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Understanding the consequences of regulatory variation in the human genome remains a major challenge, with important
implications for understanding gene regulation and interpreting the many disease-risk variants that fall outside of protein-coding
regions. Here, we provide a direct window into the regulatory consequences of genetic variation by sequencing RNA from 922
genotyped individuals. We present a comprehensive description of the distribution of regulatory variation—by the specific
expression phenotypes altered, the properties of affected genes, and the genomic characteristics of regulatory variants. We
detect variants influencing expression of over ten thousand genes, and through the enhanced resolution offered by RNA-
sequencing, for the first time we identify thousands of variants associated with specific phenotypes including splicing and allelic
expression. Evaluating the effects of both long-range intra-chromosomal and trans (cross-chromosomal) regulation, we observe
modularity in the regulatorynetwork,with three-dimensional chromosomal configuration playing a particular role in regulatory
modules within each chromosome. We also observe a significant depletion of regulatory variants affecting central and critical
genes, along with a trend of reduced effect sizes as variant frequency increases, providing evidence that purifying selection and
buffering have limited the deleterious impact of regulatory variation on the cell. Further, generalizing beyond observed variants,
we have analyzed the genomic properties of variants associated with expression and splicing and developed a Bayesian
model to predict regulatory consequences of genetic variants, applicable to the interpretation of individual genomes
and disease studies. Together, these results represent a critical step toward characterizing the complete landscape of
human regulatory variation.

[Supplemental material is available for this article.]

Unraveling the genetics of human gene expression and describing

the landscape of genetic variants affecting the transcriptome will

reveal important insights into the architecture and control of the

human regulatory network and allow us to more fully characterize

the noncoding, regulatory regions of the genome. Population-level

studies of gene expression combined with genotyping allow us to

directly evaluate the association of genetic variation with expres-

sion (Goring et al. 2007; Stranger et al. 2007), revealing expression

quantitative trait loci (eQTLs) in a variety of populations, tissues,

and contexts (Dimas et al. 2009; Grundberg et al. 2012; Stranger

et al. 2012; Liang et al. 2013). Many genetic variants shown to have

impact on expression also affect higher-level traits including dis-

ease risk (Emilsson et al. 2008; Nica et al. 2010; Fairfax et al. 2012),

and through investigation of expression as a cellular phenotype,

we can provide a more mechanistic interpretation of individual

functional variants. Further, with the advent of RNA-sequencing

technology, we are now able to assay the complete transcriptome,

providing access to a wider range of expression traits, including

distinct isoforms and allelic expression (Mortazavi et al. 2008;

Wang et al. 2008; Trapnell et al. 2010). Initial studies in cohorts of

60–70 individuals have combined RNA-sequencing and genetic

information to identify variants with impact on this broad range of

transcriptional phenotypes (Montgomery et al. 2010; Pickrell et al.

2010) but were limited in power and sequencing depth to fully

describe the impact at the regulatory network and genome levels.

Here, we leverage the resolution offered by RNA-sequencing

in a large population study utilizing a primary human tissue.

We have sequenced RNA from whole blood of 922 genotyped

individuals from the Depression Genes and Networks cohort
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(Methods), all of European ancestry. Here, we describe the impact

of local and distal regulatory genetic variation on diverse expres-

sion traits, characterizing the distribution of QTLs according to the

specific expression phenotypes altered, the properties of affected

genes, and the genomic characteristics of regulatory variants.

We find evidence for the widespread impact of genetic vari-

ation on transcriptional phenotypes of more than 10,000 genes,

including variants affecting total gene expression, alternative

splicing, and allelic expression. We specifically increase the num-

ber of known splicing QTLs by nearly an order of magnitude. By

evaluating distal, genome-wide regulatory impact of each genetic

variant, we highlight a pattern of modularity, or coregulation of

many genes by a smaller number of individual genetic variants,

and intra-chromosomal modules specifically influenced by the

complex three-dimensional configuration of each chromosome in

the nucleus. Further, by analyzing the genes affected by regulatory

variants, we find evidence consistent with the effects of selection

and buffering to limit the downstream, potentially harmful con-

sequences of regulatory variation. Specifically, important genes,

including hubs in protein–protein interaction networks, tran-

scription factors, and highly conserved genes are each depleted for

cis-eQTLs. Finally, utilizing the sizeable set of detected regulatory

variants, we characterize the genomic properties of variants af-

fecting both total expression levels and gene splicing, and present

a Bayesian framework, the latent regulatory variant model (LRVM),

that combines these diverse properties into a unified model to

predict the consequences of genetic variation. This framework

offers a method for automatically evaluating the potential regu-

latory impact of genetic variants observed in future studies.

Results
The Depression Genes and Networks cohort is comprised of in-

dividuals of European ancestry within the United States. RNA was

extracted from whole blood and, following globin RNA reduction

(GLOBINclear kit [Invitrogen]), sequenced in an Illumina HiSeq

2000, yielding approximately 70 million 51-bp single-ended reads

per individual. After quality control, 922 individuals remained for

analysis in this study (Supplemental Figs. S2–S4). Each individual

was also genotyped for 720,591 autosomal single nucleotide

polymorphisms (SNPs) on the Illumina HumanOmni1-Quad

BeadChip (Supplemental Fig. S1). For details of sample collection

and data processing, see Methods and Supplemental Material.

From these data, we identify expression quantitative trait loci

(eQTLs) affecting the large majority (78.8% at FDR 0.05) of genes

with quantifiable expression (Table 1; Supplemental Data S1;

Methods). Notably, despite evaluating expression in a single tissue,

680 known trait- and disease-associated variants of 1445 tested (see

Methods; Hindorff et al. 2009), are associated with expression

phenotypes in this study, including 159 loci specifically associated

with gene splicing (Supplemental Tables S2, S3). In each class of

QTL, particularly among trans associations and disease variants,

the large sample size was essential to identifying the full range of

regulatory effects (Supplemental Fig. S10).

Prevalence and impact of proximal regulatory variation

We find broad impact from proximal regulatory variation across

the genome, including cis-regulatory variants associated with total

gene expression for 10,914 of 13,857 autosomal genes evaluated

(SNPs within 1 Mb of the transcription start site; FDR 0.05). Fur-

ther, although common genetic variants explain a small portion of

total expression variation in each gene, their effect is greater than

that of significant demographic factors, with cis-eQTLs explaining

a median of 3.3% of expression variance (median 7.7% among

genes with an eQTL), compared to 0.7% explained by age and sex

combined (Supplemental Fig. S12; Supplemental Table S3). We do

not detect substantial modulation of cis-eQTLs by sex or age, but

considering strong correlation between demographic variables and

other covariates including medication and depression status in this

cohort, these effects warrant further investigation. We observe

high replication between our reported cis-eQTLs and large micro-

array studies (Supplemental Material; Fehrmann et al. 2011;

Grundberg et al. 2012) (ranging from 51% to 89% replication rate),

although we do identify additional eQTLs with weaker association

strength and among lower-expressed genes (Supplemental Fig.

S11), suggesting that statistical power along with the resolution of

RNA-seq is a contributor to finding eQTLs unique to this study.

Genetic variants near each gene also affect alternative splicing;

using isoform ratio (the fraction of a gene’s expression arising from

each isoform) (Methods) as a quantitative trait, we identify 2851

transcripts from 1370 unique genes with splicing QTLs (sQTLs) at

FDR 0.05. Although our results agree with previous studies in-

dicating less variation in gene splicing than in total expression

(Gonzalez-Porta et al. 2012), we increase the number of splicing

variants by nearly an order of magnitude beyond previous studies,

which identified up to 380 genes affected by genetic variation at

FDR 0.05 (Kwan et al. 2008; Fraser and Xie 2009; Pickrell et al.

2010). Again, genotype explains much more variance in isoform

ratio than do age and sex—although most isoforms have no sig-

nificant association, twice as many isoforms have a genetic asso-

ciation than have a demographic one (Supplemental Fig. S12).

Furthermore, as hundreds of disease-associated loci are found

among the identified proximal regulatory variants, this increased

compendium of splicing effects offers new potential to elucidate

functional mechanisms. In our analysis, for instance, rs3865444,

a SNP associated with Alzheimer’s disease (Hindorff et al. 2009; Naj

et al. 2011), has a strong association with the isoform ratio of CD33

(P < 10�200), far stronger than its association with total expression

(P < 10�20), suggesting a specific regulatory mechanism not pre-

viously considered for this variant.

Allele-specific expression (ASE) provides a more detailed

evaluation of the distribution of cis effects—individuals who are

Table 1. Expression quantitative trait loci detected

Within 1 Mb Intra-chromosomal, > 1 Mb Interchromosomal Transcripts tested

Total gene expression 10,914 269 138 13,857
Isoform ratio 2851 (1370 genes) 80 (56 genes) Five transcripts (three genes) 11,227 (4100 genes)
Allelic ratio 936 N/A N/A 22,708 (coding loci)

The number of QTLs associated with each expression trait for analyses encompassing varying scopes, all reported at FDR 0.05. Many SNPs affect more
than one expression trait. For instance, 28% of cis-sQTL SNPs overlap with a cis-eQTL (P-value within two orders of magnitude of the best eQTL SNP),
indicating significant overlap but mostly distinct regulatory effects. The full list of detected eQTLs is provided in Supplemental Data S1.
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heterozygous for a cis-regulatory variant will demonstrate allelic

imbalance in which one homologous copy of a gene is more highly

expressed than the other copy (Yan et al. 2002; Pastinen and

Hudson 2004). Here, from ASE evaluated both per individual and

across the cohort, we identify shared genetic drivers of allelic im-

balance, and additionally estimate the relative frequency of com-

mon and rare cis regulatory effects. First, in a novel analysis, we

identify a set of regulatory variants that are consistently associated

with allelic imbalance in nearby genes across our cohort, where

previous studies either identify only instances of ASE per in-

dividual without identifying the associated regulatory variants, or

require specialized assays measuring allelic expression (Serre et al.

2008; Ge et al. 2009). RNA-sequencing enables direct quantifica-

tion of ASE (Verlaan et al. 2009; Zhang et al. 2009; Montgomery

et al. 2010; Pickrell et al. 2010), and leveraging the number of

heterozygous individuals available here, we treat ASE as a quanti-

tative trait itself and are able to identify specific genetic drivers of

allelic expression. We evaluate aseQTLs by testing for statistically

significant associations between heterozygous status at individual

regulatory variants and allelic imbalance at nearby expressed

coding loci, tested exclusively among heterozygous individuals at

each coding locus (Fig. 1A,B; Methods). The resulting aseQTL as-

sociations provide strong evidence of cis-regulatory impact and are

less likely than standard cis-eQTLs to arise from non-cis mecha-

nisms, artifacts, or linkage of a noncausal SNP with a rare variant.

As expected, analysis of aseQTLs demonstrates an enrichment of

allele-specific effects among cis-eQTLs (Supplemental Figs. S13–

S15). Although the power to detect aseQTLs in this study is still

constrained by the availability of heterozygous individuals and

read depth (Supplemental Fig. S16), we are able to directly confirm

that 641 of our cis-eQTL SNPs are also associated with changes in

allele-specific expression in the corresponding gene at FDR 0.05,

providing a sizeable catalog of high-confidence cis-acting variants.

This analysis also indicates a moderately high replication rate

(50%–70%) (Supplemental Fig. S16c) among cis-eQTLs with suffi-

cient power (at least 200 heterozygous individuals for varying read

depths). Further, 936 exonic loci (in 528 genes) have globally sig-

nificant aseQTL associations. The strongest aseQTL association is

found between heterozygosity at rs4950928 and allelic imbalance

within CHI3L1 (P < 10�71) (Fig. 1B). Previous studies have dem-

onstrated associations for rs4950928 with asthma and serum levels

of CHI3L1 (Ober et al. 2008), which the aseQTL result supplements

with strong evidence for a direct cis-acting regulatory effect of this

disease variant.

In addition to evaluating genetic drivers of allelic expression

shared across many individuals in the cohort, we also evaluate

significant ASE events in each individual (Supplemental Material)

in order to assess the distribution of both common and rare regu-

latory effects. We find that most instances

of ASE in each individual can potentially

be explained by a common regulatory

variant, specifically an eQTL SNP identi-

fied in the population (Fig. 1C), with

73.8% of individual ASE events co-oc-

curring with heterozygous status for the

single best cis-eQTL SNP of the same gene.

However, there are many cases of ASE

(21%) not co-occurring with any explan-

atory eQTL SNP, and such instances are

candidates for rare regulatory variation in

that individual. Although ASE could arise

from nongenetic factors such as allele-

specific methylation or imprinting, pre-

vious studies suggest genetic variation is

the primary cause of ASE (Zhang et al.

2009). Overall, analysis of allelic expres-

sion provides direct evidence of cis mech-

anism for a large set of variants (aseQTLs)

and additionally allows us to compare the

distributions of common regulatory vari-

ation with other regulatory factors that

would include rare genetic variation, with

evidence here suggesting that common

genetic variants are responsible for more

transcriptional variation.

Distant variants and modular
regulation

In order to address the impact of genetic

variation on the full transcriptional net-

work, we also evaluate distal regulatory

relationships, both within and across

chromosomes. First, the impact of genetic

variation even through cis-mechanisms is

not limited to a small range as measured

Figure 1. Cis-regulatory variation and allelic effects. (A) Schematic illustration of aseQTL. Heterozy-
gosity at a regulatory locus is linked to allelic imbalance detected from RNA-seq reads over a separate
heterozygous coding SNP (a second, separate locus) in the corresponding gene. Conversely, individuals
who are homozygous at the regulatory SNP will show balanced allelic expression at the coding SNP (still
estimated among individuals who are heterozygous at the coding SNP). (B) Example of aseQTL, the
most significant association in this analysis. Rs4950928, a known asthma risk variant SNP in the 59 UTR of
CHI3L1, is associated with allelic imbalance in the coding region of CHI3L1, with heterozygous in-
dividuals showing significantly increased allelic imbalance compared to individuals homozygous for
either the reference or nonreference allele (P < 10�71) (Methods). (C ) Distribution of significant ASE by
individual. In each individual, we evaluate the fraction of testable heterozygous loci (requiring sufficient
read depth and other filters) (see Supplemental Material) with significant ASE (binomial P # 10�3). To
evaluate the distribution of ASE not explained by heterozygosity for a common regulatory variant, we
then evaluate the same set of testable loci, but only counting ASE when the individual is not hetero-
zygous for a corresponding eQTL SNP. In this case, we consider SNPs that are significant at P # 10�3 for
the corresponding eQTL gene.
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by genomic distance. Enhancers are known to act over distances

up to several Mb away (Nobrega et al. 2003; Kleinjan and van

Heyningen 2005), and 3D configuration of chromosomes within

the nucleus can alter the true spatial proximity of regulatory se-

quences with potential target genes (Spilianakis and Flavell 2004;

Lieberman-Aiden et al. 2009; Cheung et al. 2010). We performed

a separate, stepwise association analysis to identify all regulatory

variation influencing genes within each chromosome (Methods),

allowing multiple independent eQTLs per gene. Consideration of

this expanded set of SNPs for each gene sacrifices some statistical

power (we would identify 8580 eQTL genes at FDR 0.05), but we

identify 381 genes affected by SNPs >500 kb away from the tran-

scription start site (TSS), including 269 genes affected by SNPs >1

Mb away (Table 1). An analysis of allelic effects provides evidence

that many variants well outside the standard promoter region still

act through cis-mechanisms (Fig. 2A), though others could arise

from indirect trans events such as a colocation of a cis-regulated

transcription factor with a number of its target genes on the same

chromosome.

The chromosome-wide analysis reveals a pattern of modules of

coregulated genes, with 803 eQTL variants affecting two or more

genes and 106 variants affecting three or more. Coexpression of

nearby genes has been reported for several organisms (Lercher et al.

2002; Oliver and Misteli 2005), and our analysis specifically detects

genetic variation that affects modular coregulation, and thus

points to genomic regions with regulatory impact on groups of

genes. Indeed, the coregulated genes here are coexpressed in excess

of other proximal gene pairs (P < 10�87) and share direction of the

eQTL effect (Supplemental Fig. S17). These results provide a much

larger number of genetically coregulated genes than previously

known, but indicate a similar rate of shared regulation, with 11%

of eQTL genes compared to 8% reported previously (Stranger et al.

2012). On the other hand, among the 1556 genes in any of these

modules, nearly half (769) also have a gene-specific (targeted)

regulatory variant. An example of both coordinated and targeted

regulation affecting five colocated genes (ADCY7, BRD7, NKD1,

NOD2, and CYLD) is shown in Figure 2B and Supplemental Figure

S18. Such clusters tend to occur in gene-dense spatially colocated

regions of each chromosome (P < 10�47) (Supplemental Material).

Beyond linear proximity among coregulated genes, three-

dimensional chromosomal configuration influences regulatory

modules. Specifically, falling within the same topological domain

derived from Hi-C chromatin interaction frequencies (Dixon et al.

2012) is predictive of coregulation by the same variant (log-odds

>0.75) (Supplemental Fig. S19; Supplemental Material). Together

these results indicate that coordinated regulation of three-

dimensionally colocated genes is common, particularly in gene-

rich regions, but even genes with shared eQTLs are also often under

the control of specific, targeted regulatory elements.

Furthermore, analyses of regulatory variants that affect ex-

pression across chromosomes (trans-eQTLs) allow us to more fully

characterize the structure of the regulatory networks that govern

expression traits genome-wide. After applying stringent filters to

account for spurious associations arising among regions of se-

quence similarity (Methods; Supplemental Material; Supplemental

Fig. S20), we identify a set of 138 genes whose expression is asso-

ciated with a distant SNP and, interestingly, five trans-QTLs af-

fecting isoform ratios rather than total expression for three genes.

The proportion of trans splicing QTLs (compared to both proximal

and distant sQTLs) is lower than that of expression QTLs, sug-

gesting that splicing is disproportionately affected through cis

mechanisms. As with the intra-chromosomal associations, we

observe modularity among the trans associations, with 20% of as-

sociated SNPs affecting two or more genes, helping to identify

genomic regions that coordinate the regulation of multiple genes

(Emilsson et al. 2008; Gilad et al. 2008; Fehrmann et al. 2011). The

largest module is a set of 57 genes, enriched for platelet aggregation

function (P < 10�7), all affected by the SNP rs1354034, previously

associated with mean platelet volume (Fehrmann et al. 2011;

Gieger et al. 2011). Additionally, the majority of trans-eQTLs SNPs

(76 of 138) also have cis-regulatory effects, affecting proximal gene

expression levels (74 of 76) or isoform ratio (31 of 76; a higher

fraction than expected from the global prevalence of sQTLs; P <

0.05) (Supplemental Fig. S21). One example, rs10251980, is a cis-

eQTL for IKZF1, whose loss of function has been linked to prog-

nosis in leukemia (Mullighan et al. 2009). The SNP affects eight

distant genes, five of which are up-regulated in response to tre-

tinoin treatment in leukemia (Fig. 3A; Martens et al. 2010). As

another example, rs2759386 is associated with isoform ratios of

the distant gene FYB (Fig. 3C). Interestingly, this effect is mediated

through a cis-association with a known splicing factor, QKI, and

the distribution of P-values for rs2759386 for trans-splicing effects

across the genome is skewed toward smaller values, suggesting this

Figure 2. Distant and modular intra-chromosomal regulation. (A) Q-Q
plot of aseQTL P-values for intra-chromosomal eQTLs of varying distances.
For eQTLs implicating SNPs beyond each distance threshold from the
corresponding TSS (0 kb, 20 kb, 100 kb, 300 Kb, 500 kb), we computed
aseQTL association tests between the eQTL SNP and allelic ratios at all
exonic loci available for the corresponding gene, taking the best associ-
ation identified from these. The expected P-value distribution and 95% CIs
were computed empirically from repeated random draws of SNPs similarly
tested against exonic loci within each eQTL gene. We observe that distant
eQTLs show more ASE than expected by chance, although the enrichment
declines with distance. (B) Schematic of a genomic region on chromo-
some 16 containing coregulated genes, along with nearby genes and
SNPs having an impact on each gene. Rs11644386 affects a discontinuous
group of genes, with the farthest association (CYLD) being >400 kb away,
and does not have significant associations with two intermediate genes
SNX20 and NOD2. Another SNP, rs8047222, is associated with expression
of NKD1 and a nearby gene NOD2, but has no influence on the more
distant genes BRD7 and ADCY7.

Genetics of transcriptome diversity using RNA-seq

Genome Research 17
www.genome.org



variant may have effects on splicing of more genes than detectable

at global significance levels (Supplemental Fig. S22).

To better understand the causal relationships of trans-associated

loci (Schadt et al. 2005), we estimate maximum likelihood Bayesian

network structure for each trans SNP along with its proximal and

distal associated genes (Fig. 3B; Supplemental Material). The results

indicate that the expression level of nearby genes mediate the trans

effect 85% of the time, although there is evidence of some residual

association in most cases. The remaining 15% of the time, there is

little to no explanatory power from expression of nearby genes;

further, in three cases, we observe a paradoxical relationship with

the SNP having opposite effects on expression levels of different

targets not consistent with correlation among the targets (Supple-

mental Fig. S23). These seemingly paradoxical effects and evidence

of incomplete mediation may reflect temporal dynamics, feed-

back, and nontranscriptional factors such as protein functionality.

Overall, these results support a general pattern of modular trans-

effects mediated by regulatory roles of nearby genes, but a complex

architecture for the human regulatory network.

Limitations on deleterious impact from regulatory variation

Assessing the distribution of eQTLs according to the properties of

affected genes, we find evidence supporting mechanisms that limit

the deleterious impact of regulatory genetic variation on the cell.

First, we observe an inverse relationship between allele frequency

and the regulatory impact of each SNP, using a subsampling ap-

proach to avoid bias in estimates of effect

size (Methods). Specifically, cis-eQTL ef-

fect sizes are significantly smaller for

polymorphisms with higher minor allele

frequencies (P < 10�7) (Fig. 4A), supported

by a similar inverse relationship ob-

served between MAF and allelic imbal-

ance among heterozygotes for these

polymorphisms (P < 0.02). This suggests

that purifying selective pressure, even

among common variants, acts against

variation with large effects on transcription,

supporting patterns previously reported

among disease and functionally anno-

tated genetic variants (Bodmer and Bonilla

2008; Zhu et al. 2011).

Further, there is a depletion of cis-

eQTLs among genes with annotations

suggesting critical roles in cellular func-

tioning. Previous evidence supports se-

lective pressure on network hubs (Fraser

et al. 2002; Jordan et al. 2004; Gerstein

et al. 2012), and here, we directly dem-

onstrate depletion of regulatory variants

among several classes of important genes.

In particular, highly conserved genes

(those shared with distant species in-

cluding yeast and zebrafish) and hubs in

human protein–protein interaction net-

works (Methods) are less likely to be

influenced by a detectable cis-eQTL. Fur-

thermore, effect sizes among detected cis-

eQTLs are negatively correlated with the

number of known protein–protein in-

teractions for the corresponding genes

(P < 10�35) (Fig. 4B). Known transcription factors (TFs) are also

depleted for cis-eQTLs; even within TFs, stronger coexpression

with target genes implies both a decreased likelihood of detecting

a cis-eQTL for the TF itself (P < 10�2) and reduced effect sizes among

the eQTLs that we do observe (P < 10�100) (Fig. 4C; Supplemental

Fig. S26). This result provides some explanation for the scarcity of

trans-eQTLs observed in this and other studies (Fehrmann et al.

2011; Fairfax et al. 2012)—in exactly the cases in which a cis-acting

variant affecting one gene could indirectly drive changes in ex-

pression of other genes downstream in the regulatory network,

there is a depletion of cis-eQTLs. These results together suggest that

genes whose expression levels have the potential for broad impact

on the cell are subject to tighter control on their own expression.

Potential limiting mechanisms include selective pressure con-

straining the frequency of deleterious regulatory variants, com-

pensatory buffering mechanisms, and auto-regulatory feedback.

Genomic properties and prediction of regulatory variants

The large collection of QTLs from this study affords the opportu-

nity to generalize beyond specific variants identified to their ge-

nomic properties, in order to better understand regulatory mech-

anisms and provide a basis from which to evaluate the regulatory

potential of untested variants. First, by combining the catalog of

expression and splicing QTLs with detailed annotations from The

ENCODE Project Consortium and others, we explore candidate

mechanisms through which genetic variation may perturb regu-

Figure 3. Trans-regulatory variation and mediation through proximal genes. (A) Example subnetwork
of significant associations centered on expression of IKZF1. The SNP rs10251980 is associated with
expression of the nearby gene IKZF1 (P < 10�8), along with eight distant genes (P < 10�12). IZKF1 is also
coexpressed with six of the eight genes (P < 0.05). (B) Prevalence of candidate regulatory network
structures for trans-eQTLs including the SNP, the corresponding distant genes, and any genes proximal
to the SNP that are also associated with its genotype. For each trans-eQTL gene, we analyzed its re-
lationship with the most strongly associated SNP, along with all genes within 1 Mb of that SNP. Network
structures best fitting each set were identified using likelihood ratio tests (Methods; Supplemental
Material). (C ) Association between rs2759386 and isoform ratio of FYB, potentially mediated through
expression of splicing factor QKI, which is proximal to the SNP. Rs2759386 is associated with total
expression levels of QKI, and both this SNP and QKI are associated with isoform ratio of FYB (P < 10�14

and P < 10�16, respectively).
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latory elements and finally expression (Gaffney et al. 2012; The

ENCODE Project Consortium 2012; Schaub et al. 2012). Beyond

the expected enrichment of both sQTLs and eQTLs near the TSS

(Stranger et al. 2012; Veyrieras et al. 2012), sQTLs are concentrated

among exonic and intronic loci, with less bias toward the 59 end of

the gene than observed for eQTLs (Fig. 5A). Further, splice site,

essential splice site, and stop gained functional annotations are

particularly enriched for sQTLs, beyond the effects of position (Fig.

5B; Supplemental Fig. S27) relative to the gene (Methods).

After controlling for SNP proximity and intragenic location,

we observe strong enrichment of both eQTLs and sQTLs for many

regulatory annotations derived from The ENCODE Project Con-

sortium, including TF binding sites from ChIP-seq, RNA binding

elements from RIP-seq and tiling arrays, and regions of open

chromatin identified by DNase I hypersensitivity assays (Fig. 5B;

Methods; Supplemental Data S2). Although enrichment statistics

are not conclusive regarding causality, these observations suggest

that variants affecting splicing may act not only through direct

perturbation of splice sites and coding loci as has been previously

described (Pickrell et al. 2010), but also through TF binding and

mechanisms shared with regulation of expression. This could arise

from transcription factors playing a role in the cellular pathways

that regulate expression of particular isoforms under different

conditions, including direct influence on mechanisms such as

cotranscriptional splicing. The enrichment of most regulatory el-

ements is strongest among variants close to the TSS and declines in

significance with distance for both eQTLs and sQTLs (Supple-

mental Fig. S27; Supplemental Data S2), but a small number of

transcription factors are enriched for eQTLs at distant locations

beyond 100 kb, including MEF2A (log odds multiplier 0.25). These

findings support the hypothesis that a large fraction of regulatory

variants affect expression through alteration of transcription factor

(TF) binding and chromatin accessibility (Degner et al. 2012),

improving the resolution of previous findings and extending these

observations to variants associated with gene splicing.

Additionally, we utilize these patterns to develop a predictive

model of regulatory variation. With advances in sequencing

technology, population and disease studies increasingly identify

genetic variants not previously evaluated. Many genetic studies

will not include high-resolution expression data or include enough

instances of a given allele to accurately evaluate impact on the

transcriptome. Thus, it would be valuable to predict the impact of

noncoding and intergenic variants without requiring direct as-

sociation testing (Lee et al. 2009; Cooper and Shendure 2011;

Gaffney et al. 2012). Our observed associations provide a large set

of eQTLs and sQTLs to support the training of predictive models to

detect regulatory variation. Our approach unifies the full set of

informative annotations analyzed for enrichment into a single

framework, the latent regulatory variant model (LRVM; software

available at http://dags.stanford.edu/dgn/). LRVM models the

likelihood of observing a QTL association based on diverse ge-

nomic annotations, using a Bayesian latent variable approach to

account for the confounding influences of minor allele frequency

and linkage disequilibrium on eQTL association (Methods; Sup-

plemental Material). In particular, LRVM first models the latent

regulatory potential of each individual SNP based on genomic

annotations, and separately, the likelihood of observing a QTL

association given MAF and LD with surrounding SNPs.

Here, we trained two instances of LRVM, using the described

framework but training the parameters separately to predict the

effects on total expression and, in the second instance, gene

splicing. In both cases, using held-out genes and SNPs not used in

training, we find that LRVM stratifies candidate regulatory SNPs

more accurately than any single genomic annotation and more

accurately than comparable methods that ignore the effects of LD

and MAF (Fig. 5C; Supplemental Figs. S28, S29). The SNPs identi-

fied by LRVM as having a high likelihood of regulatory impact are

also more likely to be associated with downstream allelic imbal-

ance (P < 10�12) (Fig. 5E), with this stringent test demonstrating

that variants identified by LRVM are likely to have true cis-regu-

latory impact. To demonstrate the application of LRVM to in-

Figure 4. Distribution of cis-regulatory variation and selective pressure.
(A) Effect size of cis-eQTLs compared to minor allele frequency of the most
significant SNP per eQTL gene (computed using subsampling) (Methods).
We find a strong inverse relationship (Spearman’s r = �0.13, P < 10�7). If
we normalize by the observed variance of each gene, the observed re-
lationship becomes stronger (P < 10�39). (B) A depletion of cis-eQTLs is
evident (P < 0.05) among genes with many protein–protein interactions
(PPI); additionally, a strong negative correlation exists between the
number of interactions and eQTL effect size (P < 10�35). Protein coding
genes were put into quantile buckets according to the number of known
PPI relationships (Methods). The fraction of genes in each bucket having
a significant cis-eQTL was computed along with the average effect size for
the observed eQTLs. Fewer eQTLs are observed among genes with the
most interactions (hub genes). Genes in the bottom 20% may be mod-
erately depleted as well, although confidence intervals (95%) are over-
lapping with the intermediate deciles. (C ) The fraction of genes with
a significant cis-eQTL and average eQTL effect size are shown according to
an estimate of the genes’ regulatory impact. Known regulatory genes
were put into quantiles according to the strength of correlation observed
between their expression profile and the expression of all nonregulatory
genes. Nonregulatory genes are shown in the leftmost bar for comparison.
Strong regulatory genes show significant depletion of eQTLs (P < 10�2)
compared to nonregulators and weak regulatory genes and, similarly,
reduced eQTL effect sizes (P < 10�100).
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terpretation of disease studies, we also predicted the regulatory

impact of all known GWAS variants not used in training the model,

and interestingly, observe that these variants have an increased

probability of regulatory impact (Fig. 5D; Supplemental Fig. S30),

indicating that many disease SNPs have genomic properties con-

sistent with regulatory function. For example, the top-scoring

disease SNP is rs2932538, a known cardiovascular risk variant

(Ehret et al. 2011) that lies near the TSS of MOV10 and is annotated

with multiple TF binding and DNase hypersensitivity sites,

strongly supporting its regulatory potential.

Discussion
Sequencing RNA from primary tissue of nearly one thousand in-

dividuals, we identified regulatory variation underlying diverse

expression phenotypes of more than 10,000 genes across the ge-

nome. These results emphasize the pervasive impact of proximal

genetic variation on gene expression, and specifically demonstrate

a much larger role for genetic variation in gene splicing than

previously observed through smaller RNA-sequencing studies

(Montgomery et al. 2010; Pickrell et al. 2010) or specialized assays

(Kwan et al. 2008). We also identified a number of distal regulatory

relationships, including a number of distant QTLs affecting the

isoform ratio within each chromosome (which may still act in cis),

but proportionally far fewer sQTLs between chromosomes. Distant

intra-chromosomal and trans-eQTLs both include many variants

individually acting on groups of multiple genes, supporting ob-

servations of modularity in several organisms (Lercher et al. 2002;

Oliver and Misteli 2005). We demonstrated that membership of

genes in coregulated modules is predicted, not only by linear

proximity, but also by proximity due to three-dimensional chro-

mosomal configuration, extending beyond specific examples of

spatial proximity affecting gene regulation (Spilianakis and Flavell

2004; Lieberman-Aiden et al. 2009; Cheung et al. 2010) to suggest

a broad, genome-wide pattern.

Furthermore, by analyzing the distribution of eQTLs across

the genome, we have detected a depletion of regulatory variants

among genes with increased potential for deleterious impact on

the cell, including highly conserved genes and genes central to

cellular networks. This analysis complements studies identifying

Figure 5. Genomic properties of regulatory variation and prediction of eQTLs. (A) Enrichment of proximal eQTLs and sQTLs is shown as a function of
distance to the TSS. Enrichment is computed here as the log odds multiplier on likelihood of association (Methods). In the zoomed, intrageneic view,
enrichment (log odds multiplier) of proximal eQTLs and sQTLs is shown within gene boundaries for UTR, intronic, and exonic loci. We aggregate SNPs
within all exons except the first (the closest to TSS) together, and likewise for introns. (B) Enrichment of cis-eQTLs and sQTLs for functional and genomic
annotations, controlling for distance. In each case, (log) odds multipliers were computed for each category after conditioning on SNP location (Methods)
shown in A and B. ChIP-seq and DNase I annotation enrichments are shown here for SNPs falling within 20 kb upstream of TSS; for full enrichment statistics
see Supplemental Data S2. (C ) Enrichment of cis-eQTLs stratified by LRVM score (restricting to genes and SNPs excluded from training LRVM). Each SNP-
gene pair was scored by LRVM for likelihood of association, and twenty quantiles were computed for the resulting scores. Finally, enrichment was
computed for each quantile, using log odds estimation after correcting for position (Methods). (D) Predicted regulatory impact of trait-associated (GWAS)
SNPs according to LRVM for 263 unique disease variants not available during LRVM training. We compute the score of each SNP for each of its proximal
genes. Known trait-associated SNPs score more highly that expected at random (P < 10�9), indicating enrichment for properties that match those
of observed regulatory variants. (E) LRVM scores are predictive of allelic effects, indicative of cis-regulatory impact. We correlate allelic imbalance
(Methods) observed among heterozygous individuals for each SNP with the score assigned by each predictive model to the corresponding SNP. Sig-
nificance is estimated using the Wilcoxon rank sum test. Again, analysis is restricted to SNPs not used to train LRVM.

Battle et al.

20 Genome Research
www.genome.org



evidence of purifying selection in both functionally annotated

regulatory and protein-coding elements (Fraser et al. 2002; Jordan

et al. 2004; Bodmer and Bonilla 2008; Zhu et al. 2011; Gerstein

et al. 2012), directly demonstrating a pattern of reduced impact

from regulatory variation for important genes and common vari-

ants. Finally, we combined our large set of eQTL with diverse ge-

nomic annotations, including location, functional annotations,

and regulatory elements. We presented a Bayesian model, LRVM,

capable of predicting regulatory impact from the properties of each

SNP, combining all available genomic annotations into a unified

model. LRVM improves our ability to predict the effects of genetic

variation on both expression and splicing, and provides a frame-

work to automatically identify SNPs likely to have regulatory im-

pact even for variants not previously observed, which could con-

tribute to the interpretation of rare variants and personal genomes.

Overall, the extensive set of eQTLs identified here has pro-

vided a more complete characterization of the landscape of human

regulatory variation than previously possible. As we seek to de-

scribe the impact of both common and rare genetic variation, the

combined understanding gained from ongoing genomic annota-

tion efforts, eQTL studies, and statistical methods will contribute

to our interpretation of the genetics of gene expression and po-

tential mechanisms of effect on higher-level traits.

Methods

Sample collection
The recruitment procedure of the Depression Genes and Networks
study (National Institute of Mental Health Grant 5RC2MH089916)
was designed to collect samples of individuals with and without
major depressive disorder, ages 21–60, from a survey research panel
that was broadly representative of the United States popula-
tion (Supplemental Material). Whole blood was collected in two
PAXGene tubes (for RNA) and two acid-citrate-dextrose tubes
(for DNA).

Genotyping

DNA was extracted and genotyped on the Illumina HumanOmni1-
Quad BeadChip. Quality control was performed to identify sam-
ples with elevated heterozygosity, unexpected ancestry or pairwise
IBD, and potential mislabeling (Supplemental Material; Supple-
mental Fig. S1).

RNA-sequencing and quality control

RNA was extracted from thawed PAXGene tubes, and the
GLOBINclear Kit (Invitrogen) was applied. Sequencing libraries
were prepared (without fragment size selection) according to the
Illumina TruSeq protocol. Oligonucleotide barcodes were attached
to all fragments of each library, and three libraries at a time were
pooled and sequenced in one lane in an Illumina HiSeq 2000 (50-bp
single-ended reads). FASTQ (Cock et al. 2010), Picard (http://
picard.sourceforge.net/), and in-house metrics were used to evaluate
data quality (Supplemental Material; Supplemental Figs. S2–S4).

Expression quantification

RNA-seq reads were mapped to the NCBI v37 H. sapiens reference
genome using TopHat (Trapnell et al. 2009). HTSeq was used to
quantify gene expression (http://www-huber.embl.de/users/anders/
HTSeq/doc/overview.html), BEDTools (Quinlan and Hall 2010) was
used to quantify exon expression, and Cufflinks (Roberts et al. 2011)

was used to quantify isoform expression. Only uniquely aligned
reads were used for gene and exon quantification. We consider
a gene expressed if it has at least 10 reads in 100 individuals. Isoform
ratio, representing the fraction of a gene’s expression arising from
a particular transcript, was computed for each transcript from
Cufflinks output. In particular, given a gene with k transcripts, let
eji represent the expression level of transcript i in individual j. The
isoform ratio for the ith transcript of this gene in individual j is
given by

eji

+k
v¼1 ejv

.

Allele-specific expression calls were made using a binomial
model after filtering for potential mapping bias (Supplemental
Material).

Correcting for potential confounders in RNA-seq data

We used the hidden covariates with prior (HCP) method (Mostafavi
et al. 2013) to correct for technical and biological factors, including
blood cell-type frequencies and the time of the blood draw (see
Supplemental Table S1). We computationally inferred cell-type
frequencies using an existing compendium of blood cell-type-
specific signatures (Supplemental Material). HCP parameters were
tuned separately for cis- and trans-eQTL analysis (Supplemental
Material; Supplemental Figs. S7, S8).

Expression QTL mapping

Association testing for cis, splicing, and trans-eQTLs was performed
using Spearman’s rank correlation, only including autosomal SNPs
with MAF $ 0.025. For cis-eQTLs and sQTLs, testing was limited
to SNPs within 1 Mb of the transcription start site. We used
Bonferroni correction to account for the number of SNPs tested per
gene (Supplemental Fig. S9) and subsequently identified eQTLs
using gene level significance at FDR 0.05. We identified intra-
chromosomal eQTLs using stepwise regression (on ranked data for
consistency with Spearman’s rank correlation). For aseQTL asso-
ciations, we used a Wilcoxon rank sum statistic indicating whether
imbalance of the allelic ratio at the coding locus is significantly
higher for individuals heterozygous at the candidate regulatory
locus compared to homozygous individuals (all tested individuals
are heterozygous at the coding locus). We defined allelic imbalance
as j r

r + a� 0:5j, where r and a are the number of reads mapped to
the reference and alternative alleles, respectively. We require 10
individuals heterozygous at both the coding and candidate regu-
latory loci.

eQTL and ASE effect size

We estimated eQTL and ASE effect sizes by computing fold change,
using a subsampling approach to avoid biases from allele fre-
quency, matching across all tests the number of individuals with
each allele analyzed and, in the case of ASE, read depth (Supple-
mental Material).

Data sources for analysis of eQTL distribution

We constructed a combined protein–protein interaction network
by taking the union of interactions reported in (1) BioGRID
(Breitkreutz et al. 2003) (both small scale and high-throughput);
(2) MINT (Chatr-aryamontri et al. 2007); (3) HPRD (Goel et al.
2012); and (4) IntAct (Aranda et al. 2010) (all data obtained from
the GeneMANIA [Warde-Farley et al. 2010] data repository
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[download on 01/4/2012]). Transcription factor (TF) target in-
formation was downloaded from the ChEA database (Lachmann
et al. 2010). Conserved genes were obtained for each species from
BioMart (Haider et al. 2009). All analyses were restricted to
protein coding genes. We obtained trait and disease associated
SNPs (GWAS hits) (Hindorff et al. 2009) (downloaded from
NHGRI on 01/26/2011), and only considered SNPs with an as-
sociation of P # 10�7.

Trans-eQTL detection and filtering

To account for spurious trans-associations that stem from regions
of sequence similarity and potential mapping errors, we devised
a series of filters and applied them to the candidate trans-eQTLs.
These filters exclude associations that involve pseudogenes (Karro
et al. 2007), associations within paralog families (Vilella et al.
2009), associations between regions of high sequence similarity
based on read mapping simulation, and associations that fail
a ‘‘smoothness’’ test which evaluates the association signal across
the expressed exons of a gene (Supplemental Material; Supple-
mental Fig. S20).

Analysis of enrichment of QTLs in genomic annotations

We collected genomic annotations from RegulomeDB (Boyle et al.
2012), collected RNA-binding data from ENCODE (The ENCODE
Project Consortium 2012) (both the RIP-seq and tiling array data
were used), and positional annotations from the Ensembl variant
effect predictor (McLaren et al. 2010). To accurately estimate the
effects of each genomic annotation on the likelihood of a SNP
having regulatory impact, we first account for the location of each
SNP. We categorized SNPs within the gene boundaries as exonic,
intronic, or UTR, with separate categorization for the first exon and
intron. Then, SNPs not within the corresponding gene boundaries
are categorized into upstream and downstream regions of size 1 kb
(for loci within 10 kb of the TSS), and 10 kb (regions beyond 10 kb).
For each positional category, we compute the odds multiplier on
observing an association using logistic regression. Fixing these
parameters, we then compute the adjusted odds for each SNP based
on position and find the conditional odds multiplier for each ge-
nomic annotation beyond the effects of location. We consider re-
gions within 20 kb, 20–100 kb, and >100 kb from the TSS sepa-
rately for enrichment analysis. To ensure that the enrichment
signal is not mainly driven by annotations from a small number of
genes or unusual genomic region, we repeated the analysis ex-
cluding each chromosome independently, and reported the min-
imum enrichment among these 22 estimates for each genomic
feature. (See Supplemental Data S2 for the complete enrichment
results.)

Regulatory variant predictive model (LRVM)

We defined a latent regulatory variant model (LRVM) (Supple-
mental Fig. S28a), a Bayesian network modeling the probability
that each SNP will be associated with an expression trait based on
genomic annotations. As we describe in details below, in order to
account for associations that arise from linkage disequilibrium
(LD) with a nearby eQTL, while still maintaining the ability to
capture multiple independent eQTLs impacting the same gene, we
model all SNPs near the same gene jointly. In addition, we also
account for the effects of allele frequency (which can affect sta-
tistical power to detect an association even for causal SNPs). This
framework is used for prediction of both eQTL and sQTL associa-
tions, but model parameters are trained separately to reflect dif-
ferences in their genomic properties.

For each gene, we identify the set of candidate eQTL SNPs
(s1,. . ., sk) in some chosen window near the transcription start
site (TSS) of the gene (in the analysis of LRVM we focus on SNPs
within 20 kb of the TSS). For each of these SNPs, we define
a binary variable ai representing whether SNP i is associated with
the gene, along with a separate latent binary variable di repre-
senting whether SNP i itself has strong regulatory potential.
Using the location features and genomic annotations available
for SNP i as a feature vector Fi (see previous section for location
and genomic annotations used in this study), we define a logis-
tic function, parameterized by a shared set of weights w, to
predict di from Fi. The association variables ai are also predicted
using a logistic function, where the input to each ai is the full
vector of latent variables (d1, . . ., dk) for all nearby SNPs, each
weighted by their MAF and LD with i. This model is summarized
as follows:

p dijFi;wð Þ ¼ 1

1þ e�F0�Fiw
; p wð Þ; Nð0;1Þ;

p aijdð Þ ¼ 1

1þ e�g0�amidiþbmið+k6¼i ðlk;idkÞÞ
;

with lk,i indicating the LD between i and kth SNP; mi indicating
the MAF of ith SNP; parameters b and a modulating the effects
of LD and MAF; and parameters g0 and F0 indicating the prior
odds. From a training set comprised of features Fi and observed ai

from eQTL association results, we learn the parameters w, b, and
a using hard expectation maximization (Dempster et al. 1977). In
this method, we iterate between finding the most likely assign-
ment to latent variables d using a current estimate of w, b, and a,
and re-estimating w, b, and a using the current assignment to d.
We can then test the accuracy of our model by evaluating its
ability to predict associations on a held-out set of genes and SNPs
(Supplemental Figs. S28b, S29, S31). Separate models (different
estimates of w, b, and a) are learned for eQTLs and sQTLs. See
Supplemental Material and Supplemental Figures S28b, S29, S31,
for description of evaluation and comparisons of LRVM with other
models.

Data access
Genotype, raw RNA-seq, quantified expression, and covariate
data are available by application through the NIMH Center for
Collaborative Genomic Studies on Mental Disorders. Instruc-
tions for requesting access to data can be found at https://
www.nimhgenetics.org/access_data_biomaterial.php, and inquiries
should reference the ‘‘Depression Genes and Networks study
(D. Levinson, PI).’’
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