
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

1986

A User Interface Management System Generator A User Interface Management System Generator

Tamar Ezekiel Granor
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

Recommended Citation Recommended Citation
Granor, Tamar Ezekiel, "A User Interface Management System Generator" (1986). Publicly Accessible
Penn Dissertations. 4282.
https://repository.upenn.edu/edissertations/4282

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/4282
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F4282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4282?utm_source=repository.upenn.edu%2Fedissertations%2F4282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4282
mailto:repository@pobox.upenn.edu

A User Interface Management System Generator A User Interface Management System Generator

Abstract Abstract
Much recent research has been focused on user interfaces. A major advance in interface design is the
User Interface Management System (UIMS), which mediates between the application and the user.

Our research has resulted in a conceptual framework for interaction which permits the design and
implementation of a UIMS generator system. This system, called Graphical User Interface Development
Environment or GUIDE, allows an interface designer to specify interactively the user interface for an
application.

The major issues addressed by this methodology are making interfaces implementable, modifiable and
flexible, allowing for user variability, making interfaces consistent and allowing for application diversity
within a user community.

The underlying goal of GUIDE is that interface designers should be able to specify interfaces as broadly
as is possible with a manually-coded system. The specific goals of GUIDE are:

• The designer need not write any interface code.

• Action routines are provided by the designer or application implementator which

implement the actions or operations of the application system. Action routines may have

parameters.

• The designer is able to specify multiple control paths based on the state of the system

and a profile of the user.

• Inclusion of help and prompt messages is as easy as possible.

• GUIDE's own interface may be generated with GUIDE.

GUIDE goes beyond previous efforts in UIMS design in the full parameter specification provided in the
interface for application actions, in the ability to reference application global items in the interface, and in
the pervasiveness of conditions throughout the system. A parser is built into GUIDE to parse conditions
and provide type-checking.

The GUIDE framework describes interfaces in terms of three components:

• what the user sees of the application world (user-defined pictures and user-defined

picture classes)

• what the user can do (tasks and tools)

• what happens when the user does something (actions and decisions)

These three are combined to form contexts which describe the state of the interface at any time.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Computer and Information Science

First Advisor First Advisor
Norman Badler

Comments Comments

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/4282

https://repository.upenn.edu/edissertations/4282

A User Interface Management System Generator

Tamar Ezekiel Granor

University of Pennsylvania
1986

A User Interface Management System Generator

TAMAR EZEKIEL GRANOR

A DISSERTATION

in

COMPUTER AND INFORMATION SCIENCE

Presented to the faculties of the University of Pennsylvania in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy.

1986

Supervisor of Dissertation

Graduate Group Chairperson

COPYRIGHT©

TAMAR EZEKIEL GRANOR

1986

This dissertation is dedicated to the memory of my grandfather, Walter Naphtali Ezekiel, who
started a tradition, but didn't live to see it continued into the third generation.

iii

ACKNOWLEDGEMENTS

A number of people have contributed to this work or have helped to make it a reality. I

cannot express enough thanks to my advisor, Dr. Norman Sadler, who suggested the idea in

the first place, was available for endless consultation and understood the demands that

marriage and motherhood placed on my time. In addition, the members of my dissertation

committee, Dr. Jean Gallier, Dr. Tim Finin, Dr. Dale Miller, all of the University of Pennsylvania

and Dr. James Foley of George Washington University all made valuable suggestions which

improved the end result. Three students wrote parts of the system. Thanks to Jon Hanover for

the window manager, Bruce Rabe for the toolkit code and Jill Smudski for the data structure

drawing routines. The members of the Computer Graphics Research Group at Penn were all

helpful; particular thanks to Jon Korein.

On the personal side, there are also a number of people to thank. My husband, Marshal,

often seemed to have more faith in me than I did myself and worked hard to ensure that I had

the time I needed to complete this work. My son, Solomon, gave up time with me for something

he could not have understood. My parents, David and Ruth Ezekiel, let me know all my life that

I could achieve anything academically that I aspired to. I also must thank my parents, my

in-laws, Bernard and Marie Graner, my sister, Rachel Ezekiel and my sister-in-law, Alicia

Graner, for lots of babysitting, without which this work might never have been completed.

iv

ABSTRACT

A User Interface Management System Generator

Tamar Ezekiel Granor

Supervisor: Dr. Norman Sadler

Much recent research has been focused on user interfaces. A major advance in interface

design is the User Interface Management System (UIMS), which mediates between the

application and the user.

Our research has resulted in a conceptual framework for interaction which permits the design

and implementation of a UIMS generator system. This system, called Graphical User Interface

Development Environment or GUIDE, allows an interface designer to specify interactively the

user interface for an application.

The major issues addressed by this methodology are making interfaces implementable,

modifiable and flexible, allowing for user variability, making interfaces consistent and allowing

for application diversity within a user community.

The underlying goal of GUIDE is that interface designers should be able to specify interfaces as

broadly as is possible with a manually-coded system. The specific goals of GUIDE are:

• The designer need not write any interface code.

• Action routines are provided by the designer or application implementator which
implement the actions or operations of the application system. Action routines may
have parameters.

• The designer is able to specify multiple control paths based on the state of the
system and a profile of the user.

• Inclusion of help and prompt messages is as easy as possible.

• GUIDE's own interface may be generated with GUIDE.

GUIDE goes beyond previous efforts in UIMS design in the full parameter specification provided

in the interface for application actions, in the ability to reference application global items in the

interface, and in the pervasiveness of conditions throughout the system. A parser is built into

GUIDE to parse conditions and provide type-checking.
v

The GUIDE framework describes interfaces in terms of three components:

•what the user sees of the application world (user-defined pictures and user-defined
picture classes)

• what the user can do (tasks and tools)

•what happens when the user does something (actions and decisionsf

These three are combined to form contexts which describe the state of the interface at any time.

vi

Table of Contents

1. Introduction
1.1. What the user sees of the application world
1.2. What the user can do
1.3. What happens
1.4. Responding to Application States
1.5. Other Considerations
1.6. Output of a UIMS generator
1.7. GUIDE's interface
1.8. The generated interface
1.9. Organization

2. Survey of Other Research
2.1. Characteristics of an Ideal UIMS

2.1.1. Semantic Considerations
2.1.2. Interaction Considerations
2.1.3. Support Services
2.1.4. Specification Services

2.2. Interaction languages
2.3. Tool-oriented systems
2.4. Non-Graphics Systems
2.5. Other systems
2.6. Summary
2.7. Studies

2.7.1. Benesh Notation System
2.7.2. Grip-75
2.7.3. Spatial Data Management System
2.7.4. Lisa
2.7.5. The Lisp Machine

3. Tools and Tasks
3.1. The CORE Graphics System
3.2. Tools
3.3. Specific tools

3.3.1. Menus
3.3.2. Lists
3.3.3. Forms
3.3.4. Window Controller
3.3.5. Potentiometers
3.3.6. Picks
3.3.7. Keyboard
3.3.8. Locator with Button
3.3.9. Valuator with Button
3.3.1 o. Button

vii

1
3
4
5
8
8
9

11
12
14
15
16
16
17
18
18
20
23
23
24
26
26
27
28
29
30
31

33
33
34
35
35
37
39
40
41
42
43
43
44
44

3.4. Tasks
3.5. Predefined Tasks

4. Contexts
4.1. User-defined pictures
4.2. The control path
4.3. Expressions and Conditions

5.Actions
5.1. Parameter gathering

5.1.1. Parameter contexts
5.1.2. Parameter expression lists

5.2. Fixed Actions
6. User Support

6.1. User Profiles
6.2. Helps
6.3. Prompts
6.4. Messages

7. The User Interface
7.1. Start-up
7.2. Appearance of the interface

8. Output
8.1. Data structures
8.2. Error file
8.3. Journal file
8.4. Interface

8.4.1. Context Code
8.4.2. Task routines
8.4.3. Tool Routines
8.4.4. Expression and Condition Code
8.4.5. Window controller extremes evaluation
8.4.6. Invocation Routines
8.4.7. Task Lookup Code
8.4.8. Environment
8.4.9. Data

9. Implementation
9.1. The organization of GUIDE
9.2. The structure of GUIDE
9.3. Choice of a graphics package
9.4. Representation of the Design
9.5. The Symbol Tables
9.6. Memory Management
9.7. Reading and Writing Designs

9.7.1. Overview of the solution
9.7.2. The Symbol Table
9.7.3. The Output Phase
9.7.4. The Input Phase

viii

45
46
47
47
48
48
52
52
52
53
55
56
56
58
58
58
60
60
61
63
63
63
64
64
64
65
65
68
72
73
74
74
75

76
76
77
81
84
84
86
88
89
91
91
93

9.7.5. Problems
9.8. Copying Data Structures
9.9. Tool/Logical Device Mappings
9.10. The parser ·

1 o. Conclusions
10.1. Unavailable Features

10.1.1. Features not yet implemented
10.1.2. Inaccessible Features

1 ·0.2. Problems with defaults
10.3. Conversion Routines
10.4. Experience with GUIDE
10.5. Future Directions

10.5.1. Exp~$ssion Functions
10.5.2. Tool Process Routines
10.5.3. Additional use of conditions
10.5.4. Changes to Default Task Values
10.5.5. Default Device Selection
10.5.6. Device Specification
10.5.7. Use of a database
10.5.8. Maintaining Session Status in the User Profile

APPENDIX A. Entities built into GUIDE
APPENDIX 8. The Layout System - An Example

8.1. Environment File for the Layout System
8.2. Using GUIDE to create a design

APPENDIX C. Environment BNF

ix

100
100
101
102
103
103
103
104
105
105
106
106
106
106
107
107
107
108
108
108

109
113
113
116
151

List of Tables

Table 2-1: Characteristics of UIMS Systems 19

x

List of Figures

Figure 1-1: Control Flow using GUIDE 12
Figure 1-2: Data Flow in a GUIDE-generated Interface 13
Figure 3-1: A menu 37
Figure 3-2: A list 38
Figure 3-3: A form 40
Figure 3-4: The window controller 41
Figure 3-5: A Horizontal Potentiometer 42
Figure 3-6: A keyboard tool 43
Figure 3-7: Buttons 44
Figure 4-1: GUIDE main context after selecting "create/edit context" 49
Figure 4-2: GUIDE context creation context 50
Figure 5-1: Layout system after selecting "Add symbol" 53
Figure 5-2: "Add symbol" parameter selection 54
Figure 7-1: Form for creating list tool instances 62
Figure 7-2: Picking a position within a list 62
Figure 8-1: Procedure generated for main layout context 66
Figure 8-2: Procedure to draw a task 68
Figure 8-3: Procedure to process a task 69
Figure 8-4: Procedure to set up and draw a tool 70
Figure 8-5: Procedure to echo and process input to a tool 71
Figure 8-6: Function to compute an expression value 71
Figure 8-7: Condition evaluation function generated by GUIDE 72
Figure 8-8: Procedure to compute window controller extremes 72
Figure 8-9: Context invocation procedure 73
Figure 8-10: Task look-up code generated for the layout system 74
Figure 9-1: Files input by GUIDE · 78
Figure 9-2: Files output by GUIDE 79
Figure 9-3: Data flow in GUIDE 80
Figure 9-4: GUIDE runtime services 81
Figure 9-5: Processing after using GUIDE 82
Figure 9-6: Structure of a GUIDE-generated application 83
Figure 9-7: Records defining user-defined picture portion of contexts 85
Figure 9-8: Operations on context records 87
Figure 9-9: Some sample data structures 89
Figure 9-10: Sample data structures with additional fields 90
Figure 9-11: Clear routines for sample data structures 92
Figure 9-12: Output routines for sample data structures 93
Figure 9-13: Input routines for sample data structures 96
Figure B-1: Start context for GUIDE 120
Figure B-2: Main context for GUIDE 121
Figure B-3: Task creation context for GUIDE 122

xi

Figure 8-4: Tool creation context for GUIDE 123
Figure 8-5: Tool creation context for GUIDE with instance command 124
Figure 8-6: Menu creation context for GUIDE 125
Figure 8-7: Menu iteni context for GUIDE 126
Figure 8-8: Parameter context for "add item to list" 127
Figure 8-9: Parameter context for "add list to item" 128
Figure 8-10: Parameter context for "add tool" 130
Figure 8-11: Main context for GUIDE with picture class commands 131
Figure 8-12: User-defined picture creation context for GUIDE 132
Figure 8-13: Parameter context for "add user picture" 133
Figure 8-14: Context creation context for GUIDE 134
Figure 8-15: Parameter context for "add predef td to context" 135
Figure 8-16: Parameter context for "position tool" 136
Figure 8-17: Parameter context for "make control path" 137
Figure 8-18: Task creation context with action menu 138
Figure 8-19: Parameter context for "Add context to list" 139
Figure 8-20: Parameter context for "Add param context to action" 140
Figure 8-21: Parameter context for "Enter actual param list" 141
Figure 8-22: First parameter context for "Add action to task" 142
Figure 8-23: Parameter context for "Generate code" 143
Figure 8-24: Start context for layout system 144
Figure 8-25: Main context for layout system 145
Figure 8-26: Parameter context for "add symbol" 146
Figure 8-27: Parameter context for "delete symbol" 147
Figure 8-28: Parameter context for "change title" 148
Figure 8-29: Parameter context for "change size" 149

xii

CHAPTER I

Introduction -

In recent years, much attention has been given to user interfaces. Researchers have

studied what kinds of commands are most easily learned and remembered, (e.g., [Barnard

82, Black 82]), what kinds of interfaces are easiest to use, (e.g., [Card 82, Savage 82]) and how

to make it easier to provide a good interface, (e.g., [Buxton 83a, Kasik 82]). One approach to

simplifying interface implementation is a user interface management system (UIMS), which

mediates between the application and the user in much the same way that a data base

management system mediates between the application and the data [Kasik 82, Thomas 83].

Several groups have implemented UIMS's [Bloom 83, Buxton 83a, Kamran 83, Green

85a, Kasik 82, Olsen 83a, Olsen 83b, Roach 82, Rubel 82, Wong 82].

This dissertation describes an interaction methodology that permits the design and

implementation of a UIMS generator system ... The system, called Graphical User Interface

Development Environment (GUIDE), allows the system designer to specify the relationship

between the interaction and the control path of his application. GUIDE then generates the code

needed to form the UIMS, along with data describing specifics of the interface. The designer

does not write the control code; GUIDE generates it.

The first question that must be addressed in creating such a system is what need is it

attempting to fill; that is, what problem is it attempting to solve? In the area of interface design,

a number of areas must be addressed:

• Implementability - There is the difficulty of implementing any interface. It tends to

be a tedious and error-prone task. This problem is magnified when a system is to

use graphics.

• Modifiability - Once an interface has been implemented, it is usually difficult to

make substantial modifications without scrapping the. entire interface and starting

again. In fact, it is frequently difficult to make even small modifications. It is also

desirable to be able to implement part of an interface and refine it before specifying

the entire interface.

• Flexibility and User Variability - Even beyond the difficulty of implementing a single

interface, many systems really need several alternative interfaces or alternative

1

2

paths within an interface depending on characteristics of the user and the state of

the system.

• Intra-Application Consistency - It is desirable for an interface to have internal

consistency; that is, the user should be able to do the same thing in the same way

each time that it arises.

• Inter-Application Consistency - Within a user community; it is desirable to have

consistency across the various interfaces used by the members of the community.

This makes it easier for a user, knowledgeable in one system, to move to another.

Knowing what problems are to be addressed, we next must determine what is needed to

solve them. In this case, we need a way for a designer to describe an interface. We want a

method which is simple and will allow us to fulfill the considerations above. The interface which

is described should be able to do anything a manually-coded interface can; using a generator

should not limit the designer's expressiveness.

Based on these underlying goals, five specific goals have been formulated for GUIDE.

•The designer need not write any interface code.

• Action routines are provided by the designer or application implementor which

implement the actions or operations of the application system. Action routines may

have parameters.

• The designer is able to specify multiple control paths based on the state of the

system and. a profile of the user.

• Inclusion of help and prompt messages is as easy as possible.

• GUIDE's own interface may be generated with GUIDE.

To find a way to describe interfaces, we must look at what is contained in a user

interface. There are three components:

• what the user sees of the application world;

•what the user can do;

• what happens when the user does something.

"What the user sees" refers to images derived from application data and data structures.

"What the user can do" refers to the choices a user has at any time: ~hat commands can be

executed and what data can be modified. "What happens when the user does something"

3

refers to the control structure of the system. The choices the designer makes for ·each of these

components at each point in the system determine the appearance and behavior of the

interface. The next few sections discuss each of these components in detail.

1.1. What the user sees of the application world

A graphical user interface for any system must contain pictures which are the user's view

of the application world. Generally, these pictures are graphical representations of application

data structures. For example, in the room layout system described in Foley and van Dam

[Foley 82], one such picture would show the current state of the room. In GUIDE, these

pictures are called user-defined pictures. In a graphics editor, a picture of the object being

edited would be a user-defined picture.

In Chapter 2, several existing systems are described in terms of GUIDE's structure. In

doing these studies, it became apparent that there are frequently groups of objects of the same

type, all of which should be displayed. In addition, these sets often can be modified dynamically

(by the application or the user). For example, the Symbolics Lisp Machine has a set of "Lisp

Listener" windows, any of which can be accessed by the user. The user may create and

destroy "Lisp Listeners" as desired.

Individual items such as a single "Lisp Listener" are represented in GUIDE by user

defined pictures. To handle groups of pictures which are related, user-defined pictures are

organized into user-defined picture classes. A user-defined picture class may contain several

graphical representations of a single data structure, or several different objects of the same

type. A class containing both a front and a top view of some object is an example of the former

case; the class containing all of the Lisp Listeners is an example of the latter.

The interface performs no operations on the entire class. All operations on the class as a

whole occur at the application level. The only operation which the interface itself performs on

user-defined pictures is calling application routines to draw them. Any other operations which

might be performed occur through the application system. The class organization is particularly

useful in allowing the use of a single routine to draw ariy member of a class. This means that,

for example, all Lisp Listeners could be drawn by a single routine, i.e. drawing is parameterized

by class member.

A class may be either static or dynamic. The designer specifies the kind of class and the

contents. For a static class, the designer specifies all of the members. For a dynamic class,

4

the designer provides information which enables the interface to access and draw the members

of the class.

1.2. What the user can do

By definition, the user of an interactive system has one or more choices to make so that

the application's action can be selectively controlled. In traditional non-graphical systems, the

user is generally prompted for the next input and has no choice but to answer. It is possible that

the prompt may be a menu asking what command to execute. Frequently, such a menu is

implicit ratner than explicit, that is, the command is entered and checked against a list of

commands rather than chosen from a displayed list of commands. Most operating systems use

implicit menus. However, the user must choose from that menu at that time and cannot do

something entirely different. More recently, systems have attempted to be broader than this

and allow the user to determine not only what command to execute next, but, in fact, from

where the command is to be drawn. Frequently, the commands themselves are not explicit, as

in a menu, but are implied by the action of the user. For example, completion of a form may

imply execution of a routine processing that form. A UIMS system must be able to handle this

latter case, with the user having multiple choices as to what input is to be entered next. Each of

these choices is a tool. A tool is a technique for graphical interaction.

The set of tools available in GUIDE is pre-defined. Each tool has zero or more methods

(routines) for initialization, drawing itself, echoing itself and processing input. A tool may also

have a number of options controlling its appearance and performance. Some of the tools

available in GUIDE are menus, lists, forms and potentiometers.

The designer may instantiate as many of each type of tool as desired. The designer

chooses the characteristics for the instance which, in turn, determine which routines are used

for drawing and echoing the tool and processing input to the tool. The designer may, if desired,

provide the routines for drawing, echoing or processing a tool, although they must contain

certain components, which will be discussed later.

It is not always desirable to enter the same kind of data using the same tool. Sometimes,

one method may be preferable while, in another situation, another may be better. For example,

sometimes a user wants to enter a number by typing it in and other times, a potentiometer may

be preferred. The user's choice of tool may depend on such things as whether the user knows

the desired value or is searching for it. It is also common for a user to need to enter the same

value at different times. Having entered the value once, he should have the option of using the

same value again withou~ re-entering it.

5

Two of the ways· in which systems can be consistent internally are by providing the same

set of options for entering a value each time a value of that type is needed, and by using

existing values either as defaults or as optional choices as much as possible. A UIMS should

provide this capability of organizing tools for consistency.

GUIDE's task structure is designed to address exactly these issues. A task contains a

number of tools, all of which can be used to enter the same value. For example, a "choose

command" task might contain a menu tool and a keyboard tool. The ability to group tools into

tasks simplifies the process of providing the same set of alternatives throughout a system. It

also simplifies use of the value resulting from use of one of the tools. The task structure also

allows for the possibility that entry of a value may be performed by choosing an existing value.

A tool can be constructed which allows choosing from the set of existing values. A task may

have a default value which is propagated to all of the tools within the task.

A small set of tasks is pre-defined, corresponding to frequently used real world tasks

(e.g., get_integer). In addition, a designer may define as many tasks as desired. Each task

contains one or more tools and, for each tool, must contain routines which convert between the

output of the tool and the type desired by the task. Any instance of a predefined task may be

edited to change the set of tools available either by adding or removing tools.

· 1.3. What happens

Within an application system, "what happens" refers to two things: what changes are

made to the application data structures and "where do we go from here." A UIMS system must

deal with both.

Since the designer must be able to specify alternatives for both cases, GUIDE provides

for alternatives throughout by the use of conditions. Conditions are boolean expressions which

may refer to the state of the system and the characteristics of the user. Conditions may refer to

application variables. This provides a great deal of context sensitivity in the specification.

In order to modify application data structures, a UIMS must have a way of executing

application-specific code. Several approaches have been used to do this. The most general

approach is to allow the interface to invoke application routines with parameters based on user

inputs and application variables. Since a program which does not use a UIMS can do this, a

UIMS must at least do this if it is to be as useful. The application-specific procedures and

functions which are invoked from the interface are known as action routines.

6

It is important that the UIMS not impose a particular style of interaction on the interface.

One area in which this has been of paramount importance is in the specification of parameters

to action routines. Existing UIMS's have not permitted full·specification of parameters based on

user inputs and application variables which are to be passed to application routines. This

enforces an object-verb style of interaction, in which all of the "parameters" of an action must be

made "current" by the user prior to invoking the action. (In English, this would be exemplified by

"ball throw" instead of "throw ball.")

It is preferable to allow the designer to determine which items, if any, must be specified

prior to selection of an action ("ball throw") and which can be specified after choosing the action

("throw ball"). This is done by permitting action routines to have parameters. The actual

parameters for a routine can be specified as expressions and should permit reference to

application variables and task values. In addition, the designer should be permitted to specify

certain values which are to be obtained prior to computing the parameters. This allows the

end-user to enter data which can be used in parameter computation after choosing the

command. Prompting for values after the command has been specified corresponds to more

traditional interactive systems. Of course, the designer may choose to use the object-verb form,

or some combination of the two.

GUIDE provides this generality in specifying application actions. Each task may have

one or more action routines associated with it. The action to be executed when a task is used

depends on conditions specified by the designer. For example, a "choose command" task

would likely have a separate action for each possible command.

Each routine may have parameters specified as expressions. Variables use in the

expressions may refer both to task values and to application (i.e., action routine) variables. The

designer also may specify values to be collected prior to computing the parameters. More than

one way of collecting inputs may be provided along with several ways of computing the

parameters. In both cases, conditions are used to determine which option to select.

The second part of "what happens" is the specification of the control path of the system

following execution of an application action. The ideal situation is to allow the designer to

specify several possibilities depending on the state of the application and the characteristics of

the user. That is, the control path may vary based on what has already happened and who is

using the system.

The first thing which is needed in order to specify the control path is some kind of object

7

which indicates the state of the system at some point in time. That is, we need a structure

which contains, for some state of the system, the three components under discussion (what the

user sees, what the user can do, and what happens). The term used in GUIDE for such a

structure is context.

Within each context, the designer can specify use_r-defined picture classes, tasks, actions

and control. Control is specified by indicating a transfer to another (or the same) context. A

stack of contexts is maintained. A transfer may indicate pushing or popping the stack, or may

not change the stack. The stacking process allows for interruption of one command sequence

by another.

Control is specified by inclusion of decisions which determine the new state of the system

after an input from the end-user. A decision contains conditions plus instructions on the change

in control if the conditions are met. The designer specifies the priority of the decision and the

first decision to have its conditions fulfilled will be chosen. A null condition may be expressed,

forcing the change in control to occur. This allows the designer to specify an unconditional

change of context. The default, if all conditions fail, is to remain in the same context.

The mechanism for varying the control path and other features based on characteristics

of the user is the user profile. The profile contains information about the user's personal

characteristics and preferences. The values of these items for the specific user may be used in

determining the control path. While it is easier to define the user profile as a fixed object, this

reduces its usefulness. Instead, the designer should be permitted to specify the contents of the

user profile, determining what factors differentiate the various users of the system. Similarly,

allowing the designer to use any types for the fields provides additional generality. The

designer may choose the representation which best distinguishes among users with different

characteristics. Conditions used in the control path and at other locations may refer to fields of

the user profile as well as task values and application variables.

The user profile in GUIDE may contain any information about the user which the designer

chooses. Some items which might be included are the user's skill level (skill with the system)

and access level (right to access information in the system). Other contents depend on the

nature of the system being implemented, but will generally include the user's preferences in

dealing with the application system.

The designer specifies the method whereby user profile fields receive initial values and

are updated. Any user can access, at most, only his own profile. Access to each field in the

8

profile may be controlled by conditions based on the profile. In systems where security is an

issue, access to some fields may be prohibited. For such systems, a separate system or

sub-system must be provided to maintain the user profile data base.

1.4. Responding to Application States

The underlying goal for a UIMS generator is that the designer should be able to express

as general an interface as by manual code generation. In particular, the interface should be

able to respond to changes in the application world. It is possible to provide this kind of

responsiveness by creating a large number of interface states corresponding to all of the

possible application states. However, for any significant application, the number of states

necessary to encode this information is prohibitive. A better approach to this problem is to allow

the interface to refer to application variables in decision-making, so a single interface state can

serve as front-end to a number of application states.

This latter approach is the one taken by GUIDE. The designer provides a file of

application entity declarations to GUIDE. These are parsed to create a symbol table.

Expressions and conditions in GUIDE are parsed using this symbol table and can therefore

refer to application entities. In addition to the application objects, the symbol table contains a

number of entities such as types and functions defined by GUIDE which are useful in most, if

not all, applications. These entities can also be referenced in expressions and conditions.

1.5. Other Considerations

A good help system is an integral part of an interface. In order to have a good help

system, the designer must provide help messages for a large class of objects. The design

system must encourage the provision of these messages. In GUIDE, helps may be provided for

tools, tasks and contexts. The help message associated with an object is created when the

object itself is created. As with all other items, it may be edited freely. For each object, the

designer may specify both a brief message and the name of a file containing a longer message.

In addition, each object may have several help messages distinguished by conditions, allowing

messages to be geared to individual users.

A help task is provided containing tools for triggering the help system. The designer may

edit this task to eliminate any tools that he feels are inappropriate for the system.

The designer may also associate prompt messages with each context and tool. As with

9

helps, several prompts distinguished by conditions may be associated with each object.

Prompts are displayed when the object with which they are associated is displayed.

The UIMS needs a way of handling semantic messages [Tanner 84]. If, for example, an

inpu~ causes errors in the application routines, those routines must be able to inform the user of

the error. Since those routines are not permitted to do any interactive output themselves, the

UIMS needs a message system in which the application routines can signal an error and have

· the interface inform the user at the appropriate time. The designer also needs to be able to

make control decisions based on whether or not an error has occurred.

In GUIDE, these messages could be passed through variables accessible to both GUIDE

and the application. However, since this capability is likely to be necessary in almost every

UIMS created, a message passing system is provided by GUIDE.

GUIDE maintains a list of messages. Each message consists of a number, a message

text and a location. The designer may decide whether the number is to be used for an message

code, a severity code or something else entirely. The message text is intended to describe the

message and the location is intended to tell where the message occurred. GUIDE's runtime

support package contains routines to clear the message list, to add a message to the list, to

check for messages with various characteristics (first, last, ·highest, lowest) and to provide

message reports.

The application routines may use these routines to signal errors and behave appropriately

when an error occurs. The designer may check for the occurrence of messages in conditions.

In the interface generated by GUIDE, the message list is cleared at the start of each context

and messages are reported and cleared following each command sequence.

1.6. Output of a UIMS generator

Once a designer has specified wtiat the interface to his system is to look like, the UIMS

generator must do something with the specification to create the interface. In general, a

generator can take either of two approaches: it may generate code in some programming

language or it may generate tables to be used by a driver. It is also possible to use some

combination of the two techniques: generate some code and some data. This is the approach

taken by GUIDE. This hybrid technique allows the use of stored data where it is efficient, but

generates code for most of the system. The amount of code needed for the driver is minimized.

10

The choice of generating code to provide a compiled interface rather than generating data

to be used by an interface interpreter was based on several considerations. Most of these had

to do with allowing as much generality as possible at a low cost to the designer.

To allow access to application routines in an interpreted system, the designer would have

to provide a routine which invokes each accessible routine with appropriate parameters.

Passing parameters would be far more complicated and it is likely that each routine would be

restricted to a single set of actual parameters. Variable parameters would be able to be

specified only by the designer's putting them into calls in the invocation routine. The code

generation approach, on the other hand, allows multiple calls to any routine with as many

different parameter sets as desired. It is no problem to specify both value and variable

parameters. The only action required of the designer is to provide the headers of all routines

used, so type checking can be performed on the actual parameters. This requirement is likely

to be necessary in an interpreted system as well.

The second area in which the compiled approach is superior to the interpreted in in

allowing variables to be accessible both to the application and the interface. In an interpreted

system, interface access to application variables ·would require maintenance of a symbol table

at run-time. This symbol table would need knowledge of the underlying programming language

of the application routines in order to access variables when referenced. In the compiled

approach, references to variables in the interface are resolved by the compiler and linker,

system-supplied facilities. No symbol table is necessary at run-time.

The compiled approach also greatly simplifies the evaluation of expressions and

conditions used in the interface. The generated code is simply invoked at the appropriate time,

again taking advantage of system services. In an interpreted system, the driver would need to

include code to evaluate expressions, which would be represented in some intermediate form.

In addition, as above, a symbol table would be needed to provide access to variables.

The last advantage of generating code is that the interface can be modified directly as

well as through GUIDE. Although caution is needed in making such changes, the designer

could, for example, change the name of an application routine to be invoked or change an

actual parameter. This is useful if very small changes are quickly needed.

In addition to generating the interface code, a UIMS generator must be able to store a

design so that it may be developed over several sessions or modified at a later date.

The output from GUIDE consists of a number of files. The designer may request that his

11

design be stored in a file for later examination or modification. A journal file containing a

complete record of each session using GUIDE is also created. Various errors may occur in the

interface design; error messages will be stored in a third file. Lastly, the major output of GUIDE

consists of Pascal code and data which can be linked with the designer's code and the code

implementing the tools to form the complete application system.

1.7. GUIDE's interface

Another question that arises in defining a UIMS generator system is how the designer is

to specify the design from which the interface will be generated. The most attractive solution is

to have an interactive, graphical interface to the generator. The ability to use GUIDE to provide

such an interface is one of the goals of GUIDE. This has been achieved by using the action

routines for GUIDE as a subroutine package to build a design and generate the appropriate

interface. In fact, this is how the prototype interface to GUIDE was created. The graphical and

interactive components of GUIDE have been separated from the application code which

operates on the data structures. This is the structure which a UIMS is intended to promote.

A prototype user interface for GUIDE has been designed using GUIDE itself. The

prototype system is primarily menu-driven, with extensive use of forms, especially for

instan.tiation of tools, tasks and other objects. Some information may be entered by picking

items from the display.

The methods for creating objects (e.g., tools, tasks) and editing them are substantially

identical. For most objects in GUIDE, the user is presented with a form containing the current

values for that object. Any desired changes can then be made. When the object is initially

created, many of the fields will be e.mpty and require input. With this technique, no commands

specific to editing need to be learned.

It is hoped that a better interface for GUIDE, which takes more advantage of GUIDE's

flexibility, will be designed in the near future. The designer of the new interface will use the

prototype version, both as a starting point for the next version and to access GUIDE.

12

User
11'
.u

GUIDE-generated
UIMS

11'
========= =========
.u

Toolkit
11

.u
Application package

11
========= =========

.u
Window Manager

11
.u

Virtual Terminal
(if present)

11
.u

CORE

Figure 1-1: Control Flow using GUIDE

1.8. The_ generated interface

GUIDE generates code and data which, when combined with the application code and

some runtime support, forms the application system. In doing so, it is analogous to a compifer

compifer (e.g., [Johnson 75]). The user of a compiler-compiler provides a grammar which is

processed, and semantic routines. The compiler-compiler takes the grammar and produces as

output the tables needed to compile programs. The output is used with the semantic routines

by an end-user (to compile his program). With GUIDE, the user (designer) provides a

description of the. desired interface which is processed to produce the interface itself. This

interface is then used, together with other code provided by the designer (the semantic

routines), by the end-user. However, the description of the interface is developed interactively,

rather than specified as a grammar (as in [Olsen 83b]).

The Graphical Input Interaction Techniques Workshop [Thomas 83] characterized UIMS's

along three scales: internal vs. external control, single- vs. multi-thread control and simple vs.

hierarchical dialogues.

GUIDE generates external control UIMS's, meaning that the UIMS is in control and

invokes the application as a slave. It permits multiple threads of control, allowing the· user to

13

User
11

====== ======
il il

Input Devices
.11

Output Devices
11

====== ======
il

CORE
11
il

Virtual Terminal
(if present)

11
il

Window Manager
(including window database)

11
========== ==========
il

Toolkit
11

il
Application package

11
========== ==========

il
GUIDE-generated

UIMS

Figure 1-2: Data Flow in a GUIDE-generated Interface

have several commands under construction at the same time. GUIDE provides hierarchical

tools, thereby allowing hierarchical dialogues.

The control hierarchy for a system with a GUIDE-generated interface is shown in Figure

1-1 . The presence of a window manager is assumed; it is expected to handle the details of

placing the viewports (windows) on the screen and identifying viewports when a pick is made.

The user is in control of the system. When he does something (i.e., causes an event),

the GUIDE-generated interface is activated. It invokes the toolkit to determine what the user

did. The toolkit, in turn, invokes the window manager and so forth until the appropriate

hardware driver is queried. The interface can also invoke the application package, which has

access to the window manager. GUIDE uses the CORE graphics system [GSPC 79] to perform

its own drawing and assumes that the application uses CORE for its drawing. The GUIDE

methodology does not depend on CORE, but the low-level graphics routines use the CORE

system to handle input.

14

The flow of data in a system using GUIDE is shown in Figure 1-2. Data goes from the

user to an input device, triggering a CORE event. CORE, in turn, informs the virtual terminal,

which passes the information to the window manager and so forth until the GUIDE-generated

interface is reached. For output, the interface invokes either the toolkit or the application

package, which pass the data down the hierarchy until it is displayed.

1.9. Organization

Throughout this dissertation, examples will be drawn from the furniture layout system

described by Foley and van Dam [Foley 82], which consists of manipulating a pre-defined set of

symbols representing furniture (desk, chair, etc.) until a satisfactory layout is achieved. The

user may add symbols to or delete symbols from the layout, may title or re-draw the current

layout and may change the window into the layout world. Other examples will be cited as

needed.

The remainder of this document is organized as follows. Chapter 2 discusses other

research in the area of user interface specifications and looks at some existing systems in

GUIDE's terms. Chapter 3 discusses tools and tasks. Contexts, decisions, expressions and

conditions are covered in Chapter 4. Actions and parameter specification are discussed in

Chapter 5. Chapter 6 discusses user profiles, helps, prompts and message handling. Chapter

7 covers the GUIDE user interface. Chapter 8 discusses the output produced by GUIDE and

Chapter 9 covers implementation issues. Conclusions, contributions and future directions for

this research are discussed in Chapter 10.

CHAPTER II

Survey of Other Research

A number of researchers have studied the area of interface specification. The approach

taken by most [Hanau 80, Hayes 85, Kamran 83, Kasik 82, Olsen 83a, Olsen 83b, Schulert

85] has been to design languages which can be used to specify either the interface of a system

or the entire system. A few have approached interface design from the tool level [Anson

82, Green 82, Van den Bos 78]. Several researchers [Bass 85, Heffler 82] have designed

interactive systems for specifying interfaces, but these systems cannot handle applications

using graphical input. A few systems have been implemented which allow interactive design of

graphical user interfaces [Buxton 83a, Green 85a, Roach 82, Rubel 82, Wong 82]. None of

these systems, however, allows as much freedom to the designer as GUIDE.

Since the introduction of user interface management systems, attempts have been made

to classify them [Kasik 84] and to provide models [Seeheim 84]. In particular, the Seeheim

Workshop on User Interface Management provided a comprehensive model of UIMS's. This

modei divides a UIMS into three components: presentation, dialogue control and application

interface model. The presentation component controls the external appearance of the interface.

The dialogue control component interprets input and invokes application routines. It also

converts data from the application to a form understandable by the user. Control logic is

contained in this component. One system [Green 85b, Green 85a] has been implemented

which conforms to this model.

The next section discusses a collection of characteristics either necessa;y or useful to an

ideal UIMS system. The characteristics are divided into four categories: items relating to

specification of semantics, that is, what happens when the user does something, items relating

to interaction tools, items relating to user support services and items relating to specification of

the interface, that is, support for the designer. Those items relating to semantics are considered

necessary for the ideal UIMS generator. Items in the other groups are useful. Table 2-1

examines existing UIMS systems and shows which of these characteristics each possesses.

Items marked with an 'L' in this table are limited in the particular system and are discussed in

the text. The tool-based systems are omitted from the table as none of them actually

constitutes a UIMS system. The sections which follow summarize some of the existing systems

15

16

and evaluate them in terms of the amount of generality which can be expressed in the interface.

The last section in this chapter examines some existing interactive systems and attempts to

describe them in GUIDE's terms.

2.1. Characteristics of an Ideal UIMS

2.1.1. Semantic Considerations

1. Allows any semantic specification - A UIMS system must be able to specify the actions and

control structure of the application. The remaining items in this group are specific parts of

semantic specification.

2. Provides access to application variables - As discussed in chapter 1, the ability to refer to

application variables in decision-making is crucial to specifying an interface in a reasonable

number of states.

3. Allows choice among multiple control paths following a user action and execution of

application routine - If a system is to respond to user actions and their results, the designer

must be able to specify selection among several states to fbllow any given state. Such

factors as the user's choice of command, the result of the application action and the state

of the application all may be used to determine the new state.

4. Provides access to application routines - The UIMS must allow execution of routines which

perform the work of the application.

5. Allows choice among several application routines following a user action - The application

action which follows a user action may depend on such factors as the state of the

application, the characteristics of the user and the results of previous user actions. The

designer should be able to specify such distinctions without factoring his command set to

require distinct user actions for each case.

6. Allows parameters to be passed to application routines - The application routines must

have access to user inputs. In an external control UIMS, this access must be provided

without explicit requests from the application.

17

7. Allows choice among parameter sets to be passed to application routines - Again, the set

of parameters to be passed may depend on a number of factors like those mentioned

above .. The UIMS must allow the designer to distinguish among possible parameter lists.

8. Allows collection of values for parameter computation - The UIMS should not constrain the

designer to any one interaction style, in particular, the parameter-verb style. The designer

must be able. to indicate, for each application action, what user inputs are necessary in

order to perform the action.

9. Allows choice among methods of collecting values for parameter computation - As with the

other semantic items, the list of user inputs needed for parameter computation may vary.

The designer must be able to specify the various cases and the conditions controlling each

of them.

2.1.2. Interaction Considerations

10. Allows at least menu, form filling, direct manipulation and command language interaction

techniques - These tools provide a minimal set of operations for interaction. The absence

of any one of these makes some simple interactions difficult to perform.

11. Allows a single interaction task to be implemented by multiple techniques (tools) - The

ability to represent a single task by several tools makes it easier for the designer to provide

alternatives to the user and to provide consistency throughout an interface.

12. Allows non-hierarchical menus - In many applications, some commands should be

available in more than one set of commands. A hierarchical menu system constrains each

item to appear in a single set.

13. Allows optional items in menus - Option items allow a menu to be sensitive to the kinds of

factors discussed under semantic considerations.

14. Allows optional fields in forms - Optional fields in forms also allow sensitivity to these

factors. In addition, they allow a form to develop as it is filled in, that is, the response to an

item can determine whether or not some other items appear.

18

15. Creates a graphical interface - The availablity of graphical tools expands the range of

applications for which a UIMS is useful.

2.1.3. Support Services

16. Allows choice among several helps and prompts for an object depending on user and/or

system state - Helps and prompts are another area in which the system's behavior may

depend on factors like the user's characteristics and the state of the application.

17. Allows specification of a user profile to distinguish among users - An interface is far more

useful if it can respond to each user as an individual instead of treating all users the same

way. A user profile described by the designer allows the system to make distinctions

among users based on factors appropriate to the application.

2.1.4. Specification Services

18. Interface may be designed interactively - Interactive specification of the interface avoids

the necessity of learning a special-purpose language.

19. Specification package contains an expression parser - The inclusion of a parser to check

expressions for syntactic correctness allows errors to be corrected when they occur and

reduces the nubmer of errors in the generated interface.

20. Interface may be edited after testing - First attempts at interfaces generally do not result in

ideal interfaces. The ability to try an interface and then modify it allows the designer to

incorporate feedback from users as well as correct any errors with a minimal effort. It is

interesting to note that this is the only characteristic possessed by all of the UIMS systems.

19

GUIDE Olsen AIH COUSIN ADM I TIGER IDS
1. Semantics x x x x I x x
2. Variables x I
3; MultiEle Eaths x NLA I
4. AEEl. Routines x x x NLA x I x
5. Choice of Rtns x x NLA I
6. Pass Params x x x NLA ? x
7. Choose Params x NLA ? ?
8. Collect Params x x NLA ? x
9. Mult. Collect x NLA ?
10. Minimal tools x x x
11. 2-level in:eut x x x
12. Menus random x
13. 0Et. menus x x x
14. o:et. fields x
15. GraEhical Int x x x x x x
16. HelES LP ro!!l.Ets x L
17. User :erofile x L
18. Interactive x x
19. Parser x
20. Editing: x x x x x x x

Bass Heffler DMS !Alberta MENULAY BLOX FLAIR
1. Semantics x x I x x x L
2. Variables I
3. Multi:ele :eaths .-x I
4. Appl. Routines x x I x x x
5. Choice of Rtns ? I x
6. Pass Params x ? x L x
7. Choose Params ?
8. Collect Params x
9. Mult. Collect
10. Minimal tools ? ?
11. 2-level in:eut
12. Menus random L x
13. o:et. menus ? x
14. o:et. fields x ?
15. Gra:ehical Int x x x x x
16. HelEsLPro!!l.EtS
17. User :erof ile L
18. Interactive x x x L x x x
19. Parser L
20. Editing x x x x x x x

Key:
x - system has this feature
? - unknown whether system has this feature
L - system has this feature in a limited form

Table 2-1: Characteristics of UIMS Systems

20

2.2. Interaction languages

Olsen [Olsen 83a, Olsen 83b] describes a system called SYNGRAPH which generates

graphical user interfaces from BNF-like descriptions of the input language's grammar. The

interface grammar is automatically analyzed to provide "menu management, simulated device

. management, prompting, echoing, error handling, backing up over erroneous inputs and

canceling a sequence of interactive inputs· to return to a known home state." Semantic

specification is extermely limited. This system does allow use of Pascal statements by including

these statements in the grammatical specification. Parameters may be passed. However, no

provision is made for collecting the values needed for parameters at that time. The set of tools

is defined only at the device level and does not include form filling, which is a higher-level tool.

User services do not include alternate helps and prompts. The system also does not allow

specification of distinct paths based on user characteristics. The technique described for

graphical rubout is very similar to that proposed for the abort command in GUIDE. Specification

of the interface is not performed interactively, although the grammar may be edited after testing

the interface. SYNGRAPH's applicability is limited as the inability to specify collection of inputs

for parameters restricts designers to the parameter-verb approach. For some applications, this

would make an interface extremely difficult to use.

A group at George Washington University [Kamran 83, Feldman 82] has implemented a

UIMS called the Abstract Interaction Handler (AIH). This system includes an interaction

language along with a program generator for this language. This language is based on

transition networks and is used for describing the syntactic rules of the dialogue. The system

also includes an interpreter for the interaction language, which activates application modules

and passes inputs from the user to the application modules, a Screen Handler which imposes

additional structure on CORE segments and Style Modules which are used to enforce uniformity

on the front end of an application. A great deaf of semantic specification is available; however,

no access to application variables is provided. In addition, AIH associates a single control path

with each command and apparently allows a single specification of parameters for the action.

The basic unit of interaction in AIH is an interaction task which is defined as "a way of using a

physical input device to input a certain type of word coupled with the simplest forms of

feedback." This corresponds fairly closely to GUIDE's notion of a tool. Menus provided by AIH

are hierarchical only. There is no form-filling. The style modules are similar to GUIDE's user

profiles, but are less powerful in that they influence only the appearance of the interaction and

not the contr.ol flow. The also affect the helps and prompts provided by the interface. Like

GUIDE, AIH allows a choice of several interaction techniques ("tools") to be used to carry out a

task. The interface may be specified interactively and may be edited after testing. The lack of

21

access to application variables combined with a single control path for each command means

that the number of states needed to specify a system of any size would be unreasonably high.

The COUSIN system at Carnegie-Mellon [Hayes 85] is a UIMS for personal workstations.

The designer of an interface describes it using an attribute/value notation. The description

contains slots, which correspond roughly to GUIDE's tasks. Each slot contains a single

interaction mode. The interaction modes correspond roughly to GUIDE's tools, although the set

is quite different since COUSIN is not a graphics-based system. The interfaces created using

COUSIN are not of the external control variety created by most of the UIMS systems, including

GUIDE. COUSIN uses a mixed strategy, which requires the application to contain the control

code and to explicitly request values from the UIMS. This means that the interface specification

contains no semantics. Application actions are invoked by the application and parameters are

requested from the interface by procedure calls. Therefore, the application code requires a

great deal more information about the interface in COUSIN than in GUIDE and other external

control UIMS's. Although the interfaces created with COUSIN are not graphical, the set of tools

is quite broad. Tools are available which can be made to perform as each of the basic tools.

Neither of the support services is available. The interface is not specified interactively, but can

be edited. COUSIN is limited in applicability by its lack of graphical capabilities and by the

requirement that the application make action calls and retrieve parameters. The latter

requirement means that application programmers must be aware of interface terminology rather

than writing code which is independent of the interface.

ADM [Schulert 85] authored by Schulert, Rogers and Hamilton has many similarities to

GUIDE. Interaction is specified in terms of tasks and techniques, with ADM's tasks similar to

GUIDE's tasks and ADM's techniques analogous to GUIDE's tools. Tasks are organized into

states, which are similar to GUIDE's contexts. Semantic specification is limited. A task may call

an application routine when it is used. No provision is made for conditional choice of application

routines and it is unclear whether parameters may be collected and passed. No conditions are

permitted in specifying transitions between states. The methods provided for interacting in ADM

are quite general. All of the basic tool types appear to be available along with several others.

Menus, however, have only a single level. ADM provides graphical interfaces through access to

a graphics package. The ability to get help is provided, but with no alternate selections. A

single task may contain several techniques as in GUIDE. ADM has no notion of a user profile;

in order to provide distinctions between users, multiple distinct interfaces must be created. To

specify an interface with ADM, the designer writes a description in a special language provided

for this purpose. This description may be edited. As with AIH, the designer using ADM is likely

to need an extremely large number of states to represent a system of any size, since there is no

conditional transition to states.

.22

Kasik's UIMS [Kasik 82] called TIGER provides a dialogue specification language

(TICCL) and an interpreter which takes the compiled output from TICCL and displays all

command sequences to the user. TICCL is used to "define and organize interactive dialogue

sequences." The runtime interpreter handles all input and output for the interactive dialogue. It

accepts the compiled TICCL as input. All issues of form, position and style are handled by the

interpreter. Processing is interrupt-driven. An interrupt may invoke an application routine and

parameters may be passed. There is no indication that multiple parameter sets may be

specified or that multiple methods of collecting parameters may be provided. Control provided

by TICCL is hierarchical, although the user may choose a command at a higher level, execute it

and then return to the original position. Control differentiated by conditions is not provided. The

interface has no access to application variables. TIGER provides graphical interfaces; however,

the set of tools available is limited. Support services such as alternate helps and prompts and a

user profile are not present. The interface is specified by writing a TICCL program which may

be edited. Like AIH and ADM, TIGER's usefulness is limited by the inability of the designer to

specify multiple control paths and the lack of access to application variables. In any significant

application, states will proliferate unreasonably.

One of the earliest efforts in interactive system generators was a system called IDS

(Interactive Dialogue Synthesizer) by Hanau and Lenorovitz [Hanau 80]. This system takes a

BNF-like description of the interface and parses it to produce the interface. Semantic actions

are specified as literal strings which can be either printed out or executed in a reverse Polish

notation. Calls to application routines are not possible. No method is provided for specifying

control paths based on conditions, and no access to application variables is provided. A large

collection of tools is provided, although forms cannot be specified. Alternate helps and promptS

cannot be provided. No distinctions are drawn among users. The interface description is not

processed interactively, but can be edited. IDS contains many interesting features, but reflects

its early entry into the field with its extremely limited semantics. The inability to invoke

application routines means that only simple semantics (those which can be expressed in the

RPN provided) can be specified.

In addition to the limitations described for each system, the necessity of writing a

program, grammar or declaration for the interface, implicit in the language-based systems,

would seem to limit their applicability to smaller systems. It seems likely that writing the

appropriate description for a large system will turn out to be almost as difficult and error-prone

as writing traditional interface code for the same size system, using a tool library. For smaller

systems, the language-based approach provides an improvement over traditional methods.

23

2.3. Tool-oriented systems

Several researchers have attempted to define user interfaces in terms of the tools being

used. None of these systems can be used to completely specify a user interface, as none of

them include any semantic specification.

Green [Green 83, Green 82] has a system for prototyping user interfaces by putting

together building blocks from a catalogue of interaction techniques. Each building block can

represent either input, output, interaction or control. Each building block can have input and

output connections that allow data to flow between blocks. This system provides no

connections for the application and is intended only as a prototyping tool.

Anson [Anson 82] provides a language to describe interaction in terms of devices.

Devices can be hierarchically defined and, therefore, entire systems can be described using this

language. As of 1982, no compiler for this language had been implemented. This language

describes only the interactions between the user and the devices. It does not allow

specification of application pictures or control. It corresponds to the task portion of GUIDE only.

Van den Bos [Van den Bos 78] devised a notation for defining higher-level tools in terms

of more primitive tools. As in Anson's system, this notation handles only the task side of the

interaction.

2.4. Non-Graphics Systems

Bass [Bass 85] describes a system for defining and displaying forms on a screen. This

system allows the user to divide the display into components and provides a full-screen editor

for laying out the components and specifying relationships among components. The system,

like GUIDE, allows the use of conditions to determine the contents of a form. This system deals

only with the syntactic and lexical levels of the interface and leaves all semantic issues to the

application. Keyboard-based forms are the only tool provided. Like the tool-based systems,

this system cannot be used to specify a complete interface, due to its lack of semantic

specification.

A system for interactively creating menu systems has been implemented by Heffler

[Heffler 82]. This system is designed for use with non-graphical terminals and does not

incorporate any devices other than a keyboard. The system creates a set of tables used by a

run~time driver. Some semantic specification is provided. When executing the generated

24

menus, the system can prompt for a list of parameters for an action to be invoked. However,

the parameters are passed through pointers to character strings, which limits both the kind of

parameters and the types of parameters which can be passed. Control flow is fixed and the

designer is not allowed to specify the control path based on the result of an action. Interaction

occurs only through menus and traditional prompting. Any menu in this system may be followed

by any other; however, the items in a menu belong only to that menu. Therefore, if the same

item is desired in more than one menu, it must be defined each time. Help is integrated into this

system. No distinctions are drawn among users. The menu specifications are entered

interactively and may be edited. This system is limited in applicability by its limited semantics.

The fixed control flow makes many interaction sequences difficult to specify, while the limitation

on parameters constrains the actions which can be specified.

2.5. Other systems

The University of Alberta UIMS [Green 85b] is implemented in conformance with the

model described at the Seeheim Workshop on User Interface Management [Seeheim 84]. In

the Alberta system, the dialogue can be defined using an event language, a recursive transition

network or a context-free grammar. The internal representation of dialogues is event-based.

The application interface model determines how the application is viewed by the interface and

controls the interface's access to the application structures. The Alberta system allows a

moderate amount of semantic specification. Although application routines can be invoked,

there is no indication that parameters can be passed other than the token or tokens which

caused the call. There is no access to application variables and only a single control path. The

Alberta UIMS creates graphical interfaces; it is unclear what tools are provided other than

menus. No user profile is included and alternate helps and prompts are not available. Only the

presentation component can be defined interactively, but all three components may be edited.

The Alberta UIMS represents a first attempt to fulfill the Seeheim model. As such, it is a major

step. However, to make an ideal UIMS, the application interface component needs expansion

to allow access to application variables and the dialogue component should allow more control

specification. The absence of these features is likely to cause a proliferation of states in the

control structure.

DMS, designed at Virginia Polytechnic Institute [Roach 82, Hartson 84], divides an

application into three components: control, dialogue and computation. The dialogue component

handles input and output. The computational component contains the application code. The

control component supervises the order in which dialogue and computation occur: DMS

25

provides a Graphical Programming Language (GPL) which is used to describe the control

structure of the system. A graphical editor is provided for GPL. While application routines can

be invoked and parameters passed, the authors do not state whether any options are permitted

in choosing the action routines and parameters. They also do not state whether collection of

values after action selection is permitted. A package called AIDE (Author's Interactive Dialogue

Environment) allows the designer to specify the dialogue component using a small set of tools.

No user profile is provided and no alternatives may be provided for helps and prompts. The

interface is specified interactively. DMS provides a Behavioral Demonstrator which allows the

execution of the control structure even prior to its completion. The application code need not be

present. Following such a test, the interface may be edited. Although OMS does allow several

control paths following an action, the inability to access application variables will cause an

unreasonable number of states to be needed for many applications,

Buxton and his colleagues at the University of Toronto [Buxton 83a, Buxton 83b] have

implemented a UIMS, called MENULAY, which allows interactive layout of menus. MENULAY

generates a C program which can be combined with the designer's routines to form the

complete system. Some semantic specification is provided. Menu items may be associated

with application functions, as _in GUIDE. Each menu item may be associated with a single

action. Parameters may be passed to action routines, but only a single set may be specified.

There is no provision for collecting values to compute parameter.s. MENULAY provides only

menu-based interactions and a small set of interaction tools. Menus may be arbitrarily

structured. MENULAY distinguishes among its users based on skill, but there is no indication

that the systems so created can use skill considerations. MENULAY interfaces are created

interactively and may be edited. MENULAY is similar to many of the other systems in that its

limited semantic specification is likely to make it difficult for designers to specify larger systems.

Rubel [Rubel 82] has a commercially-available system called BLOX which can be used to

·interactively specify an interface based on finite state machines. The system then builds the

tables needed for the interaction. The designer may use pre-programmed functions or provide

his own application routines. Although application routines may be invoked, only a single set of

parameters may be specified. Control flow is not based on the result of actions and there is no

access to application variables. BLOX provides graphics with a two-dimensional CORE system.

The set of tools does not include forms. Help is provided, but no alternative messages may be

specified. The interface is specified interactively and may be edited. BLOX has limited

applicability due primarily to its weak semantic specification. As with other systems,

specification of large systems is likely to be hampered by the limited control flow and lack of

access to application variables.

26

FLAIR [Wong 82] provides a Dialog Design Language which is a "menu-driven system

that aids and directs the designer through a coherent and orderly translation of his scenario into

a form that is executable." FLAIR provides access to a large set of devices, but has no

interaction with any other programming language. Designers must use pre-programmed

actions. FLAIR, intended primarily as a prototyping system, would seem to be somewhere in

between a UIMS and a user interface. It allows the user to define scenarios dynamically and to

create menus, but these can apparently be used only within the entire FLAIR system. The

additions are entered interactively and may be edited. A built-in calculator utility allows the

designer/user to perform any necessary computations while specifying his scenario. FLAIR's

usefulness is limited by the fact that it cannot create new interfaces, only make additions to an

existing package.

2.6. Summary

A number of the systems described have proven to be useful to their implementors.

However, none of these contains all of the features considered necessary for the "ideal" UIMS

generator. Only GUIDE has all of these features and it is the only one to provide access to

application variables in the interface.

It also should be noted that, while it was not designed with the Seeheim model [Seeheim

84] in mind, GUIDE does contain all of the components in the model. The boundaries between

the components are not as clean as in systems defined to conform to the model. GUIDE's tools

and user-defined pictures, together with the· run-time tool drawing code, constitute the

presentation component. The dialogue control component is composed of the task, context,

decision and action structures plus the run-time tool processing code. The symbol table

constructed from the application environment provides the application interface model.

2. 7. Studies

In order to determine what features to incorporate into GUIDE, several existing interactive

systems were chosen for their diversity and studied. The goal was to determine what kinds of

features are common to interaction and to see whether the initial model for GUIDE could handle

a wide range of interactive systems. Several modifications to GUIDE's design were direct

results of these studies.

At present, as discussed in section 9.3, GUIDE cannot track locators and pick tools with

anything other than a tracking cross. This limitation is a function of the underlying graphics

package and will not be considered in the following discussion.

27

The systems examined were the Benesh notation editor of Singh [Singh 84], GRIP-75

[University of North Carolina 81], the Spatial Data Management System [Herot 84], Apple's

LISA computer and the Symbolics Lisp Machine. The first three are application systems while

the last two are operating systems. The following sections describe each of the systems and

discuss .how each could be implemented in GUIDE. It should be noted that a ·system,

implemented using GUIDE, may not be identical to the existing version. This section explores

whether or not GUIDE can perform the kinds of interactions necessary to define these systems.

2.7.1. Benesh Notation System

The Benesh Notation Editor [Singh 84] is an interactive system for creating and modifying

dance scores in Benesh Movement Notation. The user interactively modifies a current frame

which describes a single set of motions. The user may also edit the entire score of frames to

insert, delete or re-organize frames. The system is primarily menu-driven with several special

purpose graphically-based tools.

The Benesh system contains a menu of commands which can be selected by the user. It

also contains a menu which is composed of the human body divided into various regions. The

current body part being specified is selected from this menu. Choice of an item from this menu

implicitly executes the command "position body part" for the chosen body part. Both of these

types of menus (i.e., command list vs. pick part) can be represented in GUIDE. Echoing for

both of these menus is performed by shading the chosen item.

Various symbols can also be positioned in the current frame by selecting appropriate

commands. The choices of symbols for each command can be represented in GUIDE by lists.

Positioning is done with a tablet puck. As the user moves the puck on the tablet, a

symbol representing the body part being positioned is moved in the current frame. The symbol

displayed always shows what the frame would look like if the position of the puck were selected.

The designer could provide a routine to choose the appropriate symbol and draw it. Then,

GUIDE could use such a routine to echo the movement of the puck.·

The specification of head and torso positions is somewhat more complicated than that for

other body parts. The user must select the head or the torso from the body menu, and then

manipulate an icon with the puck until the desired position of the head or torso is found. Then,

the appropriate symbol is generated (by the action routine) and the user places it in the right

location in the frame, as with any other body part. In GUIDE, the selection of the head or torso

28

would place the user in a context for orienting that body part. When that is done, an action

routine to create the appropriate object would be invoked. Control would then flow to a context

for positioning the head or torso in the frame. Following this context, control would return to the

main context.

Modification of the score can be handled very simply by GUIDE. A window controller

(see section 3.3.4) should be provided to allow the user to see all or part of the score. The user

may select one or more frames to make them current and then select the desired command

from the menu. To make more than one frame current at the same time requires the use of one

task to initiate the operation and a second to terminate it.

2.7.2. Grip-75

The Grip-75 system [University of North Carolina 81] is an interactive system for building

molecular models. It is designed for use by crystallographers who are working from a graphical

representation of the electron density of the molecule. The molecule under construction is

displayed and the user may manipulate it with a collection of tools until a satisfactory placement

is acheived. A command menu is provided to initiate actions, but within an action, menus are

used as little as possible. Commands are orthogonal so that the user may construct more than

one command sequence at a time. A light pen is used for picking sub-sections of the molecule

and choosing commands from the menu. Some commands are implied by the use of particular

tools, e.g., special devices are provided for translation and rotation of molecular sub-sections.

When the user selects a molecular sub-section, its "twistable bonds" are automatically

linked to a set of dials. Then rotation of these dials implies rotation of the corresponding bond in

the molecule. The user may change viewpoint by dials or joysticks.

Grip-75 can be modelled with GUIDE. Selection of a command from the main menu

changes the context so that subsequent actions can be interpreted with respect to the selected

command.

The most interesting problem in modelling Grip-75 is the linkage of twistable bonds to

dials. We must deal with the strong possibility that the number of bonds does not equal the

number of dials. If there are fewer bonds, this is not a serious problem. We only need to

decide whether some bonds should be linked to more than one dial. If there are more bonds

than dials, however, we must decide which bonds get linked and how to access those w_hich are

not linked. The action routine for the "select sub-image" command is responsible for returning a

29

list of the bonds. One way to handle the problem is to require that routine to return the bonds in

a priority order. Then, we can also provide a command to switch between the main set of

linkages and a subset. An alternative method to handle this problem is by having the user pick

the bond to be twisted before using the dial. Then, any dial can be used for any bond. The

physical dials can be associated with valuator with button tools. ·

Grip-75 also permits the user to indicate his preferred method for stereo viewing. This

choice can be maintained in the user profile.

2.7.3. Spatial Data Management System

The Spatial Data Management System (SDMS) [Herot 84] is an interactive interface to a

database management system. It uses three screens to allow a user to examine a collection of

databases. One screen provides a world view map, showing what items are contained in the

world. The second screen provides a close-up of the current position in the world. The third

screen is used for an interactive graphical editor. A joystick allows the user to move around

within the world. The middle screen always contains a close-up of the current part of the world.

The user can zoom in and out on both the first and second screens by twisting a dial on the

joystick. The user may also touch a point on a screen to make the object displayed there

current.

The keyboard is used for typing in queries to the DBMS. The commands which can be

typed allow visual response from a command, for example, "blink."

The user can choose among several methods of displaying the contents of a database. A

set of templates is used to generate icons for entries in the database. The user may create new

templates with the interactive graphical editor. The graphical editor can also be used to make

notations on the display itself, for example, to mark an item to be examined later.

SDMS can be represented in GUIDE by extending GUIDE's viewports to indicate on what

surface they are to be displayed. (Multiple view surfaces are provided in the CORE

specification, but are not currently implemented in our version.) Almost everything drawn in

SDMS is a user-defined picture. The world map tool, while not included in the initial

implementation of GUIDE, is certainly a possibility for a later version. AUernatively, it can be

replaced by a window controller. (The window controller is fully defined in chapter 3 and an

example is shown in appendix B. Use of the world map tool, that is, moving within the world

view, should change values which are parameters to the current view drawing tool. The

keyboard is associated with a command parser tool.

30

Zooming in and out can be handled by treating the dial on the joystick as a valuator and

associating with it an-action routine which modifies the view of the world.

A current view type must be maintained to indicate the method of displaying the database

contents. This value can be placed in the user profile and passed as a parameter to the

routines which draw the views of the database.

2.7.4. Lisa

Apple's Lisa [Apple 83] running the Desktop Manager is a personal computer designed

for office applications. The Desktop Manager contains a collection of packages useful to

business managers. Included are a spreadsheet program (LisaCalc), a graphing package

(LisaGraph), a graphics package (LisaDraw), a text processor (LisaWrite) and several others.

All interaction is performed through a one-button mouse and the keyboard.

A menu of command classes is always displayed at the top of the screen, regardless of

the currently active package. The list of command classes depends on which package is active.

The user may see any of the commands in a class by selecting the class from the menu .. The

sub-menu remains visible until the user releases the mouse button. If it is released when the

mouse is over any of the commands, that command is executed.

Current objects are widely used in Lisa. For example, the current type style for text is

maintained. The user may change the currents affecting the active package by selecting an

item (the appropriate command class) from the main menu and then selecting the desired value

for that object.

Lisa distinguishes between single and double clicks of the mouse. When the mouse

button is depressed and released twice within a certain period of time (the length is user

determined), a double click is signalled. At some points, a single click selects a item while a

double click executes it.

Lisa has a user profile called preferences including items such as the length of time

between clicks for double clicking, the period of time with no activity until the screen dims and

other similar things. The user may change any of these items at any time.

To represent the Lisa system via GUIDE, one or more contexts are used for each

package including the operating system itself. Selection of the icon for a package from a menu

of packages changes to the (main) context for that package. The set of windows for each of the

31

various packages constitutes a user-defined picture class. Since the user may create an

arbitrary number of windows for each package, these classes are of the dynamic type. Each

window which has been created appears on an iconic menu. (Icons are drawn by designer

supplied routines.) Selection of the icon for a window implies a change of context to the context

for the package with which the window was created. The selected window becomes the current

member of that class. Since Lisa uses the Smalltalk [Tesler 81] model of overlapping windows,

selection of a window which is partially obscured also implies a change of context to the

underlying package. Selection is performed with a pick tool.

Some of the command classes in the menu at the top of the screen are actually

commands and the sets of items displayed when these commands are selected can be

represented by lists in GUIDE.

The single click/double click can be modelled in GUIDE by attaching a condition to each

menu item for which the double click has meaning. It is also necessary to distinguish between

pressing the button and releasing it, since these represent different tools in LISA. This must be

handled in the mapping from physical to logical devices.

The slightly different meanings of commands depending on the application and the

different sets of commands within categories can be handled by GUIDE quite simply by using

· appropriate conditions. Menu items which are "personalized" based on current applications

values (e.g., "Open bob" instead of "Open file", where "bob" is the current file) can be specified

in GUIDE by using generated menu items.

Lisa uses a number of iconic menus. GUIDE provides the capability to specify icons for

menu items. Lisa also displays unavailable menu items in half-tones. The designer in GUIDE

may specify the omission type for menu items.

2.7.5. The Lisp Machine

The Symbolics Lisp machine [Symbolics 85] is a single-user system designed for efficient

processing of Lisp. The operating system is based on the Smalltalk model [Tesler 81] of

overlapping windows on a screen, representing a desktop. There are several types (classes) of

windows available. In most of them, everything typed in at the keyboard is sent to a Lisp

interpreter. A three-button mouse is provided for moving around and picking points from the

screen. A number of pop-up menus are used for control of the display. When a ~enu is

displayed, a one-line prompt message is shown for the item currently under the mouse. The

32

same prompt line is used to indicate what a push on each button would do at any time. Multiple

button pushes have special meaning in some situations (generally, a return to a higher level).

When this is so, the prompt line lists these as well. An .abort key is provided to abort the current

process. The user may scroll up and down within a window by placing the mouse over a

scrolling tool provided at the edges.

As with other operating systems, the Lisp machine is not an ideal candidate for modelling

with GUIDE; however, it is possible. The various types of windows can be implemented as

user-defined picture classes. The context would depend upon the class of the window in which

the user is working. In most contexts, the keyboard tools would invoke a Lisp interpreter as

their action routine.

One menu hierarchy, that used for invoking processes and modifying screen contents, is

available in all contexts, although the method of accessing it varies in the number of button

pushes required.

In order to display the one-line prompts based on the mouse position, movement of the

mouse more than a specified threshold must be considered to be an event. Prompting can then

be specified with conditions based on the mouse position.

CHAPTER Ill

Tools and Tasks

Tools are techniques for graphical interaction. The set of tools available in GUIDE is

pre-defined. Each tool has one or more methods for each of initializing, drawing, echoing and

processing it. Tools may have other characteristics controlling their appearance and

performance. In GUIDE, the designer instantiates tools as needed. Every tool instance has

associated with it particular methods for initialization, drawing, echoing and processing, and

values for its particular characteristics which are selected by the designer.

A task is a set of tools, any one of which can be used to produce a desired result. Each

task has associated with it a set of actions, one of which is to be executed when the task is

used based on the conditions specified by the designer. A small set of tasks, including "exit"

and "help", is pre-defined and the designer can define others as needed.

3.1. The CORE Graphics System

GUIDE uses a "standard" graphics system, CORE [GSPC 79], to handle graphical input

and output. The choice of CORE was made primarily because of its local availability and device

independence.

Objects to be drawn using CORE are organized into named segments. Within a

segment, an integer pickid may be used to distinguish among components of the object. The

segment and pickid allow one to determine exactly what part of a drawing is located at some

point.

CORE uses two coordinate systems. Normalized device coordinates (NOC) refer to

positions on the screen with the origin at the lower left corner. World coordinates (WCS) are

determined by the user's drawing routines and are arbitrary. The user establishes a viewport on

the screen by specifying its boundaries in NOC space. A window indicating what portion of the

application world is visible in the viewport is specified in world coordinates. Given these

specifications, CORE determines a mapping between NOC and WCS, allowing the drawing

routines to work in world coordinates.

33

34

CORE provides six logical devices for input: pick, keyboard, button, stroke, valuator and

locator. A pick device returns the segment and pickid of the object located at a picked point. A

keyboard returns alphanumeric input. A button allows choice among alternatives. A stroke

device provides a series of positions in NOC space. A valuator returns a scalar value. A locator

returns the coordinates of a picked point in NOC space. Each logical device may be mapped to

a physical device through an appropriate software driver.

Pick, keyboard, button and stroke devices ·are event devices, meaning that use of the

associated physical device signals an event to the application. Locators and valuators are

sampled devices, meaning that their values are read on request.

3.2. Tools

The set of tools contains the five of the six CORE [GSPC 79] logical input devices plus

higher-level devices built using the CORE conc~pts. Sampled devices are modified to perform

as event devices by the addition of a button. Some of the higher-level tools available are

menus, lists, potentiometers, window controllers and forms. For each tool, GUIDE contains a

routine which initializes the tool, a routine which draws the tool (if it appears on the screen), a

routine which echoes the tool and a routine which processes the input received by the tool. The

designer may specify alternate routines to perform these functions, provided they contain

certain things necessary to the GUI DE runtime system. All routines are parameterized to

provide for multiple instances of the tool type. In addition, each tool has a data structure which

contains the names of these routines, plus any characteristics which affect the appearance or

operation of the tool. For example, a menu may be displayed vertically, horizontally or in some

configuration specified by the designer.

An initialization routine for each tool type performs operations which must be completed

before drawing the tool. For example, lists may be generated by executing a routine which

constructs a list. The set-up for a list constructed in this way would invoke the appropriate

routine and then convert the result to the appropriate form for drawing.

The drawing routine for each tool displays that tool according to its characteristics, such

as orientation and color. Some tools, such as a pick, have no display.

An echo is a perceptible (visible or audible) reaction to the use of a tool. Every tool has

one or more possible echoes. For example, a commonly used echo for a menu is to highlight

the chosen item. In this system, each tool type has one or more echo types available. Upon

35

instantiating a tool, the designer may specify which echo type to use, if there is more than one.

Normally, there will be a default echo for a tool, which is the echo commonly associated with

that tool type.

Some echoes will occur in the viewport containing the tool (e.g., highlighting of a menu

item), some will occur in other viewports (e.g., a window controller changes the viewport with

which it is associated) and some will be off the screen entirely (e.g., lighting a button). In the

last two cases, it is the designer's responsibility to specify what viewport or object is affected

when the tool is instantiated.
·~.

The processing routine for a tool converts the raw data received by the CORE system

into the type that the tool expects and performs any necessary updating of the tool data

structure. For example, the processing routine for a list uses the segment and pickid of the

picked point to determine which item was chosen. Then, the list instance is updated to have

that item as its current value.

3.3. Specific tools

This section describes each of the tools available in the prototype implementation of

GUIDE. For each tool, the characteristics which may be specified by the designer are

described. In addition, the designer may specify colors for background, text and line drawing for

each tool. These default to acceptable values if no others are specified. Many characteristics

other than those listed below could be added to the appropriate tools. A few features are

described which are supported by GUIDE, but have not yet been implemented. These features

are listed in section 10.1.

3.3.1. Menus

Menus are generally used to specify the control path of a system. The user chooses

options from a menu of those available at some point. The system acts on the option chosen

and then presents a menu of the options subsequently available. In general, it is expected that

the options in a menu will be application commands.

While many systems have strictly hierarchical menu structures, there are some systems

in which an option may appear at many levels. In order to deal with this case, menus in GUIDE

are not restricted to a tree structure. Each item in a menu structure contains a list of those

items which belong to its follow list. The follow list for an item contains those items which

36

should be displayed if the item is chosen. (The term sub-menu does not apply since one item

may appear both in the same menu as another item and in the second item's follow list.) This

method allows total generality of menu structures. For example, in GUIDE, the menu item for

creating or edi~ing a tool appears in both the top-level menu and in the menu for creating or

editing a task.

A stack is maintained for each menu at run-time, containing each item which causes a

change in the list of items presented. When the user is not at the starting list of a menu, an item

is provided to go back to the previous list. Choice of this item pops an items off of the stack for

that menu.

A condition may be associated with each item in a follow list which determines whether it

is actually available for selection. An item may have a different condition for each list in which it

appears. The condition may be based on application variables, task values (see section 3.4)

and user profile values (see chapter 6.1).

The designer determines, for each menu, what is done when items are to be omitted. An

item may be omitted from the display, its space may be left blank or the item may appear in

half-tone (as in LISA [Apple 83]). Additional possibilities may be added in later versions of

GUIDE.

The designer also has control over details regarding the appearance of the menu. The

menu may be displayed horizontally, vertically or in some other arrangement. The designer

may also specify whether a menu display is to be paged, and, if so, how many items constitute

a page and what message should inform the user that more items are available. If the menu is

to be displayed in an arrangement other than horizontal or vertical, the designer specifies the

location of each item. The designer also specfies the background color for the menu and the

color of each item. Each item may even be a different color. The text for a menu item may be

generated by calling a routine to return it. For such items, the designer specifies the routine and

parameters, as well as the text color. Items may also be drawn as icons. The designer must

specify a routine to draw the icon. A single menu· may contain predefined textual items,

generated textual items and iconic items. Figure 3-1 shows the menu for the layout system. It

is unpaged and vertical.

An alternate form of menu which has not been included in the initial version of GUIDE is

the implicit menu such as a command parser. With such a menu, no items are displayed and

the user selects a command by typing it in. These menus could be incorporated into GUIDE by

37

ADD SYMBOL

CHANGE TITLE

CHANGE ROOM SIZE

Figure 3-1: A menu

modification of the draw, echo and process routines for menus. The non-hierarchical structure ..
of menus would still apply.

3.3.2. Lists

Lists are used for selection of an object from a set. Lists may be either static or

generated. A static list is totally specified by the designer. Alternatively, a designer may

provide the name of a routine which constructs the list and returns it to the interface. This is

useful for presenting lists of application or operating system structures, such as files. In

general, it is expected that lists will contain objects rather than commands.

Every list instance has a value which is the item most recently picked from the list. The

initial value of the list may be set by specifying a default value at the task level (see section 3.4).

As with menus, the designer may specify a number of items regarding the display of each

list. He may indicate the orientation of the list (horizontal, vertical or other) and whether or not

the list is paged. He also indicates whether the individual items should be numbered or labelled

or both. For numbered lists, the designer specifies a starting number. In both cases, the

designer specifies a terminator character, such as a colon, to follow the number or label. The

designer may specify a name for the list and the background color of the list. For generated

lists, the designer specifies a single color for the items.

38

For static lists, the designer may specify for each item, a label, a value, a color and a

position in the list. Individual items may be represented by icons, in which case the designer

specifies a routine to draw the icon. As with menus, a single list can contain both textual and

iconic items.

In addition, a static list may be structured hierarchically, such that each item may have a

list of sub-items. When an item is chosen, its sub-list is presented for selection. This continues

until the bottom of the hierarchy is reached. The task containing the lil)t is not considered to

have been invoked until the bottom of the hierarchy is reached. This allows the designer to

organize a list into categories each of which contains a list of items. This structure can be used

as an alternative to or in conjunction with paging. For hierarchical lists, a stack similar to that

used for menus is necessary. A "previous item" selection then allows the user to move up in

the hierarchy. Figure 3-2 shows the list of tools available in GUIDE. This list is vertical and

paged.

TOOL TYPES
FORM
LIST
MENU
-- MORE --

Figure 3-2: A list

The major difference between menus and lists is that list structures are strictly

hierarchical while menus may be non-hierarchical. In addition, the designer may specify

conditions for inclusion of individual menu items in a follow list, while the contents of a list level

are fixed.

While it is expected that menus will be used for commands and lists will contain objects,

there is nothing in GUIDE which forces the designer to make this distinction. It is possible to

specify a menu of objects or a list of commands and to specify appropriate actions as the result

of their use.

39

3.3.3. Forms

Forms are an extremely general and useful tool. The designer may construct a form

consisting of tasks to be filled in by the user. The user fills in the form by choosing its various

fields and using the appropriate tools to provide values for them. There are two ways in which

completion of a form may be indicated. The designer indicates which method is to be used for

each form. The first method (implicit termination) simply monitors the fields, and when all fields

have been given values, signals completion. With the second method (explicit termination),

when every field has been given a value, a specified task (the termination task) appears in the

form's window (in addition to the other fields). The user indicates that he is finished filling in the

form by using the termination task. This permits modifications to the form prior to explicit

acceptance of all form values.

This tool provides a method whereby a designer can ensure that a number of tasks

receive values without specifying the order in which this occurs. It also gives the user a chance

to enter and modify values until they are correct. The user may use the tasks in the form in any

order; tasks other than the form task may even be used between form field tasks. Forms are

extremely useful for entering parameters.

The fields in a form need not all be textual; any other kinds of tasks may be included. A

form may even contain other form tasks. The designer may specify initial and default values for

any or all of the fields by specifying these values for the task associated with the field. If all

fields have initial values, explicit termination must be used and the "termination task" will appear

initially. If the initial values are all acceptable to the user, he may choose the "termination task"

and make no changes.

Each field in a form may have a condition associated with it. The condition determines

whether or not that field is displayed at any time. The conditions are re-evaluated each time a

field is modified. These conditions allow the designer more control over the form filling and

make forms useful for filling in variant data structures.

_The task containing the form is notified that the form has been used only when

termination is signalled. At that time, the action associated with the task is executed.

As with menus and lists, the designer specifies the orientation of the form. It may be

horizontal, vertical or positioned by the designer. The designer also provides a name for each

field. Since the tools within the field tasks will have their own characteristics, nc:i further

specification is needed at the form level. Figure 3-3 shows the form used to initially define the

characteristics of the room in the layout system.

40

ROOM TITLE ENTER TITLE

ROOM WIDTH ENTER WIDTH 2a.aaa

ROOM LENGTH ENTER LENGTH 2a.a00

DOflE

Figure 3-3: A form

3.3.4. Window Controller

There are several techniques which can be used to provide a full or partial view of a

user-defined world. These include provision of a global view as in video games and SDMS

[Herot 84], entry of explicit limits for display, contextual includes, such as "make the window

large enough to include items A, B, C and D" and the window controller. The window controller

is a particularly powerful example of this class.

The window controller is used as an auxiliary to a user-defined picture (see section 4.1).

It permits the user to control what part of the world is displayed in its assignee viewport.

The window controller is divided into five regions (figure 3-4). Each region corresponds to

a different command. The commands are:
A. shrinl<window (i.e., zoom in);

B. expand window (i.e., zoom out);

C. translate window;

D. move window to world extreme;

E. extend extremes and move to new extreme.

41

The first two commands use a scale factor specified by the designer. The last three

commands use the position of the chosen point within the region to determine what part of the

world is to be displayed. The controller is considered to be a map of the world. Choice of a

point in the controller indicates that the corresponding region of the world is to be displayed.

Translation is always proportional to the amount of the world currently displayed. A complete

description of the operation of the window controller appears in [Badler 84].

'--""---'

~ ~c D~

~

Figure 3-4: The window controller

The designer of a system must indicate the user-defined picture associated with the

controller. Ordinarily, use of the window controller will not affect the control path. The

modification of the window is the echo of the window controller.

The designer may specify the relative sizes of the regions, as well as the seal e factor for

zooming and the percentage by which to extend extremes. He also must specify an expression

which represents the world extreme in each direction.

3.3.5. Potentiometers

Potentiometers are tools for entering real number values. They are software

implementations of dials and slides such as those found on ovens and radios. Potentiometers

are based on the CORE valuator device.

A potentiometer has low and high boundaries between which the selected value is

scaled. 1.t also may have labels for the low · and high ends as well as for the entire

potentiometer. The designer specifies all of these values. The designer also specifies the color

for drawing the potentiometer. Figure 3-5 shows a horizontal potentiometer.

42

ORIENTATION

0.00

j

Figure 3-5: A Horizontal Potentiometer

A user positions the cursor in the desired position on the potentiometer, then signals an

event. The event is echoed with the value which this selection gives the potentiometer.

Processing for.a potentiometer assigns the new val1:1e to the instance.

3.3.6. Picks

GUIDE provides two kinds of pick tools: a pick and a pick with locator. The pick returns

only the segment and pickid of the selected point. The pick with locator returns the segment

and pickid plus the coordinates of the point in world coordinates. In all other respects, the two

tool types are identical.

The designer may select a cursor type for each pick instance. In addition, a user-defined

picture class is specified over which the pick operates. Only when the selected·point is within a

member of the picture class for some pick tool is an event assumed to be a use of that tool.

This method of handling picks is similar to the filter concept used in PHIGS [ANSI 85].

In future versions of GUIDE, the designer may have control over the pick aperture of each

pick, allowing specification of how close a match must be made.

The echo of a pick shows the cursor at the picked point. If a pick hits neither a tool nor a

user-defined picture class specified for a pick tool, the user is notified and no action occurs.

43

3.3.7. Keyboard

The keyboard tool in GUIDE corresponds to the CORE keyboard device. The designer

may specify a label or message to be displayed in the tool's viewport position on the screen.

This message generally serves as the prompt for this tool, although an ordinary prompt may

also be specified (see section 6.3). The user enters a string of characters, which becomes the

value of the instance. The string is echoed on the screen along .with the original message.

Figure 3-6 shows a keyboard tool before and after it is used.

CONTEXT NAME

a) A keyboard before use

CONTEXT NAME MAIN-CONTEXT

3.3.8. Locator with Button

b) The same keyboard after use

Figure 3-6: A keyboard tool

A locator with button is based on the CORE locator device. The addition of a button

converts the device from sampled to event.

A locator with button returns a point when the appropriate button is pushed. As with

picks, each locator with button instance is associated with a user-defined picture class within

which the point is to be selected. The echo displays the cursor at the chosen point. The tool

value is the chosen point in world coordinates. The designer may specify the type of cursor to

draw.

44

3.3.9. Valuator with Button

A valuator with button, based on the CORE valuator device, is another tool which is

converted f ram sampled to event by the addition of a button. This tool is generally mapped to a

hardware device such as a dial which actually produces numeric values. It returns a real value

scaled according to high and low values specified by the designer.

The echo of a valuator with button is display of the entered value in the viewport specified

for the tool. The exact performance of a valuator with button depends upon the hardware

device to which it is mapped.

3.3.10. Button

A button tool in GUIDE corresponds to a CORE button device. When used, the button

returns a designer-specified value. A button tool may be mapped to either a real button or to a

position on the screen.

The echo of a software button is generally a highlighting of the button. The echo of a

hardware button depends on the button. Figure 3-7 shows some software buttons.

I EXIT

DOI-IE

Figure 3-7: Buttons

45

3.4. Tasks

A task is a set of tools, any one of which can be used to achieve the same end. Tasks

provide the user with options regarding the way in which an item is entered. Every tool instance

may be cont_ained in at most one task.

Each task in GUIDE contains a list of one or more tools which implement it, optional initial

and default values and a value type. A task also contains a list of action routines, one of which

is invoked when the task is used, depending on conditions specified by the designer.

The value of a task may be of any type, built-in or defined in CORE or the application

environment. Structured types may be used. For example, a task to input a color value might

have as its type an array representing the color value.

The designer must specify, for each tool in the task, a routine which converts from the

tool value type to the task value type. If default or initial values for the task are specified,

conversions from the task value type to the tool value types must also be provided. Some type

conversion routines are provided. In particular, routines which convert between and simply

pass along types provided by GUIDE, are included.

The initial and default values for a task are specified as expressions (see section 4.3).

The initial value must be computable at the start of the application session. The default value

may depend on input values. The task is given the initial value at the beginning of the session.

The default value is assigned at the beginning of any context containing the task. In both

cases, the tools within the task are assigned appropriate values, computed by applying the

appropriate conversion routine to the task value. For example, the task for specifying the title of

a room defaults to the current title of the room. This value is passed to the keyboard tool used

to implement the task.

The designer specifies an action routine to be invoked when the task is used. Conditions

(see section 4.3) may be used to determine which of several routines to invoke. The designer

also may specify parameters for the action routine (see chapter 5).

46

3.5. Predefined Tasks

A few commonly used tasks are provided in the tool kit. The designer may instantiate

and edit these as well as create his own tasks. There are also frequently tasks in an application

system which need to be present all or most of the time. In order to simplify the process of

installing such tasks in the contexts of the application, the designer may create and edit a list of

permanent tasks. The list is automatically copied into each context as it is created. The

designer may edit the list in any context but in any case must add the decision logic

accompanying these tasks in each context.

In addition, there are some tasks which are common to almost every system, such as

"exit" and "help." These tasks also have the characteristic that their actions come not from the

application, but from the interface control. To make inclusion of these tasks simple, they are

built into GUIDE along with appropriate decision logic and may be installed by the designer into

any context or the permanent task list. Because these tasks carry decision logic with them, they

are known as task-consequences. The "exit" task-consequence has the effect of popping a

context off of the context stack and transferring control to it. If the context stack is empty, "exit"

is interpreted as "end the application session." The "help" task-consequence determines for

what object help is desired and displays the appropriate help message. After the display, the

control path is not affected.

CHAPTER IV

Contexts

Contexts describe the state of the application system at any time. A context consists of

user-defined pictures and tasks and decisions: user-defined pictures indicate what can be seen

of the application on the screen; tasks are what the user can do; decisions indicate the control

path by creating connections between contexts. Tasks were discussed in section 3.4. User

defined pictures and decisions are discussed below.

4.1. User-defined pictures

User-defined pictures are those items which the designer wants to display which are not

tools. Generally, these are graphical representations of application data structures. For each

user-defined picture, the designer must provide a name and a drawing routine, as well as a

viewport in each context in which the picture appears. The GUIDE-generated interface will

display each user-defined picture at its specified location.

User-defined pictures are organized into classes. In general, the members of a user

defined picture class represent different graphical instantiations of the same data type. The

contents of a class may be static or dynamic. A static class contains a group of one or more

pictures specified by the designer. For example, the class containing the room in the layout

system is static. The contents of a dynamic class may be modified when the application system

is running. The class containing all of the Lisp Listener windows on the Lisp Machine (see

section 2.7.5) is dynamic.

For a dynamic class, the designer provides the name of a variable which points to the

beginning of the class; the name of a function which, when given a pointer to a member of the

class, returns the next member of the class: the name of a routine which draws members of the

class and the name of the pointer type for the class. This structure allows the application

system to be in control of the list of items in a class. The interface accesses this list only when

necessary. Also, the overhead of maintaining two copies of the list is avoided, since the

interface directly accesses the application copy of the list.

47

48

4.2. The· control path

The control structure of a system indicates what context is to be active at any given time.

The control structure is formed by creating connections between contexts. A connection

between two contexts indicates that in the first context, if a certain task is used, and then if

certain conditions are met, we follow the first context with the second. There are three ways in

which a new context may gain control. First, the designer may choose to push the first context

onto a context stack, allowing an action to interrupt another action. Second, the connection

between two contexts may indicate that if all conditions are met, the second context is to be

popped from the context stack and re-activated. In this case, the first context is terminated

without stacking. Third, we may leave the first context neither popping nor pushing.

Any number of contexts may be stacked. The designer must indicate which variables, if

any, should have their values restored when the context is popped. The values are saved when

the first context is pushed onto the stack and restored when the context is popped from the

stack. For example, in GUIDE, when the "create/edit context" command is selected, control

transfers to a context for editing contexts. The previous context is stacked and the value of the

"choose_command" task is saved. Figure 4-1 shows the main context of GUIDE afte.r

"create/edit context" has been selected. Figure 4-2 shows the context creation context which

follows it.

The ability to either stack contexts or visit them in sequence and to mix these two

methods freely gives the designer a great deal of control over the control structure. The

designer determines what actions may interrupt others and which can be performed only in

sequence. In this way, the designer may prevent some problems from arising. The only kind of

path which cannot be specified is returning to a stacked context without modifying the stack.

Whenever we enter a context, the screen is cleared and all objects in that context are

drawn. The interface then awaits inut for processing.

4.3. Expressions and Conditions

Expressions in GUIDE correspond to the usual programming notion of expressions:

evaluable sequences of operators and operands. Every expression has a type, such as

boolean. Expressions are used to specify conditions, parameters, initial and default values for

tasks and values to be restored when a context is popped.

. 49

I EXIT

COMMANDS

!DESIGN NAME LAYOUT ENTER IDENTIFIER

CREATE/ED!T TASK .
1--------1'START ROUTINE ENTER NAME WITH PARAMS

CREATE/EDIT CONTr<T--------------------l

1•;f1i(E (:QNTRr)L Pt'l r

t-S-EN-'.E-RA_T_E_C_O-DE-~'END ROUTINE ENTER NAME WITH PARAMS

START CONTEXT CONTEXT NAME

C.RF.RTF./ED !T U.SE'.R 1-----.-----------------l
CREATE-EDIT USER

CREATE/EDIT USER
DONF

Figure 4-1: GUIDE main context after selecting "create/edit context"

Logical, relational and arithmetic operators may be used in an expression. The syntax of

GUIDE's expressions follows that of Pascal. Pascal's precedence .rules are observed. In

addition, an exponentiation operator ('**') has been provided with precedence between NOT

and multiplying operators. Constants may be used, and functions may be invoked with

appropriate parameters. The terms of an expression may refer to any global variable in the

application system, any field of the user profile, the value of any task and to previously defined

expressions.

• Application variables are referenced exactly as they appear i.n the application

system.

• User profile fields are referred to as PROFILE.<field specification>. This

corresponds to the notation used in the interface generated by GUIDE.

•Task values are referred to as <task-name>.<any field specification>. Again, this

corresponds to the notation used in the interlace. It is the designer's responsibility

to ensure that a referenced task has a value.

• Expressions may be named and then referred to by name. The name is an

I EXIT

COMMANDS

PREVIOUS MENU

CRf.RTE EDIT TA'-K

CREliTf/EDIT USEF:,PICTURE

CRE~TE/E~iT lJSE~ PICTURE CLASS

ADI! TftSK

f'EMO'!E Tfl7.K

RDD USER PICTURE CLASS

REN~"vE lJ:':ER f• ICT\JF'E Cl .. A;.$

ADD PREDEF TD TO CONTEXT

50

.__ _____ _,i~AME OF CONTEXT: MAIN-CONTEXT ________ _.

Figure 4-2: GUIDE context creation context

arbitrary length identifier. For example, in the layout system, the expression

'cur_room.room_size.x' might be named 'room_width'. Use of the name of an

expression in another expression creates a reference to, rather than a copy of, the

original expression. This means that later editing of the expression affects all uses.

If a copy is desired, a command may be used to copy an expression.

All expressions are checked for syntactic correctness and type matching when they are

entered. A parser is integrated with GUIDE for this purpose. The parser ensures that all

expressions obey the type rules of Pascal and returns the type of the expression. In order for

expressions to use application variables and constants and to have values of application types,

the designer must provide GUIDE with a file containing those declarations. This file is

discussed in detail in Chapter 7.

· This capability of referring to application entities allows parameters, task default and initial

values to be drawn or computed from application variables, greatly increasing the functionality

of the interface. The ability to specify application defined types as the types for tasks reduces

the amount of work application routines must do, although the designer must provide routines to

51

convert between built-in types and the application types. The effect of access to application

definitions on conditions is discussed below.

A number of types and functions are built into GUIDE and may be referenced in the

interface. These are shown in appendix A.

Condition~ are used in a number of places in GUIDE. They can determine the control

path, the set of items to be presented in a menu, list or form, which action routine to execute at

some time, the manner in which the parameters for an action routine are collected or computed,

and which of a set of helps or prompts to display. Conditions in the interface system are

boolean expressions. The designer may assign a name to any condition, thereafter allowing

reference to it by name. Again, names may be arbitrary-length identifiers. This simplifies

specification of frequently-used conditions. For example, if the user profile contained a field

called 'skill' of type real, the designer might create a condition called 'NAIVE' defined by the

expression 'profile.skilk1 .5'. Conditions may also be copied.

The ability to refer to application variables in conditions is one of the strongest features of

GUIDE. It allows a great deal of context-sensitivity in the interface specification. Although the

designer could, in theory, get the same sensitivity by using a large number of GUIDE's contexts

to encode the state information, it is impractical to do so. Access to the application variables

allows a single context to represent a large number of states.

CHAPTERV

Actions

Most of the useful processing in any system will occur in the designer-supplied action

routines. The interface simply provides a way to determine what action routine to execute at

any time. GUIDE, therefore, provides a method for indicating what action routine should be

executed upon a given user action.

Most tasks allow the designer to specify actions that should occur when the task is used.

For example, a "choose command" task will usually contain distinct actions to be executed for

each possible choice. The designer specifies the action to be taken by supplying the name of

an action routine (which has been or will be written) and methods for collecting and computing

the necessary parameters.

5.1. Parameter gathering

Specification of parameters consists of two parts. First, the designer may provide a

series of specialized contexts which allow the user to enter the necessary input values. Then,

the designer may provide a list of expressions for composing the input values and any other

relevant values into the actual parameters. The designer may provide several methods each for

collecting and computing parameters and indicate which method is to be used by specifying

conditions for each.

5.1.1. Parameter contexts

A specialized form of context is used to specify the screen organization during parameter

gathering. These parameter contexts contain a special list of parameter tasks as well as any

other tasks and user pictures desired. The list of parameter tasks contains those tasks which

provide values for parameter computation. Parameter tasks are not permitted to have actions

of their own. The designer may specify that several such contexts are to be presented in

sequence, with each one collecting some of the values needed to compute the parameter

values. The designer may also specify several lists of parameter contexts with conditions to

determine which list is to be used. Figure 5-1 shows the main context of the layout system after

52

53

the "add symbol" command has been chosen. Figure 5-2 shows the parameter context which

follows it.

I EXIT I - _,__[reif%"T
~! Ti

[gJ ~' 0!
Bi
,:] i

I ITifa·%"·-1 I
MAIN OFFICE

'

ADD SYMBOL

CHANGE TITLE

CHANGE ROOM SIZE

Figure 5-1: Layout system after selecting "Add symbol"

Transfer of control to a parameter context does an· implicit push on the context stack.

5.1.2. Parameter expression lists

The actual parameter list for an action contains an expression (see section 4.3) for each

formal parameter to the routine. This list of expressions is called a parameter expression list.

The designer may specify several alternative parameter expression lists for each action,

distinguishing them by conditions.

In the file containing declarations from the application system (see section 7.1), the

designer also specifies the headers for any application routines which will be invoked by the

interface. When a parameter expression list is entered, it is checked against the formal

parameter list for the specified action routine to determine whether the types match. If they do

not match, the designer is notified and given the opportunity to modify the parameter expression

54

I EXIT ORIENTATION
-T--P 00::-r--.. -

1-0_. 0_0 _________ 35_9_. 0-10 ~ I D I ~-
! fl 00%1 ! •·1-:·-·· ; ; f

11Altl OFFICE PICK A POINT IN VIEWPORT ROOM_P!C

Figure 5-2: "Add·symbol" parameter selection

list. If the specified action routine is not found in the header file, the designer is notified. At any

time, the designer may enter the editor as a sub-process, suspending GUIDE and returning to

the current state when he is through editing. Thus, a designer may edit or create the

appropriate action routines when an error occurs and may request that GUIDE re-check a

particular parameter expression list.

At the time that the designer exits GUIDE, prototype headers are created for any routines

for which the formal parameter list and any parameter expression lists do not match. Prototype

headers are also created for routines which were not found in the header file. These headers

are put into a file set aside for this purpose (see section 8.2), so the designer can see what the

header should look like when code is written for the routine.

55

5.2. Fixed Actions

In a number of places, the designer needs to specify a routine for which the user cannot

provide input values. Such routines include those to draw, echo and process tools, the routines

to execute when starting and finishing an application session, and the routines to convert

between tool and task values. These routines may take parameters, but the values of the

actual parameters are not under user control. To handle these cases, fixed action routines are

used. For each fixed action routine, the designer may. specify a list of parameter expressions.

As with regular actions, upon exit from GUIDE, prototype headers are created for any fixed

action routines which are undefined, and for those with parameter mismatches.

The routines which perform conversions between tasks and tools must be able to access

tool values. There is no notation for the designer to do this both because it is unnecessary and

because such a notation would, of necessity, be cumbersome. Since each type of tool has

different kinds of values, a designer would have to know how to refer to values of each kind.

However, it is a simple matter for GUIDE to generate the appropriate references. When

specifying a conversion routine, the designer should not specify parameters. Instead, GUIDE

generates appropriate actual parameters for Jhese routines in the interface. For tool to task
r

conversion, GUIDE generates a list of tool values depending on the tool type, and a reference

to the task. It is assumed that the formal parameter corresponding to the task value is variable.

For task to tool conversion, GUIDE generates a reference to the task value, followed by

references to the tool values appropriate to the tool type. In this case, the formal parameters

corresponding to the tool values are assumed to be variable.

CHAPTER VI

User Support

Several facilities are provided in GUIDE to simplify the designer's job. The user profile

allows the designer to customize the interface for each user. In addition, the designer may

specify helps and prompts and may pass textual messages between tt"te application and the

interface.

6.1. User Profiles

One of the most difficult problems facing the interface designer is providing an interface

that is appropriate for every user of a system. The approach GUIDE takes to this problem is the

provision of a user profile. The user profile contains information about the user's preferences in

dealing with the application. It also may contain data regarding the user's skill with the system

and right to access information in the system. The user profile affects the interface when its

fields are referenced in conditions. Thus, the designer can personalize the system for all of the

users: multiple control paths may be specified; some menu items may be restricted to certain

classes of users; and even different application actions or parameters may be specified for

different users.

The designer specifies the fields of the user profile. He must also specify the type of

each field and whether or not the user may update it. For modifiable fields, a condition based

on the current values of the fields may be provided, so that only users with certain

characteristics may change some fields of their own profiles. Except as discussed below, a

user may update only his own profile.

The designer must specify the name of a file to contain the user profile records and

should then ensure that the file is maintained as securely as the operating system allows. The

designer indicates whether a user's profile must be in the user profile file before he can use the

application system. If not, the user may simply begin using the system by providing values for

his own user profile. In that case, the designer specifies default values for all fields and

indicates by conditions which fields may be initialized by the new user. These may be the same

as the conditions for updating given above.

56

57

If the user is to have access to his own profile, the designer must provide the opportunity

to perform updating. When the designer specifies the profile, GUIDE automatically creates a

form for updating the profile and includes it in the interface. The designer must then specify

inclusion of this form in some context to allow updating of the profile. The designer is also

responsible for ensuring that updating qoes not lead to a user's getting stuck at some point in

the interface. If updating is ·permitted at any time, and the profile is used to determine the

control path, it is possible for a user to enter a state, change his profile and then be unable to

leave that state because his updated profile does not meet any of the conditions for exiting. For

some systems, therefore, it may be desirable to permit updating of the profile only at the

beginning and end of a session.

If access to some fields is restricted, the designer will need to provide a separate system

(or sub-system) for maintaining the user profile file. This (sub-)system can also be implemented

using GUIDE, and can use a condition based on the user profile to determine who may use it.

In this way, the security of the user profiles depends on the operating system rather than on

GUIDE.

Any field of the user profile may be referred to in conditions. If the designer, in the course

of editing, attempts to remove a field of the profile which is referred to by any conditions, a

conflict will be signalled.

In the layout system, the user profile might distinguish between architects and designers

with architects able to modify the room size and designers able to work on rooms only as

defined. The profile would contain a field

user_type:user_types;

where

user_types = (architect,designer);

Then, the "change room size" command would be included in the menu list only if the

condition

prqfile.user_type=architect

were true.

58

6.2. Helps

One of the goals of this system is to make inclusion of helps in the designer's system as

easy as possible. This is done by integrating creation of helps into the creation of the interface.

Helps may be specified for each tool, task, and context in the design. Each help may

contain both a short message and the name of a file containing a longer message. If only one

is specified, that one will constitute the entire help. If both are given, then the short message

will be presented first, with the option of requesting the additional information from the file. The

designer may provide several help messages, distinguished by conditions, for any item. For

example, if the user profile contained a language field, the system could provide helps in

English for one user, while providing them in Spanish for another.

6.3. Prompts

GUIDE permits the designer to specify prompt messages for each tool and context

distinguished by conditions. Since help is thoroughly integrated into the system a·nd conditions

can be used to selectively present or withhold prompts, it is felt that extensive prompting is not

necessary.

For tools, the designer indicates the placement of the prompt within the tool viewport. For

contexts, both a viewport and a position within the viewport are specified.

6.4. Messages

When GUIDE invokes an application routine, it is possible that errors may occur in the

action routine. That is, the application routine may find that it is unable to complete the desired

action or that some condition occurs of which the user should be made aware. GUIDE provides

a message system to allow the application to inform the user of such situations.

GUIDE maintains a list of messages which have occurred. Each message has three

components: a number, a textual message and a location. The designer may choose to use the

numbers either for individual message codes or for severity codes. The textual message is

appropriate text regarding the situation and possible suggestions for alternatives and the

location is the name (or some other identification) of the routine where the situation occurred.

Any routine can add a message to the list by calling the message posting routine with the

59

three components. In addition, the designer may call routines to clear the message list, to

check for messages and to report the messages. Both checking and reporting can look for

messages according to position or code. For example, the designer may check for the lowest

· numbered message or the last message to have been posted.

Application routines may check if a message has been posted by calling one of the check

routines. In addition, since the check routines are functions, they may be used by the designer

in conditions in the interlace. The GUIDE-generated interface clears messages at the

beginning of each context and reports and clears all messages after each input is processed.

CHAPTER VII

The User Interface

One of the goals of this system is that its user interface should be designed using this

system. The initial version of the user interface has been designed with this goal in mind. In

fact, some of the capabilities desired for this interface have affected the design of this system,

most notably in the structure of menus.

7.1. Start-up

At the beginning of any session with GUIDE, the designer must provide the names of two

files. These files contain the environment for the application system, one showing the

declarations and the other containing the compiled environment which is to be inherited by the

interface. An environment is an extension provided in VAX Pascal [VAX-11 Pascal 82] to allow

for separate compilation of modules containing Pascal routines. Inheritance of an environment

by a module directs the compiler to behave as though the contents of the environment were

declared in that module. The environment provided by the designer must contain the

declarations for all constants, types and variables which will be referred to in the interface, as

well as the headers for all those routines which will be accessed by the interface. This

environment will be used to check parameter list specifications against the actual routines for

correct number and types of parameters, and to check expressions for type matching and result

type. Appendix B.1 shows the enviroment provided for the layout system.

The environment file provided to GUIDE should follow the syntax for a module in VAX

Pascal. At present, however, the parser cannot handle included files or any attributes for

variables other than "global" and "external". Procedure and function headers should specify

"extern;" instead of the body. The module may specify inheritance of other modules; however,

the contents of those modules will not be included in the symbol table. The BNF for the

environment file is shown in appendix C.

In later versions of GUIDE, the user will also be able to provide names for two other files.

(Default files will be used if the user does not provide names). The first will be used for error

messages. In particular, prototype headers for action routines with parameter mismatches (see

60

61

section 8.2) will go into this file. The second file will be used for a journal of the user's session

(see section 8.3). For now, a default file is used for the prototype headers and no journal file is

created.

7.2. Appearance of the interface

The nature of GUIDE is such that there is no one correct interface. Since GUIDE can be

used to generate its own interface, a large set of interfaces is possible. For the prototype

implementation, one interface has been chosen, primarily for definitional simplicity. This .

interface is described in this section.

The interface to the design system is menu-driven. At any time, the designer is

presented with a selection of available options. Some of the options cause the stacking of the

current process in order to do something else. For example, when creating a context, the user

may opt to create a task. This will stack the context creation until the task has b.een created.

After returning to the creation of the context which was stacked, the user may include the

newly-created task in the context. Similarly, creation of a control path item can be interrupted

by creation of a context which can then be used in that control path item.

Forms are very widely used in this system. Creation and editing of tools, task, control

path entries and many other objects use forms. Figure 7-1 shows the form used to create a list

tool instance. This allows the user to edit an item in the same manner as it was originally

created. When an item is presented for editing; its current values are displayed and the user

may change as many (or as few) as desired. When an item is initially presented for creation,

any default values are displayed. The user can then enter and modify the values until the

desired set is achieved. For example, help information can be specified for those objects for

which help is available. The user's ability to create the help text at the sanie time as the

structures is expected to encourage inclusion of helps.

In some cases, the designer specifies objects by picking them from the display. For

example, when adding a menu item to a list of items, the position within the list is picked from a

drawing of the list. (See figure 7-2.) It is expected that later versions of the interface will make

more use of picks than the prototype.

The system maintains some current objects, including a current tool, a current task and a

current context. The current objects are used as defaults in the various commands. In some

cases, this means selection of the parameters requires only a button push while in others, it

62

................. .,,,, .. ,,
BOOLEAll

DISPLAY-NAME TRUE
FALSE
ORIEIHATION

-HORIZONTAL
JR I ENTATI ON -VERTICAL

-RANDOM

IST_LABEL ENTER STRING -
BOOLEAN

PAGING-PERMITTED TRUE
FALSE

HUE ENTER REAL 0.000

~ACKGROUND-COLOR SATURATION ENTER REAL 0.000
VALUE ENTER REAL 0.000

BOOLEAN

NUMBERED TRUE
FALSE
BOOLEAll

.A BELLED TRUE
FALSE
BOOLEAN

5ENERATE-ITEMS TRUE
FALSE I LIST

DONE

Figure 7-1: Form for creating list tool instances

DD SYMBOL

EMOVE SYMBOL

~HANGE TITLE

Figure 7-2: Picking a position within a list

means that the current is included in a form until the user changes it. Reference to an object

other than a current changes the current for that kind of object.

CHAPTER VIII

Output

The output from GUIDE falls into several classes. First, the design which is being created

can be stored for later modification or extension. Second, the system creates a file for the

designer containing error information. Third, a journal file is created for each GUIDE session.

Finally, upon request, the system will generate the code and data necessary to integrate the

interface with the designer's action routines.

8.1. Data structures

The designer may request that the entire interface under construction be stored in a file.

This allows the designer to create the interface in several sessions or to edit the prototype at a

later date. When the designer exits the system, there is a reminder to store the prototype in this

manner. The details of storing the data structures are discussed in section 9.7.

8.2. Error file

The error file is used to inform the designer of various potential problems in his design.

Prior to generating the interface, the design is checked for several kinds of consistency, and any

inconsistencies are reported in the error file. In addition, the error file is used for creating

prototype headers for any routines used in the design which are neither built into Pascal or

GUIDE nor exist in the environment file provided by the designer.

The design is checked for any tasks which contain no tools, any contexts which contain

no tasks, any task/tool pairs which are missing conversion routines, and specification of a start

context. In addition, a list of objects which have been created, but never used, is printed in the

file.

The prototype headers contain the actual name of the routine and a parameter list

containing the actual types of the parameters along with a dummy name for them. If desired,

the designer can take such a header and, with a little editing, use it as the header for the action

routine. It is hoped that such a facility will aid in rapid correction of mismatches between action

routines and interface specifications.
63

64

8.3. Journal file

Each time it is used, GUIDE will create a journal file, containing a complete record of the

user's session. This file will be used to implement the undo commands. It can also be used to

recreate a terminal session, by replaying all of the commands which were executed. This

facility has not been included in the prototype implementation.

8.4. Interface

The major output of the UIMS generator system is the Pascal code and data, which when

combined with the designer's action routines and the library of tool routines, will constitute the

designer's system. The code includes context code, which determines the control path, task

routines, which include the interface with the action routines, tool routines, code to handle

expressions and conditions, and code for determining at any time what tool and task have been

invoked.

The code generated by GUIDE follows good programming style. It shows structure by

indentation, contains comments and uses blank lines for readability. The examples shown in

the following sections contain the code exactly as it is generated by GUIDE, except where a

code line was too long to fit onto a single line. Such lines have been broken intelligently.

8.4.1. Context Code

Every context will be translated into a procedure. Entering a context, therefore,

corresponds to invocation of a procedure. Since contexts will sometimes be stacked when a

new context is invoked and sometimes not, we do not want context procedures to invoke each

other directly. A special procedure is used to invoke the various procedures, consisting

primarily of a large CASE statement. Each context procedure is assigned a code number,

which is used to invoke it. Also, each procedure returns, as a parameter, the code number for

the procedure which to be invoked next. The mechanism for stacking contexts takes advantage

of this structure.

Each context procedure has three sections. The first section draws the context. The

second section awaits and processes input and invokes any action routines. The third section

evaluates the various conditions in light of the task used and determines the next context. The

third section, also, handles any processing necessary to push and pop contexts onto the

context stack and save and restore variables.

65

Figure 8-1 shows the procedure generated for the main context in the layout system.

8.4.2. Task routines

-

Two routines are generated for each task, one to draw it and one to process input. The

task drawing routines invoke routines to set up and draw each of the tools contained in the task.

Figure 8-2 shows the procedure generated to draw the task used to get the room width in the

layout system.

The processing routine for each task receives as parameter a code for the tool which was

actually used. Using this, it invokes the appropriate conversion routine. Once the task value

has been computed, the routine determines which action routine, if any, to invoke. If any

parameter contexts have been specified, they are invoked, automatically stacking the current

context. Finally, the task routine invokes the action routine, computing the actual parameters in

the call. Figure 8-3 shows the procedure generated for the choose_command task in the layout

system. This task contains the menu for the application and is associated with the application

routines which update the room data structure.

8.4.3. Tool Routines

For each tool, two routines are generated. The first makes the calls necessary to set up

the tool and draw it. This routine invokes an appropriate set-up routine, if there is one. If the

task has a default value, this routine invokes the appropriate conversion routine to compute the

default tool value. Then, it installs the tool window in the window manager and invokes the

specified drawing routine for the tool. Figure 8-4 shows the code generated to set up and draw

the keyboard tool used to get the room width in ·the layout system.

The second procedure generated for each tool is used to echo and process input to that

tool. It first invokes the echo routine for the tool; then, if a tool use has actually been completed,

it invokes the processing routine. It is possible to use a tool in such a way that the system does

not signal that the tool input should be processed. For example, if a list is paged and the user

selects the page message, it is necessary to echo the tool by displaying the next page, but the

input should not be processed and passed to the task. A boolean variable is used to indicate

whether or not to process the input. The various echo routines must set this variable

appropriately. The context procedures continue to await and process input values until this

variable indicates that a valid tool use has been completed. Figure 8-5 contains the procedure

generated to echo and process the width keyboard tool in the layout system.

66

[global]procedure main context(var next context:integer);
(* this procedure· implements context main_context *)

var
upic_loc:location_type;
error_pos,prompt_pos:point;
error vport:location type;
time: real; -
eclass:nametype;
enum: integer;
this_context:integer;
task_used:integer;

WINDOWCONTROLLERTOOL_loc:location_type;
layout_menu_loc:location_..:.type;
exittool_loc:location_type;
tooll40 loc:location type;

begin - -
begin_bupdt;
delall;
newframe;
(* prepare viewport to device table *)
dispose_run_hash_table(vtd_hash_table);
(* drawing pictures in class title class *)
(* draw picture title_pic *) -
upic loc[top]:= 8.10021E-01;
upic-loc[bottom]:= 7.54349E-01;
upic:loc[rightdim]:= 6.79061E-01;
upic_loc[leftdim]:= 6.52313E-04;
add_or_update_window('title_pic',upic_loc, TRUE, TRUE,l);
DRAW_TITLE(cur_room);

(* drawing pictures in class roorn_class *)
(* draw picture roorn_pic *)
upic_loc[top]:= 7.54349E-01;
upic_loc[bottom]:= 2.78358E-03;
upic loc[rightdirn]:= 6.79061E-01;
upic:loc[leftdim]:= 6.52313E-04;
add_or_update_window('room_pic',upic_loc, TRUE, TRUE,l);
DRAW_ROOM(cur_room,set_window_params.window_used);

WINDOWCONTROLLERTOOL loc[top] := 9.99304E-01;
WINDOWCONTROLLERTOOL-loc[bottom]:= 7.54349E-01;
WINDOWCONTROLLERTOOL-loc[rightdirn]:= 9.94781E-01;
WINDOWCONTROLLERTOOL=loc[leftdirn]:= 6.81670E-01;
draw_task_set_window_params(WINDOWCONTROLLERTOOL_loc,

false);

Figure 8-1: Procedure generated for main layout context

67

layout_menu_loc[top]:= 7.54349E-01;
layout menu loc[bottom]:= 2.78358E-03;
layout=:menu=:loc[rightdim]:= 9.97391E-01;
layout_menu_loc[leftdim]:= 6.79061E-01;
draw_task_choose_command(layout_menu_loc,false);
exittool loc[top]:= 1.00000E+OO;
exittool-loc[bottom]:= 9.SOOOOE-01;
exittool-loc[rightdim]:= l.25000E-01;
exittool-loc[leftdim]:= O.OOOOOE+OO;
draw_task_exittask(exittool_loc,false);

if help_flag
then begin

draw_task_get_help_object(tool140_loc,false);
end; (* if help_flag *)

end_bupdt;
make_pic_current;
(* prepare for error drawing *)
error_pos.x:= l.OOOOOE-01;
error_pos.y:= l.OOOOOE-01;
error_vport[leftdim]:= O.OOOOOE+OO;
error_vport[rightdim]:= l.OOOOOE+OO;
error_vport[bottom]:= l.OOOOOE+OO;
error_vport[top]:= 8.00000E-01;

(* clear flag for computing defaults *)
context_first_drawing:=false;

(* wait for something to happen *)
process_complete:=false;

while not process_complete do
begin

clear errors;
await-event(time,eclass,enum);
proce'is_event(eclass,enum,next_context,task_used,

process complete);
draw_first_error(erro;_pos,error_vport);
report_all_errors(output);

end;

Figure 8-1, continued

68

(* save context va1ue to see if re-drawing *)
this_context:=next_context;

(* dete:cmine next context *)
if task used = 49

then begin
end; (* set_window_params*)

if task_used = 123 ·
then begin
end; (* choose_command*)

if task_used = SS
then begin

begin
(* popping previous context from stack *)
next_context:=O;

end
end; (* exittask*)

(* see whether re-drawing *)
if next context<>this context

then-context_first:drawing:=true;

end;

Figure 8-1, concluded

[g1oba1]procedure draw task get width(widthtoo1 1oc:
· - - Iocation type;ha'i' va1:boo1ean);

(* drawing for task get_width *) - -

begin
if context_first_drawing

then begin
get width:=cur room.room size.x;
has:va1:=true;- -

end;
(* set-up and draw too1 width too1 *)
set_up_and_draw_widthtoo1(widthtoo1_1oc,get_width,has_va1);

end; (* draw_task_get_width *)

Figure 8-2: Procedure to draw a task

8.4.4. Expression and Condition Code

GUIDE generates a function for each expression defined in the interface, except for those

which are used only as parameters and contain only application variables. The function

evaluates the expression and returns the value. A separate function is necessary for each

expression due to type considerations. The layout system generates no non-trivial expression

69

[global]procedure process_choose_command(tool_id:integer);
(* processing for task choose command

invoked by tool with id tool_id *)

var t:runtime_tool_ptr;

begin
(* convert tool data to task value *)
t:=find_.tool(tool_id); (*get tool record*)
case tool id of

124:PASS_ALONG_STRING(t".this_menu".current_value,
choose_command);

end; (* case *)

(* now invoke action routine, if any*)
if check_last_error=O

then begin
if eqnms(choose command,'add symbol')

then begin -
begin

invoke_context(244);
end;
begin

ADD_SYMBOL(cur_room,
choose_symbol,
choose_location,
choose_angle)

end;
end

else if eqnms(choose command,'remove symbol')
then begin -

begin
invoke_context(289);

end;
begin

DELETE_SYMBOL(cur room,
pick_ symbol)

end;
end

Figure 8-3: Procedure to process a task

70

else if eq:nms(choose command,'change title')
then begin -

begin
invoke_context(317);

end;
begin

NEW_TITLE(cur_room,
get title)

end; -
end

else if eqnms(choose command,'change room size')
then begin -

begin
invoke_context(520);

end;
begin

UPDATE_ROOM_SIZE(cur_room,
get_width,
get length)

end; -
end;

end; (* if no errors occurred *)
end; (* choose_command *)

Figure 8-3, concluded

[global]procedure set_up_and_draw_widthtool(tool_loc:.
ion type;taskval:REAL;has val:boolean);

(* invoke set_up and draw-routines for toolwidthtool *)

var t:runtime_tool__ptr;
prompt__pos:point;

begin
(* look up this tool's record*)
t:=find_tool(195);
set_up_keyboard(t,'widthtool');
if has val

then begin
CONVERT_REAL_TO_STRING(get_width,
tA.this_keyboardA.current_value);

end; (* then *)
add_or_update_window('widthtool',tool_loc, TRUE, TRUE,0);
DRAW_KEYBOARD(tA.this_keyboard);

end; (* set_up_and_draw_widthtool *)

Figure 8-4: Procedure to set up and draw a tool

functions. Figure 8-6 shows one of the expressions functions generated for the GUIDE

71

[global]procedure widthtool(var process complete:boolean);
(* processing for tool widthtool *) -

var t:runtime_tool_ptr;

begin
t:=find_tool(195);
ECHO_KEYBOARD(tA.this_keyboard);

if process_complete
then PROCESS_KEYBOARD(tA.this_keyboard);

end; (* widthtool *)

Figure 8-5: Procedure to echo and process input to a tool

interface. When an expression is to be used in GUIDE-generated code, a reference to the

appropriate function is generated. This deals with the possibility that an expression may refer to

other expressions. Generating expressions in line in this case would be extremely difficult.

Parameter expressions containing only application variables are generated in line, however, to

allow for the possibility of variable parameters.

[global]function compute expressiori6577:BOOLEAN;
(* compute expression expression6577 *)

begin
compute_expression6577:=
eqnms(choose coxmnand,'create/edit tool instance') and
tool_chosen(current_design.current_tooi,pot_tool)

end; (* compute_expression6577 *)

Figure 8-6: Function to compute an expression value

In addition, there are a number of places where conditions appear but the evaluation of

these conditions occurs in the GUIDE runtime system, rather than being generated by GUIDE.

An example of this is the evaluation of a condition to determine whether to include a menu item

in the menu about to be drawn. The call to evaluate such a condition comes from !he set-up

routines for menus. In order to handle these cases, a function is generated which takes a code

and evaluates the condition to which the code refers. The evaluation function simply invokes

the appropriate expression function and returns the boolean result of the condition. The layout

system contains only one condition evaluated by the runtime system. This condition is of a type

that is evaluated in-line rather than by a separate expression function. Figure 8-7 shows the

condition evaluation function generated.

72

[g1oba1]function eva1uate_condition(condition_code:integer):
boo1ean;

(* eva1uate the condition with code condition code
and return the resu1t *)

begin
case condition code of

508:eva1uate_condition:=cur_room.contains<>ni1;
end; (* case *)

end; (* eva1uate_condition *)

Figure 8-7: Condition evaluation function generated by GUIDE

8.4.5. Window controller extremes evaluation

For each window controller instance, it is necessary to compute the current world

extremes each time the controller is drawn. The designer provides expressions for these

extremes. A routine is generated which evaluates these expressions (either directly or by

calling the appropriate functions). The routine contains a case statement based on the tool

code and then, for each window controller instance, performs the appropriate evaluations.

Figure 8-8 shows this routine for the layout system, which contains a single window controller

instance.

[g1oba1]procedure eva1uate_windcont_extremes(wc_code:integer;
var xtremes:rea1_dim_array);

(* eva1uate the extremes for the window contro11er
with too1 code we code *)

begin
case we code of

46:begin

end;

xtremes[1eftdim]:=compute expression80;
xtremes[rightdim]:=cur_room.room_size.x;
xtremes[top]:=cur room.room size.y;
xtremes[bottom]:=~ompute ex'Pression69;

end; (* case *)
end; (* eva1uate_windcont extremes *)

Figure 8-8: Procedure to compute window controller extremes

73

8.4.6. Invocation Routines

Four routines are used to invoke other routines: one invokes a context based on a code;

another invokes the routine to draw a specified task; a third invokes tool processing routines;

and a fourth invokes task processing routines. The context invocation procedure is necessary

to avoid stacking up the calls to context procedures on the Pascal stack as discussed above.

The routine takes a context code as parameter and consists of a loop which terminates when

the context code is zero. Inside the loop, a case statement invokes the context referred to by

the code. Figure 8-9 contains the context invocation procedure generated by GUIDE for the

layout system. The routine to invoke task drawing is needed to handle forms. Drawing of a

form uses this routine to invoke the routines used to draw the individual fields of the form. The

tool invocation routine is called after an event has occurred to invoke the routine which echoes

and processes the tool to which the event applies. The task invocation routines is called after a

tool has actually been used to invoke the routine to process the appropriate task.

[global]procedure invoke context(code:integer);
(* invoke the context procedure indicated by code.

loop as long as code returned is not 0 *)

begin
context_first_drawinq:=true;
while code<>O do

(* invoke specified routine *)
case code of

520:size_context(code);
317:chg_context(code);
289:del_context(code);
244:add_context(code);
184:start_context(code);
146:main_context(code);

end; (* case *)

(* don't re-compute defaults on pop *)
context_first_drawing:=false

end; (* invoke_context *)

Figure 8-9: Context invocation procedure

74

8.4.7. Task Lookup Code

The last item of code produced by the interface system takes a tool code and determines

what task contains the specified tool. The task lookup procedure returns a code for the task

which is then used to determine which task processing routine to invoke. Figure 8-10 shows the

task look-up procedure generated for the layout system. In this example, each task contains

only a single tool.

[global]procedure look_up_task(tool_code:integer;
var task_code:integer);

(* look up the task containing tool tool_code *)

begin
case tool_code of

309:task_code:=308;
272:task_code:=271;
263:task_code:=262;
234:task_code:=233;
216:task_code:=215;
207:task_code:=206;
203:task_code:=200;
195:task_code:=l92;
188:task_code:=l85;
124:task_code:=l23;
106:task_code:=l09;
88:task_code:=91;
67:task_code:=70;
63:task_code:=61;
52:task_code:=55;
46:task_code:=49;

end;
end; (* look_up_task *)

Figure a-10: Task look-up code generated for the layout system

8.4.8. Environment

GUIDE generates a file containing the headers for all of the above routines. This file

constitutes the environment for the interface. The file containing the code described in the

above sections inherits this environment. This avoids the necessity of generating code in the

order required by t~e Pascal compiler.

75

8.4.9. Data

GUIDE generates certain data items for use at runtime. A help library file is generated,

as well as information regarding which help messages to print when help is requested. In

addition, data is stored describing the tool instances created for this application.

The GUIDE help system uses the VAXNMS help system [VAX-11 82] so all help

messages must be stored in a help library file. The VAXNMS help system allows multiple

levels of help for any object and is, therefore, useful in providing the two levels of help used in

GUIDE.

In order to look up a help message using the VAXNMS system, one or more keys

indicating which message is desired must be provided. GUIDE creates these keys and stores

them in the library file. In addition, since any object may have more than one help specified and

distinguished by conditions, it is necessary to store data which indicates what conditions to

evaluate when help is requested, and which key to use when conditions are found to be true.

The GUIDE runtime system requires certain data about the tools used in any interface.

For example, the runtime system needs to know the names of a menu's items, the orientation of

the menu, whether or not it is paged and so forth. GUIDE stores this information for each tool in

a file read at runtime.

CHAPTER IX

Implementation

This chapter describes details of the implementation of GUIDE which do not affect the

design of the system, but are otherwise significant. Discussed are the organization of GUIDE,

the structure of GUIDE, the symbol tables used to maintain objects within GUIDE, the algorithm

used to read and write designs, the algorithm used for copying structures, the problems of

mapping tools to CORE logical devices, and the parser used in GUIDE.

9.1. The organization of GUIDE

GUIDE has been implemented in Pascal on a VAX-11/785 running VMS. The code

output of GUIDE is also in Pascal. The data output of GUIDE consists of two text files. GUIDE

uses an implementation of the CORE graphics system [Stluka 82] for graphical input and output

and assumes the existence of a local window manager which also uses CORE. As much as

possible, dependencies on the above have been localized.

The code implementing GUIDE is divided into a number of groups:

•the code manipulating the GUIDE data structures;

•the routines which generate the interface code;

•the parser code;

• the code for checking the design for inconsistencies;

•the message handling package;

•the conversion routines used in the interactive version of GUIDE;

•the routines which draw the GUIDE data structures for the interactive version;

•the code· which implements the tools (i.e., the toolkit);

• the code which handles input from CORE and determines what tool was used.

This includes code which handles mapping of tools to devices (see section 9.9).

A change in the target language for GUIDE-generated interfaces would require changes

76

77

only in the code generation routines and the parser. Within the parser group, only the semantic

routines for type-checking would require modification. In addition, new parse tables would need

to be generated. No other routines would need to be changed provided the operating system

could handle linkage of routines in different languages.

Similarly, use of a different window manager would affect only the input-handling routines

and the toolkit.

Changing the graphics package used would be more serious, requiring modifications in

the code generation routines, the input-handling code, the toolkit, the routines which draw

GUIDE data structures and possibly the conversion routines. Since the tools provided by

GUIDE are based on the set of devices provided by CORE, some re-evaluation of the set of

tools provided might also be desirable.

GUIDE depends on VMS only for its help system and for the environment capability

provided by VAX Pascal.

9.2~ The structure of GUIDE

This section diagrammatically shows the structure of GUIDE, the relationships among its

components and the relationships with application code.

Figure 9-1 shows the files which are input to the GUIDE data structure routines at or near

the beginning of a session. The tool kit and task kit files are read only when the designer

indicates commencement of a new design. Figure 9-2 shows the files which can be created by

GUIDE. Figure 9-3 shows the flow of data during a GUIDE session. GUIDE runtime services

include the window manager and CORE, and is diagrammed in figure 9-4. It should be noted

that the interaction between the GUIDE data structure code and the runtime services is through

the message package, the window manager and CORE. There is no interaction between the

GUIDE data structure code and the tool code or tool to device mapping code.

Figure 9-5 shows processing using system services which must occur following

generation by GUIDE of an interface.

Figure 9-6 shows the structure of an application package using a GUIDE interface. Since

GUIDE is such an application, the similarity of this figure to figure 9-3 is expected.

/
I WI~
{ ;;o11dt

~a

GU//)€
ta~/r. t-.tt

data

\

y

/)

files
Input

by·
GUIDE

78

Figure 9-1: Files input by GUIDE

files
Out put

by
GUIDE

79

Figure 9-2: Files output by GUIDE

Interface

VAX/VMS
Help

System

/'"
GVfbE

bet,tJ
tlbrary·

80

GU.'D£
oat a

~rrnarure

c:ode

GUIDE.
runtime
services

Figure 9-3: Data flow in GUIDE

7ool Code
(read,
set-up

draw,
ecbo,

process)

1ool to
{JeVice

Mapping
Code

81

Window

Manager

CORE

Figure 9-4: GUIDE runtime services

9.3. Choice of a graphics package

Message
Package

CORE was chosen as the underlying graphics package because of the availability of a

local implementation. In most areas, the choice of CORE caused no serious problems in

implementing the toolkit. An noted in chapter 3, it was necessary to associate CORE's sampled

devices with buttons to make event tools. Since this capability is provided by CORE, it was not

a serious problem.

The only area in which our CORE implementation was poorly suited to the desired task

..----.......
fnterfaae \
€ f1V lrOflt'h~l~~

~ ~pj>lfCatkJf)
Objerrt
Code _..,

\ Pascal

Compiler

linker
(VAXIVM:S)

Librarian
(VAX!Vft1S)

82 .

"application
.system

execuatable

~

Ap J>I rc;ar kJn
1---111'1 fuNp

~/

Figure 9-5: Processing after using GUIDE

User

(

'If P µre-at Fon
f '(JrOI 8.

h'el/J
Data

Interface

VAX/VMS
Helf>

System

83

Application
Code

GUIDE.
runtime
services

Figure 9-6: Structure of a GUIDE-generated application

was that of providing alternative echoes for pick and locator based tools. A complete CORE

system would handle this better. However, GKS [Hopgood 83] seems better suited in this

respect. The provision of this capability would allow the use of tools with dragging.

84

9.4. Representation of th~ Design

The design being constructed is represented by a collection of Pascal records. A single

record represents the design itself; this record references other records representing the objects

contained in the design. The entire collection of record types used to represent the design

together with the routines which operate on them can be viewed as an abstract data structure.

Pascal records are used to represent each type of object defined in GUIDE. In addition, a

number of record types are used to provide links between these GUIDE objects. Figure 9-7

shows a subset of the records used to define the user-defined picture portion of contexts.

A number of operations have been defined on the bulk of the objects. Almost every

record type representing a GUIDE object has routines to create instances of the object type, to

destroy instances and to update the fields of the instances. A few types have multiple update

routines with each handling a subset of the fields. This approach is used when the set of fields

naturally divides into unrelated subsets.

Additionally, routines exist implementing linkage operations. There are many routines to

add one object to another or to a list of objects and to remove an object from another or from a

list. Figure 9-8 shows some of the operations which can be performed on the records defined in

figure 9-7.

9.s:The Symbol Tables

GUIDE uses several symbol tables. The first, the internal table, contains almost every

dynamic record created in GUIDE, and is used for identifying objects when they are picked from

the screen. The second table, the input table, is used in the input process for designs. (See

section 9.7.) The third table is the declared symbol table. The table contains information about

all of the named objects in GUIDE. It also contains descriptions of the identifiers defined in the

application environment, as well as those built into Pascal and those defined in CORE and

GUIDE which are available to the designer for use in expressions. This table is used to check

types in expressions and for parameter matching.

All symbol tables in GUIDE are represented by hash tables. A generalized hash record is

used, which contains the name being hashed, the type of record hashed and a pointer to the

actual record being hashed. Pascal's variant record structure makes this organization

economical.

85

context = record
interna1 name:string;
a1ready ;ritten:boo1ean;
context_name:string;
context_code:integer; (*for generation*)
context_he1p:he1p.:...node_ptr;
context_prompt:prompt_node_ptr;
context_td:task_decision_ptr;
context_upic_c1asses:c1ass_to_context_ptr;
error_pos:point;
error_vport:1ocation_type;
containing_contro1s:context_contained_ptr;
next_context:context_ptr;
case is_param_context:boo1ean of

true:(param_tasks:param_task_1ist_ptr;
param_context_1ists:

param_context_contained_ptr)
end;

c1ass to_context = record
interna1 name:string;
a1ready_;ritten:boo1ean;
contained_c1ass:upic_c1ass_ptr;
containing_context:context_ptr;
next_ctc:c1ass_to_context_ptr

end;

upic_c1ass = record
interna1_name:string;
a1ready_written:boo1ean;
upic c1ass name:string;
c1ass_contained_in:c1ass_contained_ptr;
next_upic_c1ass:upic_class_ptr;
case static list:boolean of

end;

true:(upic_list:upic_ptr);
false:(upic_list_head:string;

get_next_upic:string;
draw_upic_in_class:string;
upic_type:ident_ptr)

class contained = record
internal_name:string;
already_written:boolean;
containing_context:context_ptr;
containing_ctc:c1ass_to_context_ptr;
contained_class:upic_class_ptr;
next_cc:c1ass_contained_ptr

~d; \

Figure 9-7: Records defining user-defined picture portion of contexts

86

upic = record
interna1 name:string;
a1ready_;ritten:boo1ean;
upic_name:string;
is_fixed,
is_permanent:boo1ean;
upic_border_type:integer;
upic_draw:fixed_action_ptr;
next_upic:upic_ptr;
upic_viewports:upic_to_vport_ptr;
containing_upic_c1ass:upic_c1ass_ptr

end;

upic_to_vport = record
interna1 name:string;
a1ready_;ritten:boo1ean;
containing_context:context_ptr;
upic_vport:vport_ptr;
containing_upic:upic_ptr;
next_utv:upic_to_vport_ptr

(* for free 1ist *)
end;

Figure 9-7, concluded

A common set of routines is used to add to, delete from and search in any of the tables.

Routines for each table invoke the common routines, making the common code transparent to

the routines which use the various hash tables.

9.6. Memory Management

Throughout GUIDE, many records are created and destroyed dynamically as the user

manipulates a design. In order to improve efficiency and avoid the pitfalls of actually releasing

memory, GUIDE maintains a free list of each type of dynamic record which appears in the

system. Individual NEW and DISPOSE routines for each type maintain the lists, creating new

records only when none of the appropriate type exist [Jones 82].

87

(****** modu1e c1ass2ctx ******)
procedure add_c1ass_to_context(upc:upic_c1ass_ptr;

c:context_ptr);extern;
procedure remove_class_from_context(upc:upic_c1ass_ptr;

c:context_ptr);extern;
procedure set_class_contained(upc:upic_class_ptr;

c:context_ptr;
ctc:c1ass_to_context_ptr);
extern;

(****** module contexts ******)
procedure create_context(var p:context_ptr);extern;
procedure destroy_context(var c:context_ptr);extern;
procedure update_context(var c:context_ptr;name:string;

td_list:task_decision_ptr;
class_list:class_to_context_ptr;
errpos:point;
errvp:location_type);extern;

procedure make_context_param(c:context_ptr);extern;
procedure make_context_nonparam(c:context_ptr);extern;
procedure make_context_current(var context~:context_ptr;

name:string);extern;
procedure set_context_pc1_contained(c:context_ptr;

ct1:context_to_list_ptr);
extern;

(****** module upics ******)
procedure position_upic(var up:upic_ptr;loc:1ocation_type;

in_context:context_ptr);extern;
procedure assign_upic_vport(v:vport_ptr;up:upic_ptr;

c:context_ptr);extern;
procedure create_upic(var up:upic_ptr);extern;
procedure destroy_upic(var up:upic_ptr);extern;
procedure update_upic(var up:upic_ptr;name:string;

fixed,pe:rm:boo1ean;border:integer;
draw:fixed_action_ptr);extern;

procedure remove_upic_from_vport(u:upic_ptr;
v:vport_ptr);extern;

procedure make_upic_current(var upicp:upic_ptr;
name:string);extern;

Figure 9-8: Operations on context records

88

(****** modu1e upicc1ass ******)
procedure create_upic_c1ass(var upc:upic_c1ass..J?tr);extern;
procedure destroy_upic_c1ass(var upc:upic_c1ass..J?tr);extern;
procedure add_upic_to_c1ass(up:upic..J?tr;

· upc:upic_c1aSS..J?tr);extern;
procedure remove_upic_from_c1ass(up:upic..J?tr;

upc:upic_c1ass..J?tr);extern;
procedure update_upic_c1ass(var upc:upic_c1ass..J?tr;

name:string;
c1ass_is_static:boo1ean;
c1ass_1ist_head,c1ass_get_next,
c1ass_draw:string;
c1ass_type:string);extern;

procedure make_upic_c1ass_current(var upic_c1assp:
upic_c1ass..J?tr;

name:string);extern;

Figure 9-8, concluded

9. 7. Reading and Writing Designs

There are two problems which arise in attempting to store the design which has been

constructed in GUIDE. The first is that the design contains a large number of pointers, which

will have no meaning if stored and read in. The second is that the graph formed by the design

is non-hierarchical and may, in fact, contain cycles.

Pointer values are generally represented as memory addresses. Each time a program is

run, it may be assigned a different memory area. There is no way of knowing where a particular

record is stored. Therefore, storing and retrieving pointer values will normally result in errors

when attempting to refer to the linked data structures.

When the data structures are linear, that is, each record points to and is pointed to by a

single record, this difficulty can be overcome by storing the records in their linked order. Then,

on input, it is known that each record should be made to point to the record which follows it in

the file. Even such structures as trees can be stored easily and retrieved by storing them in a

fixed order arn:l using some representation for an empty record or the end of a list.

The problem becomes serious when the data structures to be stored do not form a simple

hierarchy. If two records may point to the same record or if pointers may form a cycle in which it

is possible to return to a record, a method is needed to determine which records have already

been processed so as to avoid infinite recursion. Figure 9-9 shows a group of records in which

these problems occur. The data structures shown are a simplified version of those used to

represent menus in GUIDE.

89

menu_instance = record
menu_label:string;
display_type:orientation_type;
paging_allowed:boolean;
page_size:int~ger;
page message:string;
omitted_items_display:omission_type;
background_color:color_type;
maintain_history:boolean;

start_ite:m:menu_item_ptr;
next_menu:menu_instance_ptr

end;

menu_ite:m_1ist = record
inc1ude_ite:m:condition_ptr;
item_to_use:menu_item_ptr;
next_menu_item_1ist:menu_item_1ist_ptr

end;

menu item = record
item code:integer;
follow_list:menu_ite:m_1ist_ptr;
containing_menu:menu_instance_ptr;
text_string:string;
text co1or:co1or type;
next:menu_item:menu_item_ptr;

end; (* menu_item *)

Figure 9-9: Some sample data structures

The solution used in GUIDE is based on a marking technique more commonly used in

garbage collection [Knuth 73]. Each record is marked when it is stored and is stored only once.

Pointers are replaced in the output file by a string reference to the associated record. On input,

a symbol table of these strings is built and used to re-create the pointer references. The order

of output ensures that input can be completed in one pass. The marking technique is also used

for other traversals of the design data structure and its components.

9.7.1. Overview of the solution

The method for storing these data structures requires two additional fields in each record,

an internal name (internaLname:string) and a boolean to indicate whether the record has been

written yet (already_written:boolean). Figure 9-10 shows the sample data structures with these

additional fields.

90

menu_instance = record
interna1_name:string;
a1ready_written:boo1ean;
menu_1abe1:string;
disp1ay_type:orientation_type;
paging_a11owed:boo1ean;
page_size:integer;
page message:string;
omitted_items_disp1ay:omission_type;
background_co1or:co1or_type;
maintain_history:boo1ean;

start_item:menu_item_ptr;
next_menu:menu_instance_ptr

end;

menu_item_1ist = record
interna1_name:string;
a1ready_written:boo1ean;
inc1ude_item:condition_ptr;
item_to_use:menu_item_ptr;
next_menu_item_1ist:menu_item_1ist_ptr

end;

menu_item = record
interna1 name:string;
a1ready ;ritten:boo1ean;
item_code:integer;
fo11ow_1ist:menu_item_1ist_ptr;
containing_menu:menu_instance_ptr;
text_string:string;
text_co1or:co1or_type;
next_menu_item:menu_item_ptr;

end; (* menu item *)

Figure 9-1 O: Sample data structures with additional fields

On output, the already_written field controls recursion. When a record is reached which

has already been written, recursion terminates. Each pointer is replaced with the internal name

of the record to which it points.

On input, the internal name of each record is used as a key to a symbol table. After

reading a record, the symbol table is searched for the internal name of each pointer field. If it is

found, the pointer is made to point to the associated record. If not, that record is the next one to

be read from the file.

91

9.7.2. The Symbol Table

Each record to be output must have a unique internal name. It is a simple matter to

generate these when records are created. At least for the input phase, these names must be

stored in a symbol table. In GUIDE, they are stored in the input symbol table mentioned in

section 9.5. When the input process has been completed, this table can be cleared.

9. 7 .3. The Output Phase

The output section of the program is designed so that it is possible to save the same

design more than once in a session, whether into different versions of the same file or separate

files. Output is performed in two passes. Two procedures are needed for each record type,

one for each pass.

The first pass starts with the design record, and visits each record in the design

recursively, marking it as unwritten (i.e., already_written:=false). When a record is visited which

has already been marked, no recursive calls are made. The routines implementing this phase

for the sample structures shown above are in figure 9~11.

In the second pass, the records are visited in the same order. The fields, including the

internal name, of each record are written. Any time a pointer field is encountered, the

internal_ name of the record to which it points is written. If a pointer is. nil, a pre-determined

string (e.g., 'nil') is written. Th~ record is then marked as written, (i.e., the already_written field

becomes true). Then, each pointer field is examined, and the routine for writing the type of

record to which it points is invoked with the pointer value as parameter. When the pointer is nil

or the record has already been marked, the procedure terminates without doing anything.

Figure 9-12 shows the procedures for this phase.

It should be noted that the criterion for determining whether a record has been visited is

different in the two passes. In the first pass, a record has been visited if it has

already_written=false. In the second pass, it has already been visited if already_written=true.

In order to ensure that the first pass does, in fact, visit all records, all newly-created records

have already_written set to true.

92

procedure cle.ar_ menu_ instance (p :menu_ instance _ptr) ;
(* procedure to clear a record of type menu_instance *)

begin
if p<>nil

then with p" do
if already_written

then begin
already written:=false;
clear_menu_item(start_item);
clear_menu_instance(next_menu);

end;· (* with *)
end; (* clear_menu_instance *)

procedure clear_menu_item_list(p:menu_item_1ist_ptr);
(* procedure to clear a record of type menu_item_1ist *)

begin
if p<>ni1

then with p" do
if a1ready_written

then begin
already written:=false;
c1ear_condition(include_item);
c1ear_menu_item(item_to_use);
clear_menu_item_list(next_menu_item_list);

end; (* with *)
end; (* clear_menu_item_list *)

procedure clear_menu_item(p:menu_item_ptr);
(* procedure to clear a record of type menu_item *)

begin
if p<>nil

then with p" do
if already_written

then.begin
already written:=false;
c1ear_menu_item_list(follow_list);
clear_menu_instance(containing_menu);
clear_menu_item(next_menu_item);

end; (* with *)
end; (* c1ear_menu_item *)

Figure 9-11 : Clear routines for sample data structures

93

procedure write_menu_instance(var outfile:text;
p:menu_instance_ptr);

(* procedure to write out a record of type menu_instance *)

begin
if p<>nil

then with p"' do
if not already written

then begin -
writeln(outfile,internal name);
writeln(outfile,menu label);
write_orientation_type(outfile,display_type);
writeln(outfile,paging allowed);
writeln(outfile,page size);
writeln(outfile,page-message);
write_omission_type(eutfile,

omitted_items_display);
write color type(outfile,background color);
write1n(outfile,maintain history); -
if start item = nil -

then write_nil(outfile)
else writeln(outfile,

start_item"'.internal_name);
if next menu = nil

then-write_nil(outfile)
else writeln(outfile,

next_menu"'.internal_name);

(* set flag *)
already_written:=true;

(* now write subparts *)
write_menu_item(outfile,start_item);
write_menu_instance(outfile,next_menu);

end; (* with *)
end; (* write_menu_instance *)

Figure 9-12: Output routines for sample data structures

9.7.4. The Input Phase

The input section uses one procedure for each record type. Each procedure reads in the

fields of the record in the order in which they were written. The strings representing the pointer

fields are stored in local variables. After all data for this record has been read in, the record is

added to the symbol table.

The next step is repeated for each pointer field in the record. If the local variable for the

94

procedure write_menu_item_1ist(var outfi1e:text;
p:menu_item_1ist_ptr);

(* procedure to write out a record of type menu item_1ist *)

begin
if p<>ni1

then with p"' do
if not a1ready written

then begin -
write1n(outfi1e,interna1_name);
if inc1ude item = ni1

then write_ni1(outfi1e)
e1se write1n(outfi1e,

inc1ude_item"'.interna1_name);
if item_to_use = ni1

then write_ni1(outfi1e)
e1se write1n(outfi1e,

item_to_use"'.interna1_name);
if next_menu_item_1ist = ni1

then write_ni1(outfi1e)
e1se write1n(outfi1e,

next_menu_item_1ist"'.interna1_name);

(* set f1ag *)
a1ready_written:=true;

(* now write subparts *)
write_condition(outfi1e,inc1ude_item);
write_menu_item(outfi1e,item_to_use);
write menu item 1ist(outfi1e,

- - - next_menu_item_1ist);
end; (* with *)

end; (* write menu item 1ist *)

Figure 9-12, continued

95

procedure write_menu_item(var outfi1e:text;p:menu_item_ptr);
(* procedure to write out a record of type menu_item *)

begin
if p<>nil

then with p"" do
if not already_written

then begin
writeln(outfi1e,interna1 name);
writeln(outfile,item code);
if follow list = nil-

then w-;ite_nil(outfile)
else writeln(outfile,

fo1low_1ist"".internal_name);
if containing menu = nil

then write=nil(outfile)
else writeln(outfile,

containing menu"".internal name);
writeln(outfile,text_strTng); -
write_color_type(outfile,text_color);
if next menu item = nil

then-write nil(outfile)
else writeln(outfile,

next menu_item"".internal_name);

(* set £1ag *)
a1ready_written:=true;

(* now write subparts *)
write_menu_item_1ist(outfile,fo11ow_list);
write_menu_instance(outfile,containing_menu);
write_menu_item(outfile,next_menu_item);

end; (* with *)
end; (* write.:_menu_item *)

Figure 9-12, concluded

96

field is not the predetermined nil value, the symbol table is searched for the variable value. If it

is found, then the desired record has already been read in and the pointer is set to point to the

record. If it is not found, the procedure to read in a record of the appropriate type is invoked.

As long as input starts with the same record as output, the data will be requested in

exactly the same order as it was written out. The procedures for input of the sample data

structures are shown in figure 9-13.
procedure read_menu_instance(var infi1e:text;

var p:menu_instance_ptr);
(* procedure to read out a record of type :menu_instance *)
var hp:hash_ptr;

int_na:me:string;
start_item_na:me:string;
next_:menu_na:me:string;

begin
new_mi (p);
with p"' do
begin

read1n(infi1e,int name);
read1n(infi1e,men~ 1abe1);
read_orientation_tyPe(infi1e,disp1ay_type);
read_boo1ean(infi1e,paging_a11owed);
read1n(infi1e,page size);
rea.d1n (infi1e,page:message);
read_omission_type(infi1e,omitted_items_disp1ay);
read_co1or....:.type(infi1e,background_co1or);
read_boo1ean(infi1e,maintain_history);
read1n(infi1e,start item name);
read1n(infi1e,next_menu_name);

(* add to symbo1 tab1e *)
add_mi_to_input(p,int_na:me);

(* now read sub-structures *)
if is_ni1_string(start_item_name)

then start item:=ni1
e1se begin

search_input(start_item_na:me,hp);
if hp=ni1

end;

then read menu item(infi1e,start item)
e1se if hp"'.hashed_rec =:menu_it~_rec

then start_item:=hp"'.hashed_menu_item
e1se set error(l,'name is wrong type',

- 'read_:menu_instance');

Figure 9-13: Input routines for sample data structures

97

if is_nil_string(next_menu_name)
then next menu:=nil
else begin

search_input(next_menu_name,hp);
if hp=nil

end;

then read menu instance(infile,next menu)
else if hpA.hashed_rec =mi_rec -

then next_menu:=hpA.hashed_mi
else set_error(l,'name is wrong type',

'read_menu_instance');

end; (* with *)
end; (* read_menu_instance *)

procedure read_menu_item_list(var infile:text;
var p:menu_item_list_ptr);

(* procedure to read out a record of type menu_item_list *)

var hp:hash_ptr;
int_name:string;

include item name:string;
item_to:use_name:string;
next_menu_item_list_name:string;

begin
new_mil (p) i
with pA do
begin

readln(infile,int_name);
readln(infile,include item name);
readln(infile,item to-use name);
readln(infile,next:menu_item_list_name);

(* add to symbol table *)
add_mil_to_input(p,int_name);

(* now read sub-structures *)
if is_nil_string(include_item_name)

then include item:=nil
else begin

search_input(include_item_name,hp);
if hp=nil

end;

then read condition(infile,include item)
else if hpA.hashed_rec ~condition_;ec

then include_item:=hpA.hashed_condition
else set error(l,'name is wrong type',

- 'read_menu_item_list');

Figure 9-13, continued

98

if is nil string(item to use name)
then item to use: =ii°il - -
else begin

search_input(item_to_use_name,hp);
if hp=nil

end;

then read menu item(infile,item to use)
else if hpA.hashed_rec =menu_item_rec

then item_to_use:=hpA.hashed_menu_item
else set error(l,'name is wrong type',

- 'read_menu_item_list');

if is_nil_string(next_menu_item_list_name)
then next_menu_item_list:=nil
else begin

search_input(next_menu_item_list_name,hp);
if hp=nil

end;

then read_menu_item_list(infile,
next menu_item_list)

else if hpA.hashed_rec =mil_rec
then next_menu_item_list:=hpA.hashed_mil
else set error(l,'name is wrong type',

- 'read_menu_item_list') ;·

end; (* with *)
end; (* read menu_item_list *)

procedure read_menu_item(var infile:text;var p:menu_item_ptr);
(* procedure to read out a record of type menu item *)

var hp:hash_ptr;
int_name:string;

follow_list_name:string;
containing_menu_name:string;
next_menu_item_name:string;

begin
new_menu_item(p);
with pA do
begin

readln(infile,int_name);
readln(infile,item_code);
readln(infile,follow_list_name);
readln(infile,containing_menu_name);
readln(infile,text string);
read_color_type(infile,predef_text_color);
readln(infile,next_menu_item_name);

Figure 9-13, continued

99

(* add to symbo1 tab1e *)
add_menu_item_to_input(p,int_name);

(* now read sub-structures *)
if is ni1 string(fo11ow 1ist name)

th;n fo11ow 1ist:=nil -
e1se begin -

search_input(fo11ow_1ist_name,hp);
if hp=ni1

then read menu item 1ist(infi1e,fo11ow 1ist)
e1se if hp""'.hashed_i'ec =mi1_rec -

then fo11ow_1ist:=hp""'.hashed_mi1
e1se set error(l,'name is wrong type',

- 'read_menu_item');
end;

if is_ni1_string(containing_menu_name)
then containing menu:=ni1
e1se begin -

search_input(containing_menu_name,hp);
if hp=ni1

end;

then read menu instance(infi1e,containing menu)
e1se if hp""'.hashed_rec =mi_rec -

then containing_menu:=hp""'.hashed_mi
e1se set error(l,'name is wrong type',

- 'read_menu_item');

if is_nil_string(next_menu_item....;..name)
then next_menu_item:=nil
e1se begin

search_input(next_menu_item_name,hp);
if hp=nil

end;

then read menu item(infi1e,next menu item)
e1se if hp""'.hashed_rec =menu_it"9m_rec

then next_menu_item:=hp""'.hashed_menu_item
else set error(l,'name is wrong type',

- 'read_menu_item');

end; (* with *)
end; (* read menu item *)

Figure 9-13, concluded

100

9.7.5. Problems

In GUIDE, the internal names of the records have significance other than just for

input/output of the data structures. Also, it is possible to read in data structures while some

·already exist (e.g., to merge two structures). In this case, some names may be repeated.

The solution GUIDE uses for these problems is to use the stored internal names only for

reading in the data and then, as part of the input process, to assign new internal names to the

records being read. Two different symbol tables are used, one for input only and one for the

names actually in use when the input begins. All the nodes in the input table can be released

as soon as the input is completed. Since the stored internal name for each record is needed

only long enough to store the record in the symbol table, it is stored in a local variable.

Another problem which occurs is that some nodes may not be part of the design data

structure. This happens because the designer may create an object and then choose not to

add it to the design or may end a session without completing his design. This problem is solved

by using the symbol table of all records which is maintained by GUIDE. After traversing the

design data structure, on each output pass, we traverse the symbol table, looking for records

which have not been appropriately marked. In the first pass, we mark them as unwritten. In the

second pass, we write them out, preceded by a string identifying the record type. As in the

design data structure, we follow all pointers and write out the associated records. Only those

records written directly from the symbol table need to be preceded by their types.

In the input phase, after the design data structure has been read in, we check to see

whether anything remains in the file. If so, there are records not contained in the design data

structure. The type is read and used to determine which input procedure to invoke, continuing

in this manner until the end of the file.

9.8. Copying Data Structures

In order to simplify the process of creating a design, it is desirable to be able to copy a

structure which the designer has already created. However, the meaning of "copying" a

structure varies depending both on the structure to be copied and whether the structure is being

copied alone or as part of a larger structure. For example, copying a condition alone suggests

making a duplicate of the condition record with the same expression, whereas, copying a

condition as part of a decision suggests making a reference to the existing condition record.

101

Problems also arise because the data structures contain a number of records whose sole

function is linkage among the records which actually contain the design data. When copying a

structure, clearly it is necessary to make the new copies of such records refer to the new copies

of the actual data structures rather than the original structures being copied.

A solution to these problems has been worked out, providing an "intelligent" copy facility

for all of the records contained in GUIDE. For any record field, there are four possible actions

which can be taken when copying the record, depending upon the circumstances of the copy

and the type of the field. First, a field· value can be duplicated. This is done with most scalar

fields. Second, a pointer reference can be copied, making the new record refer to the same

record as the original. Third, a structure which is referenced by pointer can be copied via this

facility. Last, an entirely new value can be inserted. This is done, for example, with the

internaLname fields discussed in section 9.7. In some cases, the new value to be inserted is

passed as a parameter to the copy routine. This allows, for example, for a tool being copied as

part of a task copy operation to point to the new task copy as its containing_task.

The copying of menu structures is particularly complicated due to the generality of the

data structures used. The algorithm for copying a menu instance borrows from the input/output

method discussed in section 9.7. The menu data structure is written to a temporary file and

read back in. Reading the structure in has the side effect of creating a duplicate data structure.

The output routines are sufficiently modified to take into account the distinctions among the

different kinds of fields, and allow those changes necessary to make a usable copy.

9.9. Tool/Logical Device Mappings

One of the problems which arises in a UIMS is mapping tools onto logical input devices.

In particular, many tools may use the same logical device. Even within a single context, more

than one tool may use some device. For example, a context may contain several keyboard

tools, all of which use the same keyboard. So, a method is needed to determine which tool is

intended when a device is used.

The first thing to note is that there is no problem when the device used is a pick device.

The location of the pick determines which tool is intended. This observation is used in the

solution for other devices. The user is required to pick the intended tool prior to using it.

A current tool is maintained for each physical device. When the user picks a point, the

window manger determines what viewport it is in. If the viewport is that of a non-pick-based

102

tool, that tool becomes the current tool for the device on which it is based. Otherwise, the pick

is processed as an input to the appropriate tool. When a device other than a pick is used, its

current tool is looked up and the input is processed by that tool.

It is felt that the small amount of work necess-ary to make the appropriate tool current is

far outweighed by the convenience of being able to include multiple tools based on the same

device in a context.

9.10. The parser

The parser which is used by GUIDE to check expressions is based on a parser generator

system of Gallier [Schimpf 81, Gallier 85]. The generator produces tables for an LR(1) parser.

The kernel of this system was modified to allow the use of multiple sets of parse tables and to

allow the parser to be invoked from other programs.

The parser is used by GUIDE for three distinct tasks:

• reading in the application environment to set up the symbol table;
-

•checking expressions entered as conditions or parameters for syntactic ancttype

correctness;

• checking restore list expressions for syntactic and type correctness.

Each of the three requires a different grammar and therefore a different set of parse

tables. Semantic routines had to be added for each case to perform the appropriate actions on

the GUIDE data structures.

The original parser was a stand-alone program which took an input file and parsed it.

Since it was necessary to be able to call the parser repeatedly and to continue processing after

parsing, the program was modified to allow its use as a set of procedures.

CHAPTER X

Conclusions

This chapter discusses experience with GUIDE. Included are problems which have

arisen and ways in which the system's behavior was different from that which was expected. It

also describes some of the future directions which could be taken with GUIDE. Some of the

future directions mentioned are improvements to the implementation while others are

modifications of the design of GUIDE, possibly requiring further research.

10.1. Unavailable Features

There are a number of features included in GUIDE's design which have not yet been

implemented. In addition, a number of features were implemented, but are not accessible from

.the prototype interface. The next two sections briefly describe each of these features.

10.1.1. Features not yet implemented

The following are part of the design of GUIDE, but have not been included in the initial

implementation.

•Journal file - No facility for creating a record of a GUIDE user's session has been

included.

• Undo - Since this command is expected to be based on the journal file, it has not

been included. When it is implemented, it shou.ld be added as a task-

consequence.

• Abort - This command also has not been implemented. Inclusion of an abort

facility, which would halt the current parameter input process without calling the

specified action routine, seems to require the addition of a single global variable to

the GUIDE-generated interface. This variable, whichwould be set to true when the

abort task is used, would control continuation of the parameter context list and the

call to the action. Like "undo", "abort" is a task-consequence.

• Variations on Tools - Thus far, a single configuration has been implemented for

each tool type. For lists, menus and forms, only vertical orientation has been

103

104

provided. Horizontal potentiometers have been implemented. Where possible, the

prototype interface defaults to these characteristics.

Among the other tool features not yet implemented are the use of icons, generation

of lists, hierarchical lists, generation of menu items, command-parser type menus

and different cursor types for picks and locators.

•Re-reading the environment file - No provision has been made to allow GUIDE to

re-read the application environment file in the course of a session to allow re

checking of procedure headers. This feature will not be useful until access to the

editor from GUIDE is provided (see section 10.1.2).

10.1.2. Inaccessible Features

The following features have been implemented, but are not accessible from the GUIDE

interface. In most cases, appropriate commands need to be added to the interface.

•Copying data structures - Routines to copy all GUIDE data structures in the manner

described in section 9.8 exist. However, the prototype interface contains no

commands providing access to these routines.

• Help - Due to a problem in accessing help libraries from Pascal, help has not been

integrated with VMS Help. Therefore, the help task-consequence has not been

included in the interface. However, the designer is able to create and modify help

messages and to include the help task-consequence in the application interface.

Therefore, when help is fully integrated either with VMS Help or with an alternative

system, applications should be able to provide help immediately.

•Designer-defined Tool Routines - The prototype interface does not provide the

capability for a designer to specify the draw, echo and process routines for a tool.

• Naming of Expressions and Conditions - No provision has been made in the

interface for specifying names for expressions and conditions.

• Invocation of the Editor - No provision is made in the interface for invoking the

editor as a sub-process.

105

10.2. Problems with defaults

Providing defaults at the task level has entailed several unforeseen problems. The first

problem which arose was the interaction between computation of defaults and the stacking of

contexts. The original algorithm called for each task's default value to be computed at the start

of any context containing that task. However, if a context is stacked and later popped, it is

undesirable to recompute the default value when re-entering the original context, since the task

value may have been changed by the contexts which were visited in the interim. Note that this

case is different than the case of a context which is entered, exited without stacking and later

entered again. In this latter case, the default must be recomputed.

It was, therefore, necessary to find a method of determining, upon entry to a context,

whether the context is being drawn for the first time of this use or whether it is simply being

re-drawn. Since it is also undesirable to recompute defaults when the same context is used

repeatedly, this algorithm also distinguishes between entry to a new context and re-entry to the

context just used.

This algorithm has some undesirable consequences in the prototype GUIDE interface.

The form which is used for the design itself uses default values drawn from the current design.

This form is drawn in the main GUIDE context and therefore has its defaults computed soon

after entry to GUIDE. If the designer then reads in a design, the current design is updated.

However, the design form is not modified since the defaults are computed only the first time the

context is drawn. This problem has not been resolved.

A second problem with the default computation algorithm arises when a form is given a

default. In this case, it is possible that the termination task for the form will appear even if the

values in some fields are not appropriate.

10.3. Conversion Routines

In the interface to GUIDE, the conversion routines from tools to tasks acquired more

importance than was expected. Rather than just performing a type conversion, many of these

routines actually create new records and fill in some values. This is due primarily to the use of

keyboard tools for specifying objects which are referenced by pointers. For example, when a

designer wants to create or edit a tool, he must enter the tool name. This name is then looked

up in the symbol table. If a tool with that name exists, the task is assigned a pointer to. it. If no

such tool exists, it must be created for the task to have a usable value.

106

A second area in which conversions have taken on more importance than anticipated is in

the conversion of form tools to their respective tasks. Again, these task values are generally

pointers and the conversion routines must create a record, if necessary, and then assign the

contained values to the respective fields of the record.

10.4. Experience with GUIDE

To date, GUIDE has been used to provide interfaces for GUIDE and for the layout

system. The interface to GUIDE was generated using GUIDE as a subroutine package. The

program which builds the necessary data structure and generates the interface is approximately

4,400 lines, most of them calls to GUIDE routines. The interface main program generated by

GUIDE for itself is about 25,000 lines.

The interface for the layout system was designed interactively using the above interface.

It took about 4 hours of real time to build the design. The resulting program is about 1,700

lines.

10.5. Future Directions

10.5.1. Expression Functions

One way in which GUIDE's efficiency could be improved is to optimize generation of

expression functions. That is, prior to generating the functions, the list of expressions should be

analyzed and a single function generated for those expressions which are identical. Care must

be taken not to modify the design data structure in this process as it may be changed and

expressions which were identical in one version may not be in a later version.

10.5.2. Tool Process Routines

GUIDE currently generates a routine for each tool instance which invokes the appropriate

echo and process routines for the tool based on its type. It would be more economical to use

one routine for each tool type and have the particular tool instance as a parameter. At such

time as designer-specified routines are permitted for echoing and processing, any tools which

have such routines specified would require distinct routines to make those calls.

107

10.5.3. Additional use of conditions

One way in which GUIDE's generality can be increased is to allow the designer to specify

conditions regulating the inclusion of tools in tasks. In this way, the set of tools in any given

task may vary according to the user and the state of the system. This would allow the designer

to make some judgments about which tools are appropriate in certain situations and about

whether certain tools are useful to some users.

Along the same lines, conditions could be added to user-defined pictures, determining

their inclusion in their associated classes. In this way, the designer could restrict the view of the

application as he sees fit.

10.5.4. Changes to Default Task Values

Experience with GUIDE has shown that allowing a single default value for each task

leads to creation of a very large number of tasks. Several modifications would improve this

situation. First, defaults for tasks could be specified with respect to contexts and forms. That is,

a designer could indicate that a specific task is to have a certain default value in a specific

context or in all appearances of a specified form. This is similar Ato the way in which locations

for tools are specified.

Another way in which defaults could be modified is to add conditions to defaults so that

the designer can specify the circumstances under which a task is to receive some default value.

It is unclear whether one of the above changes is sufficient to solve the problems with

defaulting or whether it would be desirable to implement both.

10.5.5. Default Device Selection

When only one tool in a context uses a particular logical device, the current tool for that

device should be set to that tool automatically upon entry to the context.

It would also be possible to allow the designer to specify an initial tool for each device for

each context. This would allow the user to use a more common tool without the necessity of

picking it first.

108

10.5.6. Device Specification

Currently, the tools are implemented for use with one particular set of graphics devices. It

would be desirable to add specification of the display type to GUIDE and have the tools be

drawn according to the type of display in use. This would be particularly useful when no

graphics display is available and users must work with a video display terminal only.

10.5.7. Use of a database

·The code which manipulates the GUIDE data structures is extremely redundant due to

the restrictions of Pascal. It would be very useful to use a data base management system to

handle this part of GUIDE and then to re-write the remaining code to make calls to the DBMS.

This would also provide an opportunity to test the simultaneous use of a DBMS and a UIMS. It

is unknown whether a DBMS can provide efficient enough access to the data to give reasonable

response time in GUIDE.

10.5.8. Maintaining Session Status in the User Profile

The user profile can be made more useful by including in it information about the status of

the user from session to session. The ability to store session status would increase the power

of default task values, particularly if conditions were added as suggested in section 10.5.4. It

also would allow decisions to be based on previous activity by the user, not just that in the

current session.

While this can be done at present in a roundabout way, a modification of the user profile

would make inclusion of session status a simple matter transparent to the application user. At

present, any modifications to user profile field values come from the tasks with which they are

associated. For the profile to be updated, therefore, the form containing these tasks must be

drawn, and used by the application user.

To include session status, we .need to introduce a new type of profile field, one which

takes its value directly from an expression. Then, the designer can indicate that these fields are

to be evaluated and the profile stored prior to ending an application session.

APPENDIX A

Entities built into GUIDE

This appendix contains the declarations of objects built into GUIDE for use by the

designer.
module builtins;

type text = file 0£ char;
tool_types = (no_tool,form_tool,list_tool,menu_tool,

pwl_tool,pot_tool,windcont_tool,
keyboard_tool,pick_tool,vwb_tool,
lwb_tool,button_tool);

string=varying[32] 0£ char;
long_string=varying[255] 0£ char;

point = record
x,y:real

end;

viewp_dim = (top,bottom,rightdim,1~£tdim);
real_dim_array = array[viewp_dim] 0£ real;
boolean dim array = array[viewp dim] of boolean;
integer=dim=array = array[viewp=dim] 0£ integer;

location_type = array[viewp_dim] 0£ real;·

adjustment= (shrink,expand,shift,lock,extend);

orientation_type = (horizontal,vertical,random);

termination_type = (implied,explicit);

color_type = array[l .. 3] of real;

list_item_types = (textstring,list_icon);

two_d_pos = array[l .. 4] of real;

omission_type = (halftone,leave_space,omit);

109

110

menu_item_types = (predef_text,icon_item,gen_text);

potentiometer_types = (round_pot,horiz_pot,vert_pot);

help_types = (tool_help,task_help,context_help);

window_params = record
xtremes:location type;
window_used:location_type

end;

(* the following declaration will allow the user
to create a user profile
without getting errors regarding task type *)

user_profile_type ~ record
dummy_up_field:integer;

(* to placate parser *)
end; (* user_profile_type *)

function ord(i:scalartype) :integer;extern;
function pred(i:scalartype) :scalartype;extern;
function succ(i:scalartype):scalartype;extern;
function chr(i:integer) :char;extern;
function odd.(i:integer) :boolean;extern;
function abs(a:scalartype) :scalartype;extern;
function sqr(a:scalartype) :scalartype;extern;
function trunc(a:real) :integer;extern;
function round(a:real) :integer;extern;
function sqrt(a:real) :real;extern;
function arctan(a:real) :real;extern;
function cos(a:real) :real;extern;
function sin(a:real) :real;extern;
function exp(a:real) :real;extern;
function ln(a:real) :real;extern;

(****************** TOOLKIT ROUTINES *****************)
procedure draw_form;extern;
procedure echo_form;extern;
procedure process form;extern;
procedure draw_list;extern;
procedure echo_list;extern;
procedure process_list;extern;
procedure draw_menu;extern;
procedure echo_menu;extern;
procedure process_menu;extern;
procedure draw window controller;extern;
·procedure echo -window - controller; extern;
procedure process_window_controller;extern;
procedure draw_pick_with_locator;extern;
procedure echo_pick_with_locator;extern;
procedure process_pick_with_locator;extern;

111

procedure draw_potentiometer;extern;
procedure echo_potentiometer;extern;
procedure process_potentiometer;extern;
procedure draw_pick;extern;
procedure echo_pick;extern;
procedure process_pick;extern;
procedure draw_valuator_with_button;extern;
procedure echo_valuator_with_button;extern;
procedure process_valuator_with_button;extern;
procedure draw_locator_with_button;extern;
procedure echo_locator_with_button;extern;
procedure process_locator_with_button;extern;
procedure draw_button;extern;
procedure echo_button;extern;
procedure process_button;extern;
procedure draw_keyboard;extern;
procedure echo_keyboard;extern;
procedure process_keyboard;extern;

(******************* HELP ROUTINES ************************)
(****** module get_helps ******)
procedure get help(htype:help types;obj code:integer);extern;
procedure get:tool_help(object:integer)7extern;
procedure get_task_help(object:integer);extern;
procedure get_context_help(object:integer);extern;

(****** module dummy ******)
procedure dummy_routine(seg:string;pickid:integer;

obj:integer);extern;

(****** module pass along data ******)
procedure pass_along_string(instring:string;

var outstring:string);extern;

(****** module set help mode ******)
procedure set_help:mode(inst:string;var outst:string);extern;

(**************** FOR WINDOW CONTROLLER TASK ***************)
(****** module window_conversions ******)
procedure convert_windcont_to_task(wc_vport,

wc_extremes:location_type;
var wp:window_params);
extern;

procedure pass_locs_:.to_windcont(wp:window_params;
var wc vport,
wc_exti'emes:location_type);
extern;

112

(******** routines for user profi1es ***********************)
(* note that these are not the correct

headers for these routines. The actua1
headers must be generated by guide. These
wi11 prevent the user from
getting errors when he creates a user
profi1e whi1e using guide. *)

procedure convert_to_profi1e_task;extern;
procedure convert_to_profi1e_too1;extern;
end.

APPENDIX B

The Layout System - An Example

This appendix shows a complete example of the use of GUIDE. The example chosen is

the layout system from Foley and van Dam [Foley 82). The first section contains the

environment file which specifies the data structures, procedures and functions of the layout

system. The second section traces through the creation of a design using GUIDE, and shows

the result.

8.1. Environment File for the Layout System

This appendix contains the enviroment file provided to GUIDE for the layout system.

[inherit ('guidedir:co:mmonenv.pen'),
environment ('layoutenv.pex')]

module layout_environment;

type
symbol_type = (window,door,desk,chair,partition,divider,

bookcase,floorplant);

symbol_ptr = Asymbol;
symbol = record

symb_type:symbol_type;
movable:boolean;
symb_size:point;

end;

symbols = array[symbol_type] of symbol_ptr;
(* represents symbol descriptions *)

symbol_file = file of symbol;

symbol_posn_ptr = Asymbol_posn;
symbol_posn = record

symb_name:string; (* for segment name *)
symb:symbol_ptr;
position:point;
orientation:real;
next_symbol_posn:symbol_posn_ptr

end;

113

var

114

room = record
title:string;
room size:point;
contains:symbol_posn_ptr;

end;

user_type=(architect,designer);

symbol_iist:[external]symbols;
cur_room:[external]room;
next_unique_number:[external]integer;
start_window_params:[external]window_params;

(* now external declaration for routines *)
(****** module add symbol ******)
procedure add symbol(var r:room;stype:symbol type;pos:point; - -orient:real);extern;

(****** module delete_symbol ******)
procedure delete_symbol(var r:room;symname:string);extern;

(****** module draw room ******)
procedure draw_room(r:room;room_window:location_type);extern;

(****** module draw_symbols ******)
procedure draw_window(sname:string;orientation:real);extern;
procedure draw_door(sname:string;orientation:real);extern;
procedure draw_desk(sname:string;orientation:real);extern;
procedure draw_chair(sname:string;orientation:real);extern;
procedure draw_partition(sname:string;

orientation:real);extern;
procedure draw divider(sname:string;orientation:real);extern;
procedure draw=bookcase(sname:string;orientation:real);extern;
procedure draw_floorplant(sname:string;

orientation:real);extern;

(****** module draw.:.._title ******)
procedure draw_title(r:room);extern;

(****** module equal_names ******)
function EqNms(sl,s2:string) :boolean;extern;

(****** module initialize_layout ******)
procedure initialize_layout;extern;

(****** module make_unique_name ******)
procedure make_unique_name(var name:string);extern;

(****** module new title ******)
procedure new title(var r:room;titl:string);extern;

115

(****** modu1e read_symbo1_data ******)
procedure read_symbo1_data (var symf.i1e: symbo1_fi1e;

var symbo1_1ist:symbo1s);extern;

(****** modu1e room ******)
procedure update_room(var r:room;rname:string;

rsize:point);extern;
procedure make_room_record(tit1e:string;width,1ength:real;

var r:room);extern;
procedure update_room_size(var r:room;

width,1ength:rea1);extern;

(****** modu1e rotate ******)
procedure rotate(ang1e:rea1;x,y:rea1);extern;

(******* CONVERSION ROUTINES ***********)

(****** modu1e convert enumerated ******)
procedure convert symbo1 to string(symb:symbo1 type;

- - - var st:stri~g);extern;
procedure convert_string_to_symbo1(inst:string;

var symb:symbo1_type);extern;

(****** modu1e convert_picks ******)
procedu~e conve~_pick_to_symbo1_name(segname:string;

pickid:integer;
var sname:string);extern;

(****** modu1e pass_a1ong_data ******)
procedure pass_a1ong_string(instring:string;

var outstring:string);extern;
procedure pass_a1ong_1ong_string(instring:1ong_string;

var outstring:1ong_string);extern;
procedure chop_1ong_string(instring:1ong_string;

var outstring:string);extern;
procedure convert_rea1_to_string(inrea1:rea1;

var outst:1ong_string);extern;
procedure check_rea1(instring:string;

var outreal:rea1);extern;
procedure pass_a1ong_rea1(inrea1:rea1;

var outrea1:rea1);extern;
procedure convert rea1 to doub1e(inreal:rea1;

- - - var outdoub:double);extern;
procedure convert_double_to_rea1(indoub:double;

procedure

procedure

end.

var outreal:rea1);extern;
pass_a1ong_point(inx,iny:doub1e;

var outpt:point);extern;
return coords(inpt:point; ·

- var outx,outy:doub1e);extern;

116

8.2. Using GUIDE to create a design

This section traces through the creation of a design for the layout system using GUIDE,

and shows what the resulting interface looks like. It should be noted that many of the

operations can be performed in different orders, that is, the organization shown below is one of

many possibilities.

Prior to beginning with GUIDE, it is a good idea to determine exactly what is going into

the design. In the case of the layout system, we want to implement a set of commands

operating on a data structure representing a room. The data structures for the room and the

routines which operate upon the structures are shown in Appendix B.1.

The commands which we want to implement are: add symbol, remove symbol, change

title, change room size and change the window into the world. We note immediately that

changing the window into the world can be implemented by the window controller tooL The

other four commands will go into a menu. We also notice that removing a symbol has meaning

only if the room contains any symbols. Therefore, we will include that command in the menu

only if room contents are not empty.

Each of the commands in the menu will be associated with a routine which operates on

the room. We must determine what the parameters for each routine are and decide what kinds

of tools to use to determine their values.

The "add symbol" command will cause the "add_symbol" routine to be invoked. This

routine takes four parameters: a room, a symbol_type, a point and a real number representing

the orientation. The application designer has already determined that operations should take

place on a "current room", called cur_room, so the user of the layout system does not need to

specify a value for that parameter. For the symbol_type, a list of possible types seems to be an

ideal representation. The point at which to position the new symbol should be picked by the

user from the current room. A potentiometer seems an appropriate way to select an orientaticn.

We also need the "exit task" to allow the user to indicate that all values are correct and the

action should be invoked. Therefore, for the "add symbol" command, we will need a parameter

context which contains:
•a task to select the symbol type (using a list tool);

• a task to choose the position (using a locator with button tool);

• a task to enter the orientation (using a potentiometer tool);

•a drawing of the current room;

117

• a drawing of the title of the room;

• a window controller to allow the user to move around in the room;

• the exit task.

The "remove symbol" command will cause the "delete_symbol" routine to be invoked.

This routine takes two parameters: a room and the name of a symbol. Again, the room will be

the "current room", so we need only to allow the user to specify the symbol to be removed. This

should be done with a pick tool. To allow the user to pick a symbol from the room, we will need

a drawing of the room and a window controller to allow the user to move around in case the

symbol to be deleted is not in the current window into the room. For the "remove symbol"

command, we need a parameter context containing:

• a task to pick a symbol (using a pick tool);

• a drawing of the current room;

•a drawing of the room title;

• a window controller;

• the exit task.

The "change title" command invokes the "update_room" routine. This routine takes three

parameters: a room, a string for the new title and a point for the new room size. Again, we use

the "current room" for the room parameter. Since the size of the room is not changing, we will

specify the size field of the current room for the point parameter. (The ability to use application

variables in expressions is necessary here.) The only task needed to get parameter values is

one which reads in the new title. Clearly, a keyboard tool is called for. For uniformity with the

rest of the system, we will also include the window controller, and drawings of the room and

title. So, the parameter context for the "change title" command will contain:

•a task to read in the new title (using a keyboard tool);

• a window controller;

•a drawing of the room;

• a drawing of the title;

• the exit task.

The "change room size" will invoke the "update_room_size" routine. This routine requires

a room and two reals representing the width and length. Keyboard tools seem appropriate for

the width and length entry. As before, we want to include drawings of the room and title and a

window controller. The parameter context for the "update_roorn_size" routine will contain:

•a task to read the new width (using a keyboard tool);

118

• a task to read the new length (using a keyboard tool);

• a drawing of the room;

• a drawing of the title;

• a window controller;

• the exit task.

The main context for the layout system will allow the user access to any of the five

commands plus a view of the current state of the room. It must contain:

•a task to choose a command (using a menu);

• a window controller (for the change window command);

•a drawing of the current room;

• a drawing of the title of the room;

• the exit task (to leave the system).

Prior to entering the main context, the user should be able to initialize the room by

providing a title and dimensions for the room. A form containing tasks for the title, width and

length will do this. This form can contain the tasks described above for these functions. The

only other thing needed in this form is a button tool to indicate completion of the form. The start

context for the layout system contains:

• a task containing a form to initialize the system

At this point, we can summarize the tasks and user-defined picture classes needed for

the layout system. Ten tasks are needed:

1. choose_command containing the menu;

2. get_title containing a keyboard to read the title;

3. get_width containing a keyboard to read the width;

4. get_length containing a keyboard to read the length;

5. start_layout containing a form for the title, width and length;

6. donetask containing a button to indicate completion of the start_layout form;

7. choose_symbol containing a list of symbols;

8. choose_location containing a locator with button;

9. choose_angle containing a potentiometer;

1 o. pick_symbol containing a pick tool.

In addition, two tasks built into GUIDE will be used, "exit" and "set_window__parameters",

the latter containing the window controller.

119

Two user-defined picture classes must be defined:
1. room_class containing a user-defined picture for drawing the room;

2. title_class containing a user-defined picture for drawing the title.

The layout system will contain six contexts:
1. start_context - to read in initial data;

2. main_context - containing the main menu;

3. add_context - to get parameters for "add_symbol":

4. del_context - to get parameters for "delete_symbol";

5. chg_context - to get parameters for "update_room":

6. size_context - to get parameters for "update_room_size".

We are now ready to begin using GUIDE. When GUIDE is started, it presents a form

(figure B-1) requesting the name of the enviroment file, both the compiled and Pascal versions,

the name of the application and whether or not this is a new design. We choose each field in

tum, entering the appropriate values and indicating that this is a new design. When we are

satisfied with the values that have been entered, we choose the "done" field. GUIDE then reads

in the environment, creating a symbol table and, since we have indicated a new design, reads in

the tool and task kits.

We are now presented with the main GUIDE context (figure B-2). We choose to start by

creating the various tasks needed, beginning with the "choose_command" task. Therefore, we

choose the "create/edit task" item in the main menu. A parameter context requests the name of

the task to be edited.

This brings us to a task creation context (figure 8-3). In this context, we first fill in the

form, for now entering only the type ("string") of the task and leaving the default task name

which has been provided. Before we can do any more at the task level, we must create the

appropriate tool, in this case a menu. Therefore, we choose the "create/edit tool" command.

After specifying the name pf the tool ("layout_menu"), we enter a tool creation context

(figure 8-4). Again, the first order of business is to fill out the form provided. The name has

again defaulted appropriately and, for now, we will omit helps and prompts, leaving only the tool

type to be specified. We pick the "menu" item from the list of types, and choose "done" causing

the form to be processed. When this is completed, the tool now contains an instance type.

Therefore, the menu has been updated (figure 8-5) to include the "create/edit instance" item.

We select this item to allow us to create the menu itself.

I E)UT

1.20

ENTER START-UP INFORMATION
~-·

ENVIRONMENT FILE FILE NAME

PASCAL ENVIRONMENT FILE FILE NAME

- ..
DESIGN NAME ENTER IDENTIFIER

BOOLEAN

TRUE
START NEW DESIGN?

FALSE

Figure B-1: Start context for GUIDE

We now enter the menu creation context (figure 8-6). We fill in the form describing the

menu. Everything except the background color defaults to appropriate values. We fill in the

color by selecting each component in turn and typing the appropriate real value.

121

I E>n T

COMMANDS

iDESIGN NAME ENTER IDENTIFIER

.,.i:,,, •.•...
' .::·r· .. START ROUTINE ENTER NAME WITH PAR AMS

CREATE/EDIT CO~T,XT

HAKE CONTROL PA!~

~ND ROUTINE ENTER NAME WITH PARAMS

START CONTEXT CONTEXT NAME

V:'>ER IF T CTW<:E

1--~~~~~~~~~

u;;;s~:~; f iCTUl'.~E
1--~~~~~~~~~

USEF!'; f'1~'0F ILE
DONE

Figure B-2: Main context for GUIDE

LAYOUT

Now we want to define the menu items and their relationships. We choose the

"create/edit item" item from the menu. After entering the name of the item, "add symbol", we

move to the context for defining menu items (figure 8-7). In this context, we complete t_he form

122

--,..~,.-,.~l'»»n:•:>:o;o;•,.;o)';.o'J>.,_. ... ,._,.7_.7_.~,/1'/q;o'FF.nt'->'Jlll'n»"h7~l'»;t .. ;.o;o;,-,.;i.-~

NAME: CHOOSE-COMMAND !

COMMANDS TASK NAME ENTER STRING CHOOSE_ COMMAND

PREVIOUS MENU poNDITION ENTER CONDITION
~ESSAGE ENTER STRING

HELP f ILE ENTER IDENTIFIER

INITIAL VALUE ENTER EXPRESSION

CHf'::··.:GE ENTER EXPRESSION

Figure B-3: Task creation context for GUIDE

by entering the string to be displayed for this item ("add symbol") and entering the hue,

saturation and value for the item color. By choosing "exit", we return to the menu creation

context. We want to start a menu list to contain the items being created. To do so, we choose

123

~ 1 .. 11:::1 c:; lHi~TIJ:"P TVPJ:". 0 i 1-H:iC:: PJn TIDAi.i Pnl ITT PJJ:"
! LlAC:: ~Jn J:"l"Lln PnllTTl'JJ:"

- HAS NO PROCESS ROUTINE j

' !
i

I
!

'

rrooL NAME ENTER STRING LAYOUT-MENU

1
cmrnnrnN ENTER CONDITION

COMMANDS MESSAGE ENTER STRING
I

HELP ,FILE ENTER IDENTIFIER

I nmJI='

'cot~DITION ENTER CONDITION
I

1
MESSAGE ENTER STRING

PROMPT
PREVIOUS MENU I nnHI='

TOOL TYPES
FORM
LIST

trOOL TYPE MENU
-- MORE --

r=·u?:: Tr I r:=N TOOL

DO~'E

Figure 8-4: Toof creation context for GUIDE

"add item to fist", which takes us to new context (figure B-8). The item to be added defaults to

"add symbol". We choose "start a new menu item fist", then "exit" to execute the action.

124

~'=E~X=I~T--~'~nm~r~: ... ·~·~1
I i:-rvi:-n. PJ:'PMANJ:'NT
; 1-1i:ic;: 'Rni;ini:-P TVPJ:' 0 1 1-1 Ac;: ~Jn n p A 1.1 p n I IT T tJ J:'
; I-IA<:;: Nn i:-r1-1n Dnl ITT ~JJ:'
i HAS NO PROCESS ROUTINE
l
J
i
l

I
'

trooL NAME ENTER STRING LAYOUT-MENU

COMMANDS ,CONDITION ENTER CONDITION

,MESSAGE ENTER STRING

ELP FILE ENTER IDENTIFIER

I nrn1i=
I

ENTER CONDITION PREVIOUS MENU .CONDIT ION
1
MESSAGE ENTER STRING

bROMPT

I nn~sr=

TOOL TYPES
F·os IT 1 ON TOOL FORM

LIST
trooL TYPE MENU

-- MORE --

CF::Fr::TE.····Elj X T TOOL [N~:;Tr~NC:?.

DONE

Figure 8-5: Tool creation context for GUIDE with instance command

We create the remaining items in the menu analogously, adding them to the list already

begun as they are created. When we add the "remove symbol" item, we specify the condition

"cur_room.contents<>nil" as its condition for inclusion. All of the other items have null
conditions.

I
l

!

125

I EXIT

ORIENTATION
HORIZONTAL

RIENTATION VERTICAL
RANDON

BOOLEAN

1-----------l AGING_PERMITTED
TRUE

FALSE
OMISSION STYLE
HALFTONE

MITTED-ITEMS_DISPLAY LEAYE-SPACE
t--~~~~~~~~~~~~~~~--4

OMIT
HUE ENTER REAL 0.000

REMOVE ITEM FROM
ACKGROUND-COLOR

SATURATION ENTER REAL 0.000

VALUE ENTER REAL 0.000

ADD LlSl TO ilEM BOOLEAN

·1A I NTA I tLH I STORY TRUE

,-.:: :·:·:Vi G \·' E L l :;::r ::;.:,: (: H i ·,- E Vi
1--~~~~~~~~~~+-~~~~~~~~~~~~~~~--l

FALSE

DONE

Figure B-6: Menu creation context for GUIDE

When all four menu items have been created and added, we want to make the list of

menu items be the follow list for each of the four items. To do so, we choose "add list to item"

which takes us to a parameter context (figure 8-9). We fill in the appropriate item name and

I ElOT

126

ITEM NAME ENTER STRING ADD SYMBOL

ITEM STRING ENTER STRING

IHUE
f

ENTER REAL 0.000

~SATURATION ENTER REAL 0.000
ITEM COLOR

1
vALUE ENTER REAL 0.000

DONE

Figure B-7: Menu item context for GUIDE

pick any item on the list which we have created to indicate that that list is to be added. Picking

"exit" executes the command and returns us to the menu creation context.

127

ADD SYMBOL

ENTER CONDIT I ON

Figure B-8: Parameter context for "add item to list"

We also must make this list the "start list" for the menu. We select "set/edit start item"

from the menu. In the parameter context, we pick the list of items already created.

I E>~IT .

128

I
MENU ITEM CHANGE ROOM SIZE

Figure B-9: Parameter context for "add list to item"

At this point, the menu is complete and we choose "exit" to return to the tool creation

context. We have nothing more to do here at this point and choose "exit" again to return to task

creation. At the task level, we want to add the menu tool just created to the "choose_command"

129

task under construction. We choose the "add tool" command, which takes us to a parameter

context (figure B-10), where we must specify the tool, task and conversion routines. The tool

and task have defaulted to the right values, so we choose each of the conversion routines in

turn. For each, we enter "pass_along_string", since both the tool and task have string values.

Choosing "exit" executes the action routine and returns us to the task creation context.

Choosing "exit" again returns us to the main context.

The other tasks are created analogously, although the instance specific portion varies

depending on the instance type. (It is actually much simpler in most cases.)

The next thing to do is to create the two user-defined picture classes needed. To do this,

we choose the "create/edit user picture class" command. After entering the name of the class

("room_class"), we remain in the main context, but go down one level in the menu (figure B-11).

To create the picture itself, we choose "create/edit user picture". This takes us to a

context for creating user-defined pictures (figure B-12). In this context, we complete the form.

The first four fields default appropriately, so we need only enter the name and parameters for

the drawing routine. We type in "draw_room(cur_room,set_window_params.window_used)".

The part of the room to be drawn depends on the value of the window controller task.

Choosing "exit" returns us to class creation, where we choose "add user picture". Both

the picture and the class default appropriately in the parameter context (figure 8-13), so

choosing "exit" is sufficient to invoke the action. We must choose "previous menu" from the

menu to return to the top menu level.

The class "title_class" is created analogously and we are now ready to begin creating

contexts. We choose "create/edit context" from the menu. Again, the name is requested and,

after entering it ("main_context"), we find ourselves in a context creation contaxt (figure B-14).

The largest viewport contains a picture of the context contents, showing each tool or user

defined picture which has been positioned in this context.

We begin by adding tasks. We select "add task", and are prompted for the task and

context. In this way, we add "choose_command" and "set_window_params". To add the exit

task, we choose the command "add predef td to context". The parameter context provides a list

of predefined tasks (figure B-15), from which we choose "exit". Since the exit tool has a default

position in the upper left corner of the context, the context display, upon returning to the context

creation context, shows that tool.

130

l~[::_X_I_T ___ IT OOL NAME LAYOUT_MENU

TASK NAME CHOOSE_COMMAND

CONVERSION TO TASK ROUTINE

CONVERSION TO TOOL ROUTINE

Figure 8-1 O: Parameter context for "add tool"

At this point, we want to position the tools for "choose_command" and

"set_window_params". We choose "create/edit tool", specifying "layout_menu" as the tool to be

edited. In the tool creation context (figure 8-4), we choose the "position tool" command. We

131

I D~IT

DESIGN NAME ENTER IDENTIFIER LAYOUT
COMMANDS

START ROUTINE ENTER NAME WITH PARAMS
PREVIOUS MENU

C:f<:£flT£.-··E1:; IT USEf.~ END ROUT I NE ENTER NA~E WITH PARAMS

ADD USER PICTURE START CONTEXT CONTEXT NAME

REMOVE USER PICTi

DONE

Figure B-11: Main context for GUIDE with picture class commands

enter a parameter context (figure B-16). The tool and context have defaulted appropriately. We

choose the prompt for the lower left corner, then pick a point in the context display. The

position of the upper right corner is similarly picked. Choosing "exit" returns us to the tool

132

I D~IT

UPIC NAME ENTER STRING ROOM_PIC

BOOLEAN

COMMANDS ~IXED
TRUE

FALSE
BOOLEAN

.... ERMANENT TRUE

FALSE

PREVIOUS MENU
BORDER TYPE INTEGER 1

DRAI~ ROUTINE ENTER ROUTINE NAME AND PA RAMS

f'·:::<::: TT I C;N V3EF<: FT CTUf.;:{:;,

DONE

Figure B-12: User-defined picture creation context for GUIDE

context. We again pick "position tool". This time, we modify the tool name to "window controller

tool" and position it in the upper right corner of the context. After "exit" returns us to the tool

context, we choose it again to return to the context creation context.

133

ROOM_PIC

PICTURE CLASS NAME ROOM_CLASS

Figure B-13: Parameter context for "add user picture"

The user-defined picture classes, room_class and title.:._elass, are added to the context by

choosing "add user picture class" and specifying the appropriate class name for each. (The first

time, we can accept the default.) Positioning of the pictures is done by choosing "create/edit

134

I EXIT

COMMANDS

PREVIOUS MENU

Tfl::;K

USEf.': Ip ICTURE

1-------------1
CREATE/EDIT USEP

1
PICTURE CLASS

ADD USER PiCTURE,CLRSS

;;.;·:··i,,,., •. .:"-~ !J•:: r:·~, >:· r r"r1 1 •<-:·>~ ···; :· ·:~·:::
:'""'" "'" . ·"··"" . , (""· t. .. .ll

--- ---~~- T- -:·.0.··~·~···'·'·I':~.=.····.•.-:· H.t::t.: , ... ·~<~:.:.M>.: .. r l·.u _ s __ _ ., ::.

~-------~~·rnME OF CONTEXT:
i

MA I N_ C 0 NT EXT __ ,.,,_N,, __ ,~ __ .__, ___ ,,,,~~""'"m»••,J

Figure B-14: Context creation context for GUIDE

user picture" and then choosing "position user picture". Within the positioning context, we

operate analogously to positioning of tools.

I EXIT
EXIT TASK
HELP TASK
HELP TASK
HELP TASK

CONTEXT NAME

I

I

I

CTOOU

CTASK l
(CONTEXT)

NAME OF CONTEXT:

135

MAIN-CONTEXT

MAIN-CONTEXT _ ___J

Figure B-15: Parameter context for "add predef td to context"

When we return to the context creation context, we find that this context is now

satisfactory. Choosing "exit" returns us to the main context, where we can create the other

contexts in the same way.

136

I ~' =E)~<~IT.:...-~-TOOL NAME LAYOUT-MENU

CONTEXT NAME MAIN_CONTEXT

UPPER RIGHT PICK A POINT IN VIEWPORT CONTEXT_COHTEHTS

LOWER LEFT PICK A POINT IN VIEWPORT CONTEXT-CONTENTS

Figure B-16: Parameter context for "position tool"

After all of the contexts have been created, three tasks remain. We must specify a

control path from "start_context" to "main_context"; we must specify the action routines to be

called from the task "choose_command"; and we also must fill in the form in the main context

regarding the design itself.

137

. I
~I ~E~X~I~T __ TASK NAME CHOOSE-COMMAND

ENTER CONDIT ION

START CONTEXT CONTEXT NAME MA I tLCONTEXT

END 'CONTEXT CONTEXT NAME MA I tLCONTEXT

BOOLEAN

STACK IT TRUE

FALSE

STACK OPS

PUSH/POP PUSH

POP

RESTORE LIST ENTER ITEMS TO BE RESTORED

DONE

Figure B-17: Parameter context for "make control path"

First, we choose to create the control path. We choose "make control path" from the

menu and proceed to a parameter context (figure B-17). There, we specify that this decision is

to be associated with the "start_:_layout" task unconditionally. We fill in the form, specify

I EXIT

rrAsK NAME

138-

*** MENU ***
nT~PI AY TYP~ T~ v~~TTCAL
P8~TM~ T~ ~nT Al 1 nu~n

g§§E ~J~~A~~ · Mn~~ 0
nMTTT~n TT~M~ ~nT nr~P• AYED
HISTORY IS NOT MAINTAINED

ENTER STRING CHOOSE_COMMAND
COMMANDS

,CONDITION ENTER CONDITION
f1ESSAGE ENTER STRING
,FILE ENTER IDENTIFIER HELP

PREVIOUS MENU

ENTER EXPRESSION

REMOVE PAPRM LIST FROM ACTIO~ ENTER EXPRESSION

DONE

Figure 8-18: Task creation context with action menu

"start_context" for the start context and "rnain_context" for the end context. We specify no

stacking, then pick "done" to complete the form. Next, we pick "exit" to return to the main

context.

139

I~ =E ''"'"x n _____ lc o tH EXT NAME START-CONTEXT

_._I ___ START NE~l PAR AM CONTEXT LI ST ______________ --1

I
I

Figure B-19: Parameter context for "Add context to list"

Now, we wish to define the action calls from "choose_command". We select "create/edit

task" and specify "choose_command". This leads us to the task creation context (figure B-3),

where we select the "create/edit action" item. This item does not change the context, but

modifies the menu list (figure B-18).

140

l~E_X_, I~T · __ ,A. CTI ON ROUTINE GET-CONTEXT-HELP

EIHER CONDITION

CONTEXT NAME ADD-CONTEXT

Figure 8-20: Parameter context for "Add param context to action"

From the menu, we now pick "define param collection". This again modifies the menu

without changing context. We now choose "add context to list", moving to a parameter context

(figure 8-19), where we specify the context "add_context" and choose to start a new param

141

~'-E~:·~~IT ___ IACTION ROUTINE ADD-SYMBOL

ENTER STRINGS (COMMAS BETWEEN)

ENTER CONDIT ION

I STlRT NEW PARAM DATA RECORD

rONTAINED IN ACTION NO ACTION EXISTS

rONTEXTS' EXPRESSIONS:

CONTEXT NAME ADD-CONTEXT

Figure 8-21: Parameter context for "Enter actual param list"

context list. Returning to the task context via "exit", we choose "add param co'ntext to action".

A parameter context (figure 8-20) allows us to specify the routine, and to pick the context to

add. Choosing "exit" moves us to a second parameter context where we indicate starting a new

142

_I E_X_I_T_· __ IA CT ION ROUTINE ADD-SYMBOL

TASK NAME CHOOSE_COMMAND

ENTER CONDIT ION

Figure B-22: First parameter context for "Add action to task"

"param_data" record. Choosing "exit" again moves to a third parameter context, in which we

can specify the position of the context on the list in the param_data record. In this case, since

we are starting a new one, the list is empty and we simply choose "exit" to execute the

command.

143

l~E=>~~I~T'---~~~ASCAL OUTPUT FILE NAME GLY:LAYOUTINT.PAS

OUTPUT ENVIRONMENT FILE NAME GLY:LAYOUTINTENY.PAS

OUTPUT DATA FILE NAME GLY:LAYOUT.DAT

OUTPUT HELP FILE NAME GLY:LAYOUT.HLP

Figure B-23: Parameter context for "Generate code"

Next, we move up a level in the menu, returning to figure B-18. We choose "Enter actual

param list", to enter the parameters for this action. In the parameter context (figure B-21), the

routine name defaults to "add_symbol". For the string list, we type

144

--

ROOM TITLE ENTER TITLE

ROOM ~.JI DTH ENTER WIDTH 20.000

ROOM LENGTH ENTER LENGTH 20.000

DONE

Figure B-24: Start context for layout system

"cur_room,choose_symbol,choose_location,choose_angle". There is no condition needed and

we choose the param_data record which was just created. Choosing "exit" executes the

command. We choose "previous menu" to go up a level in the menu, returning us to figure B-3.

145

I E~nT f:r: :::==:=r-;;-iil:::::::::::::=t::il

1
1 ~ ;!.-oJ I~!

i I :% ; _ ! :% ; ;

.---------------------! i ~ !°T0(f~(.. j L:l I
MAIN OFFICE ·-l-· ··------·-·-·-.. ·--·-·-+-·!·-

ADD SYMBOL

CHANGE TITLE

CHANGE ROOM SIZE

Figure B-25: Main context for layout system

After the "add_symbol" action has been defined, we must add it to the task. We choose

"add action to task", and are presented with a parameter context (figure B-22) where we must

specify the task, action and a condition. The task and action have defaulted appropriately. For

146

I EXIT

I ORIENTATION

10 .00

MAIN OFFICE PICK A POINT IN VIEWPORT ROOM-PIC

Figure B-26: Parameter context for "add symbol"

the condition, we enter "eqnms(choose_command,'add symbol')", indicating that this action is to

be invoked only if the task "choose_command" has the value "add_symbol". When we choose

"exit", we are presented with a second parameter context in which we must choose which

147

~~~~-~~~~~j 

Ls:J5.U ___ i 

PICK SYMBOL TO BE REMOVED 

Figure B-27: Parameter context for "delete symbol" 

parameter collection and computation methods will be used, and where to place this action on 

the list of actions for this task. We pick the parameter information which we have created, 

which is the only set displayed. If we pick no action position, the action is automatically placed 

at the end of the list for this task. This is suitable, so we select "exit". 



148 

I E>~ IT 

ENTER TITLE MAIN OFFICE 

MAIN OFFICE 

Figure B-28: Parameter context for "change title" 

The remaining actions are created and added in the same way, and we return to the main 

context. Now the only remaining step is to fill out the design form. The name has defaulted to 

"layout", which we initially specified. For the start routine, we enter "initialize_layout" .. There is 



149 

rt:1:::::::::;::ri-0·0 %f:-.:::::::::rr 
; : p: p:; 
i i ini ,----···1 1nl ! 

r---~-.v~i 

~ ~ 

LsXJL _____ JENTER w 1 nrH 20.000 

: : 1r-i: U·::::.U lA: ! 

lli~ "' 88 %1 ! t -----1 
MArn OFFICE . 

ENTER LENGTH 20.000 

v-· - - --• • _,.....,,,,..., ...... , ...,...,,,"""''• ,...,., ...,.,,_,,=::;I...., VIL..\,,.t 

no end routine, so we leave that field blank. For the start context, we specify "start_context". 

We then choose "done", allowing the form to be processed. 



150 

At this point, the design is complete. We want to store it for later editing and then to 

generate an interface. We first choose "store design". A parameter context requests a file 

name. We enter "layout.int" and choose "exit". The design is stored in the file "layout.int". 

To generate the interface, we choose the item "generate code". We proceed to a 

parameter context (figure B-23), where four filenames are requested. We enter each of these 

and choose "exit", at which time code is generated. 

Upon returning to the main menu, we choose "exit" to leave GUIDE. 

We now use the Pascal compiler and the linker to create the application system. When 

this process is complete, we can run the layout system. The six contexts of the layout system 

are shown in Figures B-24 through B-29. 



APPENDIX C 

Environment BNF 

This appendix shows the BNF which is used to parse the environment file for the 

application. Angle brackets('<' and'>') are used to enclose non-terminals. Exclamation points 

indicate 'or'. A period signals the end of productions for a non-terminal. 

<PROG> -> <module> 
<module> -> MODULE IDEN <ID-LIST> ) ; <BLOCK> END ' 

MODULE IDEN <BLOCK> END ' 

<env-part> 

[ <env-part> ] 
<BLOCK> END , . 
[ <env-part> ] 
-> <environ> , 

<inherit> , 
<environ> 
<inherit> 

MODULE IDEN <ID-LIST> ) 

MODULE IDEN <BLOCK> END 
<inherit> 
<environ> 

<environ> -> ENVIRONMENT ( <FILE-LIST> ) . 
<inherit>-> -INHERIT (r<FILE-LIST> ) 
<FILE-LIST> -> <FILE-LIST> , STRING 

STRING . 
<ID-LIST> -> <ID-LIST> , IDEN 

! IDEN . 

, 

<BLOCK> -> <CONS-PAR> <TYPE-PAR> <VAR-PAR> <PROC-PAR> 
<TYPE-PAR> <VAR-PAR> <PROC-PAR> 
<CONS-PAR> <VAR-PAR> <PROC-PAR> 
<CONS-PAR> <TYPE-PAR> <VAR-PAR> 
<CONS-PAR> <TYPE-PAR> <PROC-PAR> 
<VAR-PAR> <PROC-PAR> 
<TYPE-PAR> <PROC-PAR> 
<CONS-PAR> <PROC-PAR> 
<TYPE-PAR> <VAR-PAR> 
<CONS-PAR> <VAR-PAR> 
<CONS-PAR> <TYPE-PAR> 
<CONS-PAR> 
<TYPE-PAR> 
<VAR-PAR> 
<PROC-PAR> 

151 



152 

<CONS-PAR> -> CONST <CON-DCLL> ; . 
<CON-DCLL> -> <CON-DCLL> ; <CON-DCL> 

! <CON-DCL> . 
<CON-DCL> -> IDEN = <CONSTANT> 
<CONSTANT> -> NUMBER 

ADDOP NUMBER 
IDEN 
ADDOP IDEN 
STRING . 

<TYPE-PAR> -> TYPE <TYP-DEFL> 
<TYP-DEFL> -> <TYP-DEFL> ; <TYPE-DEF> 

! <TYPE-DEF> . 
<TYPE-DEF> -> IDEN = <TYPE> 
<TYPE> -> <SIMPL-TY> 

! <STRUC-TY> 
! <POINT-TY> 

<SIMPL-TY> -> <SCALAR> 
<SUBRANGE> 

! IDEN . 
<SCALAR> ->. ( <ID-LIST> ) 
<SUBRANGE> -> <CONSTANT> I •• <CONSTANT> 
<STRUC-TY> -> <UNPAC-TY> 

! PACKED <UNPAC-TY> 
<UNPAC-TY> -> <ARRAY-TY> 

<RECORD-T> 
! <SET-TYP> 
! <FILE-TYP> 

<ARRAY-TY> -> ARRAY [ <INDEX-TL> ] OF <TYPE> 
! VARYING [ NUMBER ] OF <TYPE> 

<INDEX-TL> -> <INDEX-TL> I <SIMPL-TY> 
! <SIMPL-TY> . 

<RECORD-T> -> RECORD <FIELD-L> END 
! RECORD <REC-SECL> END 

<FIELD-L> -> <REC-SECL> ; <VARIANTP> 
! <VARIANTP> . 

<REC-SECL> -> <REC-SECL> <REC-SEC> 
<REC-SEC> 
<REC-SECL> 

; <REC-SEC> . 
<REC-SEC> -> <ID-LIST> : <TYPE> 
<VARIANTP> -> CASE IDEN : IDEN OF <VARIANTL> 

! CASE IDEN OF <VARIANTL> 
<VARIANTL> -> <VARIANTL> <VARIANT> 

<VARIANT> 
<VARIANTL> 

<VARIANT> 



153 

<VARIANT> -> <CASE-LAB> : ( <FIELD-L> ) 
! <CASE-LAB> : ( <REC-SECL> ) 

<CASE-LAB> ( ) . 
<CASE-LAB> ->·<CASE-LAB> , <CONSTANT> 

! <CASE-LAB> , <SUBRANGE> 
! <CONSTANT> 
! <SUBRANGE> 

<SET-TYP> -> SET OF <SIMPL-TY> 
<FILE-TYP> -> FILE OF <TYPE> . 
<POINT-TY> -> A IDEN . 
<VAR-PAR> -> VAR <VAR-DCLL> ; 

! <VAR-PAR> VAR <VAR-DCLL> 
<VAR-DCLL> -> <VAR-DCLL> '; <VAR-DCL> 

! <VAR-DCL> . 
<VAR-DCL> -> <ID-LIST> <TYPE> 

<ID-LIST> : 
<ID-LIST> : 

<PROC-PAR> -> <PROC-PAR> 

[ EXTERNAL ] <TYPE> 
[ GLOBAL ] <TYPE> 
<PRO-FUN> 

$ 

! <PRO-FUN> ; 
<PRO-FUN> -> <PROC-HD> EXTERN 
<FUNC-HD> EXTERN 
<PROC-HD> -> PROCEDURE IDEN ; 
PROCEDURE IDEN ( <FOR-PARL> ) 
<FOR-PARL> -> <FOR-PARL> ; <FOR-PAR> 
<FOR-PAR> 
<FOR-PAR> -> <ID-LIST> : <TYPE> 
VAR <ID-LIST> : <TYPE> 
FUNCTION <ID-LIST> : <TYPE> 
PROCEDURE <ID-LIST> 
<FUNC-HD> -> FUNCTION IDEN <TYPE> ; 
FUNCTION IDEN ( <FOR-PARL> : <TYPE> 



[ANSI 85] 

[Anson 82] 

[Apple 83] 

[Sadler 84] 

[Barnard 82] 

[Bass 85] 

[Black 82] 

[Bloom 83] 

[Buxton 83a} 

[Buxton 83b] 

154 

References 

Draft American National Standard for the Functional Specification of the 
Computer Graphics Virtual Device Interface (CG-VD/) 
American National Standards Institute, 1985. 

Anson, Ed. 
The Device Model of Interaction. 
Computer Graphics 16(3):107-114, July, 1982. 

Apple Corp. 
Lisa. 
Siggraph Video Review (8), October, 1983. 

Sadler, Norman I. and Graner, Tamar E. 
The Window Controller. 
Transactions on Graphics 3(4):48-51, October, 1984. 

Barnard, P., Hammond, N., Maclean, A. and J. Morton. 
Learning and Remembering Interactive Commands. 
In Human Factors in Computer Systems, pages 2-7. Institute for Computer 

Sciences and Technology- National Bureau of Standards, U.S. 
Department of Commerce and Washington, D.C. ACM Chapter, 
Gaithersburg, MD, March, 1982. 

Bass.Leonard J. 
A Generalized User Interface for Applications Programs (II). 
Communications of the ACM 28(6) :617-627, June, 1985. 

Black, J. and T. Moran. 
Learning and Remembering Command Names. 
In Human Factors in Computer Systems, pages 8-11. Institute for Computer 

Sciences and Technology - National Bureau of Standards, U.S. · 
Department of Commerce and Washington, D.C. ACM Chapter, 
Gaithersburg, MD, March, 1982. 

Bloom, Douglas A. 
A User-Oriented Interface Control (of an Interactive Computer Graphics 

System). 
Master's thesis, University of Pennsylvania, May, 1983. 

Buxton, W., Lamb, M. R., Sherman, D. and K. C. Smith. 
Towards a Comprehensive User Interface Management System. 
Computer Graphics 17(3):35-42, July, 1983. 

Buxton, William. 
Lexical and Pragmatic Considerations of Input Structures. 
Computer Graphics 17(1 ):31-37, January, 1983. 



[Card 82] 

[Feldman 82] 

[Foley 82] 

[Gallier 85] 

[Green 82] 

[Green 83] 

[Green 85a] 

[Green 85b] 

[GSPC 79] 

[Hanau 80] 

155 

Card, Stuart K. 
User Perceptual Mechanisms in the Search of Computer Command Menus. 
In Human Factors in Computer Systems, pages 190-196. Institute for 

Computer Sciences and Technology - National Bureau of Standards, 
U.S. Department of Commerce and Washington, D.C. ACM Chapter, 
Gaithersburg, MD, March, 1982. 

Feldman, M. and Rogers, G. 
Toward the Design and Development of Style-Independent Interactive 

Systems. 
In Human Factors in Computer Systems, pages 111-116. Institute for 

Computer Sciences and Technology - National Bureau of Standards, 
U.S. Department of Commerce and Washington, D.C. ACM Chapter, 
Gaithersburg, MD, March, 1982. 

Foley, J.D. and van Dam, A. 
Fundamentals of Interactive Computer Graphics. 
Addison-Wesley, 1982. 

Gallier, Jean H., Manion, Frank J. and McEnerney, John. 
CISV3: A compiler generator based on attribute evaluation. 
Technical Report MS-CIS-85-59, University of Pennsylvania, Department of 

Computer and Information Science, 1985. 

Green, Mark. 
Towards a User Interface Prototyping System. 
In Graphics Interface '82, pages 37-45. National Computer Graphics 

Association of Canada and Canadian Man-Computer Communications 
Society, Toronto, Ontario, May, 1982. 

Green, Mark. 
A Catalogue of Graphical Interaction Techniques. 
Computer Graphics 17(1) :46-52, January, 1983. 

Green, Mark. 
The University of Alberta User Interface Management System. 
Computer Graphics 19(3) :205-213, July, 1985. 

Green, Mark. 
The Unversity of Alberta User Interface Management System Design 

Principles. 
Human Computer Interaction Project 1, Department of Computer Science, 

University of Alberta, July, 1985. 

Graphics Standards Committee. 
Status Report of the Graphics Standards Committee. 
Computer Graphics 13(3), 1979. 

Hanau, P.R. and Lenorovitz, D.R. 
Prototyping and Simulation Tools for User/Computer Dialogue Design. 
Computer Graphics 14(3):271-278, July, 1980. 



[Hartson 84] 

[Hayes 85] 

[Heffler 82] 

[Herot 84] 

[Hopgood 83] 

[Johnson 75] 

[Jones 82] 

[Kamran 83] 

[Kasik 82] 

[Kasik 84] 

[Knuth 73] 

[Olsen 83a] 

[Olsen 83b] 

156 

Hartson, H. R., Johnson, D. H. and Ehrich, R. W. 
A Human-Computer Dialogue Management System. 
In Proceedings of Interact 84,.pages 57-61. IFIPS, Imperial College, 

London, September, 1984. 

Hayes, Philip J., Szekely, Pedro A. and Lerner, Richard A. 
Design Alternatives for User Interface Management Systems Based on 

Experience with COUSIN. 
In CHI '85 - Human Factors in Computer Systems, pages 177-183. 

· ACM/SIGCHI, San Francisco, CA, april, 1985. 

Heffler, Michael J. 
Description of a Menu Creation and Interpretation System. 
Software - Practice and Experience 12:269-281, 1982. 

Herot, Christopher F. 
Graphical User lnterf aces. 
In Yannis Vassiliou {editor), Human Factors and Interactive Computer 

Systems, chapter 4, pages 83-103. Ablex, 1984. 

Hopgood, F.R.A., Duce, D.A., Gallop, J.R., and Sutcliffe, D.C. 
Introduction to the Graphical Kernel System (GKS). 
Academic Press, 1983. 

Johnson, S. C. 
YACC: Yet another compiler-compiler. 
Computer Science Technical Report 32, Bell Labs, 1975. 

Jones, William 8. 
Programming Concepts. 
Prentice-Hall, 1982. 

Kamran, Abid and Feldman, Michael B. 
Graphics Programming Independent of Interaction Techniques and Styles. 
Computer Graphics 17{1 ):58-66, January, 1983. 

Kasik, David J. 
A User Interface Management System. 
Computer Graphics 16(3) :99-106, July, 1982. 

Kasik, David J. and Olsen, Jr, Dan R. 
A Taxonomy of User Interface Management. 
1984. 

Knuth, Donald E. 
The Art of Computer Programming, Volume 1 - Fundamental Algorithms. 
Addison-Wesley, Reading, MA, 1973. 

Olsen, Dan R. Jr. 
Automatic Generation of Interactive Systems. 
Computer Graphics 17{1) :53-57, January, 1983. 

Olsen, Dan R. Jr. and Dempsey, Elizabeth P. 
SYNGRAPH: A Graphical User Interface Generator. 
Computer Graphics 17(3):43-50, July, 1983. 



157 

[Roach 82] Roach, J., Hartson, H. R., Ehrich, R., Yunten, T. and D. Johnson. 
OMS: A Comprehensive System for Managing Human-Computer Dialogue. 
In Human Factors in Computer Systems, pages 102-105. Institute far 

Computer Sciences and Technology- National Bureau of Standards, 
U.S. Department of Commerce and Washington, D.C. ACM Chapter, 
Gaithersburg, MD, March, 1982. 

[Rubel 82] Rubel, Andrew. 
Graphic Based Applications - Tools to Fill the Software Gap. 
Digital Design , July, 1982. 

[Savage 82] Savage, Ricky E., Habinek, James K., and Thomas W. Barhart. 
The Design, Simulation and Evaluation of a Menu-Driven User Interface. 
In Human Factors in Computer Systems, pages 36-40. Institute for 

Computer Sciences and Technology - National Bureau of Standards, 
U.S. Department of Commerce and Washington, D.C. ACM Chapter, 
Gaithersburg, MD, March, 1982. 

[Schimpf 81] Schimpf, Karl M. 
Construction Methods of LR-parser. 
Master's thesis, University of Pennsylvani, May, 1981. 

[Schulert 85] Schulert, Andrew J., Rogers, George T. and Hamilton, James A. 
ADM - A Dialog Manager. 
In CHI '85 - Human Factors in Computer Systems, pages 177-183. 

ACM/SIGCHI, San Francisco, CA, april, 1985. 

[Seeheim 84] Pfaff, G. and ten Hagen, P. J. W. (editor). 
EUROGRAPHICS-Springer: Seeheim Workshop on User Interface 

Management Systems. 
Springer-Verlag, Berlin, 1984. 

[Singh 84] Singh, Baldev, Beatty, John C., Booth, Kellogg S. and Ryman, Rhonda. 
A Graphics Editor for Benesh Movement Notation.· 
Computer Graphics 18(3), July, 1984. 

[Stluka 82] Stluka, F. P., Saunders, B. F., Slayton, P. M. and Sadler, N. I. 
Overview of the University of Pennsylvania CORE System. 
Computer Graphics 16(2) :177-186, June, 1982. 

[Symbolics 85] User's Guide to Symbolics Computers 
Symbolics Corp., Cambridge, MA, 1985. 

[Tanner 84] Tanner, Peter P. and Buxton, William AS. 
Some Issues in Future User Interface Management System Development. 
In EUROGRAPHICS-Springer. Seeheim Workshop on User Interface 

Management Systems. Springer-Verlag, Berlin, 1984. 

[Tesler 81] Tesler, Larry. 
The Smalltalk Environment. 
Byte 6(8):90-147, August, 1981. 

[Thomas 83] Thomas, James J. 
Graphical Input Interaction Techniques Workshop Summary. 
Computer Graphics 17(1):5-30, January, 1983. 



158 

[University of North Carolina 81] 
University of North Carolina Computer Science Department. 
The Grip-75 System. 
Siggraph Video Review(4), August, 1981. 

[Van den Bos 78] Van den Bos, J. 
Definition and Use of Higher-Level Graphics Input Tools. 
Computer Graphics 12(3) :38-42, August, 1978. 

[VAX-11 82] VAX-11 Reference Manual 
Digital Equipment Corp., Maynard, MA, 1982. 

[VAX-11 Pascal82] 

[Wong 82] 

VAX-11 Pascal Language Reference Manual 
Digital Equipment Corp., Maynard, MA, 1982. 

Wong, Peter C. S. and Reid, Eric R. 
Flair - User Interface Dialog Design Tool. 
Computer Graphics 16(3):87-98, July, 1982. 


	A User Interface Management System Generator
	Recommended Citation

	A User Interface Management System Generator
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Comments

	tmp.1644623069.pdf.u02sy

