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Abstract

This study compares the US National Water Model (NWM) reanalysis snow outputs to

observed snow water equivalent (SWE) and snow-covered area fraction (SCAF) at

snow telemetry (SNOTEL) sites across the Western United States. SWE was obtained

from SNOTEL sites, while SCAF was obtained from moderate resolution imaging

spectroradiometer (MODIS) observations at a nominal 500 m grid scale. Retrospective

NWM results were at a 1000 m grid scale. We compared results for SNOTEL sites to

gridded NWM and MODIS outputs for the grid cells encompassing each SNOTEL site.

Differences between modelled and observed SWE were attributed to both model

errors, as well as errors in inputs, notably precipitation and temperature. The NWM

generally under-predicted SWE, partly due to precipitation input differences. There

was also a slight general bias for model input temperature to be cooler than observed,

counter to the direction expected to lead to under-modelling of SWE. There was also

under-modelling of SWE for a subset of sites where precipitation inputs were good.

Furthermore, the NWM generally tends to melt snow early. There was considerable

variability between modelled and observed SCAF as well as the binary comparison of

snow cover presence that hampered useful interpretation of SCAF comparisons. This

is in part due to the shortcomings associated with both model SCAF parameterization

and MODIS observations, particularly in vegetated regions. However, when SCAF was

aggregated across all sites and years, modelled SCAF tended to be more than observed

using MODIS. These differences are regional with generally better SWE and SCAF

results in the Central Basin and Range and differences tending to become larger the

further away regions are from this region. These findings identify areas where predic-

tions from the NWM involving snow may be better or worse, and suggest opportuni-

ties for research directed towards model improvements.
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1 | INTRODUCTION

Accurate water supply forecasts will become increasingly crucial as

western populations grow and demand more water, and as opera-

tional agencies have to manage water under global environmental

change (Bhatti et al., 2016; Gergel et al., 2017; Li et al., 2017;

Livneh & Badger, 2020; Mote, 2003; Mote et al., 2005; Regonda

et al., 2005; Stewart et al., 2004, 2005). Many scientific challenges in

understanding and preparing for global environmental change rest

upon our ability to predict streamflow and snowmelt quantity, timing,

and spatial patterns that are important for decision making in water-

sensitive sectors. In the United States, the National Weather Service

(NWS) of the National Oceanic and Atmospheric Administration

(NOAA) is responsible for short- and long-term streamflow predictions

across the United States. Prior to 2016, NWS operational forecasts

were limited to forecasts from NWS River Forecast Centers (RFC) at

about 4000 forecast points. These were produced predominantly

using the Sacramento soil moisture accounting model (SAC-SMA) to

simulate runoff production and SNOW-17 model to simulate snow-

pack and snowmelt, within the Advanced Hydrologic Prediction Sys-

tem (AHPS, https://water.weather.gov/ahps/rfc/rfc.php) modelling

infrastructure (McEnery et al., 2005).

While Franz et al. (2008) showed that SNOW-17 performed well

over the Reynolds Creek Experimental Watershed located in south-

western Idaho, other studies found limitations such as being unable to

capture snowmelt timing precisely due to its simple conceptual frame-

work, its inability to represent spatial variability of land properties,

and its dependence on extensive calibration for each basin using his-

torical data (Lundquist & Flint, 2006; Shamir et al., 2006; Zalenski

et al., 2017). Furthermore, a National Research Council committee

identified a gap between what is now considered state-of-the-art

modelling capabilities and those used in AHPS (National Research

Council, 2006). It concluded that the NWS needs to incorporate more

advanced hydrologic science into their hydrologic models.

The increasing availability of distributed geographic data and

computer power has made it possible to develop national/continental

scale, physically-based, and distributed models. In 2016, NOAA's

Office of Water Prediction implemented the National Water Model

(NWM) as a physically-based distributed model based on the Weather

Research and Forecasting Model Hydrological modelling system

(WRF-Hydro) framework (Gochis, Barlage, Cabell, Casali, et al., 2020)

to provide nationally consistent operational hydrologic forecasting

capability. The main goals of the NWM were to provide forecast

streamflow, produce spatially continuous countrywide estimates of

hydrologic states (soil moisture, snowpack, etc.), and to implement a

modelling architecture that permits rapid infusion of new data and

science.

The NWM provides hourly flow forecasts at about 2.7 million

locations in the United States. In addition to the increased number of

forecast locations, another advantage of the NWM is that it utilizes a

specific configuration of the physically-based Noah-

MultiParameterization (Noah-MP) land surface model to represent the

land-atmosphere interactions including snow processes. There have

been several studies evaluating results from the NWM. For instance,

Viterbo et al. (2020) evaluated the prediction of flooding in NWM

streamflow forecasts. They found that errors were due to both mete-

orological input errors as well as hydrologic process representation. In

another study, Lahmers et al. (2019) improved the performance of

WRF-Hydro configured as NWM version 1.1 by implementing a con-

ceptual channel infiltration function into the model architecture. They

concluded that accounting for channel infiltration loss in the semi-arid

Western United States improves the streamflow behaviour simulated

when the model is forced with high-resolution precipitation input.

However, we are not aware of a systematic and thorough evaluation

of the NWM snow outputs.

The NWM (Gochis, Barlage, Cabell, Dugger, et al., 2020) has been

running in NWS operations since 2016 to support operational flood

forecasts. The latest operational version, version 2.0, was

implemented in June of 2019. Prior to this operational deployment,

the NWM version 2.0 retrospective analysis data were generated

(by the NWM team) for investigations into the performance of the

NWM. These are publicly available in Google Cloud Storage (National

Weather Service, 2019).

These retrospective analysis results contain output from a

26-year simulation (January 1993 through December 2018), hereafter

is referred to as NWM-R2. The meteorological forcing data used for

the version-2 retrospective analysis configuration was drawn from the

North American Land Data Assimilation System II (NLDAS2) datasets,

a gridded product with spatial resolution of 1/8th-degree and hourly

temporal resolution. The non-precipitation forcing fields in NLDAS2

are from the analysis fields of the National Centers for Environmental

Prediction (NCEP)/North American Regional Reanalysis (NARR), that

is, a retrospective dataset, while the precipitation is from the gage-

based NCEP/Climate Prediction Center (CPC). As a pre-processing

step, the NWM team downscaled the NLDAS2 data and applied a

mountain mapper (Hou et al., 2014) adjustment to the precipitation

data to adjust the values for climatological variation due to topogra-

phy and wind directions (RafieeiNasab et al., 2020). The result forcing

dataset is a 1 km spatial resolution data layer for each hour which

contains incoming short- and longwave radiation, specific humidity,

air temperature, surface pressure, near surface wind, and precipitation

rate. In terms of snow, outputs include gridded snow water equivalent

(SWE), the amount of water stored in a snowpack, and the snow-

covered area fraction (SCAF).

Across the Western United States, snow is observed at 808 snow

telemetry (SNOTEL) sites that provide data intended to quantify snow

and inform water supply forecasts. Illustrative comparisons of NWM-

R2 SWE to SNOTEL SWE (Figure 1) indicate that SWE is well mod-

elled at some locations (Figure 1a) while significantly different from

observations at other locations (Figure 1b). Accurate modelling of

SWE is a necessary condition for accurate physically-based modelling

of runoff. This motivated the need, addressed in this study, to system-

atically evaluate the performance of NWM-R2 simulations of SWE

and SCAF against available SNOTEL measurements and the moderate

resolution imaging spectroradiometer (MODIS) satellite imagery to

answer the following questions:
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• How well does the NWM model simulate snowpack (in terms of

SWE, SCAF, and snowmelt timing) compare to observations over

the entire Western United States?

• What are the potential causes responsible for discrepancies in

NWM-R2 SWE, SCAF, and snowmelt timing?

• Are these discrepancies associated with the model input errors or

the snow parameterization in the model?

Answers to these questions are needed to further improve the NWM

snow components, and ultimately runoff and water supply forecasts

in snowmelt-dominated regions. While US based, the NWM is built

using the WRF-Hydro modelling framework that has been applied

worldwide, and the lessons learned from this comparison across the

United States have application to the representation of snow pro-

cesses in national and continental scale models throughout the world.

The following section—Section 2—first presents a summary of the

NWM-R2 snow parameterization. Then, it describes the datasets used

in this study, comprised of the NWM-R2 reanalysis products, SNOTEL

snow observations, and MODIS imagery giving the snow-covered area

fraction. Next, it presents the metrics that were used for evaluating

the model results versus observations. The results section compares

the NWM-R2 SWE, precipitation, air temperature, SCAF, and pres-

ence or absence of snow with observations from SNOTEL and

MODIS. It also compares modelled and observed snowmelt timing.

We conclude with a discussion of the uncertainties and limitations in

our analysis and present ideas for future work.

2 | MODEL, DATA, AND EXPERIMENTAL
DESIGN

The study region comprises the SNOTEL sites across the Western

United States (Figure 2a). The model is the NWM version 2.0

reanalysis (NWM-R2), that includes Noah-MP land surface compo-

nents for snow. Data include NWM-R2 inputs and outputs, in situ

measurements, and remotely sensed data from MODIS for water

years 2008–2018. NWM-R2 inputs that we used in our analysis

were hourly NLDAS2-based precipitation, hourly NLDAS2-based air

temperature, and elevation—derived from the 30 m Digital Elevation

Model (Zhang et al., 2021)—with 1 km spatial resolution. We used

NWM-R2 outputs of 3-h SWE and SCAF with 1 km spatial resolu-

tion from the land surface module. We retrieved these inputs and

outputs for NWM grid cells containing SNOTEL sites based on the

nearest neighbour approach. In situ measurements comprised daily

precipitation, daily air temperature, elevation, and daily SWE from

SNOTEL. Remotely sensed MODIS daily snow-covered areas with

nominal 500 m spatial resolution were from the MODIS sensor. The

model, in situ, and remotely sensed datasets thus have different spa-

tial resolutions (Figure 2b). The difference in scale is a potential

source of uncertainty in our comparative analysis, and needs to be

recognized in interpretation. There are small differences in elevation

between SNOTEL (point elevations) and NWM-R2 (1 km grid eleva-

tions), that may impact temperature comparisons due to lapse rate

effects, but there does not appear to be any significant bias

(Figure 2c).

2.1 | NWM-R2 snow parameterization (Noah-MP)
and snow reanalysis products

The NWM-R2 uses a particular configuration of Noah-MP (Table 1)

as the land surface model to simulate snow processes as a one-

dimensional vertical column over 1 km spatial resolution grid cells

with no representation of any lateral snow processes within a grid

cell. Details of the NWM-R2 are given in WRF-Hydro version 5.1.1

documentation (Gochis, Barlage, Cabell, Casali, et al., 2020) and the

code (Gochis, Barlage, Cabell, Dugger, et al., 2020). WRF-Hydro ver-

sion 5.1.1 is the WRF-Hydro version used in NWM-R2. However,

(Gochis, Barlage, Cabell, Casali, et al., 2020) does not describe details

of the snow parameterization. Instead reference is made to the

Noah-MP technical description (Yang et al., 2011) and associated

paper (Niu et al., 2011). Here we have summarized key features of

the snow parameterization that pertain to the interpretation of our

results. The focus in this paper is on NWM-R2 results, practically,

amounts to a large-scale test of Noah-MP as configured for use in

the NWM.

F IGURE 1 Snow water equivalent from the National Water Model (NWM) version 2.0 reanalysis (NWM-R2) dataset compared to in situ
observations at two snow telemetry (SNOTEL) sites in Utah. (a) Hole-in-Rock site (ID: 528) located at 2794 m elevation for the water year 2008.
(b) Tony Grove Lake site (ID: 823) located at 2582 m elevation for the water year 2018
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2.1.1 | Snowfall

The separation of precipitation into rainfall or snowfall is based on

Jordan's (1991) algorithm that uses near surface air temperature

thresholds (Equations 1 and 2).

fp,ice ¼

1:0 Tfrzþ0:0≤ Tsfc ≤ Tfrzþ0:5

1:0� �54:632þ0:2�Tsfcð Þ Tfrzþ0:5≤ Tsfc ≤ Tfrzþ2:0

0:6 Tfrzþ2:0≤ Tsfc ≤ Tfrzþ2:5

0:0 Tfrzþ2:5≤ Tsfc > Tfrzþ2:5

9>>>=
>>>;

8>>><
>>>:

ð1Þ

rain¼P� 1� fp,ice
� �

snow¼P� fp,ice
ð2Þ

where fp,ice is the snow fraction in precipitation, Tsfc (K) is the surface

air temperature, Tfrz (273.16 K) is freezing/melting point, and

P (mm s�1) is the input precipitation. Freshly fallen snow density (ρfs

[kg m�3]) is calculated using Equation (3), based on Hedstrom and

Pomeroy (1998).

ρfs ¼min 120,67:92þ51:25e
Tsfc – Tfrz

2:59

� �� �
ð3Þ

2.1.2 | Vegetation and snow interception

In Noah-MP, a single-layer vegetation canopy model characterizes the

fraction covered by vegetation (FVEG) in each model grid cell. Since the

Noah-MP dynamic vegetation option is set off in NWM-R2, the model

uses the maximum vegetation fraction from the leaf area index (LAI)

table as FVEG. If a model grid has a FVEG >0 and a snow depth greater

than 0.025 m (from initial conditions or the last time step), the model

computes the fraction of canopy buried by snow based on the snow

depth and the canopy height. Then, the model uses this fraction to adjust

the LAI and stem area index (SAI), which are used in the snow intercep-

tion model. The snow interception model allows for both liquid water

and ice to be present on the vegetation canopy; and includes loading/

unloading of snowfall, melting of intercepted snow and refreezing of the

meltwater, frost/sublimation of canopy-intercepted snow, and dew/-

evaporation. The model solves the canopy liquid water balance

(Equation 4) and ice balance (Equation 5) based on Niu and Yang (2004).

∂Mliq

∂t
¼Rintrþ Rdew�Revað Þþ Rmelt�Rfrzð Þ ð4Þ

∂Mice

∂t
¼ Rload�Runloadð Þþ Rfrost�Rsubð Þþ Rfrz�Rmeltð Þ ð5Þ

where Mliq (kg m�2) is the storage of liquid water in the canopy, and

Rintr (kg m�2 s�1), Rdew (kg m�2 s�1), and Reva (kg m�2 s�1) are inter-

ception rate for rain, dew rate, and evaporation rate, respectively.

Rmelt (kg m�2 s�1) and Rfrz (kg m�2 s�1) are melting and refreezing

rates. Mice (kg m�2) is the storage of ice in the canopy and Rload

(kg m�2 s�1) and Runload (kg m�2 s�1) are snow loading and unloading

rates, respectively. Rfrost (kg m�2 s�1) and Rsub (kg m�2 s�1) are frost

and sublimation rates. Heat transported by snow and rain to the vege-

tation canopy layer, the vegetated ground, and non-vegetated ground

is also computed; and is used later in the energy balance computation.

F IGURE 2 (a) Snow telemetry (SNOTEL) sites (734 black dots) across the Western United States. (b) Illustrative relationship of Tony Grove
Lake, Utah SNOTEL site (ID: 823), within National Water Model (NWM) grid cells with a spatial resolution of 1 km and moderate resolution
imaging spectroradiometer (MODIS) grid cells with a spatial resolution of 463 m (nominally 500 m). (c) NWM grid cell elevation versus elevation
reported for SNOTEL sites (observed). Note that there are four MODIS grid cells that have their centroid within each single NWM grid cell
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2.1.3 | Snow-covered area and snow albedo

Noah-MP calculates SCAF based on snowpack density (ρsno [kg m�3]),

snow depth (hsno [m]) from initial conditions or the previous time step,

snow surface roughness length (z0,g [m]), density of fresh snow (ρnew

[kg m�3]), and a dimensionless area-depth factor (m) that determines

the curve relating SCAF and snow depth (Equation 6) as developed by

Niu and Yang (2007).

SCAF¼ tanh
hsno

2:5z0,g
ρsno
ρnew

�� m

1
CA

0
B@ , ρsno ¼

SWE
hsno

ð6Þ

In NWM-R2 calculations of snow-covered area, ρnew and z0,g are con-

stants set equal to 100 kg m�3 and 0.002 m, respectively. However, the

factor m is among the parameters that are adjusted during calibration to

minimize differences between modelled and observed streamflow over

calibration watersheds (Lahmers et al., 2019; RafieeiNasab et al., 2020).

The functional relationship between SCAF and depth quantifies small-

scale variability of snow within a computational grid element which plays

an important role in the process governing snow accumulation and abla-

tion. SCAF is used to weight the ground emissivity and ground surface

resistance. It also affects the computed snow surface albedo that is mod-

elled using the biosphere–atmosphere transfer scheme (BATS). BATS

(Yang & Dickinson, 1996) models direct and diffusive radiation in visible

and near-infrared bands separately accounting for fresh snow albedo,

snow age, grain size growth, impurity, and solar zenith angle.

2.1.4 | Surface energy balance, radiation, and
momentum fluxes

Shortwave radiation is modelled over the entire grid cell using a

modified two-stream approximation (Niu & Yang, 2004) treating the

vegetation as evenly distributed with gaps. The result is canopy-

absorbed and ground-absorbed solar radiation over the grid cell.

Longwave radiation, latent heat, sensible heat, and ground heat

fluxes are modelled, using a tile approach that treats vegetated and

bare fractions of the cell separately (Niu et al., 2011). Noah-MP

treats turbulence fluxes between the snowpack, vegetation canopy,

and air using Monin–Obukhov similarity theory to model atmo-

spheric stability conditions. Stability corrections of under canopy

turbulent transfer account for the strong stable condition of a

warmer canopy overlying the snow surface during the melt season

(Chen, Barlage, et al., 2014). Precipitation advected heat is also com-

puted separately for the canopy vegetation, vegetated ground sur-

face, and non-vegetated ground surface. The vegetation canopy

temperature (Tv), the vegetated ground surface temperature (Tg,v),

and the non-vegetated ground surface temperature (Tg,b) are esti-

mated using the Newton–Raphson method with 20 iterations. If the

snow depth is greater than a specified snow depth (≥0.05 m) and the

ground surface temperature (Tg,v/Tg,b) is greater than the freezing

point (273.16 K), the ground temperature is updated to

1– SCAFð Þ�TgþSCAF�Tfrz, and all turbulent fluxes are reevaluated.

Finally, these radiative and turbulent fluxes are then aggregated based

on the vegetated fraction (FVEG) parameter.

TABLE 1 The Noah-MP land surface model options as defined in the National Water Model version 2.0 retrospective analysis configurationa

Code name Long name Physics option used

DYNAMIC_VEG_OPTION Dynamic vegetation 4: Using monthly LAI is prescribed for various

vegetation types

CANOPY_STOMATAL_RESISTANCE_OPTION Canopy stomatal resistance 1: Ball–Berry

BTR_OPTION Soil moisture factor for stomatal resistance 1: Noah type using soil moisture

RUNOFF_OPTION Runoff and groundwater 3: Noah type surface and subsurface runoff

(free drainage)

SURFACE_DRAG_OPTION Surface layer drag coefficients 1: Monin–Obukhov

FROZEN_SOIL_OPTION Frozen soil permeability 1: Using the total soil moisture to compute

hydraulic properties

SUPERCOOLED_WATER_OPTION Supercooled liquid water (or ice fraction) 1: No iteration (Form of the freezing-point

depression equation)

RADIATIVE_TRANSFER_OPTION Radiation transfer 3: Two-stream applied to vegetated fraction

SNOW_ALBEDO_OPTION Ground snow surface albedo 2: BATS

PCP_PARTITION_OPTION Partitioning precipitation into rainfall and snowfall 1: Jordan (1991)

TBOT_OPTION Lower boundary condition of soil temperature 2: TBOT at ZBOT (8 m) read from a file

TEMP_TIME_SCHEME_OPTION Snow/soil temperature time scheme (only layer 1) 3: Semi-implicit; flux top boundary condition,

but FSNO for TS calculation

GLACIER_OPTION Glacier treatment 2: Ice treatment more like original Noah

SURFACE_RESISTANCE_OPTION Surface resistant to evaporation and sublimation 4: For non-snow; rsurf = rsurf_snow for snow

(set in MPTABLE)

Abbreviations: BATS, biosphere–atmosphere transfer scheme; LAI, leaf area index.
aBased on Gochis, Barlage, Cabell, Casali, et al. (2020) and Gochis, Barlage, Cabell, Dugger, et al. (2020).
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2.1.5 | Snowpack vertical discretization and snow
thermal properties

The Noah-MP snow module uses up to three snow layers, depending

on depth (from initial conditions or the last time step). The state vari-

ables for each layer are the mass of liquid water, mass of ice, layer

thickness, and layer temperature. Snow can also exist in the model

without being represented by explicit snow layers. This occurs when

the total snowpack thickness is less than a specified minimum snow

depth (<0.025 m). In this case, the only state variable is the mass

of snow.

Snow thermal properties including partial volume of ice, partial

volume of liquid water, effective porosity, bulk density (based on

Lynch-Stieglitz, 1994), volumetric specific heat, and thermal conduc-

tivity are computed for each snow layer (Equations 7–12). Energy for

phase change (melting/refreezing) is also computed for each layer.

θice,i ¼ Massice,i
ΔZi�ρice

ð7Þ

θe,i ¼1�θice,i ð8Þ

θliquid,i ¼min θe,i
Massliquid,i
ΔZi�ρwater

��
ð9Þ

ρsnow,i ¼
Massice,iþMassliquid,i

ΔZi
ð10Þ

Cv,i ¼Cice�θice,iþCliquid�θliquid,i ð11Þ

ki ¼3:2217�10�6�ρsnow,i
2 ð12Þ

where θice,i (m
�3 m�3) is partial volume ice of snow layer i, Massice,i

(kgm�2) is snow ice mass of snow layer i, ΔZi (m) is the snow layer

thickness of snow layer i, ρice (917 kgm
�3) is ice density, θe,i (m

�3 m�3)

is the effective porosity of snow layer i, θliquid,i (m
�3 m�3) is partial vol-

ume of liquid water of snow layer i, Massliquid,i (kgm
�2) is liquid water

mass of snow layer i, ρwater (1000 kgm�2) is liquid water density,

ρsnow,i (kgm
�3) is bulk density of snow layer i, Cv,i (Jm

�3 K�1) is volu-

metric specific heat of snow layer i, Cice (2.094�106 Jm�3 K�1) is

specific heat capacity of ice, Cliquid (4.188�106 Jm�3 K�1) is specific

heat capacity of liquid water, and ki (Wm�1 K�1) is thermal conductiv-

ity of snow layer i.

Heat flux between layers is calculated based on temperature gra-

dient and thermal conductivity, and then this is used to update layer

temperatures using a semi-implicit numerical scheme. When heat flux

calculations result in temperatures of snow layers greater than freez-

ing, the excess energy is used to adjust (melt or freeze) liquid water

present. The change in the density of the snow with time due to

destructive metamorphism, the weight of the overlying layers of

snow, and melting (which dictates layer thickness) is modelled, follow-

ing Anderson (1976) as a function of snow temperature (Niu

et al., 2011).

2.1.6 | SWE and snow depth

The change in SWE is balanced by the input snowfall (Qsnow) reaching

the surface in forms of drip and throughfall; and output snowmelt (M),

snow sublimation, and snow frost (both expressed as E in

Equation 13).

dSWE
dt

¼Qsnow�M�E ð13Þ

When new snowfall occurs in a time step, the snow depth and

snow ice are increased based on the snow depth increasing rate and

the input snowfall rate (both outputs of the snow interception mod-

ule), respectively. After the depth, phase change and compaction cal-

culations, the number of snow layers is adjusted by either combining

the neighbour layers or subdividing them following Jordan (1991). If

rainfall (in terms of drip and throughfall) occurs, it is added to the liq-

uid water of the snow layer. The liquid water movement within a

snow layer is added to the underlying snow layer when the liquid

water content within a snow layer exceeds the layer's liquid water-

holding capacity for snowpack (0.03 m3 m�3). Finally, the liquid water

of the snow layer updates after the water flows out of the layer.

2.1.7 | Post-processing NWM-R2 snow reanalysis
products

This study used the NWM-R2's land surface model outputs, which are

geospatial gridded results with a spatial resolution of 1 km and tempo-

ral resolution of 3 h. We obtained the NWM-R2 SWE (model code

name: SNEQV) and SCAF (model code name: FSNO) for grid cells con-

taining SNOTEL sites based on the nearest neighbour approach (code

available at Garousi-Nejad & Tarboton, 2022d) from the NOAA Goo-

gle Cloud archive using a Jupyter Notebook (code available at Tar-

boton & Garousi-Nejad, 2021). Then, we averaged 3-h results to daily

values (code available at Garousi-Nejad & Tarboton, 2022f) to have a

similar temporal resolution when comparing the NWM-R2 results

with SNOTEL and MODIS observations because both these datasets

produce daily data. We also obtained the hourly precipitation, hourly

air temperature, and elevation input data used for NWM-R2 simula-

tions for the selected grid cells. The WRF-Hydro team at NCAR pro-

vided precipitation and air temperature values for us as those data

were not available on the Google Cloud archive. Then, we computed

daily precipitation and the daily average temperature (code available

at Garousi-Nejad & Tarboton, 2022f).

2.2 | SNOTEL

SNOTEL stations, managed by the Natural Resources Conservation

Service (NRCS), generally consist of a snow pillow, an air temperature

sensor, and a storage precipitation gage. Our study used the daily pre-

cipitation, air temperature, and SWE values measured at SNOTEL
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sites as a reference dataset to evaluate the NWM-R2 precipitation, air

temperature, and SWE. We realize that SNOTEL data must be used

with some caution because the sites are mostly located in small clear-

ings within forests protected by forest canopies, leading to differ-

ences in exposure to wind and radiation (McCreight et al., 2014).

Furthermore, SNOTEL data do not undergo a high correction level

(Swenson & Lawrence, 2012). In some instances, we found unrealisti-

cally high temperature values that needed to be filtered out. Never-

theless, SNOTEL data remain the only widespread in situ SWE

observations available for model validation in the Western

United States (Barlage et al., 2010; Clow et al., 2012; Livneh

et al., 2010; Pan et al., 2003; Toure et al., 2016). We automated

retrieval of the SNOTEL data by calling its Consortium of Universities

for the Advancement of Hydrologic Science, Inc (CUAHSI) web ser-

vice from a Jupyter Notebook script (Garousi-Nejad &

Tarboton, 2022c).

2.3 | MODIS

The National Aeronautics and Space Administration (NASA)'s MODIS

instrument launched aboard the Terra satellite in late 1999 is designed

to observe and monitor Earth changes, such as snow cover. MODIS has

spectral bands in the visible and near-infrared regions, nominal 500 m

spatial resolution, and near-daily global coverage. The daily snow-cover

gridded tile product, MOD10A1, has been used and improved over

time in multiple snow studies (Aalstad et al., 2020; Bennett et al., 2019;

Magand et al., 2014; Masson et al., 2018; Salomonson & Appel, 2006;

Swenson & Lawrence, 2012). We used products from the current ver-

sion of the MODIS snow-cover algorithm which is the collection six

suite of MODIS (hereafter referred to as MODIS-C6, or just MODIS).

We chose to use MODIS-C6 (Hall & Riggs, 2016) as a reference to

evaluate NWM-R2 SCAF because the improvements/revisions to

MODIS-C6 (i.e., accounting for the surface temperature and surface

height) led to a notable increase in accuracy of snow cover detection

on mountain ranges and low illumination conditions in the Northern

Hemisphere during spring and summer (Riggs et al., 2017).

The MODIS-C6 snow algorithm is designed to detect snow cover

based on the normalized ratio of the differences in reflectance in band

4 (centred at 0.56 μm, visible green) and band 6 (centred at 1.64 μm)

of the MODIS instrument with revisions applied to alleviate snow

detection commission errors (reported for previous versions) for

which snow detection is uncertain. The MODIS-C6 products include

this ratio, the normalized difference snow index (NDSI, product name:

NDSI_Snow_Cover) rather than snow cover. This approach allows

users to have the option to estimate snow cover using the global

empirical model (Equation 14) or develop region-specific models

(Riggs et al., 2016). In this study, we developed a script (Garousi-

Nejad & Tarboton, 2022b) run in Google Earth Engine to retrieve

NDSI_Snow_Cover for each NWM grid cell containing a SNOTEL site.

Since MODIS output is available on a 500 m grid and NWM grid cells

are 1 km in size, the script averaged NDSI_Snow_Cover over the four

MODIS grid cells that have their centroid within the NWM grid cell

(Figure 2). Valid NDSI_Snow_Cover values range between 0 and

100 with values above 100 indicating missing data, no decision, night,

inland water, ocean, cloud, and detector saturated issues, which we

masked out in Google Earth Engine. The returned MODIS images thus

have spatial gaps due to this masking. We filled gaps in each image

with NDSI_Snow_Cover from the most previous valid value (forward

filling). Then, we applied the globally-determined linear model of Riggs

et al. (2016) to compute MODIS SCAF from NDSI_Snow_Cover

values (Equation 14).

SCAF¼min max �0:01þ1:45�NDSI,0½ �,1ð Þwhere NDSI� 0,1½ �
ð14Þ

In Equation (14), the MODIS SCFA is always estimated as 1 for NDSI

values equal or greater than 0.7, and it changes linearly for NDSI

values between 0 and 0.7.

The resulting dataset includes 2 504 102 site-days in the period

of overlap between NWM-R2 and SNOTEL data (data and code used

to aggregate it are available at Garousi-Nejad and Tarboton (2022e).

We organized the SNOTEL sites into subgroups using Omernik

Ecoregions level III (Omernik & Griffith, 2014) available from the Com-

mission for Environmental Corporation (http://www.cec.org/north-

american-environmental-atlas/terrestrial-ecoregions-level-iii/) to iden-

tify regional differences in model results versus observations. The

ecoregions are areas with general similarities in location, climate, veg-

etation, hydrology, terrain, wildlife, and land use; and have been used

in multiple prior studies (Sun et al., 2019; Trujillo & Molotch, 2014).

2.4 | Metrics

We used several metrics to compare NWM-R2 SWE, snow covered

area fraction (SCAF), precipitation (P), and snowmelt timing against

SNOTEL SWE and MODIS-C6 SCAF.

2.4.1 | Seasonal

• First day of the month comparisons were used for NWM-R2

SWE/SCAF (modelled) versus SNOTEL SWE and MODIS SCAF

(observed) for months Nov-Jun.

• Monthly precipitation and average air temperature were also com-

pared for these months.

These monthly comparisons let us evaluate the seasonal variability of

snow in both modelled and observed datasets for data in the period

of overlap between NWM-R2 and SNOTEL data.

2.4.2 | SWE and snow-covered area at peak SWE

• Modelled and observed SWE and SCAF were compared on the

date of observed peak SWE (same day comparison).
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• Modelled and observed peak SWE do not necessarily occur on the

same date. We compared both SWE and SCAF on the separate

dates where peak SWE was modelled and observed (different day

comparison).

• Model input and SNOTEL observed total precipitation accumulated

from the start of the water year, Oct 1, to the date of peak SWE

were also compared.

Total precipitation was computed to assess the degree to which dif-

ferences may be attributable to precipitation differences. This was

done for both same day (observed peak SWE) and different day

(observed and modelled peak day) comparisons. The different peak

day comparison addresses the possibility that peak modelled and

observed SWE may be close, but appear further apart in same day

comparisons due to a timing mismatch.

2.4.3 | Direct (binary) comparison of snow presence
or absence

• Full snow cover. Daily modelled SCAF taken as full snow if SCAF is

≥0.95. Daily MODIS inferred (observed) SCAF taken as full snow if

NDSI is ≥0.7.

• Some snow cover. Daily SCAF taken as indicating some snow if

modelled SCAF, or MODIS NDSI >0.3.

First, we classified the snow presence or absence grid cells based on

these thresholds. We then counted the number of classified grid cells

for both observed and modelled datasets for each date. This was done

only for grid cells locations where SNOTEL sites exist, because our

scripts extracting NWM output were only run at these locations and

running for all grid cells across the Western United States was compu-

tationally prohibitive.

• Presence Absence comparison metrics were used to indicated the

degree-of-overlap between modelled and observed datasets

(Horritt & Bates, 2002; Sangwan & Merwade, 2015).

The correctness metric (Equation 15) compares the total number of

modelled and observed grid cells having some or full snow cover,

while the fit metric (Equation 16) quantifies whether modelled and

observed locations match, scaled by the total area mapped with snow

(either full or some).

Ct ¼Modelledsnow
Observedsnow

ð15Þ

Ft ¼Modelledsnow\Observedsnow
Modelledsnow[Observedsnow

ð16Þ

where Ct and Ft are correctness and fit metrics computed for date t,

respectively, and Modelledsnow and Observedsnow are grid cells

classified as snowy cells on that date. Correctness (Ct) and Fit (Ft)

should both ideally be 1 (100%).

To account for the fact that MODIS may be interpreting vegetated

grid cells as snow free and thus underestimating the snow cover (Steele

et al., 2017; X. Wang et al., 2017), while NWM-R2 may have snow

beneath the vegetation canopy, and that SNOTEL sites are often in open-

ings much smaller than the cell size (1 km) in generally forested areas, we

requested, and obtained from the NRCS (the agency that operates

SNOTEL) a list of sites in generally open areas.We report separatemetrics

for these sites reported to be open. The NRCS indicated that SNOTEL

sites may be open due to canopy disturbance caused by pine bark beetle

damage and fire, which may have occurred during the study period,

resulting in some uncertainty as to sites being open early on.

2.4.4 | Melt timing

• Half melt from peak SWE date (Clow, 2010).

The date, when half the snowpack has melted serves as a measure of

melt timing somewhat robust to small fluctuations or a long period

where SWE is flat near the peak. We categorized the differences

between observed and modelled half melt dates as close (within

5 days), model early (the model is 6–19 days ahead of observed),

model late (the model is 6–19 days after observed), and far apart (the

modelled and observed differ by 20 days or more).

2.4.5 | Commonly used statistics

• Coefficient of determination (r2, Equation 17) that ranges from �1 to

1 with 1 indicating a perfect positive linear relationship but insensitive

to proportional differences between modelled and observed data;

• Spearman's rank correlation (Spearmanr, Equation 18), a non-

parametric measure of correlation used to measure the strength of

association between modelled and observed values where value

1 means a perfect positive correlation;

• Root mean square error (RMSE, Equation 19), a measure of how

concentrated the data are around the line of best fit;

• Nash Sutcliffe efficiency (NSE, Equation 20), a normalized statistic

that determines the relative magnitude of the residual variance

compared to observed values ranging from �∞ to 1 with 1 indicat-

ing observed and modelled data fits the 1:1 line; and

• Bias (Bias, Equation 21), the average of the difference between

modelled and observed.

r2 ¼
PN
t¼1

Mt�Ot
� �

Mt�Mt
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1

Ot�Ot
� �2PN

t¼1 Mt�Mt
� �2s

3
77775

2
66664

2

ð17Þ
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Spearman r¼1� 6
PN

t¼1d
2
t

N N2�1
� � ð18Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t¼1 Ot�Mtð Þ2
N

s
ð19Þ

NSE¼1�
PN

t¼1 Ot�Mtð Þ2PN
t¼1 Ot�Mtð Þ2

ð20Þ

Bias¼
PN
t¼1

Mt�Otð Þ
N

ð21Þ

where Mt is model simulation, Ot is observation, N is the total number

of simulations or observations, dt is difference between observed and

modelled rank, and the overbar indicates average.

3 | RESULTS

3.1 | Seasonal (monthly) comparison

We compared the NWM-R2 SWE results with observations from

SNOTEL and found a persistent bias in modelled SWE across most

months (Figure 3). Results show that throughout the accumulation

phase (November–February), the rank correlation between

observed and modelled SWE increases (Spearman r from 0.7 to 0.8).

However, this does not necessarily indicate an acceptable model

performance. The discrepancies between the observed and mod-

elled SWE increase as snow accumulates (RMSE 21–135 mm). In

the ablation phase (Mar-Jun), the rank correlation decreases, and

discrepancies are highest in May (Bias �149 mm, RMSE 292 mm).

The increasing scatter in later months (Figure 3) shows that the

NWM generally performs well during the accumulation phase but

simulates SWE less well during the ablation phase. Most points fall

below the 1:1 line (red line). The points clustered into vertical and

horizontal lines on the bottom and left axes of scatter plots in May

and Jun indicate early and late modelling of complete melt out,

respectively.

The comparison between the NWM-R2 SCAF and estimates from

MODIS-C6 revealed that the modelled SCAF is highly uncorrelated

with what is detected by satellite imagery (Figure 4). Throughout the

last 3 months of the accumulation phase (December–February), the

NWM results show that more than 70% of points (each representing

one NWM grid cell that includes a SNOTEL site and a water year)

have SCAF 0.9–1, while less than 10% have SCAF 0–0.1 (histograms

in Figure 4). In contrast to the binary behaviour of the NWM-R2

SCAF, MODIS SCAF exhibits gradual increases and decreases. At

most, 30% of the observed data have SCAF values ranging from 0.9

to 1 during the accumulation phase. In December, 14% of the

observed data have SCAF greater than 0.9, while about 70% of mod-

elled points have SCAF greater than 0.9. During the ablation phase

(March–June), both modelled and observed datasets have relatively a

similar data percentage with SCAF less than 0.1. However, the portion

of the points where modelled SCAF is above 0.9 is still much more

F IGURE 3 First day of month modelled (National Water Model [NWM]-R2) versus observed (snow telemetry [SNOTEL]) snow water
equivalent (SWE). Each point is a site and date in the period of overlap between NWM-R2 and SNOTEL data
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significant (3–7 times depending on the month) than those in the

observed dataset (histograms in Figure 4).

The SCAF comparisons above are only at SNOTEL sites. We did

not undertake the computation needed to compare NWM-R2 and

MODIS-C6 for all grid cells and dates. However, as an illustration for

locations beyond SNOTEL sites NWM-R2 and MODIS-C6 SCAF maps

on 1 December 2011 (Figure 5) show that while patterns are generally

the same, MODIS SCAF seems less than modelled. Note that the

MODIS-C6 SCAF map (Figure 5a) has gaps and cloud areas (grey) that

we did not fill in from the most recent previous image with data

(as described in Section 3) for this visualization. NWM-R2 SCAF

covers the entire region selected based on the MODIS tiles. The visual

comparison of a zoomed-in map for the region where observed SCAF

were available for more than 90% of the area reveals both similarities

and differences between NWM-R2 and MODIS-C6 datasets

(Figure 5c,d). The NWM-R2 SCAF map for the zoomed-in area shows

more white regions (i.e., SCAF values greater than 0.9), suggesting

that NWM tends to overestimate SCAF compared to observations

from MODIS.

Scatterplots of monthly precipitation (Figure 6) indicate model

input precipitation generally less than measured at SNOTEL sites, pos-

sibly contributing to under-modelling of SWE (Figure 3). Spearman r

and NSE values show an acceptable correlation between modelled

and observed monthly precipitation (on average, 0.8 for both

statistics). However, the precipitation bias is larger during the accumu-

lation phase than the ablation phase, suggesting that increased SWE

scatter, in the ablation phase, is less associated with precipitation

input errors than other factors during the ablation phase snowmelt.

Elevation, through orographic effects, is often suspected as a con-

tributor to precipitation bias. However, the comparison of model input

elevation (1 km grid cell) with SNOTEL point elevation (Figure 2) indi-

cated no bias and small scatter (r2 = 0.98 in Figure 2c). There are, nev-

ertheless, discrepancies between the NWM-R2 monthly averaged air

temperature inputs and the monthly averages of the daily mean air

temperature measured at SNOTEL sites (Figure 7), reported as the

24-h average of a minimum four samples per hour (US Department of

Agriculture, 2011). NWM-R2 air temperatures are generally slightly

below observations. This is counter to the direction needed to explain

discrepancies in SWE as colder model input air temperatures should

result in (1) greater fractions of precipitation as snowfall and (2) slower

rather than quicker snowmelt, both processes that increase rather

than decrease SWE.

The seasonal pattern of SWE and SCAF averaged across all

SNOTEL site years for each specific day (Figure 8) further indicates

the general under modelling of SWE and over modelling of SCAF rela-

tive to SNOTEL and MODIS observations, respectively.

Discrepancies between the seasonal pattern of SWE and SCAF

are regional and somewhat different for SWE than SCAF (Figures 9

F IGURE 4 First day of month modelled (National Water Model [NWM]-R2) versus observed (moderate resolution imaging spectroradiometer
[MODIS]-C6) snow-covered area fraction (SCAF) for NWM grid cells and MODIS grid cells containing snow telemetry (SNOTEL) sites. Each point
is a site and a date within the period of overlap between NWM and MODIS data. Axis histograms depict the SCAF distributions
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and 10, respectively). The NWM SWE was better in the Klamath

Mountains, Blue Mountains, and Central Basin and Range (region 9, 2,

and 5, respectively, in Figure 9) with SWE bias differences tending to

become larger further to the north and east across the study region.

However, the NWM SCAF are closer to the observations in the

Northern Basin and Range, Sierra Nevada, and Central Basin and

Range regions (regions 12, 13, and 5, respectively, in Figure 10), with

SCAF differences tending to become larger the further away regions

are from the Central Basin and Range region.

3.2 | Observed peak SWE (same day and different
day) comparison

The scatterplot of modelled versus observed SWE on the date of peak

observed SWE (Figure 11a) indicates a general downward bias in

modelled SWE. NWM SCAF clusters around 1 on this date (histo-

grams in Figure 11b) while MODIS SCAF is more fractional, and simi-

lar to monthly SCAF the point comparisons are scattered and poor.

Precipitation accumulated from October 1 to the date of observed

peak SWE indicates model input precipitation generally less than

SNOTEL observed (Figure 11c: Bias �111 mm, RMSE 212 mm). This

suggests that under estimation of model precipitation inputs may be a

contributor to under modelling of peak SWE. This comparison may

also be influenced by the fact that observed SWE is at its peak, but

modelled SWE is not.

We also compared observed and modelled peak SWE, noting that

these do not necessarily occur on the same date (Figure 12). Results

are similar to the observed peak SWE date comparison. Here the

accumulated observed and modelled precipitation (Figure 12c) are

over the accumulation period, to their respective peak SWE dates, a

possible reason for increased scatter and poorer error metrics in this

figure.

Under modelling of SWE is also evident when comparing the

observed and modelled peak SWE for a subset of SNOTEL sites

where the model precipitation is relatively close to the observed

(Figure 13b: Bias �96 mm, RMSE 168 mm). However, the errors are

less than for the entire dataset SWE comparison. We chose this sub-

set of sites based on the NSE measure between daily model input and

observed precipitation being greater than or equal to 0.9 computed

over the full study period. This subset shows a reduced bias (com-

pared to the entire dataset) between the observed and modelled

F IGURE 5 Comparison of National Water Model (NWM)-R2 and moderate resolution imaging spectroradiometer (MODIS)-C6 snow-covered
area fraction (SCAF) maps over the study region on 1 December 2011. (a) MODIS-C6 SCAF estimated from NDSI_Snow_Cover values of five tiles
(in grey). (b) NWM-R2 SCAF outputs at 00:00 UTC masked for the MODIS-C6 tiles. (c) The zoomed-in map of MODIC-C6 SCAF for the blue box
in (a). (d) The zoomed-in map of NWM-R2 SCAF for the blue box in (b)
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F IGURE 6 Comparison between National Water Model (NWM)-R2 monthly precipitation input (labelled as modelled) and snow telemetry
(SNOTEL) monthly precipitation (labelled as observed). Each point is a site and month in the period of overlap between NWM-R2 and
SNOTEL data

F IGURE 7 Comparison between National Water Model (NWM)-R2 monthly average of hourly air temperature input (labelled as modelled)
and snow telemetry (SNOTEL) monthly average of mean daily air temperature (labelled as observed). Each point is a site and month in the period
of overlap between NWM-R2 and SNOTEL data
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precipitation accumulated from October 1 to peak observed SWE

date (Figure 13a).

3.3 | Direct (binary) comparison of snow presence
or absence

The cell by cell binary comparison of snowy grid cells at SNOTEL sites

shows that this comparison does not work well for the all-snow-

present condition, that is, when the observed and modelled SCAF

thresholds were 0.7 and 0.95, respectively (Figure 14a). We observed

that the average C for the entire period of study was 9.4 and average

F, 0.11. These are poor degree of overlap statistics, and are due to the

fact that MODIS never reports more than about 30% of the area as

having full snow.

However, the cell by cell binary evaluation for some snow present

resulted in better degree of overlap statistics (Figure 14b, C =1.47

and F =0.50). Discrepancies between the modelled and observed

snowy grid cells as implied by average C (=1.20) and F (=0.64) were

even less when we only focused on the 62 SNOTEL sites (about 8%

of all sites) reported as open (Figure 14c). Table 2 summarizes fit met-

rics for the snow cover binary comparison.

3.4 | Melt timing comparison

For 68% of the site years analysed, the modelled half melt date was

earlier than observed. When further classified based on whether mod-

elled half melt dates were close, ahead, behind or far apart from

observed melt dates (Figure 15a) we observe that the NWM half melt

date was greater than 20 days from observed half melt date, for 34%

of the site years, and off by 6 days or more for 75% of site years. For

those site years where the difference was between 5 and 20 days, a

greater percentage had the model melting ahead, than behind the

observed. The site years that have modelled half melt date ahead of

observed tend to have lower modelled half melt date SWE (which is

by definition half the peak SWE) than observed (Figure 15b).

4 | DISCUSSION

The seasonal pattern of SWE and SCAF averaged across all SNOTEL

site-years shows that NWM generally under-estimates SWE and

over-estimates SCAF relative to SNOTEL and MODIS observations,

respectively. These discrepancies vary regionally with relatively better

SWE results in the Arizona/New Mexico Mountains, Blue Mountains,

and Central Basin and Range ecoregions; and better SCAF results in

the Central Basin and Range and Sierra Nevada ecoregions tending to

become larger the further away regions are from the Central Basin

and Range. There are several sources of uncertainties in our compari-

sons that need to be pointed out. The spatial scale differences in dif-

ferent datasets is a source of uncertainty in this analysis. A point-scale

measurement of SWE cannot with confidence validate the NWM-R2

grid cell value with nearest centre, particularly in forest regions

(McCreight et al., 2014). We realize that using other approaches, such

as bilinear or cubic interpolation of NWM grid values would give dif-

ferent values at each SNOTEL site, a question we did not explore. In

the cell by cell comparison between NWM-R2 and MODIS-C6

datasets, the mean value of MODIS grid cells would be different if

using a different number of cells, for example, nine grid cells instead

of four.

Precipitation discrepancies suggest that SWE differences are

partly due to discrepancies between observed precipitation (SNOTEL)

and model input precipitation (adjusted NLDAS-2 RafieeiNasab

et al., 2020). There are multiple possible sources of uncertainty that

may lead to this difference. First, SNOTEL latitude and longitude loca-

tions may not be precise in the geographic information from SNOTEL,

as, for site security, exact site locations may not be reported. This may

result in selecting a non-representative 1 km NWM grid cell. Second,

there may be systematic bias for gage precipitation, particularly with

snowfall measurements being subject to ‘under-catch’ (Mote, 2003;

Sun et al., 2019). However, we note that model input precipitation

was typically less than measured at SNOTEL sites, indicating that if

under-catch is an issue, it may be larger in the data used to produce

model inputs. In NWM version 2.0, a mountain mapper adjustment

has been applied to obtain input precipitation from NLDAS-2

F IGURE 8 Modelled and
observed (a) snow water
equivalent (SWE) and (b) snow-
covered area fraction (SCAF)
averaged across all snow
telemetry (SNOTEL) sites and
years for each specific day of the
(water) year
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(RafieeiNasab et al., 2020); nevertheless, there are still differences

and biases compared to SNOTEL measurements that may be

impacting model results. Third, SNOTEL data do not undergo a high

correction level (Swenson & Lawrence, 2012). It was not uncommon

to see accumulated precipitation less than SWE at SNOTEL sites

(notably for stations at higher elevations), which could be due to

either precipitation under-catch, or inflated SWE (Meyer et al., 2012).

This makes using this information for model comparison challenging,

as the model cannot accumulate more snow than its precipitation

input. This is an unresolvable difference and should be recognized as

a source of uncertainty associated with the in situ measurements used

in this study.

Our results show a cold (downward) bias for the model input air

temperature (based on NLDAS-2) compared to SNOTEL sites'

F IGURE 9 Modelled and observed snow water equivalent (SWE) averaged across all snow telemetry (SNOTEL) sites and years for each
specific day of the (water) year grouped by ecoregion. The map shows 15 Omernik ecoregions where colours represent the bias
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observations. This is different from Naple et al. (2020), who reported

a warm (upward) bias for the NWM retrospective runs compared to

the New York State Mesonet observations. The cold bias in the model

temperature input is counter to the direction expected to lead to the

under-modelling of SWE, a point which needs more investigation.

The discrepancies in model inputs (precipitation and air tempera-

ture in this study) are not the only potential sources for SWE

differences. Even at sites with statistically highly correlated precipita-

tion input (NSE >0.9), the results indicate that some SWE bias, poten-

tially due to other factors, still remains. This opens up the question as

to whether there are other deficiencies that lead to SWE under-

modelling, both due to observation and model errors. Errors in SWE

measurements may occur, due to factors such as wind causing snow-

drifts on the snow pillow (Meyer et al., 2012), or the small clearing

F IGURE 10 Modelled and observed snow-covered area fraction (SCAF) averaged across all snow telemetry (SNOTEL) sites and years for
each specific day of the (water) year grouped by ecoregion. The map shows 15 Omernik ecoregions where colours represent the bias

GAROUSI-NEJAD AND TARBOTON 15 of 23



SNOTEL site location not being representative of larger scale snow-

pack (McCreight et al., 2014). In the NWM land surface model (Noah-

MP), the partitioning of precipitation into rainfall and snowfall, which

is one of the most sensitive parameterizations in simulating cold-

region hydrological processes (Loth et al., 1993), is based on

Jordan's (1991) algorithm, which ignores some physical processes

controlling precipitation phase by not incorporating humidity. This

may lead to biases in SWE, snow depth, and snow cover fraction

(Chen, Liu, et al., 2014; Harder & Pomeroy, 2014; Y. Wang

et al., 2019). Y. Wang et al. (2019) suggest that using a snow-rain par-

titioning scheme based on the wet-bulb temperature within Noah-MP

produces more snowfall and snow mass on the ground that agrees

better with ground-based snow observations, particularly over moun-

tainous regions in the Western United States. Recently, Naple

et al. (2020) shows that using the precipitation phase partition from

the high-resolution rapid refresh (HRRR), in lieu of the operational

method (Jordan, 1991), leads to improved snow results for the NWM

version 2.0 configuration.

F IGURE 11 Comparisons on date of observed peak snow water equivalent (SWE). (a) National Water Model (NWM)-R2 versus snow
telemetry (SNOTEL) SWE, (b) NWM-R2 versus moderate resolution imaging spectroradiometer (MODIS)-C6 snow-covered area fraction (SCAF),
and (c) NWM-R2 versus SNOTEL precipitation accumulated from 1 October to observed peak SWE date. Each point is a site and a water year
(that starts 1 October) in the period of overlap between NWM-R2 and SNOTEL data

F IGURE 12 Different date comparison on dates of observed and modelled peak snow water equivalent (SWE) (a) National Water Model
(NWM)-R2 versus snow telemetry (SNOTEL) peak SWE, (b) NWM-R2 versus moderate resolution imaging spectroradiometer (MODIS)-C6 snow-
covered area fraction (SCAF), and (c) NWM-R2 versus SNOTEL precipitation accumulated from 1 October to observed and modelled peak SWE
dates. Each point is a site and a water year (that starts 1 October) in the period of overlap between NWM-R2 and SNOTEL data
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Our results show that, on average, the NWM tends to melt snow

early (6–19 days) compared to SNOTEL observation. For 75% of the

site years, the modelled date of half melt from peak SWE was off by

6 days or more from the observed half melt dates, sometimes being as

far apart as 2 months (for example, Magic Mountain SNOTEL site, ID:

610 in Idaho, at water year 2010). This suggests that the modelling of

melt timing is somewhat problematic and there is a need to further

investigate overall energy balance and snow surface temperature,

possibly drawing on ideas from the Utah Energy Balance model

(Mahat & Tarboton, 2014; You et al., 2014).

Overall, NWM-R2 SCAF was difficult to compare to MODIS-C6

SCAF using single SNOTEL sites and days. Some of this difficulty—

manifested in the scatter in Figures 4, 11, and 12—may reflect the fact

that the MODIS and NWM SCAF quantities are not really the same

thing. MODIS may be interpreting vegetation as snow free (Steele

et al., 2017; X. Wang et al., 2017), while NWM has snow beneath veg-

etation. In NWM-R2 results, the persistent low and high SCAF (<0.1

and >0.9, respectively) reflects that NWM treats SCAF as a binary

metric in mountainous regions. NWM-R2 SCAF values stay near

1 with less variability between December–April for more than 70% of

cases. This suggests that once the NWM grid cell (1 km spatial resolu-

tion) is more than 90% snow-covered, it is implausible for it to diverge

from 1 for the rest of the accumulation phase and early ablation

phase. One possible reason for this behaviour is the lack of represen-

tation of some factors affecting SCAF such as vegetation type and

seasonal change, and topography. These limitations affect the accu-

rate simulation of SCAF and SWE (Helbig et al., 2015; Magand

et al., 2014; Swenson & Lawrence, 2012; Wrzesien et al., 2015).

Another possible reason for some of the differences is the lack of any

representation of snow drifting processes (i.e., wind-driven redistribu-

tion of snow) in the snow model. Snow drifting increases the variabil-

ity of snow depth within a grid cell, which then, when melting starts

leads to intervening (non-binary 0 or 1) snow covered area fractions.

This may be a factor contributing to differences in regions with mod-

elled SCAF less than 10% while the observed SCAF are more than

50% (points along the horizontal axis of SCAF on March 1, April

1, and May 1 in Figure 4).

We recognize that the SCAF mapped from MODIS in this study

also has uncertainties and limitations. First, the temporal forward fill-

ing approach that we used to fill gaps associated with clouds may miss

some of the daily variability of snow cover, particularly in mountain-

ous regions. Second, the parameters of Equation (14), which estimates

SCAF from MODIS-C6 NDSI_Snow_Cover product, were those from

Salomonson and Appel (2006) and were constant for our entire study

region. Adjusting these parameters to improve the snow cover prod-

ucts from MODIS regionally has been suggested (Riggs et al., 2017).

Third, MODIS NDSI_Snow_Cover grids (nominally 500 m) were aver-

aged for 1 km NWM grid cells, using an unweighted approach in the

Google Earth Engine platform. This approach selects MODIS grids

whose centres fall within the target area (i.e., NWM grid cells). These

scale differences may be a further source of uncertainty, compounded

by the nonlinearity in Equation (14) (plateau at NDSI >0.7) having an

impact on SCAF from averaged NDSI.

Results for the direct (binary) comparison of full snow cover were

poor as MODIS never reports more than about 30% of the area as

having full snow, while the degree-of-overlap between the modelled

F IGURE 13 (a) National Water Model (NWM)-R2 versus snow telemetry (SNOTEL) precipitation accumulated from 1 October to observed
and modelled peak snow water equivalent (SWE) dates. This figure is similar to Figure 10a but with colours separating points into two groups.
The first group (dark blue) contains points where Nash Sutcliffe efficiency (NSE) values for daily modelled versus observed precipitation are equal
to or greater than 0.9. The second group (light blue) includes points where NSE values for daily modelled versus observed precipitation are less
than 0.9. Statistics are reported separately for the NSE ≥0.9 and NSE <0.9 subsets. (b) NWM-R2 peak SWE versus SNOTEL peak SWE for points
from (a) that have daily precipitation NSE equal to or greater than 0.9 (dark blue class)
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and observed results, in terms of average C and F, improved consider-

ably when comparing cells having some snow present. We interpret

this as a shortcoming of MODIS for this sort of comparison, perhaps

due to the presence of vegetation. MODIS SCAF estimates may not

account for snow beneath the canopy due to incapability of the sen-

sor to see forest gaps (the snow-covered ground) through the vegeta-

tion canopy (Steele et al., 2017; X. Wang et al., 2017), while the

NWM-R2 land surface model (Noah-MP) may estimate snow under

the vegetation canopy in these locations. Our results show that

discrepancies between modelled and observed snowy grid cells

reduce when we focus only on the SNOTEL sites reported as open.

For full snow present average C improves from 9.41 to 6.18 while

average F improves from 0.11 to 0.16. These are still poor, but less

poor. For some snow present average C improves from 1.47 to 1.2

and average F improves from 0.5 to 0.64, making them reasonably

respectable, in comparison to the ideal values of 1. This suggests that

forest vegetation is a dominant contributor to the disagreement

between model and MODIS observed snow cover.

F IGURE 14 Direct (binary) comparison of snow presence considering all 734 snow telemetry (SNOTEL) sites with (a) full snow cover and
(b) some snow cover. The modelled and observed thresholds for full snow cover were National Water Model (NWM)-R2 snow-covered area
fraction (SCAF) ≥0.95 and moderate resolution imaging spectroradiometer (MODIS) NDSI ≥0.7, respectively. Lower thresholds were used for
some snow cover (i.e., NWM-R2 SCAF >0.3 and MODIS NDSI >0.3). (c) Locations of the 62 SNOTEL sites reported as open. Average fit metrics
(i.e., C and F), presented here, quantitatively evaluate the degree-of-overlap between the modelled and observed snow presence

TABLE 2 Summary of average
correctness (C) and average fit (F) metrics
evaluated for the binary comparison of
snow presence or absence when
considering (a) all SNOTEL sites and (b)
sites reported as open approaches

Average metrics

(a) All 734 SNOTEL sites (b) The 62 SNOTEL sites reported as open

Snow presence condition Snow presence condition

Fulla Someb Fulla Someb

C 9.41 1.47 6.18 1.20

F 0.11 0.50 0.16 0.64

Abbreviations: MODIS, moderate resolution imaging spectroradiometer; NDSI, normalized difference

snow index; SNOTEL, snow telemetry.
aDaily modelled snow-covered area fraction (SCAF) taken as full snow if SCAF is ≥0.95. Daily MODIS

SCAF taken as full snow if NDSI is ≥0.7.
bDaily modelled SCAF taken as some snow if SCAF is ≥0.3. Daily MODIS SCAF taken as some snow if

NDSI is ≥0.3.
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5 | CONCLUSIONS

A cell by cell comparison for sites and dates in the period of overlap

between SNOTEL SWE with modelled SWE from NWM-R2 simula-

tions, in general, shows that there is a tendency for the NWM-R2

configuration to under-estimate SWE early in the season and

become progressively more biased late in the season compared to in

situ observations of SWE. When aggregated across all sites and

years, seasonal variations show an overall downward bias of about

55 mm with NSE 0.75 which varies regionally over Omernik

ecoregions. SWE discrepancies are attributed to errors in inputs,

notably precipitation and air temperature. The downward bias in pre-

cipitation input contributes to the downward biases in SWE and the

SWE bias is persistent even when the model precipitation input is

relatively close to the observed precipitation at SNOTEL sites with

daily precipitation NSE higher than 0.9. However, the cold bias in the

model temperature input is counter to the direction expected to lead

to under-modelling of SWE. This needs further exploration. There is

a significant variability between the MODIS SCAF and NWM SCAF

in the cell by cell comparison for sites and dates in the period of

overlap between model results and observations which hindered

useful interpretation of these comparisons. The challenge in simulat-

ing SCAF is in part due to the model SCAF essentially being binary

as it lacks representation of vegetation and topography while obser-

vations are much more fractional. They may not reflect the same

physical quantity. The binary comparison of full snow presence

reveals that the degree-of-overlap between the modelled and

observed results still remains poor, which is possibly due to uncer-

tainties associated with MODIS observations in vegetated areas.

Results of the binary comparison of some snow presence improves

when we focus only on the SNOTEL sites reported as open (average

C = 1.2 and average F = 0.64). Also, when aggregated across all sites

and years, seasonal variations show an overall upward bias of 0.12

with NSE 0.76 which vary regionally for ecoregions. Our investiga-

tion opens some new questions for future research. First, it empha-

sizes the importance of having a more accurate (bias corrected)

precipitation and air temperature input for the NWM. Second, there

is a question as to whether, in circumstances where there is dis-

agreement between the NWM SCAF (estimated by the Noah-MP

module) and MODIS observations in the binary comparison, the

SCAF parameterization should be improved or can be inferred from

satellites while considering the uncertainties associated with these

products. Using satellite-based snow-covered maps may potentially

provide an approach or an opportunity for estimating SCAF as a way

to overcome limitations associated with parameterization of SCAF in

the snow model. However, there would need to be resolution of dif-

ferences in definition of the physical quantity being compared. Over-

all, our evaluation effort identifies some challenges in the current

snow parameterization within the specific settings of the Noah-MP

as implemented in the NWM-R2 configuration and suggests where

potential development effort should be directed in the future. It

would also be helpful, for future work, to have a more comprehen-

sive observation data set, beyond the SNOTEL sites, such as possibly

Critical Zone Observatory or experimental forest sites, that include

snowfall/rainfall measurements, canopy snow interception, turbu-

lence and radiation fluxes above and below the canopy. Another

opportunity is to run the model at higher resolution which would

involve downscaling the forcing inputs to higher resolution. Higher-

resolution remotely sensed snow-covered area (e.g., from LANDSAT

satellite) could then be used for model evaluation.

F IGURE 15 Analysis of melt timing. (a) Classification of differences between observed and modelled dates of half melt from peak snow
water equivalent (SWE). Close: Modelled and observed within 5 days of each other; behind: Modelled 6–19 days after observed; ahead: Modelled
6–19 days before observed; far apart: Modelled and observed more than 20 days apart. (b) National Water Model (NWM)-R2 SWE versus snow
telemetry (SNOTEL) SWE date of half melt from peak
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