stretch boxes

Class0

N
 S

el
f-L

ab
el

ed
 im

ag
es

Labels

CNN

1 2 3 4

Fig. 5.1 The ROARS labeling pipeline: 1) Draw virtual boxes around the target objects. 2)
Perform a scan with robot. 3) Refine the virtual boxes looking at few frames. 4) Generate an
arbitrary number of self-labeled images.

Chapter 5

Using robot to train Deep Networks:
ROARS

5.1 Train a Deep Network for Object Detection

As mentioned in Chapter 2 and Chapter 4, multiple tasks in robotics require some sort
of understanding of the environment surrounding the robots, for example, a picking task
would at least require the automatic identification of category or instances of known
objects. In this chapter we will focus over this field, that in computer vision is commonly
referred as object detection (or even instance detection), and, as many others, has seen
a great development in recent years mainly due to the introduction of deep learning
methods like Redmon and Farhadi (2017) or Huang et al. (2017) that offers incredibly
good real time performance, but requires a long training phase using huge dataset of
images annotated with bounding box. However, the manual annotation of images is
long, tedious and prone to errors often producing too small dataset or noisy annotations,
especially when performed by non-professionals. Even if big dataset containing various
categories of objects are publicly available in literature (Calli et al., 2017; Lin et al.,
2014; Rennie et al., 2016), they usually concern generic classes of objects (e.g. person,

80 Using robot to train Deep Networks: ROARS

car, cat etc.), but for many applications, especially industrial ones, the recognition of a
specific set of objects, which often change over time, is required. To deploy effectively
deep learning solution in such scenario the user would need to retrain or adapt the
system each time the requirements change. In practice, each new object will require
thousand of new annotated images, which translate in tens of human work hours (the
same things happens due to any change in light conditions). At large scale, manual
annotations became an impractical and long job. Instead, we propose a user-friendly
tool that let users automatically collect huge datasets of images annotated with the
bounding box of the visible objects. To achieve this task we deploy augmented reality
techniques together with the high repeatability of an industrial robot (similar scenario
as in Chapter 2) that is called ROARS which stands for RObot for Augmented-Reality
Self-labeling. With our tools, the time needed to create a training dataset drops to the
mere acquisition and processing time, more importantly we can be assured that all the
annotation are error free, leading to a small gain in performance of the final detector
compared to manual annotation on the same dataset, as we will show in Section 5.3.

An alternative approach proposed recently is the use of synthetic images either
rendered, like Mayer et al. (2016),Ros et al. (2016), Movshovitz-Attias et al. (2016) and
Carlucci et al. (2016), or grabbed from realistic videogames as in Richter et al. (2016)
or Johnson-Roberson et al. (2016). These techniques allow the creation of potentially
infinite perfectly annotated images with zero or minimal human effort, however, the
variability is inherently limited by the rendering setup and can not represent all the real
world environments. Moreover, this approach may still need lots of hours of specialized
human work for the creation of the synthetic object and scenes along with a lot of
computational power to achieve photo realistic rendering. Even worse, as reported by
Movshovitz-Attias et al. (2016) and Carlucci et al. (2016) using only synthetic images
alone does not grant good performance on real data due to the inherent differences
between ideal and real images; usually, an additional fine-tuning for domain adaptation
with few real data is still needed to maximize the performance. Alternatively, Georgakis
et al. (2017) proposes a hybrid approach where an object detection system is trained
on synthetic rendered 3D objects superimposed on real scenes. Even in this case, the
blend between synthetic and real images is not perfect and an additional fine-tuning
on the real dataset is still needed. The huge gap between synthetic and real image is
also testified by Shrivastava et al. (2017) were the authors try to learn a domain specific
generative network to transform perfect synthetic images and make them more realistic.
In contrast, our proposal directly semi-automatically annotates real images taken in the
deployment scenario, thereby avoiding any gap between the training and test conditions.

More specifically for robotic tasks, Zeng et al. (2016) proposes a semi automatic
techniques for acquiring a training dataset for object segmentation and Mitash et al.

5.2 Method description 81

(2017) extends the idea for object detection including in the creation process some
physical simulation to create realistic object arrangement. However, both those solution
require depth information from the sensor and can only work for objects paired with
reliable 3D models. This is a significant limitation for tasks where we are interested
in recognizing categories of products, like oranges, apples, etc., for which a 3D model
can not be defined since each instance is different from others. Our proposal, instead,
does not need any clue on the 3D shape of the object and does not even need depth
information neither at training nor testing time.

We developed a ROS package1 implementing all the tools needed to reproduce the
ROARS labeling pipeline for whoever has a robot with an hand-mounted RGB camera.
The ROS package also includes two wrappers for the popular object detector systems
Yolo (Redmon and Farhadi, 2017) and SSD (Huang et al., 2017), so to allow ROS users
to easily include them in their applications.

5.2 Method description

Our approach can be briefly described as follow: if we have a set of images for each of
which we have the exact 6-DoF pose of the camera tracked by the robot and, in addition,
we have a set of objects in the environment with a known pose w.r.t. the camera, we
can project in each image the simplied representation of these items through augmented
reality, from where we can extrapolate several labels (e.g. a 2D box surrounding the
target object) useful to train an object detector. The ROARS labeling pipeline can be
summarized in these few steps (also depicted in Figure 5.1):

0. Arrange the objects randomly in a scene;

1. Draw virtual boxes around the target objects;

2. Scan the environment with the robot;

3. Refine virtual boxes analyzing the outcome of the scan;

4. Generate a training dataset.

In this chapter we will describe in detail all these steps: Section 5.2.2 describes
the physical tool used to interact directly with the environment to draw virtual boxes
through augmented reality around the target objects. This step is not mandatory for the
rest of the pipeline but it is useful to create easily an initial guess; Section 5.2.1 designs
formally a generic input dataset in such a way it can be reproduced easily by anyone;

1https://github.com/m4nh/ars

https://github.com/m4nh/ars

82 Using robot to train Deep Networks: ROARS

Augmented Reality
Marker

Tracked Tip

Virtual Box

Tracked Tip

EASY

Virtual Box

HARD

(a) ARP (b) Drawing on geometrical object (c) Drawing on rounded object

Fig. 5.2 (a) The Augmented Reality Pen (ARP) used to draw virtual boxes. The pen is composed
of several Augmented Reality Markers with a known pose tipTmki w.r.t. the tip. (b) Tracking the
tip we can easily draw a virtual box around a target object by touching its edges. (c) Conversely,
its not simple to draw a virtual box around a rounded object not having reference points.

Section 5.2.3 presents the technique to refine (or even create from scratch) the virtual
boxes by only exploiting the outcome of the environment scan; in Section 5.2.4 we will
describe the straightforward procedure to generate labels starting from virtual boxes.
Further in Section 5.2 we briefly introduce some notations used in this work.

Common Notations: We will use the notation mi to indicate a generic image and the
symbol b = {xb,yb,wb,hb,cb} to indicate a square region (box) therein, where xb,yb are
the coordinates of the center and wb,hb the width and height respectively; optionally the
box b could have the parameter cb indicating the class (or the label) of that box. This
attribute is useful in our context because we typically deal with CNNs able to predict
not only a region around our target obejcts, but also their class of belonging.

5.2.1 The input dataset

The mandatory step of the ROARS labeling pipeline is to have a dataset described
formally here:

D= F[I
F= {Fi = {0Ci,mi}, i 2 [0, ...,n]}

I= {Vj = {0T j,s j,c j}, j 2 [0, ...,k]}

(5.1)

the dataset D is composed by two independent subsets F and I. F is the set of n
pairs Fi = {0Ci,mi} (we will call it frame) where mi is the generic i-th image which

5.2 Method description 83

corresponds to a camera matrix 0Ci = Â ·0 Tcami that is a composition of intrinsics
(Â 2 R4⇥4) and extrinsics (0Tcami 2 R4⇥4):

Â =

2

66666666666664

fx 0 cx 0

0 fy cy 0

0 0 1 0

0 0 0 1

3

77777777777775

,0 Tcami =

2

6664

0Rcami
0tcami

0 1

3

7775
(5.2)

where Rcami 2R3⇥3,0 tcami 2R3 are the orientation and the position of the i-th viewpoint.
The I set, instead, is the collection of k object instances on the scene; each instance Vj

(e.g. a 3D Virtual box like in Figure 5.2(b)) is represented by the tuple {0T j,s j,c j}
where 0T j is its 6-DoF pose, s j 2 R3 is the size and c j 2 N0 is the class of the object.
Thus, the main step in the ROARS pipeline is to create this dataset; more specifically we
can build separately F and I. The straightforward methods to build the set of frames F
have been already addressed in the Chapter 2. To build instead the instance set I, we
will describe in Section 5.2.2 an augmented reality tool able to interact directly with the
environment; as an alternative, in Section 5.2.3, we will see how to compute an initial
guess of our instances without interacting with the real scene but looking only at a pair
among the mi images presents in F.

5.2.2 The augmented reality pen

The second part of the input dataset is I which collects all the virtual boxes V0,...,k

arranged around our target objects. As depicted in Figure 5.2, we developed a physical
tool wallpapered with Augmented Reality Markers, in short: Markers (the same as
Chapter 2), that we dubbed ARP (Augmented Reality Pen), useful to perform an online
labeling procedure by interacting directly with the environment. Thus, we design a 3D
printed artifact – resembling a pen – placing several Markers on it in a known pose
tipTmki w.r.t. the tip of this tool (the placement is CAD-driven). Given that the Marker
Detector (also available in the OpenCV library (Bradski and Kaehler, 2008)) estimates
the pose of each of the markers w.r.t. the camera camTmki , we can compute easily the
position of the tip w.r.t. the camera:

84 Using robot to train Deep Networks: ROARS

MisalignmnetOccluded
Portion

Fig. 5.3 In this picture are shown four random frames captured after the robot scan: the first row
is referred to the Industrial and the displayed virtual boxes are drawn with ARP; the second one
is related to the Fruits with annotations created offline with the technique shown in Figure 5.4).
In the first row is clear how some virtual box is not perfect aligned with the real object.

camTtip =
cam Tmki(

tipTmki)
�1 =

2

66664

camRtip
camttip

0 1

3

77775
(5.3)

as shown, for each marker we can compute an hypothesis about the pose of the tip
camttip ; by averaging the hypotheses of the all visible markers we can obtain a more
accurate estimation. A detailed explanation of this approach is described by by Jiawei
et.al. Jiawei et al. (2010) who developed a similar tool as a Human-Computer interface.

Thus, given the opportunity to estimate the pose of any point in the scene in
front of the camera, by means of the ARP, as shown in Figure 5.2(b), we can easily
draw a virtual box Vj around a geometrical object by touching all its edges (or a
subset of them). More generally with the ARP we can collect a set of 3D points
P̂Vj = {camttipe = pe,e 2 [0, ...,n]}, corresponding to the frame-by-frame position of the
tip while touching several edges, from which we can build the corresponding virtual
object Vj = {0T j,s j,c j} = s(P̂Vj) by means of a generic function s of this set of
points. Notwithstanding many function s can be designed to this purpose, we propose
a simple one through which we can compute Vj starting from only four points: with

5.2 Method description 85

reference to the Figure 5.2(b) if we collect four points p0, p1, p2, p3 we can build the
tuple {0T j,s j,c j} in this way:

camT j =

2

6664

vx vz ⇥vx vz p0

0 0 0 1

3

7775

vz =
p1 �p0

kp1 �p0k
,vx =

p2 �p1

kp2 �p1k

s j =

"

sx sy sz

#
=

"

kp2 �p1k kp3 �p2k kp1 �p0k

#

(5.4)

whereas, for the object’s class c j is relative to the object type and is not related to
geometric data. It should be noted that in Equation 5.4 we have built the RF of the
virtual object camT j referred to camera coordinate system, but we can easily transform
it in the robot RF by knowing the current camera pose 0T j = 0Tcam · camT j. With this
simple algorithm we can collect as many virtual boxes Vj as the target objects within
the scene, provided that they are reachable from the user. Even though this approach is
quite straightforward with geometrical objects, as depicted in Figure 5.2(c), it is hardly
applicable with rounded objects. To this end, in the next section we will propose also
an offline procedure to sketch our virtual boxes Vj only by labeling a pair of frames
produced during the robot scan.

5.2.3 Objects Pose refinement

Once we have performed the scan of the environment by means of the robot, we have
collected the set of frames F and, if we have exploited also the ARP tool, also the set
of instances I is available. Therefore, as shown in Figure 5.3, we can display – for
debugging purposes – a random frame Fi of our scene reprojecting into the image the
visible Virtual Boxes. The reprojection technique is straightforward: for each virtual box
Vj = {0T j,s j,c j} we can build the set of 3D points in the matrix form 0PVj 2R4⇥8 (each
column of this matrix corresponds to a single 3D point in homogeneous coordinates)
collecting the eight edges of the 3D box. The same point set can be computed in
the camera reference frame camPVj =

cami T0 · 0PVj where camiT0 is the inverse of the
camera pose in Fi. The corresponding set of 2D points HVj can be computed using the
perspective transformation:

"

lHVj 1

#|
= Â · camPVj (5.5)

86 Using robot to train Deep Networks: ROARS

where l is the scale factor. Obviously, this reasoning can also be applied if our virtual
object is composed by a different number of points, without compromising the rest of
the labeling pipeline (e.g. instead of Virtual Boxes one can use Virtual Squares made by
only 4 points if we are dealing with planar objects).

Again in Figure 5.3 we can see many examples of 2D Virtual Boxes HVj (We
will use HVj to indicate the 2D reprojection of a virtual box Vj) drawn over 4 frames
picked randomly from our two datasets (it is clear now that we can produce this 2D
representation for every frame in our dataset without any additional information). Within
the above image, we can notice (top-right image) how the HVj produced with the ARP
tool is not perfect due to several factors (e.g. caused by user hand-shake during labeling).
Thus at this stage we can – optionally – correct the pose of the corresponding virtual box
Vj: we developed a simple GUI, shown in Figure 5.1(3), to regulate these imperfections.
Despite the developed graphical interface, we can describe these adjustments formally
saying that if we consider a virtual box Vj = {0T j,s j,c j} and we modify its pose
0T j(2) =

0 T j
jTe by a small roto-translation jTe (or even changing its size s(2)j = s j + se)

we can immediately see what happens in all the frames of the dataset. Anyway, we have
empirically found that a perfect adjustment is possible looking simultaneously to four
frames only (this test is reflected in our GUI with a dedicated tool). Needless to say that
it is not possible to perform this adjustment looking only at a single frame because with
a single view point we do not have any 3D information of the environment, so we could
be dealing with perspective illusions.

However, as mentioned in the previous section, what happens if we cannot use
the ARP tool (For example we want to apply the ROARS pipeline to a dataset created
earlier)? Figure 5.4 reports a simple algorithm, which can be applied on every set of
frames similar to F, to produce a set of instance I: starting from a random pairs of
frame F1,F2 we can draw two 2D boxes b1,b2 around the considered object (the red
apple in the figure); given the two camera matrices 0C1,0C2 we can compute two views
frustum which intersect – likely – in the center of mass of the real object; we can easily
compute the intersection of the two rays r1,r2, focusing in the center of each frustum,
to compute a single 3D point where to position our new virtual box 0T j (its rotational
part cannot obviously be computed with this approach, but we can choose the canonical
base I 2 R3⇥3 for it), and use the size of the far plane of one of the two frustums to
compute a coarse size s j. Choosing a custom class c j we have built all the parts of our
virtual object Vj, or at least its initial guess. Then, with the procedure described at the
beginning of this chapter, we can refine its appearance to fit the real object at best. All
the Fruits Dataset was built with this method with good results, as shown in Figure 5.3.

5.3 Experimental evaluation 87

Far Plane Size

Fig. 5.4 Graphic representation of the algorithm to estimate the coarse 6-DoF pose of an object
only by exploiting a pair of frames {0C1,m1},{0C2,m2} and a pair of boxes b1,b2 drawn over
m1 and m2.

5.2.4 Generate Training Data

Once we have built the whole dataset D= F[I we can use it to build a real Training
Dataset to train a CNN-based object detector, such as e.g. Yolo by Redmon and Farhadi
(2017) and SSD by Huang et al. (2017). This kind of training dataset T= t(D) = {Bi =

{b j}, i 2 [0, ...,n]}, namely is the collection of sets Bi of boxes {b j} related to each
image mi belonging to the frame Fi. So, in short, we need to associate to each image
mi the 2D boxes b j surrounding our target objects; thus, since we have for each frame
the 2D reprojection of our virtual boxes (i.e. HVj) in the current image, our function t
needs to transform each HVj in the corresponding box b j. The function that we use is
the simplest one, the minimum bounding box enclosing all the 2D points in HVj . See
Figure 5.3 (bottom-right).

5.3 Experimental evaluation

To experimentally validate ROARS we mainly performed three sets of tests on two novel
datasets that we are going to introduce in Section 5.3.1. The first tests, described in
Section 5.3.2, present a careful analysis of our automatic labels against manual ones
to prove that our method produces equivalent or better annotations. The second tests,
reported in Section 5.3.3, deals with training two kinds of CNN based detector on our
auto-labeled training sets as well as on an equivalent manually annotated one to check
which option yields better final performance. Finally, we introduce in Section 5.3.4
a new and interesting way of analyzing datasets, made possible by the creation using

88 Using robot to train Deep Networks: ROARS

(a) Manual Industrial (b) Auto Industrial (c) Auto Fruits

Fig. 5.5 Samples from the dataset that we have used for our experiments, the green rectangles
display the annotated bounding boxes, the white text over each box is the class mapped to that
box. (a) Electromechanical components dataset manually annotated, (b) Electromechanical
components dataset with our automatic labels, (c) Fruit dataset with our automatic annotations.

ROARS. A qualitative evaluation of the trained detectors is shown in Figure 5.8 as in
this Video 2 , which also features a live demo of the ROARS labeling procedure.

5.3.1 Datasets and evaluation metrics

To validate our proposal we choose as test beds two different object detection tasks: one
concerning the recognition of 7 types of electromechanical components (Industrial), the
other with 5 classes of fruits (Fruits); some samples from the two datasets are depicted
in Figure 5.5. The objects of interest in the first task display low intra and inter class
variability: the appearance of each component remains always the same across all the
images, but different components are remarkably similar. The second task, instead,
deals with categories of objects showing high intra and inter class variability as each
fruit is quite different from the other and even fruits belonging to the same class can
have different appearances, e.g. in our acquisition we have two kinds of apple and pear
showing different peel colors. The first dataset is composed of 9 acquisition (⇠ 36000
frames), the second by 8 shorter ones (⇠ 7500 frames). Both datasets were built by
means of an industrial manipulator, a COMAU Smart Six, with a position repeatability
lesser than 0.05mm (same setup as in Chapter 2).

We chose one sequence from the Industrial dataset and two from the Fruits dataset
to be used as test sets for the trained object detectors, we will refer to them as Indus-
trial_Test and Fruits_Test respectively. The other sequences are randomly sampled to
create sets with increasing number of samples, each set is then splitted in 80% train
and 20% validation. We will use the following notation to indicate one of such set:
hdataset namei_hnumber of samplesi, e.g. Industrial_1000 identifies 1000 sample

2https://www.youtube.com/watch?v=tj_h_N1Bylo

https://www.youtube.com/watch?v=tj_h_N1Bylo
https://www.youtube.com/watch?v=tj_h_N1Bylo

5.3 Experimental evaluation 89

from the training sequences of Industrial that will be split into 800 samples for training
and 200 for validation. All the dataset have been automatically annotated with ROARS,
but for further tests we enriched Industrial_1000 with manual annotation as well. We
will use a "_M" suffix for manually annotated dataset (e.g. Industrial_1000_M) and
"_A" suffix for those annotated using ROARS (e.g. Industrial_1000_A). For comparison
the manual annotation process of 1000 frames took us slightly more than 10 hours,
while with ROARS in less than an hour we were able to annotate all the 9 sequence of
the Industrial dataset (⇠ 35000 frames) with most of the time spent adjusting the coarse
6-DoF pose in the refine step, done just once for each sequence.

For the next tests we will use the standard object detection metrics defined for the
PASCAL VOC challenge Everingham et al. (2010). Given a prediction bp

j and the cor-
responding ground truth box bi, we consider b j correct if they have the same class and
IOU(bp

j ,bi)> IOUth with IOU intersection over union of the boxes and IOUth a thresh-
old parameters. Given the set of correct predictions we can measure: Precision,Recall
and average intersection over union for correct predictions (avgIOU). Usually a detector
produces quite a lot of bp

j each one associated with a certain confidence value t p
j 2 [0,1],

by thresholding the minimum confidence allowed we can tune the behaviour of the
system. We represent the global performance with different confidence threshold using
Precision/Recall curves and, synthetically, with the mean average precision (mAP),
defined as the approximation of the area under the precision recall curve.

5.3.2 Annotation Study

Looking at the annotation time alone, ROARS would be preferable from a user perspec-
tive as long as the labels produced are at least equivalent to the manual ones. To verify
this claim we have considered our manually defined boxes as the output of an ideal
object detector and tested its performance on the dataset considering the automatically
obtained annotations as ground truth.

Using IOUth = 0.3 we obtain the following result: Precision= 98.49%, Recall=
95.02% and avgIOU = 0.7035. To understand why we did not obtain perfect scores
we visually examined the difference between the two sets of annotations. We found
out that the missing 1.5% Precision can be explained by class mistakes made by the
human annotator during the labeling process, ROARS, instead, cannot wrongly label
the class associated with a b as long as the refined initial 3D virtual box alignment is
correctly labeled. The 5% missing recall is instead due to situations like that depicted in
Figure 5.5(a-b) where the visible portion of an object (the bottom object Cls_1) is too
small to allow the human annotator to understand what is looking at, ROARS once again
does not suffer from this issue and can correctly generate useful annotations even in

90 Using robot to train Deep Networks: ROARS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
recall

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
p

re
ci

si
o

n

Industrial_1000_A
Industrial_1000_M
Industrial_3000_A
Industrial_5000_A
Industrial_15000_A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
recall

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

p
re

ci
si

o
n

Industrial_1000_A
Industrial_1000_M
Industrial_3000_A
Industrial_5000_A
Industrial_15000_A

(a) Yolo (b) SSD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
recall

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

p
re

ci
si

o
n

Industrial_5000_A (SSD)
Industrial_1000_A (SSD)
Industrial_5000_A (YOLO)
Industrial_1000_A (YOLO)

(c) Comparison

Fig. 5.6 Precision/Recall curves for the two type of detector trained on different subsets of
the Industrial dataset. (a) and (b) report the results for Yolo and SSD respectively; (c) instead
displays a comparison between them.

this challenging images. Finally, the relatively low avgIOU highlights a key difference
between ROARS and a human annotator, the former always produces a b big enough to
enclose the whole object as side effect of the reprojection of the virtual 3D box, while
the latter usually encloses in b only the portion of object visible in the current image
(See the Figure 5.3 top-right image where a virtual box is drawn also where the object
is occluded). As a result, the manual and auto b does not always have the exact same
shape, especially in cluttered environments, and this cause the relatively low avgIOU .
An example of slightly different shapes between the two type of annotation can be
observed in Figure 5.5 (a-b) on the box tagged "Cls_4" that in the manual case tightly
enclose the top of the object, while in the auto case is slightly bigger than needed.

Nevertheless, as we will prove in the following paragraphs, the annotation automat-
ically produced by ROARS can effectively be used to train and validate any machine
learning based object detector obtaining performance comparable with a manually
annotated dataset, or slightly better if we take into account the mistakes that may occur
in the manual annotation process.

5.3 Experimental evaluation 91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

ci
si

o
n

Fruits_2500
Fruits_5000
Fruits_7500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
recall

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

p
re

ci
si

o
n

Fruits_2500
Fruits_5000
Fruits_7500

(a) Yolo (b) SSD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
recall

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

p
re

ci
si

o
n

Fruits_7500 (YOLO)
Fruits_7500 Pear (Yolo)
Fruits_7500 (SSD)
Fruits_7500 Banana (SSD)

(c) Worst Class Comparison

Fig. 5.7 Precision/Recall curves for the two type of detector trained on different subsets of
the Fruits dataset. (a) and (b) report the results for Yolo and SSD respectively; (c) instead
displays a comparison between SSD and Yolo globally and considering the worst class specific
precision/recall curve for each one: SSD experiences difficulties with banana, while YOLO
with pear.

5.3.3 Object Detector Test

Once assessed that with ROARS we are able to obtain an automatically annotated dataset
equivalent or better than the manual one, we want to test the performance of a state of
the art object detector system when trained on this kind of data. We choose as detectors
Yolo_v2 (Redmon and Farhadi, 2017) (shortened in Yolo) and ssd_inception_v2 (Huang
et al., 2017) (shortened in SSD), using for both the original author’s implementation and
public pre-trained networks as starting points for the fine tuning on our datasets. The
first tests were conducted for the Industrial task and we use as test bench 126 images
randomly picked from Industrial_Test plus 20 photo of the same objects acquired in
a different scene with a smartphone camera, all the images were carefully manually
annotated. We will call Industrial_Test+ this dataset.

We know from the literature that usually machine learning systems work better
with big training sets. However, we are interested in quantifying which is the real
performance difference from using few hundreds to few thousands images for a rel-
atively small number of classes as the one of our tasks, and with ROARS we can do
that very easily. To actually measure the performance boost we define four different

92 Using robot to train Deep Networks: ROARS

mAP avgIOU

Training set Yolo SSD Yolo SSD

Industrial_1000_M 0.589 0.619 0.7479 0.795

Industrial_1000_A 0.731 0.562 0.719 0.728

Industrial_3000_A 0.799 0.809 0.713 0.720

Industrial_5000_A 0.828 0.831 0.705 0.729

Industrial_15000_A 0.834 0.851 0.709 0.732

Table 5.1 Mean average precision (mAP) and average intersection over union (avgIOU) on the
Industrial_Test+ for Yolo and SSD trained using 5 different training sets with increasing number
of images. The best result for each of the two metrics are highlighted in bold.

sets with increasing number of images, respectively Industrial_1000, Industrial_3000,
Industrial_5000 and Industrial_15000. The samples for the Industrial_1000 have both
automatic and manual annotations, so we can test if the final detection performance
change or not according to the label used, we are going to use the suffix _M (for manual)
and _A (for auto) to refer to the two sub-types.

Given the five different training sets, we trained both detectors on them for 100000
step with batch_size=24 using the hyperparameter recommended by the authors. The
results are ten slightly different detectors that we tested on Industrial_Test+, we report
in Figure 5.6 the precision and recall curves obtained and in Table 5.1 the mAP and
avgIOU. Looking at the result we can see that for both detectors the performance
increases, as expected, together with the size of the training set used, vouching for a
method to ease and speed up the creation of training data. Looking at the results using
Industrial_1000_A or Industrial_1000_M we can see that there is no clear difference
between using manual annotations or the one obtained with ROARS: Yolo works dis-
tinctly better with the automatic annotation (+0.14 mAP), SSD instead slightly worse
with the automatic (-0.057 mAP) but within the range of error that could be caused by
random factors in the training process. Scaling up the training set the best results are
obtained by SSD on Industrial_15000_A with 0.851 mAP; looking at the corresponding
curve in Figure 5.6 we can see how the detector can maintain a precision above 95% for
recall ⇠ 95%. Looking at the avgIOU obtained by the detectors we can see how the
best performing methods are, unsurprisingly, the two trained on the manually annotated

5.3 Experimental evaluation 93

mAP avgIOU

Training set Yolo SSD Yolo SSD

Fruits_2500_A 0.666 0.720 0.710 0.744

Fruits_5000_A 0.660 0.804 0.6818 0.749

Fruits_7500_A 0.722 0.810 0.734 0.756

Table 5.2 Mean average precision (mAP) and average intersection over union (avgIOU) on
Fruits_Test for Yolo and SSD trained using 3 different training sets with increasing number of
images. "A" suffix marks training sets with annotations produced by ROARS. The best result for
each of the two metrics are highlighted in bold.

Industrial_1000_M. This behaviour highlighting once again the small difference in
shape between the bounding box produced by ROARS and those made by a human
annotator: an algorithm trained on human annotations learn to reproduce them, thus
obtaining higher IOU when tested on the human annotated test set.

We repeat similar experiments on the more challenging Fruits dataset, we anno-
tated all the eight sequences using ROARS, then we use six of them to create three
different training and validation sets with increasing number of samples and sequences,
respectively Fruits_2500 (2 sequences), Fruits_5000 (4 sequences) and Fruits_7500 (6
sequences). The remaining two are used as the test bench for the detector creating a
huge test set of 2600 images (refered as Fruits_Test), unlike before we use automatic
annotations both for training and tests sets. To create a more difficult task we used for
training sequences where the fruits are always inside a box with various backgrounds,
while one of the two test sequences shows fruits in a box but with a new background
and the other fruits widely placed on a table, thus a completely unseen environment.

Given the six training sets, we trained both SSD and Yolo for 40000 steps with
batch_size=24 and keeping the hyperparameter fixed as in the previous training. We
tested the six different resulting detectors on Fruits_Test and report in Figure 5.7 and
Table 5.2 the results. Once again all the performance indexes are really good and
increase proportionally with the size of the training sets used. Even in this case, the best
absolute performance is obtained by SDD using the Fruits_7500 dataset, with a mAP
as high as 0.81, compared to the best Yolo result with 0.72. In Figure 5.7(c) we report
a comparison between the two best performing Yolo and SSD detectors showing the

94 Using robot to train Deep Networks: ROARS

Fig. 5.8 Detectors output (all correct) computed over the stream of a usb camera. Its surprising
how the detector is able to distinguish apples and pears only looking at their lower side.

worst class specific precision recall curves (i.e. the performances for the hardest class
for each detector).

5.3.4 Viewpoint Coverage

All the results reported so far show that ROARS is fast and effective for dataset creation.
However, it has one additional useful side effect. For each image in the dataset we
know the position of the camera with respect to each object in the scene: for each
Virtual Box Vj = {0T j,s j,c j} we can compute the position of the i-th camera w.r.t.
that object jTcami = (0T j)�1 ·0 Tcami . If we consider only the position of the camera
jpcami expressed in polar coordinates j(r,q ,f)cami (i.e. radial, azimuthal, polar) in the
Virtual Box reference frame, we can build a 2D histogram by aggregating only (q ,f)
into bins. For each frame Fi we vote for the bin corresponding to j(r,q ,f)cami . This
kind of histogram tries to show the coverage of viewpoints of an object, thus we refer
to this kind of metric as Viewpoint Coverage (VC) and Figure 5.9 (a) shows a heat

5.3 Experimental evaluation 95

Industrial_3000 Industrial_5000 Industrial_15000

(a)

Industrial_3000 / 360°Industrial_3000 / 360°

Industrial_5000 / 180°
0 0.2 0.4 0.6 0.8 1

recall

0

0.2

0.4

0.6

0.8

1

p
re

ci
si

o
n

Industrial_3000 / 360°
Industrial_5000 / 180°

(b) (c)

Fig. 5.9 (a) The Viewpoint Coverage computed for object of class 0 for the Indus-
trial_3000/5000/15000 datasets. The ColorBar maps the color with the number of views
voting for corresponding polar bin. (b) Shows the VC over Industrial_3000 and Industrial_5000,
but the latter is filtered removing half the viewpoints. (c) Depicts the benefits of a better coverage
despite the lower number of training samples.

96 Using robot to train Deep Networks: ROARS

map visualization of the histograms for three of the Industrial training sets presented
above, hotter colors correspond to more image taken from that point of view. To clarify
the meaning of the VC we can look at the same abovementioned image (the middle
histogram) and we can see a dashed circle focusing on a region with a low score; that
means the the object related to the histogram has never been seen within that region of
(q ,f). Such metric is particularly useful to spot potential flaws in the training set, i.e.
cold portions of the histogram correspond to viewpoints where the detector will likely
fail having almost never seen the objects from that position during training. In this
way, Viewpoint Coverage can also be used to guide the user in the creation of the best
training set possible, e.g. guide the acquisition of new sequences given the Viewpoint
Coverage of the already acquired one. With this metric we can answer to the question
“More images = Better detector?”: from the Figure 5.9(b)(c) it would appear not true
because a training set of 3000 samples (with a coverage of 360�) performs better than
the one with 5000 samples (with a coverage of 180� only).

5.4 Extension of ROARS

We have demonstrated through careful tests and validation that ROARS can be used to
create quickly and effortlessly high-quality datasets for object recognition and obtain
excellent performance. In the future, we plan to experiment using the same technique to
automatically generate more complex annotations like, for example, pixel level semantic
segmentation maps. One of the main limitations of ROARS is that it can only be used
for relatively small objects given the limited camera movement allowed due to the
constraint imposed by the robot arm. Our method, however, can be generalized to
any acquisition settings as long as it is possible to track the camera pose with good
accuracy. For example, we plan to test ROARS using the VICON motion capture system
or the SLAM engine integrated is some recent smartphones (e.g. the augmented reality
toolkits made available by both Apple and Google).

Part III

Conclusions

Conclusions and future work

This thesis has been focused on the synergy between Computer Vision and Robotics. In
Chapter 3 and Chapter 4 Computer Vision helps Robotics to understand the environment
in order to perform tasks like Navigation or Object Grasp. In Chapter 2 and Chapter 5,
instead, Robotics enables Computer Vision tasks by exploiting the high reliability
and repeatability of the pose of a robotic agent. During the study of this synergy,
several results have been achieved. Chapter 3 describes a novel 3D sparse (CPU-based)
data structure, that turned out to be one of the first – faster – alternative to Octree in
the field of Mobile Robotics. The possibility to exploit Mapping to perform Object
Recognition in real-time has been explored in Chapter 4 by developing a lightweight
CPU-based framework designed for Object Recognition on low-power robotic platforms
or industrial controllers not holding a GPGPU hardware. Chapter 2, instead, was one
of the first work to propose the use of the robot as a Camera Tracker proving that
an interactive high-precision camera trajectory is mandatory for several industrial
application which cannot suffer from the localization inaccuracies typical of a classical
SLAM system. Finally, Chapter 5 describes a simple yet quite amazing technique to
train a Deep Neural Network, again by deploying the high repeatability of an Industrial
(or Collaborative) robot, in order to achieve a near-perfect Object Detector.

With this work we may make several assumptions: 1) It is possible to perform a
large-scale 3D mapping in real-time on CPU with arbitrary Voxel Data; 2) It is possible
to train a near-perfect Object Detector by exploiting a Robot; 3) The robot is almost
crucial, in industrial applications, to perform a Multi-View Object Detection which has
been proved to be state-of-the-art. Given these premises the natural evolution of this
thesis on which we are already working on, is to build a general purpose Object Detector
Robotic System dedicated to industrial applications like Pick&Place or BinPicking
oriented towards Industry 4.0, where Robots and Humans collaborates to achieve the
final goal. Following the intuitions of Chapter 5, an Human can teach a Robot to detect
a set of generic objects with minimal effort (Figure 5.8). Hence, the basic idea is to
exploit this simple procedure to produce a dense 3D reconstruction of the environment
preserving semantic information about the target items, like in Figure 5.10. This kind
of representation is key to perform grasps, as highlighted in Chapter 2. We conducted a

100

RGB Frame RGB TSDF Reconstruction Labels Reconstruction LT, WB Labels Reconstruction HT

Object Detector
Masks

Fig. 5.10 The Object Detection Fusion approach: the first column represents frames coming
from an RGB-D camera with superimposed object detection masks; in the second column the
frames are fused together in a TSDF Volume (i.e. RGB Volume) where each voxel stores real
RGB information; in the third one, the labels coming from the Object Detector are fused together
in another TSDF Volume (i.e. Label Volume) where each voxel stores labels information; the
last column depicts the Label Volume after background refinement (see Table 5.3). In the figure
we are using a color metaphor to represent labels (one for each object) allowing a graphical
human-interpretable representation through which is possible to blend labels (merging related
color) in order to understand what happens behind the scenes.

preliminary study of this Object Detection Fusion approach over the RGB-D Scenes
Dataset v2 (Lai et al., 2014), with some promising results, as reported in Table 5.3.
The Object Detection Fusion concept is similar to that described in Chapter 4: it stores
in each Voxel a Multi-modal Distribution of Object Labels such that by analyzing –
ex-post – the voxel map is possible to infer the pose of target objects. Though, our
novel approach seems to be faster and simpler than similar solutions (Cavallari and
Di Stefano, 2015; Lai et al., 2014; Li et al., 2016; McCormac et al., 2017; Tateno et al.,
2016; Xiang and Fox, 2017).

Overall, this thesis endorsed the link between Robotics and Computer Vision by
providing theoretical and practical 3 4 instruments ready to be integrated in a real
applications. The hope is that these intuitions will be further developed, especially with
the advent of Industry 4.0 and Collaborative Robotics, where Humans and Robots will
ever-increasingly coexist.

3https://github.com/m4nh/skimap_ros
4https://github.com/m4nh/roars

https://github.com/m4nh/skimap_ros
https://github.com/m4nh/roars

101

Table 5.3 The 3D Intersection over Union for the five object categories in the RGB-D Scenes
Dataset v2 (Lai et al., 2014) with the Object Detection Fusion approach. Since the 6-DoF
Ground Truth for these object is near impossible, due to high symmetry, we choose to compare
the 3D IoU of the minimum bounding box of the ground truth objects with the estimates. In
this table several approaches was compared: HT means High Threshold used to distinguish real
object voxels from noisy region; LT means Low Threshold and WB means Without Background
removal.

IoU 3D (HT) IoU 3D (LT) IoU 3D (WB)

Bowl 85.14 77.68 54.32

Cap 80.62 75.96 52.07

Cereal Box 87.44 77.66 58.23

Coffe Mug 84.68 65.13 51.11

Soda Can 87.44 78.46 52.06

overall 85.06 74.98 53.56

List of papers

De Gregorio, D., Tombari, F., & Di Stefano, L. (2016, October). RobotFusion: Grasp-
ing with a Robotic Manipulator via Multi-view Reconstruction. In Computer Vi-
sion–ECCV 2016 Workshops (pp. 634-647). Springer International Publishing.

Meattini R., Benatti S., Scarcia U., De Gregorio, D., Benini L., Melchiorri C. (2016).
EMG-based Grasp Proportional Control and Pattern Recognition for Human-Like
Control of Robotic Hands. International Workshop on Human-Friendly Robotics,
September 28-29, 2016, Genova.

De Gregorio, D., & Di Stefano, L. (2017). SkiMap: An efficient mapping frame-
work for robot navigation. In Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 2017, pp. 2569-2576. doi: 10.1109/I-
CRA.2017.7989299

De Gregorio, D., Cavallari, T., & Di Stefano, L. (2017). SkiMap++: Real-Time
Mapping and Object Recognition for Robotics. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (pp. 660-668).

M. Busi, A. Cirillo, De Gregorio, D., M. Indovini, G. De Maria, C. Melchiorri, C.
Natale, G. Palli, S. Pirozzi. (2017). The WIRES Experiment: Tools and Strategies for
Robotized Switchgear Cabling, In Procedia Manufacturing, Volume 11, 2017, Pages
355-363, ISSN 2351-9789, https://doi.org/10.1016/j.promfg.2017.07.118.

Meattini, R., Benatti, S., Scarcia, U., De Gregorio, D., Benini, L., and Melchiorri,
C. (2018) A sEMG-Based Human-Robot Interface for Robotic Hands Using Machine
Learning and Synergies. IEEE Transactions on Components, Packaging and Manufac-
turing Technology. doi: 10.1109/TCPMT.2018.2799987

De Gregorio, D., Zanella, R., Palli, G., Pirozzi, S., Melchiorri, C. (2018). Integra-
tion of Robotic Vision and Tactile Sensing for Wire-Terminal Insertion Tasks. IEEE
Transactions on Automation Science and Engineering [SUBMITTED]

104

De Gregorio, D., Tonioni, A., Palli, G., Di Stefano, L. (2018). Semi-Automatic Label-
ing for Deep Learning in Robotics. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, 2018 [SUBMITTED]

List of Supplementary Video Material

Robot Fusion Video: https://www.youtube.com/watch?v=ECXamfIaPcQ This video,
related to Chapter 2, shows the live execution of the Recognition-Grasping pipeline on
unknown objects with a low-cost 2.5-finger gripper.

Robot Fusion Video 2: https://www.youtube.com/watch?v=Y1FaBE54E5A This
video, related to Chapter 2, shows the live execution of the Recognition-Grasping
pipeline on unknown objects with an industrial 3-finger gripper.

SkiMap Video: https://www.youtube.com/watch?v=MverWmFAgkg This video, re-
lated to Chapter 3, shows several runs of a mobile robot while mapping the environment
by means of the SkiMap framework.

SkiMap++ Video: https://www.youtube.com/watch?v=ki_Lbl4lEIY This video, re-
lated to Chapter 4, shows the Recognition Pipeline of SkiMap++ with both a Mobile
Robot and a Motion Tracking System.

Roars Video: https://www.youtube.com/watch?v=tj_h_N1Bylo This video, related to
Chapter 5, shows the proposed labeling pipeline in a real industrial scenario.

https://www.youtube.com/watch?v=ECXamfIaPcQ
https://www.youtube.com/watch?v=Y1FaBE54E5A
https://www.youtube.com/watch?v=MverWmFAgkg
https://www.youtube.com/watch?v=ki_Lbl4lEIY
https://www.youtube.com/watch?v=tj_h_N1Bylo

List of figures

1.1 A dense 3D Grid with side s and resolution of r: the entire volume is
populated of voxels regardless of whether or not they map an occupied
portion of the space (the blue voxel). The corresponding data structure
usually is a simple 1D Array. The size of the array is s3

r3 8
1.2 The Standford Bunny in its original version and with the discretization

over a 3D Voxel Grid with two different resolutions r1 < r2. 9
1.3 An Octree graphical representation with its equivalent data structure.

This model can be represented as a Tree with precisely 8 children for
each middle node. Only filled leafs (blue cube) stores useful informa-
tions, everything else can be represented as simple pointer. 10

1.4 A VoxelHashing 3D representation is completely void aside the occu-
pied portion of the space (compare it with Figure 1.1 and Figure 1.3).
The related data structure is an Hash Table where each entry is a Voxel
Block (in this case 2⇥ 2⇥ 2, but could also be just a single Voxel)
list; the lateral list data structure (the right arrows pointing nothing)
is mandatory to tackle the problem of the collisions in the hashing
procedure (Bellare and Rogaway, 1993). 12

1.5 A SkiMap 3D graphic representation. Compare it with Figure 1.1,
Figure 1.3 and Figure 1.4. The related data structure is a tree with
max depth 3 and where real voxels are represented by the leaves. Inner
nodes of the structure represent the projection of the 3D information
onto the x� y plane. 14

1.6 These plots represent a qualitative comparison between SkiMap and
other algorithms, mainly against Octree that is the target competitor.
The comparison is just qualitative and is coming from experiments of
the Chapter 3 to give an idea of benefits of SkiMap especially dealing
with Spatial Queries. 15

108 List of figures

1.7 A live snapshot from the system described by Maier et al. (2012). The
right image depicts a graphical representation of a voxel grid mapping
the occupancy of the environment represented in the left picture. Each
voxel will be displayed only if its occupancy information q is over a
given threshold qth, and its color maps its height w.r.t. the ground. . . 16

1.8 This is a graphical representation of a 3D grid, of a teddy bear on
a swivel chair, where each voxels tries to map the real color of the
corresponding portion of the environment. 17

1.9 This figure represent a bi-dimensional representation of a 3D grid which
stores SDF values. A generic ray ri crosses the surface, of a random
object, running through the entire mapped volume. In each voxel
crossed by the ray we store the metric distance between the center of
that voxel and the nearest intersected surface, we can notice that voxels
to the right, belonging to the free space, contain a positive growing
values moving away from the surface; conversely the voxels to the left
contains negative degressive values. 20

1.10 Samples from the work of Newcombe et al. (2011). The rightmost im-
age represents outcome of a raycasting procedure over the SDF volume,
it resembles a mesh but is only a 2.5D representation of the vantage
point. In the middle image a colormap tints the surface according
to the normals direction. The first image depicts a single noisy, and
incomplete, output of the RGB-D sensor. 22

1.11 A bi-dimensional representation of a SDF field interpolated in order to
produce a continuous heatmap where hotter colors represent occupied
volume and colder colors maps free space. The real surface, represented
by the black curve, could lie in any point of the lattice despite the
discretization introduced by the voxelization procedure. 23

2.1 Kinematics chain to compute the transformation between the wrist and
the camera (W TEE). 30

List of figures 109

2.2 (a) Synthetic data. Left: original 3D CAD model used as ground truth.
Center: reconstruction by stitching point clouds. Right: TSDF-based
reconstruction by RobotFusion. Colors encode the metric error w.r.t.
the ground truth at reconstructed surface points. (b) Mean square error
in function of the number of views for the 3 different models of the
Figure 2.2c. The proposed TSDF-based approach obtains an increasing
accuracy with a higher number of frames captured in each robot poses
(in this case 12 robot poses around object). (c) Real data. Left: original
3D object. Center: reconstruction by stitching point clouds. Right:
TSDF-based reconstruction by RobotFusion. 32

2.3 (a) Side view of a point cloud representing a table-top scene, with four
objects. Accordingly, the bin of the histogram reported on the right
hand-side corresponding to the table is the highest one, while object
surfaces tend to report much smaller bin values. (b) Execution times of
plane extraction algorithms while increasing the point cloud size. (c)
Example of horizontal planes extracted by a single run of the proposed
HeightMap segmentation algorithm. 33

2.4 (a) Proposed pipeline for grasp points extraction. Each subset of the
polygon points (defined as Grasping Points) will be validated through
N validation stages. In addition to fixed constraints, the user can choose
custom constraints for a specific task. (b) Graphical representation of a
3D object passing through the previous pipeline until it reaches a valid
grasp point configuration. 35

2.5 (a) End Effector used during the experiments. The top part is an Asus
Xtion RGB-D Sensor, the bottom part is the Gripper: a two finger
robotic hand with three contacts points (C1,C2,C3). (b) Two sample
scenes of our grasping experiments. 38

3.1 SkiMap encodes seamlessly a full 3D reconstruction of the environment
(left), a height map (center) and a 2D occupancy grid (right). The
three representations can be delivered on-line with decreasing time
complexity. The displayed maps have been obtained on the Freiburg
Campus dataset. 41

110 List of figures

3.2 Tree structure to group voxels according to their coordinates. The
maximum depth of the tree is 3, nodes with depth d3 being voxels
while those with depths d1,d2 being transient nodes. Nodes at depths
d1,d2 store only integer numbers representing the associated quantized
coordinate, while voxels (blue nodes) can be deployed to store user
data, such as for example Occupancy Probability (Thrun et al., 2005). 43

3.3 The visible part of a SkipList is identical to a LinkedList. The hidden
segment of a SkipList shall ensure a random access complexity of
O(logn) rather than O(n). 43

3.4 Grouping voxels into a Tree of SkipLists. Each voxel (blue box) is
linked to the rootNode by a yNode (green tile) which in turn is linked to
a xNode (red tile). 44

3.5 The Pose History consists of a set of queues associated with Sensor
Measurements (SM). This structure allows for linking diffent poses
to any SM so to keep track of which pose has been used to integrate
them into the map as well as of the existence of newer ones possibly
produced by the on-line pose optimization process. For example, at
time t2 the history linked to SM0 shows that the mesaurements have
been fused into the map according to P0 but there exists a newer pose,
i.e. P2: the Pose Integrator may choose to erode SM0 from the map
according to P0 and fuse measurements back according to P2, marking
then the latter as the last integrated pose for SM0. Conversely, the last
pose and last fused pose associated with SMn do coincide, so no action
would be taken by Pose Integrator fot those measurements. 49

3.6 Time to integrate new measurements into the map with increasing num-
ber of total points. The first three datasets deal with RGB-D sensors (⇠
320k points per scan) while the last one was acquired by a Laser Scanner
mounted on Pan-Tilt unit (⇠ 180k points per scan). SkiMap provides
inferior performance in the last dataset due to the scans featuring very
spread and distant points (up to 50m). 55

3.7 Time to visit the whole map. Visiting in this case means the retrieval
of the whole voxels set e.g. for visualization purposes or for global
navigation path planning. 55

3.8 Comparison between 3D and 2D reconstructions. The Octree requires
the same time to perform a full 3D or a 2D reconstruction because in
both cases it needs to iterate over all the 3D points. SkiMap, instead,
turns out faster than the Octree in obtaining a 3D map as well as much
faster in creating a 2D map thanks to the 2D Query feature. 55

List of figures 111

3.9 Time to perform a radius search with increasing of radius size. SkiMap
outperforms both the Octree and the kd-tree on all datasets. 55

3.10 A Map built from Corridor Dataset collected in Octomap (Hornung
et al., 2013). SkiMap allows for efficiently detecting the ground and,
without further computational cost, discard higher obstacles like the
roof (red voxels in the left image) and labeling the ground voxels as
navigable (white regions in the right image). 56

3.11 The first row concerns a small room (5m⇥ 4m⇥ 3m) reconstructed
by Youbot in eye-on-hand configuration. The second row represents
a medium-size environment (8m⇥35m⇥3m) reconstructed by Tiago
through an RGB-D camera mounted on the head. The middle col-
umn highlights the significant improvement in reconstruction accuracy
provided by the real-time map optimization process. 56

4.1 Large-scale map reconstructed online by SkiMap++ through a mobile
robot equipped with an head-mounted RGB-D camera. Purple spheres
represent areas found alongside with reconstruction which are likely
to contain object instances. Magnified circles represent outcomes of
the final Instance Estimation Algorithm, which is performed in the
aforementioned areas only. The whole map is acquired by relying on
the robot’s own odometry in order to track camera poses over time. . 57

4.2 Each object feature looks differently depending on the vantage point.
Experimental results show that fusing together, inside the same voxel,
multiple descriptors computed from different viewpoints yields a De-
scriptor Matrix representing a multi-modal distribution in the descrip-
tors space Rn. A 2D visualization of descriptors obtained by t-SNE
(Maaten and Hinton, 2008) highlights how these different descriptors
tend to concentrate into a few clusters. 60

4.3 The stacking procedure used in SkiMap++ to create the Object Dataset
and train the associated Classifier which can then be used on-line to
perform object recognition. Column a) shows the reconstructed RGB
Volumes of two objects (A Bottle of Detergent and a Toy Robot respec-
tively). Column b) depicts the Descriptors Voxels Volume containing
descriptions of multiple appearances as Figure 4.2. Column c) shows
equally sized voxels stacks, ordered by cardinality, for each object.
Finally, in d), voxels stacks are merged into a global Classes Stack that
will represent the prediction target for the forest training process. . . 61

112 List of figures

4.4 For an object in the dataset many variants may be acquired. In the
figure each variant is intended as a full rotation around the object with
the RGB-D camera in different conditions, e.g. in this figure from the
Front or from the Top with an angle of 45�, and so on. Each variant
enriches the object description by filling Descriptor Voxels with addi-
tional evidences. Clustering the descriptors ensures the further decrease
of memory footprint compared to the usage of all descriptors computed
from the raw RGB-D frames. Storing the clustered representation of
Descriptors is necessary to verify Classifier prediction as described in
Section 4.2,Equation 4.5. 64

4.5 SkiMap++ online pipeline. First, new frames are integrated in two
separate maps, one for RGB data and the other for labels. A local
active sphere is generated according to the current camera pose, this
sphere is used to query the label map to obtain objects matches and
compute local hypotheses. Such hypotheses will be fused into another
map. Given a target region inside the Hypotheses Map, the last phase
of the pipeline entails the identification of the hypothesis with highest
score, performing a radius search of similar hypotheses and merging
them together to estimate and refine the final 6-DOF pose. Refined
hypotheses shall be considered as object Instances and will be fused
again in a global instances map. 65

4.6 The left part depicts a portion of environment reconstructed through
SkiMap++ containing the multimeter object (the first object in Fig-
ure 4.12), fusing RGB-D Frames captured from multiple vantage points.
On the right, the corresponding semantic map obtained by fusing La-
bels is shown instead. For visualisation purposes, voxels in the latter
representation are coloured depending on object to which they belong.
In this case, brown voxels are those belonging to the multimeter. . . . 67

List of figures 113

4.7 The right part of the image depicts the Active Sphere on which we build
the 3D Hough space. For each three random correspondences we can
project an Object Reference Frame ob jTi inside the sphere computing
the relative Reference Frame HTob j in the Hough coordinate space
and cast votes for the object base in the relative bin: in the figure the
first match (blue arrows) and the second match (red arrows) project
the object base in the same bin (green square). The other bin (red
box) represents an hypotheses brought in by a false positive. Had the
three hypotheses voted for their own centroid instead of the base, the
associated bin would have accounted a distorted number of votes taking
into account as inliers the relatively rotated matches, coming from the
false positive hypotheses. 68

4.8 On the left, a sample of a classical Hypotheses Voxel containing many
computed Reference Frames. On the right, the distribution of their
orientations represented with axix angle notation in a SO(3) group.
With high probability inliers will be grouped together in a cluster, the
centroid of which can be inferred as the best candidate for the final
resulting orientation of the instance. 70

4.9 This figure portrays a frame taken from a real-time scan of one scene
of the dataset. RGB Reconstruction is carried out with two different
resolutions: 0.005m for left object and 0.01m for right object. Hy-
potheses (purple boxes) are contained with HypothesesVoxels of 0.03m
instead. Finally the Instances (orange boxes) are grouped in 0.05m
InstancesVoxels. 71

4.10 These plots show precision/recall while varying some key parameters
like: (a) Number of trained classes per object; (b) differences between
2D Feature detectors; (c) size of the random forest while using the same
descriptor. The overall result shown here is over 80.0/80.0 precision/re-
call index. 73

4.11 This plot shows the importance of Multi-View based Object Recogni-
tion. Decreasing the number of vantage points(i.e. decreasing fps and
so the number of frames) the accuracy falls down to zero. 73

4.12 Real-time Augmented Reality enabled by stable 6-DOF pose. 74
4.13 Large scale map (dataset scene) fully reconstructed by SkiMap++ with

Object Instances identified by purple bounding boxes. 75

114 List of figures

5.1 The ROARS labeling pipeline: 1) Draw virtual boxes around the target
objects. 2) Perform a scan with robot. 3) Refine the virtual boxes
looking at few frames. 4) Generate an arbitrary number of self-labeled
images. 79

5.2 (a) The Augmented Reality Pen (ARP) used to draw virtual boxes. The
pen is composed of several Augmented Reality Markers with a known
pose tipTmki w.r.t. the tip. (b) Tracking the tip we can easily draw a
virtual box around a target object by touching its edges. (c) Conversely,
its not simple to draw a virtual box around a rounded object not having
reference points. 82

5.3 In this picture are shown four random frames captured after the robot
scan: the first row is referred to the Industrial and the displayed virtual
boxes are drawn with ARP; the second one is related to the Fruits with
annotations created offline with the technique shown in Figure 5.4). In
the first row is clear how some virtual box is not perfect aligned with
the real object. 84

5.4 Graphic representation of the algorithm to estimate the coarse 6-DoF
pose of an object only by exploiting a pair of frames {0C1,m1},{0C2,m2}
and a pair of boxes b1,b2 drawn over m1 and m2. 87

5.5 Samples from the dataset that we have used for our experiments, the
green rectangles display the annotated bounding boxes, the white text
over each box is the class mapped to that box. (a) Electromechanical
components dataset manually annotated, (b) Electromechanical com-
ponents dataset with our automatic labels, (c) Fruit dataset with our
automatic annotations. 88

5.6 Precision/Recall curves for the two type of detector trained on different
subsets of the Industrial dataset. (a) and (b) report the results for Yolo
and SSD respectively; (c) instead displays a comparison between them. 90

5.7 Precision/Recall curves for the two type of detector trained on different
subsets of the Fruits dataset. (a) and (b) report the results for Yolo and
SSD respectively; (c) instead displays a comparison between SSD and
Yolo globally and considering the worst class specific precision/recall
curve for each one: SSD experiences difficulties with banana, while
YOLO with pear. 91

5.8 Detectors output (all correct) computed over the stream of a usb camera.
Its surprising how the detector is able to distinguish apples and pears
only looking at their lower side. 94

List of figures 115

5.9 (a) The Viewpoint Coverage computed for object of class 0 for the
Industrial_3000/5000/15000 datasets. The ColorBar maps the color
with the number of views voting for corresponding polar bin. (b)
Shows the VC over Industrial_3000 and Industrial_5000, but the latter
is filtered removing half the viewpoints. (c) Depicts the benefits of a
better coverage despite the lower number of training samples. 95

5.10 The Object Detection Fusion approach: the first column represents
frames coming from an RGB-D camera with superimposed object
detection masks; in the second column the frames are fused together in
a TSDF Volume (i.e. RGB Volume) where each voxel stores real RGB
information; in the third one, the labels coming from the Object Detector
are fused together in another TSDF Volume (i.e. Label Volume) where
each voxel stores labels information; the last column depicts the Label
Volume after background refinement (see Table 5.3). In the figure we
are using a color metaphor to represent labels (one for each object)
allowing a graphical human-interpretable representation through which
is possible to blend labels (merging related color) in order to understand
what happens behind the scenes. 100

List of tables

1.1 (a) A simple 2D Map from the Game Of Life of Conway (1970): here
each Tile stores only boolean information {1= occupied;0= f ree}; (b)
A more complex 2D Map from the windows game Minesweeper: hear
each Tile contains at least 11 values {0 = void; [1,8] = adiacency;9 =

bomb;10 = unexplored;11 = f lag}; (c) A simple 3D Volume repre-
senting the Standford Bunny: also here the volume stores only boolean
information {1 = occupied;0 = f ree}; (d) A complex 3D Volume
from the popular game Minecraft: each voxel here can map up to 300
different values (terrain, water, wood etc.). 6

2.1 Grasping Results . 39

3.1 Analysis of SkipList depth: tests performed on Freiburg Campus
dataset with a resolution of 0.05m. The Table reports the average
computation time to integrate new sensor measurements (⇠180k points),
the average time for a full visit of the map and the memory footprint of
the map. 45

3.2 Percentage of memory savings with respect to a full 3D grid. 54

4.1 Here a complete list of all objects in our dataset. The table shows a
comparison between two best sets of parameters, tuned during our tests
of Skimap++ running over the SK17 dataset, varying the 2D Descriptor.
The percentages represent the recall after a complete round within every
scene. 72

5.1 Mean average precision (mAP) and average intersection over union
(avgIOU) on the Industrial_Test+ for Yolo and SSD trained using 5
different training sets with increasing number of images. The best result
for each of the two metrics are highlighted in bold. 92

118 List of tables

5.2 Mean average precision (mAP) and average intersection over union
(avgIOU) on Fruits_Test for Yolo and SSD trained using 3 different
training sets with increasing number of images. "A" suffix marks
training sets with annotations produced by ROARS. The best result for
each of the two metrics are highlighted in bold. 93

5.3 The 3D Intersection over Union for the five object categories in the
RGB-D Scenes Dataset v2 (Lai et al., 2014) with the Object Detection
Fusion approach. Since the 6-DoF Ground Truth for these object is
near impossible, due to high symmetry, we choose to compare the 3D
IoU of the minimum bounding box of the ground truth objects with the
estimates. In this table several approaches was compared: HT means
High Threshold used to distinguish real object voxels from noisy region;
LT means Low Threshold and WB means Without Background removal. 101

References

Aldoma, A., Tombari, F., Prankl, J., Richtsfeld, A., Di Stefano, L., and Vincze, M.
(2013). Multimodal cue integration through Hypotheses Verification for RGB-D
object recognition and 6DOF pose estimation. Proceedings - IEEE International
Conference on Robotics and Automation, pages 2104–2111.

Aldoma, A., Tombari, F., Rusu, R. B., and Vincze, M. (2012). OUR-CVFH: Ori-
ented, Unique and Repeatable Clustered Viewpoint Feature Histogram for Object
Recognition and 6DOF Pose Estimation. Pattern Recognition, 7476:113–122.

Aldoma, A., Vincze, M., Blodow, N., Gossow, D., Gedikli, S., Rusu, R. B., and
Bradski, G. (2011). Cad-model recognition and 6dof pose estimation using 3d
cues. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on, pages 585–592.

Arora, S. and Barak, B. (2009). Computational complexity: a modern approach.
Cambridge University Press.

Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In
European conference on computer vision, pages 404–417. Springer.

Bellare, M. and Rogaway, P. (1993). Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM conference on Computer
and communications security, pages 62–73. ACM.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18(9):509–517.

Bicchi, A. and Kumar, V. (2000). Robotic grasping and contact: a review. In Robotics
and Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference on,
volume 1, pages 348–353 vol.1.

Bischoff, R., Huggenberger, U., and Prassler, E. (2011). Kuka youbot-a mobile manipu-
lator for research and education. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 1–4. IEEE.

Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., and Rother, C. (2014).
Learning 6D Object Pose Estimation Using 3D Object Coordinates, pages 536–551.
Springer International Publishing, Cham.

Brachmann, E., Michel, F., Krull, A., Yang, M. Y., Gumhold, S., and Rother, C. (2016).
Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB
Image. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3364–3372. IEEE.

120 References

Bradski, G. and Kaehler, A. (2008). Learning OpenCV: Computer vision with the
OpenCV library. " O’Reilly Media, Inc.".

Bylow, E., Sturm, J., Kerl, C., Kahl, F., and Cremers, D. (2013). Real-time camera
tracking and 3d reconstruction using signed distance functions. In Robotics: Science
and Systems (RSS), Online Proceedings.

Calli, B., Singh, A., Bruce, J., Walsman, A., Konolige, K., Srinivasa, S., Abbeel, P., and
Dollar, A. M. (2017). Yale-CMU-Berkeley dataset for robotic manipulation research.
The International Journal of Robotics Research, page 027836491770071.

Carlucci, F. M., Russo, P., and Caputo, B. (2016). A deep representation for depth
images from synthetic data. pages 1362–1369.

Cavallari, T. and Di Stefano, L. (2015). Volume-based semantic labeling with signed
distance functions. In Pacific-Rim Symposium on Image and Video Technology, pages
544–556. Springer International Publishing.

Chaumette, F. and Hutchinson, S. (2007). Visual servo control, part ii: Advanced
approaches. IEEE Robotics and Automation Magazine, 14(1):109–118.

Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE transactions on
pattern analysis and machine intelligence, 17(8):790–799.

Chi Li, Bohren, J., Carlson, E., and Hager, G. D. (2016). Hierarchical semantic parsing
for object pose estimation in densely cluttered scenes. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 5068–5075. IEEE.

Civera, J., Galvez-Lopez, D., Riazuelo, L., Tardos, J. D., and Montiel, J. M. M. (2011).
Towards semantic SLAM using a monocular camera. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1277–1284. IEEE.

Collet, A. and Srinivasa, S. S. (2010). Efficient multi-view object recognition and full
pose estimation. In 2010 IEEE International Conference on Robotics and Automation,
volume 2, pages 2050–2055. IEEE.

Conway, J. (1970). The game of life. Scientific American, 223(4):4.

Criminisi, A. and Shotton, J. (2013). Decision forests for computer vision and medical
image analysis. Springer Science & Business Media.

Curless, B. and Levoy, M. (1996). A volumetric method for building complex models
from range images. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 303–312. ACM.

Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., and Theobalt, C. (2016). Bundlefusion:
Real-time globally consistent 3d reconstruction using online surface re-integratio.
arXiv preprint arXiv:1604.01093.

De Gregorio, D. and Di Stefano, L. (2017). Skimap: An efficient mapping framework
for robot navigation. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 2569–2576.

Den Hollander, R. J. and Hanjalic, A. (2007). A combined ransac-hough transform
algorithm for fundamental matrix estimation. In BMVC, pages 1–10.

References 121

Endres, F., Hess, J., Sturm, J., Cremers, D., and Burgard, W. (2014). 3-d mapping with
an rgb-d camera. IEEE Transactions on Robotics, 30(1):177–187.

Engel, J., Schöps, T., and Cremers, D. (2014). LSD-SLAM: Large-scale direct monocu-
lar SLAM. In European Conference on Computer Vision (ECCV).

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010).
The pascal visual object classes (voc) challenge. International Journal of Computer
Vision, 88(2):303–338.

Ferrari, C. and Canny, J. (1992). Planning optimal grasps. In Robotics and Automation,
1992. Proceedings., 1992 IEEE International Conference on, pages 2290–2295 vol.3.

Fioraio, N. and Di Stefano, L. (2013). Joint detection, tracking and mapping by
semantic bundle adjustment. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 1538–1545.

Fioraio, N. and Di Stefano, L. (2015). Slamdunk: Affordable real-time rgb-d slam. In
Computer Vision - ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and
12, 2014, Proceedings, Part I, pages 401–414.

Fioraio, N., Taylor, J., Fitzgibbon, A., Stefano, L. D., and Izadi, S. (2015). Large-
scale and drift-free surface reconstruction using online subvolume registration. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
4475–4483.

Fridovich-Keil, D., Nelson, E., and Zakhor, A. (2017). Atommap: A probabilistic
amorphous 3d map representation for robotics and surface reconstruction. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on, pages 3110–3117.
IEEE.

Fäulhammer, T., Aldoma, A., Zillich, M., and Vincze, M. (2015). Temporal integra-
tion of feature correspondences for enhanced recognition in cluttered and dynamic
environments. In Int. Conf. Robotics and Automation (ICRA), pages 3003–3009.

García, I., Lefebvre, S., Hornus, S., and Lasram, A. (2011). Coherent parallel hashing.
In ACM Transactions on Graphics (TOG), volume 30, page 161. ACM.

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., and Marín-Jiménez, M. J.
(2014). Automatic generation and detection of highly reliable fiducial markers under
occlusion. Pattern Recognition, 47(6):2280–2292.

Georgakis, G., Mousavian, A., Berg, A. C., and Kosecka, J. (2017). Synthesizing
Training Data for Object Detection in Indoor Scenes.

Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved techniques for grid
mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics,
23(1):34–46.

Hang, K., Stork, J., and Kragic, D. (2014). Hierarchical fingertip space for multi-
fingered precision grasping. In Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, pages 1641–1648.

122 References

Hernández, C., Vogiatzis, G., and Cipolla, R. (2007). Probabilistic visibility for multi-
view stereo. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on, pages 1–8. IEEE.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013).
Octomap: an efficient probabilistic 3d mapping framework based on octrees. Au-
tonomous Robots, 34(3):189–206.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna,
Z., Song, Y., Guadarrama, S., et al. (2017). Speed/accuracy trade-offs for modern
convolutional object detectors.

ISO TC 184SC 2 Robots and robotic devices (2015). ISO 9283. Manipulating industrial
robots – Performance criteria and related test methods. International Organization
for Standardization, Geneva, Switzerland.

Jiawei, W., Li, Y., Tao, L., and Yuan, Y. (2010). Three-dimensional interactive pen
based on augmented reality. In Image Analysis and Signal Processing (IASP), 2010
International Conference on, pages 7–11. IEEE.

Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S. N., Rosaen, K., and Vasudevan,
R. (2016). Driving in the Matrix: Can Virtual Worlds Replace Human-Generated
Annotations for Real World Tasks?

Kehl, W., Navab, N., and Ilic, S. (2014). Coloured signed distance fields for full 3d
object reconstruction. In Proceedings of the British Machine Vision Conference.
BMVA Press.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.
The international journal of robotics research, 5(1):90–98.

Lai, K., Bo, L., and Fox, D. (2014). Unsupervised feature learning for 3D scene labeling.
In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages
3050–3057. IEEE.

Lai, K., Bo, L., Ren, X., and Fox, D. (2012). Detection-based object labeling in 3D
scenes. In 2012 IEEE International Conference on Robotics and Automation, pages
1330–1337. IEEE.

Land, M. F. and Nilsson, D.-E. (2012). Animal eyes. Oxford University Press.

Li, C., Xiao, H., Tateno, K., Tombari, F., Navab, N., and Hager, G. D. (2016). In-
cremental scene understanding on dense SLAM. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 574–581. IEEE.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and
Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3d surface
construction algorithm. In ACM siggraph computer graphics, volume 21, pages
163–169. ACM.

References 123

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605.

Mahalanobis, P. C. (1936). On the generalised distance in statistics. Proceedings of the
National Institute of Sciences of India, 1936, pages 49–55.

Maier, D., Hornung, A., and Bennewitz, M. (2012). Real-time navigation in 3d environ-
ments based on depth camera data. In Humanoid Robots (Humanoids), 2012 12th
IEEE-RAS International Conference on, pages 692–697. IEEE.

Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., and Brox, T.
(2016). A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4040–4048.

McCormac, J., Handa, A., Davison, A., and Leutenegger, S. (2017). Semanticfusion:
Dense 3d semantic mapping with convolutional neural networks. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pages 4628–4635.
IEEE.

Meagher, D. J. (1982). Geometric modeling using octree encoding. In Computer
Graphics and Image Processing, pages 129–147.

Mitash, C., Bekris, K. E., and Boularias, A. (2017). A self-supervised learning system
for object detection using physics simulation and multi-view pose estimation. arXiv
preprint arXiv:1703.03347.

Montana, D. (1991). The condition for contact grasp stability. In IEEE Intemational
Conference on Robotics and Automation.

Moravec, H. and Elfes, A. (1985). High resolution maps from wide angle sonar. In
Robotics and Automation. Proceedings. 1985 IEEE International Conference on,
volume 2, pages 116–121. IEEE.

Movshovitz-Attias, Y., Kanade, T., and Sheikh, Y. (2016). How useful is photo-realistic
rendering for visual learning? In Computer Vision–ECCV 2016 Workshops, pages
202–217. Springer.

Muis, A. and Ohnishi, K. (2005). Eye-to-hand approach on eye-in-hand configura-
tion within real-time visual servoing. IEEE/ASME transactions on Mechatronics,
10(4):404–410.

Mur-Artal, R. and Tardós, J. D. (2017). Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255–
1262.

Needham, J. (1974). Science and Civilisation in China: Historical Survey, from
Cinnabar Elixirs to Synthetic Insulin. Vol. 5, Chemistry and chemical technology; Pt.
3, Spagyrical discovery and invention, volume 3. Cambridge University Press.

Newcombe, R. a., Davison, A. J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J.,
Molyneaux, D., Hodges, S., Kim, D., and Fitzgibbon, A. (2011). KinectFusion:
Real-time dense surface mapping and tracking. 10th IEEE International Symposium
on Mixed and Augmented Reality, pages 127–136.

124 References

Nguyen, C., Izadi, S., and Lovell, D. (2012). Modeling kinect sensor noise for improved
3d reconstruction and tracking. In 3D Imaging, Modeling, Processing, Visualization
and Transmission (3DIMPVT), 2012 Second International Conference on, pages
524–530.

Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. (2013). Real-time 3d
reconstruction at scale using voxel hashing. ACM Transactions on Graphics (TOG).

Papazov, Haddadin, Parusel, Krieger, and Burschka (2012). Rigid 3d geometry matching
for grasping of known objects in cluttered scenes. The International Journal of
Robotics Research.

Parker, L. E., Fregene, K., Guo, Y., and Madhavan, R. (2013). Multi-robot localization,
mapping, and path planning. In Multi-Robot Systems: From Swarms to Intelligent
Automata: Proceedings from the 2002 NRL Workshop on Multi-Robot Systems,
page 21. Springer Science & Business Media.

Ponce, J. and Faverjon, B. (1991). On computing three-finger force-closure grasps of
polygonal objects. In Advanced Robotics, 1991. ’Robots in Unstructured Environ-
ments’, 91 ICAR., Fifth International Conference on, pages 1018–1023 vol.2.

Popović, M., Kraft, D., Bodenhagen, L., Başeski, E., Pugeault, N., Kragic, D., Asfour,
T., and Krüger, N. (2010). A strategy for grasping unknown objects based on co-
planarity and colour information. Robotics and Autonomous Systems, 58(5):551 –
565.

Pugh, W. (1990). Skip lists: A probabilistic alternative to balanced trees. Commun.
ACM, pages 668–676.

Pugh, W. (1998). Concurrent maintenance of skip lists. Technical report.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., and
Ng, A. Y. (2009). Ros: an open-source robot operating system. In ICRA Workshop
on Open Source Software.

Rahul Raguram, Jan-Michael Frahm, Marc Pollefeys (2008). A Comparative Analysis
of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus.

Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster, stronger.

Rennie, C., Shome, R., Bekris, K. E., and De Souza, A. F. (2016). A Dataset for
Improved RGBD-Based Object Detection and Pose Estimation for Warehouse Pick-
and-Place. IEEE Robotics and Automation Letters, 1(2):1179–1185.

Richter, S. R., Vineet, V., Roth, S., and Koltun, V. (2016). Playing for data: Ground
truth from computer games. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9906
LNCS:102–118.

Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and Lopez, A. (2016). The SYNTHIA
Dataset: A large collection of synthetic images for semantic segmentation of urban
scenes. In CVPR.

References 125

Roth-Tabak, Y. and Jain, R. (1989). Building an environment model using depth
information. Computer, 22(6):85–90.

Rusu, R. B., Bradski, G., Thibaux, R., and Hsu, J. (2010). Fast 3D recognition and pose
using the Viewpoint Feature Histogram. In 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2155–2162. IEEE.

Ryde, J. and Brünig, M. (2009). Non-cubic occupied voxel lists for robot maps. In
Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference
on, pages 4771–4776. IEEE.

Salas-Moreno, R. F., Newcombe, R. a., Strasdat, H., Kelly, P. H., and Davison, A. J.
(2013). SLAM++: Simultaneous Localisation and Mapping at the Level of Objects.
2013 IEEE Conference on Computer Vision and Pattern Recognition, pages 1352–
1359.

Salti, S., Tombari, F., and Stefano, L. D. (2014). Shot: Unique signatures of histograms
for surface and texture description. Computer Vision and Image Understanding,
125:251 – 264.

Saut, J.-P. and Sidobre, D. (2012). Efficient models for grasp planning with a multi-
fingered hand. Robotics and Autonomous Systems, 60(3):347 – 357. Autonomous
Grasping.

Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., and Webb, R. (2017).
Learning from simulated and unsupervised images through adversarial training.

Simard, P. Y., Amershi, S., Chickering, D. M., Pelton, A. E., Ghorashi, S., Meek, C.,
Ramos, G., Suh, J., Verwey, J., Wang, M., et al. (2017). Machine teaching: A new
paradigm for building machine learning systems. arXiv preprint arXiv:1707.06742.

Smith, M., Baldwin, I., Churchill, W., Paul, R., and Newman, P. (2009). The new
college vision and laser data set. The International Journal of Robotics Research,
28(5):595–599.

Steinbrucker, F., Kerl, C., and Cremers, D. (2013). Large-scale multi-resolution surface
reconstruction from rgb-d sequences. In The IEEE International Conference on
Computer Vision (ICCV).

Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. (2012). A benchmark
for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 573–580. IEEE.

Tateno, K., Tombari, F., and Navab, N. (2015). Real-time and scalable incremental
segmentation on dense SLAM. IEEE International Conference on Intelligent Robots
and Systems, pages 4465–4472.

Tateno, K., Tombari, F., and Navab, N. (2016). When 2.5D is not enough: Simultaneous
reconstruction, segmentation and recognition on dense SLAM. Proceedings - IEEE
International Conference on Robotics and Automation, pages 2295–2302.

Teschner, M., Heidelberger, B., Müller, M., Pomerantes, D., and Gross, M. H. (2003).
Optimized spatial hashing for collision detection of deformable objects. In Vmv,
volume 3, pages 47–54.

126 References

Thomas, A., Ferrar, V., Leibe, B., Tuytelaars, T., Schiel, B., and Van Gool, L. (2006).
Towards Multi-View Object Class Detection. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR’06),
volume 2, pages 1589–1596. IEEE.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press.

Tombari, F. and Di Stefano, L. (2012). Hough voting for 3d object recognition under
occlusion and clutter. IPSJ Transactions on Computer Vision and Applications,
4:20–29.

Tombari, F., Fioraio, N., Cavallari, T., Salti, S., Petrelli, A., and Stefano, L. D. (2014).
Automatic detection of pole-like structures in 3d urban environments. In Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages
4922–4929.

Whelan, T., Kaess, M., Johannsson, H., Fallon, M., Leonard, J. J., and Mcdonald, J.
(2014). Real-time large scale dense RGB-D SLAM with volumetric fusion. Intl. J. of
Robotics Research, IJRR.

Wilhelms, J. and Van Gelder, A. (1992). Octrees for faster isosurface generation. ACM
Transactions on Graphics (TOG), 11(3):201–227.

Wohlhart, P. and Lepetit, V. (2015). Learning descriptors for object recognition and 3D
pose estimation. 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), (1):3109–3118.

Xiang, Y. and Fox, D. (2017). Da-rnn: Semantic mapping with data associated recurrent
neural networks. arXiv preprint arXiv:1703.03098.

Xie, Z., Singh, A., Uang, J., Narayan, K. S., and Abbeel, P. (2013). Multimodal blending
for high-accuracy instance recognition. In Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, pages 2214–2221.

Yun Jiang and Moseson, S. and Saxena, A. (2011). Efficient grasping from RGBD
images: Learning using a new rectangle representation. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on.

Zeng, A., Yu, K.-T., Song, S., Suo, D., Walker, E., Rodriguez, A., and Xiao, J. (2016).
Multi-view Self-supervised Deep Learning for 6D Pose Estimation in the Amazon
Picking Challenge. pages 1386–1393.

	Table of contents
	Introduction
	I Mapping with a Robot
	1 Mapping: state of the art
	1.1 Mapping and Robotics
	1.2 Data Structures
	1.2.1 Dense 3D Volume
	1.2.2 Octree
	1.2.3 Voxelhashing
	1.2.4 Skimap

	1.3 Environment Representation
	1.3.1 Occupancy Grid
	1.3.2 Truncated Signed Distance Function

	2 Small scale mapping for industrial robotic: RobotFusion
	2.1 Rationale
	2.2 Reconstruction and Recognition for Grasp
	2.3 Method description
	2.3.1 Multi-view reconstruction via RobotFusion
	2.3.2 Plane-based segmentation
	2.3.3 Extraction of grasp points

	2.4 Grasping experiments

	3 Large scale mapping for mobile robotic: SkiMap
	3.1 Rationale
	3.2 Mapping Data Structure
	3.2.1 Tree of SkipLists
	3.2.2 Voxel indexing
	3.2.3 Parallelization
	3.2.4 Radius search

	3.3 Salient features of Skimap
	3.3.1 Ground tracking and 2D querying
	3.3.2 Map continuous update on pose graph optimization

	3.4 Experiments
	3.4.1 Implementation details
	3.4.2 Results

	3.5 Skimap extensions

	4 Sparse semantic mapping for robotic manipulation: SkiMap++
	4.1 Introduction and related works
	4.2 Offline pipeline
	4.2.1 Built-in Model Database Compression

	4.3 Online pipeline
	4.3.1 Frame Integration Module
	4.3.2 Local Hypotheses Estimation Module
	4.3.3 Global Instance Retrieval Module

	4.4 Experimental results
	4.4.1 SK17: a new dataset for multi-view Object Recognition
	4.4.2 Quantitative results
	4.4.3 Qualitative results

	II Machine Teaching made easy
	5 Using robot to train Deep Networks: ROARS
	5.1 Train a Deep Network for Object Detection
	5.2 Method description
	5.2.1 The input dataset
	5.2.2 The augmented reality pen
	5.2.3 Objects Pose refinement
	5.2.4 Generate Training Data

	5.3 Experimental evaluation
	5.3.1 Datasets and evaluation metrics
	5.3.2 Annotation Study
	5.3.3 Object Detector Test
	5.3.4 Viewpoint Coverage

	5.4 Extension of ROARS

	III Conclusions
	Conclusions and future work
	List of papers
	List of Supplementary Video Material
	List of figures
	List of tables
	References

