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Abstract
A rising source of outdoor emissions in northwestern India is crop residue burning, occurring after
themonsoon (kharif ) andwinter (rabi) crop harvests. In particular, post-monsoon rice residue
burning, which occurs annually fromOctober toNovember and is linked to increasingmechaniza-
tion, coincides withmeteorological conditions that enhance short-term air quality degradation.Here
we examine theGlobal Fire EmissionsDatabase (GFED), whose bottom-up emissions are based on the
500-mburned area product,MCD64A1, derived fromModerate Resolution Imaging Spectro-
radiometer (MODIS) observations. Using a household survey from2016, we find thatMCD64A1
tends to underestimate burned area inmany surveyed villages, leading to poor representation of small,
scatteredfires and consequent spatial biases inmodel results. Tomore accurately allocate such small
fires and resolve sub-village heterogeneity, we use an experimental hybridMODIS-Landsatmethod
(ModL2T) tomap burned area at 30-m spatial resolution, which results in 44±21%higher burned
area thanMCD64A1 and up to 105±52% increase in drymatter emissions overGFEDv4s. In our
validation and assessments, wefind thatModL2T performs better relative toMCD64A1 in terms
of bias and omission error, butmay introduce commission error due to conflation of burningwith
harvest and still underestimate burned area due to Landsat’s coarse temporal resolution (every
16 days).We conclude that whileMODIS and Landsat providemore than twodecades worth of
observations, their spatio-temporal resolution is too coarse to overcome several region-specific
challenges: smallmedian landholding size (1–3 ha), quick harvest-to-sowing turnover period,
prevalence of partial burning, and increasing haziness. To further constrain agricultural fire emissions
in northwestern India and improvemodel estimates of associated public health impacts, integration of
finer resolution imagery, as well as better understanding of the spatial patterns in burn rates, burn
practices, and fuel loading, is requisite.

1. Introduction

India is embracing agriculturalmechanization to increase crop productivity and decrease labor costs in order to
fulfill food security demands for its rapidly growing population (Mehta et al 2014). Agriculture in India is
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currently onlymechanized on 40%–45%of cropland, below that of theUnited States, Russia, western Europe,
China, and Brazil (57%–95%) (Bai 2014,Mehta et al 2014). India’s projected population surge from1.3 billion
in 2015 to 1.7 billion by 2050 demands sustainable increases in crop productivity, intensity, and yield, which in
turn bolsters the rise of agriculturalmechanization (UnitedNations 2015). Traditionally, farmersmanually
collect crop residue to feed livestock.However, as Indiamechanizes, farmers are using combine harvesters,
which leave behind root-bound and scattered crop residues that are labor intensive to remove (Vadrevu et al
2011, Kumar et al 2015). Gupta (2012) estimates that rice residues in 90%of area harvested by combine
harvesters are burned in Punjab, fromwhich emissions can severely degrade regional air quality seasonally
(Gupta 2012, Kumar et al 2015, Jethva et al 2018, Liu et al 2018). However, the air quality impacts from
agriculturalfires remain highly uncertain due to differences in globalfire emissions inventories that are coupled
with atmospheric transportmodels (Cusworth et al 2018). Herewe assess the challenges of using satellite
observations tomap burned area and activefires in order understandwhere current emissions estimates are
most underestimated and uncertain.

We focus on the post-monsoon burning season in northwestern India. Previouswork using satellite fire
detections andHYSPLIT atmospheric back trajectories suggests that pre-monsoon (April–May)wheat residue
burning is of less concern to theDelhiNational Capital Region’s air quality than post-monsoon (October–
November) rice residue burning due to different atmospheric transport patterns, higher ventilation fromhigh
boundary layer conditions, and less overall fire intensity (Jethva et al 2018, Liu et al 2018). Smoke plumes from
post-monsoon crop residue burning, primarily originating from agricultural states Punjab andHaryana, are
transported across the densely-populated Indo-Gangetic Plain (IGP) (figure 1). In general, carbonaceous
particles in smoke can be transported hundreds of kilometers in the atmosphere (Sharma et al 2010, Kaskaoutis
et al 2014). Aside from air quality degradation and public health impacts, crop residue burning also inhibits the
productivity of the next cropping season by reducing soil quality (Gupta et al 2004). However, the short
timeframe to clearfields of rice residue and sowwinter wheat is a key limiting factor, thus leading to increased
combine harvester use and subsequent burning (Gupta 2012, Jain et al 2014). Thus, despite restrictions on
agricultural burning, farmers continue to burn crop residue due to the lack of viable, well-incentivized, and
cost-effective alternatives.

In this study, our primary goal is to identify and assess the region-specific challenges of estimating fire
activity usingMODIS-derived burned area and active fire products, which are used as input in emissions
inventories, for northwestern India. As an intermediate step, we develop a hybridMODIS-Landsatmethod to
experimentally downscale post-monsoon agricultural burned area to 30-m from the 500-m spatial resolution of
the currentMODIS burned area product,MCD64A1.Next, we validate burned area estimates using household

Figure 1.Example of thick haze over northern India during the post-monsoon burning season: true colorMODIS/Aqua on
November 6, 2016 (NASAWorldview: https://worldview.earthdata.nasa.gov). The study area, which consists of two agricultural
states Punjab andHaryana, is bounded by a red box.
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survey data andmake further assessments using 375-mVisible Infrared Imaging Radiometer Suite (VIIRS)
activefire detections andMODIS aerosol optical depth (AOD).We evaluate theMODIS gridded active fire
product using fine-resolution (<5 m) imagery. Finally, we discuss crop residue burning practices in
northwestern India in the context of policy changes and increasingmechanization and land fragmentation.

2.Data andmethods

2.1.Overview
The study area consists of two neighboring agricultural states in northwestern India,Haryana and Punjab
(figures 1, S1 is available online at stacks.iop.org/ERC/1/011007/mmedia). Punjab andHaryana are situated at
the heart of India’s ‘breadbasket,’wheremost farmers predominantly follow a rice-wheat rotation (Sekar and
Pal 2012,Naresh et al 2013, Sidhu et al 2015).

2.2. Burned area and activefires: validation and assessments
Table S1 summarizes the satellite-derived surface reflectance,fire, and land cover datasets, primarily from
MODIS and Landsat, used in this study.

2.2.1. Burned area
Previous studies on high-resolution agricultural burned area estimation in northwestern India span 1–2 years of
study (Yadav et al 2014a, 2014b, PRSC 2015). Herewe useGoogle Earth Engine (Gorelick et al 2017) to expand
the study time period to 14 years, from2003–2016, and estimate the total extent of post-monsoon agricultural
burned area at 30-m spatial resolution, improving on ‘baseline’ 500-mMODISMCD64A1 burned area (Giglio
et al 2018)with better spatial allocation of smallfires. Our hybridMODIS-Landsatmethod is a simplified version
of theMCD64A1 global burnmapping algorithm andGFEDv4s approach of using active fires to boost burned
area from smallfires (Giglio et al 2009, Randerson et al 2012).MODIS 1-km activefire locations represent
endmembers of larger clusters of smallfires fromwhichwe can obtain the spectral signature and apply to
Landsat at higher resolution.ModL2T is described inmore detail in appendix S2. Figure S3 describes the
workflow for theModL2T algorithm, which can be summarized as follows: (1) pre-process individual scenes;
(2) composite cloud-free scenes in pre-fire and post-fire collections; (3) define thresholds based on the quantile
intersection of normalized burn ratio (NBR), ametric used extensively in burn scarmapping, in burned and
unburned agricultural areas; (4) separately deriveMODIS and Landsat burned area usingNBR thresholds; and
(5)merge Landsat andMODIS classifications and apply an agriculturalmask.

We independently validate burned area by using a 2016 household survey on farmmanagement practices
across the IGP. The survey asks participants whether crop residue is burned before plantingwheat. Because the
survey responses inherently distinguish between burned and unburned fields, this validation addresses the
conflation of burningwith harvest.We use 1112 responses from farmers in 30 Punjab and 32Haryana villages,
spanning eight districts. Because theGPS coordinates associatedwith each response are not located in-field, we
cannotmatch responses to individual fields. Thus, we group responses by village name andmatchmeanGPS
coordinates with an accuracy of<10 m to village shapefiles. On average, 18±5 households were surveyed per
village.We normalize the%households that burned crop residue by approximate operated landholding area.
We do not account for partial burns and assume afield is entirely burned if a farmer affirms crop residue
burning. For comparison, we estimate the%BAModL2T andBAMCD64A1 of total village cultivated area based on
30-mGlobeLand30 and 500-mMODISMCD12Q1 land cover, respectively. Due to these normalized
approximations spurred by data limitations, the twometrics of%burning per village are not directly
comparable on a 1:1 basis.We further assess BAMCD64A1 andBAModL2Twith simple checks using: (1) higher
resolution activefire locations fromVIIRS (pixel-level), (2) previous burned area estimates (district-level) and
(3) satellite AOD (region-level). These assessments and their caveats are described in detail in appendix S3.4.

We next estimate themaximum relative increase in agricultural drymatter (DM) emissions from theGlobal
Fire EmissionsDatabase (GFED), version 4 swith smallfires (Randerson et al 2012, van derWerf et al 2017), by
usingModL2T andMCD64A1C6 burned area; DMemissions can be converted to other chemical species (e.g.
CO2, CO,OC, BC) using emissions factors (Akagi et al 2011).WhileDMemissions are often calculated using
fuel loading and combustion completeness estimates in addition to burned area in bottom-up approaches, we
exploit the highly linear GFEDv4sDM/BA slope for each 0.25°× 0.25° grid cell to directly scale BA toDM
(appendix S4).

2.2.2. Active fires
WeuseGoogle Earth’s sparse collection offine-resolution (<5 m)historical imagery (DigitalGlobe andCNES/
Airbus) to validate theMODISMOD/MYD14A1 gridded activefire products. Using all publicly available
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DigitalGlobe andCNES/Airbus imagery, we estimate omission error using>500 identified ignition hotspots,
spanning>400 1-kmpixels, for 34 different days overOct–Nov, 2010–2016; we can pinpoint these activefires
by tracing smoke plumes back to individualfields.We also categorize each ignition as a complete or partial burn
to assess variations in satellite detection offires related to themethod of burning.We define complete burns as
burn scars that extend across entire fields inwhich both intact and loose residues are burned and partial burns as
circular or ring-shaped burn scars usually located in the center offields, where loose residues are stacked.We can
then assign a date to the in-progress fires based on the scene acquisition date, adjusted to local time, and
determinewhetherMODIS indeed detected thesefires on the same day.

2.3. Landholdings andmechanization
Weconsider ancillary data on landholdings and combine harvester use to assess trends in land fragmentation
andmechanization. The IndianDepartment of Agriculture, Cooperation, and FarmersWelfare conducts the
agricultural census and provides two online quinquennial databases: agricultural Census and Input Survey. The
Agricultural Census database, which is based on census and input sample survey data, includes detailed data on
landholdings in India from1995–96 to 2010–11 (http://agcensus.dacnet.nic.in/); the Input Survey database
contains information on agricultural implements andmachinery, including combine harvesters, from1996–97
to 2011–12 (http://inputsurvey.dacnet.nic.in/). In addition, the 2016 household survey asks participants about
rice harvestingmethods. Response choices include: fullymechanical (e.g. combine harvester), partially
mechanical (e.g. thresher), andmanually.We exclude 140 responses from farmers who never harvested rice.

3. Results

3.1. Spatio-temporal distributions infire activity
FollowingVadrevu et al (2011), we use the 1-km combinedMODIS/Terra andAqua activefire counts
(MCD14ML) to show average annual timing of pre-monsoon (April–May) and post-monsoon (October–
November)fire activity, from2003–2016 (figures 2(a), S6).We put this in context of the rice-wheat rotation in
northwestern India, whichwe show as variations in greenness estimated fromMODISMOD09A1 8-day
compositeNBR.Whereas highNBR represents peak growth of themonsoon crop during late August to early
September andwinter crop during late February to earlyMarch, lowNBR is associatedwith bare soil and burn
scars post-harvest and after crop residue burning.MCD64A1 burn frequency shows repeated post-monsoon fire
activity from2003–2016, particularly in south-central Punjab (figure 2(b)), where fires occur later in thefire
season than in northern Punjab (figure 2(c)). In addition, Aqua (1:30 pm local time, daytime overpass) averages
647±293%higher infire counts thanTerra (10:30 am) during the 2003–2016 post-monsoon burning seasons,
which is consistent with the early to late afternoon peak fire energy (figures S6–7, appendix S3.2).

3.2.Quantification of post-monsoon fire activity
Current estimates of post-monsoon fire emissions over Punjab andHaryana are highly variable at 74%–107% in
coefficient of variation, ranging from12–119TgOC+BC among fivewidely-used globalfire emissions
inventories: (1)Global Fire EmissionsDatabase (GFEDv4s; van derWerf et al 2017), (2) Fire Inventory from
NCAR (FINNv1.5;Wiedinmyer et al 2011), (3)Global Fire Assimilation System (GFASv1.2; Kaiser et al 2012),
(4)Quick Fire EmissionsDataset (QFEDv2.5; Darmenov and da Silva 2013), and (5) Fire Energetics and
Emissions Research (FEERv1.0-G1.2; Ichoku andEllison 2014) (table 1, appendix S1.3). Because onemain
source of uncertainty is theMODIS burned area and/or activefire estimates used as input in these inventories,
here we assess the region-specific limitations of these satellite-derived fire products.

3.2.1. Validation and assessments ofMCD64A1 andModL2T burned area
Post-monsoonBAModL2T is on average 44±21%higher thanBAMCD64A1 in Punjab andHaryana from
2003–2016 (figure 3, table S4).We estimate 45%–72%of BAModL2Twith good confidence (score�3) and
16%–36% for experimental Landsat-only BAModL2T boost (score=2) (figure S5). Proportionally, BAMCD64A1

inHaryana constitutes a smaller fraction (14±3%) of total burned area in the study region than BAModL2T

(26±3%). This indicates that the increase in burned area fromModL2T overMCD64A1 is driven by additional
burn scar detections inHaryana. Using the strongly linear relationship betweenGFEDv4s BA and agricultural
drymatter (DM) emissions, we estimate that usingC6MCD64A1 andModL2T burned area increases post-
monsoonGFEDv4sDMemissions by 44±22%and 105±52%, respectively, from2003–2016 (figure S15).

We independently validate burned areawith household survey data from2016.We compare post-monsoon
village-level survey crop residue burning rates, normalized by total landholding area, with BAMCD64A1 and
BAModL2T expressed as a fraction of cropland area. The village-level fraction of surveyed households that burn
crop residue ismoderately correlated with fractional BAModL2T (r=0.67, p<0.05) (figures 3(c), 4(a)).
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ModL2Tunderestimates burn rates for villages with high fractional burn rates (0.9–1), whichmay be partly due
to partial burning and uncertainties in agricultural areamapped byGlobeLand30 (figure 4(b)). BAMCD64A1

achieves aweaker correlation of r=0.6 (p<0.05)with higher normalizedmean bias and severe
underestimates in burned area formany villages, skewing its distribution toward low fractional burn rates
(figure S8).

We assess omission andmaximumcommission errors based on the co-location of VIIRS activefire
detectionswith BAMCD64A1 andBAModL2T, from2012–2016.With a higher spatial resolution (375 m) than
MODIS/Terra andAqua (1 km), VIIRSmore consistently detects smaller and cooler fires (figure S9).Wefind
that BAModL2T yields a lower omission error (1%–8%) thanBAMCD64A1 (33%–46%) (table S4). Themaximum
commission error ismuch higher for BAModL2T (43%–55%) than BAMCD64A1 (10%–19%), butmay reflect
undetected active fires outside VIIRS overpasses or those obscured by thick haze or clouds. In particular,
BAMCD64A1 is often unable to detect activefire hotspots in regionswith prevalent partial burning, such as in

Figure 2. Spatio-temporal overview of agricultural burning in northwestern India: (a) the double crop-fire cycle, followingVadrevu
et al (2011), using dailyMODIS fire counts and 8-day compositemedianNBR, with±1σ envelopes, in Punjab andHaryana,
2003–2016. Post-monsoon (October–November) (b) burn frequency and (c)median burn date based on BAMCD64A1. The star denotes
the location ofNewDelhi.
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central Haryana and northern Punjab (figures 3(b), 4, S9(a), (b)). Over the 5-year period from2012–2016, VIIRS
detected activefires in 68%of the 0.02°× 0.02° grid cells in Punjab andHaryana, whileMODIS only detected
activefires in 54%of the grid cells (figure S9(c)). In addition, VIIRS detected 41%of grid cells burned
consecutively from2012–2016, whileMODIS detected only 14%of grid cells by this criterion.

Next,we comparedistrict-level burned areawith previous estimates (Yadav et al (2014a; 2014b); PRSC2015.
Overall, total PunjabBAModL2T is 6% lower and7%higher than that of PRSC (2015) in 2014 and2015, respectively.
In contrast, PunjabBAMCD64A1 is lower thanPRSC (2015)burned area estimates in both 2014 and2015by 19%and
2%, respectively (figure S11). For northernHaryanadistricts, bothModL2TandMCD64A1 tend tooverestimate
burned area relative toYadav et al (2014a; 2014b).District-level BAModL2T andBAMCD64A1 are strongly correlated
(r=0.87–0.88, p<0.05)withprevious burned area estimates. In termsofmean absolute error,ModL2T (251 km2)
outperformsMCD64A1 (282 km2).However,MCD64A1 (slope=1.04±0.08) shows less overall bias than
ModL2T (slope=0.89±0.07).

Finally, we assess detrended interannual variations in BAModL2T andmean post-monsoonAOD from the
MODISmergedDark Target andDeepBlue product. Similar to daily FRP-AOD relationship quantified in Liu
et al (2018), wefind that regional BAModL2T is weakly positively correlated withmean regional AOD (r=0.46,
p=0.1), but not statistically significant (figure S12(a)). Comparatively, BAMCD64A1 is unexpectedly anti-
correlatedwithAOD (r=−0.54, p<0.05) (figure S12(b)). Similar correlations are observed using ground-
basedAODmeasurements from theAerosol RoboticNetwork (AERONET; figures S12(a), (d)).

3.3. Validation of activefireswithfine-resolution imagery: two burning practices
Twomain crop residue burning practices are observed in Punjab andHaryana: complete and partial burns
(Gupta 2012, Kumar et al 2015). Although farmers employ amixture of the two practices,mapped active
ignitions from available fine-resolution imagery show that complete burns are widespread in Punjab and
northernHaryana, while partial burns aremore pervasive in central and southeastHaryana (figure 3(b)).
Complete burns induce dark scarring over entirefields such that adjoining fields burned in this waywithin days
of each other are starkly contrasted against the surrounding unburned landscape (figures 5(a), (b)). Partial burns
leave small, circular or ring-shaped scarring in the center offields; only∼1/9 of thefield area is scarred
(figures 5(c), (d)).Wefind that theMODIS activefire product poorlymatches in-progress fires identified from
availablefine-resolution imagery. Same-day omission error is 95%,with all co-locations from complete burns
(table 2). Same-season omission error decreases to 75%, suggesting activefires within the same 1-kmpixel were
detected on other days.

3.4. Trends in landholding size, combine harvesters, and agricultural burning
Themedian landholding size inHaryana (1–2 ha) is smaller than that in Punjab (2–3 ha) (figure S16). After some
consolidation of small landholdings from1995–96 to 2000–01, landholdings became increasingly fragmented
from2000–01 to 2010–11. From1996–97 to 2011–12, the number of combine harvesters increased over 20-fold
from14 664 to 297 132 inHaryana and almost 3-fold from93 191 to 256 162 in Punjab. Based on the 2016
household survey, 72%of farmers using a combine harvester to harvest rice subsequently burned the crop
residue in preparation for sowingwheat in Punjab andHaryana, compared tomanual harvesting (8%) (table 3).
Mechanization is less strongly linked to burning inHaryana, where only 32%of farmers using combine
harvesters burned rice residue, compared to 87% in Punjab. Overall, of thosewho burned rice residue, 98%had
used fully or partiallymechanicalmethods of harvesting.

Overall, BAModL2T increased by 966±179 km2 yr−1 (p<0.05), or 82% in total, from2003–2016.While
increased Landsat scene availability (figure S2)may account for the some of the upward trend in BAModL2T, the

Table 1.Post-monsoonCO2, CO,OC, andBC emissions over Punjab andHaryana from2003–2016 forfive global fire emissions
inventories. Agricultural-only emissions are denoted in italics.

Inventory CO2 CO OC BC %Punjab

Gg (±1σ)

Bottom-up (derived fromburned area) GFEDv4s 6325 (2204) 406 (142) 9 (3) 3 (1) 77–85

6397 (2201) 405 (142) 9 (3) 3 (1) 77–85

FINNv1.5 14 950 (2841) 1061 (198) 32 (6) 6.6 (1.4) 76–86

14 442 (2648) 1043 (191) 31 (6) 6.5 (1.2) 76–85

Top-down (derived fromfire energy) GFASv1.2 3460 (671) 243 (47) 11 (2) 1.1 (0.2) 82–89

QFEDv2.5r1 7757 (1486) 313 (60) 29 (6) 4.2 (0.8) 81–89

FEERv1.0-G1.2 38 257 (7342) 2473 (473) 108 (21) 11 (2.1) 78–87

CV (%) 100 104 107 74
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upward trend in BAMCD64A1, which has no dependency on Landsat, is higher at 974±85 km2 yr−1 (p<0.05),
or 142% in total. Over the same 14-year time period,meanOct–Nov satellite AOD increased by 39%overall, or
0.017±0.003 yr−1 (p<0.05); increased aerosol loading during the post-monsoon is also apparent from
ground-based columnAODmeasurements from theAerosol RoboticNetwork (AERONET) site at Lahore (in
the neighboring Pakistan province of Punjab) (figure S13).

In addition, wefind an average step increase of 54%–65% inBAModL2T andBAMCD64A1 from the 2003–07 to
2008–16 time period. Building onThumaty et al (2015), wefind that the timing of peak post-monsoon burning,
indicated by 5-day blockmean activefire counts, has shifted frommid-October to early-November during the
14-year period (figure S6). In 2009, the Punjab andHaryana governments officially implemented the

Figure 3.MCD64A1 andModL2Tburned area: (a)BAMCD64A1 andBAModL2T in Punjab (red shades) andHaryana (blue shades)
during post-monsoon (Oct–Nov), 2003–2016. TheModL2T algorithm estimates 44±21%higher post-monsoon burned area in
Punjab andHaryana thanMCD64A1. The curved arrows denote the relative boost in burned areamapped byModL2T compared to
MCD64A1. (b)BAMCD64A1 and (c) classification confidence (Low=1,High=6) for BAModL2T inHaryana and Punjab, post-
monsoon (October-November) in 2016. Ignitions identified fromfine-resolution imagery, from2010–2016 are denoted as black
(complete burns) and gray (partial burns) circles in (b). The locations of the villages surveyed in Punjab andHaryana in 2016 are
shown as black polygons in (c). The star denotes the location ofNewDelhi.
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‘Preservation of Sub-soilWater Act, 2009’ (Ordinance in 2008) to counteract groundwater depletion by delaying
rice transplanting to after June 10 and 15, respectively (Singh 2009, Tripathi et al 2016). In effect, this policy
forces the rice harvest season to extend tomid-November (Singh 2009, PRSC 2015), whichmay explain the
abrupt increase in burned area around 2008. Further analysis is needed to robustly quantify these temporal shifts
in post-monsoon burning and substantiate the link to the groundwater policy.

4.Discussion

4.1.MCD64A1 andModL2Tburned area: validation, assessments, anduncertainties
In northwestern India, increasing rates of post-monsoon agricultural burning enhance downwind air quality
degradation and are linked tomorewidespread use ofmechanized harvestingmethods. Emissions estimates for
agriculturalfires in northwestern India are poorly constrained, on average ranging from12–119 TgOC+BC
over the post-monsoon burning period among five inventories. In this study, we target theMODIS-derived
burned area estimates used as input inGFEDv4s.MCD64A1, a primary input inGFEDv4s, is known to perform
poorly in various agricultural regions (Giglio 2015,Hall et al 2016, Fornacca et al 2017, Lasko et al 2017, Zhu et al
2017).We combineMODIS and Landsat imagery to experimentally improve the spatial allocation of post-
monsoon agricultural burned area in northwestern India for 14 years from2003–2016.Use of Landsat imagery
has been primarily limited by: (1) its low temporal resolution (16 days) and (2) storage and computing power. To
minimize these limitations, we implement a hybridMODIS-Landsat approach inGEE to rapidly process large
collections ofMODIS and Landsat imagery and expand the spatio-temporal range of study.Our simplified
methodology is subject to several limitations, such as inconsistent Landsat availability, averaging ofNBR across
Landsat platforms, region-averagedNBR thresholds, and assumption that timing of the crop cycle is relatively
homogeneous. Nevertheless, wefind that incorporating Landsat imagery can improve the spatial allocation of

Figure 4.Validation of satellite-derived burned area using household survey data: comparison of%burning activity, normalized by
landholding size, and%burned area from (a)MCD64A1 and (b)ModL2T in 30 Punjab (diamonds) and 32Haryana (circles) villages
during post-monsoon (October–November) in 2016. Inset shows the correlation coefficient (p<0.05), weighted by total landholding
area from the household survey, and normalizedmean bias (NMB). The size of themarkers denotes the total landholding area (in
hectares), and the color denotes the quartile of the number of households surveyed per village. The locations of the 62 surveyed villages
are shown infigure 3(c).
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smallfires in northwestern India, which is important formodeling studies inwhich smallfire emissions in close
proximity to population centers can significantly impact local air quality estimates.

In comparison toMCD64A1, theModL2T algorithm estimates on average 44±21%higher burned area in
Haryana and Punjab during post-monsoon, from2003–2016.ModL2T allocates burned area for partial burns in
Haryana that are largely unaccounted for inMCD64A1. Validation of burned areawith household survey data in
2016 suggests that theModL2T algorithm can estimate burned areawith increased accuracy (r=0.67,
NMB=−25.7%), compared toMCD64A1 (r=0.6, NMB=−28.6%). In additional assessments, we find that
BAModL2T improves onBAMCD64A1 in terms of omission error, comparisonwith previous estimates of burned
area, and relationshipwith satellite AOD, butmay introduce commission errors (appendix S3.4).

Figure 5.Two crop residue burning practices: fine-resolution (<5 m)Google EarthDigitalGlobe historical imagery of smoke and
burn scars from crop residue burning in (a), (b) central-northern Punjab (complete burns) onNovember 7, 2016 and (c), (d) central
Haryana (primarily partial burns) onNovember 13, 2016. (b) and (d) are zoomed-in images of in-progress fires within thefield of view
bounded by the yellow boxes in (a) and (c), respectively.

Table 2.Validation ofMODISMOD/MYD14A1 active fire products using geolocations of ignitions identified fromfine-resolution
imagery. The spatial distribution of the ignitions is shown infigure 3(b).

Ignitions MxD14A1, co-locationwith ignition pixels

Total ignitions (1-km pixels) Same day,% Same season,%

Year Partial Complete Total Partial Complete Total Partial Complete Total

2010 78 (55) 15 (12) 93 (67) 0 0 0 0 50 9

2011 52 (39) 15 (11) 67 (50) 0 45 10 0 64 14

2012 9 (7) 2 (1) 11 (8) 0 0 0 0 100 12

2013 3 (2) 63 (58) 66 (60) 0 2 2 0 38 37

2014 6 (3) 86 (72) 92 (75) 0 11 11 0 42 40

2015 32 (27) 25 (19) 57 (46) 0 11 4 4 32 15

2016 42 (30) 96 (77) 138 (107) 0 5 4 10 36 29

All 222 (163) 302 (250) 524 (413) 0 8 5 2 40 25
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Table 3.Crop residue burning related tomethods of rice harvesting across eight districts in Punjab andHaryana fromhousehold survey data in 2016. For each category, the number of respondents who burned rice residue is shown, along
with%of total respondents in parentheses.

Crop residue burning

State Districts Combine harvester Partiallymechanical Manual Bothmanual andmechanical n

Punjab Amritsar, Bathinda,Muktsar, Sangrur 466 (87%) 3 (43%) 7 (30%) 19 (54%) 601

Haryana Fatehabad, Sirsa, Kurukshetra, Sonipat 62 (32%) 1 (25%) 7 (5%) 4 (15%) 371

Total 528 (72%) 4 (36%) 14 (8%) 23 (38%) 972
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4.2. Limitations of burned area and activefire algorithms in northwestern India
We identify several key limitations thatmake the spatio-temporal resolution ofMODIS, Landsat, VIIRS, and
INSAT-3D insufficient for detecting activefires and accuratelymapping cropland burned area in northwestern
India: (1) prevalence of partial burning, (2) small landholding sizes and increasing fragmentation, (3) short
duration offires, (4)possible commission error from conflation of burningwith harvest, (5) quick harvest-to-
sowing period lead tomissed fires, and (6) increasing haziness that limits satellite observing area.

Based on the two dominant types of burning practices in Punjab andHaryana, partial burning, which is
prevalent in central and southernHaryana,may bemore difficult to detect due to sub-landholding sizefires and
likely lower thermal energy. This difficulty is compounded by smallmedian landholding sizes inHaryana
(1–2 ha) and Punjab (2–3 ha). The inability ofMODIS to readily detect partial burns and its tendency to
homogenize over clusters offieldsmeans thatGFED4s grid cells withmostly partial burning are likely to contain
a small sample of smallfires, or none. This implies that the potential of theGFEDv4s smallfires boost is limited
in these areas in particular, and that the spatial allocation of these smallfires is also notwell-represented.

TheGFEDv4s smallfire boost relies on activefire hotspots and dNBR-based ratios from16-dayMODIS
surface reflectance composites (Randerson et al 2012). Thismethodology assumes a linear correlation of burn
severity with burned area.However, unlikewildfires, whose burn severity and burned area extent can vary
greatly, croplandfires are generally controlled in burn rate, time, and area, thus limiting the upper bound of
burn severity and burned area extent per fire. For cropland fires, dNBRhas been usedmore as a threshold for
burned area classification rather than a proxy for burn severity (e.g.McCarty et al 2008, 2009,Oliva and
Schroeder 2015, Zhu et al 2017, Zhang et al 2018). However, the decline inNBR at the end of the growing season
is influenced by both harvest and burning (Hall et al 2016). Clearly attributing decreases inNBR to burning
remains challenging due to noise in the dailyNBR timeseries. Further, the limited harvest-to-sowing
turnaround period during post-monsoonmeans that burningmay immediately followharvest (Kumar et al
2015); wefind that burn scars can disappear as soon aswithin several days. The low temporal availability of
Landsat further increases its susceptibility to low pixel availability fromhaze and clouds, possibly leading to large
mismatches in the satellite acquisition date between neighboring scenes.We conclude that both Landsat and
MODIS surface reflectance products (8-day and 16-day) are fundamentally too temporally coarse to accurately
classify burned area.

Further, post-monsoon BAModL2T andBAMCD64A1 are not correlatedwith total activefire counts
(r=0.05–0.1), when detrended, whichmay reflect differences in the activefire and burned area algorithms.
Unlike burned area, activefires are derived from thermal anomalies and thus not susceptible to conflation of
burningwith harvest. However, slant satellite viewing geometrymay dilute the signal of small, short-lastingfires,
whose detection is already hindered by coarse sensor spatio-temporal resolution. In India, agricultural fires
typically last nomore than half an hour (Thumaty et al 2015).Wefind an omission error of>90%by theMODIS
activefires product. VIIRS, at a higher 375-m spatial resolution, detected activefires in∼20%more 0.02º grid
cells thanMODIS. Even so, VIIRSwould not be able detect fires obscured by haze and clouds and those outside
of its overpass time. Li et al (2018) showed that even slight differences inVIIRS andMODIS/Aqua overpasses of
∼15 min can lead to large discrepancies in activefire detections over Punjab. In addition, cloud cover and
increasing haziness, indicated byAOD, can limit retrieved scenes that are usable and block activefires from
satellite detection (Cusworth et al 2018). The short return time (30 min) of INSAT-3D, a geostationary satellite,
makes it ideal for capturing short-lasting agricultural fires, but its coarse 4-km spatial resolutionmakes detection
of suchfires unviable (appendix S3.4,figure S14). Additionally, analysis on the impact of smoke aerosols on
public health and climate, such as on radiative forcing and aerosol-cloud interactions, will also need to be refined
withfine-resolution sensors.

4.3. Future directions for improving agricultural fire emissions
The recent proliferation offiner resolution satellites, such as S-NPP (375 m and 750 m, daily, post-2012),
Sentinel-2 (10–20 m, every 5 days, post-2015) and Planet (<5 m, daily, post-2016), offers added potential for
activefire and burn scar detection (Drusch et al 2012, Strauss 2017). Formore recent years of study, these
imagery can help to better constrain the spatial and temporal variability of agriculturalfire emissions in
northwestern India. In particular, partial burns are difficult to detect at Landsat resolution, but potentially
discernable with Sentinel or Planet imagery. Additionally, the present inability ofmoderate-resolution sensors
to detect partial burns also raises the question of how end-users offire emissions inventories should account for
thesemissing emissions.More detailed on-the-ground knowledge of the amount of crop residues generated, as
well as burn rates and practices, is needed to inform inventories retroactively. Differences in burn scar area from
complete and partial burns also imply that separate fuel loading estimates are needed. Additional uncertainty in
post-monsoon smokeOC+BC emissions, which differ by an order ofmagnitude among fivewidely-used
inventories, signals a need to evaluate not only the satellite fire products used as input, but also differences in
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statistical boosts applied, emissions factors, and fuel consumption estimates. Due to region-specific limitations
ofMODIS burned area and activefire products, it is likely that atmosphericmodels using current globalfire
emissions inventories considerably underestimate smoke exposure and public health impacts from agricultural
fires. Future collaborations to collect extensive ground truth data and incorporate accurate estimates of
emissions can providemore robust input for policy decisions.
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