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ABSTRACT 

Sensitivity Study for UAV GPS-Denied Navigation in Uncertain Landmark Fields 

by 

Samantha D. Burton, Master of Science 

Utah State University, 2021 

 

Major Professor: Randall Christensen, Ph.D. 

Department: Mechanical and Aerospace Engineering 

 

This document provides two 2D simulation sensitivity analyses regarding UAV 

navigation errors within a GPS-denied region. The research focuses on a development 

and investigation of visual-SLAM in a GPS-denied landmark field, where landmark 

locations are known a priori but with an associated uncertainty and where absolute 

position information is limited within the trajectory. Furthermore, there is development 

and investigation of utilizing multiple-shooting optimal control with visual-SLAM using 

potential error-reducing cost parameters. Objectives are to quantitatively understand the 

UAV’s sensitivity of position errors to sensor grade and landmark characteristics as well 

as sensitivity of position errors to guidance and control cost gains. 

(199 pages) 
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PUBLIC ABSTRACT 

Sensitivity Study for UAV GPS-Denied Navigation in Uncertain Landmark Fields 

Samantha D. Burton 

 

This document provides two 2D simulation sensitivity analyses regarding a 

drone’s flight characteristic (state) errors within a GPS-denied region. The research 

focuses on a development and investigation of utilizing a camera to simultaneously 

determine a drone’s state while locating landmarks, where there is uncertainty in the 

landmarks’ exact positions prior to the mission (SLAM). This SLAM method is 

performed in regions with limited access to GPS. Furthermore, there is development and 

investigation of controlling the drone in conjunction with SLAM using potential error-

reducing control parameters. Objectives are to quantitatively understand the UAV’s 

sensitivity of position errors to sensor grade and landmark characteristics as well as 

sensitivity of position errors to tuned control parameters.  
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CHAPTER 1  

INTRODUCTION 

Modern military development is investing research in unmanned aerial vehicle 

(UAV, drone) missions of reconnaissance, intelligence, surveillance, and payload 

delivery in hostile regions. In addition to remotely piloting these vehicles, research is 

pursuing fully autonomous vehicles. To complete missions within hostile territories, these 

autonomous vehicles must be able to navigate through obstacle- or landmark-filled 

regions, path plan, and perform collaborative mission planning—all in real time. A large 

hindrance to executing these capabilities is in GPS-denied (GPSD) territories, where 

obstructions, such as buildings or mountain valleys, and enemy interference, such as GPS 

jamming, prevent the UAV from obtaining precise state measurements of itself, allies, 

and nearby landmarks. Without these measurements, the UAV’s movement is hindered, 

leaving the UAV susceptible to collisions, enemy capture, and mission failure. 

To combat this hinderance, research has developed inertial navigation system 

(INS) sensors and filter statistics algorithms to better define state estimation during a 

mission; incorporating mapping vision sensors, which increase estimation accuracy as 

well as geographically locate landmarks, is also common practice [1]. Much of the latest 

research involves adding new methods to UAV algorithms to enhance specific aspects of 

the mission. For this research, the main objective is to enhance the framework for mission 

planners to assess a mission’s sensitivity to navigation uncertainties as well as 

sensitivities for UAV guidance and control (GC) in uncertain environments. 

To do so, this research will focus on two objectives. First, this research will focus 

on the development and investigation of UAV and landmark simultaneous localization 
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and mapping (SLAM) [2]. The research will study the sensitivities using SLAM in a 

landmark field, where landmark locations are known a priori but with an associated 

uncertainty and where availability of absolute position information is limited within the 

trajectory. Second, this research will focus on developing a new GC law cost (see 1.1.2 

and 1.1.3) which attempts to approach GC optimization in terms of reducing navigation 

errors. To explain this approach, consider a linear system. Navigation uncertainties in that 

linear system grow exactly the same regardless of the trajectory the system takes. 

Considering a nonlinear system, however, navigation uncertainties are trajectory 

dependent; and since trajectories are dependent on GC parameters, there is an implication 

that GC parameters can be exploited to modulate navigation errors. To that end, the 

research investigates the sensitivity of navigation uncertainties as a function of GC 

parameters in that new GC law cost. Both the SLAM sensitivity study and the new GC 

law cost study have potential in identifying guidance, navigation, and control (GNC) 

characteristics that minimize navigation errors. 

The following chapters in this thesis will provide the necessary information to 

understand and execute this research’s objectives. The remainder of Chapter I will detail 

a literature review for GNC development. Chapter II will provide design development 

details within the simulation. Chapter III will display simulation results and the 

interpretations thereof. Chapter IV will then provide the thesis conclusion. 

1.1  Literature Review 

This section will detail the development of GNC. First, navigation improvements 

will be addressed. Next a discussion on generating guidance paths will be presented. 

Finally, the review will provide a description on types of control law implementation. 
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1.1.1 Navigation 

To know the state of a UAV at any time in a mission is the study of navigation, or 

state estimation. Accessing real-time state estimates are usually acquired via sensor 

packages onboard the UAV. With the advances in GPS sensors, the complexities in 

retaining precise and accurate navigation have reduced. However, when GPS sensor 

readings are denied, alternative sensors must be utilized. INS such as accelerometers and 

gyroscopes are the fundamental packages to continue estimating without GPS. With the 

assistance of a Kalman filter, UAV navigation performance in simulation and physical 

testing has improved significantly [1]. One can think of this filter as gaussian statistics 

algorithm—a step-by-step recipe procedure to account for all measurements. Based on 

prior knowledge of system variances and the current INS readings, the sub-algorithm will 

output a better approximation of the UAV’s current state [3]. An alternative to Kalman 

filters is the Particle filter. This filter is utilized in highly non-gaussian environments, 

where statistical resampling and tuning weights are used to estimate aircraft state [4,5]. 

However, given large uncertainties and drift characteristics [6] associated with INS 

sensors, the effectiveness of either filter may still be limited as well as either under- or 

overconservative in estimate uncertainty [4,7].  

To improve effectiveness, additional sensors may be incorporated with the INS 

and filter algorithms. In particular, vision-based (camera) measurements and light 

detection and ranging (LIDAR) have provided significant success to increasing 

navigation performance [8–10]. For example, one popular vision-based approach to 

GPSD navigation is visual odometry, where sequential images of the environment are 

compared to gauge how much UAV orientation changed from one time instant to the next 
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[1,2]. Another example is simultaneous localization and mapping (SLAM), where the 

environmental sensors, be it radar, acoustic, image, etc., creates a real-time terrain 

mapping; position measurements are then extracted based on changes in new image 

captures [1,2]. Image techniques are also used with UAV collaborative swarms using 

pattern-detection. By capturing images during a mission, a UAV swarm can quickly 

determine one another’s position when the images capture specific patterns that were 

placed on each drone [11]. Alternatively, navigation swarm collaboration can be achieved 

with indirect GPS sources. Using a high-flying, GPS-allowed drone to send data to low-

flying, GPSD drones and/or matching the low-flying drones imagery with previously 

acquired GPS images (a form of geolocation filtering), successful missions have been 

accomplish in both simulation and physical implementation [7,12]. 

Both vision-based measurements and LIDAR sensors are used heavily in the state 

of the art with preferences based on each sensor’s particular advantage. Camera sensors 

have a wider sensor price range, much like INS packages. Camera payloads typically 

weigh less and are less bulky than LIDAR [1]. Fundamentally, however, the form of 

LIDAR’s environmental image is of higher value. LIDAR’s lasers can still map a terrain 

without ambient lighting [1]. LIDAR provides terrain depth measurements without the 

complications of stereo imaging (note, however, RGB-D cameras [8]) and is less 

dependent on scene “texture”  and nonhomogeneous terrain [1,7]. Nevertheless, LIDAR 

is an active sensor, like radar, where its broadcasted waves are more susceptible to enemy 

detection than passive vision-based measurements [4]; and, in either case, both camera 

and LIDAR sensor performance degrade from noise, environmental influences, and 

processing computation time—especially in regions where landmark positions are only 
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partially known [2,8,11,12].  

Particularly for vision-based systems, there is discussion on how UAV state and 

sensor interaction with the environment influence navigation performance. The 

discussion is typically in the context of the source of error in the navigation. For 

collaborative rotor-UAVs executing surveillance, Scaramuzza et al. states that “the closer 

the robot is to a point in the terrain, the better its sensing ability to monitor this point” [6]. 

Maddison et al. provides test results showing that “error and uncertainty should be high 

for points that are far from the camera and near the direction of motion” based on motion 

stereo camera results [10]. Saske et al. provides a chart with similar results for different 

camera resolutions and frames per second [11]. The researchers also emphasize the fact 

that certain camera approaches, like visual odometry and optical flow, significantly 

accumulate errors and drift over time [6,8]. One study by Babinec and Aeltauer 

performed extensive research on how the onboard aerial surveillance imagery specifically 

produces position error. Its findings included the following: Sources of errors are 

extensive and range from human error to atmospheric turbulence to camera lens 

deformation. In an image, having a high number of landmarks with known positions 

“generally…can improve accuracy, but it may not reduce the resulting error to zero.” 

Average landmark position error increases with landmark distance from the camera’s 

principal point. Given four landmarks placed in quadrilateral patterns with known 

positions, error increases radially outward from this quadrilateral. If this quadrilateral is 

relatively compact, errors are mitigated within the quadrilateral at the expense of higher 

errors outside the quadrilateral. Higher surveillance errors occur at lower UAV altitudes 

with camera images farther offset from the center of the quadrilateral [9]. Nuske et al. 
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also provide insight in terms of geolocation filtering, where “error in vehicle heading is 

often the dominant source of error” [7]. Also considering geolocation, Schnaufer et al. 

explains that having landmarks with less accurate coordinates, fewer landmarks, and non-

robust image cross-correlation will significantly increase errors [12]. 

Given the wide range of discussion on error sources in navigation, there appears 

to be significant qualitative knowledge for mission planners on how to minimize these 

errors—minimize heading errors (e.g., using high accuracy magnetometers); prior to the 

mission, accurately locate multiple landmarks along the mission path; minimize UAV-

landmark proximity to achieve better sensing ability; etc. However, a quantitative study 

of navigation uncertainties is lacking. 

For example, a particular GPSD payload mission may involve few landmarks, 

restricted budget, and a fixed-wing UAV. These constraints force mission planners to 

prioritize what sensor package grades to use. These constraints also force prioritization 

on how the UAV should travel. Without hovering ability while collecting navigation 

estimates, like rotorcrafts in state-of-the-art research, mission planners must prioritize 

how long the UAV can collect landmark information before estimation errors grow too 

large. In this example, the aforementioned research provides some quantitative 

understanding. Nevertheless, there still lacks a sensor sensitivity analysis to assist these 

constrained mission planners in choosing appropriate sensor grades and mission paths. 

1.1.2 Guidance 

As noted in the 1.1.1 Navigation section, navigation is influenced by how a UAV 

travels through a GPSD region. This travel, or path planning, is the subject of guidance 

research. In well-known, clutter-free environments, generated paths may be as simple as 
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drawing a straight line between the UAV’s current position and the final destination. 

Even as the environments become more cluttered, planners can still build simple paths 

using a waypoint technique. In this technique, the planner need only specify a 

“breadcrumb trail” of points that the drone can follow up to the final destination [13]. 

What becomes problematic for this algorithm is dynamic feasibility. A fixed-wing UAV, 

for example, may not be capable of turning sharp enough to hit the next waypoint and 

avoid nearby obstructions. Furthermore, there is little intuition as to whether this 

somewhat-arbitrarily-chosen waypoint path is necessarily the wisest path for the UAV to 

follow, especially when the environment becomes less well known. Hence, significant 

research and development has been dedicated to solving these guidance problems. 

Before discussing the state of the art, when considering guidance, development 

usually splits into two levels: global planning and local planning. Global planning is 

typically characterized as a pre-mission plan on how the UAV will get to a final 

destination or, if the final destination must be sought out, the course of travel so the UAV 

can look for the final destination. Local planning is typically characterized as real-time 

mission planning, where the UAV will perform specific avoidance maneuvers if 

previously unknown landmarks or intruders hinder the UAV’s movement along the 

global path [4]. Interestingly, despite the planning differences, the algorithms that 

generate global guidance paths can also generate local guidance paths and vice versa. The 

preferences for using an algorithm globally or locally are simply based the algorithm’s 

particular advantages (computation time, reliability, adaptability, etc.). 

With global and local planning now described, the state of the art will be 

described. Building off the idea of waypoint following, Anderson et al. provide a real-
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time path smoothing technique at waypoint turns, where waypoint corners are replaced 

with dynamically feasible fillets [14]. Anderson’s co-authors, Beard and McLain, 

simplify this technique further and also lecture on two path planning methods: Voronoi 

Graphs and Rapidly Exploring Random Trees (RRT) [13]. Voronoi graphs align flight 

paths such that they “are perpendicular bisectors between” the landmarks [13], which 

aids in maximizing separation distance for obstruction avoidance. RRT algorithm will 

randomly consider and build feasible path routes within the environment until one of the 

feasible routes connects with the final destination. Alternatively, Kendoul provides 

further insight to potential fields, which develops algorithmic “force fields” generated by 

the goals and landmarks in the environment. Obstacles generate repulsive forces that 

repel the vehicle and goals generate attractive forces” [1]. Each of these approaches has 

their own drawbacks. For example, the more popular RRT planner, in its rudimentary 

form, is for global planning, where real time implementation, especially for intruder 

environments [4], become impractical [8]. Nevertheless, the state of the art tends to 

hybridize algorithms to compensate for such impracticalities. Such is the case with the 

real-time * (pronounced “star”) algorithms (A*, Theta*, D*) [8,15]. 

Common to many hybrid algorithms is the incorporation of a heuristic goal based 

on finding shorter paths to the desired destination. In other words, like potential fields, 

these algorithms begin to incorporate secondary objectives (goals, costs) while 

accomplishing the fundamental objective of reaching a destination. Most costs like 

finding the shortest path are quite common, such as minimizing the time-to-go, solution 

computation time, and vehicle energy usage as well as safety measures like maximizing 

obstacle distance or reducing aggressive maneuvers (increasing path smoothness) near 
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landmarks [1,4,8,14,16–18]. 

Though navigation techniques significantly reduce state estimation errors, 

guidance techniques may also prove potentially useful in minimizing these errors. 

Reflecting on section 1.1.1 Navigation’s discussion on how UAV interactions with the 

environment influence navigation performance, one begins to see unique guidance costs 

that would be developed to minimize navigation errors. Perez-Grau et al. [8] and 

Scaramuzza et al. [6] offer similar comments: SLAM techniques favor low-speed paths 

that revisit previously seen environments. Exercising system dynamics in the initial flight 

path helps generate observability. Perez-Grau further claims that generating low yaw 

rates and maintaining the camera’s view in the flight direction reduces “blind 

[measurement] movement segments” and that extended travel in a given direction 

increases position errors in that direction. The camera analysis by Babinec and Aeltauer 

also implies that errors are mitigated if UAV flight path is such that landmarks are more 

centered in the camera’s field of view (FOV). 

Again, these comments mostly provide qualitative insight as to what particular 

path costs would minimize navigation errors. Yet, there still lacks a quantitative 

understanding. Many authors do at least provide position error results from their research 

contributions. Nevertheless, the results show little sensitivity, error-improvement analysis 

with regard to these navigation costs. They do not provide mission planners with intuition 

on what navigation costs are more important than others. 

1.1.3 Control 

With guidance paths developed, the method to physically force the vehicle to 

execute the guidance trajectory is the study of control. In many cases, the reasoning for 
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implementing a specific type of controller is only for simplicity. Other reasons involve 

the need to perform aggressive, evasive maneuvers or withstand wind conditions during 

flight. Furthermore, other reasons are related to execution costs, much like the costs 

described in the 1.1.2 Guidance section. 

 In fact, many of the concepts developed in control are related to the concepts 

built in guidance. Perhaps the simplest concepts of control are carrot chasing (i.e. 

trajectory following) and waypoint following [13,19]. In carrot chasing, a point is 

generated to move along a path. The UAV is instructed to chase this point until the 

mission’s end. In waypoint following, straight line and fillet following instructions are 

given for the drone to hit each waypoint. A more complex control concept involves 

vector fields, where control instructions are to follow the direction of vector flow that 

lead to the desired trajectory [19]. However, these basic, path-following control 

instructions are only a small piece of the underlying control laws that execute these 

instructions. 

 Control law development is extensive. Although this literature review will 

highlight three main control methods—PID, nonlinear, and optimal—there certainly are 

other novel branches of control, such a machine learning (e.g. neural networks) and fuzzy 

logic [1]. Of the three main methods, PID control is perhaps the most elementary. Given 

the error difference between current and desired flight path, PID will send commands 

based on proportional, integral, and derivative error calculations [20]. These commands 

are then given intensity (gain) adjustments based on how aggressive a UAV should 

pursue a trajectory and how much path overshoot is tolerated [13]. 
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 Nonlinear control is perhaps the least elementary of the main control methods. 

Yet, with nonlinearities being a main source of control failure, this control provides 

satisfactory results where other control laws fail [21]. Nonlinear controls use a variety of 

techniques such as feedback linearization, sliding mode control, Lyapunov redesign, 

backstepping, and passivity-based control to achieve sufficient levels of control stability. 

Kaminer et al. provides an example of UAV nonlinear control with strict performance 

requirements despite modeling uncertainties and environmental disturbances [22]. 

 In contrast, optimal control places focus on minimizing or maximizing costs like 

time-to-go and vehicle energy usage discussed in the 1.1.2 Guidance section [23]. While 

retaining dynamic system limitations, optimal control uses gradient methods to determine 

control inputs that correspond to these minimized/maximized costs. Most commonly 

known is LQR control, where the system combines energy (control input), transient state, 

and terminal state costs into a solvable form using Riccati Equations [24]. Due to a 

variety of factors such as computational expense, nonlinearities, and system stability, a 

variety of equation-solving architectures are used to solve optimal control problems. 

Among these are the popular direct shooting methods, where the system is discretized 

and solved using optimality conditions [25]; computationally fast collocation methods, 

which use polynomial curve fits to develop control trajectories [4]; and the quickly-

intractable dynamic programming, which finds a global optimal solution by implicitly 

considering all possible trajectories using Bellman’s principle of optimality [26].  

Despite the large amounts of concepts, laws, and solver techniques involved with 

control, most of the previously mentioned control laws do not attempt to reduce 

navigation errors. They focus on minimizing flight path error. They assume that the 
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navigation (observer) will provide error compensation and focus on developing a 

controller that works sufficiently amidst the uncertainty. There appears to be disregard 

for the possibility that certain control inputs may be inducing significant amounts of 

uncertainty into the system. Stochastic optimal control [15,27] came closest to addressing 

this error minimization. Using the Ito equation (linearization to the second derivative) 

and dynamic programming, Maybeck discusses how to define cost functions such that 

state expectations are maximized [26]. However, stochastic optimal control is more so 

tolerating the errors rather than trying to prevent them to begin with. For example, A cost 

may call for speed minimization. Stochastic optimal control will perform this 

minimization, tolerating error growth in GPSD, oblivious to the fact that speeding out of 

GPSD would significantly reduce error growth. In short, the research lacks control 

studies that focus on navigation error prevention. 
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CHAPTER 2  

DESIGN DEVELOPEMENT 

This chapter will detail the simulation’s design description. The description will 

provide an extensive explanation and validation on the indirect, extended Kalman filter 

design (IEKF, 2.1). The guidance and control law design, using pre-built toolboxes and 

libraries, will then be outlined (2.2). Simulations in this document are implemented using 

MATLAB. 

2.1 Kalman Filter Development 

 This section will explain how the Kalman filter is generated. This section will 

also include the validation steps used to ensure correct implementation of that filter. 

Among these steps are defining the system states and models (2.1.1), error state mappings 

(2.1.2) propagation validation (2.1.3), linear error state modeling (2.1.4), linear error 

measurement modeling (2.1.5), covariance propagation (2.1.6), and discussing the 

system’s measurement estimation capability (2.1.7). Note much of the Kalman filter 

implementation is based off the derivations of Maybeck [3,28] as well as Christensen and 

Geller [29]. 

 Before beginning, the reasoning for using an IEKF may be desired. UAV flight 

is nonlinear; furthermore, particularly with vision sensors, flight measurements are also 

nonlinear. Such factors detract from using a linear Kalman filter. An extended Kalman 

filter accommodates for such nonlinearities via linearization. Using an indirect Kalman 

filter, where error states are tracked over time, as opposed to only tracking states, allow 

the engineer to incorporate state measurement updates that are not additive (e.g., 

measurement updates that are in different coordinate frames than the state). The 
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complexities and computations needed to generate an unscented Kalman filter or a 

particle filter seemed excessive for this foundational study. Furthermore, the simplified 

nonlinearities associated with the UAV, which are shown in the following 2.1.1 States 

and Models subsection, did not appear extreme or harsh enough to justify the use of an 

unscented Kalman filter or particle filter. 

2.1.1 States and Models 

 To simulate the drone forward in time, the system state and state dynamics must 

be known. Beard and McLain provide an extensive 3D “truth model” for UAVs and have 

collected coefficient and mass parameters specifically for Aerosonde models [13]. Using 

Figure 2.1 for reference, this 3D model is simplified to a projection in the 2D plane. 

 

 
Figure 2.1. 2D UAV depiction with frames of reference. Adapted from [13]. 

 

In particular, Figure 2.1 provides the frames of reference associated with the state and 

dynamics models, that is, an Inertial frame (𝐼𝑛, 𝐼𝑒), North-East frame (𝑛, 𝑒), Body frame 
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(𝐵𝑢, 𝐵𝑣), and Camera frame (𝑐𝑖, 𝑐𝑗). Note that 𝑛 is always parallel with 𝐼𝑛 and 𝑒 is always 

parallel with 𝐼𝑒. Additionally, the heading angle (𝜓) and a camera bias (i.e. misalignment 

or offset) angle (𝑏𝑐) are indicated. 

 As part of the UAV states associated with Figure 1, the Kalman filter can utilize 

sensor bias states to predict better estimates of the truth UAV states. This research will 

incorporate two accelerometer biases, a gyroscope angular rate bias, and a camera angle 

bias. Furthermore, SLAM utilizes landmark state positions not only to log current 

landmark estimates, but to also simultaneously assist in estimating UAV states. In this 

research, zero to two landmarks having north and east coordinates will be appended to 

the state. As such, the complete truth state model is mathematically defined as 

 �̅� =

[
 
 
 
 
 
 
 
 
 
 
 
𝑝𝑛
𝑝𝑒
𝑢
𝑣
𝜓
𝑟
𝑏𝑎𝑢
𝑏𝑎𝑣
𝑏𝜔
𝑏𝑐
Λ̅𝑛𝑒]

 
 
 
 
 
 
 
 
 
 
 

 (2.1) 

An overbar will denote a variable’s matrix characteristic. The UAV’s north position and 

east position is described by 𝑝𝑛 and 𝑝𝑒 respectively. 𝑢 and 𝑣 define the vehicle’s velocity 

along axis 𝐵𝑢 and 𝐵𝑣 in the Body frame respectively. Heading angle, 𝜓, and heading rate, 

𝑟, are provided with respect to the North-East frame (with north-east-down convention, 

right-hand-rule is positive). Following the UAV state terms are the bias error terms for 

the accelerometer measurements along the Body frame’s 𝑢 (𝑏𝑎𝑢) and 𝑣 (𝑏𝑎𝑣) directions as 

well as the bias errors associated with the UAV’s gyroscope (𝑏𝜔) and a forward-facing 
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camera (𝑏𝑐). Scale factor errors are assumed negligible for this study and are not included 

in the state. Following bias errors is Λ̅𝑛𝑒, which is a vector of uncertain landmark 

locations defined as 

 Λ̅𝑛𝑒 = [

Λ1𝑛
Λ1𝑒
Λ2𝑛
Λ2𝑒

]  (2.2) 

where the subscript 𝑛 or 𝑒 denote a landmark’s north or east coordinates respectively and 

the numeral subscripts denote whether the coordinate is for the first or second landmark. 

Note that all equations will be presented assuming two landmarks; for simulations with 

fewer landmarks, equation rows and columns associated with the unused landmarks are 

removed. 

 In conjunction to this truth state is the truth dynamics. Again, using a 2D 

projection of Beard and McLain’s work, these dynamics are defined in state-space form 

as 
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 �̇̅� = 𝑓(̅�̅�, �̅�, �̅�) =

[
 
 
 
 
 
 
 
 
 
 
 
 
�̇�𝑛
�̇�𝑒
�̇�
�̇�
�̇�
�̇�
�̇�𝑎𝑢
�̇�𝑎𝑣
�̇�𝜔
�̇�𝑐

Λ̇̅𝑛𝑒]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑢 cos(𝜓) − 𝑣 sin(𝜓)

𝑢 sin(𝜓) + 𝑣 cos(𝜓)

𝑟 𝑣 −
𝐶𝐷𝑜  𝜌 𝑉𝑎

2 𝑆

2𝑚
+
𝐹𝑇
𝑚

−𝑟 𝑢 +
Ξ1 𝜌 𝑉𝑎

2 𝑆

2𝑚

𝑟

Ξ2 𝜌 𝑉𝑎
2 𝑆 𝑏

2

−
𝑏𝑎𝑢
𝜏𝑎𝑢

+ 𝑤𝑎𝑢

−
𝑏𝑎𝑣
𝜏𝑎𝑣

+ 𝑤𝑎𝑣

−
𝑏𝜔
𝜏𝜔
+ 𝑤𝜔

−
𝑏𝑐
𝜏𝑐
+ 𝑤𝑐

0̅ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (2.3) 

where 

 

[
 
 
 
 
 
Ξ1
Ξ2
𝛽
𝑉𝑎
𝑢𝑟
𝑣𝑟 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 𝐶𝑌0 + 𝐶𝑌𝛽  𝛽 +

𝐶𝑌𝑟  𝑏 𝑟

2 𝑉𝑎
+ 𝐶𝑌

𝛿⏞𝑟
𝛿⏞𝑟

𝐶𝑟0 + 𝐶𝑟𝛽  𝛽 +
𝐶𝑟𝑟  𝑏 𝑟

2 𝑉𝑎
+ 𝐶𝑟

𝛿⏞𝑟
𝛿⏞𝑟

sin−1 (
𝑣𝑟
𝑉𝑎
)

√𝑢𝑟2 + 𝑣𝑟2

𝑢 − 𝑢𝑤𝑔
𝑣 − 𝑣𝑤𝑔 ]

 
 
 
 
 
 
 
 
 

 (2.4) 

and the system is assumed to have no ambient wind. Moving to the right-hand side of 

Equation (2.3), �̇�, �̇�, and �̇� accelerations are functions of air density (𝜌), the airframe’s 

magnitude velocity (𝑉𝑎; relative to surrounding air mass; note that 𝑢𝑟 and 𝑣𝑟 are relative 

wind projected onto the body u and v axis respectively and subscript 𝑤𝑔 denotes wind 

gust), UAV mass (𝑚), wingspan (𝑏), planform area (𝑆), and side slip angle (𝛽). For 
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simplicity, the control inputs have been simplified into two parameters: ruddervator 

deflection (𝛿⏞𝑟, referenced as rudder in this document) and thrust input (𝐹𝑇). Note that 

�̅� = [𝐹𝑇 𝛿⏞𝑟]
𝑇
 (subscript 𝑇 for thrust, superscript 𝑇 for matrix transpose). The 

accelerations are also functions of aerodynamic coefficients (uppercase 𝐶∗) as defined in 

[13]. Bias derivatives are modeled as first-order Markov processes (exponentially 

correlated random variables) [3], which include their respective driving noise terms (𝑤∗) 

and time constants (𝜏∗). Note that �̅� = [𝑢𝑤𝑔 𝑣𝑤𝑔 𝑤𝑎𝑢 𝑤𝑎𝑣 𝑤𝜔 𝑤𝑐]𝑇 and that 

Markov processes are used due their versatility in modeling any spectrum between white 

noise and a constant bias; more information regarding these and future defined noise 

terms will be provided in the 2.1.6 Covariance Propagation and 2.1.7 Estimation 

Capability subsections. For this study, the landmarks are assumed to be stationary, hence 

their dynamics are implanted as the zero vector. The use of Euler angles, rather than 

quaternions, is maintained for better intuition and simplicity. For these and future 

equations, the explicit variable dependencies on time are usually dropped for visual 

clarity purposes.  

 The equations just described define the system truth state and truth dynamic 

models for this research—the states and dynamics that are assumed to perfectly, 

realistically model a physical Aerosonde system. Unfortunately, in reality, the exact, real-

time values for many of the equation terms parameters are not directly available; they 

can, however, be obtained indirectly by means of the UAV sensor package. In the context 

of this paper, the sensor package includes continuous measurements from the 

accelerometers and gyroscope as well as discrete measurements (when available) from 

GPS satellites, magnetometer, and a pinhole camera (implementation with velocimeters 
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and other equipment is left to future work). In mathematical form, these measurements, 

indicated with a tilde overmark, are modeled as 

 [
�̃�𝑢
�̃�𝑣
�̃�
] = �̃̅� = [

𝑎𝑢 + 𝑏𝑎𝑢 + 𝜂𝑎𝑢
𝑎𝑣 + 𝑏𝑎𝑣 + 𝜂𝑎𝑣
𝜔 + 𝑏𝜔 + 𝜂𝜔

] = [

�̇� − 𝑟 𝑣 + 𝑏𝑎𝑢 + 𝜂𝑎𝑢
�̇� + 𝑟 𝑢 + 𝑏𝑎𝑣 + 𝜂𝑎𝑣

𝑟 + 𝑏𝜔 + 𝜂𝜔

] (2.5) 

and 

 

[
 
 
 
𝑝𝑛
𝑝𝑒
�̃�

Γ̃̅ ]
 
 
 

= 𝑧̅̃ = ℎ̅(�̅�(𝑡𝑘), �̅�(𝑡𝑘)) =

[
 
 
 
 
𝑝𝑛(𝑡𝑘) + 𝜂𝑝𝑛(𝑡𝑘)

𝑝𝑒(𝑡𝑘) + 𝜂𝑝𝑒(𝑡𝑘)

𝜓(𝑡𝑘) + 𝜂𝜓(𝑡𝑘)

Γ̅(𝑡𝑘) + �̅�Γ̅(𝑡𝑘) ]
 
 
 
 

 (2.6) 

where 

 Γ̅(𝑡𝑘) = [
Λ1𝑗(𝑡𝑘) Λ1𝑖(𝑡𝑘)⁄

Λ2𝑗(𝑡𝑘) Λ2𝑖(𝑡𝑘)⁄
] (2.7) 

 �̅�Γ̅(𝑡𝑘) = [
�̅�Γ̅[1](𝑡𝑘)

�̅�Γ̅[2](𝑡𝑘)
] (2.8) 

 Λ̅𝑖𝑗(𝑡𝑘) =

[
 
 
 
 
Λ1𝑖(𝑡𝑘)

Λ1𝑗(𝑡𝑘)

Λ2𝑖(𝑡𝑘)

Λ2𝑗(𝑡𝑘)]
 
 
 
 

 (2.9) 

In detail, Equation (2.5) states that the continuous measurements of the 2-axis 

accelerometer (�̃�∗) and the gyroscope (�̃�) are equal to the true accelerometer acceleration 

(𝑎∗) or true gyroscope angular rate (𝜔) plus their respective bias (𝑏∗) plus their respective 

continuous measurement noise (𝜂∗, modeled as a gaussian random process). Furthermore, 

Equation (2.5) can be equivalently expressed with the following substitutions: True 𝑢-

axis accelerometer measurements, �̃�𝑢, equal the vehicle’s linear acceleration along axis 

𝐵𝑢 minus Coriolis acceleration plus bias and noise. True 𝑣-axis accelerometer 

measurements, �̃�𝑣, equal the vehicle’s linear acceleration along axis 𝐵𝑣 plus Coriolis 
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acceleration, bias, and noise. True gyroscope measurements, �̃�,  equal the vehicle’s true 

angular velocity, 𝑟, plus bias and noise. For visual purposes in future derivations, 

Equation (2.5) is rearranged to define linear acceleration and angular velocity as follows: 

 [
�̇�
�̇�
𝑟
] = [

�̃�𝑢 + 𝑟 𝑣 − 𝑏𝑎𝑢 − 𝜂𝑎𝑢
�̃�𝑣 − 𝑟 𝑢 − 𝑏𝑎𝑣 − 𝜂𝑎𝑣

�̃� − 𝑏𝜔 − 𝜂𝜔

] (2.10) 

Equation (2.6) states that the discrete measurements of the GPS and magnetometer are a 

function of the truth state at a discrete time, 𝑡𝑘, plus discrete measurement noise 𝜂∗(𝑡𝑘). 

The pinhole-camera measurement model, Γ̅(𝑡𝑘), which is composed of elements from the 

line-of-sight vector, Λ̅𝑖𝑗(𝑡𝑘), is similarly defined. For Equation (2.8) and future equations, 

subscript brackets around a number or number set simply refer to the matrix position of 

that subscript’s variable (note �̅�(𝑡𝑘) =

 [𝜂𝑝𝑛(𝑡𝑘) 𝜂𝑝𝑒(𝑡𝑘) 𝜂𝜓(𝑡𝑘) �̅�Γ[1](𝑡𝑘) �̅�Γ[2](𝑡𝑘)]). 

 Before continuing, there is need to further describe the line-of-sight vector and 

Equation (2.7)’s camera measurement definition. The description will help provide 

intuition for later derivations in the Kalman filter. First, a visual is provided. 
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Figure 2.2. Visualization of line-of-sight vector derivation and 𝛾. Adapted from [13]. 

 

In this figure, a position vector loop is drawn between the Inertial frame origin, drone, 

and a single landmark, Λ (assuming that the camera is located at the drone’s center of 

mass for simplicity). The truth state, defined by Equation (2.1), yields information 

regarding the landmark location vector, [Λ𝑛(𝑡𝑘), Λ𝑒(𝑡𝑘)], and drone position vector, 

[𝑝𝑛(𝑡𝑘), 𝑝𝑒(𝑡𝑘)], with respect to the Inertial frame, expressed in the Inertial frame. 

Obtaining the camera’s line-of sight vector, [Λ𝑖(𝑡𝑘), Λ𝑗(𝑡𝑘)] (landmark location vector 

with respect to the drone camera frame, expressed in the camera frame), for a single 

landmark can then be derived as follows: 

 

[
Λ𝑖(𝑡𝑘)

Λ𝑗(𝑡𝑘)
] = �̅�𝐵

𝑐�̅�𝐼
𝐵 [
Λ𝑛(𝑡𝑘)

Λ𝑒(𝑡𝑘)
] − �̅�𝐵

𝑐�̅�𝐼
𝐵 [
𝑝𝑛(𝑡𝑘)

𝑝𝑒(𝑡𝑘)
]

= �̅�𝐵
𝑐�̅�𝐼

𝐵 [
Λ𝑛(𝑡𝑘) − 𝑝𝑛(𝑡𝑘)
Λ𝑒(𝑡𝑘) − 𝑝𝑒(𝑡𝑘)

] 

(2.11) 

 �̅�𝐵
𝑐 = [

cos(𝑏𝑐(𝑡𝑘)) sin(𝑏𝑐(𝑡𝑘))

−sin(𝑏𝑐(𝑡𝑘)) cos(𝑏𝑐(𝑡𝑘))
] (2.12) 
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 �̅�𝐼
𝐵 = [

cos(𝜓(𝑡𝑘)) sin(𝜓(𝑡𝑘))

−sin(𝜓(𝑡𝑘)) cos(𝜓(𝑡𝑘))
] (2.13) 

In this derivation, the camera line of sight vector is equivalent to the landmark location 

vector minus the drone position vector. However, having the need to express all vectors 

in the same reference frame, the landmark location and drone position vectors must be 

transformed. This is done via two transformation matrices: One to transform from Inertial 

frame coordinates to Body frame coordinates, �̅�𝐼
𝐵, and one to transform from Body frame 

to Camera frame coordinates, �̅�𝐵
𝑐. A similar derivation is used when augmenting the 

second landmark line-of-sight vectors to Equation (2.9).  

Essentially, the pinhole model is a method for projecting a 2D position into a 1D 

quantity, as is the nature of cameras. The convention for this projection is to divide the 

non-bore-axis line-of-sight value by the bore-axis line-of-sight value. Hence, since this 

study’s camera is forward facing, the landmarks’ 𝑖 elements will be in the denominator. 

Future work in 3D will then have two projected quantities per landmark for one camera, 

i.e., 𝑗/𝑖 and 𝑑𝑜𝑤𝑛 𝑎𝑥𝑖𝑠 𝑖⁄  to project from 3D to 2D. As a last note, 𝛾 in the figure is the 

angle between the UAV’s heading and the landmark (used in the 3.2 Guidance and 

Control Law Development section). 

The line-of-sight vector and camera model has just now been described. This 

description was used to help explain part of the sensor packages onboard the UAV. 

Again, the sensor packages are used because they can indirectly obtain many of the terms 

in the truth state and truth dynamics models. To utilize the sensor packages, engineers 

will replace dynamic terms in the truth models with the sensor terms and appropriate, 

accurate design parameters. This model replacement creates the design model, denoted 

with the breve overmark, given by Equation (2.14) through Equation (2.23). 
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 �̆̅� =

[
 
 
 
 
 
 
 
 
 
 
 
𝑝𝑛
𝑝𝑒
�̆�
�̆�
�̆�

�̆�𝑎𝑢
�̆�𝑎𝑣
�̆�𝜔
�̆�𝑐

Λ̆̅𝑛𝑒]
 
 
 
 
 
 
 
 
 
 
 

 (2.14) 

 �̇̆̅� = 𝑓̅̆(�̆̅�, �̆̃̅�, �̆̅�) =

[
 
 
 
 
 
 
 
 
 
 
 
 
�̇�𝑛
�̇�𝑒
�̇̆�
�̇̆�

�̇̆�

�̇̆�𝑎𝑢

�̇̆�𝑎𝑣

�̇̆�𝜔

�̇̆�𝑐

Λ̆̅
̇
𝑛𝑒]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
�̆� cos(�̆�) − �̆� sin(�̆�)  

�̆� sin(�̆�) + �̆� cos(�̆�)

�̃�𝑢 + �̆� �̆� − �̆�𝑎𝑢 − �̆�𝑎𝑢
�̃�𝑣 − �̆� �̆� − �̆�𝑎𝑣 − �̆�𝑎𝑣

�̃� − �̆�𝜔 − �̆�𝜔

−
�̆�𝑎𝑢
�̆�𝑎𝑢

+ �̆�𝑎𝑢

−
�̆�𝑎𝑣
�̆�𝑎𝑣

+ �̆�𝑎𝑣

−
�̆�𝜔
�̆�𝜔
+ �̆�𝜔

−
�̆�𝑐
�̆�𝑐
+ �̆�𝑐

0̅ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.15) 

 [
 �̃�𝑢
�̃�𝑣
�̃�
] ≈ �̆̃̆� = [

�̆�𝑢 + �̆�𝑎𝑢 + �̆�𝑎𝑢
�̆�𝑣 + �̆�𝑎𝑣 + �̆�𝑎𝑣
�̆� + �̆�𝜔 + �̆�𝜔

] = [

�̇̆� − �̆� �̆� + �̆�𝑎𝑢 + �̆�𝑎𝑢
�̇̆� + �̆� �̆� + �̆�𝑎𝑣 + �̆�𝑎𝑣

�̆� + �̆�𝜔 + �̆�𝜔

] (2.16) 

 

[
 
 
 
𝑝𝑛
𝑝𝑒
�̃�

Γ̃̅ ]
 
 
 

≈ 𝑧̅̃̆ = ℎ̆̅(�̆̅�(𝑡𝑘), �̆̅�(𝑡𝑘)) =

[
 
 
 
 
𝑝𝑛(𝑡𝑘) + �̆�𝑝𝑛(𝑡𝑘)

𝑝𝑒(𝑡𝑘) + �̆�𝑝𝑒(𝑡𝑘)

�̆�(𝑡𝑘) + �̆�𝜓(𝑡𝑘)

Γ̆̅(𝑡𝑘) + �̆̅�Γ̅(𝑡𝑘) ]
 
 
 
 

 (2.17) 

 Γ̆̅(𝑡𝑘) = [
Λ̆1𝑗(𝑡𝑘) Λ̆1𝑖(𝑡𝑘)⁄

Λ̆2𝑗(𝑡𝑘) Λ̆2𝑖(𝑡𝑘)⁄
] (2.18) 
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 �̆̅�
Γ̆̅
(𝑡𝑘) = [

�̆̅�
Γ̆̅[1]
(𝑡𝑘)

�̆̅�
Γ̆̅[2]
(𝑡𝑘)

] (2.19) 

 Λ̆̅𝑖𝑗(𝑡𝑘) =

[
 
 
 
 
Λ̆1𝑖(𝑡𝑘)

Λ̆1𝑗(𝑡𝑘)

Λ̆2𝑖(𝑡𝑘)

Λ̆2𝑗(𝑡𝑘)]
 
 
 
 

 (2.20) 

 
[
Λ̆𝑖(𝑡𝑘)

Λ̆𝑗(𝑡𝑘)
] = �̆̅�𝐵

𝑐 �̆̅�𝐼
𝐵 [
Λ̆𝑛(𝑡𝑘)

Λ̆𝑒(𝑡𝑘)
] − �̆̅�𝐵

𝑐 �̆̅�𝐼
𝐵 [
𝑝𝑛(𝑡𝑘)
𝑝𝑒(𝑡𝑘)

]

= �̆̅�𝐵
𝑐 �̆̅�𝐼

𝐵 [
Λ̆𝑛(𝑡𝑘) − 𝑝𝑛(𝑡𝑘)

Λ̆𝑒(𝑡𝑘) − 𝑝𝑒(𝑡𝑘)
] 

(2.21) 

 
�̆̅�𝐵
𝑐 = [

cos(�̆�𝑐(𝑡𝑘)) sin(�̆�𝑐(𝑡𝑘))

−sin(�̆�𝑐(𝑡𝑘)) cos(�̆�𝑐(𝑡𝑘))
] (2.22) 

 
�̆̅�𝐼
𝐵 = [

cos(�̆�(𝑡𝑘)) sin(�̆�(𝑡𝑘))

−sin(�̆�(𝑡𝑘)) cos(�̆�(𝑡𝑘))
] (2.23) 

For this design, the velocity states are kept in the Body frame and not transformed to the 

North-East frame. Initially, making such transformation appeared to be favorable as it 

would provide consistency with the first and second states and seemed more informative 

to navigation engineers. This practice is NOT recommended. The author found the 

practice troublesome for integration and Kalman derivations. Furthermore, obtaining 

North-East frame values for navigation engineers was more easily calculated after, not 

during, the simulation. 

In Equation (2.15), the values of �̇̆� and �̇̆� are derived in the same manner as 

Equation (2.10) by rearranging Equation (2.16). Furthermore, note that the heading rate, 

𝑟, and heading rate derivative, �̇�, have been removed since dynamic propagation is not 

needed due to the availability of continuous, not discrete, gyroscope measurements. A 
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lowercase �̅� is used to denote the absence of these states. The design model noise vector 

is also modified to �̆̅� = [�̆�𝑎𝑢 �̆�𝑎𝑣 �̆�𝜔 �̆�𝑎𝑢 �̆�𝑎𝑣 �̆�𝜔 �̆�𝑐]𝑇, which includes 

continuous measurement noise with the bias driving noise. All �̆̅� is now technically 

described as process noise, rather than measurement and driving noise. 

 In the context of this research, this design model will be used for linearization 

and is a preliminary step to deriving the next model. The caveat to the design model is 

that, to date, process noise is not measurable. Additionally, the engineer may decide to 

substitute appropriate design parameters, such as bias, with alternative, simpler, 

obtainable parameters that sufficiently describe a given parameter. Therefore, making a 

model that gives the best, realistic state estimate with the alternative parameters, 

engineers develop a third model—the navigation model. This model will be represented 

with a hat overmark and is defined as follows: 

 �̂̅� =

[
 
 
 
 
 
 
 
 
 
 
 
�̂�𝑛
�̂�𝑒
�̂�
𝑣
�̂�

�̂�𝑎𝑢
�̂�𝑎𝑣
�̂�𝜔
�̂�𝑐

Λ̂̅𝑛𝑒]
 
 
 
 
 
 
 
 
 
 
 

 (2.24) 
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 �̇̂̅� = 𝑓̅̂(�̂̅�, �̂̃̅�) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
�̇̂�𝑛
�̇̂�𝑒
�̇̂�
�̇�

�̇̂�

�̇̂�𝑎𝑢

�̇̂�𝑎𝑣

�̇̂�𝜔

�̇̂�𝑐

Λ̂̅
̇
𝑛𝑒]
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
�̂� cos(�̂�) − 𝑣 sin(�̂�)

�̂� sin(�̂�) + 𝑣 cos(�̂�)

�̃�𝑢 + �̂� 𝑣 − �̂�𝑎𝑢
�̃�𝑣 − �̂� �̂� − �̂�𝑎𝑣

�̃� − �̂�𝜔

−
�̂�𝑎𝑢
𝜏𝑎𝑢

−
�̂�𝑎𝑣
𝜏𝑎𝑣

−
�̂�𝜔
𝜏𝜔

−
�̂�𝑐
𝜏𝑐
0̅ ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.25) 

where 

 [
�̃�𝑢
�̃�𝑣
�̃�
] ≈ �̂̃̅� = [

�̂�𝑢 + �̂�𝑎𝑢
�̂�𝑣 + �̂�𝑎𝑣
�̂� + �̂�𝜔

] = [

�̇̂� − �̂� 𝑣 + �̂�𝑎𝑢
�̇� + �̂� �̂� + �̂�𝑎𝑣

�̂� + �̂�𝜔

]  (2.26) 

 

[
 
 
 
𝑝𝑛
𝑝𝑒
�̃�

Γ̃̅ ]
 
 
 

≈ 𝑧̅̃̂ = ℎ̂̅(�̂̅�(𝑡𝑘)) =

[
 
 
 
 
�̂�𝑛(𝑡𝑘)

�̂�𝑒(𝑡𝑘)

�̂�(𝑡𝑘)

Γ̂̅(𝑡𝑘) ]
 
 
 
 

 (2.27) 

 
Γ̂̅(𝑡𝑘) = [

Λ̂1𝑗(𝑡𝑘) Λ̂1𝑖(𝑡𝑘)⁄

Λ̂2𝑗(𝑡𝑘) Λ̂2𝑖(𝑡𝑘)⁄
] (2.28) 

 

Λ̂̅𝑖𝑗(𝑡𝑘) =

[
 
 
 
 
Λ̂1𝑖(𝑡𝑘)

Λ̂1𝑗(𝑡𝑘)

Λ̂2𝑖(𝑡𝑘)

Λ̂2𝑗(𝑡𝑘)]
 
 
 
 

 (2.29) 

 
[
Λ̂𝑖(𝑡𝑘)

Λ̂𝑗(𝑡𝑘)
] = �̂̅�𝐵

𝑐 �̂̅�𝐼
𝐵 [
Λ̂𝑛(𝑡𝑘)

Λ̂𝑒(𝑡𝑘)
] − �̂̅�𝐵

𝑐 �̂̅�𝐼
𝐵 [
�̂�𝑛(𝑡𝑘)
�̂�𝑒(𝑡𝑘)

]

= �̂̅�𝐵
𝑐 �̂̅�𝐼

𝐵 [
Λ̂𝑛(𝑡𝑘) − �̂�𝑛(𝑡𝑘)

Λ̂𝑒(𝑡𝑘) − �̂�𝑒(𝑡𝑘)
] 

(2.30) 
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�̂̅�𝐵
𝑐 = [

cos(�̂�𝑐(𝑡𝑘)) sin(�̂�𝑐(𝑡𝑘))

−sin(�̂�𝑐(𝑡𝑘)) cos(�̂�𝑐(𝑡𝑘))
] (2.31) 

 
�̂̅�𝐼
𝐵 = [

cos(�̂�(𝑡𝑘)) sin(�̂�(𝑡𝑘))

−sin(�̂�(𝑡𝑘)) cos(�̂�(𝑡𝑘))
] (2.32) 

 

Λ̂̅𝑛𝑒(𝑡𝑘) =

[
 
 
 
 
Λ̂1𝑛(𝑡𝑘)

Λ̂1𝑒(𝑡𝑘)

Λ̂2𝑛(𝑡𝑘)

Λ̂2𝑒(𝑡𝑘)]
 
 
 
 

 (2.33) 

Essentially, the navigation model approximates the truth model. The navigation model 

propagates states forward in time and will account for (subtract out) bias errors to get as 

near to the true model as possible. The navigation model is what the Kalman filter will 

use to perform state estimates. Again, like the design model, the navigation model 

attempts to derive �̇̂� and �̇� by solving for �̇̂�, �̇�, and �̂� in Equation (2.26). 

2.1.2 Error State Mappings 

The prior subsection just derived the state models that are used within the Kalman 

filter: the design model for linearization in future subsections and the navigation model 

for state estimate propagation. However, for simulations, the truth model can still be 

utilized. By propagating both the truth and navigation models forward in time, the results 

from both models can be compared to confirm that navigation dynamics sufficiently 

matches and represents the true dynamics throughout the given simulation time. 

Furthermore, error comparisons of simulation results can be developed with the truth 

model. To do this dynamics confirmation and error comparison, mappings between the 

navigation and the truth state are first needed (for clarity, these are mappings between 

states, not dynamics). 
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To model the error discrepancies between the true state and the UAV’s navigation 

state, an error state matrix is developed. 

 𝛿�̅� =  

[
 
 
 
 
 
 
 
 
 
 
𝛿𝑝𝑛
𝛿𝑝𝑒
𝛿𝑢
𝛿𝑣
𝛿𝜓
𝛿𝑏𝑎𝑢
𝛿𝑏𝑎𝑣
𝛿𝑏𝜔
𝛿𝑏𝑐
𝛿Λ̅𝑛𝑒]

 
 
 
 
 
 
 
 
 
 

 (2.34) 

A 𝛿 is denoted as the perturbation difference between a true state value and that 

true state value’s respective estimation measurement. The relationship between this error 

matrix, the truth state, and the error state is explicitly written as 

 �̅� =

[
 
 
 
 
 
 
 
 
 
 
𝑝𝑛
𝑝𝑒
𝑢
𝑣
𝜓
𝑏𝑎𝑢
𝑏𝑎𝑣
𝑏𝜔
𝑏𝑐
Λ̅𝑛𝑒]

 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
�̂�𝑛 + 𝛿𝑝𝑛
�̂�𝑒 + 𝛿𝑝𝑒
�̂� + 𝛿𝑢
𝑣 + 𝛿𝑣
�̂� + 𝛿𝜓

�̂�𝑎𝑢 + 𝛿𝑏𝑎𝑢
�̂�𝑎𝑣 + 𝛿𝑏𝑎𝑣
�̂�𝜔 + 𝛿𝑏𝜔
�̂�𝑐 + 𝛿𝑏𝑐

Λ̂̅𝑛𝑒 + 𝛿Λ̅𝑛𝑒]
 
 
 
 
 
 
 
 
 
 
 

 (2.35) 

Again, note that the truth state matrix has been modified, denoted with a lowercase �̅�, to 

not incorporate heading rate, which is absent in the navigation state. Alternatively, the 

mappings needed to transfer between one state to the next can equivalently be defined as 

 �̅� = 𝑙(̅�̂̅�, 𝛿�̅�) = �̂̅� + 𝛿�̅� (2.36) 

 �̂̅� = �̅�(�̅�, 𝛿�̅�) = �̅� − 𝛿�̅� (2.37) 

 𝛿�̅� = �̅�(�̂̅�, �̅�) = �̅� − �̂̅� (2.38) 
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In conclusion, 𝑙(̅�̂̅�, 𝛿�̅�) is a mapping that corrects the state estimate to a modified true 

state; �̅�(�̅�, 𝛿�̅�) is the mapping that “injects” errors to create the navigation state, and 

�̅�(�̂̅�, �̅�) is the mapping to calculate the error state. 

 To confirm consistency between these mappings within the simulation, a 

validation function is developed. In this validation function, (1) the navigation state is 

initially set without any pre-occurring errors (equivalent to the truth state). (2) errors are 

injected into the navigation state using the �̅� mapping. (3) The errors are rederived using 

the �̅� mapping. These rederived errors are compared to the initial injected errors to ensure 

that both are equivalent. (4) Using the 𝑙 ̅mapping, the rederived errors are used to correct 

the navigation state back into a rederived truth state. This rederived truth state is 

compared to the original truth state to ensure that both are equivalent. 

Table 2.1 yields the results from executing this validation function using arbitrary 

initial truth state values and arbitrary initial injection errors. 

 

Table 2.1: Mapping error validation. 

State 𝛿�̅� − 𝛿�̅�𝑟𝑒𝑑𝑒𝑟𝑖𝑣𝑒𝑑 �̅� − �̅�𝑟𝑒𝑑𝑒𝑟𝑖𝑣𝑒𝑑 Units 

𝑝𝑛 0 0 m 

𝑝𝑒 0 0 m 

𝑢 2.8e-15 0 m s⁄  

𝑣 0 0 m/s 
𝜓 -7.1e-17 0 rad 

𝑏𝑎𝑢 0 -1.7e-18 m/s2 

𝑏𝑎𝑣  0 -2.6e-18 m/s2 

𝑏𝜔 0 -6.8e-21 rad/s 
𝑏𝑐 1.7e-18 -8.7e-19 rad 

Λ1𝑛 0 0 m 

Λ1𝑒 0 0 m 

Λ2𝑛 0 0 m 

Λ2𝑒 0 0 m 

 

The table indicates that negligible errors are induced using these three mappings. The fact 
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that errors are generated is not due incorrect mapping implementation. Using another 

arbitrary set of truth states and injection errors, one can achieve complete, zero error in 

both validation checks. The error is primarily induced through the binary nature of 

computer computation, where decimal numbers cannot always be fully represented in a 

binary format (i.e., round-off error). Most all these numbers are below machine epsilon, 

approximately at 2.22e-16. The 𝑢 velocity for �̅� − �̅�𝑟𝑒𝑑𝑒𝑟𝑖𝑣𝑒𝑑 is above machine precision. 

Errors of the same order of magnitude as 𝑢 were observed when implementing 

transformation matrices, where errors are due to lack of machine precision to fully 

represent sine and cosine values. This implies that, up to machine precision, the mappings 

used within the simulation are consistent. 

2.1.3 Propagation Validation 

 Having states and dynamics defined, the system can be simulated, propagated, 

forward in time; and with error state mappings defined, a propagation validation 

algorithm can be made to ensure that this propagation is realistic in that the navigation 

model sufficiently matches and represents the true dynamics. 

In this propagation validation algorithm, the dynamics are simulated forward in 

time with Euler’s method, manipulated control inputs, measurement synthesis, and 

removal of noise and measurement restrictions. Discussing each of these four simulation 

characteristics in order, the Euler method is the selected numerical integration algorithm 

[25]. Using the Euler method, the navigation and truth states, both having the same initial 

conditions (Table 2.2) are propagated forward with a time step of 0.01s.  
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Table 2.2. Initial conditions. 

State �̅� �̂̅� Units 

𝑝𝑛 400.0e+00 400.0e+00 m 

𝑝𝑒 0.0e+00 0.0e+00 m 

𝑢 16.0e+00 16.0e+00 m s⁄  

𝑣 0.0e+00 0.0e+00 m/s 
𝜓 1.6e+00 1.6e+00 rad 

𝑟 0.0e+00 NA rad/s 
𝑏𝑎𝑢 -3.4e-04 -3.4e-04 m/s2 

𝑏𝑎𝑣  1.6e-03 1.6e-03 m/s2 

𝑏𝜔 -1.9e-07 -1.9e-07 rad/s 
𝑏𝑐 3.2e-03 3.2e-03 rad 

Λ1𝑛 560.0e+00 560.0e+00 m 

Λ1𝑒 340.0e+00 340.0e+00 m 

Λ2𝑛 690.0e+00 690.0e+00 m 

Λ2𝑒 440.0e+00 440.0e+00 m 

 

Note that the time step was chosen to achieve the lowest computation time that still 

provided non-diverging results (especially for the 2.1.6 Covariance Propagation 

subsection). Implementation of higher-fidelity Runge-Kutta algorithms for non-zero-

hold, stochastic differential equations [30], implicit integration, or collocation methods 

[4] is left for future work. 

Regarding the second simulation characteristic, the control inputs to the truth state 

dynamics in Equation (2.3) are manipulated such that �̇� = − (𝑟 𝑣 −
𝐶𝐷𝑜  𝜌 𝑉𝑎

2 𝑆

2𝑚
) +

sin(
𝑡𝜖
10
)

2
 

and that rudder inputs would execute a smooth sinusoidal behavior between maximum 

and minimum rudder values, 𝛿⏞𝑟 =
𝜋 sin(

𝑡𝜖
17
)

2
. 𝑡𝜖 is the current simulation time. 𝑡𝜖 is 

different from 𝑡𝑘 in that 𝑡𝜖 models “pseudo-continuous” simulation time increments of 

0.01 s whereas 𝑡𝑘 models time in discrete increments of 1.0 s (using subscript 𝜖, rather 

than the commonly used 𝑖, 𝑗, or 𝑛 is to reduce confusion between coordinate and state 

subscripts). 𝑡 without any subscripts will represent continuous time in future derivations. 
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In the third characteristic, measurement synthesis, some re-clarification may be 

needed first. The measurements that the navigation state receives is the truth 

measurements (Equation (2.5) and Equation (2.6)); nevertheless, when the navigation 

state needs to guess these measurements for the Kalman filter, the navigation state will 

use its measurement equations (Equation (2.26) through Equation (2.32)) to make this 

guess. With the reclarification addressed, the measurement synthesis characteristic can 

now be described. To generate 𝑎𝑢, 𝑎𝑣 , and 𝜔 within �̃̅�, the algorithm does not use 

derivative values from Euler’s method nor the angular velocity 𝑟. Rather, the algorithm 

attempts to synthesizes the measurements in a more discrete fashion as 

 

[

�̃�𝑢(𝑡𝜖−1)

�̃�𝑣(𝑡𝜖−1)

�̃�(𝑡𝜖−1)
]

=

[
 
 
 
 
 
 
𝑢(𝑡𝜖) − 𝑢(𝑡𝜖−1)

𝑡𝜖 − 𝑡𝜖−1
− 𝑣(𝑡𝜖−1) 𝑟(𝑡𝜖−1) + 𝑏𝑎𝑢(𝑡𝜖−1) + 𝜂𝑎𝑢(𝑡𝜖−1)

𝑣(𝑡𝜖) − 𝑣(𝑡𝜖−1)

𝑡𝜖 − 𝑡𝜖−1
+ 𝑢(𝑡𝜖−1) 𝑟(𝑡𝜖−1) + 𝑏𝑎𝑣(𝑡𝜖−1) + 𝜂𝑎𝑣(𝑡𝜖−1)

𝜓(𝑡𝜖) − 𝜓(𝑡𝜖−1)

𝑡𝜖 − 𝑡𝜖−1
+ 𝑏𝜔(𝑡𝜖−1) + 𝜂𝜔(𝑡𝜖−1) ]

 
 
 
 
 
 

 

(2.39) 

Such a synthesis provides body frame accelerations similar to how physical 

accelerometers and gyroscopes discretely collect measurements and also accounts for 

Coriolis terms as described in [13]. From previous author mistakes, the time variables 𝑡𝜖 

and 𝑡𝜖−1 are explicitly labeled in this equation to help future implementers. The use of 

variables at 𝑡𝜖−1 in the Coriolis, bias, and noise terms, as opposed to variables at 𝑡𝜖, is 

due to the simulation’s organization. First, the truth state is propagated from 𝑡𝜖−1 to 𝑡𝜖; 

second, the continuous measurements at 𝑡𝜖−1 are calculated; third, the navigation state is 

propagated from 𝑡𝜖−1 to 𝑡𝜖; Finally, if the 1s time increment has elapsed, discrete 
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measurements are calculated (The author assumes that all discrete measurements become 

available in the same 1s cycle, given that GPS is not denied and assuming that an image 

can be fully processed by 1s). Therefore, for the navigation state to accurately propagate 

to 𝑡𝜖, it needs measurements at 𝑡𝜖−1, not measurements at a future time. 
𝜓(𝑡𝜖)−𝜓(𝑡𝜖−1)

𝑡𝜖−𝑡𝜖−1
 is 

not used for 𝑟(𝑡𝜖−1) in the Coriolis terms because, although it would make the synthesis 

more discrete-sensor-realistic, such a substitution would imply that values generated by 

the accelerometer are influenced by values from the gyroscope. For later derivations, the 

author assumes that sensor measurements are independent from each other, hence the 

author uses 𝑟(𝑡𝜖−1) in the Coriolis term to prevent inter-sensor dependence. 

In the algorithm’s fourth characteristic, noise and measurement restriction 

removal, all �̅� and �̅�∗(𝑡𝑘) values are set to null in all dynamics and measurement models. 

Furthermore, GPSD is removed, and line-of-sight measurements are allowed to be 

processed even after the forward-facing camera passes a landmark. Doing so, allows the 

navigation state dynamics and measurement models to always receive perfect knowledge 

of truth state values. Hence, propagating the navigation state using these truth state values 

allows one to analyze underlying dynamics more clearly and analyze the fidelity of the 

navigation state dynamics itself without the influence of system noise or measurement 

restrictions. Note, magnetometer jamming is not analyzed in this document. 

 Executing the propagation validation simulation with these given characteristics, 

Figure 2.3 through Figure 2.19 display the outcomes. Error plots are the differences 

between the truth state and the error state (generated with the �̅� mapping) and residual 

plots are the differences between true discrete measurements (Equation (2.6)) and 

navigation discrete measurements (Equation (2.27)), i.e., 𝑧̅̃ − 𝑧̅̃̂.  
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Figure 2.3. Propagation validation of UAV north and east coordinates. 

 

Figure 2.3 shows the UAV’s trajectory with respect to 2D space as it meanders 

by two landmarks (located at 560 N, 340 E and 690 N, 440 E). With max, 90° rudder 

input, the UAV can achieve a minimum turn radius of approximately 100 m if traveling 

at a constant velocity of 16 m/s, which is a similar result found in previously generated 

3D simulations. With 90° rudder inputs being unrealistic, an alternative way for 

achieving this 3D minimum-turn result in a 2D simulation would be to alter the 

aerodynamic 𝐶∗ coefficients. 
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Figure 2.4. Propagation validation of UAV trajectory over time. 

 

The same trajectory with respect to time is presented in within Figure 2.4. Note 

that double y-axes are used on this and future plots. The two pairs of crests and troughs in 

the figure correspond to the two loops formed in Figure 2.3. Overall, the UAV navigation 

state position appears to follow the truth state position well. 
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Figure 2.5. Propagation validation of UAV velocity in Body frame over time. 

 

 
Figure 2.6. Propagation validation in N-E frame over time. 

 

Figure 2.5 and Figure 2.6 provide the UAV’s velocity with respect to the Body 

and N-E frame. The stark difference between the slopes in these two graphs help 

illustrate the reason why propagating truth and navigation velocities in different 
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coordinate frames using the Euler method on the assumed dynamics can be troublesome. 

That is, the differing slopes of Body velocities and North-East velocities at a given point, 

skews the Euler projection. Assuming an approximate maximum velocity of 25 m/s [31], 

this trajectory’s max forward velocity is slightly larger, providing an extreme case to 

induce larger velocity error into the system. 

 

 
Figure 2.7. Propagation validation of UAV attitude and attitude rate over time. 

 

In terms of attitude, both states have heading; both appear to follow each other 

well in Figure 2.7. The navigation state has no heading rate to compare with the truth 

state. 
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Figure 2.8. Propagation validation of UAV position error over time. 

 

Looking more finely at errors, Figure 2.8 shows that max position discrepancies 

between the navigation state and truth state are just under 5 pm. Realistically, with GPS 

errors being on the order of meters, such discrepancies suffice. 
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Figure 2.9. Propagation validation of UAV Body frame velocity error over time. 

 

 
Figure 2.10. Propagation validation of UAV North-East frame velocity error over time. 

 

With position being the integral of velocity, position errors are a recipient of 

velocity error`s. Figure 2.9 and Figure 2.10 alludes to this, where velocity errors are an 

order of magnitude smaller than position errors. Figure 2.9 has a unique characteristic 
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where the 𝑢 velocity error is essentially null. The reasoning for such characteristic is 

from the measurement synthesis. If periods of large heading rates had occurred while the 

𝑣 component had significant error accumulation, 𝑢 errors would also have been 

introduced as the navigation state attempted to account for the Coriolis term. This 

trajectory did not yield large enough heading rates and lateral velocity simultaneously to 

introduce such errors. 

 

 
Figure 2.11. Propagation validation of UAV heading error over time. 

 

The errors associated with heading are null in Figure 2.11, indicating that the 

navigation dynamics can perfectly match truth state heading despite the use of 

measurement synthesis. Since Figure 2.10 is derived using transformation matrices that 

use the heading state, zero heading error implies that Figure 2.10 is only erroneous due to 

velocity errors, not heading errors. However, this implication will not hold in future 

simulations. In the 2.1.6 Covariance Propagation and later subsections, assuming heading 

errors do not affect velocity covariance is wrong—errors are due to both. 
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Figure 2.12. Propagation validation of UAV accelerometer bias over time. 

 

 
Figure 2.13. Propagation validation of UAV gyroscope bias and camera bias over time. 

 

The bias error results in Figure 2.12 and Figure 2.13 are all null for all time. In 

other words, Euler integration on these first-order differential equations (when noise is 

set to null) match exactly in both the truth state and navigation state. 



42 

 

 
Figure 2.14. Propagation validation of Landmark 1’s position error. 

 

 
Figure 2.15 Propagation validation of Landmark 2’s position error. 

 

Figure 2.14 and Figure 2.15 describe, because landmark position in this research 

does not change over time, that no errors incur due to propagation. 
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Figure 2.16. Propagation validation of UAV GPS position residuals over time. 

 

The GPS position measurement residuals shown in Figure 2.16 discretely 

pattern the errors in Figure 2.8, implying that discrepancies between true measurements 

and navigation measurements are essentially due to the original errors between truth state 

dynamics and navigation state dynamics. 
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Figure 2.17. Propagation validation of UAV magnetometer residuals over time. 

 

The heading residuals of Figure 2.17, like heading errors, are null, indicating 

that implementation of heading measurements is correct. 

 

 
Figure 2.18. Propagation validation of UAV camera measurement residuals over time. 
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In Figure 2.18, Camera measurement errors have a significantly larger error 

spike later in the simulation. In fact, error spikes occur throughout the simulation, though 

negligible in size. The spikes do not necessarily align with the previously seen states or 

errors. Rather, the spikes align to measurements when the Γ̅(𝑡𝑘) ratios are extreme (e.g 

when Λ1𝑗(𝑡𝑘) is significantly larger than Λ1𝑖(𝑡𝑘)—analogous to image distortion as an 

object moves further from center in a camera picture [9]). The largest error spike occurs 

when the vehicle is on the far-right side of Figure 2.3, a position out of the camera’s 

realistic FOV (i.e., the erroneous measurement would not have been received). 

 

 
Figure 2.19. Propagation validation of UAV control input. 

 

As aforementioned, the inputs for this propagation validation step were made 

sinusoidal. Such inputs allowed the vehicle to experience input extremes, even negative 

thrust. Note that noise-corrupted control inputs will not be considered in this study and is 

left for future work. 
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Based on the negligible discrepancies within all these plot results, when noise 

sources and measurement restrictions are added in future simulations, significant errors 

that occur will be assumed to not be attributed to incorrect model development. 

2.1.4 Linear Error State Modeling 

Up to this point, states have been defined, mappings between those states have 

been developed, and validation that the states are consistent between one another has 

been confirmed. Moving forward, there are four key equation that are used within the 

IEKF [3]. The first equation is Equation (2.25)—The navigation state dynamics, �̇̂̅� =

𝑓̅̂(�̂̅�, �̂̃̅�). The remaining three are as follows: 

 �̂̅�
̇
= �̆̅��̆̅�(�̂̅�)�̂̅� + �̂̅��̆̅��̆̅�

𝑇(�̂̅�) + �̆̅�(�̂̅�)�̆̅�(�̂̅�) �̆̅�𝑇(�̂̅�) (2.40) 

 𝛿�̂̅�+ = �̂̅�{𝑧̅̃ − 𝑧̅̃̂−}  (2.41) 

 

�̂̅�+ = {𝐼 ̅̂ − �̂̅��̆̅��̆̅�(�̂̅�
−(𝑡𝑘))}�̂̅�

−{𝐼 ̅̂ − �̂̅��̆̅��̆̅�(�̂̅�
−(𝑡𝑘))}

𝑇

+ �̂̅�𝐽 ̅̆(�̂̅�)�̆̅�(�̂̅�)𝐽 ̅̆𝑇(�̂̅�)�̂̅�𝑇 

(2.42) 

In broad explanation, Equation (2.25) generates the “best” (i.e., mean and mode) estimate 

of the UAV state. Equation (2.40) generates the covariance estimate associated with that 

state estimate. Equation (2.41) generates an update as to what the current state errors are. 

Equation (2.42) generates an update as to what the current covariance is. The following 

paragraph will provide a finer explanation to Equation (2.40). The 2.1.5 Linear Error 

Measurement Modeling subsection will provide more explanation to the latter two 

equations. 

As aforementioned, an IEKF is a statistics algorithm that attempts to determine a 

better estimate to a system’s navigation state and provides covariances associated with 
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that navigation state. To do this approximation, the filter relies on linearization of the 

design model dynamics and design measurement model. The terms generated from these 

linearizations are many of the terms used in Equation (2.40) through Equation (2.42). 

Deriving the dynamics linearization ([3,24]) as well providing a validation algorithm for 

correct implementation will now be discussed. 

The truth states, design model states, and navigation state have previously been 

defined with Equation (2.1), Equation (2.14), and Equation (2.24). Their nonlinear 

dynamics have also been defined as  

 �̇̅� = 𝑓(̅�̅�, �̅�, �̅�) (2.43)  

 �̇̆̅� = 𝑓̅̆(�̆̅�, �̆̃̅�, �̆̅�) = 𝑓̅̆(�̆̅�, �̆̃̅�) + �̆̅�(�̆̅�)�̆̅� (2.44) 

 �̇̂̅� = 𝑓̅̂(�̂̅�, �̂̃̅�) (2.45) 

(Equation (2.3), Equation (2.15), and Equation (2.25)). Process noise, �̆̅� =

[�̆�𝑎𝑢 �̆�𝑎𝑣 �̆�𝜔 �̆�𝑎𝑢 �̆�𝑎𝑣 �̆�𝜔 �̆�𝑐]𝑇, is separated from other terms in Equation 

(2.44) as the accompanying matrix to allow this separation, �̆̅�(�̆̅�), will be needed in 

Equation (2.40). Being able to access �̆̅�(�̆̅�) is why derivation evaluation in terms of the 

design model is used, unlike the navigation model, which does not allow the engineer to 

retain noise terms. 

 �̆̅�(�̂̅�) =

[
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0
0 0 0 0000
−1 0 0 0000
0 −1 0 0000
0 0 −10000
0 0 0 1000
0 0 0 0100
0 0 0 0010
0 0 0 0001
0 0 0 0000
0 0 0 0000
0 0 0 0000
0 0 0 0000]

 
 
 
 
 
 
 
 
 
 

 (2.46) 
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Although only a matrix of constants for this simulation, other simulations may yield more 

complicated components in �̆̅�(�̂̅�), e.g., when transformation matrices are manipulated on 

noise-bearing states. When flying in real time, the UAV has no access to ideal �̆̅� variable 

values; hence, �̆̅�, called the noise coupling matrix, would need to be evaluated using 

accessible navigation state terms—�̆̅�(�̂̅�): 

Returning to the derivation, the nonlinear truth dynamics can be reformatted into 

their linear equivalent using the method of first-order Taylor series expansion, as the 

following equation shows: 

Making this linear equation in terms of the design model, evaluated with navigation terms 

as the nominal, the truth state consequently will have heading rate removed in this 

derivation, hence the use of �̇̅�, not �̇̅�. Equation (2.47) states that the reduced truth state 

dynamics is approximately equal to the design model evaluated at the navigation state 

plus the design model’s Jacobian matrix, �̆̅��̆̅�(�̂̅�) (i.e. 
𝜕�̆̅�(�̆̅�,�̆̃̅�)

𝜕�̆̅�
|
�̂̅�

; breve above �̅� to indicate 

that it is the partial of 𝑓̅̆(�̆̅�, �̆̃̅�); subscript �̆̅� to indicate that the partial is with respect to the 

design model state; (�̂̅�) operator to indicate evaluation using navigation model terms, just 

like �̆̅�(�̂̅�)), which is multiplied by the perturbation discrepancy between the truth and 

navigation model states, 𝛿�̅�. A measurement term, �̆̅��̆̅�(�̂̅�)𝛿�̆̃̅�, does not appear in the 

expansion since �̆̃̅� in 𝑓̅̆(�̆̅�, �̆̃̅�) has become a deterministic input (i.e. its noise has been 

separated out into �̆̅�(�̂̅�)�̆̅�) and thus there is no error 𝛿�̆̃̅� within 𝑓̅̆(�̆̅�, �̆̃̅�). Noise term 

 �̇̅� ≈ {𝑓̅̆(�̂̅�, �̂̃̅�) + �̆̅�(�̂̅�)�̆̅�} + �̆̅��̆̅�(�̂̅�)𝛿�̅� + 𝐻. 𝑂. 𝑇 (2.47) 
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𝜕{�̆̅�(�̆̅�)�̆̅�}

𝜕�̆̅�
|
�̂̅�
𝛿�̅� becomes null since evaluation at the navigation state has �̂̅� = 0̅. Noise term 

𝜕{�̆̅�(�̆̅�)�̆̅�}

𝜕�̆̅�
|
�̂̅�
𝛿�̅� is grouped with higher order terms from the Taylor expansion, 𝐻. 𝑂. 𝑇. 

In addition to the Taylor expansion, the truth state dynamics can be represented 

in yet another format. Similar to error state mappings, the truth and navigation model 

states are assumed to be related via 

 �̅� = �̂̅� + 𝛿�̅� (2.48) 

Which implies that  

 �̇̅� = �̇̂̅� + 𝛿�̇̅� (2.49) 

If Equation (2.49) is substituted into the left-hand-side of Equation (2.47), canceling out 

�̇̂̅� with 𝑓̅̆(�̂̅�, �̂̃̅�) and assuming that 𝐻.𝑂. 𝑇 are negligible yields that 

 𝛿�̇̅� ≈ �̆̅��̆̅�(�̂̅�)𝛿�̅� + �̆̅�(�̂̅�)�̆̅� (2.50) 

Equation (2.50), called the linear state perturbation model or linear error state model, up 

to a first-order approximation, determines the rate of state errors over time; and its 

Jacobian term, along with �̆̅�(�̂̅�), the current covariance, �̂̅�, and the �̆̅�(�̂̅�) power spectral 

density matrix (�̆̅�(�̂̅�) will be discussed more in the 2.1.6 Covariance Propagation 

subsection) are used to calculate covariance rates, �̂̅�
̇
, in Equation (2.40). In other words, 

�̂̅�
̇
 will track the covariances associated with the propagated navigation state throughout 

the entire simulation. The Jacobian term for this research (again, with design model 

variables substituted with navigation model values) has been determined to be  
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 �̆̅��̆̅�(�̂̅�) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 {cos(�̂�)} {−sin(�̂�)} Ξ̂3 0 0 0 0 0 000

00 {sin(�̂�)} {cos(�̂�)} Ξ̂4 0 0 0 0 0 000

00 0 �̂� 0 −1 0 −𝑣 0 0 000
00 −�̂� 0 0 0 −1 �̂� 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 000

00 0 0 0 {
−1

�̂�𝑎𝑢
} 0 0 0 0 0 00

00 0 0 0 0 {
−1

�̂�𝑎𝑣
} 0 0 0 0 0 0

00 0 0 0 0 0 {
−1

�̂�𝜔
} 0 0 0 0 0

0 0 0 0 0 0 0 0 {
−1

�̂�𝑐
} 0 0 0 0

0 0 0 0 0 0 0 0 0 0 000
00 0 0 0 0 0 0 0 0 000
00 0 0 0 0 0 0 0 0 000
00 0 0 0 0 0 0 0 0 000]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.51) 

where braces are used to denote multiplication, separation between a set of terms, and to 

help prevent confusion between the parentheses used in function operators. Furthermore, 

 [
Ξ̂3
Ξ̂4
�̂�

] = [

−𝑣cos(�̂�) − �̂� sin(�̂�)

�̂� cos(�̂�) − 𝑣 sin(�̂�)

�̃� − �̂�𝜔

] (2.52) 

 Again, the reason for this derivation, is to acquire �̆̅�(�̂̅�) and �̆̅��̆̅�(�̂̅�) for the 

Kalman filter’s key equations. Though there is difficulty in validating correct derivation of 

�̆̅�(�̂̅�) on its own (see 2.1.6 Covariance Propagation subsection), �̆̅��̆̅�(�̂̅�), however, can be 

validated with Equation (2.50). To do this, one can compare the linear error state 

propagation results in the linear error sate model with the true state error �̅� mapping and 

determine whether the linear error state sufficiently matches the true state error. The rest 

of this subsection will describe the developed validation algorithm that is used to confirm 

this sufficient matching. 
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In the linear error state modeling validation algorithm, the four simulation 

characteristics of the propagation validation algorithm are used. Moreover, all time 

constants are manipulated to equal 1/10th of the discrete measurement time increments. 

Doing so ensures that the bias dynamics are exercised (i.e., magnified or stressed) and 

tests whether the linear error state model can model errors for extreme linear differential 

equations. 

The procedure for the linear error state modeling validation algorithm is as 

follows: First, with both truth and navigation states starting out at the same initial 

conditions, a known perturbation error matrix, 𝛿�̅� is injected into navigations state via the 

�̅� mapping. Thus, the truth and navigation states are no longer the same, but their initial 

errors, as calculated in the �̅� mapping, are the same as the initial state of the linear error 

state model. Second, the truth, the navigation, and the linear error state model are 

propagated forward in time. Propagation was chosen to stop at the first discrete time 

measurement (1 s). Stopping at this time is somewhat arbitrary, nevertheless, it provides 

sufficient vehicle movement history that is worth comparing (the vehicle has already 

moved ~16 m) and errors are assumed to have not accumulated above that which the 

first-order approximation can account for. Furthermore, after 1 s increments, the Kalman 

filter has been assigned to correct those errors, which means, theoretically, the 

linearization only needs to be valid for one second cycles since the Kalman filter discrete 

measurement updates will correct errors afterwards. Finally, the propagated errors of the 

linear error state model are compared to the errors of the �̅� mapping at the first discrete 

time measurement. Table 2.3 provides the results from this validation procedure. 
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Table 2.3. Linear error state validation. 

State 
Injected 

Errors 
𝛿�̅�𝑙𝑖𝑛𝑒𝑎𝑟 𝛿�̅�𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 

Propagation 

Difference 
Units 

𝑝𝑛 2.0e+00 1.7e+00 1.7e+00 7.9e-04 m 

𝑝𝑒 3.0e+00 3.2e+00 3.2e+00 1.4e-03 m 

𝑢𝑛 2.0e-01 1.6e-01 1.6e-01 3.8e-06 m s⁄  

𝑣𝑒 3.0e-01 2.5e-01 2.5e-01 -2.5e-06 m s⁄  

𝜓 4.7e-03 4.7e-03 4.7e-03 -6.5e-16 rad 

𝑏𝑎𝑢 3.7e-01 9.9e-06 9.9e-06 1.7e-21 m/s2 

𝑏𝑎𝑣  5.6e-01 1.5e-05 1.5e-05 -1.5e-20 m/s2 

𝑏𝜔 1.4e-04 3.7e-09 3.7e-09 -4.1e-25 rad/s 
𝑏𝑐 1.1e-02 2.9e-07 2.9e-07 -2.1e-22 rad 

Λ1𝑛 10.0e+00 10.0e+00 10.0e+00 0.0e+00 m 

Λ1𝑒 10.0e+00 10.0e+00 10.0e+00 0.0e+00 m 

Λ2𝑛 15.0e+00 15.0e+00 15.0e+00 0.0e+00 m 

Λ2𝑒 15.0e+00 15.0e+00 15.0e+00 0.0e+00 m 

 

Table 2.3’s first numeric column provides the selected errors that were injected 

into the navigation state. These errors are 2 to 3 times that of the 3𝜎 initial (commercial 

grade) state uncertainty, as will be described in the 2.1.6 Covariance Propagation and 

2.1.7 Estimation Capability subsections, except for the landmarks, which used one time 

the initial 3𝜎 uncertainty or less. The second numeric column shows the errors as 

determined by the linear error state model at the end of propagation. Third are the errors 

in terms of the true, nonlinear mapping at the end of propagation. The differences 

between these two propagation columns are provided in the last numeric column. Both 

the linear propagations and nonlinear mappings retain the same magnitude of error as the 

initial injected error, with the exception being the biases, which actually decrease errors 

by at least four orders of magnitude (i.e., the linear error state model tracks linear 

dynamics with ease). In terms of propagation difference, UAV position error differences 

are on the order of mm or less. UAV velocity error differences are also on the order of 

𝜇m/s. Heading error differences are essentially numerically negligible. More so 
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negligible are the bias propagation error differences. Landmarks, having zero dynamics, 

retain zero error differences. Compared to the previous sections, the errors associated 

with position and velocity are significantly higher; nevertheless, the first-order 

approximation retain position error differences well below GPS errors and retain velocity 

error differences well below industry velocimeters errors. Of more concern, perhaps, are 

the landmark position errors. Though the results initially imply that even 15m of error 

will be perfectly accounted for, the results implicitly indicate that this error matrix for 

continuous measurements cannot account for real-time landmark errors—the linear error 

state model can only assume that landmark errors at the end of the simulation will be the 

exact same as those at the beginning of the simulation. An alternative matrix, such as the 

discrete measurement matrix derived in the 2.1.5 Linear Error Measurement Modeling 

subsection, will need to be used to account for errors in landmark positions. For the 

purpose of accounting for errors based on the continuous dynamics, however, �̆̅��̆̅�(�̂̅�) 

appears to adequately provide this accounting, even for extremely large errors, and should 

thus be sufficient for the Kalman filter’s key equations. 

2.1.5 Linear Error Measurement Modeling 

 Much of the Kalman filter development up to this point has been with regards to 

propagating state estimates and state covariance. This propagation process is associated 

with continuous measurements. Alternatively, the update process of the Kalman filter is 

associated with the system discrete measurements. In this update process, the Kalman 

filter decides the legitimacy of discrete measurements. After collecting true, raw discrete 

measurements, the Kalman algorithm compares these measurements to what the 

navigation state guessed these discrete measurements (of the a priori state) to be—this is 
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the residual comparison that was performed in the 2.1.3 Propagation Validation 

subsection, i.e. 

 𝑧̅̃ − 𝑧̅̃̂− =

[
 
 
 
 
𝑝𝑛(𝑡𝑘) + 𝜂𝑝𝑛(𝑡𝑘)

𝑝𝑒(𝑡𝑘) + 𝜂𝑝𝑒(𝑡𝑘)

𝜓(𝑡𝑘) + 𝜂𝜓(𝑡𝑘)

𝛤(𝑡𝑘) + �̅��̅�(𝑡𝑘) ]
 
 
 
 

−

[
 
 
 
 
�̂�𝑛(𝑡𝑘)

�̂�𝑒(𝑡𝑘)

�̂�(𝑡𝑘)

�̂�(𝑡𝑘) ]
 
 
 
 

 (2.53) 

Using a statistical weighting matrix called the Kalman gain, �̂̅�, on the residual, the filter 

will place higher favoring weight on measurements residuals that are more likely (e.g., 

low Kalman gains are applied to residuals, where the raw measurement is outside its 3𝜎 

measurement range). In this manner, the filter generates posteriori statistical guess 

adjustments, updates, as to what the errors are between the navigation state and the true 

state of the vehicle—This is third key Kalman equation, Equation (2.41), where “+” 

superscripts indicate posteriori and “-” superscripts indicate a priori. These errors can 

then be applied to the navigation state via the 𝑙 ̅mapping in an attempt to make the 

navigations state equal to the truth state (see 2.1.7 Estimation Capability subsection). For 

clarity, note that this text has residuals = innovations, as opposed to other texts which 

classify residuals as 𝑧̅̃ − 𝑧̅̃̂+.  

 Just as Equation (2.41) provides updates to the state estimates, Equation (2.42) 

provides updates to the state covariance. An alternative, simpler form to this equation is 

 �̂̅�+ = �̂̅�− − �̂̅��̆̅��̆̅�(�̂̅�
−(𝑡𝑘))�̂̅�

− (2.54) 

Equation (2.54) shows that adjusted update covariance is equal to the a priori covariance 

plus a multiple composed of the Kalman gain weight, the measurement geometry matrix, 

�̆̅��̆̅�(�̂̅�
−(𝑡𝑘)), and the a priori covariance. Equation (2.54) has the same form as Equation 

(2.41), where the update is basically the current covariance state plus a weighting on the 
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current covariance state (note that 𝛿�̂̅�− does not show up in Equation (2.41) because 

estimated state error prior to the measurement update is guessed to be null). The reason for 

defaulting to Equation (2.42), called the Joseph form, rather than Equation (2.54) for 

implementation is that the Joseph form has desirable numerical properties in terms of 

retaining symmetry, retaining positive definiteness, handling errors, and code 

manipulation (e.g. the capability of zeroing out Kalman gains, which can force the filter to 

reject measurements). 

 The terms of the Joseph form covariance update equation need to be identified. 

Though �̂̅� and �̆̅�(�̂̅�) are left to be discussed in the 2.1.7 Estimation Capability subsection, 

this subsection will describe 𝐼 ̅̂, 𝐽 ̅̆(�̂̅�), and �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)). 𝐼 ̅

̂ is simply the identity matrix and 

is the same size as �̂̅� (same length as �̅�). 𝐽 ̅̆(�̂̅�) is a separation matrix like �̆̅�(�̂̅�). 

�̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) is the measurement geometry matrix obtained in the same manner as 

�̆̅��̆̅�(�̂̅�)—linearization. Deriving 𝐽 ̅̆(�̂̅�) and �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) as well as validating �̆̅��̆̅�(�̂̅�

−(𝑡𝑘)) 

will now be explained.  

Deriving �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)), similar to �̆̅��̆̅�(�̂̅�), recall that true discrete measurements, 

design model discrete measurements, and navigation model discrete measurements have 

been defined as 

 𝑧̅̃ = ℎ̅(�̅�−(𝑡𝑘), �̅�(𝑡𝑘)) (2.55) 

 𝑧̅̃̆ = ℎ̆̅(�̆̅�−(𝑡𝑘), �̆̅�(𝑡𝑘)) = ℎ̆̅(�̆̅�−(𝑡𝑘)) + 𝐽 ̅
̆(�̂̅�)�̆̅�(𝑡𝑘) (2.56) 

 𝑧̅̃̂ = ℎ̂̅(�̂̅�−(𝑡𝑘)) (2.57) 

(Equation (2.6), Equation (2.17), and Equation (2.27)) The a priori superscript is now 

included in these definitions for completeness. Classifying discrete measurement noise 
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with higher order terms, �̆̅�(𝑡𝑘) is separated out of ℎ̆̅(�̆̅�−(𝑡𝑘), �̆̅�(𝑡𝑘)) using 𝐽 ̅̆(�̂̅�) 

 𝐽 ̅̆(�̂̅�) =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

 (2.58) 

Although only an identity matrix for this simulation, other simulations may yield more 

complicated components in 𝐽 ̅̆(�̂̅�), for example, when the noise of one sensor influences 

the noise of another sensor (The author prevented this influence in the third simulation 

characteristic of measurement synthesis). (�̂̅�) is maintained with 𝐽 ̅̆ to explicitly indicate, 

should complicated components arise, navigation state values are used. In the 2.1.7 

Estimation Capability subsection, this matrix will actually be broken down for numerical 

stability and higher fidelity estimation purposes. 

 Formatting 𝑧̅̃ into its first-order linear equivalent via Taylor series expansion 

yields 

 𝑧̅̃ ≈ {ℎ̆̅(�̂̅�−(𝑡𝑘)) + 𝐽 ̅
̆(�̂̅�)�̆̅�(𝑡𝑘)} + �̆̅��̆̅�(�̂̅�

−(𝑡𝑘))𝛿�̅�  + 𝐻. 𝑂. 𝑇 (2.59)  

where �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) =

𝜕ℎ̅̆(�̆̅�−(𝑡𝑘))

𝜕�̆̅�
|
�̂̅�

. Note  
𝜕ℎ̅̆(�̆̅�−(𝑡𝑘))

𝜕�̆̅�(𝑡𝑘)
|
�̂̅�

𝛿�̆̅�(𝑡𝑘) and 
𝜕𝐽̅̆(�̂̅�)�̆̅�(𝑡𝑘)

𝜕�̆̅�
|
�̂̅�
𝛿�̅� are null, 

and 
𝜕𝐽̅̆(�̂̅�)�̆̅�(𝑡𝑘)

𝜕�̆̅�(𝑡𝑘)
|
�̂̅�
𝛿�̆̅�(𝑡𝑘) is grouped with 𝐻.𝑂. 𝑇. Alternatively, another form of the truth 

measurement can be defined via perturbations 

 𝑧̅̃ = 𝑧̅̃̂ + 𝛿𝑧̅̃ (2.60) 

If Equation (2.60) is substituted into the left-hand-side of Equation (2.59), canceling out 𝑧̅̃̂ 

with ℎ̆̅(�̂̅�−(𝑡𝑘)) and assuming that 𝐻.𝑂. 𝑇 are negligible indicates that 

 𝛿𝑧̅̃ ≈ �̆̅��̆̅�(�̂̅�
−(𝑡𝑘))𝛿�̅� + 𝐽 ̅

̆(�̂̅�)�̆̅�(𝑡𝑘) (2.61) 
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Although the Jacobian of the first three discrete measurements are explicit functions of �̆̅�, 

the camera measurements are implicit functions of �̆̅�, having values of  Λ̆̅𝑖𝑗(𝑡𝑘) and not 

Λ̆̅𝑛𝑒(𝑡𝑘). To account for these implicit measurements, a sub derivation is required: 

 Recalling the definition of a single truth line-of-sight vector from the 2.1.1 

States and Models subsection, 

 [
Λ𝑖(𝑡𝑘)
Λ𝑗(𝑡𝑘)

] = �̅�𝐵
𝑐�̅�𝐼

𝐵 [
Λ𝑛(𝑡𝑘) − 𝑝𝑛(𝑡𝑘)
Λ𝑒(𝑡𝑘) − 𝑝𝑒(𝑡𝑘)

] (2.62) 

(Equation (2.11)). Like 𝑧̅̃, line-of-sight can be approximated with Taylor series, again, 

using the design model terms but evaluating with navigation values 

  [
Λ𝑖(𝑡𝑘)
Λ𝑗(𝑡𝑘)

] ≈ [
Λ̆𝑖(𝑡𝑘)

Λ̆𝑗(𝑡𝑘)
]|
�̂̅�

+

[
 
 
 
 
∂Λ̆𝑖(𝑡𝑘)

𝜕�̆̅�
∂Λ̆𝑗(𝑡𝑘)

𝜕�̆̅� ]
 
 
 
 

||

�̂̅�

𝛿�̅� + 𝐻.𝑂. 𝑇 (2.63) 

Assuming that the truth line-of-sight vector can also be defined by a perturbation 

equation, 

 [
Λ𝑖(𝑡𝑘)
Λ𝑗(𝑡𝑘)

] = [
Λ̂𝑖(𝑡𝑘)

Λ̂𝑗(𝑡𝑘)
] + [

δΛ𝑖(𝑡𝑘)
δΛ𝑗(𝑡𝑘)

] (2.64) 

this perturbation equation is substituted into the left-hand-side of the truth line-of-sight 

Taylor expansion. Using the same cancellation technique as in prior derivation yields  

 [
δΛ𝑖(𝑡𝑘)
δΛ𝑗(𝑡𝑘)

] ≈

[
 
 
 
 
𝜕�̆�𝑖(𝑡𝑘)

𝜕�̆̅�
𝜕�̆�𝑗(𝑡𝑘)

𝜕�̆̅� ]
 
 
 
 

||

�̂̅�

𝛿�̅� (2.65) 

 Applying this subderivation, the camera measurements of �̆̅��̆̅�(�̂̅�
−(𝑡𝑘))𝛿�̅� can be 

expanded via the chain rule. 
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 𝛿Γ̅ ≈
𝜕Γ̆̅(�̆̅�−(𝑡𝑘))

𝜕Λ̆̅𝑖𝑗(𝑡𝑘)
|
Λ̂̅𝑖𝑗

𝛿Λ̅(𝑡𝑘) =
𝜕Γ̆̅−(𝑡𝑘)

𝜕Λ̆̅𝑖𝑗(𝑡𝑘)
|
Λ̂̅𝑖𝑗

𝜕Λ̆̅𝑖𝑗
− (𝑡𝑘)

𝜕�̆̅�(𝑡𝑘)
|
�̂̅�
𝛿�̅�  (2.66) 

The resulting, total �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) matrix is therefore 

 �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) =

[
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 00 0 000 0 0 0 0 0
0 0 00 1 000 0 0 0 0 0
Ξ̂5 Ξ̂7 00 Ξ̂9 000 Ξ̂9 {−Ξ̂5} {−Ξ̂7} 0 0

Ξ̂6 Ξ̂8 00 Ξ̂10 000 Ξ̂10 0 0 {−Ξ̂6} {−Ξ̂8}]
 
 
 
 

 (2.67) 

where 

 

[
 
 
 
 
 
 
Ξ̂5
Ξ̂6
Ξ̂7
Ξ̂8
Ξ̂9
Ξ̂10]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
Ξ̂11Ξ̂15 − Ξ̂12Ξ̂16
Ξ̂13Ξ̂15 − Ξ̂14Ξ̂16
Ξ̂11Ξ̂16 + Ξ̂12Ξ̂15
Ξ̂13Ξ̂16 + Ξ̂14Ξ̂15
Ξ̂11Ξ̂17 + Ξ̂12Ξ̂18
Ξ̂13Ξ̂19 + Ξ̂14Ξ̂20]

 
 
 
 
 
 

 (2.68) 

 

𝜕Γ̆̅−(𝑡𝑘)

𝜕Λ̆̅𝑖𝑗(𝑡𝑘)
|

Λ̂̅𝑖𝑗

= [
Ξ̂11 Ξ̂12 0 0

0 0 Ξ̂13 Ξ̂14
]

=

[
 
 
 
 
−Λ̂1𝑗(𝑡𝑘)

Λ̂1𝑖
2 (𝑡𝑘)

1

Λ̂1𝑖(𝑡𝑘)
0 0

0 0
−Λ̂2𝑗(𝑡𝑘)

Λ̂2𝑖
2 (𝑡𝑘)

1

Λ̂2𝑖(𝑡𝑘)]
 
 
 
 

 

(2.69) 

 

𝜕Λ̆̅𝑖𝑗
− (𝑡𝑘)

𝜕�̆̅�(𝑡𝑘)
|

�̂̅�

=

[
 
 
 
 
Ξ̂15 Ξ̂16 00 Ξ̂17 000 Ξ̂17 {−Ξ̂15} {−Ξ̂16} 0 0

{−Ξ̂16} Ξ̂15 00 Ξ̂18 000 Ξ̂18 Ξ̂16 {−Ξ̂15} 0 0

Ξ̂15 Ξ̂16 00 Ξ̂19 000 Ξ̂19 0 0 {−Ξ̂15} {−Ξ̂16}

{−Ξ̂16} Ξ̂15 00 Ξ̂20 000 Ξ̂20 0 0 Ξ̂16 {−Ξ̂15}]
 
 
 
 

 

(2.70) 
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[
Ξ̂18
Ξ̂17

] = [
Ξ̂15 Ξ̂16
Ξ̂16 {−Ξ̂15}

] [
Λ̂1𝑛(𝑡𝑘) − �̂�𝑛(𝑡𝑘)

Λ̂1𝑒(𝑡𝑘) − �̂�𝑒(𝑡𝑘)
]

[
Ξ̂20
Ξ̂19

] = [
Ξ̂15 Ξ̂16
Ξ̂16 {−Ξ̂15}

] [
Λ̂2𝑛(𝑡𝑘) − �̂�𝑛(𝑡𝑘)

Λ̂2𝑒(𝑡𝑘) − �̂�𝑒(𝑡𝑘)
]

[
Ξ̂15
Ξ̂16

] = [
− cos (�̂�𝑐(𝑡𝑘) + �̂�(𝑡𝑘))

− sin (�̂�𝑐(𝑡𝑘) + �̂�(𝑡𝑘))
]                 

 (2.71) 

In this resulting matrix, the complexities arise due to the transformation matrices of 

Equation (2.62), which are combined using the addition and subtraction trigonometry 

identities, as seen in Equation set (2.71). 

 With the derivations now complete, validation is needed to confirm correct 

implementation for the fourth key Kalman filter equation. Similar to �̆̅��̆̅�(�̂̅�)’s validation, 

�̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) can be validated by means of Equation (2.61). To do this, linear error 

measurement propagation results in Equation (2.61) can be compared to residual error 

results, i.e., 𝑧̅̃ − 𝑧̅̃̂. If there is consistency between both errors, there is implication that 

�̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) is consistent with the system measurement model and is appropriate for use 

within the fourth key equation. 

 The validation algorithm used to compare these errors is as follows: The 

simulation is set up using the four simulation characteristics (same 𝜏∗ values from Linear 

Error State Modeling). Starting with the truth and navigation states having the same 

initial values, the system is simulated forward in time up to the first discrete measurement 

(1 s). Simulating up to this specific time instant was used for consistency with the Linear 

Error State Modeling validation. At this point, just before measurements are taken, the 

same error matrix from the 2.1.4 Linear Error State Model subsection is injected into the 

navigation state. After measurements are taken, both the residual and the linear error 
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measurement model are computed and the difference between the two is computed. Table 

2.4 provides these results. 

 

Table 2.4. Linear error measurement model validation. 

Measurement 𝑧̅̃ − 𝑧̅̃̂ 𝛿𝑧̅̃𝑙𝑖𝑛𝑒𝑎𝑟 Error Difference Units 

𝑝𝑛(𝑡𝑘) 2.0e+00 2.0e+00 0.0e+00 m 

𝑝𝑒(𝑡𝑘) 3.0e+00 3.0e+00 0.0e+00 m 

𝜓(𝑡𝑘) 4.7e-03 4.7e-03 -7.1e-17 rad 

Γ[1](𝑡𝑘) -3.3e-02 -3.3e-02 -2.6e-05 rad 

Γ[2](𝑡𝑘) -3.4e-02 -3.4e-02 -1.2e-04 rad 

 

From the table, the differences between residual and the linearized measurement 

error for both GPS and heading are null to numerical precision. This is an expected result 

as these measurements were already linear. Nonlinear camera measurements, on the other 

hand, have error differences two orders of magnitude smaller than the residual and 

linearized measurement error. For the camera measurements, Injected errors that are 

influential in increasing error difference are landmark and heading error. The injected 

errors for landmarks do push the limits of first-order linearization validity, as the injected 

landmark errors are on the order of tens of meters, not just meters like GPS. Camera error 

differences are on the order of tenths of milliradians (hundredths of a degree). To keep 

the error differences small the author assumes that 15 m will be the 3𝜎 landmark 

uncertainty threshold for this and future simulations. This assumption implies that the 

measurement geometry matrix, given that the results are using relatively large error 

injections, has been correctly implemented and is appropriate for use inside the filter key 

equations. 

With the measurement geometry matrix now validated. This document moves 

on to discuss how to account for and validate continuous noise within the system in the 
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Covariance Propagation subsection. 

2.1.6 Covariance Propagation 

 The previous subsections have provided definitions for most of the Kalman 

filter’s key equations; however, these subsections have postponed the definitions of 

particular noise matrices. These next two subsections will finally provide these 

definitions. This first subsection will discuss the derivation for the �̆̅�(�̂̅�) matrix. The next 

subsection will detail the derivation of the �̆̅�(�̂̅�) and Kalman gain matrix, �̂̅�. 

�̅� is a diagonal matrix composed of the power spectral density (PSD) of the 

process noise, �̅�. The detailed meaning of this description begins with how one 

represents and defines noise. Though Maybeck provides a more explicit explanation [3], 

this document provides the essential derivation details (using simplified version of the 

notation from Maybeck). In the truth state, the collection of driving noise terms was 

given as �̅� = [𝑢𝑤𝑔 𝑣𝑤𝑔 𝑤𝑎𝑢 𝑤𝑎𝑣 𝑤𝜔 𝑤𝑐]𝑇. Each of these driving noise terms, 

except wind gusts as explained below, are assumed to be Gaussian, not only in 

distribution, but in that they are independent of (Probability of one outcome does not 

affect the probability of another outcome: 𝑃(�̅�(𝑡𝜖−1) ∩ �̅�(𝑡𝜖−1)) =

𝑃(�̅�(𝑡𝜖−1))𝑃(�̅�(𝑡𝜖−1)) ≠ 𝑃(�̅�(𝑡𝜖−1))𝑃(�̅�(𝑡𝜖−1)|�̅�(𝑡𝜖−1))) and uncorrelated (covariance 

kernel: Ψ̅𝑥𝑦(𝑡𝜖−1, 𝑡𝜖) = 𝐸(�̅�(𝑡𝜖−1)�̅�
𝑇(𝑡𝜖)) = 𝐸(�̅�(𝑡𝜖−1))𝐸(�̅�

𝑇(𝑡𝜖)) => covariance 

between two probabilities is zero: �̅�𝑥𝑦(𝑡𝜖−1, 𝑡𝜖) = 0̅) with each other, the state, and the 

state dynamics. Note 𝐸(∗) is the expectation operator, and independence implies 

uncorrelated but not vice versa. Such a definition is one mathematical way to say that the 

gaussian driving noise terms across the entire flight are white (i.e., stochastic, random) 
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and within a gaussian range of each noise’s individual mean. Because of the noises’ 

gaussian nature, the white noises can be easily, sufficiently represented by way of the 

statistical first moment (mean) and second central moment (covariance). All noise 

sources are assumed to have zero mean. To extract the covariance, however, requires 

more derivation. Note the following covariance equation, which relates covariance kernel 

�̅�𝑥𝑥(𝑡𝜖−1, 𝑡𝜖), correlation kernel Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖), and mean �̅�𝑥(𝑡∗) 

 �̅�𝑥𝑥(𝑡𝜖−1, 𝑡𝜖) = Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖) − �̅�𝑥(𝑡𝜖−1)�̅�𝑥
𝑇(𝑡𝜖) = Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖) (2.72) 

If one also assumes that the driving noise terms are wide-sense-stationary processes, then 

one can find that the correlation kernel evaluated in the frequency domain—the PSD 

Ψ̅𝑥𝑥(𝜔), can be equated to the Fourier transform of the correlation kernel evaluated in the 

time domain, Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖). With inverse rearrangement, the correlation kernel in the 

time domain, the value being sought, is equal to the integral of the PSD: 

 

�̅�𝑥𝑥(𝑡𝜖−1, 𝑡𝜖) = Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖) = ∫ Ψ̅𝑥𝑥(𝜔)𝑒
−𝑖⏞𝜔(𝑡𝜖−𝑡𝜖−1) 𝑑𝜔

∞

−∞

= ∫ �̅�𝛿(𝑡𝜖 − 𝑡𝜖−1)𝑒
−𝑖⏞𝜔(𝑡𝜖−𝑡𝜖−1)𝑑𝜔

∞

−∞

 

(2.73) 

The right-hand-side of Equation (2.73) breaks the PSD into two components: The �̅� 

matrix, which holds the PSD coefficients, and the Dirac Delta function (units: Hz; 𝑖⏞ =

𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑢𝑛𝑖𝑡), which makes the frequency power only active at zero-time difference. 

Now, at zero-time difference, the time in which Equation (2.73) has the largest value, and 

using the uncorrelated gaussian assumption, only the diagonal terms of the correlation 

matrix, the autocorrelation matrix Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖−1) = 𝐸(𝑥(𝑡)𝑥
𝑇(𝑡)) = �̅�𝑥𝑥(𝑡𝜖−1, 𝑡𝜖−1), 

need be assessed (Note that when discussing the navigation state, if transformations 

between coordinate frames technically do create a correlation, the �̆̅�(�̂̅�) matrix would be 
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used to account for this discrepancy). In a more common form, this derivation 

summarizes the truth state’s driving noise as 

 

𝐸(�̅�(𝑡𝜖)) = 0̅ 

𝐸(�̅�(𝑡𝜖)�̅�
𝑇(𝑡𝜖−1)) = �̅� 𝛿(𝑡𝜖 − 𝑡𝜖−1) 

(2.74) 

with the top equation denoting that all noise mean is zero and the bottom equation 

denoting that the covariance kernel is equal to the diagonal PSD matrix times Dirac 

Delta. 

What makes this equation set important is that mean and covariance are 

significantly easier to calculate, as opposed to computing the entire cumulative 

distribution function. For one, the mean is always being zero in this derivation; For two, 

the power spectral densities can be found in a more straight forward procedure. To 

explain, recall that the bias states were modeled as first-order Markov processes driven 

by white noise (first-order differential equation, Markov in that the current values is 

dependent on the prior value). The PSD of a first-order Markov is known to be 

 𝑄 =
2𝜎𝑠𝑠

2

τ
 (2.75) 

Where 𝜎𝑠𝑠 is the steady-state, one-𝜎 standard deviation of the bias and 𝜏 is the time 

constant of the bias, which are found in specification sheets, sample testing, or theoretical 

calculations. For wind gust power, null values will be used for these simulations. 

Nevertheless, for future work, particularly in multi-UAV, tight-formation applications, 

where wind gusts are significantly influential, a Dryden gust model as described in Beard 

and McLain [13] can be used. Hence, the truth state �̅� matrix is defined as 
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 �̅� =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑃𝑆𝐷𝑢𝑤𝑔 0 0 0 0 0

0 𝑃𝑆𝐷𝑣𝑤𝑔 0 0 0 0

0 0
2𝜎𝑠𝑠𝑎𝑢

2

𝜏𝑎𝑢
0 0 0

0 0 0
2𝜎𝑠𝑠𝑎𝑣

2

𝜏𝑎𝑣
0 0

0 0 0 0
2𝜎𝑠𝑠𝜔

2

𝜏𝜔
0

0 0 0 0 0
2𝜎𝑠𝑠𝑐

2

𝜏𝑐 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (2.76) 

One can think of this matrix as a description of the strength of Brownian motion or the 

rate at which noise variance grows. 

The mean and covariance for the truth state has just been described. The design 

model means and covariances are derived similarly: 

 

𝐸(�̆̅�(𝑡𝜖)) = 0̅ 

𝐸(�̆̅�(𝑡𝜖)�̆̅�
𝑇(𝑡𝜖−1)) = �̆̅�(�̂̅�) 𝛿(𝑡𝜖 − 𝑡𝜖−1) 

(2.77) 

Though not necessarily a function of navigation state, the design model PSD matrix is 

indicated with a (�̂̅�) to indicate that the PSD is a function of the noise statistics known to 

the navigation state. With regards to the measurement noise, their power spectral 

densities are defined by the square of velocity random walk (𝑉𝑅𝑊) and angular random 

walk (𝐴𝑅𝑊) values found in accelerometer and gyroscope specification sheets (𝑉𝑅𝑊 

and 𝐴𝑅𝑊 can be thought of as integrals of white noise; they are also referred to as noise 

density). Combining Equation (2.77)’s definition with the concept of Brownian constant 

diffusion (random walk) process, the design model PSD matrix can be used in the 

covariance propagation equation (Equation (2.40)). �̆̅�(�̂̅�) is defined here as 
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 �̆̅�(�̂̅�) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑉𝑅�̂�𝑎𝑢

2 0 0 0 0 0 0

0 𝑉𝑅�̂�𝑎𝑣
2 0 0 0 0 0

0 0 𝐴𝑅�̂�𝜔
2 0 0 0 0

0 0 0
2�̂�𝑠𝑠𝑎𝑢

2

�̂�𝑎𝑢
0 0 0

0 0 0 0
2�̂�𝑠𝑠𝑎𝑣

2

�̂�𝑎𝑣
0 0

0 0 0 0 0
2�̂�𝑠𝑠𝜔

2

�̂�𝜔
0

0 0 0 0 0 0
2�̂�𝑠𝑠𝑐

2

�̂�𝑐 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.78) 

Once again, a need to validate correct implementation of this matrix is needed. 

Although a clear method to validate this matrix individually is not known to the author, 

this �̆̅�(�̂̅�) matrix and the �̆̅�(�̂̅�) matrix can be validated together through the covariance 

propagation equation itself. The idea is that, without discrete measurement updates, there 

is intuition from prior research that the propagated variance will grow in specific patterns. 

If these patterns are compared against multiple Monte Carlo simulations, the general trend 

of errors from these simulations, with the presence of noise, should follow the same 

variance growth patterns up to first-order errors. These patterns are linear for velocity, 

quadratic for position, and constant for biases. Landmarks are also expected to be 

constant, as explained in the 2.1.4 Linear Error State Modeling subsection, where the state 

dynamics can only assume a constant landmark position. 

 Recalling the four simulation characteristics, the same Euler’s method, 

manipulated control inputs, measurement synthesis, and measurement restriction 

procedures are used. The manipulated control input, however, was altered to test other 

Monte Carlo simulations with differing rudder combinations. When only analyzing a 

sinusoidal rudder, truth and navigation states have higher likelihood to cross over each 
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other as the UAV loops in the trajectory. The cross over causes error plots to have a 

sinusoidal nature, masking the extent to which state errors can grow to. Hence, by using a 

low-rudder input, the truth and navigation states are more likely to diverge from each 

other and show a worse-case-scenario of the extent that continuous time propagation 

errors can grow to. This document will present particularly a null-rudder, constant-90°-

rudder, and sinusoidal rudder for discussion on extreme cases. Nevertheless, 18 different 

trajectories for each sensor grade are studied to verify appropriate results. Note that for 

future testing in the 2.1.7 Estimation Capability subsection, the landmark locations for a 

null-rudder trajectory are moved to the locations shown in Table 2.5. 

 

Table 2.5. Null-rudder landmark locations. 

State �̅� �̂̅� Units 

Λ1𝑛 400.0e+00 400.0e+00 m 

Λ1𝑒 2500.0e+00 2500.0e+00 m 

Λ2𝑛 500.0e+00 500.0e+00 m 

Λ2𝑒 2500.0e+00 2500.0e+00 m 

 

Noise restrictions are removed from the simulation characteristics, but only 

driving and process noise, not discrete measurements noise, are activated in the states 

since discrete measurements are not yet used to update state values and covariances. The 

active noise measurements for each time step are defined as 

 �̅�[∗] = √
𝑄�̅�[∗]

𝑡𝜖 − 𝑡𝜖−1
𝜁 (2.79) 

where 𝜁 is a random, Gaussian-distributed, pseudo-random number centered around zero. 

Defining noise this way allows one to generate discrete simulation noise that behaves like 

continuous white noise. Furthermore, the initial truth state is forced to be offset from the 
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navigation state in Table 2.2 and Table 2.5 by adding in an “initial-uncertainty”: 

 �̅�[∗](𝑡𝜖 = 0) = �̅�[∗](𝑡𝜖 = 0) + 𝜁 𝜎𝑖𝑢�̅�[∗]
 (2.80) 

where 𝜎𝑖𝑢�̅�[∗]  
 is the true one standard deviation of the initial uncertainty of �̅�[∗]. Likewise, 

the initial condition for the covariance matrix is made consistent with the initial state 

conditions (i.e., the covariance of the state estimates is equivalent to the covariance of the 

state estimation errors). It is set to only be diagonal such that  

 �̂̅�(𝑡𝑖 = 0) =

[
 
 
 
 
 
 
 
 
�̂�𝑖𝑢𝑝𝑛
2 0 0 0 0 0 0

0 �̂�𝑖𝑢𝑝𝑒
2 0 0 0 0 0

0 0 Ξ21
2 0 0 0 0

0 0 0 Ξ22
2 0 0 0

0 0 0 0 �̂�𝑖𝑢𝜓
2 0 0

0 0 0 0 0 ⋱ 0
0 0 0 0 0 0 �̂�𝑖𝑢Λ2𝑒

2
]
 
 
 
 
 
 
 
 

 (2.81) 

which uses the initial uncertainty of the navigation state, 𝜎𝑖𝑢�̂̅�[∗]
 (terms Ξ21 and Ξ22, which 

replace �̂�𝑖𝑢𝑢𝑛
2  and �̂�𝑖𝑢𝑣𝑒

2 , are explained in the second following paragraph). In other words, 

the UAV is positioned and calibrated to have a specific state, however, in truth, this 

positioning and calibration may be off by approximately ±1𝜎. To account for the off 

positioning and calibration, a covariance matrix based on what the engineer thinks is ±1𝜎 

is made. For this simulation, when applicable, 𝜎𝑖𝑢�̅�[∗]
= �̂�𝑖𝑢�̂̅�[∗]

= 𝜎𝑠𝑠�̅�[∗]
= �̂�𝑠𝑠�̂̅�[∗]

 

(subscript 𝑠𝑠 denotes steady state) is assumed and it is left to future work to generate 

sensitivity analyses that considers discrepancies between the different types of 

uncertainties. The sigma and sensor grade values for this validation and future simulations 

are provided in Table 2.6. 
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Table 2.6: 1𝜎 values. 

Initial State Uncertainty 

State Commercial Tactical Navigation Units 

𝑝𝑛 and �̂�𝑛 3.3e-01 3.3e-01 3.3e-01 m 

𝑝𝑒 and �̂�𝑒 3.3e-01 3.3e-01 3.3e-01 m 

𝑢 and �̂� 3.3e-02 3.3e-02 3.3e-02 m s⁄  

𝑣 and 𝑣 3.3e-02 3.3e-02 3.3e-02 m/s 
𝜓 and �̂� 5.2e-04 5.2e-04 5.2e-04 rad 

𝑟 1.5e-05 1.5e-05 2.4e-07 rad/s 

𝑏𝑎𝑢 and �̂�𝑎𝑢 6.2e-02 2.9e-02 9.8e-04 m/s2 

𝑏𝑎𝑣  and �̂�𝑎𝑣  6.2e-02 2.9e-02 9.8e-04 m/s2 

𝑏𝜔 and �̂�𝜔 1.5e-05 1.5e-05 2.4e-07 rad/s 

𝑏𝑐 and �̂�𝑐 1.2e-03 1.2e-03 1.2e-03 rad 

Λ1𝑛 and Λ̂1𝑛 10.0e+00 10.0e+00 10.0e+00 m 

Λ1𝑒 and Λ̂1𝑒 10.0e+00 10.0e+00 10.0e+00 m 

Λ2𝑛 and Λ̂2𝑛 15.0e+00 15.0e+00 15.0e+00 m 

Λ2𝑒 and Λ̂2𝑒 15.0e+00 15.0e+00 15.0e+00 m 

Steady State Sensor Specification Uncertainty 

Sensor Commercial Tactical Navigation Units 

𝑝𝑛 3.3e-01 3.3e-01 3.3e-01 m 

𝑝𝑒 3.3e-01 3.3e-01 3.3e-01 m 

�̃� 5.2e-04 5.2e-04 5.2e-04 rad 

�̃� 1.5e-05 1.5e-05 2.4e-07 rad/s 
�̃� 𝐴𝑅𝑊 6.1e-05 4.4e-05 3.5e-06 rad {s√s}⁄  

𝜏𝜔 10.0e+00 1800.0e+00 1800.0e+00 s 
�̃�𝑢 6.2e-02 2.9e-02 9.8e-04 m/s2 

�̃�𝑢 𝑉𝑅𝑊 1.4e-03 1.2e-03 9.8e-04 m {s√s}⁄  

𝜏𝑎𝑢 10.0e+00 1800.0e+00 1800.0e+00 s 

�̃�𝑣 6.2e-02 2.9e-02 9.8e-04 m/s2 

�̃�𝑣 𝑉𝑅𝑊 1.4e-03 1.2e-03 9.8e-04 m {s√s}⁄  

𝜏𝑎𝑣  10.0e+00 1800.0e+00 1800.0e+00 s 

Γ̃̅ 1.2e-03 1.2e-03 1.2e-03 rad 

𝜏𝑐 1800.0e+00 1800.0e+00 1800.0e+00 s 
 

In detail, Table 2.6 provides values for commercial, tactical, and navigation 

grade UAV systems. Both systems will acquire ±1.0m, 3𝜎 GPS measurements. The 

author assumes that the 3𝜎 velocity (both components in the Body frame) is unknown by 

±0.1 m/s. Based off documentation from VectorNav company, heading is unknown by 
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approximately ±0.03° 1-𝜎. Truth state heading rate uncertainty is set equivalent to 

gyroscope uncertainty. Camera bias for the UAV systems is derived based on using a high 

definition 1080x1920 camera. Implementation of higher grade or different vision-based 

measurements for rougher military operations (e.g., wind noise, night flight) is left to 

future work. Assuming 40° FOV and ±5 pixels of 3𝜎 uncertainty yields a camera bias of 

 �̂�𝑐 = 𝑏𝑐 =
40°𝜋

180
{1920}

5

3
= 1.2 mrad (1𝜎) (2.82) 

Future work may consider gimbal-mounting the camera to help reduce camera bias. 

The author assumes that the initial landmark positions are unknown up to 15 m 3𝜎, as 

explained in the 2.1.5 Linear Error Measurement Modeling subsection. For the continuous 

sensors, values are based on specifications from a (commercial) VN-100, (tactical) LN-

200, and a (navigation) Novatel ISA-100C sensor units. The author assumed that the 

provided data from these sheets were 1𝜎 statistics. One interesting note is that the 𝑉𝑅𝑊 

for the navigation grade is the same number as accelerometer bias—implying that 

navigation-grade bias is as small as 𝑉𝑅𝑊 noise. 𝑉𝑅𝑊 for tactical was unknown, and was 

assumed as the median between commercial and navigation grades. 

 Within Equation (2.81), there were two terms, Ξ21 and Ξ22, that were not 

defined. These are terms that account for the uncertainty in velocity due to initial Body 

frame velocity error and initial heading error. To generate this value, the author toggled 

the initial nominal Body velocities into North-East velocities. After injecting ±3𝜎 

uncertainties into both heading and North-East velocities, the injected North-East 

velocities were transformed back into Body velocities with an injected transformation 

matrix. The 1-𝜎 equivalent of the maximum difference between the original Body 

velocities and the injected Body velocities were assigned to Ξ21 and Ξ22 respectively. 
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 Continuing with the validation description, bias time constants are initially set to 

1/10th of the 100 s simulation time (𝑡𝑠𝑖𝑚 = 100 𝑠) to exercise the bias dynamics. Later, all 

test trajectories are re-evaluated with the true simulation time constants to confirm that all 

hairlines lie within the given variance bands. In short, the true time constants for 

navigation grade IMU’s are assumed to be 30 min—a value used for tactical grade 

sensors, but nevertheless a large enough value to force the first-order Markovs to act like 

biases. The camera misalignment bias was given the same value in both sensor grades for 

simplicity. For continuous sensor commercial grades, which are more dependent on 

thermal properties, rough heat transfer calculations were used to determine the time 

needed for the UAV fuselage to decrease 63% from an assumed max temperature (turned 

on, stationary, in the sun) to an assumed lowest temperature (turned on, flying 20
𝑚

𝑠
, in the 

shade). This time, which was approximately 10 s, was assumed to be the time constant 

for both the commercial accelerometer and commercial gyroscope. 

 Given these settings, 200 Monte Carlo runs are generated with the covariance 

being accounted for according to Equation (2.40). 200 runs were selected to provide 

enough intuition on the overall nature of the UAV states. More runs would have required 

more computational power. Fewer runs would have necessitated the use of confidence 

interval bands on the determined variance to verify accuracy. Selecting the covariance 

history from one of the Monte Carlo runs, its variance values are compared against the 

errors (i.e., hair plots) from the 200 Monte Carlo runs (via mapping 𝑛). Note that the 

covariance history from one Monte Carlo to another Monte Carlo was empirically 

determined to differ insignificantly. The need to compare the system covariance against so 

many Monte Carlos is due to the nature of the position and velocity states. Although 
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having zero mean error like process noise by itself, position, velocity, and bias that are 

corrupted by process noise are not white like process noise by itself. This means that 

position, velocity, and bias have some correlation between the previous time instant and 

the next time instant, which implies that their errors from a single Monte Carlo run are not 

likely to be drastic and span the entire variance ranges. Hence, multiple Monte Carlo 

simulations are needed to ensure that, position, velocity, and bias do span the covariance 

statistics. The variance history from the Monte Carlo runs for selected trajectories with a 

commercial sensor package is shown in the following Figures: 

 

 
Figure 2.20. Covariance propagation validation trajectory. 
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To adequately show how trajectories effects covariance results, this validation 

will provide complete results from three separate simulations. Presented on the top left, 

top right, and bottom (top, middle, and bottom) respectively, the separate simulations 

involve trajectories of full dynamics (from previous validations), constant full rudder 

(90°), and no rudder. All trajectories include sinusoidal thrust (simulations without 

sinusoidal thrust slightly decrease the magnitude of errors in the hairlines).  

Figure 2.20 shows these trajectories for all 200 Monte Carlo runs, in terms of 

both the truth and navigation states.   
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Figure 2.21. Covariance propagation validation for 𝑝𝑛. 
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Looking at the error plot of 𝑝𝑛 in Figure 2.21, most all position error hairlines 

from the Monte Carlo runs, denoted with dark blue lines, are within the red lines, which 

denote the estimated 3𝜎 bounds for the given state (derived by converting the estimated 

variance from the covariance matrix into 3𝜎 values). All solutions exhibit the desired 

quadratic growth trend. The largest 3𝜎 bounds occur with the straight trajectory, and the 

smallest 3𝜎 bounds occur with the circular trajectory.  
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Figure 2.22. Covariance propagation validation for 𝑝𝑒. 



76 

 

The error plots for 𝑝𝑒 are shown in Figure 2.22. Again, the desired quadratic 

growth is manifested. When using true 𝜏 values, the range for the minimum and 

maximum 3𝜎 position values at the end of the simulation are approximately 235 m to 440 

m for commercial sensors and approximately 13 m to 20 m for navigation sensors.  
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Figure 2.23. Covariance propagation validation for 𝑢.  
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Figure 2.24. Covariance propagation validation for 𝑢𝑛. 
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Velocity is more susceptible to bumpy, wave-like trends, which are manifested 

in the top plots of Figure 2.23 and Figure 2.24. The bumpy patterns strongly correlate 

with thrust and rudder movement and larger heading uncertainty. Particularly, whenever 

the UAV makes a turn, the truth state and navigation state are more likely to ‘cross paths’ 

or intersect each other, which consequently cause errors between the truth and navigation 

state to minimize, hence the wave-like patterns in the hairlines. The covariance 

propagation equation appears to accurately account for velocity growth despite these 

wave trends. Furthermore, the constant-rudder and no-rudder solution, although 

appearing more logarithmic-shaped due to scaling, retain the desired linear growth trend 

to justify correct implementation. The full-dynamics trajectory is understandably wavier 

in growth as the covariance propagation equation accounts for the accentuated hairline 

errors from this extreme trajectory case. Note that to plot velocities in the North-East 

frame, an affine transformation, analogous to the previously used direction cosine 

matrices, was used. 
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Figure 2.25. Covariance propagation validation for 𝑣. 
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Figure 2.26. Covariance propagation validation for 𝑣𝑒. 
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Velocity plots in Figure 2.25 and Figure 2.26 show similar results as the prior 

velocity results, where from testing, the author assumed that a maximum of five periodic 

hairlines outside 3𝜎 was acceptable results. Using smaller times steps appeared to help 

reduce unacceptable results. When verifying the constant-rudder trajectories (𝛿⏞𝑟 ≥ 60°) 

with true 𝜏 values, more than five (six to nine lines) periodically came outside 3𝜎. This 

phenomenon mostly occurred after 85 s of simulation time (only the constant-rudder at 

𝛿⏞𝑟 = 90° yielded hairlines outside 3𝜎 prior to 85 s). To avoid larger computation times 

using a smaller time step, the author assumed these results acceptable seeing as the 

trajectories are extreme, discrete updates in future development will resolve such errors 

before 85 s, and only velocity—not position—plots have these results. 
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Figure 2.27. Covariance propagation validation for 𝜓. 
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The heading results for all three simulations in Figure 2.27 indicate the same 

conclusion that noise error growth are indifferent between different trajectories. The same 

is true for navigation sensors, but the resulting plot is different: 

 

 
Figure 2.28. Covariance propagation validation for 𝜓 using navigation sensors. 

 

Essentially, Figure 2.28 indicates that noise error becomes negligible compared 

to the initial error between the navigation state and the truth state when using navigation 

sensors. 

 Following the heading states are the biases. Being initialized with the same 

pseudo-random algorithm and being independent of the system dynamics, bias estimation 

error hairlines do not differ between simulations. Hence, only one plot is shown per bias 

state. 
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Figure 2.29. Covariance propagation validation for 𝑏𝑎𝑢. 

 

 
Figure 2.30. Covariance propagation validation for 𝑏𝑎𝑣. 
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Figure 2.31. Covariance propagation validation for 𝑏𝜔. 

 

 
Figure 2.32. Covariance propagation validation for 𝑏𝑐. 

 

All 3𝜎 bias lines remain constant over time, which is consistent with expected growth 

pattern. Testing the true time constant for each bias, the random walking of error plot 

lines enters and exits the 3𝜎 boundary in a manner common to results in prior research—
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implying correct implementation. 

 

 
Figure 2.33. Covariance propagation validation for Λ1𝑛. 

 

 
Figure 2.34. Covariance propagation validation for Λ1𝑒. 
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Figure 2.35. Covariance propagation validation for Λ2𝑛. 

 

 
Figure 2.36. Covariance propagation validation for Λ2𝑒. 

 

Plots for the landmarks do not differ neither from sensor grade to sensor grade 

nor from trajectory to trajectory due to their zero dynamics in the state dynamics, hence 

only a single plot for each landmark’s north and east position are shown. Errors in these 
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landmarks are only due to initial uncertainty. 
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Figure 2.37. Covariance propagation validation for 𝐹𝑇. 
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Figure 2.38. Covariance propagation validation for 𝛿𝑟. 
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The full-dynamics control input plots are essentially the same as those seen in 

the initial propagation validation simulation, where only the thrust inputs have 

differences less than 0.2 N and rudder inputs have no differences between Monte Carlo 

runs. The constant-full-rudder, and no-rudder control input plots also show little 

differences between Monte Carlo runs. 

From these validation plots, the 3𝜎 estimates encapsulated the error behavior of 

the state over time. This implies that the matrices �̆̅�(�̂̅�) and �̆̅�(�̂̅�) are implemented well 

enough to account for first-order discrepancies. Furthermore, for the biases, this implies 

that process noise has been correctly implemented. this document now moves on to the 

propagation update equation, Equation (2.42), to define and explain the discrete noise and 

gain matrices. A similar validation algorithm will be implemented to validate these 

matrices as well. 

2.1.7 Estimation Capability 

 The prior section developed equations that track the state given the presence of 

continuous process noise. This section moves forward to update the state given the 

presence of discrete noise. 

 Recalling Equation (2.41) and Equation (2.42), much of the state and covariance 

updates are dependent on the Kalman gain weighting matrix provided below: 

 

�̂̅� = �̂̅�−�̆̅��̆̅�
𝑇(�̂̅�−(𝑡𝑘)) {�̆̅��̆̅�(�̂̅�

−(𝑡𝑘))�̂̅�
−�̆̅��̆̅�

𝑇(�̂̅�−(𝑡𝑘))

+ 𝐽 ̅̆(�̂̅�)�̆̅�(�̂̅�)𝐽 ̅̆𝑇(�̂̅�)}
−1

 

(2.83) 

This matrix contains many of the terms already defined, including the a priori covariance, 

the measurement geometry matrix and 𝐽 ̅̆(�̂̅�). The remaining undefined term is the 
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variance matrix, �̆̅�(�̂̅�) , which is analogous to the discrete measurement version of �̆̅�(�̂̅�). 

The explanation of �̆̅�(�̂̅�) is as follows: 

 In the truth state, the collection of discrete measurement noise was defined as  

�̅�(𝑡𝑘) =  [𝜂𝑝𝑛(𝑡𝑘) 𝜂𝑝𝑒(𝑡𝑘) 𝜂𝜓(𝑡𝑘) �̅�𝛤[1](𝑡𝑘) �̅�𝛤[2](𝑡𝑘)]. Each discrete measurement 

noise term is assumed to be Gaussian, being independent and uncorrelated with each 

other, the state, and dynamics (white). This assumption allows the discrete measurement 

noise to be statistically represented via mean and covariance. In a similar manner as the 

derivation for continuous noise mean and covariance, discrete noise and covariance are 

defined as 

 

𝐸(�̅�(𝑡𝑘)) = 0̅ 

𝐸(�̅�(𝑡𝑘)�̅�
𝑇(𝑡𝑘−1)) = �̅� 𝛿(𝑡𝑘 − 𝑡𝑘−1) 

(2.84) 

This discrete form uses Kronecker Delta, 𝛿(𝑡𝑘, 𝑡𝑘−1) (unitless). Furthermore, the �̅� 

matrix is a diagonal of the variances of the measurement noise, �̅�(𝑡𝑘), such that 

 �̅� =

[
 
 
 
 
 
 
 
𝜎𝑠𝑠𝑝𝑛(𝑡𝑘)
2 0 0 0 0

0 𝜎𝑠𝑠𝑝𝑒(𝑡𝑘)
2 0 0 0

0 0 𝜎𝑠𝑠𝜓(𝑡𝑘)
2 0 0

0 0 0 𝜎𝑠𝑠Γ[1](𝑡𝑘)
2 0

0 0 0 0 𝜎𝑠𝑠𝛤[2](𝑡𝑘)
2

]
 
 
 
 
 
 
 

 (2.85) 

Using (𝑡𝑘) within the 𝜎𝑠𝑠 subscripts helps to emphasize that the standard deviations are 

with respect to the discrete measurements’ accuracies, not continuous sensors’ or initial 

conditions’ accuracies. Likewise, the design model yields similar results 

 

𝐸(�̆̅�(𝑡𝑘)) = 0̅ 

𝐸(�̆̅�(𝑡𝑘)�̆̅�
𝑇(𝑡𝑘−1)) = �̆̅�(�̂̅�)𝛿(𝑡𝑘 − 𝑡𝑘−1) 

(2.86) 
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 �̆̅�(�̂̅�) =

[
 
 
 
 
 
 
 
�̂�𝑠𝑠𝑝𝑛(𝑡𝑘)
2 0 0 0 0

0 �̂�𝑠𝑠𝑝𝑒(𝑡𝑘)
2 0 0 0

0 0 �̂�𝑠𝑠𝜓(𝑡𝑘)
2 0 0

0 0 0 �̂�𝑠𝑠Γ[1](𝑡𝑘)
2 0

0 0 0 0 �̂�𝑠𝑠𝛤[1](𝑡𝑘)
2

]
 
 
 
 
 
 
 

 (2.87) 

Now that the matrices are defined, the rest of this subsection details a validation 

algorithm to confirm correct implementation. Both 𝐽 ̅̆(�̂̅�) and �̆̅�(�̂̅�) can be validated 

together through the covariance update equation itself. The idea is, just like the 2.1.6 

Covariance Propagation subsection, that there is intuition that the discrete measurement 

noises will manifest themselves according to specific patterns within a Monte Carlo 

simulation. The patterns are zero-mean and saw-tooth with position and velocity 

magnitudes being significantly smaller than the 2.1.6 Covariance Propagation subsection. 

 The same simulation set up as the 2.1.6 Covariance Propagation subsection is 

used with the exceptions that this subsection activates discrete measurement noise, that 

unmodified time constants are always used, that Kalman filter update cycles are used, and 

that the same truth state is used for every Monte Carlo. To explain the first two 

exceptions, the discrete noise measurements for each discrete time step are defined as  

 �̅�(𝑡𝑘)[∗] = 𝑅�̅�(𝑡𝑘)[∗]𝜁 (2.88) 

For time constants, the author used the same time constants listed in Table 2.6. For the 

third exception, the update cycles are iterations of calculating the residual (𝑧̅̃ − 𝑧̅̃̂−, 

Equation (2.53)), �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) (Equation (2.67)), �̂̅� (Equation (2.83)), �̂̅�+ (Equation 

(2.42)), 𝛿�̂̅�+ (Equation (2.41)), and the 𝑙 ̅mapping (Equation (2.36), �̅� ≈ �̂̅�+ = �̂̅�− + 𝛿�̂̅�+) 

in that respective order to calculate a better estimate of the navigation state and 
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covariance. The reason for cycling is a matter of increased measurement update accuracy 

and of numerical stability. 

To better explain the update cycles, consider, rather than processing all the 

discrete measurements at once, processing the discrete measurements one at a time. 

Would there be a difference in update accuracy if, say, camera measurements were 

processed first rather than GPS measurements? The answer is yes. Recalling the 2.1.1 

States and Models subsection, GPS and magnetometer measurements were linear, explicit 

functions of UAV position and heading respectively, whereas camera measurements were 

nonlinear, implicit functions of UAV position, landmark position, camera offset bias, and 

heading. Being a nonlinear function of multiple states makes camera measurements quite 

sensitive to errors within those multiple states. Therefore, there is higher priority in 

ensuring that those multiple state are as accurate as possible before processing the camera 

measurement. Furthermore, consider the Kalman gain weighting matrix (Equation 

(2.83)). This equation requires a matrix inversion (note that the terms within this inverse 

are collectively called the residual covariance). Inversions greater than 3x3, where 3x3 

matrices have analytical solutions, begin to hinder computation time as well as numerical 

stability of that inversion. To that end, there is a preference to execute Kalman filter 

updates in cycles of at most 3x3 sized update matrices beginning with the most reliable, 

linear measurement followed by progressively more nonlinear measurements.  

Creating the update matrices is simply breaking down the discrete measurement 

matrices 𝐽 ̅̆(�̂̅�), �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)), �̆̅�(�̂�), and the residual into smaller matrices that correspond 

to the measurement of each update cycle. For coding simplicity, especially during 

measurement denial and debugging, each measurement was processed one at a time, 
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which makes each cycle of 𝐽 ̅̆(�̂̅�) and �̆̅�(�̂̅�) equal a 1x1 matrix of 1 and �̂�∗
2 respectively, 

and each cycle of �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) and residual are single row matrices. 

 Included in the update cycles are protocols that account for measurement denial. 

When there is GPSD or a landmark is outside the camera’s FOV, the position or camera 

measurement is not processed as there is no 𝑧̅̃ available to calculate the residual. This is 

done in simulation by nulling out all elements of �̂̅� during the applicable update cycle. 

Note that, as is common practice, �̂̅� elements are set to null if a measurement residual is 

outside the 3𝜎 equivalent of that measurement’s residual covariance (see second 

following paragraph). This practice is called residual monitoring. The author found that 

erroneous residuals did not occur frequently enough to, as Maybeck commented, “not to 

reject large residuals, since they are the only means of correcting the divergence” [3]. 

In regard to the fourth exception, using the same truth state for each Monte Carlo, 

there is extreme difficulty in validating this subsection when each Monte Carlo, corrupted 

by noise and nonlinear measurement updates, is trajectory dependent. Therefore, to 

reduce trajectory dependence as much as possible, the noise placed in the truth state’s 

initialization was removed and placed in the navigation state’s initialization for each 

Monte Carlo. Control inputs were changed such that �̇� = 8.25 + 8.25 ∗ sin (
𝑡

10
) to create 

the same thrust in each trajectory. Furthermore, the �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) matrix used truth state 

values instead of navigation state values, �̆̅��̆̅�(�̅�
−(𝑡𝑘)). 

 With this simulation set up, two sets of plots are generated. The first set of plots 

is of the measurement residuals. According to Maybeck [3], these residuals have zero 

mean and a covariance matching the residual covariance in Equation (2.83). In these first 
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plots a single Monte Carlo simulation is run to verify consistency between Maybeck and 

implementation. The use of a Mahalanobis distance to analyze measurement residuals is 

left to future work, particularly for physical implementation when the additional 

complexities of image processing, magnetometer dead zones, sensor failure, and satellites 

moving past the horizon create a need for alternative statistics evaluation. The second set 

of plots will be error plots of a 200 Monte Carlo simulation with Kalman filtering active. 

The activated Kalman filtering should induce sawtooth patterns in both the 3𝜎 statistics 

and in the hairlines themselves, where a sawtooth fall indicates that the discrete 

measurements helped reduce estimation errors. These two sets of plots are generated 

below for the three trajectories used in the 2.1.6 Covariance Propagation subsection, with 

the addition of GPSD regions along the trajectories. First the Monte Carlo trajectories 

will be shown, followed by the residual plots, and then the state error plots. Note that 

seven trajectories for both commercial and navigation grade sensors were tested for 

correct implementation. 
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Figure 2.39. Estimation capability trajectories. 

 

Within Figure 2.39, the GPSD regions were set as boxed regions for simplicity. 

For the first trajectory, GPSD is during the last 30 s. The edges of these regions are 

defined in Table 2.7. 

 

Table 2.7. GPSD region edges.  

Trajectory North Max 

Edge 

North Min 

Edge 

East Max 

Edge 

East Min 

Edge 

Units 

Full Dynamics NA NA NA NA m 

Constant Rudder 800 200 300 0 m 

Null Rudder 800 0 1250 250 m 
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Only one landmark is used for the full-rudder trajectory to reduce the complexities in 

understanding discrepancies. The landmarks are positioned in the constant-rudder 

trajectory such that the UAV is only able to take landmark images while in GPSD. For 

the null-rudder trajectory, the UAV constantly has view of the landmarks until the last 

seconds of the simulation. 
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Figure 2.40. Estimation capability 𝑝𝑛 residual. 
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Figure 2.41. Estimation capability 𝑝𝑒(𝑡𝑘) residual. 

 

 Showing the GPS position residuals in Figure 2.40 and Figure 2.41, GPS is 

denied for one period, three periods, and one period for the full-rudder, constant-rudder, 



102 

 

and null-rudder respectively. After periods of denial, the plots have one Kalman cycle of 

relatively high residual covariance. After this cycle, the residuals are able to return to a 

reduced, zero-mean, white trend. Notice at the end of the null-rudder trajectory, there is a 

shallow-sloped decrease of 𝑝𝑛 3𝜎 residuals followed by a dramatic-sloped increase in the 

3𝜎 residuals. This is a manifestation of extreme Γ̅(𝑡𝑘) ratios seen in the 2.1.3 Propagation 

Validation subsection, which will be discussed later in this section. 
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Figure 2.42. Estimation capability �̃�(𝑡𝑘) residual. 
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Heading for all trajectories produced very similar results. In other words, since 

magnetometer jamming is not present in this simulation, the linear nature of heading 

makes it less dependent on trajectory paths. Though the magnetometer residuals for this 

single Monte Carlo do not span the full width of the residual covariance, the residuals 

still appear zero-mean, white, and are sufficiently large enough to justify correct 

implementation.  
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Figure 2.43. Estimation capability Γ̃[1](𝑡𝑘) residual. 
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Figure 2.44. Estimation capability Γ̃[2](𝑡𝑘) residual. 

 

For the first two trajectories in Figure 2.43 and Figure 2.44 (recall only one 

landmark is used in the first trajectory), large periods of measurement denial are present, 

so much so that there is difficulty in confirming that the residuals are zero-mean and 

white. Nevertheless, processed residuals are within 3𝜎 of the residual covariance. 

Residuals outside 3𝜎, Γ[1] at 84 s in the first trajectory, are rejected. After measurement 

denial, these plots do not show large increases of residual covariances like GPS 

measurements did—they become large when both GPS and camera measurements have 

been denied for a longer period (With the exception of the first camera update). Looking 
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at the last trajectory, where landmarks were always in the FOV, the zero-mean, white 

residual trend of the camera measurements are manifest. Note how the null-rudder 

trajectory still manifests increased error upon the approach of extreme Γ̅(𝑡𝑘) ratios.  
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Figure 2.45. Estimation capability 𝑝𝑛 errors. 
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Figure 2.46. Estimation capability 𝑝𝑒 errors. 
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For Figure 2.45and Figure 2.46, since covariance is more trajectory dependent in 

this subsection, all 200 3𝜎 lines are included. Especially in the first trajectory, the 

divergence of covariance lines is most readily seen. Less dramatic diversions are from the 

system noise and discrepancies in the �̆̅��̆̅�(�̂̅�) matrix. More dramatic diversions are from 

rejected camera updates when a particular Monte Carlo had a residual outside 3𝜎. The 

trend for most position errors is the same. Upon GPS denial, errors begin to quadratically 

increase as they did in the prior subsection. Upon GPS availability, the errors drastically 

reduce and begin displaying the desired sawtooth trend over time. When available, 

camera measurement updates can play a critical part in correcting errors. Particularly 

with the null rudder, where the 𝐻 matrix provides information orthogonal to the direction 

of sight, 𝑃𝑛 errors are kept below 4 m of error! However, as shown in the constant-90° 

trajectory, minimal camera updates occurring only at the beginning of the GPSD are 

insignificant in aid. Nevertheless, an appreciation for combining all discrete 

measurements is manifest in the amount of error reduction there is compared to the 2.1.6 

Covariance Propagation subsection. Of the tested trajectories, a maximum of 70 m and 4 

m errors were generated for commercial and navigations sensor respectively. Note again, 

the covariance fluctuation at the end of 𝑃𝑛 and during GPSD for 𝑃𝑒 in the null rudder 

trajectory being affected by Γ̅(𝑡𝑘) ratios. 
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Figure 2.47. Estimation capability 𝑢 errors. 
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Figure 2.48. Estimation capability 𝑣 errors. 
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Figure 2.49. Estimation capability 𝑢𝑛 errors. 
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Figure 2.50. Estimation capability 𝑣𝑒 errors. 
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Position errors mimic the velocity errors in Figure 2.47 through Figure 2.50. So 

do the velocity covariance bands, where, especially during GPSD, the bands can 

significantly differ from one another. Nevertheless, these bands still encapsulate the 3𝜎 

statistics of Monte Carlo errors.  
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Figure 2.51. Estimation capability 𝜓 errors. 
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Heading errors have minimal differences from trajectory to trajectory. All three 

trajectories minimize heading errors within the first 10 s of the simulation. 
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Figure 2.52. Estimation capability 𝑏𝑎𝑢 errors. 
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Figure 2.53. Estimation capability 𝑏𝑎𝑣  errors. 
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Figure 2.54. Estimation capability 𝑏𝜔 errors. 
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Figure 2.55. Estimation capability 𝑏𝑐 errors. 
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With the very noise-like characteristics of the commercial sensors, the filter has 

difficulty reducing bias errors significantly over time. The exception to this rule is with 

the camera bias for null-rudder trajectories, where prolonged periods of camera 

measurements significantly aid in narrowing the 3𝜎 bandwidth.  
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Figure 2.56. Estimation capability Λ1𝑛 errors. 
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Figure 2.57. Estimation capability Λ1𝑒 errors. 
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Figure 2.58. Estimation capabilityΛ2𝑛 errors. 
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Figure 2.59. Estimation capability Λ2𝑒 errors. 

 

For the landmark errors in Figure 2.56 through Figure 2.59, again, shaded 

regions are camera measurement denials from one Monte Carlo to visualize the general 

denial regions (and to note the random occurrences of 1 s, outside 3𝜎, measurement 

rejections). In the full-dynamics trajectory, the system has the potential of converging 

landmark error to 1 m 3𝜎. For the constant-rudder trajectory, errors are only minimally 

able to reduce errors at the beginning. Brief moments of measurements during GPSD are 

not substantial enough to yield valuable landmark update information. In terms of 

landmark north-position for the last trajectory, errors reduce below 5 m 3𝜎 during GPSD 
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and converge to 1 m 3𝜎 in GPS availability. In terms of landmark east-position for the 

last trajectory, little aid comes from the camera except near the trajectory’s end for the 

second landmark, where the 𝛾 angle is offset from the north position enough for the H 

matrix to provide information for the landmark’s east position. These and the prior 

ensemble plots show proper results, where the variance statistics are representative of the 

ensemble statistics. 

Concerning the Γ̅(𝑡𝑘) ratios, the success for having the 3𝜎 statistics match the 

hairline plots is conditional on having appropriate Γ̅(𝑡𝑘) ratios during extended periods of 

GPSD. If position errors grow too large and/or extreme Γ̅(𝑡𝑘) ratios occur, the 

linearizations of the filter update are no valid, resulting in incorrect updates. This 

research will not consider trajectories that induce these erroneous camera updates. For 

future work, a UAV-landmark proximity will likely need to be considered—close enough 

to minimize navigation errors, but far enough to prevent the large Γ̅(𝑡𝑘) ratios from 

creating large measurement errors (Note, the proper navigation state �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) matrix 

will need to be used when determining that proximity). Such implementation would also 

coincide with obstacle avoidance studies. 
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Figure 2.60. Estimation capability 𝐹𝑇. 
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Figure 2.61. Estimation capability 𝛿𝑟. 
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For all three trajectories, the exact same thrust was generated. The unique rudder 

inputs were the same ones used in the 2.1.6 Covariance Propagation subsection. 

In this subsection, the discrete update portion of the Kalman filter was validated. 

Both the 𝐽 ̅̆(�̂̅�) and �̆̅�(�̂̅�) matrices and other components of the update cycle generated 

reasonable results in the presence activated discrete noise, measurement denial, and 

measurement availability in terms of both residuals and ensemble statistics. To that end, 

implementation of the UAV’s navigation system is assumed to be complete. This 

document now transitions to the implementation of the UAV guidance and control law. 

2.2 Guidance and Control Law Development 

 Section 2.1 provided an extensive explanation and validation for the UAV’s 

navigation system. The plots generated therein generally used sinusoidal rudder and 

thrust to exercise harder dynamics. For mission purposes, however, more sophisticated 

GC is needed. This section, 2.2, will provide an explanation of that GC—optimal control 

using the direct multiple shooting (simultaneous) method with explicit Euler integration. 

First, an explanation on the logic of optimal control and the multiple shooting method 

will be given (2.2.1). Second, an explanation of the selected model and toolbox/library 

packages used to implement GC will be given (2.2.2). Third, a base-case simulation will 

be executed to confirm correct implementation of the GC law (2.2.3). 

2.2.1 Guidance and Control Logic  

 Before going into depth on the details of this simulation’s specific GC package, 

a broad discussion and example on the logic of the selected GC law may be desired. The 

remainder of this paragraph will explain the general reasoning for using this GC law. The 

following paragraphs will provide a more rudimentary explanation and an example on the 



131 

 

logic of how this GC law solves a problem. This section is based off the lectures of Dr. 

Greg Droge [32]. The main reasoning for using this particular control law is for 

simplicity and desirable features. Using quadratic-based costs is more straightforward, 

like LQR control. Using a direct method, where the equation format of the problem is 

discretized before determining first-order-necessary-conditions (FONC), was available in 

a convenient library for the author (CasADi). Furthermore, the direct method is typically 

easier to solve than indirect methods, where the FONC of the problem is found in 

continuous time using a two-point boundary value problem setup before numerically 

discretizing the problem. Dynamic programming, where the curse of dimensionality can 

make solutions intractable, and implementation of collocation methods was not readily 

known to the author. The type of direct method used for the simulation was the multiple 

shooting (simultaneous) method. Direct shooting methods are more popular methods; 

nevertheless, they require knowledge of future state values that are not readily available. 

In the direct multiple shooting method, future, guessed state (guidance) values are 

determined by simultaneously minimizing them with the control inputs. This is opposed 

to the direct single shooting (sequential) method, which uses current control inputs and 

initial conditions to guess the future state. The multiple shooting method was the 

preferred method, as it is more well-suited for nonlinear problems, problems with state 

constraints, as well as problems that are not necessarily stable. Explicit integration 

(propagation), rather than exact methods (preferences for linear systems) or implicit 

integration (preferences for higher numerical stability), was used. Euler’s method was 

used for consistency with the navigation portion of the simulation. Now, with the general 

reasoning for using this GC law, a more rudimentary explanation and example on how 
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this GC law solves an optimization problem is now provided. 

 All optimal control problems begin with converting the given problem into an 

equation format: 

 

min
𝐹𝑇

(𝐽(�̅�, �̅�) = {∫ 𝐿(�̅�(𝑡), �̅�(𝑡))
𝑡𝑠𝑖𝑚

𝑡0

} + 𝜙(�̅�(𝑡𝑠𝑖𝑚))) 

𝑠. 𝑡.  �̅�(𝑡) = 𝑓(̅�̅�(𝑡), �̅�(𝑡)) 

�̅�(𝑡0) is known 

|𝛿⏞𝑟 (𝑡)| ≤  90° 

(2.89) 

For numerical computation in the multiple shooting method, the problem is discretized: 

 

min
𝐹𝑇

(𝐽(�̅�, �̅�) = {∑ 𝐿(�̅�(𝑡𝜖), �̅�(𝑡𝜖))
𝑡𝑠𝑖𝑚−1

𝑡0

} + 𝜙(�̅�(𝑡𝑠𝑖𝑚))) 

𝑠. 𝑡.  �̅�(𝑡𝜖 + 1) = 𝑓(̅�̅�(𝑡𝜖), �̅�(𝑡𝜖)) 

�̅�(𝑡0) is known 

|𝛿⏞𝑟 (𝑡𝜖)| ≤  90° 

(2.90) 

In this equation example, there are three main components. First is the minimization (or 

maximization) operator, min
𝐹𝑇
(∗),  where the variables underneath are the variables that 

the engineer wishes to find the value(s) of (i.e., what the engineer wants to minimize with 

respect to). In this example, the engineer’s primary problem is to minimize fuel usage. A 

near-equivalent statement is that the engineer’s problem is to minimize the control’s 

thrust input. This near-equivalent statement can be expressed with mathematical terms 

found in the system dynamics; hence, the engineer wishes to find the minimum values of 

𝐹𝑇. 
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Second is the cost function, 𝐽(�̂̅�, �̅�). The cost function is composed of equation 

expressions that represent the engineer’s desires both throughout the simulation, 

∑ 𝐿(�̅�(𝑡𝜖), 𝑈(𝑡𝜖))
𝑡𝑠𝑖𝑚−1
𝑡0

, such as keeping UAV speed or accelerations low at all times, 

and expressions to be minimized at certain times or circumstances, 𝜙(�̅�(𝑡𝑠𝑖𝑚)), such as 

reducing discrepancy between the desired final destination point and the true final 

destination point. Note that though costs terms, like the distance discrepancy example, 

are not necessarily related to minimizing the primary problem’s thrust, their presence in 

the cost function help the engineer include other secondary desires. There is not one 

standard way to create these cost functions, but for this document’s control law, one 

common practice is used. This practice is a quadratic approach by simply squaring terms 

that are involved with the minimization. For example, if one thinks that keeping the 

vehicle in a straightened trajectory will help reduce fuel usage, a near-equivalent 

statement would be to minimize the rudder input. The near-equivalent cost term can be 

converted into equation form as  

 𝐿(�̅�(𝑡𝜖), �̅�(𝑡𝜖)) = 𝛿⏞𝑟 (𝑡𝜖)
2 (2.91) 

or, if the error between a desired rudder input, 𝛿⏞𝑟𝑑, and the current rudder input wish to 

be decreased,  

 𝐿(�̅�(𝑡𝜖), �̅�(𝑡𝜖)) = {𝛿⏞𝑟 (𝑡𝜖) − 𝛿⏞𝑟𝑑 (𝑡𝜖)}
2

 (2.92) 

Squaring the rudder terms not only prevents the solution from incorrectly favoring −90° 

rudder inputs. Squaring is also a useful tool in proving that the system is stable via 

Lyapunov theory (makes the cost function convex). 

 Returning to the main components of the optimal control equation, Equation 

(2.90), the third component is the constraints—components of the problem that cannot or 
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should not be altered, unlike the desirables in the cost function. These are first denoted 

with 𝑠. 𝑡. for ‘such that.’ Typically, the equality portions of the constraints are the system 

dynamics. Inequality constraints can show up in the form of control constraints such as 

the range limitations of the rudder input. Equality constraints can solve for the desired 

variable via a format similar to solving systems of equations. For inequality constraints, 

acceptable values of the desired variable can be found using Karush-Kuhn-Tucker 

conditions and algorithms that include techniques such as penalty functions or gradients. 

 From converting the problem into an equation format, the next step in optimal 

control involves perturbation theory and FONC using partials of the Hamiltonian, an 

addendum to the cost function in the form of                                            

𝐿(�̅�(𝑡𝜖), �̅�(𝑡𝜖)) + {�̅�
⏞
𝑇

(𝑡𝜖 + 1)} 𝑓(̅�̅�(𝑡𝜖), �̅�(𝑡𝜖)), where �̅�⏞ are costate (a.k.a., eigen or 

Lagrange multiplier) values. What this step does is find the solution gradient in 

multidimensional space—the ‘direction’ or environment of steepest decent/accent in 

which the UAV can currently move to locally minimize the cost function while still 

satisfying the constraints. Because such a procedure can only guarantee local 

minimization, future work will be needed to compare global minimums via dynamic 

programming. 

 Even after perturbation and FONC, finding the numerical values of the gradient 

is difficult. Recall that the Hamiltonian introduced costates at future time periods—

�̅�⏞
𝑇

(𝑡𝜖 + 1). Consequently, future state values must be known as well. These components 

of the derivation are a common challenge in optimal control where solutions require 

unknown values. In terms of the multiple shooting method, the unknown values of the 
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future state are guessed/solved for by including them as variables to find, min
𝐹𝑇,�̅�

(∗), and 

appending both desired variables to the constraints. For example, given a linear system 

with the equality constraints at a single step 

 

�̅�(𝑡𝜖 + 1) = �̅��̅�(𝑡𝜖) + �̅��̅�(𝑡𝜖) 

�̅�(𝑡0) = �̅�(0̅) 
(2.93) 

rearranged as 

 

�̅��̅�(𝑡𝜖) + �̅��̅�(𝑡𝜖) − �̅�(𝑡𝜖 + 1) = 0̅ 

−�̅�(𝑡0) = −�̅�(0̅) 
(2.94) 

the appended system of equations, for every step in the simulation, would have the form 

 

[
 
 
 
 
 
−𝐼 ̅ 0̅ ⋯ ⋯ ⋯ 0̅ 0̅ ⋯ ⋯ ⋯ 0̅
�̅� −𝐼 ̅ 0̅ ⋯ ⋯ ⋮ �̅� 0̅ ⋯ ⋯ ⋮
0̅ �̅� −𝐼 ̅ 0̅ ⋯ ⋮ 0̅ �̅� 0̅ ⋯ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0̅ ⋮ ⋱ ⋱ ⋱ 0̅
0̅ ⋯ ⋯ 0̅ �̅� −𝐼 ̅ 0̅ ⋯ ⋯ 0̅ �̅�]

 
 
 
 
 

[
 
 
 
 
 
�̅�(𝑡0)
⋮

�̅�(tsim)

�̅�(𝑡0)
⋮

�̅�(tsim−1)]
 
 
 
 
 

=

[
 
 
 
 
 
−�̅�(0̅)

0̅
⋮
⋮
⋮
0̅ ]

 
 
 
 
 

 

(2.95) 

where 𝐼 ̅is an identity matrix. From there, the system of equations is solved to find both 

future state and future control values. Note that these future state values are actually 

guidance values; i.e., a separate algorithm is not needed to determine guidance. After 

determining future state values, �̅�⏞
𝑇

(𝑡𝜖 + 1) values can be determined and then the 

numerical value of the system gradient can be determined. 

Much like the propagation method used in the navigation portion of the 

simulation, the appropriate amount of control inputs for the next time step are generally 
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chosen by taking the current control and adding on the gradient times a step size. The 

cost function is then evaluated with the next step’s inputs and states to see if the cost 

function has reached a local minimum. Note, that, unlike the navigation’s time step, the 

step sized is not constant. Constant step sizes have tendencies to “step over” the 

minimum multi-dimensional cost solution. As such, approaches such as line search, 

diminishing step size, Armijo step size, and optimal step size are used to adjust the step 

size as the algorithm converges onto a local cost minimum. The entire process of (1) 

finding a gradient, (2) finding an appropriate step size, (3) propagating the control, and 

(4) determining if a local minimum cost has been reached (indicating no change in 

control input is needed) is iterated till the end of the simulation. 

This subsection has just discussed the logic behind this document’s optimal 

control law. In short, this control law has simple, yet desirable features. After converting 

a given problem into an equation format composed of the minimization operator, cost, 

and constraints, a gradient can be found. This gradient can then be used to propagate 

control inputs forward in time to minimize desired secondary system objectives. With 

this logic in mind, this document now progresses on to explaining the details of this 

specific simulation. 

2.2.2 Guidance and Control Model and Code Package 

 This subsection will first detail the components of this documents GC law’s 

equation format, then IPOPT and CasADi package implementation will be explained. 

The overall problem for this document is to investigate if certain variables in the 

mission reduce navigation errors. For the GC law, the problem is more specifically 

investigating control inputs that might reduce navigation errors. Furthermore, as a 
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multiple shooting method, finding state values is also needed. Hence, the minimization 

operator is set up as min
�̅�,�̅�

(𝐽(�̅�, �̅�)). Skipping over the rest of the cost for now, the 

constraints consist of initial conditions, state dynamics, and limitations of the control 

inputs. Although the same initial conditions from the navigation law are used, the GC law 

is set up with a different assumption of states and dynamics. The set-up mimics the truth 

model but has a reduction in terms: 

 �̌̅� =

[
 
 
 
 
 
�̌�𝑛
�̌�𝑒
�̌�
𝑣
�̌�
�̌� ]
 
 
 
 
 

 (2.96) 

 �̇̌̅� = 𝑓̅̌ (�̌̅�, �̂̅�, �̌̅�) =

[
 
 
 
 
 
 �̇̌�𝑛
�̇̌�𝑒
�̇̌�
�̇�

�̇̌�

�̇̌� ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
�̌� cos(�̌�) − 𝑣 sin(�̌�)

�̌� sin(�̌�) + 𝑣 cos(�̌�)

�̌� 𝑣 −
�̂�𝐷𝑜  �̂� �̌�𝑎

2 �̂�

2�̂�
+
�̌�𝑇
�̂�

−�̌� �̌� +
Ξ̌1 �̂� �̌�𝑎

2 �̂�

2�̂�

�̌�

Ξ̌2 �̂� �̌�𝑎
2 �̂� �̂�

2 ]
 
 
 
 
 
 
 
 
 
 
 

  (2.97) 

where 

 

[
 
 
 
 
 
 
Ξ̌1
Ξ̌2
�̌�

�̌�𝑎
�̌�𝑟
𝑣𝑟 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 �̂�𝑌0 + �̂�𝑌𝛽  �̌� +

�̂�𝑌𝑟  �̂� �̌�

2 �̌�𝑎
+ �̂�𝑌

𝛿⏞𝑟
𝛿⏞̌𝑟

�̂�𝑟0 + �̂�𝑟𝛽  �̌� +
�̂�𝑟𝑟  �̂� �̌�

2 �̌�𝑎
+ �̂�𝑟

𝛿⏞𝑟
𝛿⏞̌𝑟

sin−1 (
𝑣𝑟

�̌�𝑎
)

√�̌�𝑟2 + 𝑣𝑟2

�̌� − �̂�𝑤𝑔
𝑣 − 𝑣𝑤𝑔 ]

 
 
 
 
 
 
 
 
 
 

 (2.98) 
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 �̌̅� = [
�̌�𝑇

𝛿⏞̌𝑟
] (2.99) 

The same position, velocity, attitude, and attitude rate states from the truth 

model are used in Equation (2.96) and Equation (2.97). Biases are not used as their 

purpose was in accounting for continuous sensor errors—The control law relies on 

navigation to take out sensor errors. Landmarks are not used as the method for 

minimizing errors. In terms of control, error minimization is investigated through the cost 

function, not through a propagation or update equation. Unlike the navigation design 

model, Jacobians will be made using only this GC model as there is a need to obtain the 

Jacobian in terms of control inputs of Equation (2.99). Check overmarks are used to 

identify GC model variables. Hat overmarks remain on navigation values that the GC law 

uses consistently. Nevertheless, it is true that the GC law at given times will substitute in 

navigation equivalent values for defining the current state and many guessed solution 

values in its numerical initialization. Note again that these equations do not show the 

explicit dependencies on time in the right-hand-side of these equations for visual clarity 

purposes. Also, the above equations are continuous time definitions. Discretization is 

handled by the toolboxes and libraries. 

 
|𝛿⏞̌𝑟 (𝑡𝜖)| ≤  90° 

0 𝑁 ≤ �̌�𝑇(𝑡𝜖) ≤ 13.5 𝑁 

(2.100) 
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[
 
 
 
 
 
 
 
 
−2500 𝑁𝑜𝑟𝑡ℎ
−2500 𝐸𝑎𝑠𝑡

16
𝑚

𝑠

−6
𝑚

𝑠
−25 𝑟𝑎𝑑

−0.5
𝑟𝑎𝑑

𝑠 ]
 
 
 
 
 
 
 
 

≤

[
 
 
 
 
 
 
�̌�𝑛(𝑡𝜖)

�̌�𝑒(𝑡𝜖)

�̌�(𝑡𝜖)

𝑣(𝑡𝜖)

�̌�(𝑡𝜖)

�̌�(𝑡𝜖) ]
 
 
 
 
 
 

≤

[
 
 
 
 
 
 
 
 
2500 𝑁𝑜𝑟𝑡ℎ
2500 𝐸𝑎𝑠𝑡

25
𝑚

𝑠

6
𝑚

𝑠
25 𝑟𝑎𝑑

0.5
𝑟𝑎𝑑

𝑠 ]
 
 
 
 
 
 
 
 

 

|�̌̅�(𝑡𝜖) − �̌̅�(𝑡𝜖−1)| ≤ [
0.8 𝑁

0.05 𝑟𝑎𝑑
] 

In terms of discrete control and state limitations, rudder has the same limitations 

as the prior example. Thrust is restrained from null to 13.5 N (Assuming the aircraft’s 

cruise speed is approximately 1/10th the aircraft’s weight [33]. Future work can examine 

simulations having maximum thrust conditions, which range at approximately 1/2 to 1/4th 

the aircraft’s weight [34]). Vehicle forward velocity is assumed to remain between 16 m/s 

and 25 m/s (35 mph and 56 mph) [31]. Although not necessary, limits (based on the 

results from the 2.1 Kalman Filter Development section) were placed on position, lateral 

velocity, heading and heading rate to assist the IPOPT/CasADi solver in yielding quicker 

solutions. Furthermore, restrictions were placed on the control rate of change based on 

approximations from [35] and [36]. Using rate-of-change constraints (rate limit profiler) 

was used rather than a PID control approach, where control dynamics are implemented in 

the UAV’s GC dynamics, because the PID approach requires guidance values to solve the 

generated Laplace transform—guidance values are only available after the appended 

system of equations are solved; i.e., the PID approach requires values that have yet to be 

solved for. There is a last potential constraint for future work. This constraint is 

maintaining UAV-landmark proximities. Implementation might use [37] as a reference, 

which approaches the problem by keeping the probability of trespassing over a UAV-
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landmark proximity below a user-defined percent. Preliminary results suggested that 

alternatively adding this proximity constraint in the cost function with a high gain instead 

may be more computationally feasible.  

 Returning to the cost, various factors must be considered. As a start, waypoint 

following will be used to direct the UAV in and out of a GPSD region. Next, a cost to 

promote circular trajectories that appeared to reduce error in the 2.1.6 Covariance 

Propagation subsection is used. A cost to favor trajectories where the landmark is 

centered inside the camera FOV is used. This helps reduce image distortion and to pursue 

close UAV-landmark proximities. A cost to race the sensor’s quadratic error growth out 

of GPSD is also used. The total cost function is displayed with Equation (2.101). 

 min
�̌̅�,�̌̅�

(

 
 
 
 

𝐽 (�̌̅�, �̌̅�) =

∑

{
 
 

 
 𝐺1√{�̌�𝑛(𝑡𝜖) − �̌�𝑛𝑑(𝑡𝜖)}

2 + {�̌�𝑒(𝑡𝜖) − �̌�𝑒𝑑(𝑡𝜖)}2

+𝐺2√{𝑣𝑑(𝑡𝜖)2 − 𝑣(𝑡𝜖)2}2

+𝐺3√𝛾(𝑡𝜖)2

+𝐺4√{�̌�(𝑡𝜖) − �̌�𝑑(𝑡𝜖)}2 }
 
 

 
 

𝑡0+2Δ𝑡𝑘

𝑡0

)

 
 
 
 

 (2.101) 

In this equation, the minimization operator, min
�̌̅�,�̌̅�

(), is tailored to the multiple-

shooting method’s minimization of both state, �̌̅�, and control, �̌̅�. The cost function, 𝐽, is 

expanded as a summation of the cost terms from the time the control law starts, 𝑡0, to a 

desired future time, in this case two discrete time periods, 𝑡0 + 2Δ𝑡𝑘 (incrementally 

solving the GC law over small time horizons is similar to approaches used in Model 

Predictive Control (MPC)). Each cost term is associated with a 𝐺∗ gain/weight multiplier. 

𝐺1 is associated with waypoint following, which aims to minimize the distance between 

the current north and east desired waypoint location, [�̌�𝑛𝑑 , �̌�𝑒𝑑], and the UAV’s current 

location, [�̌�𝑛, �̌�𝑒]. 𝐺2 uses a near-equivalent statement of minimizing the difference 
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between the desired lateral velocity input, 𝑣𝑑, and current lateral velocity inputs, 𝑣. 𝐺3 

uses a near-equivalent statement of minimizing, 𝛾, which is the angle between the 

camera's bore axis, 𝑐𝑖, and a vector, [Λ𝑖, Λ𝑗], that points from the UAV to a landmark, Λ, 

as was shown in Figure 2.2. Finally, 𝐺4 is adjoined with the difference between the 

UAV’s forward speed, �̌�, and a desired forward speed, �̌�𝑑. During the gain tuning 

process, Equation 3.1 will be adjusted for cost gain tuning. 

 In more detail, Equation (2.101) did not require a 𝜙(�̅�(𝑡𝑠𝑖𝑚)) term. The costs 

include a square root with quadratic squaring. Using a magnitude format provided better 

result compared with quadratic squaring only. 𝑣𝑑(𝑡𝜖) is set to a constant max velocity. 

No 𝛾𝑑 was required since 𝛾𝑑 = 0. 𝛾 is calculated as 

 𝛾(𝜖) = 𝑎𝑡𝑎𝑛2(
Λ̌𝑗(𝜖)

Λ̌𝑖(𝜖)
) (2.102) 

for the currently desired landmark. Note that for the IPOPT/CasADi solver to properly 

minimize the cost via partial derivatives, variables must be expressed int terms of the 

states—meaning that the 𝑖 and 𝑗 landmark position values must be expanded as they were 

in Equation (2.11) through Equation (2.13). Forward speed ranged its desired speed from 

stall speed to max speed. Though waypoint following naturally encourages higher speeds, 

lower speeds also need to be induced for comparison purposes in this study. Note, lateral 

velocity gain is used for the circular trajectory cost due to high lateral velocity occurring 

at high curvature. Furthermore, high heading rate, high rudder input, and curvature are 

not used instead of high lateral velocity because one can achieve high heading rates and 

high rudder inputs on a straightened trajectory when the rudder is constantly switching 

from -90° to 90°; and curvature, denoted as 
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 �̌� =
�̌�

√�̌�2 + 𝑣2
 (2.103) 

has conflicting terms when maximizing. Again, in future work, a gain 𝐺5 could be placed 

with a UAV-landmark proximity cost. 

 Up to this point, subsection 2.2.2 has described the GC model of state, 

dynamics, constraints, and cost function. Defining a separate “truth” GC model and 

“navigation” GC model was deemed unnecessary, especially since control noise was not 

added to the system and is left for future work. From here, the GC model is implemented 

into the GC law toolboxes and libraries: IPOPT and CasADi. 

 IPOPT is a popular, readily available toolbox for solving large optimization 

problems [38]. The solver uses the interior point line search to find the local minima of 

the problem. For user-defined properties, the author kept all defaults, including the free 

MUMPS sparce symmetric indefinite linear solver, except for the number of max 

iterations, which was set to 40 to reduce computation time. The CasADi library [39] is an 

interface to IPOPT. CasADi uses a symbolic approach to provide a more user-friendly 

environment in defining the problem and its Jacobians before sending the problem to 

IPOPT for solving. The author mimicked the CasADi example pack 

direct_multiple_shooting.m to implement the direct multiple shooting GC law, including 

line 117-120’s state continuity equality constraint. “relax_bounds” was selected as the 

“fixed_variable_treatment.” With the max iteration and “relax_bounds” settings, GC 

solutions may not be completely minimized, and constraint limits may not be completely 

obeyed. Nevertheless, the convergence to minimization and exceeding dynamics by small 

margins appeared close enough for all intents and purposes. 
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 After implementing the model into the toolbox and library, the toolbox and 

library are implemented into the simulation. To do this, the author first collects the 

conditions and parameters for the GC law, calculates two simulation seconds of GC, and 

then repeats the simulation iterations of state propagation, Kalman update, and GC 

calculations. 

In more detail, the author first collects info on whether the waypoint objective 

has changed or if a Kalman update has occurred. Both conditions signal that the GC law 

needs to be reevaluated. When reevaluated, the GC law uses the current navigation values 

to formulate a GC solution for the next 2 s of the simulation. 2 s was chosen primarily for 

reduced computation time; however, 2 s also proves advantageous in balancing both local 

and global path planning. 2 s is local enough to accommodate mission changes, e.g., 

waypoints, yet global enough to provide more refined control law solutions. To explain 

“refined,” recall that optimal control problems yield “better” solutions when the problem 

is reevaluated using the first solution as numerical guess inputs for the second evaluation 

[32]. With that knowledge, given that the control law will update at least once per second 

in the simulation, the author used the remaining portion of each prior 2 s solution as 

numerical guess input for the first portion of the next 2 s solution. Furthermore, all 

numerical guess inputs for the second portion of the next 2 s solution were defaulted to 

equal the last values of the first 2 s solution. Figure 2.62 provides a visual of this 

description. 
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Figure 2.62. Visual of GC law reevaluation. 

 

Again, having a 2 s GC solution provided an advantage where a global-like solution 

could be used for refined results in future 2 s solutions. 

2.2.3 Guidance and Control Validations 

With the minimization function and toolboxes/libraries for the GC law 

described, this document now moves forward in producing a validation simulation to 

confirm that portions of the GC law have been implemented correctly. Additionally, this 

simulation will provide an outline for how the future sensitivity studies will be set up. 

 For this validation and future sensitivity studies, the simulation is run with the 

same initial conditions, noise, and commercial sensor package from the 2.1.7 Estimation 

Capability subsection (though using the same truth-state and using �̆̅��̆̅�(�̅�
−(𝑡𝑘)), not 

�̆̅��̆̅�(�̂̅�
−(𝑡𝑘)), for each Monte Carlo is no longer applied). A 200 Monte Carlo simulation 

is generated for the validation to ensure that low-error dispersions do not break-down the 

GC law. Using pre-planned waypoints (implementation for real-time waypoint planning 

is left to future work), the UAV is to first perform two hard rudder maneuvers, to exercise 
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the dynamics, which encourages observability, before entering a GPSD zone. For a given 

study, landmarks may be scattered on the flight plane to provide navigation aid to the 

UAV after entering GPSD. Upon reaching the other side of the GPSD zone, the UAV is 

then instructed to return back through GPS denial to a final destination point. The 

simulation ends at 100 s or when the waypoint algorithm declares that the UAV 

sufficiently reached the final destination. Table 2.8 provides the specific GPSD region 

and waypoint locations. 

 

Table 2.8. Waypoint and GPSD locations. 

 North Min 

Edge 

North Max 

Edge 

East Min 

Edge 

East Max 

Edge 

Units 

GPSD Region -400 400 835 235 m 

      

 North East   Units 

Waypoint 1 (Start) 400 0   m 

Waypoint 2 239 123   m 

Waypoint 3 131 230   m 

Waypoint 4 131 918   m 

Waypoint 5 -83 918   m 

Waypoint 6 -83 230   m 

Waypoint 7 -83 -3000   m 

 

 With these mission specifications, GPSD and added landmarks will not be used 

for this subsection’s validation (nevertheless, preliminary results indicated that, given 

waypoint following in a landmark-void, GPSD field, most commercial-sensor Monte 

Carlos are able to complete the waypoint mission. Mission failure is due navigation errors 

growing too large for the control law to accommodate—an issue that is resolved with 

camera updates). A seventh waypoint is included to aid the selected waypoint algorithm, 

which is similar to the filleted waypoint approach described in [13] with the added 

stipulation that the UAV must be withing 100 m of the current waypoint before pursuing 
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the next waypoint. Only the waypoint following cost (𝐺1 = 1.7e-2, 𝐺2 = 𝐺3 = 𝐺4 = 0) 

will be activated in this validation and the navigation study. Cost evaluation is left to the 

GC study. 

 The selected plots below are the GC validation results for a single, commercial 

sensor Monte Carlo and the trajectory for 200 Monte Carlos: 

 

 
Figure 2.63. GC validation UAV north and east coordinates. 

 

Figure 2.63 Presents the waypoint following trajectory. For the single Monte 

Carlo, a truth, guidance, and navigation trajectory are plotted. All trajectory types 

essentially have insignificant divergence from each other. When in the presence of 

GPSD, truth will significantly diverge from the guidance and navigation trajectory. 

Guidance does not significantly diverge from navigation since this GC law does not 

incorporate noise into the control output. For the 200 Monte Carlo plot, navigation 

plotting is removed for clarity. 

Given full access to GPS, waypoint following for this GC law can overshoot and 

‘cut corners’ as seen in the 200 Monte Carlo. The IPOPT settings, 2 s GC time horizon 
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window, dispersions, and the filleted waypoint following all contribute to overshooting 

and cutting corners. Given the few cases of extreme overshooting and corner cutting, 

trajectory performance of the GC law is deemed acceptable. 

 
Figure 2.64. GC validation position over time. 
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Figure 2.65. GC validation Body and N-E frame velocity over time. 
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Figure 2.66. GC validation attitude and attitude rate over time. 

 

Figure 2.64 through Figure 2.66 presents the UAV’s states as a function of time. 

Given the scaling, there is a little more visibility in the differences between the control 

state and the truth state. In particular, control is more erratic in 𝜓 and 𝑣. Nevertheless, the 

differences are not erratic enough to suggest incorrect dynamic implementation. Position, 

velocity, heading, and heading rate control constraints are obeyed. This does not, 

however, guarantee that the truth state or control state will always obey these constraints. 

At constraint boundaries, 𝑢 for example, the truth states can be found to exceed the 

boundaries. With relaxed boundary conditions, the control state can also exceed in future 

simulations; but again, neither exceed significantly enough to be of concern. 
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Figure 2.67. GC validation thrust and rudder input. 

 

Figure 2.67 shows the control inputs for a single trajectory. Control bounds were 

upheld, and the author found that control rates of change were also upheld to the 8th 

decimal place, which are negligible discrepancies. 

The results presented in this subsection helped to validate the implemented GC 

law. The GC waypoint costs was recognized, and GC model dynamics and constraints 

were adhered to. Recognition of potential error-reducing costs is left for the second 
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simulation study. From here, this document now transitions to describe and execute the 

first and second simulation study. 
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CHAPTER 3  

SIMULATION RESULTS 

 Up to this point, GNC background and development have been given. The 

purpose of this chapter is to list and describe the types of simulations that will be 

conducted for the navigation sensitivity analysis and the GC sensitivity analysis. First, 

specifications specifically used for the navigation sensitivity study and GC study are 

given (3.1). Following are sections that give specifications unique to the Navigation (3.2) 

and GC (3.3) study as well as their results and author interpretation. 

3.1 Sensitivity Analyses Specifications 

 This section discusses the studies’ specifications. Both studies use the same 

setup as the control law section with the exception that GPSD, landmarks, and other 

control gains can be activated. One Monte Carlo is generated for each study test case, 

instead of 200, with the assumption that the one Monte Carlo’s 3𝜎 statistics is sufficient 

to represent the dispersion outcomes of the other 200 Monte Carlos. To compare test 

cases with each other, all test cases will retain their root-sum-squared 3𝜎 position 

statistics (derived from the IEKF’s covariance) at each GPSD 𝑡𝜖 time step, 

‖3𝜎(𝑝(𝑡𝐺𝑃𝑆𝐷))‖, i.e. 3 √𝑡𝑟 (𝑃𝑝(𝑡𝐺𝑃𝑆𝐷)) using the trace 𝑡𝑟() operator. To gain a holistic 

visual interpretation of all test cases, test cases are grouped into categories of sensor 

grade, landmark uncertainty, gain values, etc. Using the mean, 𝜇 (3 √𝑡𝑟 (𝑃𝑝(𝑡𝐺𝑃𝑆𝐷))), 

for each category, line plots are generated for comparison. For clarity, example 

trajectories associated with categories are displayed after the applicable plots (Moving 
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left to right on the plot is respectively associated with trajectories top left, top right, and 

bottom). 

Continuing with listing study specifications, position root-sum-squared 3𝜎 vs 

time plots, are shown for each category’s low, medium, and high test cases. Shaded 

regions within the 3𝜎 vs time plots to represent times during GPSD are not provided to 

reduce the image clutter of each trajectory’s GPSD regions. To limit the study to 

landmark observations only in GPSD cases, camera observations are not allowed till after 

the UAV enters GPS denial. To help prevent scenarios where certain landmarks receive 

“unfair” amounts of camera observations, the author opened up the FOV to 160° to allow 

camera update availability throughout GPSD (consequently, Equation (2.82) updates to 

�̂�𝑐 = 2.4 mrad 1𝜎). Future work can analyze similar statistics for velocity and attitude 

states. 

3.2 Navigation Sensitivity Study 

 In this section, the study aims to compare how 𝜇3𝜎𝑝 is affected with respect to 

variations in IMU sensor grade, landmark uncertainty, number of landmark observations, 

measurement geometry, and number of landmarks. For clarity, measurement geometry 

considers variations in 𝛾, which influences the 𝐻 matrix’s direction of information. Each 

of the upcoming tables describe the test cases used for each variation. The tables provide 

columns indicating sensor quality, true landmark position, 3𝜎 landmark uncertainty prior 

to the mission’s start, and the number of seconds allowed before a camera Kalman 

update. In all these tests, only the waypoint gain is activated (𝐺1 = 1.7e-2, 𝐺2 = 𝐺3 =

𝐺4 = 0) to limit the effect GC has on error outcomes. 70 total test cases are conducted as 

outlined in Table 3.1 through Table 3.5: 
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Table 3.1. Navigation study IMU sensor grade. 
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1 Commercial 331 835 0.5 -284 235 0.5 1 

2 Tactical 331 835 0.5 -284 235 0.5 1 

3 Navigation 331 835 0.5 -284 235 0.5 1 

 

Table 3.2. Navigation study landmark uncertainty. 
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4 Tactical 331 835 0.1 -284 235 0.1 1 

5 Tactical 331 835 0.9 -284 235 0.9 1 

6 Tactical 331 835 1.7 -284 235 1.7 1 

7 Tactical 331 835 2.5 -284 235 2.5 1 

8 Tactical 331 835 3.2 -284 235 3.2 1 

9 Tactical 331 835 4.0 -284 235 4.0 1 

10 Tactical 331 835 4.8 -284 235 4.8 1 

11 Tactical 331 835 5.6 -284 235 5.6 1 

12 Tactical 331 835 6.4 -284 235 6.4 1 

13 Tactical 331 835 7.2 -284 235 7.2 1 

14 Tactical 331 835 7.9 -284 235 7.9 1 

15 Tactical 331 835 8.7 -284 235 8.7 1 

16 Tactical 331 835 9.5 -284 235 9.5 1 

17 Tactical 331 835 10.3 -284 235 10.3 1 

18 Tactical 331 835 11.1 -284 235 11.1 1 

19 Tactical 331 835 11.9 -284 235 11.9 1 

20 Tactical 331 835 12.6 -284 235 12.6 1 

21 Tactical 331 835 13.4 -284 235 13.4 1 

22 Tactical 331 835 14.2 -284 235 14.2 1 

23 Tactical 331 835 15.0 -284 235 15.0 1 

 



155 

 

Table 3.3. Navigation study number of landmark observations. 
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24 Tactical 331 835 0.5 -284 235 0.5 0.1 

25 Tactical 331 835 0.5 -284 235 0.5 0.25 

26 Tactical 331 835 0.5 -284 235 0.5 0.5 

27 Tactical 331 835 0.5 -284 235 0.5 1 

28 Tactical 331 835 0.5 -284 235 0.5 2 

29 Tactical 331 835 0.5 -284 235 0.5 3 

30 Tactical 331 835 0.5 -284 235 0.5 4 

31 Tactical 331 835 0.5 -284 235 0.5 5 

32 Tactical 331 835 0.5 -284 235 0.5 6 

33 Tactical 331 835 0.5 -284 235 0.5 7 

34 Tactical 331 835 0.5 -284 235 0.5 8 

35 Tactical 331 835 0.5 -284 235 0.5 9 

36 Tactical 331 835 0.5 -284 235 0.5 10 

37 Tactical 331 835 0.5 -284 235 0.5 11 

38 Tactical 331 835 0.5 -284 235 0.5 12 

39 Tactical 331 835 0.5 -284 235 0.5 13 

40 Tactical 331 835 0.5 -284 235 0.5 14 

41 Tactical 331 835 0.5 -284 235 0.5 15 

42 Tactical 331 835 0.5 -284 235 0.5 16 

43 Tactical 331 835 0.5 -284 235 0.5 17 

44 Tactical 331 835 0.5 -284 235 0.5 18 

45 Tactical 331 835 0.5 -284 235 0.5 19 

46 Tactical 331 835 0.5 -284 235 0.5 20 
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Table 3.4. Navigation study measurement geometry. 
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47 Tactical 131 835 0.5 -84 235 0.5 1 

48 Tactical 158 835 0.5 -110 235 0.5 1 

49 Tactical 184 835 0.5 -136 235 0.5 1 

50 Tactical 210 835 0.5 -163 235 0.5 1 

51 Tactical 237 835 0.5 -189 235 0.5 1 

52 Tactical 263 835 0.5 -215 235 0.5 1 

53 Tactical 289 835 0.5 -242 235 0.5 1 

54 Tactical 315 835 0.5 -268 235 0.5 1 

55 Tactical 342 835 0.5 -294 235 0.5 1 

56 Tactical 368 835 0.5 -321 235 0.5 1 

57 Tactical 394 835 0.5 -347 235 0.5 1 

58 Tactical 421 835 0.5 -373 235 0.5 1 

59 Tactical 447 835 0.5 -400 235 0.5 1 

60 Tactical 473 835 0.5 -426 235 0.5 1 

61 Tactical 500 835 0.5 -452 235 0.5 1 

62 Tactical 526 835 0.5 -478 235 0.5 1 

63 Tactical 552 835 0.5 -505 235 0.5 1 

64 Tactical 579 835 0.5 -531 235 0.5 1 

65 Tactical 605 835 0.5 -557 235 0.5 1 

66 Tactical 631 835 0.5 -584 235 0.5 1 
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Table 3.5. Navigation study number of landmarks. 
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67 Tactical 
331 835 0.5 

1 
-284 235 0.5 

68 Tactical 

331 702 0.5 

1 
331 835 0.5 

-284 368 0.5 

-284 235 0.5 

69 Tactical 

331 568 0.5 

1 

331 702 0.5 

331 835 0.5 

-284 502 0.5 

-284 368 0.5 

-284 235 0.5 

70 Tactical 

331 435 0.5 

1 

331 568 0.5 

331 702 0.5 

331 835 0.5 

-284 635 0.5 

-284 502 0.5 

-284 368 0.5 

-284 235 0.5 

70 Tactical 

331 302 0.5 

1 

331 435 0.5 

331 568 0.5 

331 702 0.5 

331 835 0.5 

-284 768 0.5 

-284 635 0.5 

-284 502 0.5 

-284 368 0.5 

-284 235 0.5 

 

In more detail, three grades of simulations are used to understand sensor quality. 

Simulation 2 is used as the nominal case for all other test cases. To understand initial 

landmark uncertainty, the nominal was altered by varying both landmarks’ uncertainties 

from 0.1 m to 15 m. The smaller 0.5 m landmark uncertainty is used as the nominal to 
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ensure that the camera measurements always retain an active role in GPSD (i.e., the filter 

will not need to wait for UAV’s errors to grow, for example, past 10 m before a 10 m 

initial uncertainty landmark’s measurement can be significantly useful). For number of 

landmark observations, the Δ𝑡𝑘 column was varied. What this did was alter the number of 

seconds before a camera Kalman update. GPS and magnetometer measurement were still 

allowed to update every 1 s (note the GC law did consequently update after each camera 

observation, so more computation was needed for the 0.1 to 0.5 tests). To study 

measurement geometry, landmark north position was altered. In future plots, the position 

will be described in terms of absolute north distance 𝐷 from the nearest waypoint 

(waypoint 4 for Λ1 and waypoint 6 for Λ2). To study how the number of landmarks 

affects position errors there was difficulty since deriving navigation matrices to hold 10 

landmarks is cumbersome. To compensate, the author generated a one-landmark 

simulation. This one landmark would be initialized as the closest landmark to the UAV 

(with respect to east position). After passing the camera’s FOV, this landmark’s position 

and covariance statistics would be stored then replaced by the next closest landmark’s 

statistics. Upon revisiting a landmark, the stored position and variance elements would be 

placed back into the UAV state and covariance (off diagonals set to zero).  
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3.2.1 Navigation Sensitivity Results 

 

 
Figure 3.1. Navigation study IMU sensor grade. 

 

 Figure 3.1 displays the effects that IMU sensor grade has on the mission. The 

trend is that mean error decreases with improved sensor grade. With camera observations 
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every second, commercial sensors achieve errors below 10 m. Navigation sensors can 

achieve errors just above GPS-measurement errors of 1 m. In the estimation error plot, 

extreme Kalman updates are reduced with improved sensor grade. Furthermore, the 

commercial grade sensor appears to exit GPS denial slightly faster than the other sensor 

grades. For future reference, the tactical grade simulation, the nominal simulation, 

achieved a mean error of 2.25 m.  
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Figure 3.2. Navigation study initial landmark uncertainty. 

 

Figure 3.2 depicts the change of mean error with initial landmark uncertainty. 

With increasing landmark error comes increasing position error. This positive correlation 

appears either linear or logarithmic. The nominal in this figure occurred at 0.5 m. 
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Figure 3.3. Navigation study number of landmark observations. 

 

Figure 3.3 also shows a positive correlation between camera Δ𝑡𝑘 and position 

mean error. The correlation is less smooth but has a more a defined logarithmic shape. A 

steeper change in position errors occurs with camera updates below the 1 s nominal. 
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Figure 3.4. Navigation study measurement geometry. 
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Figure 3.5. Navigation study measurement geometry trajectories. 
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Figure 3.6. Navigation study measurement geometry with 𝑝𝑛 and 𝑝𝑒 components. 

 

For measurement geometry, although the y-axis range is small, a convex 

relationship was found between position error and landmark north distance. Distances 

within 𝐷 = 100 𝑚 and 𝐷 = 250 (between the first and second trajectories in Figure 3.5) 

yielded errors slightly less than the nominal. To investigate the relationship, Figure 3.6 

was made. This figure replots Figure 3.4 (blue) but also plots the mean 3𝜎 position error 

for 𝑝𝑛 (red) and 𝑝𝑒 (orange) individually. 𝑝𝑛 shows a positive correlation with 𝐷, 

whereas 𝑝𝑒 shows a negative correlation with 𝐷. 
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Figure 3.7. Navigation study number of landmarks. 
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Figure 3.8. Navigation study number of landmarks trajectories. 

 

The additional landmarks in Figure 3.8 varied the nominal’s east position. The 

mean error range between 2 and 10 landmarks from Figure 3.7 is less than 1 m. 

Nevertheless, more landmarks always produced less position error than the nominal. 

3.2.2 Navigation Sensitivity Interpretation 

 With the given statistics, IMU sensor grade appears to have the most drastic 

effect on navigation errors. Sensor grade variations produced a range that held both the 

largest and smallest errors than any other studied variation. Landmark observations have 
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the second highest effect since landmark observations have the second highest error 

range. However, this larger range is only possible if camera processing speeds are faster 

than 1 s. Achieving such speeds could become the costliest and most time-consuming 

objective for real-world implementation. Initial landmark uncertainty seems to have 

limited effect on position errors. Since the Kalman filter’s linearization can only tolerate 

missions having a maximum of 15 m initial landmark uncertainty, this limits the extent to 

which landmark uncertainty can affect UAV position errors. 

 The number of landmarks has a lower effect on position errors than most of the 

other studied variations. However, perhaps the method of replacing the landmarks in and 

out of the current state and covariance limited the full potential of multiple landmarks. In 

this method, the UAV could only observe one landmark per update cycle. Perhaps an 

alternative method would be to perform replacements and updates with every observable 

landmark per update cycle. 

 When considering measurement geometry, the small error range implies that 

measurement geometry has little effect on position errors. Looking at the mean position 

error for 𝑝𝑛 and 𝑝𝑒 individually, there is a tradeoff. For low 𝐷 distances, 𝑝𝑒 error will 

dominate due to the lack of orthogonal information in the 𝐻 matrix. Near 270 m, more of 

𝑝𝑛’s orthogonal information trades off to 𝑝𝑒, and 𝑝𝑛 then becomes the dominant source of 

error. So, since valuable position information is still able to be received at high landmark 

angles, perhaps a larger influence on position errors is not necessarily by measurement 

geometry but by FOV. To explain, in these studies, FOV was enlarged to ensure 

measurement availability throughout GPSD. However, in circumstances where FOV is 

smaller, simulations with larger 𝐷 would incur larger position error, since the UAV 



169 

 

would no longer see the landmark and would lose access to camera updates within the 

field.  

3.3 Guidance and Control Sensitivity Study 

 For the GC study, the nominal simulation setup from the navigation study is 

selected (simulation number 2, 𝐺1 = 1.7e-2, 𝐺2 = 𝐺3 = 𝐺4 = 0). The objective is to 

activate and vary the gains in the GC law to see if any significant reduction in 𝜇3𝜎𝑝, can 

be acquired. The following simulations were run: 
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Table 3.6. GC study gains. 

Simulation 

Number 

Activated 

Gain 

Gain 

Value 

Simulation 

Number 

Activated 

Gain 

Gain 

Value 

Desired 

Speed (
𝑚

𝑠
) 

71 

𝐺2 
 
(𝑣) 

5.1e-04 111 

𝐺4 
 
(𝑢) 

2.8e-02 16.0e+00 
72 1.0e-03 112 2.8e-02 16.5e+00 
73 1.5e-03 113 2.8e-02 16.9e+00 
74 2.1e-03 114 2.8e-02 17.4e+00 
75 2.6e-03 115 2.8e-02 17.9e+00 
76 3.1e-03 116 2.8e-02 18.4e+00 
77 3.6e-03 117 2.8e-02 18.8e+00 

78 4.1e-03 118 2.8e-02 19.3e+00 
79 4.6e-03 119 2.8e-02 19.8e+00 
80 5.1e-03 120 2.8e-02 20.3e+00 
81 5.7e-03 121 2.8e-02 20.7e+00 
82 6.2e-03 122 2.8e-02 21.2e+00 
83 6.7e-03 123 2.8e-02 21.7e+00 
84 7.2e-03 124 2.8e-02 22.2e+00 

85 7.7e-03 125 2.8e-02 22.6e+00 
86 8.2e-03 126 2.8e-02 23.1e+00 
87 8.7e-03 127 2.8e-02 23.6e+00 

88 9.3e-03 128 2.8e-02 24.1e+00 

89 9.8e-03 129 2.8e-02 24.5e+00 

90 1.0e-02 130 2.8e-02 25 e+00 

91 

𝐺3 
 
(𝛾) 

1.2e-02     

92 2.4e-02     

93 3.6e-02     

94 4.8e-02     

95 6.0e-02     

96 7.2e-02     

97 8.4e-02     

98 9.6e-02     

99 1.1e-01     

100 1.2e-01     

101 1.3e-01     

102 1.4e-01     

103 1.6e-01     

104 1.7e-01     

105 1.8e-01     

106 1.9e-01     

107 2.0e-01     

108 2.2e-01     

109 2.3e-01     

110 2.4e-01     
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For every GC study, only one potential-error-reducing cost is activated at a time with the 

constant, nominal waypoint following cost. A relatively low to high gain is applied to the 

potential-error-reducing cost term. The exception to this is the forward velocity, which 

uses a constant gain while the desired speed varied. Future work can perform more 

extensive research of combination gains. 

 Before continuing, an explanation on gain value selection may be desired. In 

short, Bryson’s method [24] with tuning was used. In detail, linear scaling gains so that, 

for example, hard rudder inputs are two times more important than waypoint following 

(𝐺1 = 1, 𝐺2 = 2) will not produce the same scaled trajectory. This is due to the relative 

units of each cost, where much higher gains are needed, for example, for radian costs to 

“compete” with meter costs. Using Bryson’s method alone did not provide the desired 

competitions between costs. To tune, the author kept Bryson’s method for all costs 

(divide by the largest possible numerator value). For waypoint following, the maximum 

value was estimated as the largest distance between 2 consecutive waypoints. After 

applying Bryson’s method, the author activated waypoint following only and gradually 

multiplied more gain until the UAV would make a concise trajectory with limited 

overshoot at waypoints and straightened paths between waypoints. Keeping the waypoint 

gain constant, the other costs were individually activated. Low gains had trajectories that 

favored waypoint following; high gains had trajectories that favored the activated cost. 

For lateral velocity, the gain that induced the highest curved trajectory while still 

successfully completing the waypoint mission was chosen as the max gain. For camera-

landmark angle, the gain that forced the UAV toward the landmark most, where 

additional gain was insignificant in reducing 𝛾, was used as the max gain. For forward 
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velocity, the lowest gain that would allow for the lowest velocity to be achieved was used 

as the constant for all other desired velocities. 

 Admittedly, the trial-and-error iterations of gain tuning were much like PID 

tuning, which was not efficient. Bryson’s method was not necessarily helpful in 

converging to the proper gains. Furthermore, the tuning did not appear to be independent 

of trajectory or simulation time length. Finding a cleaner non-tuning procedure in gain 

selection, perhaps like feedback linearization, is left to future work. 

With the specifications for each study laid out, the document now moves to 

presenting simulation results and interpretation.  
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3.3.1 Guidance and Control Sensitivity Results 

 

 
Figure 3.9. GC study lateral velocity (𝐺1 = 1.7e-2, 𝐺3 = 𝐺4 = 0). 
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Figure 3.10. GC study lateral velocity trajectories. 

 

Using higher lateral velocity gain does induce higher curvature (observability) in 

Figure 3.10. Using higher lateral velocity gains also generated the smallest error for all 

GC simulation test cases in Figure 3.9. However, higher lateral velocity gains had more 

erratic spikes than other costs. For example, 𝐺2 = 7.7𝑒 − 03 yielded one of the smallest 

mean errors, but the prior gain, 𝐺2 = 7.2𝑒 − 03, yielded lateral velocity’s largest mean 

error (rather than yielding a small mean error). 
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Figure 3.11. GC study landmark centering (𝐺1 = 1.7e-2, 𝐺2 = 𝐺4 = 0). 
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Figure 3.12. GC study landmark centering trajectories. 

 

For landmark centering, Figure 3.12 shows that higher 𝐺3 gains can direct the 

UAV toward the landmarks and induce higher levels of landmark centering. In Figure 

3.11, a positive correlation was found between 𝐺3 and position error. None of the 𝐺3 

gains reduced position errors more than the nominal. Reviewing the estimation error plot, 

shorter simulation times are associated with lower gains. 
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Figure 3.13. GC study forward speed (𝐺1 = 1.7e-2, 𝐺2 = 𝐺3 = 0). 
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Figure 3.14. GC study forward speed velocities. 
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 To show the influence of the forward velocity cost, forward velocity plots 

(instead of trajectory plots) for low, medium, and high 𝑢𝑑 are shown from top to bottom 

respectively in Figure 3.14. Spikes in these velocity plots correspond to periods outside 

GPSD, where only the waypoint following gain is activated (again, waypoint following 

naturally encourages higher speeds). Inside GPSD, a lower forward velocity cost is able 

to induce lower speeds A negative correlation is present in Figure 3.13. The presence of 

the forward speed cost did not improve errors below the nominal, waypoint-only cost 

(simulation number 2). 

3.3.2 Guidance and Control Sensitivity Interpretation 

Lateral velocity gain, although minimally, can be used to reduce position errors. 

However, future work will be needed to avoid the erratic spikes that occurred with one of 

the higher gains. One advantage with this gain, referring to Figure 3.9’s estimation error 

plot, is the allowance for more time in GPSD without significantly increasing position 

errors. 

Landmark centering hindered error reduction rather than improved. This 

appeared to be due to the longer time periods in GPSD that came with higher 𝐺3 values. 

Perhaps, similar to the navigation study’s measurement geometry results, a larger 

influence on position errors is not by image distortion, but by FOV. For example, in 

circumstances where FOV is smaller, landmark centering could have larger influence on 

reducing position errors, where obtaining more camera updates could become more 

critical than the time spent in GPSD. 

Though none of the forward speeds made lower position error than the nominal, 

the important item to note is how forward speed affects position uncertainties. The error 
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plot’s linear trend showed how there is no benefit in flying slow in GPSD. For the given 

mission, the straight trajectories through GPSD naturally encouraged waypoint following 

to favor higher speeds. However, for missions that include waypoint turning within 

GPSD, waypoint following would encourage slower speeds to avoid overshooting a 

desired waypoint. Perhaps in those scenarios, having a high forward speed gain would be 

more critical to avoid higher position errors that come with larger times in GPSD. 
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CHAPTER 4  

CONCLUSION 

 Having all GNC background, development, and results completed, this chapter 

will reflect on the developed key points from all prior chapters. 

 For modern military development, UAVs must be able to travel successfully 

through GPSD regions. To help with this objective, this research explored UAV position 

error sensitivities to sensor grade, landmark characteristics, and GC cost function gains. 

From prior research, navigation errors reduce significantly with the use of Filters and 

vision-based measurements; nevertheless, there was lack of quantitative understanding as 

to the amount in which each mission factor played in reducing navigation errors. Two of 

these factors are the UAV’s guidance and the UAV’ control. GC can be as simple as 

waypoint following and carrot chasing or as complicated as the star algorithms and 

nonlinear control. However, despite all the varieties in guidance and control, little 

research has been performed to quantitatively assess how these two factors affect 

navigation errors. 

 In an attempt to quantitatively assess reducing navigation errors, a GNC 

simulation was developed. The simulation included an Aerosonde drone with an IEKF, 

pinhole camera, and a direct multiple shooting method GC law. First, simulation 

development and validation were described to ensure correct implementation. Second, 

two simulation studies were conducted. In the validation simulations, truth, design model, 

and navigation dynamics were defined. Error mappings were determined, and simulation 

propagation was successfully executed. Following propagation validation was the 

extensive development of the IEKF’s key equations (Linear Error State Modeling, Linear 



182 

 

Error Measurement Modeling, Covariance Propagation, and Estimation Capability). 

Explanation, development, and validation of the GC law was also given. The 

extensiveness of this development provided implementation validity for this document’s 

studies. 

 The first study investigated how, using a nominal GC law, position errors are 

affected as a function of IMU sensor grade, landmark uncertainty, number of landmark 

observations, measurement geometry, and number of landmarks. Sensor grade yielded 

the most drastic effect on position errors. Landmark uncertainty’s effect was limited by 

the Kalman filter’s linearization. Number of landmarks had the second highest effect on 

position errors. Measurement geometry has a convex relationship with position, where 

camera measurement information was minimally lost when landmarks were positioned at 

high or low angles relative to the camera’s FOV. Number of landmarks had even less 

effect on position errors, perhaps due to the method of implementation. 

 The second study investigated how position errors are affected as a function of 

GC costs and gains. High gains for a lateral velocity cost can lower position errors, but 

erratic tendencies involved with the high gains need to be resolved first. Higher gains for 

a landmark centering cost do not improve position errors due to extended times in GPSD. 

Forward speed costs influenced position errors, particularly where low speed gains 

induce larger position errors. 

 Suggestions for future work were mentioned throughout this document; 

nevertheless, there is a need for live implementation. Simulation results need to be 

compared with 3D simulations and physical UAV-flights with a real-time control law. 

Physical UAV flights will also identify factors whose influence alters the findings in this 
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document, i.e., camera image processing, and wind effects. After live implementation and 

comparison is achieved, there is a need to expand these studies out to more modern 

mission factors, for example, multiple cameras, collaborative UAV swarms (inter-vehicle 

avoidance), and moving landmarks. It is hoped that this document has provided a 

sufficient baseline for this future work. 

  



184 

 

BIBLIOGRAPHY 

[1] Kendoul, F., 2012, “Survey of Advances in Guidance, Navigation, and Control of 

Unmanned Rotorcraft Systems,” J. Field Robot., 29(2), pp. 315–378. 

[2] Balamurugan, G., Valarmathi, J., and Naidu, V. P. S., 2016, “Survey on UAV 

Navigation in GPS Denied Environments,” 2016 International Conference on 

Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 

198–204. 

[3] Maybeck, P. S., 1979, Stochastic Models, Estimation, And Control, Academic Press, 

New York, New York, United States of America. 

[4] Smith, N. E., Cobb, R., Pierce, S., and Raska, V., 2013, “Optimal Collision 

Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft,” AIAA Guidance, 

Navigation, and Control (GNC) Conference, American Institute of Aeronautics and 

Astronautics, Boston, MA. 

[5] Smith, N. E., Cobb, R., Pierce, S. J., and Raska, V., 2014, “Optimal Collision 

Avoidance Trajectories via Direct Orthogonal Collocation for Unmanned/Remotely 

Piloted Aircraft Sense and Avoid Operations,” AIAA Guidance, Navigation, and 

Control Conference, American Institute of Aeronautics and Astronautics. 

[6] Scaramuzza, D., Achtelik, M. C., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., 

Martinelli, A., Achtelik, M. W., Chli, M., Chatzichristofis, S., Kneip, L., Gurdan, 

D., Heng, L., Lee, G. H., Lynen, S., Pollefeys, M., Renzaglia, A., Siegwart, R., 

Stumpf, J. C., Tanskanen, P., Troiani, C., Weiss, S., and Meier, L., 2014, “Vision-

Controlled Micro Flying Robots: From System Design to Autonomous Navigation 

and Mapping in GPS-Denied Environments,” IEEE Robot. Autom. Mag., 21(3), pp. 



185 

 

26–40. 

[7] Nuske, S. T., Dille, M., Grocholsky, B., and Singh, S., “Representing Substantial 

Heading Uncertainty for Accurate Geolocation by Small UAVs,” AIAA Guidance, 

Navigation, and Control Conference, American Institute of Aeronautics and 

Astronautics, p. 13. 

[8] Perez‐Grau, F. J., Ragel, R., Caballero, F., Viguria, A., and Ollero, A., 2018, “An 

Architecture for Robust UAV Navigation in GPS-Denied Areas,” J. Field Robot., 

35(1), pp. 121–145. 

[9] Babinec, A., and Apeltauer, J., 2016, “On Accuracy of Position Estimation from 

Aerial Imagery Captured by Low-Flying UAVs,” Int. J. Transp. Sci. Technol., 5(3), 

pp. 152–166. 

[10] Madison, R., Andrews, G., DeBitetto, P., Rasmussen, S., and Bottkol, M., “Vision-

Aided Navigation for Small UAVs in GPS-Challenged Environments,” AIAA 

Infotech@Aerospace 2007 Conference and Exhibit, American Institute of 

Aeronautics and Astronautics. 

[11] Saska, M., Baca, T., Thomas, J., Chudoba, J., Preucil, L., Krajnik, T., Faigl, J., 

Loianno, G., and Kumar, V., 2017, “System for Deployment of Groups of 

Unmanned Micro Aerial Vehicles in GPS-Denied Environments Using Onboard 

Visual Relative Localization,” Auton. Robots, 41(4), pp. 919–944. 

[12] Schnaufer, B. A., Hwang, P., Nadke, J., McGraw, G. A., and Venable, D., 2012, 

“Collaborative Image Navigation Simulation and Analysis for UAVs in GPS 

Challenged Conditions,” Proceedings of the 2012 IEEE/ION Position, Location and 

Navigation Symposium, pp. 719–729. 



186 

 

[13] Beard, R. W., and McLain, T. W., 2012, Small Unmanned Aircraft: Theory and 

Practice, Princeton University Press, Princeton, N.J. 

[14] Anderson, E. P., Beard, R. W., and McLain, T. W., 2005, “Real-Time Dynamic 

Trajectory Smoothing for Unmanned Air Vehicles,” IEEE Trans. Control Syst. 

Technol., 13(3), pp. 471–477. 

[15] Davis, J. D., and Chakravorty, S., 2007, “Motion Planning Under Uncertainty: 

Application to an Unmanned Helicopter,” J. Guid. Control Dyn., 30(5), pp. 1268–

1276. 

[16] Mettler, B., Kong, Z., Goerzen, C., and Whalley, M., 2014, “Guidance Performance 

Benchmarking for Autonomous Rotorcraft,” J. Am. Helicopter Soc., 59(4), pp. 1–

16. 

[17] Vanegas, F., and Gonzalez, F., 2016, “Uncertainty Based Online Planning for UAV 

Target Finding in Cluttered and GPS-Denied Environments,” 2016 IEEE Aerospace 

Conference, pp. 1–9. 

[18] Tsenkov, P., Howlett, J., Whalley, M., Schulein, G., Takahashi, M., Rhinehart, M., 

and Mettler, B., 2008, “A System for 3D Autonomous Rotorcraft Navigation in 

Urban Environments,” AIAA Guidance, Navigation and Control Conference and 

Exhibit, American Institute of Aeronautics and Astronautics, Honolulu, Hawaii. 

[19] Sujit, P. B., Saripalli, S., and Sousa, J. B., 2014, “Unmanned Aerial Vehicle Path 

Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial 

Vehicles,” IEEE Control Syst. Mag., 34(1), pp. 42–59. 

[20] Joseph J. DisStefano III, Allen R. Stubberud, and Ivan J. Williams, 2014, Schaum’s 

Outline of Feedback and Control Systems, McGraw-Hill Education, New York, 



187 

 

Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, 

Singapore, Sydney, Toronto. 

[21] Khalil, H. K., 2002, Nonlinear Systems, Prentice Hall, Upper Saddle River, New 

Jersey. 

[22] Kaminer, I., Pascoal, A., Xargay, E., Hovakimyan, N., Cao, C., and Dobrokhodov, 

V., 2010, “Path Following for Small Unmanned Aerial Vehicles Using L1 Adaptive 

Augmentation of Commercial Autopilots,” J. Guid. Control Dyn., 33(2), pp. 550–

564. 

[23] Bryson, A. E., and Ho, Y.-C., 1975, Applied Optimal Control: Optimization, 

Estimation, and Control, Hemisphere Pub. Corp. ; distributed by Halsted Press, 

Washington : New York. 

[24] Joao P. Hespanha, 2018, Linear Systems Theory, Princeton University Press, 

Princeton, N.J. 

[25] Chapra, S. C., and Canale, R. P., 2015, Numerical Methods for Engineers, McGraw-

Hill Education, New York, NY. 

[26] Maybeck, P. S., 1982, Stochastic Models, Estimation, and Control, Academic Press, 

New York, New York, United States of America. 

[27] Kappen, H. J., 2008, “Stochastic Optimal Control Theory,” Radboud Univ. 

Nijmegen Neth., p. 34. 

[28] Maybeck, P. S., 1982, Stochastic Models, Estimation, and Control. Vol. 2: ..., Acad. 

Press, New York. 

[29] Christensen, R. S., and Geller, D., 2014, “Linear Covariance Techniques for Closed-

Loop Guidance Navigation and Control System Design and Analysis,” Proc. Inst. 



188 

 

Mech. Eng. Part G J. Aerosp. Eng., 228(1), pp. 44–65. 

[30] Kasdin, N. J., 1995, “Runge-Kutta Algorithm for the Numerical Integration of 

Stochastic Differential Equations,” J. Guid. Control Dyn., 18(1), pp. 114–120. 

[31] Fathi, M. K., and Malaek, S. M. B., 2019, “Wild Area Aerial Protective Inspector: 

Proposal for 2018-2019 Undergraduate Individual Aircraft Linear Infrastructure 

Inspection UAS.” 

[32] Droge, G., 2020, “Optimal and Robust Control Lecture Notes.” 

[33] Hunsaker, D., 2021, “Re: Max UAV Thrust.” 

[34] Hunsaker, D., 2021, “Comments on Thesis.” 

[35] Fotouhi, A., Ding, M., and Hassan, M., 2017, “Understanding Autonomous Drone 

Maneuverability for Internet of Things Applications,” 2017 IEEE 18th International 

Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 

IEEE, Macau, China, pp. 1–6. 

[36] 2015, “Dec 9th, 2015 04:38PM | Controls / Rudder Response | DJI GO Log 2.4.2 | 

Japan | Airdata UAV (Formerly HealthyDrones.Com).” 

[37] Christensen, R., Droge, G., and Leishman, R., 2021, “A Closed-Loop Linear 

Covariance Framework for Vehicle Path Planning in an Uncertain Obstacle Field,” 

ArXiv210511998 Cs Eess Stat. 

[38] Waechter, A., and Laird, C., “Ipopt Documentation.” 

[39] Andersson, J., Gillis, J., Diehl, M., Horn, G., Rawlings, J. B., and Diel, M., 

“CasADi - A Software Framework for Nonlinear Optimization and Optimal 

Control: User Documentation for CasADi v3.4.4,” p. 74. 

 


	Sensitivity Study for UAV GPS-Denied Navigation in Uncertain Landmark Fields
	Recommended Citation

	tmp.1643145214.pdf.Oc3AP

