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ABSTRACT 8 

A detailed understanding of the cheese microbiome is key to the optimization of flavour, 9 

appearance, quality and safety. Accordingly, we conducted a high resolution meta-analysis of 10 

cheese microbiomes and corresponding volatilomes. Using 77 new samples from 55 artisanal 11 

cheeses from 27 Irish producers combined with 107 publicly available cheese metagenomes, 12 

we recovered 328 metagenome assembled genomes, including 47 putative new species that 13 

could influence taste or colour through the secretion of volatiles or biosynthesis of pigments. 14 

Additionally, from a subset of samples, we found that differences in the abundances of strains 15 

corresponded with levels of volatiles. Genes encoding bacteriocins and other antimicrobials, 16 

such as pseudoalterin, were common, potentially contributing to the control of undesirable 17 

microorganisms. Although antibiotic resistance genes were detected, evidence suggested they 18 

are not of major concern with respect to dissemination to other microbiomes. Phage, a 19 

potential cause of fermentation failure, were abundant and evidence for phage-mediated gene 20 

transfer was detected. The anti-phage defence mechanism CRISPR was widespread and 21 

analysis thereof, and of anti-CRISPR proteins, revealed a complex interaction between phage 22 

and bacteria. Overall, our results provide new and significant technological and ecological 23 

insights into the cheese microbiome that can be applied to further improve cheese production. 24 

25 



INTRODUCTION  26 

Given the essential role of microorganisms in the production of cheese, a detailed 27 

understanding of the microbiota of cheese is of considerable value with respect to the 28 

optimisation of cheese flavour, appearance, quality and safety. As cheese microbiotas are 29 

representative of low to medium complexity microbial communities, these populations are 30 

also of great fundamental interest, providing insights into microbial interactions that can 31 

translate to more complex communities. High-throughput sequencing has yielded invaluable 32 

insights into cheese microbiomes over the past decade 1, and recent studies have highlighted 33 

that this technology can further our understanding of the roles of microorganisms during the 34 

ripening of cheese 2-4.  35 

Cheese also represents an environment in which microorganisms have evolved to adapt to 36 

abiotic stresses, such as acidity or salinity, in addition to biotic stresses, such as competition 37 

or predation, and cheese microbiomes have also served as valuable model communities to 38 

study complex processes of relevance to more complex microbial communities, such as 39 

microbial community formation 5, microbial interaction 6, or horizontal gene transfer 7. In this 40 

regard, shotgun metagenomic sequencing has proven to be a powerful tool for the 41 

characterisation of the microbiota of cheese and other fermented foods 8, providing 42 

taxonomic resolution to species and strain level, and functional information 9. 43 

Importantly, shotgun metagenomics can also detect viruses, which is particularly relevant in 44 

studies of cheese, since phage infection is often deleterious from an industry perspective 45 

through its contribution to fermentation failure 10. This technology, coupled with recent 46 

advances in bioinformatics, presents an unprecedented opportunity to further characterise the 47 

cheese microbiota in detail, including strain-level identification of microorganisms 11. This is 48 

particularly important as strain-level variation among starters is already known to influence 49 

the flavour of cheese 12, and likely also contribute to other important features. In addition, it 50 



has previously been reported that microorganisms that are not typically associated with 51 

cheeses might contain genes important for flavour 5, spoilage 13 and other attributes, and the 52 

ability to assemble the near complete new genomes of such microorganisms by metagenome 53 

binning has the potential to be of great value. However, to date, this approach has not been 54 

applied to cheese, or indeed other food, communities.  55 

Here, a combination of tools is used to characterise new metagenomes corresponding to 55 56 

cheeses from 27 Irish producers, in addition to 107 publicly available cheese metagenomes. 57 

We identify strain-level variations in cheeses that correspond with differences in the 58 

volatilome, conduct CRISPR analysis-based reconstruction of the history of phage infections, 59 

investigate the distribution and potential for transfer of antibiotic resistance genes, and 60 

provide evidence of the widespread distribution of bacteriocin- and other antimicrobial-61 

associated genes in cheeses.   62 



 63 

RESULTS  64 

Taxonomic profiling highlights the prevalence of phage in the cheese microbiome 65 

The taxonomic profiling of 184 cheese samples (Figure 1A) detected 23 species at ≥0.1% 66 

relative abundance in ≥10% of samples (the defined threshold of prevalence in this study). 67 

Overall, the mean abundance of bacteria, eukaryota, and viruses was 78.08%, 2.15%, and 68 

19.76%, respectively (Figure 1B). Notably, given the importance of phage in cheese 69 

fermentations, particularly in relation to their potential to negatively impact on fermenting 70 

bacteria, five of the prevalent species were phage from the Siphoviridae family, including an 71 

unclassified C2-like virus (43.5%), Lactococcus phage ul36 (17.9%), Lactococcus phage 72 

P680 (14.7%), Lactococcus phage BM13 (11.4%) and Streptococcus phage ALQ13.2 73 

(10.9%). The 3 most prevalent bacterial species were Lactococcus lactis (78%), 74 

Streptococcus thermophilus (43.5%), and Lactobacillus helveticus (37%), all being lactic acid 75 

bacteria (LAB) from the order Lactobacillales and well known cheese microorganims. 76 

Overall, LAB had a prevalence of 91.3%. The three most prevalent non-LAB bacterial 77 

species were Brevibacterium linens (28.9%), Staphylococcus equorum (28.9%), and an 78 

unclassified Brachybacterium species (22.8%). Notably, two other unclassified species, i.e., a 79 

Halomonas sp. (16.8%) and a Brevibacterium sp. (10.9%), were prevalent. The only 80 

prevalent eukaryotic species was Debaryomyces hansenii (35.9%).  81 

Here, we identify a nonlinear correlation (p=0.007, R=0.523) between the relative abundance 82 

of Siphoviridae and Streptococcaceae (Figure 1C). Specifically, when Siphoviridae were 83 

present below 15% relative abundance, they positively correlated with Streptococcaceae, but 84 

when Siphoviridae were present above this level, a negative correlation existed, thereby 85 

highlighting a threshold above which phage are likely to inhibit these important LAB. Further 86 



details relating to the taxonomy of the newly sequenced Irish cheese microbiome can be 87 

found in the Supplementary notes, which include Supplementary Figs. 1-5, and 88 

Supplementary Tables 1-5. 89 

Strain-level variation corresponds to differences in the volatilome 90 

Across 48 of the newly studied cheese samples, a total of 63 volatiles that may contribute to 91 

flavour were detected by GC-MS (Supplementary Table 6). This was combined with data 92 

from a previous study 3 to identify correlations between strain abundance and volatile levels. 93 

We detected a total of 7 species that were present in both datasets at >1% relative abundance 94 

in ≥12 samples and the corresponding strains were identified in each case. Only strains that 95 

were present in ≥6 samples were considered for subsequent correlation analysis. These strains 96 

were B. linens strains GCF_001729525 (n=9) and GCF_002332445 (n=7), L. casei paracasei 97 

strains GCF_000194765 (n=6) and GCF_003957435 (n=17), Lactobacillus plantarum strains 98 

GCF_00469115 (n=7) and GCF_00473935 (n=7), L. lactis strains GCF_000006865 (n=57) 99 

and GCF_900240895 (n=18), and S. thermophilus strains GCF_000253395 (n=8) and 100 

GCF_000836675 (n=39). The abundances of these strains were inferred from the abundances 101 

of the corresponding species. Overall, 32 volatile compounds were shared between both 102 

datasets (Supplementary Table 7). Analysis of the effect of strain level variation on the 103 

volatilome revealed that B. linens strain GCF_001729525 (p=0.002, R=0.586), L. lactis strain 104 

GCF_900240895 (p=0.002, R=0.158), and the S. thermophilus strains GCF_000253395 105 

(p=0.008, R=0.201), and GCF_000836675 (p=0.001, R=0.3) all significantly correlated with 106 

variance in the volatilome (Figure 2A). Correlation coefficient analysis revealed that 9 107 

volatiles that were positively correlated with B. linens GCF_001729525 were negatively 108 

correlated with B. linens GCF_002332445 (Figure 2B). Additionally, significant differences 109 

in the associations between strains of the same species to volatiles were identified (Figure 110 

2C).  111 



Newly characterized bacteria may contribute to cheese quality  112 

A total of 924 metagenome assembled genomes (MAGs), which represent actual individual 113 

genomes based on the binned metagenomes, were identified. We focused on 328 high quality 114 

MAGs (over 80% complete with less than 10% contamination) for subsequent analysis 115 

(Figure 3A; Supplementary Table 8). Overall, taxonomic identification revealed that 186 116 

MAGs were Firmicutes, 89 were Actinobacteria, and 53 were Proteobacteria (Figure 3B, 3C). 117 

105 of the MAGs were not assigned to a species, with 47 MAGs having less than 95% 118 

average nucleotide identity (ANI) to reference genomes and fell into 22 primary clusters 119 

(PCs), that represent up to 22 putative novel species. Based on their ANI to reference 120 

genomes, they may belong to the genera Psychrobacter (21 MAGs belonging to 9 PCs), 121 

Brachybacterium (8 MAGs belonging to 2 PCs), Corynebacterium (6 MAGs belonging to 3 122 

PCs), Brevibacterium and Halomonas (each with 3 MAGs belonging to 2 PCs), Advenella, 123 

Arthrobacter, Idiomarina, Proteus, Streptomyces and Vibrio (1 MAG each).  124 

Genome-scale metabolic models for the 47 MAGs from putatively novel species predicted 125 

that the following metabolites that may influence flavour, i.e., acetate, succinate, and lactate 126 

and ammonium, (Figure 3D), were secreted by ≥10 of these MAGs. We also assess the 127 

prevalence of genes encoding carotenoids, i.e., pigments that contribute to the appearance of 128 

cheese, across MAGs and identified 246 hits to carotenoids genes across 58 MAGs (BLAST 129 

E-value ≤1e-05) (Figure 3E). The majority of hits to carotenoid genes were found in 130 

Brevibacterium MAGs (52.4% of hits), followed by Glutamicibacter (32.9% of hits). 131 

Overall, genes associated with the biosynthesis of 14 types of carotenoid were detected. The 132 

most widely distributed carotenoid genes were involved in the biosynthesis of lycopene, 133 

neurosporene, phytofluene, and zeta-carotene; these genes were detected across 5 genera.  134 



Previously, Psychrobacter has been reported to cause purpling of cheeses, and it was 135 

proposed that this defect was through the conversion of indole to indigo 14. Therefore, we 136 

assessed the presence of genes associated with the biosynthesis of indigo (Supplementary 137 

Table 9) and found that genes encoding indole-3-acetate monooxygenase (EC 1.14.13.235) 138 

were present on 13 of the 21 Pyschrobacter MAGs recovered in this study (Figure 3F). 139 

Indole-3-acetate monooxygenase catalyses the formation of indoxyl from indole, which then 140 

forms indigo upon reaction with oxygen and, thus, our study supports the previously provided 141 

hypothesis. 142 

 143 

The frequency of antibiotic resistance genes is comparable to that of the human gut 144 

microbiome  145 

We identified 40 ARGs (antibiotic resistance genes) across 35 MAGs in the cheese 146 

microbiome. These included lincosamide ARGs in Streptococcaceae, multidrug ARGs in 147 

Moraxellaceae, and fosfomycin ARGs in Staphylococcaceae (Figure 4A). We then 148 

investigated ARGs on plasmids to assess the potential for the transfer of ARGs to other 149 

microorganisms via conjugation. A total of 74 ARGs were detected on plasmids from 66 150 

samples, and these ARGs were predicted to confer resistance to fosfomycin, phenicol, 151 

sulphonamide, diaminopyramidine, tetracycline or multidrug resistance (Figure 4A). These 152 

plasmid-associated contigs were assigned to the families Enterobacteriaceae, Moraxellaceae, 153 

Staphylococcaceae, and Vibrionaceae (Figure 4B). No ARGs were detected on LAB-154 

associated plasmids, suggesting a limited potential for plasmid-mediated dissemination of 155 

ARGs by LAB. We also noted that four Proteobacteria-associated MAGs had integrons 156 

containing ARGs, including one multidrug ARG, and three phenicol ARGs.  157 



Next, the frequency of ARGs among MAGs recovered from cheeses was compared to the 158 

publicly available MAGs recovered from human, ocean, and rumen samples. Following 159 

dereplication, the number of representative MAGs from each environment was 99 cheese 160 

MAGs; 4,929 human MAGs; 2,139 ocean MAGs; and 859 rumen MAGs. The percentage of 161 

representatives containing ARGs was as follows: 2.02% of cheese representatives; 2.25% of 162 

human representatives; 0.09% of ocean representatives; and 0.23% of rumen representatives 163 

(Figure 4E). We found no significant differences in ARG frequency between cheese and 164 

human representatives (p=1). However, ARGs were enriched among cheese representatives 165 

relative to ocean (p=0.011) and rumen (p=0.055) representatives. 166 

 167 

Antimicrobial peptide genes are common among cheese microbes 168 

Bacteriocins are ribosomally synthesised antimicrobial peptides produced by bacteria that can 169 

be regarded as a means of providing an innate immunity to foods against pathogens15 (Cotter 170 

et al 2005). Here, we assessed the prevalence of bacteriocin genes within cheese-derived 171 

MAGs (Figure 4C). Overall, 210 sequences on 106 MAGs that were recovered from 71 172 

samples were predicted to encode 25 Class II/III bacteriocins, and these MAGs belonged to 9 173 

genera (Supplementary Table 10). Class II bacteriocins detected in ≥10 MAGs were 174 

lactococcin A-like, lactococcin B-like, BlpK-like bacteriocins and a putative bacteriocin in 175 

Staphylococcus. Class III bacteriocins detected in ≥10 MAGs were helveticin J-like, 176 

enterolysin A-like and linocin CFP29-like bacteriocins. It was found that 13 Class II/III 177 

bacteriocins had ≥2 variants, based on their amino acid sequences. 178 

The percentage of representative MAGs from each environment that were found to contain 179 

Class II/III bacteriocin genes was as follows: 20.20% among cheese representatives; 12.94% 180 

of human representatives; 5.70% of ocean representatives; and 5.36% of rumen 181 



representatives (Figure 4E). Bacteriocin genes were found to be enriched among cheese 182 

representatives relative to human (p=0.048), ocean (p=1.74e-06) and rumen (p=2.43e-06) 183 

representatives. 184 

With respect to other antimicrobials, we found that variants of the metalloprotease, 185 

pseudoalterin, which has recently been shown to contribute to predator-prey interactions 186 

between marine Gram-negative bacteria and Gram positive bacteria 16, were present in 15 187 

MAGs from the genera Alcaligenes, Corynebacterium, Halomonas, Idiomarina, 188 

Marinomonas, Streptomyces, and Vibrio (Figure 4D).  189 

 190 

Evidence for phage- and transposon-mediated lateral gene transfer in the cheese 191 

microbiome 192 

We identified 624 occurrences of LGT (lateral gene transfer) across 75 of the 184 samples 193 

analysed. Although LGTs were detected at each taxonomic rank, most occurred between 194 

members of the same order (Figure 5A). LGTs were most frequent between members of the 195 

order Lactobacillales, especially among Streptococcaceae. The mean LGT frequency varied 196 

across the datasets (Figure 5B), ranging from 2.44-e05 to 4.32e-04 LGTs/kb. Interestingly, 197 

the frequency of LGTs was lowest in those datasets that included rind samples, which may 198 

reflect the lower overall relative abundance of Lactobacillales in these samples. Of the 132 199 

instances where the LGT direction could be determined, including 75 genes that had 200 

UniRef90 annotations, 21 were identified as phage replication gene A protein (GPA) 201 

(UniRef90_I6TNE5), while 2 were transposases (UniRef90_C8Q1E5 and 202 

UniRef90_W9EFK6). Phage-related and transposase genes were identified in 9% and 19% of 203 

loci, respectively, where the direction of LGT was not determined. 204 



 205 

Elucidating patterns of phage infections in cheeses 206 

The level of viruses detected was consistent with phage infection being common across the 207 

cheeses. Overall, viral signals in 88 MAGs were hypothetically lysogenic, with 74% of 208 

Lactococcus MAGs and 6% of Streptococcus MAGs containing prophage (Figure 6A). The 209 

history of phage infections among bacteria in the cheeses was explored by analysing CRISPR 210 

spacers within the metagenome. Overall, 1894 putative CRISPRs were identified in 181 211 

samples, and 102,407 putative spacers were found across these loci. 2,633 spacers from 381 212 

CRISPRs had significant matches with viral genomes. Spacers homologous to sequences 213 

from viruses that infect the following genera were detected: Acinetobacter (20 spacers); 214 

Aeromonas (1); Geobacillus (2); Halomonas (2); Lactobacillus (149); Lactococcus (60); 215 

Propionibacterium (42); Pseudoalteromonas (1); Psychrobacter (3); Streptococcus (2,337); 216 

and Thermus (14) (Figure 6B). Additionally, 2 spacers were found to have ambiguous hits, 217 

meaning that they aligned to the genomes of two types of phage (i.e., Lactococcus ul36 and 3 218 

Streptococcus phage). We established that 270 CRISPRs contained spacers that can be 219 

aligned to multiple phage genomes (Figure 6C), indicating that bacteria were exposed to 220 

multiple infections. 221 

Overall, 138 putative CRISPRs were identified in 90 MAGs, and 1965 putative spacers were 222 

found across these loci. A total of 159 spacers from 57 CRISPRs had significant matches in 223 

the database to phage that infect Streptococcus (118 spacers), Propionibacterium (24 224 

spacers), Lactobacillus (13 spacers), Acinetobacter (3 spacers), and Staphylococcus (1 225 

spacer) (Figure 6B). A total of 32 of these MAG-associated CRISPRs contained spacers that 226 

aligned to multiple phage genomes (Figure 6C). All of the spacers from the CRISPRs on 227 

Lactococcus MAGs aligned to Streptococcus phage (Figure 6D). Similarly, a spacer from a 228 



CRISPR on a Staphylococcus MAG aligned to a Streptococcus phage. These may reflect a 229 

horizontal gene transfer event, the existence of phage that have a broad target range (i.e., can 230 

target multiple taxa) or of closely related phage that, while resembling one another, target 231 

distinct genera. 232 

CRISPRs on contigs that were predicted to be plasmids were also identified. 277 putative 233 

CRISPRs were identified on plasmids with 967 spacers from 195 of these CRISPRs matching 234 

phage that infect Streptococcus (884 spacers), Lactobacillus (45), Lactococcus (30), Thermus 235 

(5), and Propionibacterium (3). A total of 155 CRISPRs identified on plasmids contained 236 

spacers that aligned to multiple phage genomes (Figure 6C). Interestingly, in each of the 237 

CRISPRs that contained spacers from Lactocococcus phage, the other spacers were from 238 

Streptococcus phage. Overall, spacers were found to have homology to 10 lactococcal phage 239 

genomes (Figure 6E). The presence of sequences from Streptococcus phage alongside 240 

sequences from Lactococcus phage in the same CRISPRs may represent horizontal gene 241 

transfer of CRISPRs from Streptococcus to Lactococcus via plasmids. 242 

Metagenome assemblies were aligned against a database of 45 anti-CRISPRs (Acrs) to 243 

determine if phage in cheese possessed Acrs (Figure 6 F). Homologs to Acrs were detected in 244 

54.9% of samples, and 4Acrs were detected in >10% of samples: AcrIIA6, AcrIIA7, 245 

AcrIIA3, and AcrVA2. These and 3 other Acrs, AcrIIA1 and AcrIF12, AcrIF3, were found in 246 

≥2 datasets. 247 

248 



DISCUSSION 249 

Studying the microbiota of cheese offers valuable insights into biotechnologically important 250 

processes, such as flavour formation, in addition to fundamentally important processes that 251 

shape microbiomes. Recent advances in bioinformatic tools facilitate the strain-level 252 

identification of microorganisms and the recovery of genomes from metagenomes 17. Here, 253 

these approaches provide the opportunity to characterise the cheese microbiome in a manner 254 

equivalent to that of human gut, rumen and ocean microbiomes 18-22. In this study, 328 MAGs 255 

were recovered from the 184 cheese metagenomes, including 47 MAGs that represent 256 

putatively novel species. Notably, the majority of these species were inferred to belong to 257 

halophilic genera (e.g., Psychrobacter, Halomonas) that have been detected in cheeses 258 

previously 5,23. It is likely that these halophiles are introduced during cheese making and thus 259 

their presence is not unexpected. Aside from halophiles, a number of the putative novel 260 

species were inferred to belong to genera that are associated with the rind (i.e., 261 

Brevibacterium, Corynebacterium, and Arthrobacter; SI1). The recovery of MAGs of 262 

putative novel species from cheeses provides an additional opportunity to investigate if such 263 

species influence the flavour of cheeses. Metabolic modelling of the genomes predicted that 264 

these species secrete compounds that influence flavour (e.g., ammonium, acetate), but require 265 

validation. The distribution of genes associated with pigment production across different taxa 266 

was assessed, and Psychrobacter were found to encode an enzyme that converts indole to 267 

indoxyl, which then oxidises to form indigo. Psychrobacter had previously been isolated 268 

from cheeses that were discoloured purple 14 and the authors had proposed that this might be 269 

due to the production of indigo. Here, we identify a metabolic pathway that is likely 270 

responsible for this phenomenon. 271 

Previous studies were conducted to identify the correlation between food microbiomes and 272 

metabolomes to examine the ways in which species might influence flavour 3,24. However, 273 



correlation between species and metabolites may mask the effects of strain level variations. 274 

Here, the integration of strain-level metagenomics with metabolomics indicated that 275 

differences in the abundances of strains did correspond to differences in the levels of 276 

volatiles. Specifically, strains from 3 species (i.e., B. linens, L. lactis, and S. thermophilus) 277 

demonstrated measurable differences in their associations with metabolites. This is consistent 278 

with recent in situ experiments demonstrating that manipulating the composition of strains in 279 

cheese influenced its metabolome 25. We propose that the future combined use of strain-level 280 

metagenomics with metabolomics has the potential to expand our knowledge of the effects of 281 

strains on flavour, and may guide the selection and/or development of starters for cheese and 282 

other fermented foods. 283 

A high abundance of phage-associated sequences were identified across the cheeses, 284 

accounting for a predicted 19.76% of the population, although their abundance did vary 285 

between samples. It is worth noting that the DNA extraction method used in this study was 286 

not tailored specifically for the isolation of phage, as was done elsewhere 26, and so the level 287 

of phage detected here might be an underrepresentation of the actual virome. Predation by 288 

phage is a factor that shapes the formation of the cheese microbiota 27, and infection of 289 

starters is the principal cause of fermentation failures during cheese production 28. We 290 

observed that when the abundance of Siphoviridae was present above ~15%, these phage 291 

negatively correlated with the abundance of Streptococcaceae, which suggests that infection 292 

was ongoing. However, the bacteria in the cheeses also possessed defences against phage, 293 

with CRISPRs identified in the metagenome. We analysed the spacers from the detected 294 

CRISPRs to reconstruct the history of infections in the cheeses and found spacers that were 295 

homologous to a combination of different phage that infect 12 genera of bacteria, but the 296 

majority of spacers were homologous to streptococcal phage. Many CRISPRs were found to 297 

contain multiple spacers that corresponded to different phage, which suggested that strains 298 



within cheeses had been exposed to multiple infections. This, combined with evidence of the 299 

importance of phage in LGT, further emphasised the role of phage in shaping the cheese 300 

microbiome.  301 

We found some evidence that CRISPRs were transferred between members of the 302 

microbiota. Firstly, Lactococcus and Staphylococcus MAGs contained CRISPRs whose 303 

spacers aligned to Streptococcus phage. Secondly, numerous spacers were homologous to 304 

lactococcal phage. This is notable as CRISPRs associated with lactococci are rare, and may 305 

represent the acquisition of CRISPRs by lactococci through LGT, after which point exposure 306 

to lactococcal phage occurred. Indeed, there has only been one report of a L. lactis strain with 307 

a CRISPR, and in that case the locus, which was predicted to be inactive, was identified on a 308 

plasmid 29. Notably, CRISPRs containing lactococcal phage were only identified on plasmid 309 

contigs and, interestingly, these loci also contained spacers from streptococcal phage, which 310 

is indicative of possible acquisition of the locus by a Lactococcus species from a 311 

Streptococcus species. However, it should be noted that some lactococcal phage, such as 312 

Lactococcus phage ul36, share similarity to streptococcal phage belonging to the 987 group 313 

30, so this data must be interpreted with caution. The transfer of CRISPRs between species is 314 

not without precedent 29, but it is interesting in the context of cheeses. We have already noted 315 

the abundance of phage in cheese, and this might select for resistance among bacteria, 316 

especially if these bacteria co-inhabit the cheeses over generations. 317 

The fact that phage were abundant despite the prevalence of CRISPRs, suggests that phage 318 

can counteract the host defence, including through anti-CRISPR proteins (Acrs) 31. Indeed, 319 

homologs to Acrs were identified in over half of the samples analysed here. The most 320 

prevalent Acr detected here was AcrIIA6, found on 33% of S. thermophilus phage 321 

genomes32. Other prevalent forms were AcrIIA3, associated with Listeria and Streptococcus 322 

phage33, and AcrIIA7 and AcrVA2, which are widespread34. Our results point to coevolution 323 



of microorganisms within cheese, wherein bacteria evolve defence against phage who 324 

subsequently evolve to overcome this defence.  325 

Numerous studies have reported the isolation of antibiotic resistant bacteria from cheeses 35, 326 

and we found that ARGs were present on 35 MAGs. The occurrence of ARGs in cheeses is 327 

not problematic necessarily if the genes occur on the chromosome and not easily transferred 328 

to gut microbes after consumption. We found that the frequency of ARGs among 329 

representative cheese MAGs was no different to that among representative human MAGs. 330 

Furthermore, ARGs did not occur on the plasmids of LAB, being most commonly found on 331 

plasmids from Enterobacteriaceae and Staphylococcaceae. Similarly, ARGs were only 332 

detected in integrons of Proteobacteria MAGs. Overall, our results highlight that there is 333 

potential for transfer of ARGs between microorganisms in cheese, but this is only among 334 

bacteria that are more likely to be introduced from the environment. Therefore, measures to 335 

optimise hygiene during the manufacture of cheese might minimise the chance of cheese 336 

serving as a reservoir of transmissible ARGs. It is also important to note that future 337 

laboratory based investigations are required to determine the extent to which these ARG-338 

based finding correspond to an associated resistance phenotype. 339 

In addition to the mechanisms available to bacteria to protect against biotic stresses in the 340 

form of antibiotics and phage, bacteria can also kill other competing bacteria via the 341 

production of bacteriocins 36, producers of which have frequently been isolated from cheese 342 

37. Here, we found that Class II/III bacteriocin genes were present in 32.32% of the MAGs 343 

recovered from the samples. As expected, most of the bacteriocins were associated with 344 

species frequently employed in cheese manufacture, such as BlpK from S. thermophilus, 345 

helveticin from L. helveticus, lactococcin from L. lactis, or linocin from B. linens. Indeed, 346 

68.87% of MAGs on which bacteriocins were detected were classified as Brevibacteriaceae, 347 

Lactobacillaceae or Streptococcaceae, though bacteriocins were also detected on MAGs 348 



from other families, including Enterobacteriaceae and Staphylococcaceae. The frequency of 349 

bacteriocin genes across the cheese samples suggests that bacteriocins are enriched in cheese 350 

microbiomes relative to other environments (i.e., human, ocean, rumen), supporting the view 351 

that bacteriocin production is an important trait in cheese. It was also notable that homologs 352 

of the metalloprotease pseudoalterin gene were identified in several halophiles (e.g., 353 

Marinomonas and Halomonas). Pseudoalterin was first identified in Pseudoalteromonas, but 354 

homologs are widespread among Proteobacteria. It has been demonstrated that pseudoalterin 355 

is active against many Gram-positive bacteria. The presence of these genes in cheese-356 

associated Proteobacteria may also provide these bacteria with a competitive advantage when 357 

colonising cheeses. 358 

In conclusion, the present study highlights the heterogeneity of the microbiota of cheese. Our 359 

findings providing further genetic evidence that abiotic and biotic stresses shape cheese 360 

microbiomes. Notably, our results confirm that cheeses contain microbial communities in 361 

flux, wherein bacteria compete amongst themselves by producing bacteriocins and other 362 

antimicrobials, while also protecting themselves from phage by employing CRISPR. 363 

Additionally, the putatively novel species detected may influence the qualities of the cheeses, 364 

which showcases the potential for shotgun metagenomics to further our understanding of 365 

even relatively well characterised environments such as fermented foods. 366 

 367 



 368 

Figure 1. The microbial composition of cheeses. (A) Species that were detected at 0.1% relative abundance in 10% of all 369 

samples (n=184 biologially independent samples). (B) The frequencies of bacteria, eukaryota, and viruses across all samples 370 

(n=184). (C) The relationship between Streptococcaceae and Siphoviridae across all samples (n=184).   371 



 372 

Figure 2. The relationship between strain-level variation and the metabolome. (A) Variance in the metabolome explained by 373 

the abundances of strains. The colour of a strain indicates if it was significantly associated with variance in the metabolome, 374 

as shown in the legend. Samples are represented by circles while the volatiles that were detected in those samples are 375 

represented by crosses. (B) Spearman rank correlation coefficients of strains and volatiles. Significant correlations are 376 

denoted by asterisks. (C) Differences in the correlations of strains, based on the comparison of Fisher z-transformed 377 

Spearman correlation coefficients. Strains are labelled with the assembly accession number of their best match in the 378 

pangenome database. The number of samples in which each strain was detected was as follows: GCF_001729525 (n=9), 379 

GCF_002332445 (n=7), GCF_000194765 (n=6), GCF_003957435 (n=17), GCF_000006865 (n=66), GCF_900240895 380 

(n=24), GCF_00469115 (n=7), GCF_00473935 (n=7), GCF_000253395 (n=13), and GCF_000836675 (n=39). 381 

  382 



 383 

Figure 3. Assembly and characterisation of cheese MAGs. (A) The quality of metagenome assembled genomes (MAGs). 384 

(B) The phylogeny of MAGs. The triangles on the edge of the tree indicate that a MAG could not be assigned to a species. 385 

(C) The families to which MAGs were assigned. (D) Metabolites that were predicted to be secreted by >10 MAGs from 386 

putative novel species. (E) The prevalence of carotenoid genes in MAGs. (F) The proportion of Psychrobacter MAGs 387 

encoding indole-3-acetate monooxygenase (EC 1.14.13.235).  388 



 389 

Figure 4. Analysis of antibiotic resistance genes (ARGs) on cheese metagenome assembled genomes (MAGs) and plasmids 390 

(A) The classes of ARGs detected on MAGs and plasmids. (B) The taxonomic classification of MAGs and plasmids on 391 

which ARGs were detected. (C) The number and taxonomic classification of MAGs harboring bacteriocin genes. (D) The 392 

number and taxonomic classification of MAGs putatively encoding homologs to pseudoalterin. (E) The frequency of ARGs 393 

and bacteriocin genes in representative MAGs. 394 

  395 



 396 

Figure 5. Lateral gene transfer (LGT) in cheese microbiomes. (A) The taxa within in which LGTs were detected. (B) The 397 

frequency of LGTs in cheese metagenomes, expressed as LGTs/kb (note: the frequency of LGTs in the Escobar-Zepeda 398 

sample is represented by a dashed line). 399 
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 401 

Figure 6. Phage, CRISPRs and anti-CRISPRs in cheese microbiomes (A) The proportions of MAGs from each genus that 402 

contained viral signals. (B) Phage to which spacers aligned. (C) The number of phage genomes to which spacers from each 403 

locus aligned. (D) The number of spacers from CRISPRs on MAGs that aligned to phage. (E) The lactococcal phage to 404 

which spacers aligned. (F) Anti-CRISPRs (Acrs) in the cheese microbiome.  405 



METHODS 406 

Sample collection, preparation and analysis 407 
A total of 55 artisanal cheese samples were obtained across 27 artisanal farm producers and 408 

farmer’s markets throughout Ireland. The samples included 15 soft cheeses, 16 semi-hard 409 

cheeses and 24 hard cheeses, manufactured from unpasteurised or pasteurised cow, goat or 410 

sheep milk (Supplementary Table 11). Approaches taken for sample collection, storage, DNA 411 

extraction, sequencing and volatile analysis are described in Supplementary Methods.  412 

Bioinformatic analysis 413 

Shotgun metagenomic fastq files were converted to bam files using SAMtools 38, and 414 

duplicate reads were subsequently removed using Picard Tools 415 

(https://github.com/broadinstitute/picard). Next, low quality reads were removed using the 416 

trimBWAstyle.usingBam.pl script 417 

(https://github.com/genome/genome/blob/master/lib/perl/Genome/Site/TGI/Hmp/HmpSraPro418 

cess/trimBWAstyle.usingBam.pl). Specifically, reads with a quality score less than Q30 were 419 

discarded. Resulting fastq files were converted to fasta files using the fq2fa option from 420 

IDBA-UD 39. The number of quality reads for each of the newly sequenced samples is 421 

reported in Supplementary Table 11. Compositional analysis was performed using 422 

MetaPhlAn2 40. Strain-level analysis was performed using PanPhlAn 11. If a strain was 423 

identified by PanPhlAn, the abundance of that strain was inferred as the abundance of the 424 

species, as measured by MetaPhlAn2, to which that strain belonged. Functional analysis was 425 

performed using SUPER-FOCUS 41. 426 

Metagenome assembly was performed using IDBA-UD. PlasFlow 42 was used to identify 427 

plasmid contigs in metagenome assemblies, and Kaiju was used to determine the taxonomy 428 

of these contigs 43. Lateral gene transfer (LGT) events were identified in assembled 429 

metagenomes using WAAFLE (http://huttenhower.sph.harvard.edu/waafle), which was run 430 

https://github.com/broadinstitute/picard
http://huttenhower.sph.harvard.edu/waafle


with contig-level quality control. Genome binning was performed using MetaBAT 2 44, with 431 

default settings. Reads were mapped against assemblies using Bowtie 2 45. CheckM 46 was 432 

used to assess the quality of metagenome assembled genomes (MAGs). Low quality MAGs 433 

(i.e., <80% completeness and/or >10% contamination) were excluded from further analysis. 434 

Next, CAT-BAT was used to classify the MAGs, while PhyloPhlAn 47 was used to infer the 435 

taxonomy of MAGs. The average nucleotide identity (ANI) of MAGs to references, which 436 

were downloaded from RefSeq 48, was calculated using FastANI 49. dRep 50 was used to 437 

cluster genomes into primary clusters based on their relative similarities. Prodigal 51 was used 438 

to identify open reading frames on MAGs, which were annotated using eggNOG-mapper 439 

52,53. The prevalence of carotenoid genes on MAGs was assessed by aligning contigs against 440 

the ProCarDB 54 database of bacterial carotenoids. CarveMe 55 was used to build metabolic 441 

models from MAGs. The models were initiated under a medium that was designed to 442 

replicate cheese agar medium (CAM) 56 (Supplementary Table 14). Flux balance analysis 443 

(FBA) was performed using COBRApy 57 (Python 3.6), to simulate the metabolism of the 444 

organisms. 445 

RGI was used for the detection of ARGs (antibiotic resistance genes) on contigs (note: only 446 

"perfect" matches were considered as ARGs), while IntegronFinder 58 was used to detect 447 

ARGs in integrons. The prevalence of bacteriocin genes across MAGs was estimated using 448 

BAGEL3 59. The prevalence of pseudoalterin 16 was determined by aligning the protein 449 

against MAGs. dRep 50 was used to dereplicate MAGs from cheeses to select those that 450 

represented the diversity within the microbiome, and the frequencies of genes of interest 451 

among representatives from cheeses were compared to those among representatives from 452 

other environments (Supplementary Table 15). VirSorter 60 was used to detect prophage in 453 

MAGs. CRISPRs were detected from short metagenomic reads using Crass 61, while 454 

CRISPRs were identified in MAGs and plasmid contigs using MinCED 455 



(https://github.com/ctSkennerton/minced). BLASTn 62 was used to align CRISPR spacer 456 

sequences against the RefSeq viral database. The prevalence of anti-CRISPR proteins was 457 

assessed by using tBLASTx to align metagenome assemblies against a database of Acrs 63.  458 

Statistical analysis and data visualisation 459 

The R package vegan 64 was used for alpha diversity analysis, in addition to non-metric 460 

multidimensional scaling (nMDS). The Wilcoxon Rank Sum Test was used to measure 461 

statistical differences in alpha diversity between groups. PERMANOVA (PERMutational 462 

ANalysis Of VAriance) was performed using the adonis function from vegan. The linear 463 

discriminant analysis (LDA) effect size (LEfSe) method 65 was used to determine if any taxa, 464 

as measured by MetaPhlAn2, or pathways, as measured by SUPER-FOCUS, were 465 

differentially abundant between groups. Spearman’s test was used to measure the association 466 

of strains with metabolites, and p-values were adjusted using the Bonferroni correction. If a 467 

cheese was sampled from both regions (i.e., core and rind), its abundance was taken as the 468 

average across these regions. Spearman rank correlation coefficients were compared using 469 

the Fisher transformation. Nonlinear correlation analysis was performed using the nlcor R 470 

package (https://github.com/ProcessMiner/nlcor/). Fisher’s exact test was used to determine 471 

if genes of interest were enriched in cheese compared to other environments. . Data was 472 

visualised using GraPhlAn 66 and the R packages ggplot2 67 and pheatmap 68. 473 

Data availability 474 

Raw reads have been deposited to the European Nucleotide Archive under the project 475 

accession number PRJEB32768, while MAGs are available here 476 

https://drive.google.com/file/d/1TCLYBX7kkxNUWn4jr4YGXNL_qV97lc70/view. 477 
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Supplemental Information 1 

Supplementary Results 2 

Sample collection and DNA sequencing 3 

Samples were collected in sterile bags, transported and maintained at 4°C until the analyses 4 

were performed. For rind analysis, a total of 22 sub-samples from across the 55 cheeses were 5 

collected by scraping the rind surface with a sterile razor blade and transferring rind samples 6 

in sterile bags. Up to three wheels for each cheese were tested to account for production 7 

variation. A subsample of 100g from each cheese was stored at −20°C prior to flavour 8 

analysis. To facilitate the culture independent analysis of the bacterial composition of the 9 

cheeses, their associated rinds, naturally developed or smear-ripened cheese rinds, 2g of 10 

cheese or 2g of cheese rind was combined with 8ml 2% tri-sodium citrate and homogenised 11 

before DNA was extracted using the PowerFood Total Microbial DNA Isolation kit as 12 

described in the manufacturer’s protocol (MoBio Laboratories Inc., USA). Total DNA was 13 

quantified with the Qubit high-sensitivity DNA assay (Bio-Sciences, Dublin, Ireland). 14 

Whole-metagenome shotgun libraries were prepared in accordance with the Nextera XT 15 

DNA library preparation guide from Illumina. Libraries were sequenced on the Illumina 16 

NextSeq 500 with a v2 NextSeq 500/550 high-output reagent kit (300 cycles). All sequencing 17 

was done in the Teagasc sequencing facility (Moorepark, Cork, Ireland) in accordance with 18 

standard Illumina sequencing protocols. 19 

 20 

HS-SPME GCMS Analysis 21 

Sample preparation 22 



4 g of sample was weighed into to a 20 ml amber screw capped SPME vial (Apex Scientific 23 

Ltd, Maynooth, Ireland). The vial was sealed with a magnetic screw capped silicone/PTFE 24 

liner septum and equilibrated to 40°C for 10 mins with pulsed agitation of 5 sec at 500 rpm 25 

using a Shimadzu AOC 5000 autosampler (Mason Technology Ltd, Dublin, Ireland). The 26 

samples were analysed in duplicate. A single 50/30 μm 27 

CarboxenTM/divinylbenzene/polydimethylsiloxane (DVB/CAR/PDMS) fibre (Agilent 28 

Technologies Ireland Ltd, Cork, Ireland) was used. The fibre was exposed to the headspace 29 

above the samples for 20 min at depth of 1 cm at 40°C. 30 

GCMS Method 31 

The fibre was retracted and injected into the GC inlet and desorbed for 2 min at 250°C using 32 

a Shimadzu 2010 Plus GC (Mason Technologies Ltd, Ireland) with a DB-5MS (60m x 33 

0.25mm x 0.25μm) column (Agilent Technologies Ireland Ltd) using a split/splitless injector 34 

in splitless mode with a merlin microseal (Merck, Arklow, Ireland). The temperature of the 35 

column oven was set at 35°C, held for 0.5 min, increased at 6.5°C/min to 230°C then 36 

increased at 15°C/min to 320°C, yielding at total GC run time of 41.5 min. The carrier gas 37 

was helium held at a constant pressure of 23 psi. The detector was a Shimadzu TQ8030 mass 38 

spectrometer detector (Mason Technologies Ltd), ran in single quad mode. The ion source 39 

temperature was 220°C and the interface temperature was set at 280°C. The MS mode was 40 

electronic ionization (70 V) with the mass range scanned between 35 and 250 amu. 41 

Compounds were identified using mass spectra comparisons to the NIST 2014 mass spectral 42 

library and an in-house library created in Shimadzu GCMS Solutions software (Mason 43 

Technologies Ltd)  with target and qualifier ions and linear retention indices 17 for each 44 

compound. Spectral deconvolution was also performed to confirm identification of 45 

compounds using R (www.r-project.org/) and AMDIS (www.amdis.net/). An auto-tune of the 46 

GCMS was carried out prior to the analysis to ensure optimal GCMS performance. A set of 47 



external standards was ran at the start and end of the sample set and abundances were 48 

compared to known amounts to ensure that both the SPME extraction and MS detection was 49 

performing within specification. 50 

  51 



Supplementary Results 52 

The present study included 55 newly sequenced artisanal Irish cheeses, comprising 55 core 53 

cheese samples and 22 rind samples of these cheeses were also sequenced. Thus, the dataset 54 

included 77 samples in total, and the microbial profiles of subgroupings of these samples 55 

were compared. Firstly, the core microbiota was compared to the rind microbiota and, despite 56 

there being no significant difference in alpha diversity measures between the sites (Figure 57 

S1A), PERMANOVA detected a significant dissimilarity between the regions (p=0.002, 58 

R2=0.09) (Figure S1B). 59 

 LEfSe determined that 58 taxa, including 16 species, were differentially abundant between 60 

the regions (Figure S1C; Table S10). L. lactis (LDA=5.21) was highest in the core, whereas 61 

B. linens (LDA=4.68) was highest on the rind. Among phage, the Lactococcus phage ul36 62 

(LDA=4.37) was highest in the core. Several halophiles were enriched on the rind, including 63 

species from the genera Halomonas (LDA=4.32), Psychrobacter (LDA=3.50), and 64 

Tetragenococcus (LDA=3.51). PERMANOVA did not detect a significant dissimilarity 65 

between cheeses produced with pasteurised versus unpasteurised milks (Figure S2A), either 66 

in the core (p=0.194, R2=0.031) or in the rind (p=0.219, R2=0.085), and pasteurisation of the 67 

milk did not have a significant impact on the alpha diversity of the resultant cheeses (Figure 68 

S2B). However, LEfSe revealed that 7 species (Figure S2C) were differentially abundant 69 

between these groups. In the core, Lactococcus raffinolactis (LDA=3.10) was highest in 70 

pasteurised cheeses, whereas Lactobacillus casei paracasei (LDA=3.24), Lactobacillus 71 

otakiensis (LDA=2.52) and Pediococcus pentosaceus (LDA=2.52) were highest in 72 

unpasteurised cheeses. In the rind, Lactococcus phage P680 (LDA=5.03) and Staphylococcus 73 

saprophyticus (LDA=4.48) were highest in pasteurised cheeses, whereas Arthrobacter 74 

arilaitensis (LDA=4.52) was highest in unpasteurised cheeses. Next, the relationship between 75 

cheese maturity/hardness and the microbiota was assessed. PERMANOVA revealed that the 76 

core microbiota of soft cheese was significantly dissimilar to that of more mature semi-hard 77 

(p=0.034, R2=0.074) and hard (p=0.026, R2=0.056) cheeses (Figure S3A). Similarly, the rind 78 

microbiota of soft cheeses was also significantly dissimilar to that of semi-hard (p=0.003, 79 

R2=0.154) and hard (p=0.007, R2=0.130) cheeses. However, maturity did not have a 80 

significant effect on the alpha diversity of the cheeses (Figure S3B). LEfSe determined that 81 

29 taxa, including 9 species, were discriminative between cheeses of different 82 

maturity/moisture content (Figure S3C). Notably, in the core, several lactobacilli were 83 

enriched in soft cheeses (Table S11), while on the rind, B. linens (LDA=4.98) was highest in 84 



hard cheeses, S. thermophilus (LDA=4.53) was highest in semi-hard cheeses, and eukaryotes 85 

were highest in soft cheeses (LDA=4.03). The microbiota of cheeses produced with milk 86 

from different animals was also compared. However, the low number of samples from 87 

cheeses produced with either buffalo or sheep milk meant that pairwise comparisons between 88 

cheeses made with milk from these animals were not meaningful. PERMANOVA indicated 89 

that, overall, there were significant dissimilarities between the core microbiota of different 90 

animal milk cheeses (p=0.042, R2=0.091). 91 

Functional analysis was performed using SUPER-FOCUS. PERMANOVA detected a 92 

significant dissimilarity between the core versus the rind microbiota with respect to the 93 

abundances of pathways as predicted by SUPER-FOCUS (p=0.001, R2=197) (Figure S4A), 94 

and LEfSe determined that 22 level 1 subsystems (Figure S4B), in addition to 93 level 2 95 

subsystems, were differentially abundant between these regions (Table S12). Pathways 96 

associated with fermentation (LDA=3.22) were highest in the core, whereas those associated 97 

with amino acids and derivatives (LDA=4.10), fatty acids (LDA=3.47) and sulphur 98 

metabolism (LDA=3.28) were highest in the rind. Several interesting differences in the 99 

abundances of pathways associated with niche-specific adaptation were also observed. 100 

Specifically, genes associated with bacteriocins (LDA=2.59) were highest in the core, 101 

whereas those associated with iron acquisition and metabolism (LDA=3.32) were highest in 102 

the rind. Additionally, genes associated with osmotic stress (LDA=3.51) and oxidative stress 103 

(LDA=3.39) were highest in the rind. PERMANOVA did not detect significant overall 104 

functional dissimilarities between cheeses of different levels of maturity (Figure S5A), or 105 

cheeses produced using pasteurised versus unpasteurised milks (Figure S5B). However, 106 

LEfSe determined that 6 level 1 subsystems, in addition to 26 level 2 subsystems, were 107 

differentially abundant between cheeses of different maturity (Table S13), and determined 108 

that 1 level 1 subsystems, in addition to 10 level 2 subsystems, were differentially abundant 109 

between cheeses produced with pasteurised versus unpasteurised milks (Table S14). Again, 110 

LEfSe identified differentially abundant pathways that highlighted adaptations to cheese. 111 

Notably, genes associated with desiccation stress (LDA=2.46) were highest on the rind of 112 

hard cheeses, while those associated with cold shock (LDA=2.03) were highest on the rind of 113 

unpasteurised cheeses. No significant dissimilarity was observed between cheeses produced 114 

from the milks of different animals (p=0.607, R2=0.030). 115 

 116 



Supplementary Discussion 117 

It has been demonstrated that the rind represents a model in which to study the formation of 118 

microbiota 1. In the present study, a subset of cheeses were sampled from the core in addition 119 

to the rind, and the microbiome of the two regions was compared. Our results indicated that 120 

abiotic factors predictably shaped the microbiome of these microenvironments. For example, 121 

it was observed that  halophiles, which are associated with saltwater, were enriched on the 122 

rind, and it is likely that these halophiles were present in the brine used to wash the rinds, as 123 

reported elsewhere 1,2. Genes associated with osmostic stress response were highest on the 124 

rind, which provides further evidence that microorganisms on the rind are adapted to salinity. 125 

Additionally, genes associated with the oxidative stress response were also highest on the 126 

rind, which is to be expected since microorganisms on the surface are in contact with oxygen. 127 

We also found that genes associated with the acquisition of iron were highest on the rind, 128 

which reflects the fact that iron is limiting on the surface 3. Other differences were observed 129 

between different groupings of cheese, which provided further examples of adaptations to 130 

these foods. Notably, comparison of cheeses based on their moisture content revealed that 131 

genes associated with desiccation stress responses were highest in cheeses with low moisture 132 

contents, while comparison of samples based on pasteurisation revealed that genes associated 133 

with cold shock responses were highest in cheeses that were made with unpasteurised milks. 134 

Overall, these results are predictable, since they confirm what is already known about the 135 

environment, but this predictability is remarkable in that it reemphasises the suitability of 136 

cheese as a model. Specifically, we demonstrated that the cheese microbiome was adapted to 137 

the cheese environment, which suggests that the microbiome can be manipulated by 138 

manipulating the environment itself. 139 

 140 
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 152 

Figure S1. The (A) beta and (B) alpha diversity of the core and rind of newly sequenced samples. (C) Taxa that were 153 
differentially abundant between the core and rind, as determined by LEfSe. 154 
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 156 

Figure S2. Compositional analysis of newly sequenced cheeses produced with pasteurized versus unpasteurized cheeses. (A) 157 
Beta and (B) alpha diversity of pasteurized and unpasteurized cheeses. (C) Species that were differentially abundant between 158 
pasteurized versus unpasteurized cheeses. 159 

 160 



 161 

Figure S3. The (A) beta and (B) alpha diversity of cheeses of different maturity. (C) Taxa that were differentially abundant 162 
between cheeses of different maturity. 163 
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 165 

Figure S4. (A) The functional dissimilarity between the core and rind. (B) SUPER-FOCUS level 1 subsystems that were 166 
differentially abundant between the core and rind, as determined by LEfSe. 167 
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 169 

Figure S5. The functional dissimilarity between (A) cheeses of different maturity and (B) cheeses of pasteurized versus 170 
unpasteurized cheeses. 171 
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