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A B S T R A C T   

Cyberinfrastructure needs to be advanced to enable open and reproducible environmental modeling research. 
Recent efforts toward this goal have focused on advancing online repositories for data and model sharing, online 
computational environments along with containerization technology and notebooks for capturing reproducible 
computational studies, and Application Programming Interfaces (APIs) for simulation models to foster intuitive 
programmatic control. The objective of this research is to show how these efforts can be integrated to support 
reproducible environmental modeling. We present first the high-level concept and general approach for inte
grating these three components. We then present one possible implementation that integrates HydroShare (an 
online repository), CUAHSI JupyterHub and CyberGIS-Jupyter for Water (computational environments), and 
pySUMMA (a model API) to support open and reproducible hydrologic modeling. We apply the example 
implementation for a hydrologic modeling use case to demonstrate how the approach can advance reproducible 
environmental modeling through the seamless integration of cyberinfrastructure services.   

1. Introduction 

There is a growing acknowledgment and awareness of the repro
ducibility challenge facing computational environmental modeling 
fields (Hutton et al., 2016; Stagge et al., 2019) as well as in other 
computational modeling disciplines (Baker, 2016; McNutt, 2014; Na
tional Academies of Sciences, 2019). According to a survey of 1576 re
searchers, about 70% had tried but failed to reproduce published 
research and 90% agreed that the problem of reproducibility is a critical 

problem for scientific advancement (Baker, 2016). Within the hydrology 
and water resources fields, Stagge et al. (2019) analyzed 360 articles in 
six leading journals to understand if their data were available online and 
if the study results were reproducible. Their analysis showed that only 
5.6% of the articles had data and model code available online along with 
directions for use, and only 1.1% were fully reproducible while 0.6% 
were partially reproducible. There are many possible reasons for this 
outcome; however, we argue along with others that advances in the 
cyberinfrastructure that enable modern computational science is critical 
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to achieving reproducible research (Hut et al., 2017; Hutton et al., 
2016). 

Reviewing recent research toward this goal of improving the un
derlying cyberinfrastructure necessary to support reproducible compu
tational studies, we see three distinct thrusts: 1) open sharing of data and 
models online, 2) encapsulating computational environments through 
containers and self-documented computational notebooks, and 3) 
creating Application Programming Interfaces (APIs) for programmatic 
control of complex computational models. A major effort to improve the 
open sharing of data and models is the FAIR (Findable, Accessible, 
Interoperable, Reusable) guiding principles for scientific data manage
ment and stewardship (Wilkinson et al., 2016). However, FAIR princi
ples speak primarily to openness, which is essential but insufficient on 
its own for addressing reproducibility of computational software and 
computational environments (Bast, 2019). Ince et al. (2012) argued 
that, even with well-developed data and software sharing capabilities, it 
remains challenging to reproduce published results due to difficulties in 
documenting computational environments needed to repeat past 
studies. Moreover, they found this especially true for operating system 
environments and software dependencies that can cause unpredictable 
differences with even slight changes in model source code or 
configuration. 

To address this need, a second thrust in recent research is aimed at 
overcoming the difficulties with sharing complete computational soft
ware environments. Research that has focused on improving the sharing 
of well documented data and software workflows for computational 
studies includes Stodden and Miguez (2013), for example, who proposed 
sharing data, algorithms, and workflows to utilize and verify published 
results. Similarly, Gil et al. (2016) suggested the best practices of sharing 
data, software, and documents in an open and transparent way using a 
high-level roadmap of approaches to strengthen reproducibility in the 
geosciences. In the meantime, the broader information technology 
community has introduced the concept of containers as a means for 
encapsulating computational environments (Kurtzer et al., 2017; Mer
kel, 2014). The result of this work has benefited computational 
modeling fields and led to efforts to improve the preservation of oper
ating system and software dependencies, strengthening reproducibility 
in computational research (Boettiger, 2015; Brinckman et al., 2019). 
Containerization technologies such as Docker (Merkel, 2014) have been 
used to reproduce computational modeling environments without 
requiring users to install additional dependencies (Boettiger, 2015; 
Signell and Pothina, 2019). Software tools like Sciunit (Essawy et al., 
2018; Yuan et al., 2018) ease the process of containerizing, sharing, and 
tracking scientific applications, lowering the barrier to entry for re
searchers to use containerization tools. 

Containerization has also led to the ability to create new modeling 
environments and deploy them through interactive, online analysis en
vironments such as JupyterHub (Kluyver et al., 2016). Jupyter note
books are quickly growing in use and popularity in computational fields 
as a means to document studies as a mix of formatted text, mathematical 
equations, and executable code with in-line visualizations resulting from 
the code (Kluyver et al., 2016). JupyterHub is a cloud-based software 
that utilizes containerization to support the execution of multiple 
Jupyter notebooks simultaneously. Recent advances leveraging Jupyter 
for environmental modeling include work by Castronova et al. (2018) 
who created the CUAHSI JupyterHub to support online hydrologic 
modeling and analysis, Yin et al. (2017) who created a TauDEM (Tar
boton, 1997) modeling environment with JupyterHub, Eynard-Bon
temps et al. (2019) who created the PANGEO project that supports big 
data studies in the geosciences and heavily leverages JupyterHub, and 
Bandaragoda et al. (2019) who used JupyterHub within a larger 
knowledge infrastructure to support earth system modeling. Recent 
work has also begun to explore combining external computational en
vironments including high performance computing (HPC) and high 
throughput computing (HTC) cyberinfrastructure for model execution 
directly through Jupyter notebooks (Lyu et al., 2019). That work also 

takes advantage of containerization concepts to easily port preconfig
ured model execution environments to available computational 
resources. 

The third thrust we observe in recent research is efforts to create APIs 
for computational environmental models. While many models have 
Graphical User Interfaces (GUIs) for improving the usability of the 
models, APIs are different in that they facilitate programmatically 
interacting with a simulation model to configure input files, execute 
models, and analyze model outputs. Python (https://www.python.org) 
and R (https://www.r-project.org) are common programming languages 
used for creating model APIs. Python has examples including model APIs 
for the Stormwater Management Model (PySWMM, McDonnell, 2017), 
MODFLOW (FloPy, Bakker et al., 2016), Hydrologic Simulation Program 
in Fortran (PyHSPF, Lampert and Wu, 2015), and Precipitation Runoff 
Modeling System (PRMS-Python, Volk and Turner, 2019). R has exam
ples including model APIs for TOPMODEL (topmodel, Buytaert, 2011), 
SWAT (SWATmodel, Fuka et al., 2014), and TUW model (TUWmodel, 
Viglione and Parajka, 2020). These model APIs help by abstracting 
low-level programmatic details of input file manipulation and model 
execution operations from end users. In this way, they are particularly 
useful when combined with computational notebooks for creating 
self-documented modeling studies that can be more easily understood 
and reproduced by both modelers and non-modelers alike. 

While work along each of these thrusts – online data repositories, 
computational environments leveraging containerization and compu
tational notebooks, and model APIs – is important individually, inte
grating these three thrusts offers a powerful approach for reproducible 
computational modeling. Recent research has started to explore this 
integration includes 1) the GI-RHESSys (Green Infrastructure-Regional 
Hydro-Ecological Simulation System) Jupyter environment created for 
Green Infrastructure (GI) landscape designs and modeling output using 
JupyterHub (Leonard et al., 2019), 2) the Landlab model (Hobley et al., 
2017) with recent work to implement Landlab within JupyterHub as a 
knowledge infrastructure (Bandaragoda et al., 2019), and 3) the 
HydroTerre system (Leonard and Duffy, 2016) that links an online data 
repository with the Penn State Integrated Hydrologic Model (PIHM). 
While these examples focused on supporting individual modeling use 
cases, they reveal general patterns of infrastructure components neces
sary to implement their systems. Our aim is to build on this past work by 
first presenting this general pattern as a general approach that can be 
followed for building new modeling systems. Second, we provide an 
example implementation of the general approach that can be easily 
expanded to support any computational environmental model that is 
containerized and has an accompanying model API. 

The objective of this research is, therefore, to put forward a general 
approach or framework for integrating online data repositories, 
computational environments, and model APIs to enable more open and 
reproducible environmental modeling. In the Methodology section, we 
first present a high-level design of the approach describing each of the 
three components in more detail while also discussing different options 
available for online repositories, notebook-based and containerized 
modeling environments, and model APIs. We then present an example 
implementation that makes use of HydroShare as an online repository, 
CUAHSI JupyterHub and CyberGIS-Jupyter for Water as computational 
environments, and pySUMMA as an example model API. In the Results 
and Discussion section, we present the results of applying the example 
implementation to reproduce a prior hydrologic modeling study (Clark 
et al., 2015b) and discuss the difficulty and nuance in claiming to ach
ieve reproducibility. We also present limitations of the work that could 
be a focus of future research. Finally, we conclude by summarizing the 
findings and emphasizing their contribution to the larger goal of making 
past and future studies simpler to reproduce through advances in 
cyberinfrastructure. 
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2. Methodology 

In this section, we describe the general approach being put forward 
for open and reproducible environmental modeling (Section 2.1) and 
then present an example implementation of this general approach for 
hydrologic modeling (Section 2.2). 

2.1. Overview of general approach and description of system components 

The general modeling system approach considered in this research 
consists of three primary components (Fig. 1). Component 1 is the online 
repository where data, models, and notebooks can be openly shared with 
the community. Component 2 is the JupyterHub computational envi
ronment where containerized models can be executed using notebooks. 
Component 3 consists of a collection of model APIs, one for each model 
supported within the system, that allow for programmatic configuration, 
execution, and visualization through computational notebooks. The 
three components are integrated through seamless data transfers to 
create a powerful framework for open and reproducible modeling ana
lyses. In practice, we anticipate that this general approach or framework 
may have many different physical implementations, where different 
technologies may serve the needs of specific subcommunities within the 
broader environmental modeling field. We demonstrate one such 
implementation in Section 2.2 for the hydrology community. In the 
following subsections, we describe each of these components in more 
detail while also providing examples of each that are available for 
integration. 

2.1.1. Online repository 
Online repositories allow for storing, sharing, and publishing data, 

metadata, and other resources required to reproduce computational 
research findings. These online repositories often support a rich set of 
user-friendly features such as metadata capture, persistent digital object 
identifiers (DOIs), and extensive APIs for programmatically creating, 
updating, and deleting resources. They also often support various data 
types such as documents, figures, code, audio, and video with metadata 
tailored to each data type. Some examples of online repositories used by 
researchers include DataOne member nodes (https://www.dataone. 

org), FigShare (https://figshare.com), Harvard Dataverse (https://data 
verse.harvard.edu), and HydroShare (https://www.hydroshare.org). 

Many online repositories serve broad scientific communities and, 
therefore, maintain only general and widely applicable capabilities. 
Others are more targeted to specific communities and, as a result, can 
offer more specific functionality. Environmental modeling, for example, 
is not a common use case for many repositories that focus on more 
general data sharing needs (e.g., FigShare). Environmental models, 
however, have their own characteristics that consist of software, input 
and output files, and data processing workflows. Morsy et al. (2017) 
described these unique needs of models being stored in data repositories 
and presented a data model design including metadata descriptions for 
key modeling objects to support flexible and applicable model sharing 
framework. This design is implemented within the HydroShare data 
repository, allowing for describing and sharing more specific model 
resource types. 

2.1.2. Computational environment 
A computational environment serves as a gateway for model 

configuration, execution, and post-processing. In the case of model 
execution, environmental modeling often includes complex simulation 
models along with data pre- and post-processing software, all with 
software dependencies that range from the operating system, to modules 
used within a model engine, to libraries used by data processing and 
analysis software (e.g., Python libraries). Without the ability to replicate 
a computational environment, slight inconsistencies in software de
pendencies can result in well-documented model studies failing when 
ported to a new machine. Without the use of recent innovations like 
containers, documenting the exact computational environment used in 
an analysis is difficult, time consuming, and error prone. To overcome 
these challenges, Docker (Merkel, 2014) and Singularity (Kurtzer et al., 
2017) have emerged as containerization techniques used to encapsulate 
a computational modeling environment, as described further in the 
implementation (see Section 2.2). 

Along with containers, computational gateway interfaces are also 
critical to lowering the barrier to entry and supporting more open and 
reproducible modeling in online computational environments. With the 
emergence of JupyterHub as a gateway innovation, there has been an 
increased interest in cloud-based modeling environments for creating, 
editing, and running computational notebooks. Markham (2019) 
reviewed five popular cloud services that support computational note
books (Table 1). We reviewed two additional cloud services, 1) CUAHSI 
JupyterHub (hereafter CUAHSI JH) and 2) CyberGIS-Jupyter for Water 
(hereafter CyberGIS JW), and included them in Table 1 as well. The 
environments range from scientific services (e.g., the CUAHSI JH and 
CyberGIS JW that are used in this work) to more general services such as 
Binder (Jupyter Project et al., 2018). Large technology companies 
including Google and Microsoft have provided notebook execution en
vironments such as Google Colab and Microsoft Azure Notebooks, 
demonstrating the popularity and growing interest in a variety of fields. 
Many cloud services have adopted the default Jupyter interface avail
able from the Jupyter project without modification, while others have 
modified this interface to customize it for their own purposes (Markham, 
2019). Furthermore, many cloud services support Python, R and other 
languages as well. Interface similarity in Table 1 considers available 
menus, buttons, and other visual elements that make up the user inter
face, and how different they are from a default Jupyter interface. All 
services listed in Table 1 are candidates for integration into an imple
mentation of the modeling system described in this paper. 

2.1.3. Model APIs 
An API defines a set of protocols or tools to communicate with an 

operating system, database, network, and other lower-level aspects of a 
software system (Reddy, 2011). The abstraction provided by an API has 
benefits (Brooks, 2013) including: 1) flexibility and efficiency for data 
access, 2) personalization to customize the functionality that users 

Fig. 1. A general modeling approach consisting of three primary components 
with seamless data transfers for open and reproducible environ
mental modeling. 
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access the most, and 3) reusability of code to work more productively. 
Examples of widely used APIs include the Google Maps API for map 
services and the Twitter API for social networking services. Services also 
widely exist for scientific systems relevant to environmental modeling 
including the HydroShare REST (Representational State Transfer) API 
for sharing and publishing water data as well as APIs for a growing 
number of environmental models. 

In this study, we focused on Python-based model APIs and reviewed 
a series of model APIs including PRMS-Python (Volk and Turner, 2019) 
and PyHSPF (Lampert and Wu, 2015) to better understand how they are 
designed and structured. Doing this can help to inform the design and 
structure of future APIs created to support specific environmental 
models. We observed that model API functionalities fell into three cat
egories: model input, model execution, and model output (Table 2). For 
PRMS-Python, as an example, input files often have corresponding Py
thon modules that can be used for data manipulation. For PyHSPF, as an 
example, the Python modules do not have a one-to-one correspondence 
with the core model files and modules. Instead, the API designs include a 
higher-level abstraction to consider core classes needed for interacting 
with the model. 

From this review, we suggest that communities of modelers (e.g., 
researchers or groups of researchers) who are considering building a 
model API for a specific environmental model begin with answering the 
following questions: 1) What configuration and input files should be 
exposed through the API to allow for programmatic changes and what 
are the logical classes for organizing these model input configuration 
attributes? 2) What methods and attributes should the API expose for 
executing the model and refining the model through, for example, 
calibration or sensitivity analysis? 3) What are common visualizations of 
the model output that many users would wish to produce? Creating a 
model API with this functionality in a well thought through design will 
serve as a solid foundation for future extensions to the software. 
Furthermore, the extent to which environmental model APIs can adopt 
conventions for the organization of their design and structure will allow 
users to more easily learn new model APIs by having some consistency 
across model APIs. 

2.2. Example implementation 

In this section, we present one possible physical implementation of 

approach described in the prior section. This example implementation 
uses HydroShare as the online repository, CUAHSI JH and CyberGIS JW 
the computational environments, and pySUMMA as one of potentially 
many model APIs within the system. While this example implementation 
targets the needs of the hydrologic modeling community, we anticipate 
that multiple other permutations of the technologies described in the 
prior section could be assembled to meet the needs of other environ
mental modeling communities. 

2.2.1. HydroShare as the online repository 
We used HydroShare as the data repository in our example imple

mentation due to both its flexibility and tailored functionality for sup
porting environmental modeling use cases. HydroShare is an online 
repository tailored for the needs of the hydrologic community, but 
general enough to satisfy other environmental modeling needs (Tarbo
ton et al., 2014). HydroShare defines a “Resource” as “the fundamental 
unit of digital content in HydroShare that contains data and/or model 
files and their corresponding metadata” (Horsburgh et al., 2016). 
HydroShare supports various data content types such as geographic 
raster (GeoTIFF), multidimensional arrays (NetCDF), geographic fea
tures (Shapefile), and time series as aggregations within a single 
HydroShare resource. HydroShare also supports collections as a 
resource type that holds a list of related HydroShare resources that can 
be referenced with a single unique identifier. Furthermore, realizing that 
data associated with models have their own characteristics, HydroShare 
defines specific resource types for a model program (the software) and a 
model instance (the input and output files for a specific model run) 
(Morsy et al., 2017). Resources with these two resource types are related 
through the “ExecutedBy” attribute of a model instance, which points to 
the specific model program resource used to execute that model 
instance. This design allows for a one-to-many link between a model 
program that is used to execute many different model instances built for 
different geographic locations or to address different research questions. 

The methodology for sharing computational modeling resources is 
shown in Fig. 2. First, the user creates a model program resource for each 
version of a model program software used in the analysis. This resource 
can include the source code, executable, and container for the model 
program itself, or a link to one or more of these resources shared in a 
system external to HydroShare (e.g., in GitHub, BinderHub or Dock
erHub). Second, the model instance resources are created to store and 

Table 1 
Comparison of interface similarity and supported languages of cloud services for executing computational notebooks (expanded from Markham, 2019).  

Cloud Services CUAHSI 
JH 

CyberGIS 
JW 

Binder Kaggle Kernels Google Collaboratory Microsoft Azure  
Notebooks (free plan) 

CoCalc  
(free plan) 

Interface similarity to Jupyter 100% 100% 100% 70% 60% 100% 95% 
Supported 

Languages 
Python 3, 
R 

Python 3, 
R 

Python 3, 
R, Julia, 
Many others 

Python 3, 
R 

Python 3, 
Swift 

Python 3, 
R, F# 

Python 3, 
R, Julia, 
Many others  

Table 2 
General categories for a model API mapped to examples from PRMS-Python and PyHSPF.  

General 
Categories 

API Objective PRMS PRMS-Python HSPF PyHSPF 

(a) Model Input Generating and manipulating model input -control file 
-data file 
-parameters file 

-prms_config.txt 
-data.py 
-parameters.py 

-control file 
-watershed data 
-management file 

- wdmutil.py 
- watershed.py 
- hspfmodel.py 
. . . 

(b) Model Execution Executing and refining models -shell script -simulation.py 
-scenario.py 
-optimization.py 

-shell script - forecaster.py 
- extract.py 
- calibratormodel.py 
. . . 

(c) Model Output Visualizing and analyzing model output -text file -optimizer.py 
-utils.py 

-text file - gisplots.py 
- forecastplots.py 
- autocalibrator.py 
. . .  

Y.-D. Choi et al.                                                                                                                                                                                                                                 



Environmental Modelling and Software 135 (2021) 104888

5

describe the input data required to execute the model and can optionally 
store the output after the model is executed. Then the model instance is 
linked to a specific model program resource using the “ExecutedBy” 
metadata term. A separate composite resource is used to store Jupyter 

notebooks that describe the overall analysis workflow. Finally, a 
collection resource is used to combine and conveniently share all of the 
resources used to complete the study. 

Fig. 2. A methodology for sharing resources used for a modeling analysis through HydroShare.  

Fig. 3. The CUAHSI JH and CyberGIS JW environments with model execution environments configured as Docker images to support concurrent model execution 
through Jupyter notebooks. 
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2.2.2. JupyterHub as the computational environment 
We integrated both the CUAHSI JH and CyberGIS JW as computa

tional environments in our example implementation. We chose these 
environments because both are publicly available and aimed at scientific 
modeling in the water and environmental communities. Moreover, both 
systems allow for seamless data transfer with HydroShare as a data re
pository supporting the necessary interoperability between these two 
components of the general framework. This data transfer is enabled 
through the HydroShare REST API and the standardization of Hydro
Share resource data structures. 

The CUAHSI JH is a cloud computing environment on the Google 
Cloud Platform specifically designed to support research and education 
in the water sciences (Fig. 3). To support a variety of applications, it 
leverages environment profiles that allow users to choose the ideal 
computing configuration for their work. Each of these profiles is a 
separate containerized environment that has been built with a specific 
set of software to support various water science use cases. Currently, the 
CUAHSI JH consists of seven profiles that range from scientific Python 
and R to HydroLearn (https://www.hydrolearn.org), educational mod
ules and hydrologic modeling. In addition, the CUAHSI JH supports 
persistent data, meaning user-created content is stored between sessions 
and shared between profile environments. Moreover, this environment 
enables users to install custom software using conda virtual environ
ments. For this study, we created a “Python 3.7 SUMMA Modeling” 
profile to support SUMMA 3.0 modeling environment using a Dockerfile 
in CUAHSI JH. 

Another model execution environment interoperable with Hydro
Share, CyberGIS JW, is a well-tailored CyberGISX (https://cybergisxhu 
b.cigi.illinois.edu) instance to serve the fast-emerging needs for data- 
intensive and reproducible research in the environmental modeling 
community (Fig. 3). Overall, CyberGIS JW is similar to CUAHSI JH, but 
CyberGIS JW also includes interoperability with advanced cyberinfras
tructure resources such as Virtual ROGER (a cyberGIS supercomputer 
hosted by the CyberGIS Center for Advanced Digital and Spatial Studies 
at the University of Illinois) and XSEDE Comet (an HPC resource on the 
Extreme Science and Engineering Discovery Environment) for model 
execution support. Lyu et al. (2019) describe how to use HTC through a 
Jupyter notebook using SUMMA as an example case in 
CyberGIS-Jupyter (beta), which is the previous version of CyberGIS JW. 
Currently CyberGIS JW is supporting Landlab (Hobley et al., 2017) and 
RHESSys (Tague et al., 2004) modeling environments. For this study, we 
created a SUMMA modeling environment using a Dockerfile. Users can 
use this SUMMA modeling environment via a SUMMA kernel. For use of 
HPC resources, CyberGIS JW requires a Singularity image to support a 
computational modeling environment in XSEDE because CyberGIS JW 
and XSEDE are separately placed. Also, CyberGIS JW needs a particular 
library to connect to computational resources for submitting jobs and 
data exchange in XSEDE. 

2.2.3. pySUMMA as the model API 
The model API pySUMMA was created through this research as an 

example model API. pySUMMA wraps the hydrologic model Structure 
for Unifying Multiple Modeling Alternative (SUMMA) (Clark et al., 
2015a). SUMMA was selected for this study because it is a general hy
drologic modeling environment offering the ability to conduct model 
experiments with controlled and systematic evaluation of multiple 
model representations of hydrologic processes and scaling behavior. The 
SUMMA model simulates both the thermodynamics, the storage and flux 
of energy such as the heat balance of the vegetation canopy, snow, and 
soil affected by the radiative fluxes, as well as the hydrology, the storage 
and transmission of water (for example, vertical and lateral transmission 
of water through vegetation canopy, snow, soil, aquifer and river within 
a catchment system). The flexible hierarchical spatial structure of 
SUMMA supports different spatial configurations including the size and 
shape of model elements with Grouped Response Units (GRUs) (Kouwen 
et al., 1993) and Hydrologic Response Units (HRUs). In addition, the 

flexible structure enables researchers to consider the lateral flux of water 
across the model domain and complex topographical properties like 
hillslopes and riparian areas. This flexibility within SUMMA enables 
hydrologists to find solutions for the application of scaling behavior in 
relation to different physical processes. 

SUMMA also enables hydrologists to select the appropriate physical 
process methods and model complexity. This process implements a 
modular structure that is supported by the conservation equations to 
calculate each process in a controlled and systematic way. This unified 
process helps users to concentrate important physical parameterizations 
with higher complexity and, conversely, to simplify specific processes to 
minimize uncertainty according to the purpose and characteristics of 
biophysics and hydrology. Moreover, the structure of SUMMA, which 
consists of a core (solver) and outer branches, enables the output of a 
numerical solution from SUMMA so that the user can evaluate the ac
curacy and efficiency of the model. Therefore, SUMMA supports flexi
bility to simulate different options of physical processes and numerical 
solutions. 

We designed and implemented pySUMMA as a model API for 
SUMMA using the questions proposed in Section 2.1.3 for guiding the 
design of a new model API (Table 3). For the model input category, there 
are six configuration files to manipulate SUMMA input: 1) File Manager, 
2) Decisions, 3) Forcing File List, 4) Model Output, 5) Param Trial, and 6) 
Local Attribute files. To expose the first four configuration files through 
the API, we created file_manger.py, decisions.py, force_file_list.py, out
put_control.py and option.py. For the rest of the configuration files, we 
created assign_trial_params and assign_attributes methods in Simulation.py. 
In the model execution category, we created Simulation.py to use the 
model execution command conveniently from the shell script format so 
that users do not need to edit manually every time. We also created two 
options to execute the SUMMA model, ‘local’ and ‘docker’, to satisfy 
different user requirements. Finally, the output format of SUMMA is 
NetCDF; therefore, we created plotting.py for visualization considering 
the output variables and their output structure in NetCDF. 

The classes of pySUMMA are shown in Fig. 4. A Simulation module 
(Simulation.py) is used as the initial Python module to start a pySUMMA 
API and combine most pySUMMA functionalities, such as manipulating 
configuration files and executing SUMMA. After creating a pySUMMA 
simulation object, users can manipulate six configuration files. A File 
manager module (file_manager.py) reads and manipulates a File Manager 
file which controls the location of every configuration file for the 
SUMMA model. For example, the File Manager file sets the directory and 

Table 3 
Implementation of a model API for SUMMA.  

General 
Categories 

Questions SUMMA pySUMMA  

(a) Model 
Input  

(1) What 
configuration and 
input files should 
be exposed 
through the API to 
allow for 
programmatic 
changes?  

- file manager  
- decision file  
- forcing file list 

file  
- model output 

file  
- param trial 

file  
- local attribute 

file  

- file_manager.py  
- decisions.py  
- force_file_list.py  
- output_control. 

py  
- option.py  

(b) Model 
Execution  

(2) What methods and 
commands should 
the API expose for 
executing the 
model?  

- shell script  
- SUMMA 

compilation 
(summa.exe) 
or Docker  

- simulation.py  
- SUMMA 

compilation 
(summa.exe) or 
Docker  

(c) Model 
Output  

(3) What are common 
visualizations of 
the model output 
that many users 
would wish to 
produce?  

- output 
NetCDF  

- plotting.py  
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configuration files including the decision, forcing, parameter, and 
attribute files. A Decisions module (decisions.py) reads and manipulates 
a Decisions file which sets different physical process parameterizations. 
Through the available_options object in decisions.py, users can determine 
what options are available for model parameterizations and select model 
parameterizations from a list of options for each physical process 
(SUMMA Online Document, 2020). Four input configuration modules 
(file_manager.py, decisions.py, force_file_list.py, and output_control.py) have 
the same pattern of classes. For example, a File manager module (fil
e_manager.py) is composed of FileManagerOption and FileManager classes 
and a Decisions module (decisions.py) is composed of DecisionOption and 
Decision classes. Each class is connected to an Option module (option.py) 
to avoid repetition of functions such as comparing, setting and writing 
each configuration file. After setting the SUMMA configuration, the 
simulation module (Simulation.py) is used for model execution. The run 
() method of the Simulation class is used to execute the SUMMA model. 
This execution can be done in both “local” and “docker” computational 
environments. The environments are set using the run_option parameter 
for the run() method as discussed later in the Results and Discussion 
section. 

Once a SUMMA model run has been completed, the plotting module 
(plotting.py) can be used to visualize the results. There are two different 
data output structures for SUMMA: 1) time, HRU (or GRU) number, and 
variable; 2) time, HRU (or GRU) number, soil (or snow) layer number, 
and variable. To visualize each of these output structures, the Plotting 
class consists of three methods: ts_plot(), ts_plot_layer(), and heatmap_plot 
(). We used the seaborn library (statistical data visualization library) to 
create a 2D heat map with soil or snow layer and time as the axis for 
displaying a selected variable. Lastly, the model output module (out
put_control.py) is used to manipulate the output variables of SUMMA and 
the utilities module (hydroshare_utils.py) has functions to download test 
cases of SUMMA (model instance resources) and execution files (model 
program resources) from HydroShare. 

3. Results and Discussion 

In this section, we present a modeling case study application of the 
example implementation system described in Section 2.2. Then, we 
discuss how this approach addresses the challenge of achieving more 
reproducible studies summarized in the Introduction section by evalu
ating the approach against definitions, concepts, and metrics for 

reproducibility proposed by others. Lastly, we discuss the limitations of 
our approach that present opportunities for future research. 

3.1. Case study description 

Clark et al. (2015b) describe a set of thirteen modeling experiments 
exploring various hydrologic modeling scenarios using SUMMA. The 
study area for these modeling experiments is the Reynolds Mountain 
East Area (A = 32.7 km2) in the Reynolds Creek Experimental Watershed 
in Idaho, USA (Fig. 5). In this paper, we focus on these modeling ex
periments as a case study with the goal of applying our approach so that 
each Clark et al. (2015b) experiment can be reconstructed and shared 
openly in a way that is easier to reproduce. 

The first step toward this goal is the creation and organization of 
HydroShare resources to share all models and data files required for the 
analysis. The second step is to create Jupyter notebooks that describe the 
modeling experiments. These notebooks include text and equations to 
describe the modeling experiments while also including executable Py
thon code using the pySUMMA API and inline visualizations that can be 
repeated and extended by others. We created seven Jupyter notebooks, 
each one documenting an experiment in the Clark et al. (2015b) study, 
and published them through HydroShare as a collection resource (Choi 
et al., 2020). 

3.2. Model and data resources 

Our first step in reproducing the Clark et al. (2015b) modeling ex
periments was to publish the specific SUMMA model version used in the 
analysis as a resource on HydroShare. To do this, we created a Hydro
Share resource using the Model Program resource type and uploaded the 
SUMMA 3.0.0 source code to the resource. We then published the 
resource through HydroShare so that it is persistent and immutable with 
a unique Digital Object Identifier (DOI) (Choi et al., 2020). Fig. 6 shows 
the landing page for this resource on HydroShare that includes detailed 
metadata describing: 1) the source code and compiled software engine, 
2) metadata for the software, 3) a link showing the model was derived 
from a particular branch of a GitHub repository for SUMMA, and 4) a 
citation for referencing the resource. This same SUMMA 3.0.0 was also 
installed on the CUAHSI JH allowing users to execute the SUMMA model 
directly from CUAHSI JH. 

We next created multiple resources in HydroShare to store the 

Fig. 4. pySUMMA library classes.  
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specific model inputs for each different SUMMA model experiment used 
in the Clark et al. (2015b) paper. There were four synthetic and nine 
field study test cases available as an online supplement to the Clark et al. 
(2015b) paper. From these data, we created seven unique model 
instance resources in HydroShare (Table 4) and grouped them into a 
collection resource (Choi et al., 2020). Each model instance resource 
includes: 1) input data for the SUMMA model, 2) a reference to the Clark 
et al. (2015b) paper, 3) a composite resource link that points to the 
Jupyter notebook used to execute the SUMMA model, and 4) a link to 
the model program resource used to execute the model instance. 

Once this step is complete, the model and data resources required to 
reproduce the Clark et al. (2015b) experiments are publicly accessible in 
HydroShare with metadata to describe each resource and a unique URL 
to locate each resource. HydroShare also allows for publishing these 
resources in which case the resources become immutable and are 
assigned a Digital Object Identifier (DOI). This pattern can be adopted 
by other environmental modeling studies whereby both the model and 
data resources required to reproduce the study are uploaded into 
HydroShare, given metadata to describe each resource (including re
lationships between resources such as the “ExecutedBy” relationship 
between model program and model instance resources), and published 
with a DOI. 

3.3. Demonstrating reproducibility 

This section describes the steps that should be taken to reproduce one 
of the experiments described in Clark et al. (2015b). As a preparation 
step before starting a SUMMA simulation using Jupyter notebooks on 
CUAHSI JupyterHub, we recommend creating a pySUMMA conda vir
tual environment by running the steps described in the notebook “Cre
ating_pySUMMA_conda_virtual_environment_in_CUAHSI_JupyterHub. 
ipynb” in the HydroShare composite resource for CUAHSI JH notebooks. 
Once this preparation step is completed, the basic algorithm to run a 
notebook is shown in Fig. 7. First, the pySUMMA hydroshare_utils module 
is used to download the model instance that will be used in the notebook 
directly from HydroShare. After downloading the SUMMA model 
instance, it is possible to create a pySUMMA simulation object using the 
Simulation class of pySUMMA and supplying SUMMA executable 
(summa.exe) and the File Manager file path. After creating the 
pySUMMA simulation object, the SUMMA model can be executed using 
the run() method, which takes a run_option argument as local. When 
CUAHSI JH was created by using Docker, SUMMA was automatically 
complied and the SUMMA executable was created in ‘/usr/lo
cal/bin/summa.exe’. Therefore, after setting the executable variable to 
the location of “summa.exe”, users can set a run_option as local. By 
changing the executable variable as "/usr/bin/summa.exe”, it is possible 
to execute the same notebook on CyberGIS JW. 

As an example, we present here the results from running two 

Fig. 5. Reynolds mountain east area in the Reynolds creek experimental watershed.  
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Fig. 6. The HydroShare landing page for a SUMMA model program resource used in the example analysis (Choi et al., 2020).  
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different experiments included in the Clark et al. (2015b) paper. The 
first reproduces Fig. 7 from Clark et al. (2015b) and is published as a 
HydroShare resource with the title “The impact of Stomatal Resistance 
Parameterization on ET of SUMMA Model in Aspen stand at Reynolds 
Mountain East (Choi et al., 2020).” The second reproduces Fig. 8 (left) 
from Clark et al. (2015b) and is published as a HydroShare resource with 
the title “The impact of Root Distributions Parameters on ET of SUMMA 
Model in Aspen stand at Reynolds Mountain East.” 

Fig. 8 gives the results from the first experiment that explores the 
impact of three different stomatal resistance parameterizations on total 
evapotranspiration: Ball-Berry (Ball et al., 1987), Jarvis (1976), and the 
simple resistance method. Fig. 8a is the original result from the SUMMA 
paper (Clark et al., 2015b) and Fig. 8b is a reproduced figure resulting 
from applying this framework. These stomatal resistance parameteri
zations have different physical characteristics: both the Jarvis and Ball 
Berry methods consider photosynthesis, while the simple soil resistance 
method mainly considers the soil water conditions. The results show that 
the simple soil resistance method is higher than the other methods 
during the night hours. Comparing the two plots shows the complexity 
associated with reproducing past computational modeling studies. 
While the results are consistent, they are not exact. The precise reason 
for the differences in the model results is difficult to determine. We 
suspect it is due in part to upgrades to SUMMA or SUMMA dependencies 
between the versions of the SUMMA 2.0 used in the Clark et al. (2015b) 
paper and the SUMMA 3.0 used to create the newer plot. More vexing is 
that some of the observed data points appear to have shifted with no 
good explanation for why. One possible explanation could be the fact 
that different visualization tools were used to create each plot: 

Interactive Data Language (IDL) for the plot on the left and matplotlib 
for the plot on the right. We suspect differences like this would not be 
uncommon when trying to reproduce any past computational study 
given the difficulties in recreating the exact computational and analysis 
environment including data preparation routines, computational 
modeling software, and post-processing analysis and visualization tools. 
This, in fact, speaks to the difficulty of the problem and the need for 
innovation in cyberinfrastructure approaches that is at the heart of this 
study. This said, it is also important to stress that the goal of repro
ducibility may not be to obtain the exact same results, but rather 
consistent results that would produce the same conclusion. This is an idea 
expressed by high level reports on computational reproducibility (Na
tional Academies of Sciences, 2019) that we will discuss further in 
Section 3.4. 

Fig. 9 shows the results from the second experiment from Clark et al. 
(2015b), which explores the impact of the root distribution parameters 
with different stomatal resistance parameterizations for total evapo
transpiration. In this case, we reproduced the plot that shows the impact 
of root distribution parameters (Fig. 9b) and compared it to the previous 
result (Fig. 9a). Again, we see consistent (although not exact) results 
between the two model runs. Given that the modeling experiment is now 
implemented within the system, it is also possible to more easily extend 
and repurpose it for other purposes. To this point, we demonstrate reuse 
of past modeling studies by creating two additional plots for deter
mining the effect of different root distribution (Fig. 9c) and stomatal 
resistance parameterizations (Fig. 9d) on total evapotranspiration. 
These plots show how higher root distribution exponents in the soil 
profile indicate that the roots are deeper in the soil, which makes it 

Fig. 7. The basic step for a SUMMA model run using Jupyter notebooks.  

Fig. 8. Reproducibility of Fig. 7 from Clark et al. (2015b) showing the impact of the three different stomatal resistance parameterizations on total evapotranspiration 
(a) published result, (b) reproduced result. 
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easier for plants to extract soil water. As a result, during the higher 
evapotranspiration periods (10:00–17:00), the Jarvis method more 
closely matched the observation data. However, during the period when 
evapotranspiration is decreasing (17:00–20:00), the Ball-Berry method 
was more precise compared to the simple resistance method. Over the 
complete time period, the analysis shows that the Jarvis method had the 
best fit with observations. 

3.4. Evaluating reproducibility 

To evaluate if reproducibility was achieved, we considered defini
tions and concepts for evaluating reproducibility being put forward by 
others. For example, the National Academies of Science, Engineering, 
and Medicine (National Academies of Sciences, 2019) define repro
ducibility, focused on computational reproducibility, as “obtaining 
consistent results using the same input data; computational steps, 
methods, and code; and conditions of analysis.” To guarantee repro
ducibility, the organization recommended delivering “clear, specific, 
and complete information about any computational methods and data 
products to repeat the previous study, and that information should 
include the data, methods, and computational environment.” FAIR 
principles (Wilkinson et al., 2016) include 15 metrics that should be met 
as a minimum for reproducibility. These metrics are: a) Findable (4 
metrics), b) Accessible (4 metrics), c) Interoperable (3 metrics), and d) 
Reusable (4 metrics). 

Fig. 9. Reproducibility and reusability of Fig. 8 (a) of Clark et al. (2015b) showing the impact of root distribution parameter with different stomatal resistance 
parameterization on total evapotranspiration (a) published output, (b) reproduced output, (c) and (d) output from reusability application extending the prior study. 

Table 4 
Mapping between the modeling experiments of Clark et al. (2015b) and Model 
Instance Resources on HydroShare used to store the input files for that model 
experiment.  

Figures from Clark et al. 
(2015b) 

Resource Name on HydroShare to Reproduce each Clark 
et al. (2015b) Figure 

Fig. 1 (top) The impact of the canopy shortwave radiation 
parameterizations of SUMMA Model in Aspen stand at 
Reynolds Mountain East 

Fig. 1 (bottom) The impact of LAI parameter on the below canopy 
shortwave radiation of SUMMA Model in Aspen stand at 
Reynolds Mountain East 

Fig. 2 The impact of the canopy wind parameter for the 
exponential wind profile of SUMMA Model in Aspen 
stand at Reynolds Mountain East 

Fig. 7 The impact of Stomatal Resistance Parameterization on 
ET of SUMMA Model in Aspen stand at Reynolds 
Mountain East 

Fig. 8 (left) The impact of Root Distributions Parameters on ET of 
SUMMA Model in Aspen stand at Reynolds Mountain East 

Fig. 8 (right) The impact of Lateral Flow Parameterizations on ET of 
SUMMA Model in Aspen stand at Reynolds Mountain East 

Fig. 9 The impact of Lateral Flow Parameterizations on Runoff 
of SUMMA Model in Aspen stand at Reynolds Mountain 
East  
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In the hydrology and water resources fields, Hutton et al. (2016) 
recommended reproducible studies have: 1) readable and reusable code, 
2) an unambiguous workflow, 3) a repository to easily find data and 
code with associated metadata, 4) use of unique persistent identifiers, 5) 
new procedures to reproduce large-scale studies using HPC. Addition
ally, Hut et al. (2017) suggested the use of containers and open in
terfaces to guarantee stronger reproducibility as a response to Hutton 
et al. (2016). Finally, Stagge et al. (2019) proposed a set of survey 
questions to assess the reproducibility of a journal article. The survey 
requires that eight elements be available for a study to be called 
reproducible: 1) directions to run or reproduce the study, 2) code/mo
del/software files, 3) input data, 4) hardware/software requirements, 5) 
stated data persistence policy, 6) materials linked by unique and 
persistent identifiers, 7) metadata to describe the code, and 8) common 
file format and instructions to open these files. 

With these criteria in mind, by simply using HydroShare as the data 
repository for all data and software used for the study, we can support 
many of the metrics associated with reproducibility. HydroShare sup
ports FAIR principles (Tarboton et al., 2018) for each resource that in
cludes model input, source code, metadata, and supplementary 
documents. Using JupyterHub as described in the paper provides a 
consistent computational environment and using Jupyter notebooks and 
containerized model execution environments provides a clear and easy 
workflow to assure users can reproduce a published study. Finally, using 
a model API makes it easier for a user to follow the logic and steps used 
to configure, run, and postprocess a modeling simulation, allowing for 
not only reproducibility but also reuse and extension of prior work. 
Therefore, if we compare these definitions and concepts for a validation 
of reproducibility to our approach and its example application, we can 
claim that it satisfies the criteria for reproducible computational 
modeling. Still, while the framework allows for satisfying the criteria, it 
is still up to the user to ensure care is taken with sharing and doc
umenting resources with adequate metadata and instructions to achieve 
reproducibility. 

3.5. Approach limitations and opportunities for future research 

This research focuses on examples that assume model input files had 
already been processed and are available for use in the modeling anal
ysis. The preprocessing steps required to generate model input files from 
raw geospatial and time series observational data are a necessary 
component of longer-term goals for creating so called “end-to-end” 
reproducible analysis workflows. For example, Slater et al. (2019) pro
vided an “end-to-end” reproducible hydrology workflow using R for 
climate data retrieval, spatial analysis, modeling, statistical analysis, 
visualization, and data publishing. As another example of automated 
end-to-end workflows, HydroTerre (Leonard, 2015) includes: 1) data 
workflows (Leonard and Duffy, 2013) to create watershed models using 
Essential Terrestrial Variables (ETV), 2) data-model workflows to 
transform watershed data into model inputs, 3) model workflows 
(Leonard and Duffy, 2014) to execute models in HPC, especially The 
Penn State Integrated Hydrologic Modeling System (PIHM), and 4) 
visualization workflows to visualize the first three workflows to easily 
create and share model results for analysis. 

Currently, pySUMMA has developed the functionalities of manipu
lating created model input, executing SUMMA, and plotting model 
output. To complete “end-to-end” workflows, data preprocessing is 
critical for improving reproducibility as the steps to create model input 
files are often nontrivial and require a significant time investment. Prior 
work to address this challenge includes the EcohydroLib Python library 
developed as a software framework for managing spatial data acquisi
tion and preparation workflows for ecohydrology modeling (Miles and 
Band, 2015). EcohydroLib takes advantage of open source GRASS GIS 
libraries to automate data gathering and preparation for environmental 
models. It is a model agnostic approach for mapping a variety of data 
sources into input files required by environmental models. Alternative 

data processing workflows and pipelines such as HydroTerre (Leonard, 
2015) could also be explored for bringing data preprocessing capabil
ities for environmental models into the general approach described 
through this work. However, just having new data processing pipelines 
alone will be insufficient. We also need more detailed modeling pro
tocols and procedures to replicate (or even reproduce) a study (Ceola 
et al., 2015) because reproducibility is not just a technological problem, 
it is equally an educational problem (Grüning et al., 2018). 

Post-processing for visualization and model analysis procedures is 
also essential to creating a powerful modeling environment, saving time 
when analyzing model output and strengthening reproducibility. To 
grow use of model APIs, many analysis methods will be necessary such 
as plotting, calibration, optimization, and uncertainty analysis. While 
pySUMMA is still being developed toward these goals, other model APIs 
discussed in this paper and that could be used within the example 
modeling system do have more robust processing capabilities already. 
One question that remains is the extent to which environmental model 
APIs can reuse underlying software to support common model post- 
processing routines. General libraries in Python, such as Pandas and 
matplotlib, are universally applicable to environmental modeling post- 
processing tasks. However, is a plotting or data analysis library more 
tailored for environmental modeling but still sufficiently general to 
serve many environmental models possible? If so, it could further reduce 
the duplication of code across environmental model APIs and, ulti
mately, encourage more environmental model APIs that are robust, 
easier to maintain, and feature rich. 

The ability to include data pre- and post-processing within the 
framework would be an important step for moving from reproducibility 
to replicability within the framework. Replicability is defined by the 
National Academies of Science, Engineering, and Medicine (National 
Academies of Sciences, 2019) as “obtaining consistent results across 
studies aimed at answering the same scientific question, each of which 
has obtained its own data.” Replication, therefore, can be thought of as a 
next step beyond reproducibility where a study is repeated using new 
data, potentially from a new site or different time period, but similar 
methods. This work has focused on a general approach to support 
reproducibility of computational models. The framework could be 
extended for replication by extending a model API, like the pySUMMA 
API described in this paper, to include not only functions for model 
configuration (e.g., settings and parameter values assuming model input 
files have already been generated), but also for model preprocessing 
where input files for the model are generated from raw data sources. 

4. Conclusion 

Computational irreproducibility is an important problem in many 
scientific fields. Recent research to improve computational reproduc
ibility has focused on advancing the sharing of data used in studies, 
using computational notebooks and containers for encapsulating com
plete computational environments, and developing model APIs for 
programmatically interacting with simulation models. A contribution of 
this research is to present a general approach to integrate these three 
areas of past work into a general approach for supporting more open and 
reproducible environmental modeling. We present an example imple
mentation of this approach by leveraging: 1) HydroShare as a data 
sharing repository, 2) JupyterHub as a notebook-based, containerized, 
and cloud-based computational environment, and 3) pySUMMA as an 
example model API able to abstract lower-level details for model 
configuration, execution, and visualization from end users. 

Using the example implementation, we demonstrate how modeling 
analyses can be completed in a more open and reproducible way. 
Building from a prior study presenting a series of modeling experiments 
applying SUMMA at the Reynolds Mountain East Area in the Reynolds 
Creek Experimental Watershed in Idaho, USA (Clark et al., 2015b), we 
first created and organized HydroShare resources to share data and 
model files. Next, we created Jupyter notebooks that leveraged the 
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pySUMMA API, introduced in this paper, to reproduce and extend fig
ures from the prior study. Each notebook a) pulled required data from 
HydroShare into the computational environment, b) provided a note
book using text, equations, code, and inline visualizations for doc
umenting the experiment, and c) allowed for online execution of the 
notebook and sharing of modifications to the notebook through 
HydroShare. Finally, we discussed how we evaluated that reproduc
ibility was achieved and future steps that could be taken to further 
improve the proposed framework. 

From this research, we conclude that cyberinfrastructure is reaching 
a point where it is possible to build open and transparent environmental 
modeling systems. Online repositories are sufficiently mature where 
they can be relied upon for storing key data and software resources for 
studies. Computational environments able to execute containerized 
environmental models can be interlinked with data repositories, and the 
ability for these computational environments to serve as gateways to 
High Performance Computing (HPC) resources is improving. More 
models are being provided with APIs that allow for programmatic con
trol of the model configuration, execution, and visualization. Jupyter 
notebooks provide an important orchestration and documentation glue 
across these components where users can leverage APIs to access and 
publish data from online repositories, submit jobs to HPC resources, and 
programmatically interact with state-of-the-art environmental models. 
Linking these capabilities in a way that can be built upon and expanded 
as new models become available, as demonstrated in this paper, will 
move environmental modeling in a direction where open, transparent, 
reproducible, reusable, and replicable studies become the rule rather 
than the exception. 

Software and data availability 

All software and data used in this study were published with 
persistent DOIs on HydroShare. A collection resource in HydroShare 
(Choi et al., 2020) contains each of these resources. In addition to these 
resources published through HydroShare, the pySUMMA source code 
created though this study is available on GitHub as detailed below. 

Product Title: pySUMMA v3.0.0 
Lead Developers: Young-Don Choi and Andrew Bennett 
Contact Email: yc5ef@virginia.edu, andrbenn@uw.edu 
Tested Platform:  
- HydroShare CUAHSI JupyterHub  
- CyberGIS-Jupyter for Water 
Software Required: Python 3.5 or above 
Availability: The pySUMMA source code is publicly available 
through GitHub  
- https://github.com/UW-Hydro/pysumma/releases/tag/3.0.0 
License: BSD 3-Clause License 

List of relevant URLs 

CUAHSI JupyterHub: https://jupyterhub.cuahsi.org/ 
CUAHSI JupyterHub Legacy Environment: https://jupyter.cuahsi. 
org 
CUAHSI JupyterHub GitHub: https://github.com/hydroshare/hyd 
roshare-jupyterhub 
CyberGIS-Jupyter (beta): https://hsjupyter.cigi.illinois.edu:8000 
CyberGIS-Jupyter for Water: https://go.illinois.edu//cybergis-jupy 
ter-water 
DataOne: https://www.dataone.org 
Docker: https://www.docker.com 
DockerHub: https://hub.docker.com 
EcohydroLib: https://github.com/selimnairb/EcohydroLib 
Facebook API: https://developers.facebook.com/docs/apis-and-sdks 
FigShare: https://figshare.com 
Google API: https://developers.google.com/apis-explorer 

Harvard Dataverse: https://dataverse.harvard.edu 
HydroShare REST API: https://github.com/hydroshare/hydroshare/ 
wiki/HydroShare-REST-API 
NetCDF4 GitHub: https://github.com/Unidata/netcdf4-python 
Numpy: https://www.numpy.org 
Pandas: https://pandas.pydata.org 
Seaborn: https://seaborn.pydata.org 
Singularity: https://sylabs.io 
SUMMA on the UCAR: https://ral.ucar.edu/projects/summa 
xarray: http://xarray.pydata.org 
XSEDE: https://www.xsede.org 
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