
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2021

Sensitivity Study for UAV GPS-Denied Navigation in Uncertain Sensitivity Study for UAV GPS-Denied Navigation in Uncertain

Landmark Fields Landmark Fields

Samantha D. Burton
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Burton, Samantha D., "Sensitivity Study for UAV GPS-Denied Navigation in Uncertain Landmark Fields"
(2021). All Graduate Theses and Dissertations. 8384.
https://digitalcommons.usu.edu/etd/8384

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.usu.edu%2Fetd%2F8384&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8384?utm_source=digitalcommons.usu.edu%2Fetd%2F8384&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

SENSITIVITY STUDY FOR UAV GPS-DENIED NAVIGATION IN UNCERTAIN

LANDMARK FIELDS

by

Samantha D. Burton

A thesis submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Mechanical Engineering

Approved:

______________________ ______________________

Randall Christensen, Ph.D. Douglas Hunsaker, Ph.D.

Major Professor Committee Member

Tianyi He, Ph.D.

Committee Member

D. Richard Cutler, Ph.D.

Interim Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY

Logan, Utah

2021

ii

Copyright © Samantha D. Burton 2021

All Rights Reserved

iii

ABSTRACT

Sensitivity Study for UAV GPS-Denied Navigation in Uncertain Landmark Fields

by

Samantha D. Burton, Master of Science

Utah State University, 2021

Major Professor: Randall Christensen, Ph.D.

Department: Mechanical and Aerospace Engineering

This document provides two 2D simulation sensitivity analyses regarding UAV

navigation errors within a GPS-denied region. The research focuses on a development

and investigation of visual-SLAM in a GPS-denied landmark field, where landmark

locations are known a priori but with an associated uncertainty and where absolute

position information is limited within the trajectory. Furthermore, there is development

and investigation of utilizing multiple-shooting optimal control with visual-SLAM using

potential error-reducing cost parameters. Objectives are to quantitatively understand the

UAV’s sensitivity of position errors to sensor grade and landmark characteristics as well

as sensitivity of position errors to guidance and control cost gains.

(199 pages)

iv

PUBLIC ABSTRACT

Sensitivity Study for UAV GPS-Denied Navigation in Uncertain Landmark Fields

Samantha D. Burton

This document provides two 2D simulation sensitivity analyses regarding a

drone’s flight characteristic (state) errors within a GPS-denied region. The research

focuses on a development and investigation of utilizing a camera to simultaneously

determine a drone’s state while locating landmarks, where there is uncertainty in the

landmarks’ exact positions prior to the mission (SLAM). This SLAM method is

performed in regions with limited access to GPS. Furthermore, there is development and

investigation of controlling the drone in conjunction with SLAM using potential error-

reducing control parameters. Objectives are to quantitatively understand the UAV’s

sensitivity of position errors to sensor grade and landmark characteristics as well as

sensitivity of position errors to tuned control parameters.

v

CONTENTS

Page

ABSTRACT ... iii

PUBLIC ABSTRACT ... iv

CONTENTS .. v

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

INTRODUCTION .. 1

1.1 Literature Review ...2

1.1.1 Navigation ..3

1.1.2 Guidance ...6

1.1.3 Control ..9

DESIGN DEVELOPEMENT ... 13

2.1 Kalman Filter Development ..13

2.1.1 States and Models ...14

2.1.2 Error State Mappings ..27

2.1.3 Propagation Validation ...30

2.1.4 Linear Error State Modeling ...46

2.1.5 Linear Error Measurement Modeling ...53

2.1.6 Covariance Propagation ..61

2.1.7 Estimation Capability ...92

2.2 Guidance and Control Law Development ...130

2.2.1 Guidance and Control Logic ...130

2.2.2 Guidance and Control Model and Code Package136

2.2.3 Guidance and Control Validations ...144

SIMULATION RESULTS ... 152

3.1 Sensitivity Analyses Specifications ..152

3.2 Navigation Sensitivity Study ...153

3.2.1 Navigation Sensitivity Results..159

3.2.2 Navigation Sensitivity Interpretation..167

3.3 Guidance and Control Sensitivity Study ...169

3.3.1 Guidance and Control Sensitivity Results ..173

3.3.2 Guidance and Control Sensitivity Interpretation179

vi

CONCLUSION ... 181

BIBLIOGRAPHY ... 184

vii

LIST OF TABLES

Table Page

Table 2.1: Mapping error validation. .. 29

Table 2.2. Initial conditions. ... 31

Table 2.3. Linear error state validation. .. 52

Table 2.4. Linear error measurement model validation. ... 60

Table 2.5. Null-rudder landmark locations. .. 66

Table 2.6: 1𝜎 values. ... 68

Table 2.7. GPSD region edges. ... 98

Table 2.8. Waypoint and GPSD locations. ... 145

Table 3.1. Navigation study IMU sensor grade. ... 154

Table 3.2. Navigation study landmark uncertainty. .. 154

Table 3.3. Navigation study number of landmark observations. 155

Table 3.4. Navigation study measurement geometry.. 156

Table 3.5. Navigation study number of landmarks. .. 157

Table 3.6. GC study gains. .. 170

viii

LIST OF FIGURES

Figure Page

Figure 2.1. 2D UAV depiction with frames of reference. Adapted from [13]. 14

Figure 2.2. Visualization of line-of-sight vector derivation and 𝛾. Adapted from [13]. .. 21

Figure 2.3. Propagation validation of UAV north and east coordinates. 34

Figure 2.4. Propagation validation of UAV trajectory over time. 35

Figure 2.5. Propagation validation of UAV velocity in Body frame over time. 36

Figure 2.6. Propagation validation in N-E frame over time. .. 36

Figure 2.7. Propagation validation of UAV attitude and attitude rate over time. 37

Figure 2.8. Propagation validation of UAV position error over time. 38

Figure 2.9. Propagation validation of UAV Body frame velocity error over time. 39

Figure 2.10. Propagation validation of UAV North-East frame velocity error over time. 39

Figure 2.11. Propagation validation of UAV heading error over time. 40

Figure 2.12. Propagation validation of UAV accelerometer bias over time. 41

Figure 2.13. Propagation validation of UAV gyroscope bias and camera bias over time. 41

Figure 2.14. Propagation validation of Landmark 1’s position error. 42

Figure 2.15 Propagation validation of Landmark 2’s position error. 42

Figure 2.16. Propagation validation of UAV GPS position residuals over time. 43

Figure 2.17. Propagation validation of UAV magnetometer residuals over time. 44

Figure 2.18. Propagation validation of UAV camera measurement residuals over time. 44

Figure 2.19. Propagation validation of UAV control input. ... 45

Figure 2.20. Covariance propagation validation trajectory. ... 71

Figure 2.21. Covariance propagation validation for 𝑝𝑛.. 73

ix

Figure 2.22. Covariance propagation validation for 𝑝𝑒. ... 75

Figure 2.23. Covariance propagation validation for 𝑢. ... 77

Figure 2.24. Covariance propagation validation for 𝑢𝑛. .. 78

Figure 2.25. Covariance propagation validation for 𝑣. ... 80

Figure 2.26. Covariance propagation validation for 𝑣𝑒. ... 81

Figure 2.27. Covariance propagation validation for 𝜓. .. 83

Figure 2.28. Covariance propagation validation for 𝜓 using navigation sensors. 84

Figure 2.29. Covariance propagation validation for 𝑏𝑎𝑢. .. 85

Figure 2.30. Covariance propagation validation for 𝑏𝑎𝑣. .. 85

Figure 2.31. Covariance propagation validation for 𝑏𝜔. .. 86

Figure 2.32. Covariance propagation validation for 𝑏𝑐. ... 86

Figure 2.33. Covariance propagation validation for Λ1𝑛. .. 87

Figure 2.34. Covariance propagation validation for Λ1𝑒. .. 87

Figure 2.35. Covariance propagation validation for Λ2𝑛. .. 88

Figure 2.36. Covariance propagation validation for Λ2𝑒. .. 88

Figure 2.37. Covariance propagation validation for 𝐹𝑇. .. 90

Figure 2.38. Covariance propagation validation for 𝛿𝑟. ... 91

Figure 2.39. Estimation capability trajectories. .. 98

Figure 2.40. Estimation capability 𝑝𝑛 residual. .. 100

Figure 2.41. Estimation capability 𝑝𝑒𝑡𝑘 residual. .. 101

Figure 2.42. Estimation capability 𝜓𝑡𝑘 residual. .. 103

Figure 2.43. Estimation capability Γ1𝑡𝑘 residual. .. 105

Figure 2.44. Estimation capability Γ2𝑡𝑘 residual. .. 106

x

Figure 2.45. Estimation capability 𝑝𝑛 errors. ... 108

Figure 2.46. Estimation capability 𝑝𝑒 errors. ... 109

Figure 2.47. Estimation capability 𝑢 errors. ... 111

Figure 2.48. Estimation capability 𝑣 errors. ... 112

Figure 2.49. Estimation capability 𝑢𝑛 errors. ... 113

Figure 2.50. Estimation capability 𝑣𝑒 errors. ... 114

Figure 2.51. Estimation capability 𝜓 errors. ... 116

Figure 2.52. Estimation capability 𝑏𝑎𝑢 errors. ... 118

Figure 2.53. Estimation capability 𝑏𝑎𝑣 errors. ... 119

Figure 2.54. Estimation capability 𝑏𝜔 errors. .. 120

Figure 2.55. Estimation capability 𝑏𝑐 errors... 121

Figure 2.56. Estimation capability Λ1𝑛 errors. ... 123

Figure 2.57. Estimation capability Λ1𝑒 errors. ... 124

Figure 2.58. Estimation capabilityΛ2𝑛 errors. .. 125

Figure 2.59. Estimation capability Λ2𝑒 errors. ... 126

Figure 2.60. Estimation capability 𝐹𝑇. ... 128

Figure 2.61. Estimation capability 𝛿𝑟. .. 129

Figure 2.62. Visual of GC law reevaluation. .. 144

Figure 2.63. GC validation UAV north and east coordinates. .. 146

Figure 2.64. GC validation position over time. .. 147

Figure 2.65. GC validation Body and N-E frame velocity over time. 148

Figure 2.66. GC validation attitude and attitude rate over time...................................... 149

Figure 2.67. GC validation thrust and rudder input. ... 150

xi

Figure 3.1. Navigation study IMU sensor grade. .. 159

Figure 3.2. Navigation study initial landmark uncertainty. .. 161

Figure 3.3. Navigation study number of landmark observations. 162

Figure 3.4. Navigation study measurement geometry. ... 163

Figure 3.5. Navigation study measurement geometry trajectories. 164

Figure 3.6. Navigation study measurement geometry with 𝑝𝑛 and 𝑝𝑒 components. 165

Figure 3.7. Navigation study number of landmarks. .. 166

Figure 3.8. Navigation study number of landmarks trajectories. 167

Figure 3.9. GC study lateral velocity (𝐺1 = 1.7e-2, 𝐺3 = 𝐺4 = 0). 173

Figure 3.10. GC study lateral velocity trajectories. .. 174

Figure 3.11. GC study landmark centering (𝐺1 = 1.7e-2, 𝐺2 = 𝐺4 = 0). 175

Figure 3.12. GC study landmark centering trajectories. ... 176

Figure 3.13. GC study forward speed (𝐺1 = 1.7e-2, 𝐺2 = 𝐺3 = 0). 177

Figure 3.14. GC study forward speed velocities. .. 178

CHAPTER 1

INTRODUCTION

Modern military development is investing research in unmanned aerial vehicle

(UAV, drone) missions of reconnaissance, intelligence, surveillance, and payload

delivery in hostile regions. In addition to remotely piloting these vehicles, research is

pursuing fully autonomous vehicles. To complete missions within hostile territories, these

autonomous vehicles must be able to navigate through obstacle- or landmark-filled

regions, path plan, and perform collaborative mission planning—all in real time. A large

hindrance to executing these capabilities is in GPS-denied (GPSD) territories, where

obstructions, such as buildings or mountain valleys, and enemy interference, such as GPS

jamming, prevent the UAV from obtaining precise state measurements of itself, allies,

and nearby landmarks. Without these measurements, the UAV’s movement is hindered,

leaving the UAV susceptible to collisions, enemy capture, and mission failure.

To combat this hinderance, research has developed inertial navigation system

(INS) sensors and filter statistics algorithms to better define state estimation during a

mission; incorporating mapping vision sensors, which increase estimation accuracy as

well as geographically locate landmarks, is also common practice [1]. Much of the latest

research involves adding new methods to UAV algorithms to enhance specific aspects of

the mission. For this research, the main objective is to enhance the framework for mission

planners to assess a mission’s sensitivity to navigation uncertainties as well as

sensitivities for UAV guidance and control (GC) in uncertain environments.

To do so, this research will focus on two objectives. First, this research will focus

on the development and investigation of UAV and landmark simultaneous localization

2

and mapping (SLAM) [2]. The research will study the sensitivities using SLAM in a

landmark field, where landmark locations are known a priori but with an associated

uncertainty and where availability of absolute position information is limited within the

trajectory. Second, this research will focus on developing a new GC law cost (see 1.1.2

and 1.1.3) which attempts to approach GC optimization in terms of reducing navigation

errors. To explain this approach, consider a linear system. Navigation uncertainties in that

linear system grow exactly the same regardless of the trajectory the system takes.

Considering a nonlinear system, however, navigation uncertainties are trajectory

dependent; and since trajectories are dependent on GC parameters, there is an implication

that GC parameters can be exploited to modulate navigation errors. To that end, the

research investigates the sensitivity of navigation uncertainties as a function of GC

parameters in that new GC law cost. Both the SLAM sensitivity study and the new GC

law cost study have potential in identifying guidance, navigation, and control (GNC)

characteristics that minimize navigation errors.

The following chapters in this thesis will provide the necessary information to

understand and execute this research’s objectives. The remainder of Chapter I will detail

a literature review for GNC development. Chapter II will provide design development

details within the simulation. Chapter III will display simulation results and the

interpretations thereof. Chapter IV will then provide the thesis conclusion.

1.1 Literature Review

This section will detail the development of GNC. First, navigation improvements

will be addressed. Next a discussion on generating guidance paths will be presented.

Finally, the review will provide a description on types of control law implementation.

3

1.1.1 Navigation

To know the state of a UAV at any time in a mission is the study of navigation, or

state estimation. Accessing real-time state estimates are usually acquired via sensor

packages onboard the UAV. With the advances in GPS sensors, the complexities in

retaining precise and accurate navigation have reduced. However, when GPS sensor

readings are denied, alternative sensors must be utilized. INS such as accelerometers and

gyroscopes are the fundamental packages to continue estimating without GPS. With the

assistance of a Kalman filter, UAV navigation performance in simulation and physical

testing has improved significantly [1]. One can think of this filter as gaussian statistics

algorithm—a step-by-step recipe procedure to account for all measurements. Based on

prior knowledge of system variances and the current INS readings, the sub-algorithm will

output a better approximation of the UAV’s current state [3]. An alternative to Kalman

filters is the Particle filter. This filter is utilized in highly non-gaussian environments,

where statistical resampling and tuning weights are used to estimate aircraft state [4,5].

However, given large uncertainties and drift characteristics [6] associated with INS

sensors, the effectiveness of either filter may still be limited as well as either under- or

overconservative in estimate uncertainty [4,7].

To improve effectiveness, additional sensors may be incorporated with the INS

and filter algorithms. In particular, vision-based (camera) measurements and light

detection and ranging (LIDAR) have provided significant success to increasing

navigation performance [8–10]. For example, one popular vision-based approach to

GPSD navigation is visual odometry, where sequential images of the environment are

compared to gauge how much UAV orientation changed from one time instant to the next

4

[1,2]. Another example is simultaneous localization and mapping (SLAM), where the

environmental sensors, be it radar, acoustic, image, etc., creates a real-time terrain

mapping; position measurements are then extracted based on changes in new image

captures [1,2]. Image techniques are also used with UAV collaborative swarms using

pattern-detection. By capturing images during a mission, a UAV swarm can quickly

determine one another’s position when the images capture specific patterns that were

placed on each drone [11]. Alternatively, navigation swarm collaboration can be achieved

with indirect GPS sources. Using a high-flying, GPS-allowed drone to send data to low-

flying, GPSD drones and/or matching the low-flying drones imagery with previously

acquired GPS images (a form of geolocation filtering), successful missions have been

accomplish in both simulation and physical implementation [7,12].

Both vision-based measurements and LIDAR sensors are used heavily in the state

of the art with preferences based on each sensor’s particular advantage. Camera sensors

have a wider sensor price range, much like INS packages. Camera payloads typically

weigh less and are less bulky than LIDAR [1]. Fundamentally, however, the form of

LIDAR’s environmental image is of higher value. LIDAR’s lasers can still map a terrain

without ambient lighting [1]. LIDAR provides terrain depth measurements without the

complications of stereo imaging (note, however, RGB-D cameras [8]) and is less

dependent on scene “texture” and nonhomogeneous terrain [1,7]. Nevertheless, LIDAR

is an active sensor, like radar, where its broadcasted waves are more susceptible to enemy

detection than passive vision-based measurements [4]; and, in either case, both camera

and LIDAR sensor performance degrade from noise, environmental influences, and

processing computation time—especially in regions where landmark positions are only

5

partially known [2,8,11,12].

Particularly for vision-based systems, there is discussion on how UAV state and

sensor interaction with the environment influence navigation performance. The

discussion is typically in the context of the source of error in the navigation. For

collaborative rotor-UAVs executing surveillance, Scaramuzza et al. states that “the closer

the robot is to a point in the terrain, the better its sensing ability to monitor this point” [6].

Maddison et al. provides test results showing that “error and uncertainty should be high

for points that are far from the camera and near the direction of motion” based on motion

stereo camera results [10]. Saske et al. provides a chart with similar results for different

camera resolutions and frames per second [11]. The researchers also emphasize the fact

that certain camera approaches, like visual odometry and optical flow, significantly

accumulate errors and drift over time [6,8]. One study by Babinec and Aeltauer

performed extensive research on how the onboard aerial surveillance imagery specifically

produces position error. Its findings included the following: Sources of errors are

extensive and range from human error to atmospheric turbulence to camera lens

deformation. In an image, having a high number of landmarks with known positions

“generally…can improve accuracy, but it may not reduce the resulting error to zero.”

Average landmark position error increases with landmark distance from the camera’s

principal point. Given four landmarks placed in quadrilateral patterns with known

positions, error increases radially outward from this quadrilateral. If this quadrilateral is

relatively compact, errors are mitigated within the quadrilateral at the expense of higher

errors outside the quadrilateral. Higher surveillance errors occur at lower UAV altitudes

with camera images farther offset from the center of the quadrilateral [9]. Nuske et al.

6

also provide insight in terms of geolocation filtering, where “error in vehicle heading is

often the dominant source of error” [7]. Also considering geolocation, Schnaufer et al.

explains that having landmarks with less accurate coordinates, fewer landmarks, and non-

robust image cross-correlation will significantly increase errors [12].

Given the wide range of discussion on error sources in navigation, there appears

to be significant qualitative knowledge for mission planners on how to minimize these

errors—minimize heading errors (e.g., using high accuracy magnetometers); prior to the

mission, accurately locate multiple landmarks along the mission path; minimize UAV-

landmark proximity to achieve better sensing ability; etc. However, a quantitative study

of navigation uncertainties is lacking.

For example, a particular GPSD payload mission may involve few landmarks,

restricted budget, and a fixed-wing UAV. These constraints force mission planners to

prioritize what sensor package grades to use. These constraints also force prioritization

on how the UAV should travel. Without hovering ability while collecting navigation

estimates, like rotorcrafts in state-of-the-art research, mission planners must prioritize

how long the UAV can collect landmark information before estimation errors grow too

large. In this example, the aforementioned research provides some quantitative

understanding. Nevertheless, there still lacks a sensor sensitivity analysis to assist these

constrained mission planners in choosing appropriate sensor grades and mission paths.

1.1.2 Guidance

As noted in the 1.1.1 Navigation section, navigation is influenced by how a UAV

travels through a GPSD region. This travel, or path planning, is the subject of guidance

research. In well-known, clutter-free environments, generated paths may be as simple as

7

drawing a straight line between the UAV’s current position and the final destination.

Even as the environments become more cluttered, planners can still build simple paths

using a waypoint technique. In this technique, the planner need only specify a

“breadcrumb trail” of points that the drone can follow up to the final destination [13].

What becomes problematic for this algorithm is dynamic feasibility. A fixed-wing UAV,

for example, may not be capable of turning sharp enough to hit the next waypoint and

avoid nearby obstructions. Furthermore, there is little intuition as to whether this

somewhat-arbitrarily-chosen waypoint path is necessarily the wisest path for the UAV to

follow, especially when the environment becomes less well known. Hence, significant

research and development has been dedicated to solving these guidance problems.

Before discussing the state of the art, when considering guidance, development

usually splits into two levels: global planning and local planning. Global planning is

typically characterized as a pre-mission plan on how the UAV will get to a final

destination or, if the final destination must be sought out, the course of travel so the UAV

can look for the final destination. Local planning is typically characterized as real-time

mission planning, where the UAV will perform specific avoidance maneuvers if

previously unknown landmarks or intruders hinder the UAV’s movement along the

global path [4]. Interestingly, despite the planning differences, the algorithms that

generate global guidance paths can also generate local guidance paths and vice versa. The

preferences for using an algorithm globally or locally are simply based the algorithm’s

particular advantages (computation time, reliability, adaptability, etc.).

With global and local planning now described, the state of the art will be

described. Building off the idea of waypoint following, Anderson et al. provide a real-

8

time path smoothing technique at waypoint turns, where waypoint corners are replaced

with dynamically feasible fillets [14]. Anderson’s co-authors, Beard and McLain,

simplify this technique further and also lecture on two path planning methods: Voronoi

Graphs and Rapidly Exploring Random Trees (RRT) [13]. Voronoi graphs align flight

paths such that they “are perpendicular bisectors between” the landmarks [13], which

aids in maximizing separation distance for obstruction avoidance. RRT algorithm will

randomly consider and build feasible path routes within the environment until one of the

feasible routes connects with the final destination. Alternatively, Kendoul provides

further insight to potential fields, which develops algorithmic “force fields” generated by

the goals and landmarks in the environment. Obstacles generate repulsive forces that

repel the vehicle and goals generate attractive forces” [1]. Each of these approaches has

their own drawbacks. For example, the more popular RRT planner, in its rudimentary

form, is for global planning, where real time implementation, especially for intruder

environments [4], become impractical [8]. Nevertheless, the state of the art tends to

hybridize algorithms to compensate for such impracticalities. Such is the case with the

real-time * (pronounced “star”) algorithms (A*, Theta*, D*) [8,15].

Common to many hybrid algorithms is the incorporation of a heuristic goal based

on finding shorter paths to the desired destination. In other words, like potential fields,

these algorithms begin to incorporate secondary objectives (goals, costs) while

accomplishing the fundamental objective of reaching a destination. Most costs like

finding the shortest path are quite common, such as minimizing the time-to-go, solution

computation time, and vehicle energy usage as well as safety measures like maximizing

obstacle distance or reducing aggressive maneuvers (increasing path smoothness) near

9

landmarks [1,4,8,14,16–18].

Though navigation techniques significantly reduce state estimation errors,

guidance techniques may also prove potentially useful in minimizing these errors.

Reflecting on section 1.1.1 Navigation’s discussion on how UAV interactions with the

environment influence navigation performance, one begins to see unique guidance costs

that would be developed to minimize navigation errors. Perez-Grau et al. [8] and

Scaramuzza et al. [6] offer similar comments: SLAM techniques favor low-speed paths

that revisit previously seen environments. Exercising system dynamics in the initial flight

path helps generate observability. Perez-Grau further claims that generating low yaw

rates and maintaining the camera’s view in the flight direction reduces “blind

[measurement] movement segments” and that extended travel in a given direction

increases position errors in that direction. The camera analysis by Babinec and Aeltauer

also implies that errors are mitigated if UAV flight path is such that landmarks are more

centered in the camera’s field of view (FOV).

Again, these comments mostly provide qualitative insight as to what particular

path costs would minimize navigation errors. Yet, there still lacks a quantitative

understanding. Many authors do at least provide position error results from their research

contributions. Nevertheless, the results show little sensitivity, error-improvement analysis

with regard to these navigation costs. They do not provide mission planners with intuition

on what navigation costs are more important than others.

1.1.3 Control

With guidance paths developed, the method to physically force the vehicle to

execute the guidance trajectory is the study of control. In many cases, the reasoning for

10

implementing a specific type of controller is only for simplicity. Other reasons involve

the need to perform aggressive, evasive maneuvers or withstand wind conditions during

flight. Furthermore, other reasons are related to execution costs, much like the costs

described in the 1.1.2 Guidance section.

 In fact, many of the concepts developed in control are related to the concepts

built in guidance. Perhaps the simplest concepts of control are carrot chasing (i.e.

trajectory following) and waypoint following [13,19]. In carrot chasing, a point is

generated to move along a path. The UAV is instructed to chase this point until the

mission’s end. In waypoint following, straight line and fillet following instructions are

given for the drone to hit each waypoint. A more complex control concept involves

vector fields, where control instructions are to follow the direction of vector flow that

lead to the desired trajectory [19]. However, these basic, path-following control

instructions are only a small piece of the underlying control laws that execute these

instructions.

 Control law development is extensive. Although this literature review will

highlight three main control methods—PID, nonlinear, and optimal—there certainly are

other novel branches of control, such a machine learning (e.g. neural networks) and fuzzy

logic [1]. Of the three main methods, PID control is perhaps the most elementary. Given

the error difference between current and desired flight path, PID will send commands

based on proportional, integral, and derivative error calculations [20]. These commands

are then given intensity (gain) adjustments based on how aggressive a UAV should

pursue a trajectory and how much path overshoot is tolerated [13].

11

 Nonlinear control is perhaps the least elementary of the main control methods.

Yet, with nonlinearities being a main source of control failure, this control provides

satisfactory results where other control laws fail [21]. Nonlinear controls use a variety of

techniques such as feedback linearization, sliding mode control, Lyapunov redesign,

backstepping, and passivity-based control to achieve sufficient levels of control stability.

Kaminer et al. provides an example of UAV nonlinear control with strict performance

requirements despite modeling uncertainties and environmental disturbances [22].

 In contrast, optimal control places focus on minimizing or maximizing costs like

time-to-go and vehicle energy usage discussed in the 1.1.2 Guidance section [23]. While

retaining dynamic system limitations, optimal control uses gradient methods to determine

control inputs that correspond to these minimized/maximized costs. Most commonly

known is LQR control, where the system combines energy (control input), transient state,

and terminal state costs into a solvable form using Riccati Equations [24]. Due to a

variety of factors such as computational expense, nonlinearities, and system stability, a

variety of equation-solving architectures are used to solve optimal control problems.

Among these are the popular direct shooting methods, where the system is discretized

and solved using optimality conditions [25]; computationally fast collocation methods,

which use polynomial curve fits to develop control trajectories [4]; and the quickly-

intractable dynamic programming, which finds a global optimal solution by implicitly

considering all possible trajectories using Bellman’s principle of optimality [26].

Despite the large amounts of concepts, laws, and solver techniques involved with

control, most of the previously mentioned control laws do not attempt to reduce

navigation errors. They focus on minimizing flight path error. They assume that the

12

navigation (observer) will provide error compensation and focus on developing a

controller that works sufficiently amidst the uncertainty. There appears to be disregard

for the possibility that certain control inputs may be inducing significant amounts of

uncertainty into the system. Stochastic optimal control [15,27] came closest to addressing

this error minimization. Using the Ito equation (linearization to the second derivative)

and dynamic programming, Maybeck discusses how to define cost functions such that

state expectations are maximized [26]. However, stochastic optimal control is more so

tolerating the errors rather than trying to prevent them to begin with. For example, A cost

may call for speed minimization. Stochastic optimal control will perform this

minimization, tolerating error growth in GPSD, oblivious to the fact that speeding out of

GPSD would significantly reduce error growth. In short, the research lacks control

studies that focus on navigation error prevention.

13

CHAPTER 2

DESIGN DEVELOPEMENT

This chapter will detail the simulation’s design description. The description will

provide an extensive explanation and validation on the indirect, extended Kalman filter

design (IEKF, 2.1). The guidance and control law design, using pre-built toolboxes and

libraries, will then be outlined (2.2). Simulations in this document are implemented using

MATLAB.

2.1 Kalman Filter Development

 This section will explain how the Kalman filter is generated. This section will

also include the validation steps used to ensure correct implementation of that filter.

Among these steps are defining the system states and models (2.1.1), error state mappings

(2.1.2) propagation validation (2.1.3), linear error state modeling (2.1.4), linear error

measurement modeling (2.1.5), covariance propagation (2.1.6), and discussing the

system’s measurement estimation capability (2.1.7). Note much of the Kalman filter

implementation is based off the derivations of Maybeck [3,28] as well as Christensen and

Geller [29].

 Before beginning, the reasoning for using an IEKF may be desired. UAV flight

is nonlinear; furthermore, particularly with vision sensors, flight measurements are also

nonlinear. Such factors detract from using a linear Kalman filter. An extended Kalman

filter accommodates for such nonlinearities via linearization. Using an indirect Kalman

filter, where error states are tracked over time, as opposed to only tracking states, allow

the engineer to incorporate state measurement updates that are not additive (e.g.,

measurement updates that are in different coordinate frames than the state). The

14

complexities and computations needed to generate an unscented Kalman filter or a

particle filter seemed excessive for this foundational study. Furthermore, the simplified

nonlinearities associated with the UAV, which are shown in the following 2.1.1 States

and Models subsection, did not appear extreme or harsh enough to justify the use of an

unscented Kalman filter or particle filter.

2.1.1 States and Models

 To simulate the drone forward in time, the system state and state dynamics must

be known. Beard and McLain provide an extensive 3D “truth model” for UAVs and have

collected coefficient and mass parameters specifically for Aerosonde models [13]. Using

Figure 2.1 for reference, this 3D model is simplified to a projection in the 2D plane.

Figure 2.1. 2D UAV depiction with frames of reference. Adapted from [13].

In particular, Figure 2.1 provides the frames of reference associated with the state and

dynamics models, that is, an Inertial frame (𝐼𝑛, 𝐼𝑒), North-East frame (𝑛, 𝑒), Body frame

15

(𝐵𝑢, 𝐵𝑣), and Camera frame (𝑐𝑖, 𝑐𝑗). Note that 𝑛 is always parallel with 𝐼𝑛 and 𝑒 is always

parallel with 𝐼𝑒. Additionally, the heading angle (𝜓) and a camera bias (i.e. misalignment

or offset) angle (𝑏𝑐) are indicated.

 As part of the UAV states associated with Figure 1, the Kalman filter can utilize

sensor bias states to predict better estimates of the truth UAV states. This research will

incorporate two accelerometer biases, a gyroscope angular rate bias, and a camera angle

bias. Furthermore, SLAM utilizes landmark state positions not only to log current

landmark estimates, but to also simultaneously assist in estimating UAV states. In this

research, zero to two landmarks having north and east coordinates will be appended to

the state. As such, the complete truth state model is mathematically defined as

 �̅� =

[

𝑝𝑛
𝑝𝑒
𝑢
𝑣
𝜓
𝑟
𝑏𝑎𝑢
𝑏𝑎𝑣
𝑏𝜔
𝑏𝑐
Λ̅𝑛𝑒]

 (2.1)

An overbar will denote a variable’s matrix characteristic. The UAV’s north position and

east position is described by 𝑝𝑛 and 𝑝𝑒 respectively. 𝑢 and 𝑣 define the vehicle’s velocity

along axis 𝐵𝑢 and 𝐵𝑣 in the Body frame respectively. Heading angle, 𝜓, and heading rate,

𝑟, are provided with respect to the North-East frame (with north-east-down convention,

right-hand-rule is positive). Following the UAV state terms are the bias error terms for

the accelerometer measurements along the Body frame’s 𝑢 (𝑏𝑎𝑢) and 𝑣 (𝑏𝑎𝑣) directions as

well as the bias errors associated with the UAV’s gyroscope (𝑏𝜔) and a forward-facing

16

camera (𝑏𝑐). Scale factor errors are assumed negligible for this study and are not included

in the state. Following bias errors is Λ̅𝑛𝑒, which is a vector of uncertain landmark

locations defined as

 Λ̅𝑛𝑒 = [

Λ1𝑛
Λ1𝑒
Λ2𝑛
Λ2𝑒

] (2.2)

where the subscript 𝑛 or 𝑒 denote a landmark’s north or east coordinates respectively and

the numeral subscripts denote whether the coordinate is for the first or second landmark.

Note that all equations will be presented assuming two landmarks; for simulations with

fewer landmarks, equation rows and columns associated with the unused landmarks are

removed.

 In conjunction to this truth state is the truth dynamics. Again, using a 2D

projection of Beard and McLain’s work, these dynamics are defined in state-space form

as

17

 �̇̅� = 𝑓(̅�̅�, �̅�, �̅�) =

[

�̇�𝑛
�̇�𝑒
�̇�
�̇�
�̇�
�̇�
�̇�𝑎𝑢
�̇�𝑎𝑣
�̇�𝜔
�̇�𝑐

Λ̇̅𝑛𝑒]

=

[

𝑢 cos(𝜓) − 𝑣 sin(𝜓)

𝑢 sin(𝜓) + 𝑣 cos(𝜓)

𝑟 𝑣 −
𝐶𝐷𝑜 𝜌 𝑉𝑎

2 𝑆

2𝑚
+
𝐹𝑇
𝑚

−𝑟 𝑢 +
Ξ1 𝜌 𝑉𝑎

2 𝑆

2𝑚

𝑟

Ξ2 𝜌 𝑉𝑎
2 𝑆 𝑏

2

−
𝑏𝑎𝑢
𝜏𝑎𝑢

+ 𝑤𝑎𝑢

−
𝑏𝑎𝑣
𝜏𝑎𝑣

+ 𝑤𝑎𝑣

−
𝑏𝜔
𝜏𝜔
+ 𝑤𝜔

−
𝑏𝑐
𝜏𝑐
+ 𝑤𝑐

0̅]

 (2.3)

where

[

Ξ1
Ξ2
𝛽
𝑉𝑎
𝑢𝑟
𝑣𝑟]

=

[

 𝐶𝑌0 + 𝐶𝑌𝛽 𝛽 +

𝐶𝑌𝑟 𝑏 𝑟

2 𝑉𝑎
+ 𝐶𝑌

𝛿⏞𝑟
𝛿⏞𝑟

𝐶𝑟0 + 𝐶𝑟𝛽 𝛽 +
𝐶𝑟𝑟 𝑏 𝑟

2 𝑉𝑎
+ 𝐶𝑟

𝛿⏞𝑟
𝛿⏞𝑟

sin−1 (
𝑣𝑟
𝑉𝑎
)

√𝑢𝑟2 + 𝑣𝑟2

𝑢 − 𝑢𝑤𝑔
𝑣 − 𝑣𝑤𝑔]

 (2.4)

and the system is assumed to have no ambient wind. Moving to the right-hand side of

Equation (2.3), �̇�, �̇�, and �̇� accelerations are functions of air density (𝜌), the airframe’s

magnitude velocity (𝑉𝑎; relative to surrounding air mass; note that 𝑢𝑟 and 𝑣𝑟 are relative

wind projected onto the body u and v axis respectively and subscript 𝑤𝑔 denotes wind

gust), UAV mass (𝑚), wingspan (𝑏), planform area (𝑆), and side slip angle (𝛽). For

18

simplicity, the control inputs have been simplified into two parameters: ruddervator

deflection (𝛿⏞𝑟, referenced as rudder in this document) and thrust input (𝐹𝑇). Note that

�̅� = [𝐹𝑇 𝛿⏞𝑟]
𝑇
 (subscript 𝑇 for thrust, superscript 𝑇 for matrix transpose). The

accelerations are also functions of aerodynamic coefficients (uppercase 𝐶∗) as defined in

[13]. Bias derivatives are modeled as first-order Markov processes (exponentially

correlated random variables) [3], which include their respective driving noise terms (𝑤∗)

and time constants (𝜏∗). Note that �̅� = [𝑢𝑤𝑔 𝑣𝑤𝑔 𝑤𝑎𝑢 𝑤𝑎𝑣 𝑤𝜔 𝑤𝑐]𝑇 and that

Markov processes are used due their versatility in modeling any spectrum between white

noise and a constant bias; more information regarding these and future defined noise

terms will be provided in the 2.1.6 Covariance Propagation and 2.1.7 Estimation

Capability subsections. For this study, the landmarks are assumed to be stationary, hence

their dynamics are implanted as the zero vector. The use of Euler angles, rather than

quaternions, is maintained for better intuition and simplicity. For these and future

equations, the explicit variable dependencies on time are usually dropped for visual

clarity purposes.

 The equations just described define the system truth state and truth dynamic

models for this research—the states and dynamics that are assumed to perfectly,

realistically model a physical Aerosonde system. Unfortunately, in reality, the exact, real-

time values for many of the equation terms parameters are not directly available; they

can, however, be obtained indirectly by means of the UAV sensor package. In the context

of this paper, the sensor package includes continuous measurements from the

accelerometers and gyroscope as well as discrete measurements (when available) from

GPS satellites, magnetometer, and a pinhole camera (implementation with velocimeters

19

and other equipment is left to future work). In mathematical form, these measurements,

indicated with a tilde overmark, are modeled as

 [
�̃�𝑢
�̃�𝑣
�̃�
] = �̃̅� = [

𝑎𝑢 + 𝑏𝑎𝑢 + 𝜂𝑎𝑢
𝑎𝑣 + 𝑏𝑎𝑣 + 𝜂𝑎𝑣
𝜔 + 𝑏𝜔 + 𝜂𝜔

] = [

�̇� − 𝑟 𝑣 + 𝑏𝑎𝑢 + 𝜂𝑎𝑢
�̇� + 𝑟 𝑢 + 𝑏𝑎𝑣 + 𝜂𝑎𝑣

𝑟 + 𝑏𝜔 + 𝜂𝜔

] (2.5)

and

[

𝑝𝑛
𝑝𝑒
�̃�

Γ̃̅]

= 𝑧̅̃ = ℎ̅(�̅�(𝑡𝑘), �̅�(𝑡𝑘)) =

[

𝑝𝑛(𝑡𝑘) + 𝜂𝑝𝑛(𝑡𝑘)

𝑝𝑒(𝑡𝑘) + 𝜂𝑝𝑒(𝑡𝑘)

𝜓(𝑡𝑘) + 𝜂𝜓(𝑡𝑘)

Γ̅(𝑡𝑘) + �̅�Γ̅(𝑡𝑘)]

 (2.6)

where

 Γ̅(𝑡𝑘) = [
Λ1𝑗(𝑡𝑘) Λ1𝑖(𝑡𝑘)⁄

Λ2𝑗(𝑡𝑘) Λ2𝑖(𝑡𝑘)⁄
] (2.7)

 �̅�Γ̅(𝑡𝑘) = [
�̅�Γ̅[1](𝑡𝑘)

�̅�Γ̅[2](𝑡𝑘)
] (2.8)

 Λ̅𝑖𝑗(𝑡𝑘) =

[

Λ1𝑖(𝑡𝑘)

Λ1𝑗(𝑡𝑘)

Λ2𝑖(𝑡𝑘)

Λ2𝑗(𝑡𝑘)]

 (2.9)

In detail, Equation (2.5) states that the continuous measurements of the 2-axis

accelerometer (�̃�∗) and the gyroscope (�̃�) are equal to the true accelerometer acceleration

(𝑎∗) or true gyroscope angular rate (𝜔) plus their respective bias (𝑏∗) plus their respective

continuous measurement noise (𝜂∗, modeled as a gaussian random process). Furthermore,

Equation (2.5) can be equivalently expressed with the following substitutions: True 𝑢-

axis accelerometer measurements, �̃�𝑢, equal the vehicle’s linear acceleration along axis

𝐵𝑢 minus Coriolis acceleration plus bias and noise. True 𝑣-axis accelerometer

measurements, �̃�𝑣, equal the vehicle’s linear acceleration along axis 𝐵𝑣 plus Coriolis

20

acceleration, bias, and noise. True gyroscope measurements, �̃�, equal the vehicle’s true

angular velocity, 𝑟, plus bias and noise. For visual purposes in future derivations,

Equation (2.5) is rearranged to define linear acceleration and angular velocity as follows:

 [
�̇�
�̇�
𝑟
] = [

�̃�𝑢 + 𝑟 𝑣 − 𝑏𝑎𝑢 − 𝜂𝑎𝑢
�̃�𝑣 − 𝑟 𝑢 − 𝑏𝑎𝑣 − 𝜂𝑎𝑣

�̃� − 𝑏𝜔 − 𝜂𝜔

] (2.10)

Equation (2.6) states that the discrete measurements of the GPS and magnetometer are a

function of the truth state at a discrete time, 𝑡𝑘, plus discrete measurement noise 𝜂∗(𝑡𝑘).

The pinhole-camera measurement model, Γ̅(𝑡𝑘), which is composed of elements from the

line-of-sight vector, Λ̅𝑖𝑗(𝑡𝑘), is similarly defined. For Equation (2.8) and future equations,

subscript brackets around a number or number set simply refer to the matrix position of

that subscript’s variable (note �̅�(𝑡𝑘) =

 [𝜂𝑝𝑛(𝑡𝑘) 𝜂𝑝𝑒(𝑡𝑘) 𝜂𝜓(𝑡𝑘) �̅�Γ[1](𝑡𝑘) �̅�Γ[2](𝑡𝑘)]).

 Before continuing, there is need to further describe the line-of-sight vector and

Equation (2.7)’s camera measurement definition. The description will help provide

intuition for later derivations in the Kalman filter. First, a visual is provided.

21

Figure 2.2. Visualization of line-of-sight vector derivation and 𝛾. Adapted from [13].

In this figure, a position vector loop is drawn between the Inertial frame origin, drone,

and a single landmark, Λ (assuming that the camera is located at the drone’s center of

mass for simplicity). The truth state, defined by Equation (2.1), yields information

regarding the landmark location vector, [Λ𝑛(𝑡𝑘), Λ𝑒(𝑡𝑘)], and drone position vector,

[𝑝𝑛(𝑡𝑘), 𝑝𝑒(𝑡𝑘)], with respect to the Inertial frame, expressed in the Inertial frame.

Obtaining the camera’s line-of sight vector, [Λ𝑖(𝑡𝑘), Λ𝑗(𝑡𝑘)] (landmark location vector

with respect to the drone camera frame, expressed in the camera frame), for a single

landmark can then be derived as follows:

[
Λ𝑖(𝑡𝑘)

Λ𝑗(𝑡𝑘)
] = �̅�𝐵

𝑐�̅�𝐼
𝐵 [
Λ𝑛(𝑡𝑘)

Λ𝑒(𝑡𝑘)
] − �̅�𝐵

𝑐�̅�𝐼
𝐵 [
𝑝𝑛(𝑡𝑘)

𝑝𝑒(𝑡𝑘)
]

= �̅�𝐵
𝑐�̅�𝐼

𝐵 [
Λ𝑛(𝑡𝑘) − 𝑝𝑛(𝑡𝑘)
Λ𝑒(𝑡𝑘) − 𝑝𝑒(𝑡𝑘)

]

(2.11)

 �̅�𝐵
𝑐 = [

cos(𝑏𝑐(𝑡𝑘)) sin(𝑏𝑐(𝑡𝑘))

−sin(𝑏𝑐(𝑡𝑘)) cos(𝑏𝑐(𝑡𝑘))
] (2.12)

22

 �̅�𝐼
𝐵 = [

cos(𝜓(𝑡𝑘)) sin(𝜓(𝑡𝑘))

−sin(𝜓(𝑡𝑘)) cos(𝜓(𝑡𝑘))
] (2.13)

In this derivation, the camera line of sight vector is equivalent to the landmark location

vector minus the drone position vector. However, having the need to express all vectors

in the same reference frame, the landmark location and drone position vectors must be

transformed. This is done via two transformation matrices: One to transform from Inertial

frame coordinates to Body frame coordinates, �̅�𝐼
𝐵, and one to transform from Body frame

to Camera frame coordinates, �̅�𝐵
𝑐. A similar derivation is used when augmenting the

second landmark line-of-sight vectors to Equation (2.9).

Essentially, the pinhole model is a method for projecting a 2D position into a 1D

quantity, as is the nature of cameras. The convention for this projection is to divide the

non-bore-axis line-of-sight value by the bore-axis line-of-sight value. Hence, since this

study’s camera is forward facing, the landmarks’ 𝑖 elements will be in the denominator.

Future work in 3D will then have two projected quantities per landmark for one camera,

i.e., 𝑗/𝑖 and 𝑑𝑜𝑤𝑛 𝑎𝑥𝑖𝑠 𝑖⁄ to project from 3D to 2D. As a last note, 𝛾 in the figure is the

angle between the UAV’s heading and the landmark (used in the 3.2 Guidance and

Control Law Development section).

The line-of-sight vector and camera model has just now been described. This

description was used to help explain part of the sensor packages onboard the UAV.

Again, the sensor packages are used because they can indirectly obtain many of the terms

in the truth state and truth dynamics models. To utilize the sensor packages, engineers

will replace dynamic terms in the truth models with the sensor terms and appropriate,

accurate design parameters. This model replacement creates the design model, denoted

with the breve overmark, given by Equation (2.14) through Equation (2.23).

23

 �̆̅� =

[

𝑝𝑛
𝑝𝑒
�̆�
�̆�
�̆�

�̆�𝑎𝑢
�̆�𝑎𝑣
�̆�𝜔
�̆�𝑐

Λ̆̅𝑛𝑒]

 (2.14)

 �̇̆̅� = 𝑓̅̆(�̆̅�, �̆̃̅�, �̆̅�) =

[

�̇�𝑛
�̇�𝑒
�̇̆�
�̇̆�

�̇̆�

�̇̆�𝑎𝑢

�̇̆�𝑎𝑣

�̇̆�𝜔

�̇̆�𝑐

Λ̆̅
̇
𝑛𝑒]

=

[

�̆� cos(�̆�) − �̆� sin(�̆�)

�̆� sin(�̆�) + �̆� cos(�̆�)

�̃�𝑢 + �̆� �̆� − �̆�𝑎𝑢 − �̆�𝑎𝑢
�̃�𝑣 − �̆� �̆� − �̆�𝑎𝑣 − �̆�𝑎𝑣

�̃� − �̆�𝜔 − �̆�𝜔

−
�̆�𝑎𝑢
�̆�𝑎𝑢

+ �̆�𝑎𝑢

−
�̆�𝑎𝑣
�̆�𝑎𝑣

+ �̆�𝑎𝑣

−
�̆�𝜔
�̆�𝜔
+ �̆�𝜔

−
�̆�𝑐
�̆�𝑐
+ �̆�𝑐

0̅]

 (2.15)

 [
 �̃�𝑢
�̃�𝑣
�̃�
] ≈ �̆̃̆� = [

�̆�𝑢 + �̆�𝑎𝑢 + �̆�𝑎𝑢
�̆�𝑣 + �̆�𝑎𝑣 + �̆�𝑎𝑣
�̆� + �̆�𝜔 + �̆�𝜔

] = [

�̇̆� − �̆� �̆� + �̆�𝑎𝑢 + �̆�𝑎𝑢
�̇̆� + �̆� �̆� + �̆�𝑎𝑣 + �̆�𝑎𝑣

�̆� + �̆�𝜔 + �̆�𝜔

] (2.16)

[

𝑝𝑛
𝑝𝑒
�̃�

Γ̃̅]

≈ 𝑧̅̃̆ = ℎ̆̅(�̆̅�(𝑡𝑘), �̆̅�(𝑡𝑘)) =

[

𝑝𝑛(𝑡𝑘) + �̆�𝑝𝑛(𝑡𝑘)

𝑝𝑒(𝑡𝑘) + �̆�𝑝𝑒(𝑡𝑘)

�̆�(𝑡𝑘) + �̆�𝜓(𝑡𝑘)

Γ̆̅(𝑡𝑘) + �̆̅�Γ̅(𝑡𝑘)]

 (2.17)

 Γ̆̅(𝑡𝑘) = [
Λ̆1𝑗(𝑡𝑘) Λ̆1𝑖(𝑡𝑘)⁄

Λ̆2𝑗(𝑡𝑘) Λ̆2𝑖(𝑡𝑘)⁄
] (2.18)

24

 �̆̅�
Γ̆̅
(𝑡𝑘) = [

�̆̅�
Γ̆̅[1]
(𝑡𝑘)

�̆̅�
Γ̆̅[2]
(𝑡𝑘)

] (2.19)

 Λ̆̅𝑖𝑗(𝑡𝑘) =

[

Λ̆1𝑖(𝑡𝑘)

Λ̆1𝑗(𝑡𝑘)

Λ̆2𝑖(𝑡𝑘)

Λ̆2𝑗(𝑡𝑘)]

 (2.20)

[
Λ̆𝑖(𝑡𝑘)

Λ̆𝑗(𝑡𝑘)
] = �̆̅�𝐵

𝑐 �̆̅�𝐼
𝐵 [
Λ̆𝑛(𝑡𝑘)

Λ̆𝑒(𝑡𝑘)
] − �̆̅�𝐵

𝑐 �̆̅�𝐼
𝐵 [
𝑝𝑛(𝑡𝑘)
𝑝𝑒(𝑡𝑘)

]

= �̆̅�𝐵
𝑐 �̆̅�𝐼

𝐵 [
Λ̆𝑛(𝑡𝑘) − 𝑝𝑛(𝑡𝑘)

Λ̆𝑒(𝑡𝑘) − 𝑝𝑒(𝑡𝑘)
]

(2.21)

�̆̅�𝐵
𝑐 = [

cos(�̆�𝑐(𝑡𝑘)) sin(�̆�𝑐(𝑡𝑘))

−sin(�̆�𝑐(𝑡𝑘)) cos(�̆�𝑐(𝑡𝑘))
] (2.22)

�̆̅�𝐼
𝐵 = [

cos(�̆�(𝑡𝑘)) sin(�̆�(𝑡𝑘))

−sin(�̆�(𝑡𝑘)) cos(�̆�(𝑡𝑘))
] (2.23)

For this design, the velocity states are kept in the Body frame and not transformed to the

North-East frame. Initially, making such transformation appeared to be favorable as it

would provide consistency with the first and second states and seemed more informative

to navigation engineers. This practice is NOT recommended. The author found the

practice troublesome for integration and Kalman derivations. Furthermore, obtaining

North-East frame values for navigation engineers was more easily calculated after, not

during, the simulation.

In Equation (2.15), the values of �̇̆� and �̇̆� are derived in the same manner as

Equation (2.10) by rearranging Equation (2.16). Furthermore, note that the heading rate,

𝑟, and heading rate derivative, �̇�, have been removed since dynamic propagation is not

needed due to the availability of continuous, not discrete, gyroscope measurements. A

25

lowercase �̅� is used to denote the absence of these states. The design model noise vector

is also modified to �̆̅� = [�̆�𝑎𝑢 �̆�𝑎𝑣 �̆�𝜔 �̆�𝑎𝑢 �̆�𝑎𝑣 �̆�𝜔 �̆�𝑐]𝑇, which includes

continuous measurement noise with the bias driving noise. All �̆̅� is now technically

described as process noise, rather than measurement and driving noise.

 In the context of this research, this design model will be used for linearization

and is a preliminary step to deriving the next model. The caveat to the design model is

that, to date, process noise is not measurable. Additionally, the engineer may decide to

substitute appropriate design parameters, such as bias, with alternative, simpler,

obtainable parameters that sufficiently describe a given parameter. Therefore, making a

model that gives the best, realistic state estimate with the alternative parameters,

engineers develop a third model—the navigation model. This model will be represented

with a hat overmark and is defined as follows:

 �̂̅� =

[

�̂�𝑛
�̂�𝑒
�̂�
𝑣
�̂�

�̂�𝑎𝑢
�̂�𝑎𝑣
�̂�𝜔
�̂�𝑐

Λ̂̅𝑛𝑒]

 (2.24)

26

 �̇̂̅� = 𝑓̅̂(�̂̅�, �̂̃̅�) =

[

�̇̂�𝑛
�̇̂�𝑒
�̇̂�
�̇�

�̇̂�

�̇̂�𝑎𝑢

�̇̂�𝑎𝑣

�̇̂�𝜔

�̇̂�𝑐

Λ̂̅
̇
𝑛𝑒]

=

[

�̂� cos(�̂�) − 𝑣 sin(�̂�)

�̂� sin(�̂�) + 𝑣 cos(�̂�)

�̃�𝑢 + �̂� 𝑣 − �̂�𝑎𝑢
�̃�𝑣 − �̂� �̂� − �̂�𝑎𝑣

�̃� − �̂�𝜔

−
�̂�𝑎𝑢
𝜏𝑎𝑢

−
�̂�𝑎𝑣
𝜏𝑎𝑣

−
�̂�𝜔
𝜏𝜔

−
�̂�𝑐
𝜏𝑐
0̅]

 (2.25)

where

 [
�̃�𝑢
�̃�𝑣
�̃�
] ≈ �̂̃̅� = [

�̂�𝑢 + �̂�𝑎𝑢
�̂�𝑣 + �̂�𝑎𝑣
�̂� + �̂�𝜔

] = [

�̇̂� − �̂� 𝑣 + �̂�𝑎𝑢
�̇� + �̂� �̂� + �̂�𝑎𝑣

�̂� + �̂�𝜔

] (2.26)

[

𝑝𝑛
𝑝𝑒
�̃�

Γ̃̅]

≈ 𝑧̅̃̂ = ℎ̂̅(�̂̅�(𝑡𝑘)) =

[

�̂�𝑛(𝑡𝑘)

�̂�𝑒(𝑡𝑘)

�̂�(𝑡𝑘)

Γ̂̅(𝑡𝑘)]

 (2.27)

Γ̂̅(𝑡𝑘) = [

Λ̂1𝑗(𝑡𝑘) Λ̂1𝑖(𝑡𝑘)⁄

Λ̂2𝑗(𝑡𝑘) Λ̂2𝑖(𝑡𝑘)⁄
] (2.28)

Λ̂̅𝑖𝑗(𝑡𝑘) =

[

Λ̂1𝑖(𝑡𝑘)

Λ̂1𝑗(𝑡𝑘)

Λ̂2𝑖(𝑡𝑘)

Λ̂2𝑗(𝑡𝑘)]

 (2.29)

[
Λ̂𝑖(𝑡𝑘)

Λ̂𝑗(𝑡𝑘)
] = �̂̅�𝐵

𝑐 �̂̅�𝐼
𝐵 [
Λ̂𝑛(𝑡𝑘)

Λ̂𝑒(𝑡𝑘)
] − �̂̅�𝐵

𝑐 �̂̅�𝐼
𝐵 [
�̂�𝑛(𝑡𝑘)
�̂�𝑒(𝑡𝑘)

]

= �̂̅�𝐵
𝑐 �̂̅�𝐼

𝐵 [
Λ̂𝑛(𝑡𝑘) − �̂�𝑛(𝑡𝑘)

Λ̂𝑒(𝑡𝑘) − �̂�𝑒(𝑡𝑘)
]

(2.30)

27

�̂̅�𝐵
𝑐 = [

cos(�̂�𝑐(𝑡𝑘)) sin(�̂�𝑐(𝑡𝑘))

−sin(�̂�𝑐(𝑡𝑘)) cos(�̂�𝑐(𝑡𝑘))
] (2.31)

�̂̅�𝐼
𝐵 = [

cos(�̂�(𝑡𝑘)) sin(�̂�(𝑡𝑘))

−sin(�̂�(𝑡𝑘)) cos(�̂�(𝑡𝑘))
] (2.32)

Λ̂̅𝑛𝑒(𝑡𝑘) =

[

Λ̂1𝑛(𝑡𝑘)

Λ̂1𝑒(𝑡𝑘)

Λ̂2𝑛(𝑡𝑘)

Λ̂2𝑒(𝑡𝑘)]

 (2.33)

Essentially, the navigation model approximates the truth model. The navigation model

propagates states forward in time and will account for (subtract out) bias errors to get as

near to the true model as possible. The navigation model is what the Kalman filter will

use to perform state estimates. Again, like the design model, the navigation model

attempts to derive �̇̂� and �̇� by solving for �̇̂�, �̇�, and �̂� in Equation (2.26).

2.1.2 Error State Mappings

The prior subsection just derived the state models that are used within the Kalman

filter: the design model for linearization in future subsections and the navigation model

for state estimate propagation. However, for simulations, the truth model can still be

utilized. By propagating both the truth and navigation models forward in time, the results

from both models can be compared to confirm that navigation dynamics sufficiently

matches and represents the true dynamics throughout the given simulation time.

Furthermore, error comparisons of simulation results can be developed with the truth

model. To do this dynamics confirmation and error comparison, mappings between the

navigation and the truth state are first needed (for clarity, these are mappings between

states, not dynamics).

28

To model the error discrepancies between the true state and the UAV’s navigation

state, an error state matrix is developed.

 𝛿�̅� =

[

𝛿𝑝𝑛
𝛿𝑝𝑒
𝛿𝑢
𝛿𝑣
𝛿𝜓
𝛿𝑏𝑎𝑢
𝛿𝑏𝑎𝑣
𝛿𝑏𝜔
𝛿𝑏𝑐
𝛿Λ̅𝑛𝑒]

 (2.34)

A 𝛿 is denoted as the perturbation difference between a true state value and that

true state value’s respective estimation measurement. The relationship between this error

matrix, the truth state, and the error state is explicitly written as

 �̅� =

[

𝑝𝑛
𝑝𝑒
𝑢
𝑣
𝜓
𝑏𝑎𝑢
𝑏𝑎𝑣
𝑏𝜔
𝑏𝑐
Λ̅𝑛𝑒]

=

[

�̂�𝑛 + 𝛿𝑝𝑛
�̂�𝑒 + 𝛿𝑝𝑒
�̂� + 𝛿𝑢
𝑣 + 𝛿𝑣
�̂� + 𝛿𝜓

�̂�𝑎𝑢 + 𝛿𝑏𝑎𝑢
�̂�𝑎𝑣 + 𝛿𝑏𝑎𝑣
�̂�𝜔 + 𝛿𝑏𝜔
�̂�𝑐 + 𝛿𝑏𝑐

Λ̂̅𝑛𝑒 + 𝛿Λ̅𝑛𝑒]

 (2.35)

Again, note that the truth state matrix has been modified, denoted with a lowercase �̅�, to

not incorporate heading rate, which is absent in the navigation state. Alternatively, the

mappings needed to transfer between one state to the next can equivalently be defined as

 �̅� = 𝑙(̅�̂̅�, 𝛿�̅�) = �̂̅� + 𝛿�̅� (2.36)

 �̂̅� = �̅�(�̅�, 𝛿�̅�) = �̅� − 𝛿�̅� (2.37)

 𝛿�̅� = �̅�(�̂̅�, �̅�) = �̅� − �̂̅� (2.38)

29

In conclusion, 𝑙(̅�̂̅�, 𝛿�̅�) is a mapping that corrects the state estimate to a modified true

state; �̅�(�̅�, 𝛿�̅�) is the mapping that “injects” errors to create the navigation state, and

�̅�(�̂̅�, �̅�) is the mapping to calculate the error state.

 To confirm consistency between these mappings within the simulation, a

validation function is developed. In this validation function, (1) the navigation state is

initially set without any pre-occurring errors (equivalent to the truth state). (2) errors are

injected into the navigation state using the �̅� mapping. (3) The errors are rederived using

the �̅� mapping. These rederived errors are compared to the initial injected errors to ensure

that both are equivalent. (4) Using the 𝑙 ̅mapping, the rederived errors are used to correct

the navigation state back into a rederived truth state. This rederived truth state is

compared to the original truth state to ensure that both are equivalent.

Table 2.1 yields the results from executing this validation function using arbitrary

initial truth state values and arbitrary initial injection errors.

Table 2.1: Mapping error validation.

State 𝛿�̅� − 𝛿�̅�𝑟𝑒𝑑𝑒𝑟𝑖𝑣𝑒𝑑 �̅� − �̅�𝑟𝑒𝑑𝑒𝑟𝑖𝑣𝑒𝑑 Units

𝑝𝑛 0 0 m

𝑝𝑒 0 0 m

𝑢 2.8e-15 0 m s⁄

𝑣 0 0 m/s
𝜓 -7.1e-17 0 rad

𝑏𝑎𝑢 0 -1.7e-18 m/s2

𝑏𝑎𝑣 0 -2.6e-18 m/s2

𝑏𝜔 0 -6.8e-21 rad/s
𝑏𝑐 1.7e-18 -8.7e-19 rad

Λ1𝑛 0 0 m

Λ1𝑒 0 0 m

Λ2𝑛 0 0 m

Λ2𝑒 0 0 m

The table indicates that negligible errors are induced using these three mappings. The fact

30

that errors are generated is not due incorrect mapping implementation. Using another

arbitrary set of truth states and injection errors, one can achieve complete, zero error in

both validation checks. The error is primarily induced through the binary nature of

computer computation, where decimal numbers cannot always be fully represented in a

binary format (i.e., round-off error). Most all these numbers are below machine epsilon,

approximately at 2.22e-16. The 𝑢 velocity for �̅� − �̅�𝑟𝑒𝑑𝑒𝑟𝑖𝑣𝑒𝑑 is above machine precision.

Errors of the same order of magnitude as 𝑢 were observed when implementing

transformation matrices, where errors are due to lack of machine precision to fully

represent sine and cosine values. This implies that, up to machine precision, the mappings

used within the simulation are consistent.

2.1.3 Propagation Validation

 Having states and dynamics defined, the system can be simulated, propagated,

forward in time; and with error state mappings defined, a propagation validation

algorithm can be made to ensure that this propagation is realistic in that the navigation

model sufficiently matches and represents the true dynamics.

In this propagation validation algorithm, the dynamics are simulated forward in

time with Euler’s method, manipulated control inputs, measurement synthesis, and

removal of noise and measurement restrictions. Discussing each of these four simulation

characteristics in order, the Euler method is the selected numerical integration algorithm

[25]. Using the Euler method, the navigation and truth states, both having the same initial

conditions (Table 2.2) are propagated forward with a time step of 0.01s.

31

Table 2.2. Initial conditions.

State �̅� �̂̅� Units

𝑝𝑛 400.0e+00 400.0e+00 m

𝑝𝑒 0.0e+00 0.0e+00 m

𝑢 16.0e+00 16.0e+00 m s⁄

𝑣 0.0e+00 0.0e+00 m/s
𝜓 1.6e+00 1.6e+00 rad

𝑟 0.0e+00 NA rad/s
𝑏𝑎𝑢 -3.4e-04 -3.4e-04 m/s2

𝑏𝑎𝑣 1.6e-03 1.6e-03 m/s2

𝑏𝜔 -1.9e-07 -1.9e-07 rad/s
𝑏𝑐 3.2e-03 3.2e-03 rad

Λ1𝑛 560.0e+00 560.0e+00 m

Λ1𝑒 340.0e+00 340.0e+00 m

Λ2𝑛 690.0e+00 690.0e+00 m

Λ2𝑒 440.0e+00 440.0e+00 m

Note that the time step was chosen to achieve the lowest computation time that still

provided non-diverging results (especially for the 2.1.6 Covariance Propagation

subsection). Implementation of higher-fidelity Runge-Kutta algorithms for non-zero-

hold, stochastic differential equations [30], implicit integration, or collocation methods

[4] is left for future work.

Regarding the second simulation characteristic, the control inputs to the truth state

dynamics in Equation (2.3) are manipulated such that �̇� = − (𝑟 𝑣 −
𝐶𝐷𝑜 𝜌 𝑉𝑎

2 𝑆

2𝑚
) +

sin(
𝑡𝜖
10
)

2

and that rudder inputs would execute a smooth sinusoidal behavior between maximum

and minimum rudder values, 𝛿⏞𝑟 =
𝜋 sin(

𝑡𝜖
17
)

2
. 𝑡𝜖 is the current simulation time. 𝑡𝜖 is

different from 𝑡𝑘 in that 𝑡𝜖 models “pseudo-continuous” simulation time increments of

0.01 s whereas 𝑡𝑘 models time in discrete increments of 1.0 s (using subscript 𝜖, rather

than the commonly used 𝑖, 𝑗, or 𝑛 is to reduce confusion between coordinate and state

subscripts). 𝑡 without any subscripts will represent continuous time in future derivations.

32

In the third characteristic, measurement synthesis, some re-clarification may be

needed first. The measurements that the navigation state receives is the truth

measurements (Equation (2.5) and Equation (2.6)); nevertheless, when the navigation

state needs to guess these measurements for the Kalman filter, the navigation state will

use its measurement equations (Equation (2.26) through Equation (2.32)) to make this

guess. With the reclarification addressed, the measurement synthesis characteristic can

now be described. To generate 𝑎𝑢, 𝑎𝑣 , and 𝜔 within �̃̅�, the algorithm does not use

derivative values from Euler’s method nor the angular velocity 𝑟. Rather, the algorithm

attempts to synthesizes the measurements in a more discrete fashion as

[

�̃�𝑢(𝑡𝜖−1)

�̃�𝑣(𝑡𝜖−1)

�̃�(𝑡𝜖−1)
]

=

[

𝑢(𝑡𝜖) − 𝑢(𝑡𝜖−1)

𝑡𝜖 − 𝑡𝜖−1
− 𝑣(𝑡𝜖−1) 𝑟(𝑡𝜖−1) + 𝑏𝑎𝑢(𝑡𝜖−1) + 𝜂𝑎𝑢(𝑡𝜖−1)

𝑣(𝑡𝜖) − 𝑣(𝑡𝜖−1)

𝑡𝜖 − 𝑡𝜖−1
+ 𝑢(𝑡𝜖−1) 𝑟(𝑡𝜖−1) + 𝑏𝑎𝑣(𝑡𝜖−1) + 𝜂𝑎𝑣(𝑡𝜖−1)

𝜓(𝑡𝜖) − 𝜓(𝑡𝜖−1)

𝑡𝜖 − 𝑡𝜖−1
+ 𝑏𝜔(𝑡𝜖−1) + 𝜂𝜔(𝑡𝜖−1)]

(2.39)

Such a synthesis provides body frame accelerations similar to how physical

accelerometers and gyroscopes discretely collect measurements and also accounts for

Coriolis terms as described in [13]. From previous author mistakes, the time variables 𝑡𝜖

and 𝑡𝜖−1 are explicitly labeled in this equation to help future implementers. The use of

variables at 𝑡𝜖−1 in the Coriolis, bias, and noise terms, as opposed to variables at 𝑡𝜖, is

due to the simulation’s organization. First, the truth state is propagated from 𝑡𝜖−1 to 𝑡𝜖;

second, the continuous measurements at 𝑡𝜖−1 are calculated; third, the navigation state is

propagated from 𝑡𝜖−1 to 𝑡𝜖; Finally, if the 1s time increment has elapsed, discrete

33

measurements are calculated (The author assumes that all discrete measurements become

available in the same 1s cycle, given that GPS is not denied and assuming that an image

can be fully processed by 1s). Therefore, for the navigation state to accurately propagate

to 𝑡𝜖, it needs measurements at 𝑡𝜖−1, not measurements at a future time.
𝜓(𝑡𝜖)−𝜓(𝑡𝜖−1)

𝑡𝜖−𝑡𝜖−1
 is

not used for 𝑟(𝑡𝜖−1) in the Coriolis terms because, although it would make the synthesis

more discrete-sensor-realistic, such a substitution would imply that values generated by

the accelerometer are influenced by values from the gyroscope. For later derivations, the

author assumes that sensor measurements are independent from each other, hence the

author uses 𝑟(𝑡𝜖−1) in the Coriolis term to prevent inter-sensor dependence.

In the algorithm’s fourth characteristic, noise and measurement restriction

removal, all �̅� and �̅�∗(𝑡𝑘) values are set to null in all dynamics and measurement models.

Furthermore, GPSD is removed, and line-of-sight measurements are allowed to be

processed even after the forward-facing camera passes a landmark. Doing so, allows the

navigation state dynamics and measurement models to always receive perfect knowledge

of truth state values. Hence, propagating the navigation state using these truth state values

allows one to analyze underlying dynamics more clearly and analyze the fidelity of the

navigation state dynamics itself without the influence of system noise or measurement

restrictions. Note, magnetometer jamming is not analyzed in this document.

 Executing the propagation validation simulation with these given characteristics,

Figure 2.3 through Figure 2.19 display the outcomes. Error plots are the differences

between the truth state and the error state (generated with the �̅� mapping) and residual

plots are the differences between true discrete measurements (Equation (2.6)) and

navigation discrete measurements (Equation (2.27)), i.e., 𝑧̅̃ − 𝑧̅̃̂.

34

Figure 2.3. Propagation validation of UAV north and east coordinates.

Figure 2.3 shows the UAV’s trajectory with respect to 2D space as it meanders

by two landmarks (located at 560 N, 340 E and 690 N, 440 E). With max, 90° rudder

input, the UAV can achieve a minimum turn radius of approximately 100 m if traveling

at a constant velocity of 16 m/s, which is a similar result found in previously generated

3D simulations. With 90° rudder inputs being unrealistic, an alternative way for

achieving this 3D minimum-turn result in a 2D simulation would be to alter the

aerodynamic 𝐶∗ coefficients.

35

Figure 2.4. Propagation validation of UAV trajectory over time.

The same trajectory with respect to time is presented in within Figure 2.4. Note

that double y-axes are used on this and future plots. The two pairs of crests and troughs in

the figure correspond to the two loops formed in Figure 2.3. Overall, the UAV navigation

state position appears to follow the truth state position well.

36

Figure 2.5. Propagation validation of UAV velocity in Body frame over time.

Figure 2.6. Propagation validation in N-E frame over time.

Figure 2.5 and Figure 2.6 provide the UAV’s velocity with respect to the Body

and N-E frame. The stark difference between the slopes in these two graphs help

illustrate the reason why propagating truth and navigation velocities in different

37

coordinate frames using the Euler method on the assumed dynamics can be troublesome.

That is, the differing slopes of Body velocities and North-East velocities at a given point,

skews the Euler projection. Assuming an approximate maximum velocity of 25 m/s [31],

this trajectory’s max forward velocity is slightly larger, providing an extreme case to

induce larger velocity error into the system.

Figure 2.7. Propagation validation of UAV attitude and attitude rate over time.

In terms of attitude, both states have heading; both appear to follow each other

well in Figure 2.7. The navigation state has no heading rate to compare with the truth

state.

38

Figure 2.8. Propagation validation of UAV position error over time.

Looking more finely at errors, Figure 2.8 shows that max position discrepancies

between the navigation state and truth state are just under 5 pm. Realistically, with GPS

errors being on the order of meters, such discrepancies suffice.

39

Figure 2.9. Propagation validation of UAV Body frame velocity error over time.

Figure 2.10. Propagation validation of UAV North-East frame velocity error over time.

With position being the integral of velocity, position errors are a recipient of

velocity error`s. Figure 2.9 and Figure 2.10 alludes to this, where velocity errors are an

order of magnitude smaller than position errors. Figure 2.9 has a unique characteristic

40

where the 𝑢 velocity error is essentially null. The reasoning for such characteristic is

from the measurement synthesis. If periods of large heading rates had occurred while the

𝑣 component had significant error accumulation, 𝑢 errors would also have been

introduced as the navigation state attempted to account for the Coriolis term. This

trajectory did not yield large enough heading rates and lateral velocity simultaneously to

introduce such errors.

Figure 2.11. Propagation validation of UAV heading error over time.

The errors associated with heading are null in Figure 2.11, indicating that the

navigation dynamics can perfectly match truth state heading despite the use of

measurement synthesis. Since Figure 2.10 is derived using transformation matrices that

use the heading state, zero heading error implies that Figure 2.10 is only erroneous due to

velocity errors, not heading errors. However, this implication will not hold in future

simulations. In the 2.1.6 Covariance Propagation and later subsections, assuming heading

errors do not affect velocity covariance is wrong—errors are due to both.

41

Figure 2.12. Propagation validation of UAV accelerometer bias over time.

Figure 2.13. Propagation validation of UAV gyroscope bias and camera bias over time.

The bias error results in Figure 2.12 and Figure 2.13 are all null for all time. In

other words, Euler integration on these first-order differential equations (when noise is

set to null) match exactly in both the truth state and navigation state.

42

Figure 2.14. Propagation validation of Landmark 1’s position error.

Figure 2.15 Propagation validation of Landmark 2’s position error.

Figure 2.14 and Figure 2.15 describe, because landmark position in this research

does not change over time, that no errors incur due to propagation.

43

Figure 2.16. Propagation validation of UAV GPS position residuals over time.

The GPS position measurement residuals shown in Figure 2.16 discretely

pattern the errors in Figure 2.8, implying that discrepancies between true measurements

and navigation measurements are essentially due to the original errors between truth state

dynamics and navigation state dynamics.

44

Figure 2.17. Propagation validation of UAV magnetometer residuals over time.

The heading residuals of Figure 2.17, like heading errors, are null, indicating

that implementation of heading measurements is correct.

Figure 2.18. Propagation validation of UAV camera measurement residuals over time.

45

In Figure 2.18, Camera measurement errors have a significantly larger error

spike later in the simulation. In fact, error spikes occur throughout the simulation, though

negligible in size. The spikes do not necessarily align with the previously seen states or

errors. Rather, the spikes align to measurements when the Γ̅(𝑡𝑘) ratios are extreme (e.g

when Λ1𝑗(𝑡𝑘) is significantly larger than Λ1𝑖(𝑡𝑘)—analogous to image distortion as an

object moves further from center in a camera picture [9]). The largest error spike occurs

when the vehicle is on the far-right side of Figure 2.3, a position out of the camera’s

realistic FOV (i.e., the erroneous measurement would not have been received).

Figure 2.19. Propagation validation of UAV control input.

As aforementioned, the inputs for this propagation validation step were made

sinusoidal. Such inputs allowed the vehicle to experience input extremes, even negative

thrust. Note that noise-corrupted control inputs will not be considered in this study and is

left for future work.

46

Based on the negligible discrepancies within all these plot results, when noise

sources and measurement restrictions are added in future simulations, significant errors

that occur will be assumed to not be attributed to incorrect model development.

2.1.4 Linear Error State Modeling

Up to this point, states have been defined, mappings between those states have

been developed, and validation that the states are consistent between one another has

been confirmed. Moving forward, there are four key equation that are used within the

IEKF [3]. The first equation is Equation (2.25)—The navigation state dynamics, �̇̂̅� =

𝑓̅̂(�̂̅�, �̂̃̅�). The remaining three are as follows:

 �̂̅�
̇
= �̆̅��̆̅�(�̂̅�)�̂̅� + �̂̅��̆̅��̆̅�

𝑇(�̂̅�) + �̆̅�(�̂̅�)�̆̅�(�̂̅�) �̆̅�𝑇(�̂̅�) (2.40)

 𝛿�̂̅�+ = �̂̅�{𝑧̅̃ − 𝑧̅̃̂−} (2.41)

�̂̅�+ = {𝐼 ̅̂ − �̂̅��̆̅��̆̅�(�̂̅�
−(𝑡𝑘))}�̂̅�

−{𝐼 ̅̂ − �̂̅��̆̅��̆̅�(�̂̅�
−(𝑡𝑘))}

𝑇

+ �̂̅�𝐽 ̅̆(�̂̅�)�̆̅�(�̂̅�)𝐽 ̅̆𝑇(�̂̅�)�̂̅�𝑇

(2.42)

In broad explanation, Equation (2.25) generates the “best” (i.e., mean and mode) estimate

of the UAV state. Equation (2.40) generates the covariance estimate associated with that

state estimate. Equation (2.41) generates an update as to what the current state errors are.

Equation (2.42) generates an update as to what the current covariance is. The following

paragraph will provide a finer explanation to Equation (2.40). The 2.1.5 Linear Error

Measurement Modeling subsection will provide more explanation to the latter two

equations.

As aforementioned, an IEKF is a statistics algorithm that attempts to determine a

better estimate to a system’s navigation state and provides covariances associated with

47

that navigation state. To do this approximation, the filter relies on linearization of the

design model dynamics and design measurement model. The terms generated from these

linearizations are many of the terms used in Equation (2.40) through Equation (2.42).

Deriving the dynamics linearization ([3,24]) as well providing a validation algorithm for

correct implementation will now be discussed.

The truth states, design model states, and navigation state have previously been

defined with Equation (2.1), Equation (2.14), and Equation (2.24). Their nonlinear

dynamics have also been defined as

 �̇̅� = 𝑓(̅�̅�, �̅�, �̅�) (2.43)

 �̇̆̅� = 𝑓̅̆(�̆̅�, �̆̃̅�, �̆̅�) = 𝑓̅̆(�̆̅�, �̆̃̅�) + �̆̅�(�̆̅�)�̆̅� (2.44)

 �̇̂̅� = 𝑓̅̂(�̂̅�, �̂̃̅�) (2.45)

(Equation (2.3), Equation (2.15), and Equation (2.25)). Process noise, �̆̅� =

[�̆�𝑎𝑢 �̆�𝑎𝑣 �̆�𝜔 �̆�𝑎𝑢 �̆�𝑎𝑣 �̆�𝜔 �̆�𝑐]𝑇, is separated from other terms in Equation

(2.44) as the accompanying matrix to allow this separation, �̆̅�(�̆̅�), will be needed in

Equation (2.40). Being able to access �̆̅�(�̆̅�) is why derivation evaluation in terms of the

design model is used, unlike the navigation model, which does not allow the engineer to

retain noise terms.

 �̆̅�(�̂̅�) =

[

0 0 0 0 0 0 0
0 0 0 0000
−1 0 0 0000
0 −1 0 0000
0 0 −10000
0 0 0 1000
0 0 0 0100
0 0 0 0010
0 0 0 0001
0 0 0 0000
0 0 0 0000
0 0 0 0000
0 0 0 0000]

 (2.46)

48

Although only a matrix of constants for this simulation, other simulations may yield more

complicated components in �̆̅�(�̂̅�), e.g., when transformation matrices are manipulated on

noise-bearing states. When flying in real time, the UAV has no access to ideal �̆̅� variable

values; hence, �̆̅�, called the noise coupling matrix, would need to be evaluated using

accessible navigation state terms—�̆̅�(�̂̅�):

Returning to the derivation, the nonlinear truth dynamics can be reformatted into

their linear equivalent using the method of first-order Taylor series expansion, as the

following equation shows:

Making this linear equation in terms of the design model, evaluated with navigation terms

as the nominal, the truth state consequently will have heading rate removed in this

derivation, hence the use of �̇̅�, not �̇̅�. Equation (2.47) states that the reduced truth state

dynamics is approximately equal to the design model evaluated at the navigation state

plus the design model’s Jacobian matrix, �̆̅��̆̅�(�̂̅�) (i.e.
𝜕�̆̅�(�̆̅�,�̆̃̅�)

𝜕�̆̅�
|
�̂̅�

; breve above �̅� to indicate

that it is the partial of 𝑓̅̆(�̆̅�, �̆̃̅�); subscript �̆̅� to indicate that the partial is with respect to the

design model state; (�̂̅�) operator to indicate evaluation using navigation model terms, just

like �̆̅�(�̂̅�)), which is multiplied by the perturbation discrepancy between the truth and

navigation model states, 𝛿�̅�. A measurement term, �̆̅��̆̅�(�̂̅�)𝛿�̆̃̅�, does not appear in the

expansion since �̆̃̅� in 𝑓̅̆(�̆̅�, �̆̃̅�) has become a deterministic input (i.e. its noise has been

separated out into �̆̅�(�̂̅�)�̆̅�) and thus there is no error 𝛿�̆̃̅� within 𝑓̅̆(�̆̅�, �̆̃̅�). Noise term

 �̇̅� ≈ {𝑓̅̆(�̂̅�, �̂̃̅�) + �̆̅�(�̂̅�)�̆̅�} + �̆̅��̆̅�(�̂̅�)𝛿�̅� + 𝐻. 𝑂. 𝑇 (2.47)

49

𝜕{�̆̅�(�̆̅�)�̆̅�}

𝜕�̆̅�
|
�̂̅�
𝛿�̅� becomes null since evaluation at the navigation state has �̂̅� = 0̅. Noise term

𝜕{�̆̅�(�̆̅�)�̆̅�}

𝜕�̆̅�
|
�̂̅�
𝛿�̅� is grouped with higher order terms from the Taylor expansion, 𝐻. 𝑂. 𝑇.

In addition to the Taylor expansion, the truth state dynamics can be represented

in yet another format. Similar to error state mappings, the truth and navigation model

states are assumed to be related via

 �̅� = �̂̅� + 𝛿�̅� (2.48)

Which implies that

 �̇̅� = �̇̂̅� + 𝛿�̇̅� (2.49)

If Equation (2.49) is substituted into the left-hand-side of Equation (2.47), canceling out

�̇̂̅� with 𝑓̅̆(�̂̅�, �̂̃̅�) and assuming that 𝐻.𝑂. 𝑇 are negligible yields that

 𝛿�̇̅� ≈ �̆̅��̆̅�(�̂̅�)𝛿�̅� + �̆̅�(�̂̅�)�̆̅� (2.50)

Equation (2.50), called the linear state perturbation model or linear error state model, up

to a first-order approximation, determines the rate of state errors over time; and its

Jacobian term, along with �̆̅�(�̂̅�), the current covariance, �̂̅�, and the �̆̅�(�̂̅�) power spectral

density matrix (�̆̅�(�̂̅�) will be discussed more in the 2.1.6 Covariance Propagation

subsection) are used to calculate covariance rates, �̂̅�
̇
, in Equation (2.40). In other words,

�̂̅�
̇
 will track the covariances associated with the propagated navigation state throughout

the entire simulation. The Jacobian term for this research (again, with design model

variables substituted with navigation model values) has been determined to be

50

 �̆̅��̆̅�(�̂̅�) =

[

0 0 {cos(�̂�)} {−sin(�̂�)} Ξ̂3 0 0 0 0 0 000

00 {sin(�̂�)} {cos(�̂�)} Ξ̂4 0 0 0 0 0 000

00 0 �̂� 0 −1 0 −𝑣 0 0 000
00 −�̂� 0 0 0 −1 �̂� 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 000

00 0 0 0 {
−1

�̂�𝑎𝑢
} 0 0 0 0 0 00

00 0 0 0 0 {
−1

�̂�𝑎𝑣
} 0 0 0 0 0 0

00 0 0 0 0 0 {
−1

�̂�𝜔
} 0 0 0 0 0

0 0 0 0 0 0 0 0 {
−1

�̂�𝑐
} 0 0 0 0

0 0 0 0 0 0 0 0 0 0 000
00 0 0 0 0 0 0 0 0 000
00 0 0 0 0 0 0 0 0 000
00 0 0 0 0 0 0 0 0 000]

 (2.51)

where braces are used to denote multiplication, separation between a set of terms, and to

help prevent confusion between the parentheses used in function operators. Furthermore,

 [
Ξ̂3
Ξ̂4
�̂�

] = [

−𝑣cos(�̂�) − �̂� sin(�̂�)

�̂� cos(�̂�) − 𝑣 sin(�̂�)

�̃� − �̂�𝜔

] (2.52)

 Again, the reason for this derivation, is to acquire �̆̅�(�̂̅�) and �̆̅��̆̅�(�̂̅�) for the

Kalman filter’s key equations. Though there is difficulty in validating correct derivation of

�̆̅�(�̂̅�) on its own (see 2.1.6 Covariance Propagation subsection), �̆̅��̆̅�(�̂̅�), however, can be

validated with Equation (2.50). To do this, one can compare the linear error state

propagation results in the linear error sate model with the true state error �̅� mapping and

determine whether the linear error state sufficiently matches the true state error. The rest

of this subsection will describe the developed validation algorithm that is used to confirm

this sufficient matching.

51

In the linear error state modeling validation algorithm, the four simulation

characteristics of the propagation validation algorithm are used. Moreover, all time

constants are manipulated to equal 1/10th of the discrete measurement time increments.

Doing so ensures that the bias dynamics are exercised (i.e., magnified or stressed) and

tests whether the linear error state model can model errors for extreme linear differential

equations.

The procedure for the linear error state modeling validation algorithm is as

follows: First, with both truth and navigation states starting out at the same initial

conditions, a known perturbation error matrix, 𝛿�̅� is injected into navigations state via the

�̅� mapping. Thus, the truth and navigation states are no longer the same, but their initial

errors, as calculated in the �̅� mapping, are the same as the initial state of the linear error

state model. Second, the truth, the navigation, and the linear error state model are

propagated forward in time. Propagation was chosen to stop at the first discrete time

measurement (1 s). Stopping at this time is somewhat arbitrary, nevertheless, it provides

sufficient vehicle movement history that is worth comparing (the vehicle has already

moved ~16 m) and errors are assumed to have not accumulated above that which the

first-order approximation can account for. Furthermore, after 1 s increments, the Kalman

filter has been assigned to correct those errors, which means, theoretically, the

linearization only needs to be valid for one second cycles since the Kalman filter discrete

measurement updates will correct errors afterwards. Finally, the propagated errors of the

linear error state model are compared to the errors of the �̅� mapping at the first discrete

time measurement. Table 2.3 provides the results from this validation procedure.

52

Table 2.3. Linear error state validation.

State
Injected

Errors
𝛿�̅�𝑙𝑖𝑛𝑒𝑎𝑟 𝛿�̅�𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

Propagation

Difference
Units

𝑝𝑛 2.0e+00 1.7e+00 1.7e+00 7.9e-04 m

𝑝𝑒 3.0e+00 3.2e+00 3.2e+00 1.4e-03 m

𝑢𝑛 2.0e-01 1.6e-01 1.6e-01 3.8e-06 m s⁄

𝑣𝑒 3.0e-01 2.5e-01 2.5e-01 -2.5e-06 m s⁄

𝜓 4.7e-03 4.7e-03 4.7e-03 -6.5e-16 rad

𝑏𝑎𝑢 3.7e-01 9.9e-06 9.9e-06 1.7e-21 m/s2

𝑏𝑎𝑣 5.6e-01 1.5e-05 1.5e-05 -1.5e-20 m/s2

𝑏𝜔 1.4e-04 3.7e-09 3.7e-09 -4.1e-25 rad/s
𝑏𝑐 1.1e-02 2.9e-07 2.9e-07 -2.1e-22 rad

Λ1𝑛 10.0e+00 10.0e+00 10.0e+00 0.0e+00 m

Λ1𝑒 10.0e+00 10.0e+00 10.0e+00 0.0e+00 m

Λ2𝑛 15.0e+00 15.0e+00 15.0e+00 0.0e+00 m

Λ2𝑒 15.0e+00 15.0e+00 15.0e+00 0.0e+00 m

Table 2.3’s first numeric column provides the selected errors that were injected

into the navigation state. These errors are 2 to 3 times that of the 3𝜎 initial (commercial

grade) state uncertainty, as will be described in the 2.1.6 Covariance Propagation and

2.1.7 Estimation Capability subsections, except for the landmarks, which used one time

the initial 3𝜎 uncertainty or less. The second numeric column shows the errors as

determined by the linear error state model at the end of propagation. Third are the errors

in terms of the true, nonlinear mapping at the end of propagation. The differences

between these two propagation columns are provided in the last numeric column. Both

the linear propagations and nonlinear mappings retain the same magnitude of error as the

initial injected error, with the exception being the biases, which actually decrease errors

by at least four orders of magnitude (i.e., the linear error state model tracks linear

dynamics with ease). In terms of propagation difference, UAV position error differences

are on the order of mm or less. UAV velocity error differences are also on the order of

𝜇m/s. Heading error differences are essentially numerically negligible. More so

53

negligible are the bias propagation error differences. Landmarks, having zero dynamics,

retain zero error differences. Compared to the previous sections, the errors associated

with position and velocity are significantly higher; nevertheless, the first-order

approximation retain position error differences well below GPS errors and retain velocity

error differences well below industry velocimeters errors. Of more concern, perhaps, are

the landmark position errors. Though the results initially imply that even 15m of error

will be perfectly accounted for, the results implicitly indicate that this error matrix for

continuous measurements cannot account for real-time landmark errors—the linear error

state model can only assume that landmark errors at the end of the simulation will be the

exact same as those at the beginning of the simulation. An alternative matrix, such as the

discrete measurement matrix derived in the 2.1.5 Linear Error Measurement Modeling

subsection, will need to be used to account for errors in landmark positions. For the

purpose of accounting for errors based on the continuous dynamics, however, �̆̅��̆̅�(�̂̅�)

appears to adequately provide this accounting, even for extremely large errors, and should

thus be sufficient for the Kalman filter’s key equations.

2.1.5 Linear Error Measurement Modeling

 Much of the Kalman filter development up to this point has been with regards to

propagating state estimates and state covariance. This propagation process is associated

with continuous measurements. Alternatively, the update process of the Kalman filter is

associated with the system discrete measurements. In this update process, the Kalman

filter decides the legitimacy of discrete measurements. After collecting true, raw discrete

measurements, the Kalman algorithm compares these measurements to what the

navigation state guessed these discrete measurements (of the a priori state) to be—this is

54

the residual comparison that was performed in the 2.1.3 Propagation Validation

subsection, i.e.

 𝑧̅̃ − 𝑧̅̃̂− =

[

𝑝𝑛(𝑡𝑘) + 𝜂𝑝𝑛(𝑡𝑘)

𝑝𝑒(𝑡𝑘) + 𝜂𝑝𝑒(𝑡𝑘)

𝜓(𝑡𝑘) + 𝜂𝜓(𝑡𝑘)

𝛤(𝑡𝑘) + �̅��̅�(𝑡𝑘)]

−

[

�̂�𝑛(𝑡𝑘)

�̂�𝑒(𝑡𝑘)

�̂�(𝑡𝑘)

�̂�(𝑡𝑘)]

 (2.53)

Using a statistical weighting matrix called the Kalman gain, �̂̅�, on the residual, the filter

will place higher favoring weight on measurements residuals that are more likely (e.g.,

low Kalman gains are applied to residuals, where the raw measurement is outside its 3𝜎

measurement range). In this manner, the filter generates posteriori statistical guess

adjustments, updates, as to what the errors are between the navigation state and the true

state of the vehicle—This is third key Kalman equation, Equation (2.41), where “+”

superscripts indicate posteriori and “-” superscripts indicate a priori. These errors can

then be applied to the navigation state via the 𝑙 ̅mapping in an attempt to make the

navigations state equal to the truth state (see 2.1.7 Estimation Capability subsection). For

clarity, note that this text has residuals = innovations, as opposed to other texts which

classify residuals as 𝑧̅̃ − 𝑧̅̃̂+.

 Just as Equation (2.41) provides updates to the state estimates, Equation (2.42)

provides updates to the state covariance. An alternative, simpler form to this equation is

 �̂̅�+ = �̂̅�− − �̂̅��̆̅��̆̅�(�̂̅�
−(𝑡𝑘))�̂̅�

− (2.54)

Equation (2.54) shows that adjusted update covariance is equal to the a priori covariance

plus a multiple composed of the Kalman gain weight, the measurement geometry matrix,

�̆̅��̆̅�(�̂̅�
−(𝑡𝑘)), and the a priori covariance. Equation (2.54) has the same form as Equation

(2.41), where the update is basically the current covariance state plus a weighting on the

55

current covariance state (note that 𝛿�̂̅�− does not show up in Equation (2.41) because

estimated state error prior to the measurement update is guessed to be null). The reason for

defaulting to Equation (2.42), called the Joseph form, rather than Equation (2.54) for

implementation is that the Joseph form has desirable numerical properties in terms of

retaining symmetry, retaining positive definiteness, handling errors, and code

manipulation (e.g. the capability of zeroing out Kalman gains, which can force the filter to

reject measurements).

 The terms of the Joseph form covariance update equation need to be identified.

Though �̂̅� and �̆̅�(�̂̅�) are left to be discussed in the 2.1.7 Estimation Capability subsection,

this subsection will describe 𝐼 ̅̂, 𝐽 ̅̆(�̂̅�), and �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)). 𝐼 ̅

̂ is simply the identity matrix and

is the same size as �̂̅� (same length as �̅�). 𝐽 ̅̆(�̂̅�) is a separation matrix like �̆̅�(�̂̅�).

�̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) is the measurement geometry matrix obtained in the same manner as

�̆̅��̆̅�(�̂̅�)—linearization. Deriving 𝐽 ̅̆(�̂̅�) and �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) as well as validating �̆̅��̆̅�(�̂̅�

−(𝑡𝑘))

will now be explained.

Deriving �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)), similar to �̆̅��̆̅�(�̂̅�), recall that true discrete measurements,

design model discrete measurements, and navigation model discrete measurements have

been defined as

 𝑧̅̃ = ℎ̅(�̅�−(𝑡𝑘), �̅�(𝑡𝑘)) (2.55)

 𝑧̅̃̆ = ℎ̆̅(�̆̅�−(𝑡𝑘), �̆̅�(𝑡𝑘)) = ℎ̆̅(�̆̅�−(𝑡𝑘)) + 𝐽 ̅
̆(�̂̅�)�̆̅�(𝑡𝑘) (2.56)

 𝑧̅̃̂ = ℎ̂̅(�̂̅�−(𝑡𝑘)) (2.57)

(Equation (2.6), Equation (2.17), and Equation (2.27)) The a priori superscript is now

included in these definitions for completeness. Classifying discrete measurement noise

56

with higher order terms, �̆̅�(𝑡𝑘) is separated out of ℎ̆̅(�̆̅�−(𝑡𝑘), �̆̅�(𝑡𝑘)) using 𝐽 ̅̆(�̂̅�)

 𝐽 ̅̆(�̂̅�) =

[

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 (2.58)

Although only an identity matrix for this simulation, other simulations may yield more

complicated components in 𝐽 ̅̆(�̂̅�), for example, when the noise of one sensor influences

the noise of another sensor (The author prevented this influence in the third simulation

characteristic of measurement synthesis). (�̂̅�) is maintained with 𝐽 ̅̆ to explicitly indicate,

should complicated components arise, navigation state values are used. In the 2.1.7

Estimation Capability subsection, this matrix will actually be broken down for numerical

stability and higher fidelity estimation purposes.

 Formatting 𝑧̅̃ into its first-order linear equivalent via Taylor series expansion

yields

 𝑧̅̃ ≈ {ℎ̆̅(�̂̅�−(𝑡𝑘)) + 𝐽 ̅
̆(�̂̅�)�̆̅�(𝑡𝑘)} + �̆̅��̆̅�(�̂̅�

−(𝑡𝑘))𝛿�̅� + 𝐻. 𝑂. 𝑇 (2.59)

where �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) =

𝜕ℎ̅̆(�̆̅�−(𝑡𝑘))

𝜕�̆̅�
|
�̂̅�

. Note
𝜕ℎ̅̆(�̆̅�−(𝑡𝑘))

𝜕�̆̅�(𝑡𝑘)
|
�̂̅�

𝛿�̆̅�(𝑡𝑘) and
𝜕𝐽̅̆(�̂̅�)�̆̅�(𝑡𝑘)

𝜕�̆̅�
|
�̂̅�
𝛿�̅� are null,

and
𝜕𝐽̅̆(�̂̅�)�̆̅�(𝑡𝑘)

𝜕�̆̅�(𝑡𝑘)
|
�̂̅�
𝛿�̆̅�(𝑡𝑘) is grouped with 𝐻.𝑂. 𝑇. Alternatively, another form of the truth

measurement can be defined via perturbations

 𝑧̅̃ = 𝑧̅̃̂ + 𝛿𝑧̅̃ (2.60)

If Equation (2.60) is substituted into the left-hand-side of Equation (2.59), canceling out 𝑧̅̃̂

with ℎ̆̅(�̂̅�−(𝑡𝑘)) and assuming that 𝐻.𝑂. 𝑇 are negligible indicates that

 𝛿𝑧̅̃ ≈ �̆̅��̆̅�(�̂̅�
−(𝑡𝑘))𝛿�̅� + 𝐽 ̅

̆(�̂̅�)�̆̅�(𝑡𝑘) (2.61)

57

Although the Jacobian of the first three discrete measurements are explicit functions of �̆̅�,

the camera measurements are implicit functions of �̆̅�, having values of Λ̆̅𝑖𝑗(𝑡𝑘) and not

Λ̆̅𝑛𝑒(𝑡𝑘). To account for these implicit measurements, a sub derivation is required:

 Recalling the definition of a single truth line-of-sight vector from the 2.1.1

States and Models subsection,

 [
Λ𝑖(𝑡𝑘)
Λ𝑗(𝑡𝑘)

] = �̅�𝐵
𝑐�̅�𝐼

𝐵 [
Λ𝑛(𝑡𝑘) − 𝑝𝑛(𝑡𝑘)
Λ𝑒(𝑡𝑘) − 𝑝𝑒(𝑡𝑘)

] (2.62)

(Equation (2.11)). Like 𝑧̅̃, line-of-sight can be approximated with Taylor series, again,

using the design model terms but evaluating with navigation values

 [
Λ𝑖(𝑡𝑘)
Λ𝑗(𝑡𝑘)

] ≈ [
Λ̆𝑖(𝑡𝑘)

Λ̆𝑗(𝑡𝑘)
]|
�̂̅�

+

[

∂Λ̆𝑖(𝑡𝑘)

𝜕�̆̅�
∂Λ̆𝑗(𝑡𝑘)

𝜕�̆̅�]

||

�̂̅�

𝛿�̅� + 𝐻.𝑂. 𝑇 (2.63)

Assuming that the truth line-of-sight vector can also be defined by a perturbation

equation,

 [
Λ𝑖(𝑡𝑘)
Λ𝑗(𝑡𝑘)

] = [
Λ̂𝑖(𝑡𝑘)

Λ̂𝑗(𝑡𝑘)
] + [

δΛ𝑖(𝑡𝑘)
δΛ𝑗(𝑡𝑘)

] (2.64)

this perturbation equation is substituted into the left-hand-side of the truth line-of-sight

Taylor expansion. Using the same cancellation technique as in prior derivation yields

 [
δΛ𝑖(𝑡𝑘)
δΛ𝑗(𝑡𝑘)

] ≈

[

𝜕�̆�𝑖(𝑡𝑘)

𝜕�̆̅�
𝜕�̆�𝑗(𝑡𝑘)

𝜕�̆̅�]

||

�̂̅�

𝛿�̅� (2.65)

 Applying this subderivation, the camera measurements of �̆̅��̆̅�(�̂̅�
−(𝑡𝑘))𝛿�̅� can be

expanded via the chain rule.

58

 𝛿Γ̅ ≈
𝜕Γ̆̅(�̆̅�−(𝑡𝑘))

𝜕Λ̆̅𝑖𝑗(𝑡𝑘)
|
Λ̂̅𝑖𝑗

𝛿Λ̅(𝑡𝑘) =
𝜕Γ̆̅−(𝑡𝑘)

𝜕Λ̆̅𝑖𝑗(𝑡𝑘)
|
Λ̂̅𝑖𝑗

𝜕Λ̆̅𝑖𝑗
− (𝑡𝑘)

𝜕�̆̅�(𝑡𝑘)
|
�̂̅�
𝛿�̅� (2.66)

The resulting, total �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) matrix is therefore

 �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) =

[

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 00 0 000 0 0 0 0 0
0 0 00 1 000 0 0 0 0 0
Ξ̂5 Ξ̂7 00 Ξ̂9 000 Ξ̂9 {−Ξ̂5} {−Ξ̂7} 0 0

Ξ̂6 Ξ̂8 00 Ξ̂10 000 Ξ̂10 0 0 {−Ξ̂6} {−Ξ̂8}]

 (2.67)

where

[

Ξ̂5
Ξ̂6
Ξ̂7
Ξ̂8
Ξ̂9
Ξ̂10]

=

[

Ξ̂11Ξ̂15 − Ξ̂12Ξ̂16
Ξ̂13Ξ̂15 − Ξ̂14Ξ̂16
Ξ̂11Ξ̂16 + Ξ̂12Ξ̂15
Ξ̂13Ξ̂16 + Ξ̂14Ξ̂15
Ξ̂11Ξ̂17 + Ξ̂12Ξ̂18
Ξ̂13Ξ̂19 + Ξ̂14Ξ̂20]

 (2.68)

𝜕Γ̆̅−(𝑡𝑘)

𝜕Λ̆̅𝑖𝑗(𝑡𝑘)
|

Λ̂̅𝑖𝑗

= [
Ξ̂11 Ξ̂12 0 0

0 0 Ξ̂13 Ξ̂14
]

=

[

−Λ̂1𝑗(𝑡𝑘)

Λ̂1𝑖
2 (𝑡𝑘)

1

Λ̂1𝑖(𝑡𝑘)
0 0

0 0
−Λ̂2𝑗(𝑡𝑘)

Λ̂2𝑖
2 (𝑡𝑘)

1

Λ̂2𝑖(𝑡𝑘)]

(2.69)

𝜕Λ̆̅𝑖𝑗
− (𝑡𝑘)

𝜕�̆̅�(𝑡𝑘)
|

�̂̅�

=

[

Ξ̂15 Ξ̂16 00 Ξ̂17 000 Ξ̂17 {−Ξ̂15} {−Ξ̂16} 0 0

{−Ξ̂16} Ξ̂15 00 Ξ̂18 000 Ξ̂18 Ξ̂16 {−Ξ̂15} 0 0

Ξ̂15 Ξ̂16 00 Ξ̂19 000 Ξ̂19 0 0 {−Ξ̂15} {−Ξ̂16}

{−Ξ̂16} Ξ̂15 00 Ξ̂20 000 Ξ̂20 0 0 Ξ̂16 {−Ξ̂15}]

(2.70)

59

[
Ξ̂18
Ξ̂17

] = [
Ξ̂15 Ξ̂16
Ξ̂16 {−Ξ̂15}

] [
Λ̂1𝑛(𝑡𝑘) − �̂�𝑛(𝑡𝑘)

Λ̂1𝑒(𝑡𝑘) − �̂�𝑒(𝑡𝑘)
]

[
Ξ̂20
Ξ̂19

] = [
Ξ̂15 Ξ̂16
Ξ̂16 {−Ξ̂15}

] [
Λ̂2𝑛(𝑡𝑘) − �̂�𝑛(𝑡𝑘)

Λ̂2𝑒(𝑡𝑘) − �̂�𝑒(𝑡𝑘)
]

[
Ξ̂15
Ξ̂16

] = [
− cos (�̂�𝑐(𝑡𝑘) + �̂�(𝑡𝑘))

− sin (�̂�𝑐(𝑡𝑘) + �̂�(𝑡𝑘))
]

 (2.71)

In this resulting matrix, the complexities arise due to the transformation matrices of

Equation (2.62), which are combined using the addition and subtraction trigonometry

identities, as seen in Equation set (2.71).

 With the derivations now complete, validation is needed to confirm correct

implementation for the fourth key Kalman filter equation. Similar to �̆̅��̆̅�(�̂̅�)’s validation,

�̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) can be validated by means of Equation (2.61). To do this, linear error

measurement propagation results in Equation (2.61) can be compared to residual error

results, i.e., 𝑧̅̃ − 𝑧̅̃̂. If there is consistency between both errors, there is implication that

�̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) is consistent with the system measurement model and is appropriate for use

within the fourth key equation.

 The validation algorithm used to compare these errors is as follows: The

simulation is set up using the four simulation characteristics (same 𝜏∗ values from Linear

Error State Modeling). Starting with the truth and navigation states having the same

initial values, the system is simulated forward in time up to the first discrete measurement

(1 s). Simulating up to this specific time instant was used for consistency with the Linear

Error State Modeling validation. At this point, just before measurements are taken, the

same error matrix from the 2.1.4 Linear Error State Model subsection is injected into the

navigation state. After measurements are taken, both the residual and the linear error

60

measurement model are computed and the difference between the two is computed. Table

2.4 provides these results.

Table 2.4. Linear error measurement model validation.

Measurement 𝑧̅̃ − 𝑧̅̃̂ 𝛿𝑧̅̃𝑙𝑖𝑛𝑒𝑎𝑟 Error Difference Units

𝑝𝑛(𝑡𝑘) 2.0e+00 2.0e+00 0.0e+00 m

𝑝𝑒(𝑡𝑘) 3.0e+00 3.0e+00 0.0e+00 m

𝜓(𝑡𝑘) 4.7e-03 4.7e-03 -7.1e-17 rad

Γ[1](𝑡𝑘) -3.3e-02 -3.3e-02 -2.6e-05 rad

Γ[2](𝑡𝑘) -3.4e-02 -3.4e-02 -1.2e-04 rad

From the table, the differences between residual and the linearized measurement

error for both GPS and heading are null to numerical precision. This is an expected result

as these measurements were already linear. Nonlinear camera measurements, on the other

hand, have error differences two orders of magnitude smaller than the residual and

linearized measurement error. For the camera measurements, Injected errors that are

influential in increasing error difference are landmark and heading error. The injected

errors for landmarks do push the limits of first-order linearization validity, as the injected

landmark errors are on the order of tens of meters, not just meters like GPS. Camera error

differences are on the order of tenths of milliradians (hundredths of a degree). To keep

the error differences small the author assumes that 15 m will be the 3𝜎 landmark

uncertainty threshold for this and future simulations. This assumption implies that the

measurement geometry matrix, given that the results are using relatively large error

injections, has been correctly implemented and is appropriate for use inside the filter key

equations.

With the measurement geometry matrix now validated. This document moves

on to discuss how to account for and validate continuous noise within the system in the

61

Covariance Propagation subsection.

2.1.6 Covariance Propagation

 The previous subsections have provided definitions for most of the Kalman

filter’s key equations; however, these subsections have postponed the definitions of

particular noise matrices. These next two subsections will finally provide these

definitions. This first subsection will discuss the derivation for the �̆̅�(�̂̅�) matrix. The next

subsection will detail the derivation of the �̆̅�(�̂̅�) and Kalman gain matrix, �̂̅�.

�̅� is a diagonal matrix composed of the power spectral density (PSD) of the

process noise, �̅�. The detailed meaning of this description begins with how one

represents and defines noise. Though Maybeck provides a more explicit explanation [3],

this document provides the essential derivation details (using simplified version of the

notation from Maybeck). In the truth state, the collection of driving noise terms was

given as �̅� = [𝑢𝑤𝑔 𝑣𝑤𝑔 𝑤𝑎𝑢 𝑤𝑎𝑣 𝑤𝜔 𝑤𝑐]𝑇. Each of these driving noise terms,

except wind gusts as explained below, are assumed to be Gaussian, not only in

distribution, but in that they are independent of (Probability of one outcome does not

affect the probability of another outcome: 𝑃(�̅�(𝑡𝜖−1) ∩ �̅�(𝑡𝜖−1)) =

𝑃(�̅�(𝑡𝜖−1))𝑃(�̅�(𝑡𝜖−1)) ≠ 𝑃(�̅�(𝑡𝜖−1))𝑃(�̅�(𝑡𝜖−1)|�̅�(𝑡𝜖−1))) and uncorrelated (covariance

kernel: Ψ̅𝑥𝑦(𝑡𝜖−1, 𝑡𝜖) = 𝐸(�̅�(𝑡𝜖−1)�̅�
𝑇(𝑡𝜖)) = 𝐸(�̅�(𝑡𝜖−1))𝐸(�̅�

𝑇(𝑡𝜖)) => covariance

between two probabilities is zero: �̅�𝑥𝑦(𝑡𝜖−1, 𝑡𝜖) = 0̅) with each other, the state, and the

state dynamics. Note 𝐸(∗) is the expectation operator, and independence implies

uncorrelated but not vice versa. Such a definition is one mathematical way to say that the

gaussian driving noise terms across the entire flight are white (i.e., stochastic, random)

62

and within a gaussian range of each noise’s individual mean. Because of the noises’

gaussian nature, the white noises can be easily, sufficiently represented by way of the

statistical first moment (mean) and second central moment (covariance). All noise

sources are assumed to have zero mean. To extract the covariance, however, requires

more derivation. Note the following covariance equation, which relates covariance kernel

�̅�𝑥𝑥(𝑡𝜖−1, 𝑡𝜖), correlation kernel Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖), and mean �̅�𝑥(𝑡∗)

 �̅�𝑥𝑥(𝑡𝜖−1, 𝑡𝜖) = Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖) − �̅�𝑥(𝑡𝜖−1)�̅�𝑥
𝑇(𝑡𝜖) = Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖) (2.72)

If one also assumes that the driving noise terms are wide-sense-stationary processes, then

one can find that the correlation kernel evaluated in the frequency domain—the PSD

Ψ̅𝑥𝑥(𝜔), can be equated to the Fourier transform of the correlation kernel evaluated in the

time domain, Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖). With inverse rearrangement, the correlation kernel in the

time domain, the value being sought, is equal to the integral of the PSD:

�̅�𝑥𝑥(𝑡𝜖−1, 𝑡𝜖) = Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖) = ∫ Ψ̅𝑥𝑥(𝜔)𝑒
−𝑖⏞𝜔(𝑡𝜖−𝑡𝜖−1) 𝑑𝜔

∞

−∞

= ∫ �̅�𝛿(𝑡𝜖 − 𝑡𝜖−1)𝑒
−𝑖⏞𝜔(𝑡𝜖−𝑡𝜖−1)𝑑𝜔

∞

−∞

(2.73)

The right-hand-side of Equation (2.73) breaks the PSD into two components: The �̅�

matrix, which holds the PSD coefficients, and the Dirac Delta function (units: Hz; 𝑖⏞ =

𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑢𝑛𝑖𝑡), which makes the frequency power only active at zero-time difference.

Now, at zero-time difference, the time in which Equation (2.73) has the largest value, and

using the uncorrelated gaussian assumption, only the diagonal terms of the correlation

matrix, the autocorrelation matrix Ψ̅𝑥𝑥(𝑡𝜖−1, 𝑡𝜖−1) = 𝐸(𝑥(𝑡)𝑥
𝑇(𝑡)) = �̅�𝑥𝑥(𝑡𝜖−1, 𝑡𝜖−1),

need be assessed (Note that when discussing the navigation state, if transformations

between coordinate frames technically do create a correlation, the �̆̅�(�̂̅�) matrix would be

63

used to account for this discrepancy). In a more common form, this derivation

summarizes the truth state’s driving noise as

𝐸(�̅�(𝑡𝜖)) = 0̅

𝐸(�̅�(𝑡𝜖)�̅�
𝑇(𝑡𝜖−1)) = �̅� 𝛿(𝑡𝜖 − 𝑡𝜖−1)

(2.74)

with the top equation denoting that all noise mean is zero and the bottom equation

denoting that the covariance kernel is equal to the diagonal PSD matrix times Dirac

Delta.

What makes this equation set important is that mean and covariance are

significantly easier to calculate, as opposed to computing the entire cumulative

distribution function. For one, the mean is always being zero in this derivation; For two,

the power spectral densities can be found in a more straight forward procedure. To

explain, recall that the bias states were modeled as first-order Markov processes driven

by white noise (first-order differential equation, Markov in that the current values is

dependent on the prior value). The PSD of a first-order Markov is known to be

 𝑄 =
2𝜎𝑠𝑠

2

τ
 (2.75)

Where 𝜎𝑠𝑠 is the steady-state, one-𝜎 standard deviation of the bias and 𝜏 is the time

constant of the bias, which are found in specification sheets, sample testing, or theoretical

calculations. For wind gust power, null values will be used for these simulations.

Nevertheless, for future work, particularly in multi-UAV, tight-formation applications,

where wind gusts are significantly influential, a Dryden gust model as described in Beard

and McLain [13] can be used. Hence, the truth state �̅� matrix is defined as

64

 �̅� =

[

𝑃𝑆𝐷𝑢𝑤𝑔 0 0 0 0 0

0 𝑃𝑆𝐷𝑣𝑤𝑔 0 0 0 0

0 0
2𝜎𝑠𝑠𝑎𝑢

2

𝜏𝑎𝑢
0 0 0

0 0 0
2𝜎𝑠𝑠𝑎𝑣

2

𝜏𝑎𝑣
0 0

0 0 0 0
2𝜎𝑠𝑠𝜔

2

𝜏𝜔
0

0 0 0 0 0
2𝜎𝑠𝑠𝑐

2

𝜏𝑐]

 (2.76)

One can think of this matrix as a description of the strength of Brownian motion or the

rate at which noise variance grows.

The mean and covariance for the truth state has just been described. The design

model means and covariances are derived similarly:

𝐸(�̆̅�(𝑡𝜖)) = 0̅

𝐸(�̆̅�(𝑡𝜖)�̆̅�
𝑇(𝑡𝜖−1)) = �̆̅�(�̂̅�) 𝛿(𝑡𝜖 − 𝑡𝜖−1)

(2.77)

Though not necessarily a function of navigation state, the design model PSD matrix is

indicated with a (�̂̅�) to indicate that the PSD is a function of the noise statistics known to

the navigation state. With regards to the measurement noise, their power spectral

densities are defined by the square of velocity random walk (𝑉𝑅𝑊) and angular random

walk (𝐴𝑅𝑊) values found in accelerometer and gyroscope specification sheets (𝑉𝑅𝑊

and 𝐴𝑅𝑊 can be thought of as integrals of white noise; they are also referred to as noise

density). Combining Equation (2.77)’s definition with the concept of Brownian constant

diffusion (random walk) process, the design model PSD matrix can be used in the

covariance propagation equation (Equation (2.40)). �̆̅�(�̂̅�) is defined here as

65

 �̆̅�(�̂̅�) =

[

𝑉𝑅�̂�𝑎𝑢

2 0 0 0 0 0 0

0 𝑉𝑅�̂�𝑎𝑣
2 0 0 0 0 0

0 0 𝐴𝑅�̂�𝜔
2 0 0 0 0

0 0 0
2�̂�𝑠𝑠𝑎𝑢

2

�̂�𝑎𝑢
0 0 0

0 0 0 0
2�̂�𝑠𝑠𝑎𝑣

2

�̂�𝑎𝑣
0 0

0 0 0 0 0
2�̂�𝑠𝑠𝜔

2

�̂�𝜔
0

0 0 0 0 0 0
2�̂�𝑠𝑠𝑐

2

�̂�𝑐]

 (2.78)

Once again, a need to validate correct implementation of this matrix is needed.

Although a clear method to validate this matrix individually is not known to the author,

this �̆̅�(�̂̅�) matrix and the �̆̅�(�̂̅�) matrix can be validated together through the covariance

propagation equation itself. The idea is that, without discrete measurement updates, there

is intuition from prior research that the propagated variance will grow in specific patterns.

If these patterns are compared against multiple Monte Carlo simulations, the general trend

of errors from these simulations, with the presence of noise, should follow the same

variance growth patterns up to first-order errors. These patterns are linear for velocity,

quadratic for position, and constant for biases. Landmarks are also expected to be

constant, as explained in the 2.1.4 Linear Error State Modeling subsection, where the state

dynamics can only assume a constant landmark position.

 Recalling the four simulation characteristics, the same Euler’s method,

manipulated control inputs, measurement synthesis, and measurement restriction

procedures are used. The manipulated control input, however, was altered to test other

Monte Carlo simulations with differing rudder combinations. When only analyzing a

sinusoidal rudder, truth and navigation states have higher likelihood to cross over each

66

other as the UAV loops in the trajectory. The cross over causes error plots to have a

sinusoidal nature, masking the extent to which state errors can grow to. Hence, by using a

low-rudder input, the truth and navigation states are more likely to diverge from each

other and show a worse-case-scenario of the extent that continuous time propagation

errors can grow to. This document will present particularly a null-rudder, constant-90°-

rudder, and sinusoidal rudder for discussion on extreme cases. Nevertheless, 18 different

trajectories for each sensor grade are studied to verify appropriate results. Note that for

future testing in the 2.1.7 Estimation Capability subsection, the landmark locations for a

null-rudder trajectory are moved to the locations shown in Table 2.5.

Table 2.5. Null-rudder landmark locations.

State �̅� �̂̅� Units

Λ1𝑛 400.0e+00 400.0e+00 m

Λ1𝑒 2500.0e+00 2500.0e+00 m

Λ2𝑛 500.0e+00 500.0e+00 m

Λ2𝑒 2500.0e+00 2500.0e+00 m

Noise restrictions are removed from the simulation characteristics, but only

driving and process noise, not discrete measurements noise, are activated in the states

since discrete measurements are not yet used to update state values and covariances. The

active noise measurements for each time step are defined as

 �̅�[∗] = √
𝑄�̅�[∗]

𝑡𝜖 − 𝑡𝜖−1
𝜁 (2.79)

where 𝜁 is a random, Gaussian-distributed, pseudo-random number centered around zero.

Defining noise this way allows one to generate discrete simulation noise that behaves like

continuous white noise. Furthermore, the initial truth state is forced to be offset from the

67

navigation state in Table 2.2 and Table 2.5 by adding in an “initial-uncertainty”:

 �̅�[∗](𝑡𝜖 = 0) = �̅�[∗](𝑡𝜖 = 0) + 𝜁 𝜎𝑖𝑢�̅�[∗]
 (2.80)

where 𝜎𝑖𝑢�̅�[∗]
 is the true one standard deviation of the initial uncertainty of �̅�[∗]. Likewise,

the initial condition for the covariance matrix is made consistent with the initial state

conditions (i.e., the covariance of the state estimates is equivalent to the covariance of the

state estimation errors). It is set to only be diagonal such that

 �̂̅�(𝑡𝑖 = 0) =

[

�̂�𝑖𝑢𝑝𝑛
2 0 0 0 0 0 0

0 �̂�𝑖𝑢𝑝𝑒
2 0 0 0 0 0

0 0 Ξ21
2 0 0 0 0

0 0 0 Ξ22
2 0 0 0

0 0 0 0 �̂�𝑖𝑢𝜓
2 0 0

0 0 0 0 0 ⋱ 0
0 0 0 0 0 0 �̂�𝑖𝑢Λ2𝑒

2
]

 (2.81)

which uses the initial uncertainty of the navigation state, 𝜎𝑖𝑢�̂̅�[∗]
 (terms Ξ21 and Ξ22, which

replace �̂�𝑖𝑢𝑢𝑛
2 and �̂�𝑖𝑢𝑣𝑒

2 , are explained in the second following paragraph). In other words,

the UAV is positioned and calibrated to have a specific state, however, in truth, this

positioning and calibration may be off by approximately ±1𝜎. To account for the off

positioning and calibration, a covariance matrix based on what the engineer thinks is ±1𝜎

is made. For this simulation, when applicable, 𝜎𝑖𝑢�̅�[∗]
= �̂�𝑖𝑢�̂̅�[∗]

= 𝜎𝑠𝑠�̅�[∗]
= �̂�𝑠𝑠�̂̅�[∗]

(subscript 𝑠𝑠 denotes steady state) is assumed and it is left to future work to generate

sensitivity analyses that considers discrepancies between the different types of

uncertainties. The sigma and sensor grade values for this validation and future simulations

are provided in Table 2.6.

68

Table 2.6: 1𝜎 values.

Initial State Uncertainty

State Commercial Tactical Navigation Units

𝑝𝑛 and �̂�𝑛 3.3e-01 3.3e-01 3.3e-01 m

𝑝𝑒 and �̂�𝑒 3.3e-01 3.3e-01 3.3e-01 m

𝑢 and �̂� 3.3e-02 3.3e-02 3.3e-02 m s⁄

𝑣 and 𝑣 3.3e-02 3.3e-02 3.3e-02 m/s
𝜓 and �̂� 5.2e-04 5.2e-04 5.2e-04 rad

𝑟 1.5e-05 1.5e-05 2.4e-07 rad/s

𝑏𝑎𝑢 and �̂�𝑎𝑢 6.2e-02 2.9e-02 9.8e-04 m/s2

𝑏𝑎𝑣 and �̂�𝑎𝑣 6.2e-02 2.9e-02 9.8e-04 m/s2

𝑏𝜔 and �̂�𝜔 1.5e-05 1.5e-05 2.4e-07 rad/s

𝑏𝑐 and �̂�𝑐 1.2e-03 1.2e-03 1.2e-03 rad

Λ1𝑛 and Λ̂1𝑛 10.0e+00 10.0e+00 10.0e+00 m

Λ1𝑒 and Λ̂1𝑒 10.0e+00 10.0e+00 10.0e+00 m

Λ2𝑛 and Λ̂2𝑛 15.0e+00 15.0e+00 15.0e+00 m

Λ2𝑒 and Λ̂2𝑒 15.0e+00 15.0e+00 15.0e+00 m

Steady State Sensor Specification Uncertainty

Sensor Commercial Tactical Navigation Units

𝑝𝑛 3.3e-01 3.3e-01 3.3e-01 m

𝑝𝑒 3.3e-01 3.3e-01 3.3e-01 m

�̃� 5.2e-04 5.2e-04 5.2e-04 rad

�̃� 1.5e-05 1.5e-05 2.4e-07 rad/s
�̃� 𝐴𝑅𝑊 6.1e-05 4.4e-05 3.5e-06 rad {s√s}⁄

𝜏𝜔 10.0e+00 1800.0e+00 1800.0e+00 s
�̃�𝑢 6.2e-02 2.9e-02 9.8e-04 m/s2

�̃�𝑢 𝑉𝑅𝑊 1.4e-03 1.2e-03 9.8e-04 m {s√s}⁄

𝜏𝑎𝑢 10.0e+00 1800.0e+00 1800.0e+00 s

�̃�𝑣 6.2e-02 2.9e-02 9.8e-04 m/s2

�̃�𝑣 𝑉𝑅𝑊 1.4e-03 1.2e-03 9.8e-04 m {s√s}⁄

𝜏𝑎𝑣 10.0e+00 1800.0e+00 1800.0e+00 s

Γ̃̅ 1.2e-03 1.2e-03 1.2e-03 rad

𝜏𝑐 1800.0e+00 1800.0e+00 1800.0e+00 s

In detail, Table 2.6 provides values for commercial, tactical, and navigation

grade UAV systems. Both systems will acquire ±1.0m, 3𝜎 GPS measurements. The

author assumes that the 3𝜎 velocity (both components in the Body frame) is unknown by

±0.1 m/s. Based off documentation from VectorNav company, heading is unknown by

69

approximately ±0.03° 1-𝜎. Truth state heading rate uncertainty is set equivalent to

gyroscope uncertainty. Camera bias for the UAV systems is derived based on using a high

definition 1080x1920 camera. Implementation of higher grade or different vision-based

measurements for rougher military operations (e.g., wind noise, night flight) is left to

future work. Assuming 40° FOV and ±5 pixels of 3𝜎 uncertainty yields a camera bias of

 �̂�𝑐 = 𝑏𝑐 =
40°𝜋

180
{1920}

5

3
= 1.2 mrad (1𝜎) (2.82)

Future work may consider gimbal-mounting the camera to help reduce camera bias.

The author assumes that the initial landmark positions are unknown up to 15 m 3𝜎, as

explained in the 2.1.5 Linear Error Measurement Modeling subsection. For the continuous

sensors, values are based on specifications from a (commercial) VN-100, (tactical) LN-

200, and a (navigation) Novatel ISA-100C sensor units. The author assumed that the

provided data from these sheets were 1𝜎 statistics. One interesting note is that the 𝑉𝑅𝑊

for the navigation grade is the same number as accelerometer bias—implying that

navigation-grade bias is as small as 𝑉𝑅𝑊 noise. 𝑉𝑅𝑊 for tactical was unknown, and was

assumed as the median between commercial and navigation grades.

 Within Equation (2.81), there were two terms, Ξ21 and Ξ22, that were not

defined. These are terms that account for the uncertainty in velocity due to initial Body

frame velocity error and initial heading error. To generate this value, the author toggled

the initial nominal Body velocities into North-East velocities. After injecting ±3𝜎

uncertainties into both heading and North-East velocities, the injected North-East

velocities were transformed back into Body velocities with an injected transformation

matrix. The 1-𝜎 equivalent of the maximum difference between the original Body

velocities and the injected Body velocities were assigned to Ξ21 and Ξ22 respectively.

70

 Continuing with the validation description, bias time constants are initially set to

1/10th of the 100 s simulation time (𝑡𝑠𝑖𝑚 = 100 𝑠) to exercise the bias dynamics. Later, all

test trajectories are re-evaluated with the true simulation time constants to confirm that all

hairlines lie within the given variance bands. In short, the true time constants for

navigation grade IMU’s are assumed to be 30 min—a value used for tactical grade

sensors, but nevertheless a large enough value to force the first-order Markovs to act like

biases. The camera misalignment bias was given the same value in both sensor grades for

simplicity. For continuous sensor commercial grades, which are more dependent on

thermal properties, rough heat transfer calculations were used to determine the time

needed for the UAV fuselage to decrease 63% from an assumed max temperature (turned

on, stationary, in the sun) to an assumed lowest temperature (turned on, flying 20
𝑚

𝑠
, in the

shade). This time, which was approximately 10 s, was assumed to be the time constant

for both the commercial accelerometer and commercial gyroscope.

 Given these settings, 200 Monte Carlo runs are generated with the covariance

being accounted for according to Equation (2.40). 200 runs were selected to provide

enough intuition on the overall nature of the UAV states. More runs would have required

more computational power. Fewer runs would have necessitated the use of confidence

interval bands on the determined variance to verify accuracy. Selecting the covariance

history from one of the Monte Carlo runs, its variance values are compared against the

errors (i.e., hair plots) from the 200 Monte Carlo runs (via mapping 𝑛). Note that the

covariance history from one Monte Carlo to another Monte Carlo was empirically

determined to differ insignificantly. The need to compare the system covariance against so

many Monte Carlos is due to the nature of the position and velocity states. Although

71

having zero mean error like process noise by itself, position, velocity, and bias that are

corrupted by process noise are not white like process noise by itself. This means that

position, velocity, and bias have some correlation between the previous time instant and

the next time instant, which implies that their errors from a single Monte Carlo run are not

likely to be drastic and span the entire variance ranges. Hence, multiple Monte Carlo

simulations are needed to ensure that, position, velocity, and bias do span the covariance

statistics. The variance history from the Monte Carlo runs for selected trajectories with a

commercial sensor package is shown in the following Figures:

Figure 2.20. Covariance propagation validation trajectory.

72

To adequately show how trajectories effects covariance results, this validation

will provide complete results from three separate simulations. Presented on the top left,

top right, and bottom (top, middle, and bottom) respectively, the separate simulations

involve trajectories of full dynamics (from previous validations), constant full rudder

(90°), and no rudder. All trajectories include sinusoidal thrust (simulations without

sinusoidal thrust slightly decrease the magnitude of errors in the hairlines).

Figure 2.20 shows these trajectories for all 200 Monte Carlo runs, in terms of

both the truth and navigation states.

73

Figure 2.21. Covariance propagation validation for 𝑝𝑛.

74

Looking at the error plot of 𝑝𝑛 in Figure 2.21, most all position error hairlines

from the Monte Carlo runs, denoted with dark blue lines, are within the red lines, which

denote the estimated 3𝜎 bounds for the given state (derived by converting the estimated

variance from the covariance matrix into 3𝜎 values). All solutions exhibit the desired

quadratic growth trend. The largest 3𝜎 bounds occur with the straight trajectory, and the

smallest 3𝜎 bounds occur with the circular trajectory.

75

Figure 2.22. Covariance propagation validation for 𝑝𝑒.

76

The error plots for 𝑝𝑒 are shown in Figure 2.22. Again, the desired quadratic

growth is manifested. When using true 𝜏 values, the range for the minimum and

maximum 3𝜎 position values at the end of the simulation are approximately 235 m to 440

m for commercial sensors and approximately 13 m to 20 m for navigation sensors.

77

Figure 2.23. Covariance propagation validation for 𝑢.

78

Figure 2.24. Covariance propagation validation for 𝑢𝑛.

79

Velocity is more susceptible to bumpy, wave-like trends, which are manifested

in the top plots of Figure 2.23 and Figure 2.24. The bumpy patterns strongly correlate

with thrust and rudder movement and larger heading uncertainty. Particularly, whenever

the UAV makes a turn, the truth state and navigation state are more likely to ‘cross paths’

or intersect each other, which consequently cause errors between the truth and navigation

state to minimize, hence the wave-like patterns in the hairlines. The covariance

propagation equation appears to accurately account for velocity growth despite these

wave trends. Furthermore, the constant-rudder and no-rudder solution, although

appearing more logarithmic-shaped due to scaling, retain the desired linear growth trend

to justify correct implementation. The full-dynamics trajectory is understandably wavier

in growth as the covariance propagation equation accounts for the accentuated hairline

errors from this extreme trajectory case. Note that to plot velocities in the North-East

frame, an affine transformation, analogous to the previously used direction cosine

matrices, was used.

80

Figure 2.25. Covariance propagation validation for 𝑣.

81

Figure 2.26. Covariance propagation validation for 𝑣𝑒.

82

Velocity plots in Figure 2.25 and Figure 2.26 show similar results as the prior

velocity results, where from testing, the author assumed that a maximum of five periodic

hairlines outside 3𝜎 was acceptable results. Using smaller times steps appeared to help

reduce unacceptable results. When verifying the constant-rudder trajectories (𝛿⏞𝑟 ≥ 60°)

with true 𝜏 values, more than five (six to nine lines) periodically came outside 3𝜎. This

phenomenon mostly occurred after 85 s of simulation time (only the constant-rudder at

𝛿⏞𝑟 = 90° yielded hairlines outside 3𝜎 prior to 85 s). To avoid larger computation times

using a smaller time step, the author assumed these results acceptable seeing as the

trajectories are extreme, discrete updates in future development will resolve such errors

before 85 s, and only velocity—not position—plots have these results.

83

Figure 2.27. Covariance propagation validation for 𝜓.

84

The heading results for all three simulations in Figure 2.27 indicate the same

conclusion that noise error growth are indifferent between different trajectories. The same

is true for navigation sensors, but the resulting plot is different:

Figure 2.28. Covariance propagation validation for 𝜓 using navigation sensors.

Essentially, Figure 2.28 indicates that noise error becomes negligible compared

to the initial error between the navigation state and the truth state when using navigation

sensors.

 Following the heading states are the biases. Being initialized with the same

pseudo-random algorithm and being independent of the system dynamics, bias estimation

error hairlines do not differ between simulations. Hence, only one plot is shown per bias

state.

85

Figure 2.29. Covariance propagation validation for 𝑏𝑎𝑢.

Figure 2.30. Covariance propagation validation for 𝑏𝑎𝑣.

86

Figure 2.31. Covariance propagation validation for 𝑏𝜔.

Figure 2.32. Covariance propagation validation for 𝑏𝑐.

All 3𝜎 bias lines remain constant over time, which is consistent with expected growth

pattern. Testing the true time constant for each bias, the random walking of error plot

lines enters and exits the 3𝜎 boundary in a manner common to results in prior research—

87

implying correct implementation.

Figure 2.33. Covariance propagation validation for Λ1𝑛.

Figure 2.34. Covariance propagation validation for Λ1𝑒.

88

Figure 2.35. Covariance propagation validation for Λ2𝑛.

Figure 2.36. Covariance propagation validation for Λ2𝑒.

Plots for the landmarks do not differ neither from sensor grade to sensor grade

nor from trajectory to trajectory due to their zero dynamics in the state dynamics, hence

only a single plot for each landmark’s north and east position are shown. Errors in these

89

landmarks are only due to initial uncertainty.

90

Figure 2.37. Covariance propagation validation for 𝐹𝑇.

91

Figure 2.38. Covariance propagation validation for 𝛿𝑟.

92

The full-dynamics control input plots are essentially the same as those seen in

the initial propagation validation simulation, where only the thrust inputs have

differences less than 0.2 N and rudder inputs have no differences between Monte Carlo

runs. The constant-full-rudder, and no-rudder control input plots also show little

differences between Monte Carlo runs.

From these validation plots, the 3𝜎 estimates encapsulated the error behavior of

the state over time. This implies that the matrices �̆̅�(�̂̅�) and �̆̅�(�̂̅�) are implemented well

enough to account for first-order discrepancies. Furthermore, for the biases, this implies

that process noise has been correctly implemented. this document now moves on to the

propagation update equation, Equation (2.42), to define and explain the discrete noise and

gain matrices. A similar validation algorithm will be implemented to validate these

matrices as well.

2.1.7 Estimation Capability

 The prior section developed equations that track the state given the presence of

continuous process noise. This section moves forward to update the state given the

presence of discrete noise.

 Recalling Equation (2.41) and Equation (2.42), much of the state and covariance

updates are dependent on the Kalman gain weighting matrix provided below:

�̂̅� = �̂̅�−�̆̅��̆̅�
𝑇(�̂̅�−(𝑡𝑘)) {�̆̅��̆̅�(�̂̅�

−(𝑡𝑘))�̂̅�
−�̆̅��̆̅�

𝑇(�̂̅�−(𝑡𝑘))

+ 𝐽 ̅̆(�̂̅�)�̆̅�(�̂̅�)𝐽 ̅̆𝑇(�̂̅�)}
−1

(2.83)

This matrix contains many of the terms already defined, including the a priori covariance,

the measurement geometry matrix and 𝐽 ̅̆(�̂̅�). The remaining undefined term is the

93

variance matrix, �̆̅�(�̂̅�) , which is analogous to the discrete measurement version of �̆̅�(�̂̅�).

The explanation of �̆̅�(�̂̅�) is as follows:

 In the truth state, the collection of discrete measurement noise was defined as

�̅�(𝑡𝑘) = [𝜂𝑝𝑛(𝑡𝑘) 𝜂𝑝𝑒(𝑡𝑘) 𝜂𝜓(𝑡𝑘) �̅�𝛤[1](𝑡𝑘) �̅�𝛤[2](𝑡𝑘)]. Each discrete measurement

noise term is assumed to be Gaussian, being independent and uncorrelated with each

other, the state, and dynamics (white). This assumption allows the discrete measurement

noise to be statistically represented via mean and covariance. In a similar manner as the

derivation for continuous noise mean and covariance, discrete noise and covariance are

defined as

𝐸(�̅�(𝑡𝑘)) = 0̅

𝐸(�̅�(𝑡𝑘)�̅�
𝑇(𝑡𝑘−1)) = �̅� 𝛿(𝑡𝑘 − 𝑡𝑘−1)

(2.84)

This discrete form uses Kronecker Delta, 𝛿(𝑡𝑘, 𝑡𝑘−1) (unitless). Furthermore, the �̅�

matrix is a diagonal of the variances of the measurement noise, �̅�(𝑡𝑘), such that

 �̅� =

[

𝜎𝑠𝑠𝑝𝑛(𝑡𝑘)
2 0 0 0 0

0 𝜎𝑠𝑠𝑝𝑒(𝑡𝑘)
2 0 0 0

0 0 𝜎𝑠𝑠𝜓(𝑡𝑘)
2 0 0

0 0 0 𝜎𝑠𝑠Γ[1](𝑡𝑘)
2 0

0 0 0 0 𝜎𝑠𝑠𝛤[2](𝑡𝑘)
2

]

 (2.85)

Using (𝑡𝑘) within the 𝜎𝑠𝑠 subscripts helps to emphasize that the standard deviations are

with respect to the discrete measurements’ accuracies, not continuous sensors’ or initial

conditions’ accuracies. Likewise, the design model yields similar results

𝐸(�̆̅�(𝑡𝑘)) = 0̅

𝐸(�̆̅�(𝑡𝑘)�̆̅�
𝑇(𝑡𝑘−1)) = �̆̅�(�̂̅�)𝛿(𝑡𝑘 − 𝑡𝑘−1)

(2.86)

94

 �̆̅�(�̂̅�) =

[

�̂�𝑠𝑠𝑝𝑛(𝑡𝑘)
2 0 0 0 0

0 �̂�𝑠𝑠𝑝𝑒(𝑡𝑘)
2 0 0 0

0 0 �̂�𝑠𝑠𝜓(𝑡𝑘)
2 0 0

0 0 0 �̂�𝑠𝑠Γ[1](𝑡𝑘)
2 0

0 0 0 0 �̂�𝑠𝑠𝛤[1](𝑡𝑘)
2

]

 (2.87)

Now that the matrices are defined, the rest of this subsection details a validation

algorithm to confirm correct implementation. Both 𝐽 ̅̆(�̂̅�) and �̆̅�(�̂̅�) can be validated

together through the covariance update equation itself. The idea is, just like the 2.1.6

Covariance Propagation subsection, that there is intuition that the discrete measurement

noises will manifest themselves according to specific patterns within a Monte Carlo

simulation. The patterns are zero-mean and saw-tooth with position and velocity

magnitudes being significantly smaller than the 2.1.6 Covariance Propagation subsection.

 The same simulation set up as the 2.1.6 Covariance Propagation subsection is

used with the exceptions that this subsection activates discrete measurement noise, that

unmodified time constants are always used, that Kalman filter update cycles are used, and

that the same truth state is used for every Monte Carlo. To explain the first two

exceptions, the discrete noise measurements for each discrete time step are defined as

 �̅�(𝑡𝑘)[∗] = 𝑅�̅�(𝑡𝑘)[∗]𝜁 (2.88)

For time constants, the author used the same time constants listed in Table 2.6. For the

third exception, the update cycles are iterations of calculating the residual (𝑧̅̃ − 𝑧̅̃̂−,

Equation (2.53)), �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) (Equation (2.67)), �̂̅� (Equation (2.83)), �̂̅�+ (Equation

(2.42)), 𝛿�̂̅�+ (Equation (2.41)), and the 𝑙 ̅mapping (Equation (2.36), �̅� ≈ �̂̅�+ = �̂̅�− + 𝛿�̂̅�+)

in that respective order to calculate a better estimate of the navigation state and

95

covariance. The reason for cycling is a matter of increased measurement update accuracy

and of numerical stability.

To better explain the update cycles, consider, rather than processing all the

discrete measurements at once, processing the discrete measurements one at a time.

Would there be a difference in update accuracy if, say, camera measurements were

processed first rather than GPS measurements? The answer is yes. Recalling the 2.1.1

States and Models subsection, GPS and magnetometer measurements were linear, explicit

functions of UAV position and heading respectively, whereas camera measurements were

nonlinear, implicit functions of UAV position, landmark position, camera offset bias, and

heading. Being a nonlinear function of multiple states makes camera measurements quite

sensitive to errors within those multiple states. Therefore, there is higher priority in

ensuring that those multiple state are as accurate as possible before processing the camera

measurement. Furthermore, consider the Kalman gain weighting matrix (Equation

(2.83)). This equation requires a matrix inversion (note that the terms within this inverse

are collectively called the residual covariance). Inversions greater than 3x3, where 3x3

matrices have analytical solutions, begin to hinder computation time as well as numerical

stability of that inversion. To that end, there is a preference to execute Kalman filter

updates in cycles of at most 3x3 sized update matrices beginning with the most reliable,

linear measurement followed by progressively more nonlinear measurements.

Creating the update matrices is simply breaking down the discrete measurement

matrices 𝐽 ̅̆(�̂̅�), �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)), �̆̅�(�̂�), and the residual into smaller matrices that correspond

to the measurement of each update cycle. For coding simplicity, especially during

measurement denial and debugging, each measurement was processed one at a time,

96

which makes each cycle of 𝐽 ̅̆(�̂̅�) and �̆̅�(�̂̅�) equal a 1x1 matrix of 1 and �̂�∗
2 respectively,

and each cycle of �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) and residual are single row matrices.

 Included in the update cycles are protocols that account for measurement denial.

When there is GPSD or a landmark is outside the camera’s FOV, the position or camera

measurement is not processed as there is no 𝑧̅̃ available to calculate the residual. This is

done in simulation by nulling out all elements of �̂̅� during the applicable update cycle.

Note that, as is common practice, �̂̅� elements are set to null if a measurement residual is

outside the 3𝜎 equivalent of that measurement’s residual covariance (see second

following paragraph). This practice is called residual monitoring. The author found that

erroneous residuals did not occur frequently enough to, as Maybeck commented, “not to

reject large residuals, since they are the only means of correcting the divergence” [3].

In regard to the fourth exception, using the same truth state for each Monte Carlo,

there is extreme difficulty in validating this subsection when each Monte Carlo, corrupted

by noise and nonlinear measurement updates, is trajectory dependent. Therefore, to

reduce trajectory dependence as much as possible, the noise placed in the truth state’s

initialization was removed and placed in the navigation state’s initialization for each

Monte Carlo. Control inputs were changed such that �̇� = 8.25 + 8.25 ∗ sin (
𝑡

10
) to create

the same thrust in each trajectory. Furthermore, the �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) matrix used truth state

values instead of navigation state values, �̆̅��̆̅�(�̅�
−(𝑡𝑘)).

 With this simulation set up, two sets of plots are generated. The first set of plots

is of the measurement residuals. According to Maybeck [3], these residuals have zero

mean and a covariance matching the residual covariance in Equation (2.83). In these first

97

plots a single Monte Carlo simulation is run to verify consistency between Maybeck and

implementation. The use of a Mahalanobis distance to analyze measurement residuals is

left to future work, particularly for physical implementation when the additional

complexities of image processing, magnetometer dead zones, sensor failure, and satellites

moving past the horizon create a need for alternative statistics evaluation. The second set

of plots will be error plots of a 200 Monte Carlo simulation with Kalman filtering active.

The activated Kalman filtering should induce sawtooth patterns in both the 3𝜎 statistics

and in the hairlines themselves, where a sawtooth fall indicates that the discrete

measurements helped reduce estimation errors. These two sets of plots are generated

below for the three trajectories used in the 2.1.6 Covariance Propagation subsection, with

the addition of GPSD regions along the trajectories. First the Monte Carlo trajectories

will be shown, followed by the residual plots, and then the state error plots. Note that

seven trajectories for both commercial and navigation grade sensors were tested for

correct implementation.

98

Figure 2.39. Estimation capability trajectories.

Within Figure 2.39, the GPSD regions were set as boxed regions for simplicity.

For the first trajectory, GPSD is during the last 30 s. The edges of these regions are

defined in Table 2.7.

Table 2.7. GPSD region edges.

Trajectory North Max

Edge

North Min

Edge

East Max

Edge

East Min

Edge

Units

Full Dynamics NA NA NA NA m

Constant Rudder 800 200 300 0 m

Null Rudder 800 0 1250 250 m

99

Only one landmark is used for the full-rudder trajectory to reduce the complexities in

understanding discrepancies. The landmarks are positioned in the constant-rudder

trajectory such that the UAV is only able to take landmark images while in GPSD. For

the null-rudder trajectory, the UAV constantly has view of the landmarks until the last

seconds of the simulation.

100

Figure 2.40. Estimation capability 𝑝𝑛 residual.

101

Figure 2.41. Estimation capability 𝑝𝑒(𝑡𝑘) residual.

 Showing the GPS position residuals in Figure 2.40 and Figure 2.41, GPS is

denied for one period, three periods, and one period for the full-rudder, constant-rudder,

102

and null-rudder respectively. After periods of denial, the plots have one Kalman cycle of

relatively high residual covariance. After this cycle, the residuals are able to return to a

reduced, zero-mean, white trend. Notice at the end of the null-rudder trajectory, there is a

shallow-sloped decrease of 𝑝𝑛 3𝜎 residuals followed by a dramatic-sloped increase in the

3𝜎 residuals. This is a manifestation of extreme Γ̅(𝑡𝑘) ratios seen in the 2.1.3 Propagation

Validation subsection, which will be discussed later in this section.

103

Figure 2.42. Estimation capability �̃�(𝑡𝑘) residual.

104

Heading for all trajectories produced very similar results. In other words, since

magnetometer jamming is not present in this simulation, the linear nature of heading

makes it less dependent on trajectory paths. Though the magnetometer residuals for this

single Monte Carlo do not span the full width of the residual covariance, the residuals

still appear zero-mean, white, and are sufficiently large enough to justify correct

implementation.

105

Figure 2.43. Estimation capability Γ̃[1](𝑡𝑘) residual.

106

Figure 2.44. Estimation capability Γ̃[2](𝑡𝑘) residual.

For the first two trajectories in Figure 2.43 and Figure 2.44 (recall only one

landmark is used in the first trajectory), large periods of measurement denial are present,

so much so that there is difficulty in confirming that the residuals are zero-mean and

white. Nevertheless, processed residuals are within 3𝜎 of the residual covariance.

Residuals outside 3𝜎, Γ[1] at 84 s in the first trajectory, are rejected. After measurement

denial, these plots do not show large increases of residual covariances like GPS

measurements did—they become large when both GPS and camera measurements have

been denied for a longer period (With the exception of the first camera update). Looking

107

at the last trajectory, where landmarks were always in the FOV, the zero-mean, white

residual trend of the camera measurements are manifest. Note how the null-rudder

trajectory still manifests increased error upon the approach of extreme Γ̅(𝑡𝑘) ratios.

108

Figure 2.45. Estimation capability 𝑝𝑛 errors.

109

Figure 2.46. Estimation capability 𝑝𝑒 errors.

110

For Figure 2.45and Figure 2.46, since covariance is more trajectory dependent in

this subsection, all 200 3𝜎 lines are included. Especially in the first trajectory, the

divergence of covariance lines is most readily seen. Less dramatic diversions are from the

system noise and discrepancies in the �̆̅��̆̅�(�̂̅�) matrix. More dramatic diversions are from

rejected camera updates when a particular Monte Carlo had a residual outside 3𝜎. The

trend for most position errors is the same. Upon GPS denial, errors begin to quadratically

increase as they did in the prior subsection. Upon GPS availability, the errors drastically

reduce and begin displaying the desired sawtooth trend over time. When available,

camera measurement updates can play a critical part in correcting errors. Particularly

with the null rudder, where the 𝐻 matrix provides information orthogonal to the direction

of sight, 𝑃𝑛 errors are kept below 4 m of error! However, as shown in the constant-90°

trajectory, minimal camera updates occurring only at the beginning of the GPSD are

insignificant in aid. Nevertheless, an appreciation for combining all discrete

measurements is manifest in the amount of error reduction there is compared to the 2.1.6

Covariance Propagation subsection. Of the tested trajectories, a maximum of 70 m and 4

m errors were generated for commercial and navigations sensor respectively. Note again,

the covariance fluctuation at the end of 𝑃𝑛 and during GPSD for 𝑃𝑒 in the null rudder

trajectory being affected by Γ̅(𝑡𝑘) ratios.

111

Figure 2.47. Estimation capability 𝑢 errors.

112

Figure 2.48. Estimation capability 𝑣 errors.

113

Figure 2.49. Estimation capability 𝑢𝑛 errors.

114

Figure 2.50. Estimation capability 𝑣𝑒 errors.

115

Position errors mimic the velocity errors in Figure 2.47 through Figure 2.50. So

do the velocity covariance bands, where, especially during GPSD, the bands can

significantly differ from one another. Nevertheless, these bands still encapsulate the 3𝜎

statistics of Monte Carlo errors.

116

Figure 2.51. Estimation capability 𝜓 errors.

117

Heading errors have minimal differences from trajectory to trajectory. All three

trajectories minimize heading errors within the first 10 s of the simulation.

118

Figure 2.52. Estimation capability 𝑏𝑎𝑢 errors.

119

Figure 2.53. Estimation capability 𝑏𝑎𝑣 errors.

120

Figure 2.54. Estimation capability 𝑏𝜔 errors.

121

Figure 2.55. Estimation capability 𝑏𝑐 errors.

122

With the very noise-like characteristics of the commercial sensors, the filter has

difficulty reducing bias errors significantly over time. The exception to this rule is with

the camera bias for null-rudder trajectories, where prolonged periods of camera

measurements significantly aid in narrowing the 3𝜎 bandwidth.

123

Figure 2.56. Estimation capability Λ1𝑛 errors.

124

Figure 2.57. Estimation capability Λ1𝑒 errors.

125

Figure 2.58. Estimation capabilityΛ2𝑛 errors.

126

Figure 2.59. Estimation capability Λ2𝑒 errors.

For the landmark errors in Figure 2.56 through Figure 2.59, again, shaded

regions are camera measurement denials from one Monte Carlo to visualize the general

denial regions (and to note the random occurrences of 1 s, outside 3𝜎, measurement

rejections). In the full-dynamics trajectory, the system has the potential of converging

landmark error to 1 m 3𝜎. For the constant-rudder trajectory, errors are only minimally

able to reduce errors at the beginning. Brief moments of measurements during GPSD are

not substantial enough to yield valuable landmark update information. In terms of

landmark north-position for the last trajectory, errors reduce below 5 m 3𝜎 during GPSD

127

and converge to 1 m 3𝜎 in GPS availability. In terms of landmark east-position for the

last trajectory, little aid comes from the camera except near the trajectory’s end for the

second landmark, where the 𝛾 angle is offset from the north position enough for the H

matrix to provide information for the landmark’s east position. These and the prior

ensemble plots show proper results, where the variance statistics are representative of the

ensemble statistics.

Concerning the Γ̅(𝑡𝑘) ratios, the success for having the 3𝜎 statistics match the

hairline plots is conditional on having appropriate Γ̅(𝑡𝑘) ratios during extended periods of

GPSD. If position errors grow too large and/or extreme Γ̅(𝑡𝑘) ratios occur, the

linearizations of the filter update are no valid, resulting in incorrect updates. This

research will not consider trajectories that induce these erroneous camera updates. For

future work, a UAV-landmark proximity will likely need to be considered—close enough

to minimize navigation errors, but far enough to prevent the large Γ̅(𝑡𝑘) ratios from

creating large measurement errors (Note, the proper navigation state �̆̅��̆̅�(�̂̅�
−(𝑡𝑘)) matrix

will need to be used when determining that proximity). Such implementation would also

coincide with obstacle avoidance studies.

128

Figure 2.60. Estimation capability 𝐹𝑇.

129

Figure 2.61. Estimation capability 𝛿𝑟.

130

For all three trajectories, the exact same thrust was generated. The unique rudder

inputs were the same ones used in the 2.1.6 Covariance Propagation subsection.

In this subsection, the discrete update portion of the Kalman filter was validated.

Both the 𝐽 ̅̆(�̂̅�) and �̆̅�(�̂̅�) matrices and other components of the update cycle generated

reasonable results in the presence activated discrete noise, measurement denial, and

measurement availability in terms of both residuals and ensemble statistics. To that end,

implementation of the UAV’s navigation system is assumed to be complete. This

document now transitions to the implementation of the UAV guidance and control law.

2.2 Guidance and Control Law Development

 Section 2.1 provided an extensive explanation and validation for the UAV’s

navigation system. The plots generated therein generally used sinusoidal rudder and

thrust to exercise harder dynamics. For mission purposes, however, more sophisticated

GC is needed. This section, 2.2, will provide an explanation of that GC—optimal control

using the direct multiple shooting (simultaneous) method with explicit Euler integration.

First, an explanation on the logic of optimal control and the multiple shooting method

will be given (2.2.1). Second, an explanation of the selected model and toolbox/library

packages used to implement GC will be given (2.2.2). Third, a base-case simulation will

be executed to confirm correct implementation of the GC law (2.2.3).

2.2.1 Guidance and Control Logic

 Before going into depth on the details of this simulation’s specific GC package,

a broad discussion and example on the logic of the selected GC law may be desired. The

remainder of this paragraph will explain the general reasoning for using this GC law. The

following paragraphs will provide a more rudimentary explanation and an example on the

131

logic of how this GC law solves a problem. This section is based off the lectures of Dr.

Greg Droge [32]. The main reasoning for using this particular control law is for

simplicity and desirable features. Using quadratic-based costs is more straightforward,

like LQR control. Using a direct method, where the equation format of the problem is

discretized before determining first-order-necessary-conditions (FONC), was available in

a convenient library for the author (CasADi). Furthermore, the direct method is typically

easier to solve than indirect methods, where the FONC of the problem is found in

continuous time using a two-point boundary value problem setup before numerically

discretizing the problem. Dynamic programming, where the curse of dimensionality can

make solutions intractable, and implementation of collocation methods was not readily

known to the author. The type of direct method used for the simulation was the multiple

shooting (simultaneous) method. Direct shooting methods are more popular methods;

nevertheless, they require knowledge of future state values that are not readily available.

In the direct multiple shooting method, future, guessed state (guidance) values are

determined by simultaneously minimizing them with the control inputs. This is opposed

to the direct single shooting (sequential) method, which uses current control inputs and

initial conditions to guess the future state. The multiple shooting method was the

preferred method, as it is more well-suited for nonlinear problems, problems with state

constraints, as well as problems that are not necessarily stable. Explicit integration

(propagation), rather than exact methods (preferences for linear systems) or implicit

integration (preferences for higher numerical stability), was used. Euler’s method was

used for consistency with the navigation portion of the simulation. Now, with the general

reasoning for using this GC law, a more rudimentary explanation and example on how

132

this GC law solves an optimization problem is now provided.

 All optimal control problems begin with converting the given problem into an

equation format:

min
𝐹𝑇

(𝐽(�̅�, �̅�) = {∫ 𝐿(�̅�(𝑡), �̅�(𝑡))
𝑡𝑠𝑖𝑚

𝑡0

} + 𝜙(�̅�(𝑡𝑠𝑖𝑚)))

𝑠. 𝑡. �̅�(𝑡) = 𝑓(̅�̅�(𝑡), �̅�(𝑡))

�̅�(𝑡0) is known

|𝛿⏞𝑟 (𝑡)| ≤ 90°

(2.89)

For numerical computation in the multiple shooting method, the problem is discretized:

min
𝐹𝑇

(𝐽(�̅�, �̅�) = {∑ 𝐿(�̅�(𝑡𝜖), �̅�(𝑡𝜖))
𝑡𝑠𝑖𝑚−1

𝑡0

} + 𝜙(�̅�(𝑡𝑠𝑖𝑚)))

𝑠. 𝑡. �̅�(𝑡𝜖 + 1) = 𝑓(̅�̅�(𝑡𝜖), �̅�(𝑡𝜖))

�̅�(𝑡0) is known

|𝛿⏞𝑟 (𝑡𝜖)| ≤ 90°

(2.90)

In this equation example, there are three main components. First is the minimization (or

maximization) operator, min
𝐹𝑇
(∗), where the variables underneath are the variables that

the engineer wishes to find the value(s) of (i.e., what the engineer wants to minimize with

respect to). In this example, the engineer’s primary problem is to minimize fuel usage. A

near-equivalent statement is that the engineer’s problem is to minimize the control’s

thrust input. This near-equivalent statement can be expressed with mathematical terms

found in the system dynamics; hence, the engineer wishes to find the minimum values of

𝐹𝑇.

133

Second is the cost function, 𝐽(�̂̅�, �̅�). The cost function is composed of equation

expressions that represent the engineer’s desires both throughout the simulation,

∑ 𝐿(�̅�(𝑡𝜖), 𝑈(𝑡𝜖))
𝑡𝑠𝑖𝑚−1
𝑡0

, such as keeping UAV speed or accelerations low at all times,

and expressions to be minimized at certain times or circumstances, 𝜙(�̅�(𝑡𝑠𝑖𝑚)), such as

reducing discrepancy between the desired final destination point and the true final

destination point. Note that though costs terms, like the distance discrepancy example,

are not necessarily related to minimizing the primary problem’s thrust, their presence in

the cost function help the engineer include other secondary desires. There is not one

standard way to create these cost functions, but for this document’s control law, one

common practice is used. This practice is a quadratic approach by simply squaring terms

that are involved with the minimization. For example, if one thinks that keeping the

vehicle in a straightened trajectory will help reduce fuel usage, a near-equivalent

statement would be to minimize the rudder input. The near-equivalent cost term can be

converted into equation form as

 𝐿(�̅�(𝑡𝜖), �̅�(𝑡𝜖)) = 𝛿⏞𝑟 (𝑡𝜖)
2 (2.91)

or, if the error between a desired rudder input, 𝛿⏞𝑟𝑑, and the current rudder input wish to

be decreased,

 𝐿(�̅�(𝑡𝜖), �̅�(𝑡𝜖)) = {𝛿⏞𝑟 (𝑡𝜖) − 𝛿⏞𝑟𝑑 (𝑡𝜖)}
2

 (2.92)

Squaring the rudder terms not only prevents the solution from incorrectly favoring −90°

rudder inputs. Squaring is also a useful tool in proving that the system is stable via

Lyapunov theory (makes the cost function convex).

 Returning to the main components of the optimal control equation, Equation

(2.90), the third component is the constraints—components of the problem that cannot or

134

should not be altered, unlike the desirables in the cost function. These are first denoted

with 𝑠. 𝑡. for ‘such that.’ Typically, the equality portions of the constraints are the system

dynamics. Inequality constraints can show up in the form of control constraints such as

the range limitations of the rudder input. Equality constraints can solve for the desired

variable via a format similar to solving systems of equations. For inequality constraints,

acceptable values of the desired variable can be found using Karush-Kuhn-Tucker

conditions and algorithms that include techniques such as penalty functions or gradients.

 From converting the problem into an equation format, the next step in optimal

control involves perturbation theory and FONC using partials of the Hamiltonian, an

addendum to the cost function in the form of

𝐿(�̅�(𝑡𝜖), �̅�(𝑡𝜖)) + {�̅�
⏞
𝑇

(𝑡𝜖 + 1)} 𝑓(̅�̅�(𝑡𝜖), �̅�(𝑡𝜖)), where �̅�⏞ are costate (a.k.a., eigen or

Lagrange multiplier) values. What this step does is find the solution gradient in

multidimensional space—the ‘direction’ or environment of steepest decent/accent in

which the UAV can currently move to locally minimize the cost function while still

satisfying the constraints. Because such a procedure can only guarantee local

minimization, future work will be needed to compare global minimums via dynamic

programming.

 Even after perturbation and FONC, finding the numerical values of the gradient

is difficult. Recall that the Hamiltonian introduced costates at future time periods—

�̅�⏞
𝑇

(𝑡𝜖 + 1). Consequently, future state values must be known as well. These components

of the derivation are a common challenge in optimal control where solutions require

unknown values. In terms of the multiple shooting method, the unknown values of the

135

future state are guessed/solved for by including them as variables to find, min
𝐹𝑇,�̅�

(∗), and

appending both desired variables to the constraints. For example, given a linear system

with the equality constraints at a single step

�̅�(𝑡𝜖 + 1) = �̅��̅�(𝑡𝜖) + �̅��̅�(𝑡𝜖)

�̅�(𝑡0) = �̅�(0̅)
(2.93)

rearranged as

�̅��̅�(𝑡𝜖) + �̅��̅�(𝑡𝜖) − �̅�(𝑡𝜖 + 1) = 0̅

−�̅�(𝑡0) = −�̅�(0̅)
(2.94)

the appended system of equations, for every step in the simulation, would have the form

[

−𝐼 ̅ 0̅ ⋯ ⋯ ⋯ 0̅ 0̅ ⋯ ⋯ ⋯ 0̅
�̅� −𝐼 ̅ 0̅ ⋯ ⋯ ⋮ �̅� 0̅ ⋯ ⋯ ⋮
0̅ �̅� −𝐼 ̅ 0̅ ⋯ ⋮ 0̅ �̅� 0̅ ⋯ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0̅ ⋮ ⋱ ⋱ ⋱ 0̅
0̅ ⋯ ⋯ 0̅ �̅� −𝐼 ̅ 0̅ ⋯ ⋯ 0̅ �̅�]

[

�̅�(𝑡0)
⋮

�̅�(tsim)

�̅�(𝑡0)
⋮

�̅�(tsim−1)]

=

[

−�̅�(0̅)

0̅
⋮
⋮
⋮
0̅]

(2.95)

where 𝐼 ̅is an identity matrix. From there, the system of equations is solved to find both

future state and future control values. Note that these future state values are actually

guidance values; i.e., a separate algorithm is not needed to determine guidance. After

determining future state values, �̅�⏞
𝑇

(𝑡𝜖 + 1) values can be determined and then the

numerical value of the system gradient can be determined.

Much like the propagation method used in the navigation portion of the

simulation, the appropriate amount of control inputs for the next time step are generally

136

chosen by taking the current control and adding on the gradient times a step size. The

cost function is then evaluated with the next step’s inputs and states to see if the cost

function has reached a local minimum. Note, that, unlike the navigation’s time step, the

step sized is not constant. Constant step sizes have tendencies to “step over” the

minimum multi-dimensional cost solution. As such, approaches such as line search,

diminishing step size, Armijo step size, and optimal step size are used to adjust the step

size as the algorithm converges onto a local cost minimum. The entire process of (1)

finding a gradient, (2) finding an appropriate step size, (3) propagating the control, and

(4) determining if a local minimum cost has been reached (indicating no change in

control input is needed) is iterated till the end of the simulation.

This subsection has just discussed the logic behind this document’s optimal

control law. In short, this control law has simple, yet desirable features. After converting

a given problem into an equation format composed of the minimization operator, cost,

and constraints, a gradient can be found. This gradient can then be used to propagate

control inputs forward in time to minimize desired secondary system objectives. With

this logic in mind, this document now progresses on to explaining the details of this

specific simulation.

2.2.2 Guidance and Control Model and Code Package

 This subsection will first detail the components of this documents GC law’s

equation format, then IPOPT and CasADi package implementation will be explained.

The overall problem for this document is to investigate if certain variables in the

mission reduce navigation errors. For the GC law, the problem is more specifically

investigating control inputs that might reduce navigation errors. Furthermore, as a

137

multiple shooting method, finding state values is also needed. Hence, the minimization

operator is set up as min
�̅�,�̅�

(𝐽(�̅�, �̅�)). Skipping over the rest of the cost for now, the

constraints consist of initial conditions, state dynamics, and limitations of the control

inputs. Although the same initial conditions from the navigation law are used, the GC law

is set up with a different assumption of states and dynamics. The set-up mimics the truth

model but has a reduction in terms:

 �̌̅� =

[

�̌�𝑛
�̌�𝑒
�̌�
𝑣
�̌�
�̌�]

 (2.96)

 �̇̌̅� = 𝑓̅̌ (�̌̅�, �̂̅�, �̌̅�) =

[

 �̇̌�𝑛
�̇̌�𝑒
�̇̌�
�̇�

�̇̌�

�̇̌�]

=

[

�̌� cos(�̌�) − 𝑣 sin(�̌�)

�̌� sin(�̌�) + 𝑣 cos(�̌�)

�̌� 𝑣 −
�̂�𝐷𝑜 �̂� �̌�𝑎

2 �̂�

2�̂�
+
�̌�𝑇
�̂�

−�̌� �̌� +
Ξ̌1 �̂� �̌�𝑎

2 �̂�

2�̂�

�̌�

Ξ̌2 �̂� �̌�𝑎
2 �̂� �̂�

2]

 (2.97)

where

[

Ξ̌1
Ξ̌2
�̌�

�̌�𝑎
�̌�𝑟
𝑣𝑟]

=

[

 �̂�𝑌0 + �̂�𝑌𝛽 �̌� +

�̂�𝑌𝑟 �̂� �̌�

2 �̌�𝑎
+ �̂�𝑌

𝛿⏞𝑟
𝛿⏞̌𝑟

�̂�𝑟0 + �̂�𝑟𝛽 �̌� +
�̂�𝑟𝑟 �̂� �̌�

2 �̌�𝑎
+ �̂�𝑟

𝛿⏞𝑟
𝛿⏞̌𝑟

sin−1 (
𝑣𝑟

�̌�𝑎
)

√�̌�𝑟2 + 𝑣𝑟2

�̌� − �̂�𝑤𝑔
𝑣 − 𝑣𝑤𝑔]

 (2.98)

138

 �̌̅� = [
�̌�𝑇

𝛿⏞̌𝑟
] (2.99)

The same position, velocity, attitude, and attitude rate states from the truth

model are used in Equation (2.96) and Equation (2.97). Biases are not used as their

purpose was in accounting for continuous sensor errors—The control law relies on

navigation to take out sensor errors. Landmarks are not used as the method for

minimizing errors. In terms of control, error minimization is investigated through the cost

function, not through a propagation or update equation. Unlike the navigation design

model, Jacobians will be made using only this GC model as there is a need to obtain the

Jacobian in terms of control inputs of Equation (2.99). Check overmarks are used to

identify GC model variables. Hat overmarks remain on navigation values that the GC law

uses consistently. Nevertheless, it is true that the GC law at given times will substitute in

navigation equivalent values for defining the current state and many guessed solution

values in its numerical initialization. Note again that these equations do not show the

explicit dependencies on time in the right-hand-side of these equations for visual clarity

purposes. Also, the above equations are continuous time definitions. Discretization is

handled by the toolboxes and libraries.

|𝛿⏞̌𝑟 (𝑡𝜖)| ≤ 90°

0 𝑁 ≤ �̌�𝑇(𝑡𝜖) ≤ 13.5 𝑁

(2.100)

139

[

−2500 𝑁𝑜𝑟𝑡ℎ
−2500 𝐸𝑎𝑠𝑡

16
𝑚

𝑠

−6
𝑚

𝑠
−25 𝑟𝑎𝑑

−0.5
𝑟𝑎𝑑

𝑠]

≤

[

�̌�𝑛(𝑡𝜖)

�̌�𝑒(𝑡𝜖)

�̌�(𝑡𝜖)

𝑣(𝑡𝜖)

�̌�(𝑡𝜖)

�̌�(𝑡𝜖)]

≤

[

2500 𝑁𝑜𝑟𝑡ℎ
2500 𝐸𝑎𝑠𝑡

25
𝑚

𝑠

6
𝑚

𝑠
25 𝑟𝑎𝑑

0.5
𝑟𝑎𝑑

𝑠]

|�̌̅�(𝑡𝜖) − �̌̅�(𝑡𝜖−1)| ≤ [
0.8 𝑁

0.05 𝑟𝑎𝑑
]

In terms of discrete control and state limitations, rudder has the same limitations

as the prior example. Thrust is restrained from null to 13.5 N (Assuming the aircraft’s

cruise speed is approximately 1/10th the aircraft’s weight [33]. Future work can examine

simulations having maximum thrust conditions, which range at approximately 1/2 to 1/4th

the aircraft’s weight [34]). Vehicle forward velocity is assumed to remain between 16 m/s

and 25 m/s (35 mph and 56 mph) [31]. Although not necessary, limits (based on the

results from the 2.1 Kalman Filter Development section) were placed on position, lateral

velocity, heading and heading rate to assist the IPOPT/CasADi solver in yielding quicker

solutions. Furthermore, restrictions were placed on the control rate of change based on

approximations from [35] and [36]. Using rate-of-change constraints (rate limit profiler)

was used rather than a PID control approach, where control dynamics are implemented in

the UAV’s GC dynamics, because the PID approach requires guidance values to solve the

generated Laplace transform—guidance values are only available after the appended

system of equations are solved; i.e., the PID approach requires values that have yet to be

solved for. There is a last potential constraint for future work. This constraint is

maintaining UAV-landmark proximities. Implementation might use [37] as a reference,

which approaches the problem by keeping the probability of trespassing over a UAV-

140

landmark proximity below a user-defined percent. Preliminary results suggested that

alternatively adding this proximity constraint in the cost function with a high gain instead

may be more computationally feasible.

 Returning to the cost, various factors must be considered. As a start, waypoint

following will be used to direct the UAV in and out of a GPSD region. Next, a cost to

promote circular trajectories that appeared to reduce error in the 2.1.6 Covariance

Propagation subsection is used. A cost to favor trajectories where the landmark is

centered inside the camera FOV is used. This helps reduce image distortion and to pursue

close UAV-landmark proximities. A cost to race the sensor’s quadratic error growth out

of GPSD is also used. The total cost function is displayed with Equation (2.101).

 min
�̌̅�,�̌̅�

(

𝐽 (�̌̅�, �̌̅�) =

∑

{

 𝐺1√{�̌�𝑛(𝑡𝜖) − �̌�𝑛𝑑(𝑡𝜖)}

2 + {�̌�𝑒(𝑡𝜖) − �̌�𝑒𝑑(𝑡𝜖)}2

+𝐺2√{𝑣𝑑(𝑡𝜖)2 − 𝑣(𝑡𝜖)2}2

+𝐺3√𝛾(𝑡𝜖)2

+𝐺4√{�̌�(𝑡𝜖) − �̌�𝑑(𝑡𝜖)}2 }

𝑡0+2Δ𝑡𝑘

𝑡0

)

 (2.101)

In this equation, the minimization operator, min
�̌̅�,�̌̅�

(), is tailored to the multiple-

shooting method’s minimization of both state, �̌̅�, and control, �̌̅�. The cost function, 𝐽, is

expanded as a summation of the cost terms from the time the control law starts, 𝑡0, to a

desired future time, in this case two discrete time periods, 𝑡0 + 2Δ𝑡𝑘 (incrementally

solving the GC law over small time horizons is similar to approaches used in Model

Predictive Control (MPC)). Each cost term is associated with a 𝐺∗ gain/weight multiplier.

𝐺1 is associated with waypoint following, which aims to minimize the distance between

the current north and east desired waypoint location, [�̌�𝑛𝑑 , �̌�𝑒𝑑], and the UAV’s current

location, [�̌�𝑛, �̌�𝑒]. 𝐺2 uses a near-equivalent statement of minimizing the difference

141

between the desired lateral velocity input, 𝑣𝑑, and current lateral velocity inputs, 𝑣. 𝐺3

uses a near-equivalent statement of minimizing, 𝛾, which is the angle between the

camera's bore axis, 𝑐𝑖, and a vector, [Λ𝑖, Λ𝑗], that points from the UAV to a landmark, Λ,

as was shown in Figure 2.2. Finally, 𝐺4 is adjoined with the difference between the

UAV’s forward speed, �̌�, and a desired forward speed, �̌�𝑑. During the gain tuning

process, Equation 3.1 will be adjusted for cost gain tuning.

 In more detail, Equation (2.101) did not require a 𝜙(�̅�(𝑡𝑠𝑖𝑚)) term. The costs

include a square root with quadratic squaring. Using a magnitude format provided better

result compared with quadratic squaring only. 𝑣𝑑(𝑡𝜖) is set to a constant max velocity.

No 𝛾𝑑 was required since 𝛾𝑑 = 0. 𝛾 is calculated as

 𝛾(𝜖) = 𝑎𝑡𝑎𝑛2(
Λ̌𝑗(𝜖)

Λ̌𝑖(𝜖)
) (2.102)

for the currently desired landmark. Note that for the IPOPT/CasADi solver to properly

minimize the cost via partial derivatives, variables must be expressed int terms of the

states—meaning that the 𝑖 and 𝑗 landmark position values must be expanded as they were

in Equation (2.11) through Equation (2.13). Forward speed ranged its desired speed from

stall speed to max speed. Though waypoint following naturally encourages higher speeds,

lower speeds also need to be induced for comparison purposes in this study. Note, lateral

velocity gain is used for the circular trajectory cost due to high lateral velocity occurring

at high curvature. Furthermore, high heading rate, high rudder input, and curvature are

not used instead of high lateral velocity because one can achieve high heading rates and

high rudder inputs on a straightened trajectory when the rudder is constantly switching

from -90° to 90°; and curvature, denoted as

142

 �̌� =
�̌�

√�̌�2 + 𝑣2
 (2.103)

has conflicting terms when maximizing. Again, in future work, a gain 𝐺5 could be placed

with a UAV-landmark proximity cost.

 Up to this point, subsection 2.2.2 has described the GC model of state,

dynamics, constraints, and cost function. Defining a separate “truth” GC model and

“navigation” GC model was deemed unnecessary, especially since control noise was not

added to the system and is left for future work. From here, the GC model is implemented

into the GC law toolboxes and libraries: IPOPT and CasADi.

 IPOPT is a popular, readily available toolbox for solving large optimization

problems [38]. The solver uses the interior point line search to find the local minima of

the problem. For user-defined properties, the author kept all defaults, including the free

MUMPS sparce symmetric indefinite linear solver, except for the number of max

iterations, which was set to 40 to reduce computation time. The CasADi library [39] is an

interface to IPOPT. CasADi uses a symbolic approach to provide a more user-friendly

environment in defining the problem and its Jacobians before sending the problem to

IPOPT for solving. The author mimicked the CasADi example pack

direct_multiple_shooting.m to implement the direct multiple shooting GC law, including

line 117-120’s state continuity equality constraint. “relax_bounds” was selected as the

“fixed_variable_treatment.” With the max iteration and “relax_bounds” settings, GC

solutions may not be completely minimized, and constraint limits may not be completely

obeyed. Nevertheless, the convergence to minimization and exceeding dynamics by small

margins appeared close enough for all intents and purposes.

143

 After implementing the model into the toolbox and library, the toolbox and

library are implemented into the simulation. To do this, the author first collects the

conditions and parameters for the GC law, calculates two simulation seconds of GC, and

then repeats the simulation iterations of state propagation, Kalman update, and GC

calculations.

In more detail, the author first collects info on whether the waypoint objective

has changed or if a Kalman update has occurred. Both conditions signal that the GC law

needs to be reevaluated. When reevaluated, the GC law uses the current navigation values

to formulate a GC solution for the next 2 s of the simulation. 2 s was chosen primarily for

reduced computation time; however, 2 s also proves advantageous in balancing both local

and global path planning. 2 s is local enough to accommodate mission changes, e.g.,

waypoints, yet global enough to provide more refined control law solutions. To explain

“refined,” recall that optimal control problems yield “better” solutions when the problem

is reevaluated using the first solution as numerical guess inputs for the second evaluation

[32]. With that knowledge, given that the control law will update at least once per second

in the simulation, the author used the remaining portion of each prior 2 s solution as

numerical guess input for the first portion of the next 2 s solution. Furthermore, all

numerical guess inputs for the second portion of the next 2 s solution were defaulted to

equal the last values of the first 2 s solution. Figure 2.62 provides a visual of this

description.

144

Figure 2.62. Visual of GC law reevaluation.

Again, having a 2 s GC solution provided an advantage where a global-like solution

could be used for refined results in future 2 s solutions.

2.2.3 Guidance and Control Validations

With the minimization function and toolboxes/libraries for the GC law

described, this document now moves forward in producing a validation simulation to

confirm that portions of the GC law have been implemented correctly. Additionally, this

simulation will provide an outline for how the future sensitivity studies will be set up.

 For this validation and future sensitivity studies, the simulation is run with the

same initial conditions, noise, and commercial sensor package from the 2.1.7 Estimation

Capability subsection (though using the same truth-state and using �̆̅��̆̅�(�̅�
−(𝑡𝑘)), not

�̆̅��̆̅�(�̂̅�
−(𝑡𝑘)), for each Monte Carlo is no longer applied). A 200 Monte Carlo simulation

is generated for the validation to ensure that low-error dispersions do not break-down the

GC law. Using pre-planned waypoints (implementation for real-time waypoint planning

is left to future work), the UAV is to first perform two hard rudder maneuvers, to exercise

145

the dynamics, which encourages observability, before entering a GPSD zone. For a given

study, landmarks may be scattered on the flight plane to provide navigation aid to the

UAV after entering GPSD. Upon reaching the other side of the GPSD zone, the UAV is

then instructed to return back through GPS denial to a final destination point. The

simulation ends at 100 s or when the waypoint algorithm declares that the UAV

sufficiently reached the final destination. Table 2.8 provides the specific GPSD region

and waypoint locations.

Table 2.8. Waypoint and GPSD locations.

 North Min

Edge

North Max

Edge

East Min

Edge

East Max

Edge

Units

GPSD Region -400 400 835 235 m

 North East Units

Waypoint 1 (Start) 400 0 m

Waypoint 2 239 123 m

Waypoint 3 131 230 m

Waypoint 4 131 918 m

Waypoint 5 -83 918 m

Waypoint 6 -83 230 m

Waypoint 7 -83 -3000 m

 With these mission specifications, GPSD and added landmarks will not be used

for this subsection’s validation (nevertheless, preliminary results indicated that, given

waypoint following in a landmark-void, GPSD field, most commercial-sensor Monte

Carlos are able to complete the waypoint mission. Mission failure is due navigation errors

growing too large for the control law to accommodate—an issue that is resolved with

camera updates). A seventh waypoint is included to aid the selected waypoint algorithm,

which is similar to the filleted waypoint approach described in [13] with the added

stipulation that the UAV must be withing 100 m of the current waypoint before pursuing

146

the next waypoint. Only the waypoint following cost (𝐺1 = 1.7e-2, 𝐺2 = 𝐺3 = 𝐺4 = 0)

will be activated in this validation and the navigation study. Cost evaluation is left to the

GC study.

 The selected plots below are the GC validation results for a single, commercial

sensor Monte Carlo and the trajectory for 200 Monte Carlos:

Figure 2.63. GC validation UAV north and east coordinates.

Figure 2.63 Presents the waypoint following trajectory. For the single Monte

Carlo, a truth, guidance, and navigation trajectory are plotted. All trajectory types

essentially have insignificant divergence from each other. When in the presence of

GPSD, truth will significantly diverge from the guidance and navigation trajectory.

Guidance does not significantly diverge from navigation since this GC law does not

incorporate noise into the control output. For the 200 Monte Carlo plot, navigation

plotting is removed for clarity.

Given full access to GPS, waypoint following for this GC law can overshoot and

‘cut corners’ as seen in the 200 Monte Carlo. The IPOPT settings, 2 s GC time horizon

147

window, dispersions, and the filleted waypoint following all contribute to overshooting

and cutting corners. Given the few cases of extreme overshooting and corner cutting,

trajectory performance of the GC law is deemed acceptable.

Figure 2.64. GC validation position over time.

148

Figure 2.65. GC validation Body and N-E frame velocity over time.

149

Figure 2.66. GC validation attitude and attitude rate over time.

Figure 2.64 through Figure 2.66 presents the UAV’s states as a function of time.

Given the scaling, there is a little more visibility in the differences between the control

state and the truth state. In particular, control is more erratic in 𝜓 and 𝑣. Nevertheless, the

differences are not erratic enough to suggest incorrect dynamic implementation. Position,

velocity, heading, and heading rate control constraints are obeyed. This does not,

however, guarantee that the truth state or control state will always obey these constraints.

At constraint boundaries, 𝑢 for example, the truth states can be found to exceed the

boundaries. With relaxed boundary conditions, the control state can also exceed in future

simulations; but again, neither exceed significantly enough to be of concern.

150

Figure 2.67. GC validation thrust and rudder input.

Figure 2.67 shows the control inputs for a single trajectory. Control bounds were

upheld, and the author found that control rates of change were also upheld to the 8th

decimal place, which are negligible discrepancies.

The results presented in this subsection helped to validate the implemented GC

law. The GC waypoint costs was recognized, and GC model dynamics and constraints

were adhered to. Recognition of potential error-reducing costs is left for the second

151

simulation study. From here, this document now transitions to describe and execute the

first and second simulation study.

152

CHAPTER 3

SIMULATION RESULTS

 Up to this point, GNC background and development have been given. The

purpose of this chapter is to list and describe the types of simulations that will be

conducted for the navigation sensitivity analysis and the GC sensitivity analysis. First,

specifications specifically used for the navigation sensitivity study and GC study are

given (3.1). Following are sections that give specifications unique to the Navigation (3.2)

and GC (3.3) study as well as their results and author interpretation.

3.1 Sensitivity Analyses Specifications

 This section discusses the studies’ specifications. Both studies use the same

setup as the control law section with the exception that GPSD, landmarks, and other

control gains can be activated. One Monte Carlo is generated for each study test case,

instead of 200, with the assumption that the one Monte Carlo’s 3𝜎 statistics is sufficient

to represent the dispersion outcomes of the other 200 Monte Carlos. To compare test

cases with each other, all test cases will retain their root-sum-squared 3𝜎 position

statistics (derived from the IEKF’s covariance) at each GPSD 𝑡𝜖 time step,

‖3𝜎(𝑝(𝑡𝐺𝑃𝑆𝐷))‖, i.e. 3 √𝑡𝑟 (𝑃𝑝(𝑡𝐺𝑃𝑆𝐷)) using the trace 𝑡𝑟() operator. To gain a holistic

visual interpretation of all test cases, test cases are grouped into categories of sensor

grade, landmark uncertainty, gain values, etc. Using the mean, 𝜇 (3 √𝑡𝑟 (𝑃𝑝(𝑡𝐺𝑃𝑆𝐷))),

for each category, line plots are generated for comparison. For clarity, example

trajectories associated with categories are displayed after the applicable plots (Moving

153

left to right on the plot is respectively associated with trajectories top left, top right, and

bottom).

Continuing with listing study specifications, position root-sum-squared 3𝜎 vs

time plots, are shown for each category’s low, medium, and high test cases. Shaded

regions within the 3𝜎 vs time plots to represent times during GPSD are not provided to

reduce the image clutter of each trajectory’s GPSD regions. To limit the study to

landmark observations only in GPSD cases, camera observations are not allowed till after

the UAV enters GPS denial. To help prevent scenarios where certain landmarks receive

“unfair” amounts of camera observations, the author opened up the FOV to 160° to allow

camera update availability throughout GPSD (consequently, Equation (2.82) updates to

�̂�𝑐 = 2.4 mrad 1𝜎). Future work can analyze similar statistics for velocity and attitude

states.

3.2 Navigation Sensitivity Study

 In this section, the study aims to compare how 𝜇3𝜎𝑝 is affected with respect to

variations in IMU sensor grade, landmark uncertainty, number of landmark observations,

measurement geometry, and number of landmarks. For clarity, measurement geometry

considers variations in 𝛾, which influences the 𝐻 matrix’s direction of information. Each

of the upcoming tables describe the test cases used for each variation. The tables provide

columns indicating sensor quality, true landmark position, 3𝜎 landmark uncertainty prior

to the mission’s start, and the number of seconds allowed before a camera Kalman

update. In all these tests, only the waypoint gain is activated (𝐺1 = 1.7e-2, 𝐺2 = 𝐺3 =

𝐺4 = 0) to limit the effect GC has on error outcomes. 70 total test cases are conducted as

outlined in Table 3.1 through Table 3.5:

154

Table 3.1. Navigation study IMU sensor grade.

S
im

u
latio

n

N
u
m

b
er

IM
U

 S
en

so
r

G
rad

e

T
ru

e Λ
1
𝑛

 [m
]

T
ru

e Λ
1
𝑒 [m

]

Λ
1
∗ In

itial

U
n
certain

ty
 [m

]

T
ru

e Λ
2
𝑛

 [m
]

T
ru

e Λ
2
𝑒 [m

]

Λ
2
∗ In

itial

U
n
certain

ty
 [m

]

C
am

era Δ
𝑡
𝑘
 [s]

1 Commercial 331 835 0.5 -284 235 0.5 1

2 Tactical 331 835 0.5 -284 235 0.5 1

3 Navigation 331 835 0.5 -284 235 0.5 1

Table 3.2. Navigation study landmark uncertainty.

S
im

u
latio

n

N
u
m

b
er

IM
U

 S
en

so
r

G
rad

e

T
ru

e Λ
1
𝑛

 [m
]

T
ru

e Λ
1
𝑒 [m

]

Λ
1
∗ In

itial

U
n
certain

ty
 [m

]

T
ru

e Λ
2
𝑛

 [m
]

T
ru

e Λ
2
𝑒 [m

]

Λ
2
∗ In

itial

U
n
certain

ty
 [m

]

C
am

era Δ
𝑡
𝑘
 [s]

4 Tactical 331 835 0.1 -284 235 0.1 1

5 Tactical 331 835 0.9 -284 235 0.9 1

6 Tactical 331 835 1.7 -284 235 1.7 1

7 Tactical 331 835 2.5 -284 235 2.5 1

8 Tactical 331 835 3.2 -284 235 3.2 1

9 Tactical 331 835 4.0 -284 235 4.0 1

10 Tactical 331 835 4.8 -284 235 4.8 1

11 Tactical 331 835 5.6 -284 235 5.6 1

12 Tactical 331 835 6.4 -284 235 6.4 1

13 Tactical 331 835 7.2 -284 235 7.2 1

14 Tactical 331 835 7.9 -284 235 7.9 1

15 Tactical 331 835 8.7 -284 235 8.7 1

16 Tactical 331 835 9.5 -284 235 9.5 1

17 Tactical 331 835 10.3 -284 235 10.3 1

18 Tactical 331 835 11.1 -284 235 11.1 1

19 Tactical 331 835 11.9 -284 235 11.9 1

20 Tactical 331 835 12.6 -284 235 12.6 1

21 Tactical 331 835 13.4 -284 235 13.4 1

22 Tactical 331 835 14.2 -284 235 14.2 1

23 Tactical 331 835 15.0 -284 235 15.0 1

155

Table 3.3. Navigation study number of landmark observations.

S
im

u
latio

n

N
u
m

b
er

IM
U

 S
en

so
r

G
rad

e

T
ru

e Λ
1
𝑛

 [m
]

T
ru

e Λ
1
𝑒 [m

]

Λ
1
∗ In

itial

U
n
certain

ty
 [m

]

T
ru

e Λ
2
𝑛

 [m
]

T
ru

e Λ
2
𝑒 [m

]

Λ
2
∗ In

itial

U
n
certain

ty
 [m

]

C
am

era Δ
𝑡
𝑘
 [s]

24 Tactical 331 835 0.5 -284 235 0.5 0.1

25 Tactical 331 835 0.5 -284 235 0.5 0.25

26 Tactical 331 835 0.5 -284 235 0.5 0.5

27 Tactical 331 835 0.5 -284 235 0.5 1

28 Tactical 331 835 0.5 -284 235 0.5 2

29 Tactical 331 835 0.5 -284 235 0.5 3

30 Tactical 331 835 0.5 -284 235 0.5 4

31 Tactical 331 835 0.5 -284 235 0.5 5

32 Tactical 331 835 0.5 -284 235 0.5 6

33 Tactical 331 835 0.5 -284 235 0.5 7

34 Tactical 331 835 0.5 -284 235 0.5 8

35 Tactical 331 835 0.5 -284 235 0.5 9

36 Tactical 331 835 0.5 -284 235 0.5 10

37 Tactical 331 835 0.5 -284 235 0.5 11

38 Tactical 331 835 0.5 -284 235 0.5 12

39 Tactical 331 835 0.5 -284 235 0.5 13

40 Tactical 331 835 0.5 -284 235 0.5 14

41 Tactical 331 835 0.5 -284 235 0.5 15

42 Tactical 331 835 0.5 -284 235 0.5 16

43 Tactical 331 835 0.5 -284 235 0.5 17

44 Tactical 331 835 0.5 -284 235 0.5 18

45 Tactical 331 835 0.5 -284 235 0.5 19

46 Tactical 331 835 0.5 -284 235 0.5 20

156

Table 3.4. Navigation study measurement geometry.

S
im

u
latio

n

N
u
m

b
er

IM
U

 S
en

so
r

G
rad

e

T
ru

e Λ
1
𝑛

 [m
]

T
ru

e Λ
1
𝑒 [m

]

Λ
1
∗ In

itial

U
n
certain

ty
 [m

]

T
ru

e Λ
2
𝑛

 [m
]

T
ru

e Λ
2
𝑒 [m

]

Λ
2
∗ In

itial

U
n
certain

ty
 [m

]

C
am

era Δ
𝑡
𝑘
 [s]

47 Tactical 131 835 0.5 -84 235 0.5 1

48 Tactical 158 835 0.5 -110 235 0.5 1

49 Tactical 184 835 0.5 -136 235 0.5 1

50 Tactical 210 835 0.5 -163 235 0.5 1

51 Tactical 237 835 0.5 -189 235 0.5 1

52 Tactical 263 835 0.5 -215 235 0.5 1

53 Tactical 289 835 0.5 -242 235 0.5 1

54 Tactical 315 835 0.5 -268 235 0.5 1

55 Tactical 342 835 0.5 -294 235 0.5 1

56 Tactical 368 835 0.5 -321 235 0.5 1

57 Tactical 394 835 0.5 -347 235 0.5 1

58 Tactical 421 835 0.5 -373 235 0.5 1

59 Tactical 447 835 0.5 -400 235 0.5 1

60 Tactical 473 835 0.5 -426 235 0.5 1

61 Tactical 500 835 0.5 -452 235 0.5 1

62 Tactical 526 835 0.5 -478 235 0.5 1

63 Tactical 552 835 0.5 -505 235 0.5 1

64 Tactical 579 835 0.5 -531 235 0.5 1

65 Tactical 605 835 0.5 -557 235 0.5 1

66 Tactical 631 835 0.5 -584 235 0.5 1

157

Table 3.5. Navigation study number of landmarks.

S
im

u
latio

n

N
u
m

b
er

IM
U

 S
en

so
r

G
rad

e

T
ru

e Λ
1
𝑛

 [m
]

T
ru

e Λ
1
𝑒 [m

]

Λ
1
∗ In

itial

U
n
certain

ty
 [m

]

C
am

era Δ
𝑡
𝑘
 [s]

67 Tactical
331 835 0.5

1
-284 235 0.5

68 Tactical

331 702 0.5

1
331 835 0.5

-284 368 0.5

-284 235 0.5

69 Tactical

331 568 0.5

1

331 702 0.5

331 835 0.5

-284 502 0.5

-284 368 0.5

-284 235 0.5

70 Tactical

331 435 0.5

1

331 568 0.5

331 702 0.5

331 835 0.5

-284 635 0.5

-284 502 0.5

-284 368 0.5

-284 235 0.5

70 Tactical

331 302 0.5

1

331 435 0.5

331 568 0.5

331 702 0.5

331 835 0.5

-284 768 0.5

-284 635 0.5

-284 502 0.5

-284 368 0.5

-284 235 0.5

In more detail, three grades of simulations are used to understand sensor quality.

Simulation 2 is used as the nominal case for all other test cases. To understand initial

landmark uncertainty, the nominal was altered by varying both landmarks’ uncertainties

from 0.1 m to 15 m. The smaller 0.5 m landmark uncertainty is used as the nominal to

158

ensure that the camera measurements always retain an active role in GPSD (i.e., the filter

will not need to wait for UAV’s errors to grow, for example, past 10 m before a 10 m

initial uncertainty landmark’s measurement can be significantly useful). For number of

landmark observations, the Δ𝑡𝑘 column was varied. What this did was alter the number of

seconds before a camera Kalman update. GPS and magnetometer measurement were still

allowed to update every 1 s (note the GC law did consequently update after each camera

observation, so more computation was needed for the 0.1 to 0.5 tests). To study

measurement geometry, landmark north position was altered. In future plots, the position

will be described in terms of absolute north distance 𝐷 from the nearest waypoint

(waypoint 4 for Λ1 and waypoint 6 for Λ2). To study how the number of landmarks

affects position errors there was difficulty since deriving navigation matrices to hold 10

landmarks is cumbersome. To compensate, the author generated a one-landmark

simulation. This one landmark would be initialized as the closest landmark to the UAV

(with respect to east position). After passing the camera’s FOV, this landmark’s position

and covariance statistics would be stored then replaced by the next closest landmark’s

statistics. Upon revisiting a landmark, the stored position and variance elements would be

placed back into the UAV state and covariance (off diagonals set to zero).

159

3.2.1 Navigation Sensitivity Results

Figure 3.1. Navigation study IMU sensor grade.

 Figure 3.1 displays the effects that IMU sensor grade has on the mission. The

trend is that mean error decreases with improved sensor grade. With camera observations

160

every second, commercial sensors achieve errors below 10 m. Navigation sensors can

achieve errors just above GPS-measurement errors of 1 m. In the estimation error plot,

extreme Kalman updates are reduced with improved sensor grade. Furthermore, the

commercial grade sensor appears to exit GPS denial slightly faster than the other sensor

grades. For future reference, the tactical grade simulation, the nominal simulation,

achieved a mean error of 2.25 m.

161

Figure 3.2. Navigation study initial landmark uncertainty.

Figure 3.2 depicts the change of mean error with initial landmark uncertainty.

With increasing landmark error comes increasing position error. This positive correlation

appears either linear or logarithmic. The nominal in this figure occurred at 0.5 m.

162

Figure 3.3. Navigation study number of landmark observations.

Figure 3.3 also shows a positive correlation between camera Δ𝑡𝑘 and position

mean error. The correlation is less smooth but has a more a defined logarithmic shape. A

steeper change in position errors occurs with camera updates below the 1 s nominal.

163

Figure 3.4. Navigation study measurement geometry.

164

Figure 3.5. Navigation study measurement geometry trajectories.

165

Figure 3.6. Navigation study measurement geometry with 𝑝𝑛 and 𝑝𝑒 components.

For measurement geometry, although the y-axis range is small, a convex

relationship was found between position error and landmark north distance. Distances

within 𝐷 = 100 𝑚 and 𝐷 = 250 (between the first and second trajectories in Figure 3.5)

yielded errors slightly less than the nominal. To investigate the relationship, Figure 3.6

was made. This figure replots Figure 3.4 (blue) but also plots the mean 3𝜎 position error

for 𝑝𝑛 (red) and 𝑝𝑒 (orange) individually. 𝑝𝑛 shows a positive correlation with 𝐷,

whereas 𝑝𝑒 shows a negative correlation with 𝐷.

166

Figure 3.7. Navigation study number of landmarks.

167

Figure 3.8. Navigation study number of landmarks trajectories.

The additional landmarks in Figure 3.8 varied the nominal’s east position. The

mean error range between 2 and 10 landmarks from Figure 3.7 is less than 1 m.

Nevertheless, more landmarks always produced less position error than the nominal.

3.2.2 Navigation Sensitivity Interpretation

 With the given statistics, IMU sensor grade appears to have the most drastic

effect on navigation errors. Sensor grade variations produced a range that held both the

largest and smallest errors than any other studied variation. Landmark observations have

168

the second highest effect since landmark observations have the second highest error

range. However, this larger range is only possible if camera processing speeds are faster

than 1 s. Achieving such speeds could become the costliest and most time-consuming

objective for real-world implementation. Initial landmark uncertainty seems to have

limited effect on position errors. Since the Kalman filter’s linearization can only tolerate

missions having a maximum of 15 m initial landmark uncertainty, this limits the extent to

which landmark uncertainty can affect UAV position errors.

 The number of landmarks has a lower effect on position errors than most of the

other studied variations. However, perhaps the method of replacing the landmarks in and

out of the current state and covariance limited the full potential of multiple landmarks. In

this method, the UAV could only observe one landmark per update cycle. Perhaps an

alternative method would be to perform replacements and updates with every observable

landmark per update cycle.

 When considering measurement geometry, the small error range implies that

measurement geometry has little effect on position errors. Looking at the mean position

error for 𝑝𝑛 and 𝑝𝑒 individually, there is a tradeoff. For low 𝐷 distances, 𝑝𝑒 error will

dominate due to the lack of orthogonal information in the 𝐻 matrix. Near 270 m, more of

𝑝𝑛’s orthogonal information trades off to 𝑝𝑒, and 𝑝𝑛 then becomes the dominant source of

error. So, since valuable position information is still able to be received at high landmark

angles, perhaps a larger influence on position errors is not necessarily by measurement

geometry but by FOV. To explain, in these studies, FOV was enlarged to ensure

measurement availability throughout GPSD. However, in circumstances where FOV is

smaller, simulations with larger 𝐷 would incur larger position error, since the UAV

169

would no longer see the landmark and would lose access to camera updates within the

field.

3.3 Guidance and Control Sensitivity Study

 For the GC study, the nominal simulation setup from the navigation study is

selected (simulation number 2, 𝐺1 = 1.7e-2, 𝐺2 = 𝐺3 = 𝐺4 = 0). The objective is to

activate and vary the gains in the GC law to see if any significant reduction in 𝜇3𝜎𝑝, can

be acquired. The following simulations were run:

170

Table 3.6. GC study gains.

Simulation

Number

Activated

Gain

Gain

Value

Simulation

Number

Activated

Gain

Gain

Value

Desired

Speed (
𝑚

𝑠
)

71

𝐺2

(𝑣)

5.1e-04 111

𝐺4

(𝑢)

2.8e-02 16.0e+00
72 1.0e-03 112 2.8e-02 16.5e+00
73 1.5e-03 113 2.8e-02 16.9e+00
74 2.1e-03 114 2.8e-02 17.4e+00
75 2.6e-03 115 2.8e-02 17.9e+00
76 3.1e-03 116 2.8e-02 18.4e+00
77 3.6e-03 117 2.8e-02 18.8e+00

78 4.1e-03 118 2.8e-02 19.3e+00
79 4.6e-03 119 2.8e-02 19.8e+00
80 5.1e-03 120 2.8e-02 20.3e+00
81 5.7e-03 121 2.8e-02 20.7e+00
82 6.2e-03 122 2.8e-02 21.2e+00
83 6.7e-03 123 2.8e-02 21.7e+00
84 7.2e-03 124 2.8e-02 22.2e+00

85 7.7e-03 125 2.8e-02 22.6e+00
86 8.2e-03 126 2.8e-02 23.1e+00
87 8.7e-03 127 2.8e-02 23.6e+00

88 9.3e-03 128 2.8e-02 24.1e+00

89 9.8e-03 129 2.8e-02 24.5e+00

90 1.0e-02 130 2.8e-02 25 e+00

91

𝐺3

(𝛾)

1.2e-02

92 2.4e-02

93 3.6e-02

94 4.8e-02

95 6.0e-02

96 7.2e-02

97 8.4e-02

98 9.6e-02

99 1.1e-01

100 1.2e-01

101 1.3e-01

102 1.4e-01

103 1.6e-01

104 1.7e-01

105 1.8e-01

106 1.9e-01

107 2.0e-01

108 2.2e-01

109 2.3e-01

110 2.4e-01

171

For every GC study, only one potential-error-reducing cost is activated at a time with the

constant, nominal waypoint following cost. A relatively low to high gain is applied to the

potential-error-reducing cost term. The exception to this is the forward velocity, which

uses a constant gain while the desired speed varied. Future work can perform more

extensive research of combination gains.

 Before continuing, an explanation on gain value selection may be desired. In

short, Bryson’s method [24] with tuning was used. In detail, linear scaling gains so that,

for example, hard rudder inputs are two times more important than waypoint following

(𝐺1 = 1, 𝐺2 = 2) will not produce the same scaled trajectory. This is due to the relative

units of each cost, where much higher gains are needed, for example, for radian costs to

“compete” with meter costs. Using Bryson’s method alone did not provide the desired

competitions between costs. To tune, the author kept Bryson’s method for all costs

(divide by the largest possible numerator value). For waypoint following, the maximum

value was estimated as the largest distance between 2 consecutive waypoints. After

applying Bryson’s method, the author activated waypoint following only and gradually

multiplied more gain until the UAV would make a concise trajectory with limited

overshoot at waypoints and straightened paths between waypoints. Keeping the waypoint

gain constant, the other costs were individually activated. Low gains had trajectories that

favored waypoint following; high gains had trajectories that favored the activated cost.

For lateral velocity, the gain that induced the highest curved trajectory while still

successfully completing the waypoint mission was chosen as the max gain. For camera-

landmark angle, the gain that forced the UAV toward the landmark most, where

additional gain was insignificant in reducing 𝛾, was used as the max gain. For forward

172

velocity, the lowest gain that would allow for the lowest velocity to be achieved was used

as the constant for all other desired velocities.

 Admittedly, the trial-and-error iterations of gain tuning were much like PID

tuning, which was not efficient. Bryson’s method was not necessarily helpful in

converging to the proper gains. Furthermore, the tuning did not appear to be independent

of trajectory or simulation time length. Finding a cleaner non-tuning procedure in gain

selection, perhaps like feedback linearization, is left to future work.

With the specifications for each study laid out, the document now moves to

presenting simulation results and interpretation.

173

3.3.1 Guidance and Control Sensitivity Results

Figure 3.9. GC study lateral velocity (𝐺1 = 1.7e-2, 𝐺3 = 𝐺4 = 0).

174

Figure 3.10. GC study lateral velocity trajectories.

Using higher lateral velocity gain does induce higher curvature (observability) in

Figure 3.10. Using higher lateral velocity gains also generated the smallest error for all

GC simulation test cases in Figure 3.9. However, higher lateral velocity gains had more

erratic spikes than other costs. For example, 𝐺2 = 7.7𝑒 − 03 yielded one of the smallest

mean errors, but the prior gain, 𝐺2 = 7.2𝑒 − 03, yielded lateral velocity’s largest mean

error (rather than yielding a small mean error).

175

Figure 3.11. GC study landmark centering (𝐺1 = 1.7e-2, 𝐺2 = 𝐺4 = 0).

176

Figure 3.12. GC study landmark centering trajectories.

For landmark centering, Figure 3.12 shows that higher 𝐺3 gains can direct the

UAV toward the landmarks and induce higher levels of landmark centering. In Figure

3.11, a positive correlation was found between 𝐺3 and position error. None of the 𝐺3

gains reduced position errors more than the nominal. Reviewing the estimation error plot,

shorter simulation times are associated with lower gains.

177

Figure 3.13. GC study forward speed (𝐺1 = 1.7e-2, 𝐺2 = 𝐺3 = 0).

178

Figure 3.14. GC study forward speed velocities.

179

 To show the influence of the forward velocity cost, forward velocity plots

(instead of trajectory plots) for low, medium, and high 𝑢𝑑 are shown from top to bottom

respectively in Figure 3.14. Spikes in these velocity plots correspond to periods outside

GPSD, where only the waypoint following gain is activated (again, waypoint following

naturally encourages higher speeds). Inside GPSD, a lower forward velocity cost is able

to induce lower speeds A negative correlation is present in Figure 3.13. The presence of

the forward speed cost did not improve errors below the nominal, waypoint-only cost

(simulation number 2).

3.3.2 Guidance and Control Sensitivity Interpretation

Lateral velocity gain, although minimally, can be used to reduce position errors.

However, future work will be needed to avoid the erratic spikes that occurred with one of

the higher gains. One advantage with this gain, referring to Figure 3.9’s estimation error

plot, is the allowance for more time in GPSD without significantly increasing position

errors.

Landmark centering hindered error reduction rather than improved. This

appeared to be due to the longer time periods in GPSD that came with higher 𝐺3 values.

Perhaps, similar to the navigation study’s measurement geometry results, a larger

influence on position errors is not by image distortion, but by FOV. For example, in

circumstances where FOV is smaller, landmark centering could have larger influence on

reducing position errors, where obtaining more camera updates could become more

critical than the time spent in GPSD.

Though none of the forward speeds made lower position error than the nominal,

the important item to note is how forward speed affects position uncertainties. The error

180

plot’s linear trend showed how there is no benefit in flying slow in GPSD. For the given

mission, the straight trajectories through GPSD naturally encouraged waypoint following

to favor higher speeds. However, for missions that include waypoint turning within

GPSD, waypoint following would encourage slower speeds to avoid overshooting a

desired waypoint. Perhaps in those scenarios, having a high forward speed gain would be

more critical to avoid higher position errors that come with larger times in GPSD.

181

CHAPTER 4

CONCLUSION

 Having all GNC background, development, and results completed, this chapter

will reflect on the developed key points from all prior chapters.

 For modern military development, UAVs must be able to travel successfully

through GPSD regions. To help with this objective, this research explored UAV position

error sensitivities to sensor grade, landmark characteristics, and GC cost function gains.

From prior research, navigation errors reduce significantly with the use of Filters and

vision-based measurements; nevertheless, there was lack of quantitative understanding as

to the amount in which each mission factor played in reducing navigation errors. Two of

these factors are the UAV’s guidance and the UAV’ control. GC can be as simple as

waypoint following and carrot chasing or as complicated as the star algorithms and

nonlinear control. However, despite all the varieties in guidance and control, little

research has been performed to quantitatively assess how these two factors affect

navigation errors.

 In an attempt to quantitatively assess reducing navigation errors, a GNC

simulation was developed. The simulation included an Aerosonde drone with an IEKF,

pinhole camera, and a direct multiple shooting method GC law. First, simulation

development and validation were described to ensure correct implementation. Second,

two simulation studies were conducted. In the validation simulations, truth, design model,

and navigation dynamics were defined. Error mappings were determined, and simulation

propagation was successfully executed. Following propagation validation was the

extensive development of the IEKF’s key equations (Linear Error State Modeling, Linear

182

Error Measurement Modeling, Covariance Propagation, and Estimation Capability).

Explanation, development, and validation of the GC law was also given. The

extensiveness of this development provided implementation validity for this document’s

studies.

 The first study investigated how, using a nominal GC law, position errors are

affected as a function of IMU sensor grade, landmark uncertainty, number of landmark

observations, measurement geometry, and number of landmarks. Sensor grade yielded

the most drastic effect on position errors. Landmark uncertainty’s effect was limited by

the Kalman filter’s linearization. Number of landmarks had the second highest effect on

position errors. Measurement geometry has a convex relationship with position, where

camera measurement information was minimally lost when landmarks were positioned at

high or low angles relative to the camera’s FOV. Number of landmarks had even less

effect on position errors, perhaps due to the method of implementation.

 The second study investigated how position errors are affected as a function of

GC costs and gains. High gains for a lateral velocity cost can lower position errors, but

erratic tendencies involved with the high gains need to be resolved first. Higher gains for

a landmark centering cost do not improve position errors due to extended times in GPSD.

Forward speed costs influenced position errors, particularly where low speed gains

induce larger position errors.

 Suggestions for future work were mentioned throughout this document;

nevertheless, there is a need for live implementation. Simulation results need to be

compared with 3D simulations and physical UAV-flights with a real-time control law.

Physical UAV flights will also identify factors whose influence alters the findings in this

183

document, i.e., camera image processing, and wind effects. After live implementation and

comparison is achieved, there is a need to expand these studies out to more modern

mission factors, for example, multiple cameras, collaborative UAV swarms (inter-vehicle

avoidance), and moving landmarks. It is hoped that this document has provided a

sufficient baseline for this future work.

184

BIBLIOGRAPHY

[1] Kendoul, F., 2012, “Survey of Advances in Guidance, Navigation, and Control of

Unmanned Rotorcraft Systems,” J. Field Robot., 29(2), pp. 315–378.

[2] Balamurugan, G., Valarmathi, J., and Naidu, V. P. S., 2016, “Survey on UAV

Navigation in GPS Denied Environments,” 2016 International Conference on

Signal Processing, Communication, Power and Embedded System (SCOPES), pp.

198–204.

[3] Maybeck, P. S., 1979, Stochastic Models, Estimation, And Control, Academic Press,

New York, New York, United States of America.

[4] Smith, N. E., Cobb, R., Pierce, S., and Raska, V., 2013, “Optimal Collision

Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft,” AIAA Guidance,

Navigation, and Control (GNC) Conference, American Institute of Aeronautics and

Astronautics, Boston, MA.

[5] Smith, N. E., Cobb, R., Pierce, S. J., and Raska, V., 2014, “Optimal Collision

Avoidance Trajectories via Direct Orthogonal Collocation for Unmanned/Remotely

Piloted Aircraft Sense and Avoid Operations,” AIAA Guidance, Navigation, and

Control Conference, American Institute of Aeronautics and Astronautics.

[6] Scaramuzza, D., Achtelik, M. C., Doitsidis, L., Friedrich, F., Kosmatopoulos, E.,

Martinelli, A., Achtelik, M. W., Chli, M., Chatzichristofis, S., Kneip, L., Gurdan,

D., Heng, L., Lee, G. H., Lynen, S., Pollefeys, M., Renzaglia, A., Siegwart, R.,

Stumpf, J. C., Tanskanen, P., Troiani, C., Weiss, S., and Meier, L., 2014, “Vision-

Controlled Micro Flying Robots: From System Design to Autonomous Navigation

and Mapping in GPS-Denied Environments,” IEEE Robot. Autom. Mag., 21(3), pp.

185

26–40.

[7] Nuske, S. T., Dille, M., Grocholsky, B., and Singh, S., “Representing Substantial

Heading Uncertainty for Accurate Geolocation by Small UAVs,” AIAA Guidance,

Navigation, and Control Conference, American Institute of Aeronautics and

Astronautics, p. 13.

[8] Perez‐Grau, F. J., Ragel, R., Caballero, F., Viguria, A., and Ollero, A., 2018, “An

Architecture for Robust UAV Navigation in GPS-Denied Areas,” J. Field Robot.,

35(1), pp. 121–145.

[9] Babinec, A., and Apeltauer, J., 2016, “On Accuracy of Position Estimation from

Aerial Imagery Captured by Low-Flying UAVs,” Int. J. Transp. Sci. Technol., 5(3),

pp. 152–166.

[10] Madison, R., Andrews, G., DeBitetto, P., Rasmussen, S., and Bottkol, M., “Vision-

Aided Navigation for Small UAVs in GPS-Challenged Environments,” AIAA

Infotech@Aerospace 2007 Conference and Exhibit, American Institute of

Aeronautics and Astronautics.

[11] Saska, M., Baca, T., Thomas, J., Chudoba, J., Preucil, L., Krajnik, T., Faigl, J.,

Loianno, G., and Kumar, V., 2017, “System for Deployment of Groups of

Unmanned Micro Aerial Vehicles in GPS-Denied Environments Using Onboard

Visual Relative Localization,” Auton. Robots, 41(4), pp. 919–944.

[12] Schnaufer, B. A., Hwang, P., Nadke, J., McGraw, G. A., and Venable, D., 2012,

“Collaborative Image Navigation Simulation and Analysis for UAVs in GPS

Challenged Conditions,” Proceedings of the 2012 IEEE/ION Position, Location and

Navigation Symposium, pp. 719–729.

186

[13] Beard, R. W., and McLain, T. W., 2012, Small Unmanned Aircraft: Theory and

Practice, Princeton University Press, Princeton, N.J.

[14] Anderson, E. P., Beard, R. W., and McLain, T. W., 2005, “Real-Time Dynamic

Trajectory Smoothing for Unmanned Air Vehicles,” IEEE Trans. Control Syst.

Technol., 13(3), pp. 471–477.

[15] Davis, J. D., and Chakravorty, S., 2007, “Motion Planning Under Uncertainty:

Application to an Unmanned Helicopter,” J. Guid. Control Dyn., 30(5), pp. 1268–

1276.

[16] Mettler, B., Kong, Z., Goerzen, C., and Whalley, M., 2014, “Guidance Performance

Benchmarking for Autonomous Rotorcraft,” J. Am. Helicopter Soc., 59(4), pp. 1–

16.

[17] Vanegas, F., and Gonzalez, F., 2016, “Uncertainty Based Online Planning for UAV

Target Finding in Cluttered and GPS-Denied Environments,” 2016 IEEE Aerospace

Conference, pp. 1–9.

[18] Tsenkov, P., Howlett, J., Whalley, M., Schulein, G., Takahashi, M., Rhinehart, M.,

and Mettler, B., 2008, “A System for 3D Autonomous Rotorcraft Navigation in

Urban Environments,” AIAA Guidance, Navigation and Control Conference and

Exhibit, American Institute of Aeronautics and Astronautics, Honolulu, Hawaii.

[19] Sujit, P. B., Saripalli, S., and Sousa, J. B., 2014, “Unmanned Aerial Vehicle Path

Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial

Vehicles,” IEEE Control Syst. Mag., 34(1), pp. 42–59.

[20] Joseph J. DisStefano III, Allen R. Stubberud, and Ivan J. Williams, 2014, Schaum’s

Outline of Feedback and Control Systems, McGraw-Hill Education, New York,

187

Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi,

Singapore, Sydney, Toronto.

[21] Khalil, H. K., 2002, Nonlinear Systems, Prentice Hall, Upper Saddle River, New

Jersey.

[22] Kaminer, I., Pascoal, A., Xargay, E., Hovakimyan, N., Cao, C., and Dobrokhodov,

V., 2010, “Path Following for Small Unmanned Aerial Vehicles Using L1 Adaptive

Augmentation of Commercial Autopilots,” J. Guid. Control Dyn., 33(2), pp. 550–

564.

[23] Bryson, A. E., and Ho, Y.-C., 1975, Applied Optimal Control: Optimization,

Estimation, and Control, Hemisphere Pub. Corp. ; distributed by Halsted Press,

Washington : New York.

[24] Joao P. Hespanha, 2018, Linear Systems Theory, Princeton University Press,

Princeton, N.J.

[25] Chapra, S. C., and Canale, R. P., 2015, Numerical Methods for Engineers, McGraw-

Hill Education, New York, NY.

[26] Maybeck, P. S., 1982, Stochastic Models, Estimation, and Control, Academic Press,

New York, New York, United States of America.

[27] Kappen, H. J., 2008, “Stochastic Optimal Control Theory,” Radboud Univ.

Nijmegen Neth., p. 34.

[28] Maybeck, P. S., 1982, Stochastic Models, Estimation, and Control. Vol. 2: ..., Acad.

Press, New York.

[29] Christensen, R. S., and Geller, D., 2014, “Linear Covariance Techniques for Closed-

Loop Guidance Navigation and Control System Design and Analysis,” Proc. Inst.

188

Mech. Eng. Part G J. Aerosp. Eng., 228(1), pp. 44–65.

[30] Kasdin, N. J., 1995, “Runge-Kutta Algorithm for the Numerical Integration of

Stochastic Differential Equations,” J. Guid. Control Dyn., 18(1), pp. 114–120.

[31] Fathi, M. K., and Malaek, S. M. B., 2019, “Wild Area Aerial Protective Inspector:

Proposal for 2018-2019 Undergraduate Individual Aircraft Linear Infrastructure

Inspection UAS.”

[32] Droge, G., 2020, “Optimal and Robust Control Lecture Notes.”

[33] Hunsaker, D., 2021, “Re: Max UAV Thrust.”

[34] Hunsaker, D., 2021, “Comments on Thesis.”

[35] Fotouhi, A., Ding, M., and Hassan, M., 2017, “Understanding Autonomous Drone

Maneuverability for Internet of Things Applications,” 2017 IEEE 18th International

Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM),

IEEE, Macau, China, pp. 1–6.

[36] 2015, “Dec 9th, 2015 04:38PM | Controls / Rudder Response | DJI GO Log 2.4.2 |

Japan | Airdata UAV (Formerly HealthyDrones.Com).”

[37] Christensen, R., Droge, G., and Leishman, R., 2021, “A Closed-Loop Linear

Covariance Framework for Vehicle Path Planning in an Uncertain Obstacle Field,”

ArXiv210511998 Cs Eess Stat.

[38] Waechter, A., and Laird, C., “Ipopt Documentation.”

[39] Andersson, J., Gillis, J., Diehl, M., Horn, G., Rawlings, J. B., and Diel, M.,

“CasADi - A Software Framework for Nonlinear Optimization and Optimal

Control: User Documentation for CasADi v3.4.4,” p. 74.

	Sensitivity Study for UAV GPS-Denied Navigation in Uncertain Landmark Fields
	Recommended Citation

	tmp.1643145214.pdf.Oc3AP

