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Summary 
Researchers and educators have consistently sought to identify factors that influence educational 
outcomes in the classroom and, wherever feasible, modify them to optimize the impact of educational 
experiences. One factor that has repeatedly been tied to academic achievement is student engagement 
with learning activities. If student engagement with the subject matter is important to produce learning, 
it is necessary to gauge the extent to which learners are engaged, to isolate factors affecting 
engagement, and to find ways to alter those factors to increase engagement. Detecting student 
engagement has historically been carried out by observing students in the field or watching video-taped 
learning sessions.  More recently, computer scientists have developed detectors that can recognize 
student affect and engagement using activity patterns recorded on educational software servers.  

 As the use of technology for delivering instruction grows, opportunities arise to develop educational 
software and intelligent tutoring systems (ITSs) that adapt to individual student performance by altering 
the student’s trajectory through the content and activities. The eventual goal is affordable 
personalization of learning at scale. If automated detectors of engagement and affect can be built into 
the software itself, the possibility arises of real-time automated responsiveness to the student’s 
emotional state as well as to her academic performance. Given the substantial resources required to 
build detectors and adaptiveness into a software program, the question arises as to whether this 
strategy is economically viable within the price range generally tolerated for educational software. If 
such software is to be widely affordable to schools, the most cost-effective development strategies must 
be adopted and they must be applied to software used at scale.  

To investigate the economic viability of investing in the development of automated detectors, we used 
the ingredients method to estimate and compare the costs of each of four methods of collecting 
observation data on student affect and engagement: classroom observations recorded using a pen and 
paper protocol, classroom observations recorded using a smartphone application, video analysis, and 
automated detectors. We provide several different cost metrics: overall cost of the study, cost per affect 
or engagement label assigned, cost per student observed, and cost per hour of observation.  

Results indicated that costs of collecting observation data on learner engagement and affect vary widely 
from as little as a penny per observation label when using automated detectors applied to ASSISTments 
log files, to as much as $7.36 per label for a classroom observation using a pen and paper protocol. Costs 
per student ranged from $23 for automated detectors applied to ASSISTments log files or a classroom 
observation using a smartphone application, to $558 per student when trained judges analyzed videos 
of learners. Costs per hour of observation ranged from $4 when using automated detectors applied to 
ASSISTments log files to $1,804 for a classroom observation recorded using a smartphone application. 
Overall study costs ranged from a few thousand dollars for classroom observations to almost $88,000 
for the development of automated detectors for ASSISTments and their application to ASSISTments log 
files. 

Developing automated detectors of affect and engagement requires a significant upfront investment. 
Our cost results were reasonably consistent across two sets of detectors developed for two different 
ITSs: $13,490 for each of six detectors for ASSISTments, and $12,460 for each of four detectors for Inq-
ITS. Applying the detectors to student log files costs several thousand dollars, comparable with the costs 
of the classroom observation studies we analyzed. However, given the ease with which the detectors 
can be applied to many hours of log files for many students, they can yield several hundred thousand to 
several million observation labels at a cost of 1-28 cents per label, $23-$47 per student, and $4-$50 per 
hour, with the magnitude of cost being inversely related to the scale of application.  



3 
 

While the low costs of applying automated detectors at scale are clearly attractive, accuracy of these 
detectors is less compelling. Agreement between machine-assigned labels and human coder labels 
averaged around 0.35 across all detectors we investigated, falling into Landis & Koch’s (1977) “fair 
agreement” range. If automated detectors are to be built for large scale applications with thousands of 
learners in order to create responsive and adaptive learning environments, starting with more accurate 
data may lead to better academic outcomes for users due to a more appropriately responsive computer 
system. 

We conclude that for small-scale studies of engagement and affect, in-person classroom observations 
recorded using either pen and paper or a smartphone application are the least costly and the most 
reliable. For large-scale studies, automated detectors are vastly less costly per unit of data collected but 
are currently low in reliability. As automated detectors become more reliable in assessing learners’ 
affect and engagement, we expect they will be embedded in the software itself so that the learner’s 
state can be detected real-time and the software will respond accordingly with messages, talking agents, 
or different activities, just as a live teacher might change pace or activity if she sees students yawning or 
looking puzzled.   



4 
 

Introduction 
 

Importance of learner engagement and affect. Researchers and educators have consistently sought to 
identify factors that influence educational outcomes in the classroom and, wherever feasible, modify 
them to optimize the impact of educational experiences. For example, Carroll’s (1963) influential model 
of school learning postulated five factors that influence academic achievement: the student’s aptitude 
or time needed to learn a task, the student’s ability to understand instruction, the quality of instruction, 
the opportunity to learn, and the student’s “perseverance-in-learning” (p. 728). Carroll defined 
perseverance-in-learning or persistence as the amount of time the learner is willing to engage actively in 
learning. He described it as a function of motivation or desire to learn and of emotional variables such as 
frustration. Reyes and Fennema (1981) claimed that the most important educational influences in the 
mathematics classroom are teacher-student interactions and student engagement with the subject. 
Karweit and Slavin (1981) investigated the relationship between four different measures of time used in 
the classroom - scheduled time, actual instructional time, engaged time, and engaged rate - with 
mathematics achievement and found that the engagement measures were the most strongly related to 
achievement.  

Fredericks et al. (2011) illustrate how the definition of engagement has evolved over the last 30 years, 
extending beyond the initial focus on behaviors such as participation and time on task to incorporate 
emotional or affective aspects, and “cognitive engagement” aspects. The latter include the student’s 
investment in learning, perseverance in the face of challenge, use of deep as opposed to superficial 
learning strategies, and self-regulation. Numerous studies have linked student engagement at the 
classroom level or more broadly in the school community with educational outcomes. Fredericks, 
Blumenfeld, and Paris (2004), and Marks (2000) claim that engaged students are more likely to earn 
better grades and to perform well on standardized tests. Finn (1989) outlined a trajectory of 
disengagement leading to dropping out of school. Gobel (2008) observed college students in Japan using 
software to learn English and, while he found students to be on-task more than he expected (76% of the 
observations), he determined that off-task behaviors such as inactivity, surfing the internet, checking 
email, reading a book or magazine, or time spent gaming the system1 were negatively correlated with 
students’ gains on listening and reading tests. Baker, Corbette, Koedinger, and Wagner (2004) 
demonstrated a clear relationship between misuse of intelligent tutoring systems (ITSs) by students and 
the amount of learning that occurred. Those students who frequently “gamed” the system learned 30% 
less than students who used the software as intended. 

Measuring engagement and affect. In order to positively influence learning outcomes, malleable factors 
must be measured and strategies devised to improve them. If student engagement with the subject 
matter is important to produce learning, it is necessary to gauge the extent to which learners are 
engaged, to isolate factors affecting engagement, and to find ways to alter those factors to increase 
engagement. Carroll (1963) suggested that the most direct evidence available for validly assessing 
perseverance would come from observation of the amount of time the student is actively engaged in 
learning. However, he asserted that, at that time, measurements of perseverance were “practically non-
existent” (p.731). Since then, many protocols have been developed for the assessment of teacher and 

                                                           
1
 Baker, Corbett, Koedinger, and Wagner (2004) describe student activities that constitute “gaming the system” 

while working on an intelligent tutoring system (ITS) including asking for help multiple times until the ITS provides 
the correct answer, entering responses swiftly and systematically without working through the questions, and 
selecting every alternative in a list of multiple choice responses. 
 

http://files.eric.ed.gov/fulltext/ED224793.pdf
http://ies.ed.gov/ncee/edlabs/regions/southeast/pdf/rel_2011098.pdf
http://www.columbia.edu/~rsb2162/p383-baker-rev.pdf
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student activity in classrooms (see Simon & Boyer Eds., 1970) and specifically of student engagement 
(see Volpe, DiPerna, Hintze, & Shapiro, 2005; Fredericks et al., 2011). Some measures of engagement 
rely on student self-reports, some on teacher reports, and some on observational measures. Fredericks 
et al. (2004) report that studies of student engagement generally attempt to capture one or two 
dimensions of student engagement but that ideally all three - behavior, emotion, and cognition - should 
be measured. 

Nock and Kurtz (2005) discuss advantages and disadvantages of direct observation procedures 
compared with other methods such as rating scales completed by teachers, by parents, or by the 
students themselves. They argue that direct observation is more objective, more precise for evaluating 
specific target behaviors, and more externally valid as it assesses behavior as it is actually occurring in 
the school context. On the other hand, they note that direct observation is more costly in terms of time, 
money, and resources because a qualified observer must be in the classroom for sustained periods of 
time. Furthermore, travel is often involved and the observer must be trained in the use of the 
observation protocol. Additional limitations of direct observation include the possibility that students 
being observed may act differently in the presence of an observer, that the observer may suffer from 
perceptual biases or from observer drift as time progresses, and that the observation only captures 
behaviors that occur during the observation period. Rating scales can offer a longer term view of a 
student’s behavior. Hintze, Volpe, and Shapiro (2002) assert that systematic direct observation of 
students provides one of the most useful strategies for establishing links between assessment and 
intervention. An alternative to direct observation in the classroom is video-taping students individually 
with a webcam (e.g., D’Mello, Taylor, Davidson, & Graesser, 2008) or as a group with a mounted or 
handheld video recorder. The video footage is viewed and coded ex-post.  

Before the widespread availability of handheld electronic devices, classroom observations were 
generally recorded using pen and paper observation protocols. For example, Reyes and Fennema (1981) 
adapted an instrument created by Romberg, Small, Carnahan, and Cookson (1979) to produce an 
observation protocol for evaluating student engaged time while learning mathematics. Observers using 
the protocol watched students sequentially in a classroom, recording an observation code every 30 
seconds on a bubble sheet. Coding options included absent, engaged, off-task, and six additional codes 
to capture the kind of activity such as peer interaction, or engagement in a process-oriented or product-
oriented mathematical task. Shapiro’s (1996, 2010) Behavioral Observation of Students in Schools 
(BOSS) requires observers to code a student’s behavior every 15 seconds over a 15-minute observation 
period. Coding options include active engagement, passive engagement, off-task motor, off-task passive, 
and off-task verbal. While earlier applications of BOSS involved recording observation codes with pen 
and paper, recordings can now be made electronically using a $30 iPhone or iPad application. 

More recently developed observation protocols are usually associated with electronic data collection 
procedures. For example, data collected by observers using the Baker Rodrigo Ocumpaugh Monitoring 
Protocol (BROMP) are entered directly into a smartphone using a freely available Android application, 
the Human Affect Recording Tool (HART) (see Ocumpaugh et al., 2015). BROMP facilitates a momentary 
time sampling technique at 20-second intervals, allowing simultaneous collection of data on student 
engagement and affect. The developers of BROMP assume that these constructs are orthogonal at least 
to some extent (see Ocumpaugh, Baker, & Rodrigo, 2015). HART offers a variety of customizable coding 
schemes but common behavioral categories include several forms of on-task and off-task activity, and 
gaming the system. These build on coding schemes developed by Karweit and Slavin (1982), and Lloyd 
and Loper (1986). HART affective categories include boredom, confusion, delight, engaged 
concentration, frustration and surprise. These were derived from work by D’Mello, Picard, and Graesser 
(2007) who hypothesized that the affective categories of boredom, confusion, frustration, eureka 

http://www.researchgate.net/publication/222705078_Direct_behavioral_observation_in_school_settings_Bringing_science_to_practice
http://www.emporia.edu/~persingj/systematicobservation.pdf
http://www.researchgate.net/profile/Roger_Taylor/publication/225380577_Self_Versus_Teacher_Judgments_of_Learner_Emotions_During_a_Tutoring_Session_with_AutoTutor/links/02e7e520999338cedc000000.pdf
http://www.columbia.edu/~rsb2162/bromp.html
http://www.columbia.edu/~rsb2162/bromp.html
http://www.columbia.edu/~rsb2162/bromp.html
http://www.columbia.edu/~rsb2162/bromp.html
http://psycnet.apa.org/journals/edu/74/6/844.pdf
http://affect.media.mit.edu/pdfs/07.dmello-etal.pdf
http://affect.media.mit.edu/pdfs/07.dmello-etal.pdf
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experiences, and flow or engagement are more prevalent among learners working in computing 
environments than the commonly used basic emotions identified by Ekman and Friesen (1976, 1978): 
anger, fear, happiness, sadness, disgust, and surprise. In addition to expediting data collection, HART 
synchronizes field observations to internet time so that BROMP data can be precisely synchronized to 
the log file2 data from educational software. This allows researchers to compare the user’s observed 
state of affect and engagement with her specific actions in the software. 

D’Mello, Duckworth, and Dieterle (under review) describe state-of-the art approaches to assessing 
student cognition, affect, and motivation during learning activities. These “AAA approaches” use 
“advanced computational techniques for the analytic measurement of fine-grained components of 
engagement in a fully automated fashion” (p.4). Computer-based assessments of engagement derived 
from sensor signals such as keystrokes, log files, facial or eye movements, posture, or electrodermal 
activity offer the advantage of objectivity and reliability compared with human assessments. While all 
“AAA” approaches require some initial labor-intensive data collection by humans, once machine-
learning models have been built to detect patterns of behavior associated with specific states of affect 
or engagement, they can be applied at scale to new student data collected by automated sensors with 
low to negligible marginal costs.  

D’Mello et al. (under review) distinguish between sensor-free, sensor-light, and sensor-heavy detection 
methods. They provide several examples of studies which implement sensor-free measurement of 
engagement by relying on the log files of students working on computer-based activities (D’Mello, Craig, 
Witherspoon, McDaniel, & Graesser, 2008; Pardos, Baker, San Pedro, Gowda, & Gowda, 2013; Bixler & 
D’Mello, 2013; Baker et al., 2012; and Sabourin, Mott, & Lester, 2011). Sensor-light approaches use 
inexpensive, ubiquitous, and relatively unobtrusive devices such as webcams or microphones to collect 
signals (e.g., Whitehill, Serpell, Lin, Foster, & Movellan, 2011). Sensor-heavy approaches involve 
expensive equipment such as eye trackers, pressure pads, and physiological sensing devices (e.g., 
Kapoor & Picard, 2005) which are hard to use in the field at scale. Software is used to “read” and 
automatically categorize the signals collected by the various sensors. 

Automated sensor-free detectors are essentially sequences of computer code that are used to detect 
patterns of user activity in the log files that are generated by educational software platforms. These 
detectors are specific to the software and are developed in multiple stages. Initially, field observations 
are conducted and the learner’s states of engagement and affect are recorded by human coders while 
the learner uses the software in question. These observations may also be made ex-post from video 
recordings. The resulting observation labels are subsequently synchronized with the user log files to 
match the time of the observation label with the actual keystrokes recorded in the log file. Patterns of 
keystrokes that are associated with particular states of engagement or affect are identified. For 
example, it may be the case that students who are confused repeat certain steps more frequently, 
students who are off-task register longer pauses, and students who are gaming the system enter 
answers without following intermediary steps. These patterns are used to develop programming code 
that can recognize the same patterns in log files collected from other learners using the same software. 
The detector automatically assigns a corresponding engagement or affect label to the log file data at 
regular intervals, usually every 20 seconds.  

                                                           
2
 Log files are time-stamped lists of events that are automatically generated by servers when users interact with 

software or a web site. They reflect the user’s every activity (or lack thereof), pages visited, resources accessed and 
so on. 

http://www.columbia.edu/~mzs2106/research/LAK2013.pdf
http://delivery.acm.org/10.1145/2450000/2449426/p225-bixler.pdf?ip=160.39.78.237&id=2449426&acc=ACTIVE%20SERVICE&key=7777116298C9657D%2ECCAFA7F43E96773E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=693996014&CFTOKEN=64686623&__acm__=1437149254_131f8b2aa6c79676c434fe4743e667ad
http://delivery.acm.org/10.1145/2450000/2449426/p225-bixler.pdf?ip=160.39.78.237&id=2449426&acc=ACTIVE%20SERVICE&key=7777116298C9657D%2ECCAFA7F43E96773E%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=693996014&CFTOKEN=64686623&__acm__=1437149254_131f8b2aa6c79676c434fe4743e667ad
http://www.columbia.edu/~rsb2162/EDM%20Affect%20Detection%20V22%20final.pdf
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Accuracy of observations. Key questions for any method of assessing learner engagement and affect are 
the extent to which observations are reliable and valid. Ary and Suen (1983) document that, when 
duration of a behavior is of interest, momentary time sampling with intervals set at the shortest possible 
length will yield the best estimate of actual duration. With respect to reliability of data obtained through 
direct observation, Suen and Ary (1989) propose an evaluation of both interobserver agreement and 
intraobserver reliability. Hintze (2005) reviewed existing measures of interobserver agreement and 
argued that coefficient kappa, an estimate of agreement between two or more observers corrected for 
chance, is the most robust. To capture both interobserver agreement and intraobserver reliability, he 
recommends calculating an intraclass correlation coefficient that allows an evaluation of systematic 
variance across subjects and across observers. He also describes the application of Generalizability 
Theory, developed by Cronbach, Gleser, Nanda, and Rajaratnam (1972), to observation data. This 
approach assesses the degree to which a set of measurements for one person generalize to a larger set 
of measurements for the same person. In an application of Generalizability Theory, Hintze and 
Matthews (2004) concluded that adequate levels of reliability with regard to learner engagement could 
not be attained by observing a student for 15 minutes twice per day over two weeks. They estimated 
that students would need to be observed four times per day over four weeks.  This is clearly more time 
than planned in many instances of classroom observation.  In practice, coefficient kappa is the most 
widely used measure of reliability of direct observation data (Hintze, 2005). 

Validity of observation measures is   difficult to assess for indirectly observable constructs such as affect 
and engagement because a definitive “ground truth” cannot be established. Even when acceptable 
levels of interobserver agreement with respect to a learner’s state of affect or engagement can be 
obtained, these observer judgments do not coincide well with the learner’s self-assessments.  D’Mello 
(in press) reviewed interobserver reliability in affective computing studies and found an average kappa 
of 0.39 indicating only fair agreement between observers (based on Landis & Koch, 1977). Graesser, 
McDaniel, Chipman, Witherspoon, D’Mello, and Gholson (2006) found only slight agreement 
(kappa=0.12) between learners’ self-assessments of affect and the judgments of trained judges. To 
address validity of observations, Hintze (2005) recommends evaluating whether the data gathered on 
learner states correlate with other known measures of the construct being observed, whether they can 
predict future behavior, whether they can discriminate between groups of known status, and whether 
they are sensitive to changes in the learning environment. D’Mello, Duckworth, and Dieterle (under 
review) suggest that advanced, automated, analytic measures need to establish predictive validity, for 
example the ability to predict outcomes such as GPA or college graduation, and to establish external 
validity or generalizability to new students with different demographics. Ocumpaugh, Baker, Gowda, 
Heffernan, and Heffernan (2014) found that automated detectors of affect trained on a population of 
students from one demographic grouping did not generalize well to populations drawn from other 
groupings. They suggest that affective states may be susceptible to cultural variation and recommend 
verifying population validity of automated measures before applying them at scale. 

Improving engagement. In order to improve student engagement levels in learning activities, it is 
necessary not only to detect disengagement, but to understand the causes well enough to be able to 
design corrective responses. Fredericks et al. (2004) find that engagement is higher in classrooms with 
supportive teachers and peers, and when students are presented challenging and authentic tasks, 
structure, and choice in learning activities. As the use of technology for delivering instruction has grown, 
opportunities have arisen to develop educational software and ITSs that adapt to individual student 
performance by altering the student’s trajectory through the content and activities. These efforts to 
automate the tailoring of instructional experiences to individual students remain relatively 
unsophisticated, but the eventual goal is affordable personalization of learning at scale. Researchers 

http://www.researchgate.net/profile/John_Hintze/publication/238546006_Psychometrics_of_Direct_Observation/links/54d388ab0cf2b0c6146da9d6.pdf
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have also been taking advantage of educational technology platforms to experiment with strategies to 
hold students’ attention and keep them engaged in the learning materials. D’Mello, Craig, Fike, and 
Graesser (2009) developed two different embodied pedagogical agents to respond to learners’ 
cognitive-affective states while working with the AutoTutor ITS. The “Supportive” AutoTutor is formal, 
empathetic, and encouraging, while the “Shakeup” AutoTutor is unconventional and attributes any 
detected emotions directly to the learner. Rebolledo Mendez, Du Boulay and Luckin (2005) added  
motivational elements to the Ecolab ITS and found that learners receiving affective feedback that varied 
according to the perceived cause of demotivation performed better than those receiving only cognitive 
feedback on their performance.  Arroyo, Woolf, Royer, and Tai (2009) investigated the reaction of 
female students to the gender of an embedded pedagogical agent providing affective feedback in 
Wayang Outpost, an adaptive software program teaching math. They found that female learners 
exposed to embedded male “learning companions” showed more positive emotions, attitudes and 
learning than those exposed to pedagogical agents that provided the same feedback with a female 
voice. 

If automated detectors of engagement and affect can be built into the software itself, the possibility 
arises of real-time automated responsiveness to the student’s emotional state as well as her academic 
performance. Given the substantial programming and instructional design resources required to build 
detectors and adaptiveness into any one software program, the question arises as to whether this 
strategy is economically viable within the price range generally tolerated for educational software. If 
such adaptive and responsive software is to be widely affordable to schools, the most cost-effective 
development strategies must be adopted and they must be applied to software programs or ITSs used at 
scale. Cost-effective strategies in this context would be those in which the least amount of resources are 
used to develop responsive ITSs that lead to the greatest improvement in student learning. 

Assessing costs of detectors of engagement and affect. The standard methodology for estimating costs 
for the purposes of economic evaluations of educational interventions is the “ingredients method” 
developed by Levin (1975) and further refined by Levin and McEwan (2001). This approach estimates the 
opportunity cost of all resource components required to implement the intervention. It has been 
applied to a wide range of educational interventions including computer-assisted instruction (Levin & 
Woo, 1981; Levin, Glass, & Meister, 1987), blended learning programs (Hollands, 2012) and massive 
open online courses (Hollands & Tirthali, 2014). We set out to test the hypothesis that developing 
automated detectors of affect and engagement requires a high level of investment but that, if they can 
be applied at scale to the log files of many learners, they will produce and process observation data at a 
lower cost per observation label than more traditional observation methods.  Large datasets of 
observation labels aligned to student activity and performance in the learning environment will be 
invaluable in the development of adaptive and responsive software.  

We applied the ingredients approach to estimate the costs of developing automated detectors of affect 
and engagement and to apply the detectors to student log files. We compared these costs with the costs 
of collecting learner engagement and affect data using more traditional observation methods. The four 
methods we compared are: classroom observations using pen and paper observation protocols; 
classroom observations using a smartphone to record observations; video-taping learners and analyzing 
the video ex-post; and automated detectors applied to educational software user log files.  We also 
consider the “accuracy” of the observation data. Because it is difficult to establish ground truth for 
observations of engagement and affect, interrater agreement, which assesses reliability, usually serves 
as a proxy for validity. We report coefficient kappa where available. We compare the four methods with 
respect to overall cost of observation studies, cost per student, cost per hour of observation, and cost 

http://cbcse.org/wordpress/wp-content/uploads/2013/05/Levin1975_CEA-in-Evaluation-Research.pdf
http://cbcse.org/wordpress/wp-content/uploads/2013/05/Levin-and-Woo-1981.pdf
http://cbcse.org/wordpress/wp-content/uploads/2013/05/Levin-and-Woo-1981.pdf
http://cbcse.org/wordpress/wp-content/uploads/2013/02/1987-Levin-Computer-Assisted-Instruction.pdf
http://cbcse.org/wordpress/wp-content/uploads/2013/09/2012-Hollands-CEA-to-evaluate-School-of-one.pdf
http://www.irrodl.org/index.php/irrodl/article/view/1901
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per “observation label,” where a label is defined as a single record of engagement or affect. In all cases 
but one the learners were observed while using computer-based educational programs.  

 
Methods 
 

We first reviewed the literature on learner engagement and affect to assess what methods are 
commonly used for detecting learner states in educational settings. We determined that the most 
ubiquitous methods are classroom observations recorded using pen and paper, a smartphone, a tablet, 
or a computer. Video analysis is also fairly common. Physiological detectors are used rarely and most 
often in lab situations rather than in typical classrooms due to their high costs and the difficulty of 
transporting and setting up the equipment in the field. Most recently, there has been a growing use of 
automated detectors applied to the log files generated when learners engage with computer software.  

Selecting observation studies 
For each of the most common observation methods, we aimed to investigate the costs of implementing 
at least two studies of learner affect or engagement in order to assess the potential variability in 
implementation costs. Our selection criteria for studies to include were:  

i) the study collected data on regular learners; 
ii) the data collected included records of learner engagement and/or affective state at intervals 

of 60 seconds or less;  
iii) the study was recent enough (i.e., not more than 10-12 years old) so that we could 

interview the researchers and reasonably expect them to recall the details of 
implementation to allow for acceptable accuracy in our cost estimations. 

We focused on real studies in which the observation method was implemented so that we could tie the 
resource requirements to the number of students observed and the amount of data collected. The 
studies we selected and the observation codes used in each case are summarized in Table 1.  

Identifying ingredients 
We followed the methods laid out by Levin and McEwan (2001) to estimate the costs of educational 
interventions. Levin and McEwan’s ingredients approach requires the identification of all resources 
utilized in the implementation of an intervention and an accounting of their opportunity costs. The 
opportunity cost of a resource is its value as estimated by the foregone next best alternative use, which 
is typically represented by a market price. Note that the costs of implementing a study are therefore 
different from how a study is financed as many costs are not directly funded. The aim of our cost 
analyses was to estimate the cost of replicating the specific implementation of each study in order to 
collect the quantity and quality of observation data reported. In situations where the study took place in 
a regularly scheduled classroom setting, we considered only costs above and beyond the resources that 
contributed to the regular instructional activities. That is, we identified the incremental costs. For 
example, we did not count the costs of the classroom facility or the classroom teacher’s time because 
these costs would be incurred regardless of the study’s existence.  

We first used information from the methods sections of each of the published studies to develop a list of 
ingredients (personnel, materials and equipment, facilities, or other inputs) required to implement the 
method of collecting observation data. We included any resources required to customize the 
observation instrument to the learning environment being studied, to train the observers, to set up 
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logistics for the observations, to collect and to summarize the data. Subsequently, for each study we 
contacted one or more of the authors to invite their participation in an interview to provide further 
details on implementation of the study. Upon receipt of a positive response, we created an extensive 
customized interview protocol for each person to confirm details we had already gleaned and to gather 
further information on personnel qualifications, work experience, and amount of effort. Personnel 
typically account for 70%-80% of the costs of educational interventions (Levin, 1975) and therefore 
merit particular attention. We also asked about types of equipment, materials, and facilities utilized and 
the amount of use for the study implementation, transportation needs, and so on. We included 
questions about the quality and quantity of the data collected over the reported periods of observation. 
We focused only on the resources required to collect the engagement and affect data and to process 
them to the point of presentation in table format. In instances where the first interviewee was not able 
to answer all of our questions, we interviewed additional members of the study team. 

We conducted a total of 15 interviews with 11 different people, each listed in Appendix A. Nine of the 
interviewees were researchers or computer programmers and two were information technology 
personnel who could help us assess the technology resource requirements. Interviews were conducted 
face-to-face, by telephone, or by Skype between October 2014 and January 2015. Interviews ranged in 
length from 35 to 128 minutes and averaged 71 minutes in length. Most interviews were recorded. 
Follow-up questions or clarifications were answered via email. At the end of the study this report was 
circulated to the interviewees for comment. 

Information from the interviews was used to finalize our ingredients list for each study implementation. 
We calculated the amount of each ingredient used and, based on our qualitative descriptions of each 
item, we identified a national average U.S. price for the ingredient sourced from a publicly available 
survey. National prices were used in order to make the costs directly comparable across studies. All 
prices were converted to 2014 dollars for consistency. Each ingredient, the amount used to implement 
the study, and the price were entered into the CBCSE Cost Tool Kit, a set of Excel spreadsheets 
developed for the purpose of estimating costs of educational programs (an online version of this tool kit 
is available at http://www.cbcsecosttoolkit.org/). The studies were all less than one year in duration so 
no discounting was necessary. A total cost of each implementation was calculated and divided by the 
number of students observed, the number of hours of observation time, and the number of observation 
labels collected. 

For personnel ingredients we obtained national average salaries from surveys such as those issued by 
College and University Professional Association for Human Resources (CUPA-HR). Using the amount of 
time spent on the study as reported by interviewees, we calculated the appropriate percentage of total 
salary and added benefits using national average rates published by the Bureau of Labor Statistics. For 
materials and equipment costs such as computers, software, video recorders, and smartphones, we 
found market prices from national online distributors. Costs of durable items were spread over the 
number of years they are typically expected to last, for example, three years for computers. We 
calculated the costs of each item by multiplying the price by the fraction of available time it was used.  
Travel costs for observers and other researchers included the amount of time spent traveling (calculated 
as personnel time as above) to and from observation sites from a local residence or hotel, and costs of 
transportation. Car mileage allowance was obtained from the Internal Revenue Service. In situations 
where a trainer or observer traveled by air, we used an average U.S. domestic itinerary fare for flights 
from the Bureau of Transportation Statistics. We used hotel and per diem rates published by the 
General Services Administration.  

http://www.cbcsecosttoolkit.org/
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Associating costs with ingredients 
Current market rates such as national average rental rates are not typically available for school and 
university buildings so for facilities prices we used construction costs adjusted for costs of land, 
development, furnishings, and equipment, and amortized over 30 years. For example, for postsecondary 
office space, we found a national average construction cost per square foot in the Annual Construction 
Report published by the College Planning and Management magazine. We uprated this cost per square 
foot by 33% to account for costs of land, development, furnishings, and equipment (based on College 
Planning and Management magazine, 2011) and amortized the costs over 30 years to obtain the 
equivalent of a market price per square foot per year. We asked interviewees to estimate the size of the 
office spaces they used for the study and the amount of use for relevant portions of the study. The cost 
of the space was obtained by multiplying the price per square foot per year by the number of square 
feet, and the fraction of time used per year. We used an interest rate of 3% for amortization, 
approximating the yield of 30-year U.S. Treasury Bonds.  

Interobserver agreement as a proxy for accuracy of observations 
Most studies we identified provided a report of interobserver agreement in the form of kappa statistics 
(see Cohen, 1960). According to Landis and Koch (1977), a kappa of 0.41 – 0.60 indicates moderate 
agreement between observers, a kappa of 0.61 – 0.80 indicates substantial agreement, and above this 
level is considered near perfect agreement. For the classroom observation studies we reviewed, the 
kappa statistics report the agreement levels between two observers. Agreement levels are expected to 
vary depending on the observer’s amount of training and practice, and also whether observers stop 
periodically to discuss their judgments (see D’Mello in press). For the study that involved peer 
judgments of a learner’s affective state from video, the kappa statistic reported agreement with the 
learners’ self-assessments. As discussed earlier, agreement between self and an observer is invariably 
low. For the studies involving automated detectors, the kappas reported for the detectors indicate 
agreement between computer-based judgments and human coder judgments. The studies we analyzed 
differ in the specific constructs that were coded and it is important to note that some learner states are 
harder than others to judge accurately (Lehman, Matthews, D’Mello, & Person, 2008). For example, 
D’Mello (personal communication, July 20th, 2015) observes that differentiating engagement from a 
neutral state is “an extremely difficult discrimination.” Among the studies in our sample, this distinction 
was attempted only by Graesser et al. and D’Mello et al. when assessing learner states from video. In 
Table 2 we show the average kappa across the various constructs observed in each study. 
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Table 1. Summary of Studies and Coding Options 

Method and study Learning activity Coding options Duration of each 
coding interval  

Frequency of coding  

Classroom observation using pen and paper   
Hintze & Matthews, 2004 Math and ELA Behavior: on/off task (+/-) Momentary Every 15 secs 
 
Gobel, 2008 DynEd 

 

 
Behavior: on-task, on-task teacher/peer help, off-task non-
software, off-task software help, off-task inactive, off-task 
gaming 

 
60 seconds 

 
Every 60 secs 

Classroom observation using smartphone application (HART)   
Ocumpaugh et al., 2011 Reasoning Mind 

 
 
 
 

Behavior: on task, on task conversation, off task, gaming, 
other   
Affect: boredom, confusion, delight, engaged concentration, 
frustration, other 
 

20 seconds Every 20 secs 

Pardos et al., 2013 ASSISTments 
 
 
 

Behavior: off-task, gaming, other 
Affect: boredom, frustration, engaged concentration, 
confusion 
 

20 seconds Every 20 secs 

Paquette et al., 2014 Inq-ITS 
 

Affect: boredom, frustration, engaged concentration, 
confusion, "?" (other) 

20 seconds Every 20 secs 

Video analysis   
Self-judgments  
Graesser et al., 2006 
 

AutoTutor 
 
 

Affect: boredom, confusion, delight, flow, frustration, neutral, 
surprise 
 

Momentary Every 20 secs 

Peer judgments  
Graesser et al., 2006 
 

AutoTutor 
 
 

Affect: boredom, confusion, delight, flow, frustration, neutral, 
surprise 
 

Momentary Every 20 secs 

Trained judge judgments 
Graesser et al., 2006 
 

AutoTutor 
 
 

Affect: boredom, confusion, delight, flow, frustration, neutral, 
surprise 
 

Momentary Every 20 secs 

Teacher judgments  
D’Mello et al., 2008   

AutoTutor 
 

Affect: boredom, confusion, delight, flow, frustration, neutral, 
surprise 

Momentary Every 20 secs 

Automated detectors   
Paquette et al., 2014 Inq-ITS  

 
Affect:  boredom, frustration, engaged concentration, 
confusion 

20 seconds Every 20 secs 

 
Pardos et al., 2013; San Pedro 
et al.,  2013 

ASSISTments  
 
 

 
Behavior: off-task, gaming the system;  
Affect: boredom, confusion, engaged concentration, 
frustration 

 
20 seconds 

 
Every 20 secs 
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Results 
Table 2 summarizes our estimated cost results for each method of collecting engagement and/or affect 
data. We review our findings regarding each study in detail below and provide tables showing 
ingredients and costs for each study individually in Appendix B. 

Classroom observations using pen and paper  
We estimated costs for two different studies in which data on student engagement were collected 
through classroom observations using pen and paper protocols. In the first study, fifth grade students 
were observed in math and English language arts classes. In the second study, college students were 
observed using DynEd intelligent tutoring software to learn English. 

Observing Math and ELA: The generalizability of systematic direct observations across time and 
setting: a preliminary investigation of the psychometrics of behavioral observation (Hintze & 
Matthews, 2004). The purpose of this study was to assess the reliability and validity of systematic direct 
observation across time and setting. Fourteen fifth-grade students in the north east U.S. were observed 
by graduate psychology students during math and English language arts classes and were coded as 
either on-task or off-task. The observers used a modified version of Shapiro’s (1996) Behavioral 
Observation of Students in Schools. During each of 18 one-hour observation sessions, 3-4 students were 
observed, each for a 15-minute stretch using momentary time samples at 15-second intervals, yielding 
60 data points per student over the 15 minutes. Each student was observed twice per day on each of 9 
days. Five observers collectively spent 63 hours of observation time and recorded student on/off task 
behavior for a total of 245 fifteen-minute sessions (some students were absent for a few sessions). Fifty-
five of the observation sessions were conducted by two observers to allow for inter-rater reliability 
checks. Kappa indices ranged from 0.31 to 0.93 for the 55 sessions, with an average of 0.65.  

Ingredients used for gathering observation data in the Hintze and Matthews (2004) study and associated 
costs are shown in Table B1. The observers’ time accounted for 60% of the costs and personnel time for 
training accounted for another 35%. Costs per on/off task label collected every 15 seconds were 42 
cents, costs per hour of observation were $100, and costs per student observed were $449. 

Observing DynEd: Student off-task behavior and motivation in the CALL classroom (Gobel, 2008). In 
this study students were observed while using DynEd intelligent tutoring software to learn English in a 
computer-assisted language learning (CALL) classroom at a large, private university in Japan. The 
purpose of the study was to determine whether students’ on-task or off-task behavior correlated with 
gains on listening and reading tests. A total of 30 mostly male students, selected at random from three 
classes of 50 students each, were observed and coded using 6 categories of on-task or off-task behavior 
while using the software in regularly scheduled sessions over a period of 4 weeks. The categories were: 
on-task, on-task teacher/peer help, off-task non-software, off-task software help, off-task inactive, and 
off-task gaming. During each class session, 10 students were observed sequentially for one minute at a 
time over a period of 60 minutes. The observer used pen and paper to record on a grid judgments 
regarding student engagement. Assessments were based on a visual observation of the student and also 
by viewing the student’s activity in the DynEd software via a master console that could access any 
computer in the CALL classroom at any time. A total of 720 one-minute observations were conducted 
over 12 class sessions. As only one observer conducted the study, no inter-rater reliability data are 
available.
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 Table 2. Summary Table of Costs of Observation Methods 
Method and study Total cost Hrs of 

observation 
# of 

students 
observed 

Observed 
time per 
student 

Cost 
per 

student 

Cost per 
hour 

# of labels Cost per 
label 

Kappa 
index 

Classroom observation with pen and paper 

Hintze & Matthews, 2004 $6,286  63 14 270 mins $449  $100  15,120 $0.42  0.65 

Gobel, 2008 $5,302  12 30 24 mins $177  $442  720 $7.36  nm 

Classroom observation with smartphone application (HART) 

Ocumpaugh et al., 2011 $3,609  2 130 1.5 mins $28  $1,804  569 $6.34  0.68 

Pardos et al., 2013 $6,325  17 229 9 mins $28  $372  6,150 $1.03  0.79 

Paquette et al., 2014 $7,551  23 326 4.25 mins $23  $328  4,155 $1.82  0.64 

Video analysis 

Self-judgments  
Graesser et al., 2006 

$11,548  15 28 30 mins $412  $770  2,688 $4.30  na 

Peer judgments  
Graesser et al., 2006 

$11,548  15 28 30 mins $412  $770  2,688 $4.30  0.06* 

 
Trained judge judgments  
Graesser et al., 2006 

$15,621  15 28 30 mins $558  $1,041  2,688 $5.81  0.31 

Teacher judgments  
D’Mello et al., 2008  

$11,898  15 28 30 mins $425  $793  2,688 $4.43  0.12 

Automated detectors 

Paquette et al., 2014 $56,476  1,139 1,196 57 mins $47  $50  204,960 $0.28  0.35** 

Pardos et al. 2013, & San Pedro et al.,  
2013 

$87,576  19,511 3,747 625 mins $23  $4  7,023,776 $0.01  0.34** 

 
nm = not measured; na  = not applicable. *This kappa indicates agreement with self-judgments. ** These kappas indicate agreement between automated 
detector assessment and human coders.
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Ingredients used in the Gobel (2008) study and associated costs are shown in Table B2. The observer’s 
time accounted for 85% of the costs. Costs per on/off task label collected every 60 seconds were $7.36, 
costs per student were $177, and costs per hour of observation were $442. Costs per label and costs per 
hour were much higher than in the Hintze and Matthews (2004) study because the observer was a 
university professor as opposed to graduate students who were paid by the hour and received no 
benefits. Additionally, only one label was recorded per minute in the Gobel study compared with four 
per minute in the Hintze and Matthews study. If labels were collected every 15 seconds in the Gobel 
study, the costs per label would fall to $1.84. If a graduate student conducted the observations and 
collected four labels per minute, costs would fall to $1.15 per label. Costs per student were, however, 
lower for Gobel’s study because twice as many students were observed and each for less total time (24 
minutes vs. 270 minutes).  

Classroom observations using an electronic recording device 
We estimated observation costs for three studies in which data on student engagement and/or affect 
were collected through classroom observations using an electronic recording device. In the first study, 
elementary school students were engaged in the use of Reasoning Mind mathematics software; in the 
second study, middle school students were using another computer-based math program, ASSISTments; 
and in the third study, eighth-grade students were observed using Inq-ITS, an inquiry-based science 
software program. 

Observing Reasoning Mind: Field Observations of Engagement in Reasoning Mind (Ocumpaugh, 
Baker, Gaudino, Labrum, & Dezendorf, 2011). In this study, field observations were conducted to 
evaluate student engagement and affect while working on Reasoning Mind software. Reasoning Mind is 
a game and problem-solving based software package that teaches mathematics to elementary school 
students. Certified observers used BROMP to record student engagement and affective state. Behavior 
states coded were: on-task, on-task conversation, off-task, or gaming. Affective states coded were: 
boredom, confusion, delight, engaged concentration, or frustration. Students were observed in two 
classrooms from each of three schools in the Texas Gulf Coast region. Two schools were urban with 
around 25 students per class and one school was a suburban charter with approximately 15 students per 
class. The total number of students observed was 130. During each observation session the observer 
watched each student in the class sequentially for 20 seconds and recorded a judgment of affective 
state and of behavior state simultaneously at the end of the 20 seconds. Judgments were recorded using 
a smartphone application, the Human Affect Recording Tool (HART). If more than one behavior or 
affective state was observed during the 20 seconds, only the first was recorded. In situations that were 
ambiguous or if the student left the room, “Other” was recorded. Trainee coders were also present and 
inter-rater reliability recorded was kappa =0.58-0.72 for affect and kappa=0.63-0.79 for behavior. 
However, only the trainer data were included in the analysis. Accordingly, we did not include the 
trainees in our cost estimate. The researchers found that observed students were on task 82% of the 
time and in a state of engaged concentration 71% of the time.  

Ingredients used in this study and associated costs are shown in Table B3. Over half of the costs were 
attributable to training the observer in the use of BROMP. The observer’s observation time accounted 
for 25% of the costs, and costs of air travel, hotel, and per diem accounted for 23%. Costs per label (one 
affect and one behavior label collected every 20 seconds) were $6.34. Observations labeled “Other” 
were not included in this estimate. Costs per student were low at $28 as 130 students were each 
observed for a total of only 1.5 minutes, but costs per hour of observation time were very high at $1,804 
because all costs were spread over just 2 hours of total observation time for the study. 
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BROMP training costs are further broken down in Table B4. Training in how to assess student affect and 
behavior and record it with the HART application lasts two days and is usually conducted one-on-one 
until an acceptable level of interobserver agreement is attained between trainer and trainee during 
practice observations. Training often involves travel costs for the trainer. In our analyses we attribute all 
costs of BROMP training to the one study being analyzed. However, if the observers used BROMP in 
multiple observation studies, the costs could be spread across the number of instances.  

Observing ASSISTments: Affective states and state tests: Investigating how affect throughout the 
school year predicts end of year learning outcomes. (Pardos, Baker, San Pedro, Gowda, & Gowda, 
2013). The purpose of this study was to analyze student behavior when using ASSISTments, a web-based 
tutoring platform for 7th-12th grade mathematics, and to use these data to develop automated detectors 
of engagement and affect which could be used to predict end-of-year learning outcomes. Here we 
address only initial collection of observation data. We report on the development of automated 
detectors for ASSISTments in a later section. Using the BROMP method, field observations of student 
affect and engagement were conducted by two trained observers over three days with 229 students at 
an urban middle school in Massachusetts. Judgments were recorded using HART. Students in the 
classroom were observed serially for 20-second intervals and codes were recorded for behavior (off-task 
behavior, gaming, other behavior) and affective state (boredom, frustration, engaged concentration, or 
confusion). Engaged concentration was observed 65% of the time and off-task behavior 22% of the time. 
Inter-rater reliability was assessed for 51 of the total 6,150 coding instances and was high for affect 
codes (kappa=0.86) and acceptable for behavior codes (kappa=0.72). 

Ingredients used in this study and associated costs are shown in Table B5. As with the Ocumpaugh et al. 
(2011) study, over half of the costs (59% in this case) were attributable to training the observers in the 
use of BROMP. The remaining costs were almost all attributable to observation time. The total 
observation costs for this study ($6,325) were almost twice those for the Ocumpaugh et al. study 
($3,609) because two trained observers collected the data over three days rather than one observer 
working over three days. The number of students observed in Pardos et al. (2013) was almost twice the 
number observed by Ocumpaugh et al. and each one was observed for a total of nine minutes rather 
than 1.5 minutes. The costs per student were the same in both studies at $28. However, the costs per 
label (one affect and one behavior label collected every 20 seconds) were six times lower in the Pardos 
et al. study at $1.03 and the costs per hour of observation were almost five times lower at $372. These 
two results reflect economies of scale as the costs of training are spread over more data points and 
more hours of observation. Each of the two observers was able to collect over five times the amount of 
data as the one person observing students using Reasoning Mind. This increase in efficiency may be 
partially explained by the fact that students observed while using ASSISTments were all located in one 
school while the Reasoning Mind observer needed to travel between three schools. 

Observing Inq-ITS: Sensor-free affect detection for a simulation-based science inquiry learning 
environment (Paquette, Baker, San Pedro, Gobert, Rossi, Nakama, & Kauffman-Rogoff, 2014). In this 
study four expert field observers coded student affective states while the students used Inq-ITS, a web-
based, inquiry-oriented environment offering interactive simulations in physical, life, and earth science 
topics. Observations were conducted across 11 eighth-grade classrooms in three schools in 
Massachusetts. The observers used the BROMP method and entered codes in a Google Android device 
using the HART application. Observers collected 4,155 affect labels. Coding options were: boredom, 
frustration, engaged concentration, confusion, or “?” for indeterminate or other. Of these 4,155 labels, 
22% were coded as engaged concentration, 3% as boredom, and 1% each as confusion and frustration. 
Interobserver agreement was assessed for three pairs of observers and an average kappa of 0.64 was 
reported. 

http://www.columbia.edu/~rsb2162/aied2013_submission_37.pdf
http://www.columbia.edu/~rsb2162/aied2013_submission_37.pdf
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Ingredients used in this study and associated costs are shown in Table B6. Almost 70% of the costs were 
attributable to training the four observers in the use of BROMP and 29% to their observation time. Two 
observers conducted observations over two days and the other two only collected data for one day 
each. Costs per label (one affect label collected every 20 seconds) were $1.82. This is higher than the 
cost per label for the ASSISTments observations partly because only one affect label was collected every 
20 seconds whereas Pardos et al. (2013) collected both an affect and an engagement label every 20 
seconds. Additionally, the four observers of ASSISTments traveled between three schools and were able 
to collect fewer data points than two observers working intensively at one school. Furthermore, because 
of relatively high training costs, the use of four trained observers each averaging 1.5 days of 
observations was less efficient than two trained observers each conducting three days of observation. 
Costs per hour of observation were $328 and costs per student were $23 reflecting some economies of 
scale as more students were observed over more hours than in the studies of ASSISTments and 
Reasoning Mind. 

Video analysis 
To estimate costs of assessing student affect using video analysis, we used two related studies that 
compared the reliability of affect judgments made by learners themselves, by peers, by teachers, and by 
trained judges. Judgments were made by viewing a collection of half-hour long video-tapes of each of 28 
college-level learners interacting with AutoTutor, a software program that teaches computer literacy 
topics. While we accounted for costs of the lab and equipment used for this study as it was conducted 
outside of regular classroom time, we did not assign any incremental value to the students’ time as 
participation in such studies was required as part of their degree programs. The learners’ faces were 
video-taped and their screen activities were recorded using Camtasia screen-capture software. 
Subsequently, one of the following affective states was coded every 20 seconds: boredom, confusion, 
delight, flow, frustration, neutral, or surprise. In total, among the 28 students, 2,688 coded states were 
recorded. In the first study (Graesser et al., 2006), self-judgments were compared with those of peers 
and trained judges. In the second study (D’Mello, Taylor, et al., 2008), self-judgments were compared to 
those of master teachers. 

Observing AutoTutor: Detection of emotions during learning with AutoTutor (Graesser, McDaniel, 
Chipman, Witherspoon, D’Mello, & Gholson, 2006). In this study, self-judgments of the AutoTutor 
learners’ affective states were compared to the judgments of peers and of trained judges. The 
AutoTutor learners were asked to review the video-tapes of themselves and code their own affective 
states at 20-second intervals of the replayed video. Subsequently, the learners were each asked to judge 
the affective states of a video-taped peer, also at 20-second intervals. Finally, a pair of judges trained in 
the Facial Action Coding System (Ekman & Friesen, 1976; 1978) each coded the videos. Graesser et al. 
found the highest agreement between the two trained judges (kappa = 0.31) but that agreement 
between self-judgments and trained judge judgments was low, averaging kappa = 0.12. Self-judgments 
almost never matched with peer judgments (kappa = 0.06). 
 
Ingredients used in this study and associated costs are shown in Table B7. In order to compare the 
efficiency of different judges, we first estimated the data collection costs that applied to all situations 
equally and then added the costs associated with each set of affect judges. Data collection costs 
accounted for 81% of the total costs when self or peer judgments were used and 60% of the costs in the 
case of trained judges. Costs of self-judgments and peer judgments were the same as the time and 
personnel involvement were equivalent in the two situations. Total costs for data collection and self- or 
peer judgments were $412 per student observed, $770 per hour of observation time, or $4.30 per affect 
label assigned every 20 seconds. Total costs when trained judges were involved were higher due to the 
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time spent on FACS training and the greater cost of the trained observers’ time: $558 per student 
observed, $1,041 per hour of observation time, or $5.81 per affect label. 
 
Observing AutoTutor: Self versus teacher judgments of learner emotions during a tutoring session 
with AutoTutor (D’Mello, Taylor, Davidson, & Graesser, 2008). In this study, self-judgments of the 
AutoTutor learners’ affective states were compared to the judgments of two middle school master 
teachers. The teachers coded only half of each video due to time constraints. The researchers compared 
the inter-judge reliability for the two teachers and for each teacher against the student self-judgments. 
They found that the teacher judgments did not match well with each other (kappa = 0.123), and 
matched even less well with the students’ self-judgments (kappa Teacher 1-student = 0.076; kappa Teacher 2-student 
= 0.027). They concluded that even accomplished teachers do not accurately assess the affective states 
of learners. 

Ingredients used in this study and associated costs are also shown in Table B7. Data collection costs 
accounted for 78% of the total costs when teacher judgments were used. As before, total costs for data 
collection and self-judgments were $412 per student observed, $770 per hour of observation time, or 
$4.30 per affect label assigned every 20 seconds. Total costs when teachers were involved were higher 
due to the greater costs of their time: $425 per student observed, $793 per hour of observation time, or 
$4.43 per affect label. However, because the teachers did not undergo FACS training, the costs were 
lower than for trained judges. 

Automated detectors of engagement and affect  
We investigated the costs of developing automated detectors of affect and engagement for 
ASSISTments based on Pardos et al. (2013) and of developing automated detectors of affect for Inq-ITS 
based on Paquette et al. (2014). In the case of Inq-ITS, four detectors were built to detect each of the 
following affective states: boredom, frustration, engaged concentration, and confusion. For 
ASSISTments, six detectors were built.  Four of these detected the affective states of boredom, 
frustration, engaged concentration, and confusion. Two detected behavioral states: off-task, and gaming 
the system. We also include the costs of applying the detectors to new log files based on San Pedro, 
Baker, Bowers, and Heffernan (2013) to render the equivalent of an observation study in which the data 
are collected and summarized in table format. This allows comparability of the costs of observation with 
those of the other methods we analyzed. 

The first step in the development of automated detectors is to collect in-person observation labels 
either through direct classroom observations or video analysis. Interviewees estimated that several 
hundred observation labels are needed to develop a detector, for example, Sujith Gowda suggested 800 
or more to build an ASSISTments affect detector. This first step is documented above in the section 
titled Classroom observations using an electronic recording device. In this section we address the 
second and third steps of building the detectors and applying them to new data. Costs of all steps were 
combined for a total cost for the development and application of automated detectors of affect and 
engagement. 

Automated detectors of ASSISTments: Affective states and state tests: Investigating how affect 
throughout the school year predicts end of year learning outcomes. (Pardos, Baker, San Pedro, Gowda, 
& Gowda, 2013); Predicting college enrollment from student interaction with an intelligent tutoring 
system in middle school. (San Pedro, Baker, Bowers, & Heffernan, 2013). Pardos et al. describe the 
process of building the six detectors used for assessing student affect and engagement while working 
with ASSISTments. San Pedro et al. describe how the detectors were applied to the action log files of 
3,747 middle school students from three districts in New England. The students used ASSISTments 

http://www.educationaldatamining.org/EDM2013/papers/rn_paper_26.pdf
http://www.educationaldatamining.org/EDM2013/papers/rn_paper_26.pdf
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systematically throughout the school year and log files were collected mostly from school years 2004-
2005 through 2006-2007, with a few from the following two school years. Pardos at al. reported kappa 
statistics for the six detectors which averaged 0.344. This represents the degree to which the 
engagement and affect labels assigned by the machine-learning model matched the labels assigned by 
the human coders in the initial data collection phase. 

Ingredients and their associated costs for the data collection step were reported in Table B5 as discussed 
above. Table B8 reports the ingredients and associated costs for the second step of building the 
detectors. These amounted to $74,620. Personnel costs for programmers accounted for 90% of the 
costs of detector development. Adding together costs of the first and second steps, total costs to collect 
observation data and build the six detectors for ASSISTments were $80,950 or $13,490 per detector. 

To estimate the costs of applying the detectors to a new set of student log files to assess affect and 
engagement, we calculated the labor costs for ten days’ worth of a research programmer’s time and one 
hour per day of a supervising programmer’s time. This was based on Sujith Gowda’s estimate of 5-15 
days to apply detectors to new log files, depending on the size of the files. Adding costs of facilities, 
equipment, and materials, the costs for applying the detectors to new log files were $6,630, bringing the 
total costs of developing and applying the six detectors to $87,580.  

San Pedro reported that the total time logged for the 3,747 students was 19,510 hours (personal 
communication, April 2nd, 2015). With one affect and one engagement label assigned every 20 seconds, 
over 7 million observation labels were obtained from the log files. The cost of “observing” each student 
for affect and engagement was therefore $23, the cost per hour of observation was $4, and the cost per 
observation label was just over a penny. Clearly, while the detectors were costly to develop initially, the 
ease with which they can be applied at scale renders the costs per label and costs per hour of 
observation significantly lower than other data collection methods. This illustrates the economies of 
scale achieved in applying the detectors to massive amounts of data. Costs per student were around the 
same as for collecting observation data using HART, but the automated detectors “observed” 625 
minutes on average per student while the HART observations observed students for between 1.5 and 9 
minutes.  

In calendar year 2014, 61,609 students used ASSISTments, logging a total of 14,757,331 hours or 240 
hours per student (Yutao Wang, personal communication, April 5th, 2015). If the detectors were applied 
to all these log files and we assume that the cost of applying the detectors to this amount of data 
increased ten-fold from $6,630 to $66,300 (conservatively allowing for around 3 months of data 
processing time), the costs of observing each student for engagement and affect would fall to around 
$2.40 per student and a penny per hour. Over five billion affect and engagement labels would be 
assigned at a cost of less than one hundredth of a penny per label.  

Automated detectors of Inq-ITS: Sensor-free affect detection for a simulation-based science inquiry 
learning environment (Paquette, Baker, San Pedro, Gobert, Rossi, Nakama, & Kauffman-Rogoff, 2014). 
The collection of in-person observation data on student affect while using Inq-ITS was described earlier. 
Subsequently, multiple computer programmers were involved in developing the automated detectors. 
Their tasks included cleaning the data files, synchronizing the observation labels with the Inq-ITS log files 
so that affect labels could be matched to user keystroke patterns, identifying patterns in the data that 
appeared to indicate a particular affective state (“feature engineering”), writing the machine learning 
algorithms to identify and count the instances of each pattern in the log files, and finally applying the 
detectors to new log file data to obtain machine-generated predictions of students’ affective state based 
on their keystrokes. 
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Ingredients and their associated costs for the data collection step were reported in Table B6 as discussed 
above. Table B9 reports the ingredients and associated costs for the second step of building the 
detectors. Personnel costs accounted for 98% of the costs of detector development, with the 
programmer who built the detectors accounting for the largest share of costs. Added together, the costs 
to collect observation data and to build the four detectors of affect for Inq-ITS were $49,850 or $12,460 
per detector.  

Paquette et al. (2014) did not report a specific application of the detectors to new log files so we 
calculated cost per student and cost per label by assuming that the detectors could be applied to all Inq-
ITS learner log files collected over two academic years (2012-13 and 2013-14). Over these two years, 
1,196 students used Inq-ITS for a total of 68,320 minutes or 1,139 hours - just under an hour per student 
(Ryan Baker, personal communication March 11th, 2015). Applying the affect detectors to these log files 
at 20-second intervals would yield almost 205,000 observation labels (68,320 minutes x three 20-second 
intervals per minute = 204,960 labels). We assumed that the costs of applying the Inq-ITS detectors to 
new log files were the same as the costs estimated for applying the ASSISTments detectors to new log 
files ($6,630). This assumption is conservative as it is probable that the costs would be lower given the 
smaller amount of data. Under this assumption, the total costs of developing and applying the Inq-ITS 
detectors were $56,480. The costs of “observing” each student for affect were $47, the costs per hour of 
observation were $50, and the costs per observation label were 28 cents. In terms of accuracy, Paquette 
at al. report an average kappa statistic across the four detectors of 0.354. This represents the degree to 
which the affect labels assigned by the machine-learning model matched the affect labels assigned by 
the human coders in the initial data collection phase. 

Discussion and recommendations 
 

We reported cost estimates for each of four methods of collecting observation data on student affect 
and engagement: classroom observations recorded using a pen and paper protocol, classroom 
observations recorded using a smartphone application, video analysis, and automated detectors. We 
provide several different cost metrics: overall cost of the study, cost per affect or engagement label 
assigned, cost per student observed, and cost per hour of observation. Results indicated that costs of 
collecting observation data on learner engagement and affect vary widely from as little as a penny per 
observation label when using automated detectors applied to ASSISTments log files, to as much as $7.36 
per label for a classroom observation using a pen and paper protocol. Costs per student ranged from 
$23 for automated detectors applied to ASSISTments log files or a classroom observation using HART, to 
$558 per student when trained judges analyzed videos of learners. Costs per hour ranged from $4 when 
using automated detectors applied to ASSISTments log files to $1,804 for a classroom observation 
recorded using a smartphone application (although this particular study appeared to be an outlier as 
explained below). Overall study costs ranged from a few thousand dollars for classroom observations to 
almost $88,000 for the development of automated detectors for ASSISTments and their application to 
ASSISTments log files. 

Within each of the four observation methods we considered, results varied substantially depending on 
factors such as the number of students and schools involved, the total observation time planned, the 
effort required to develop an observation instrument, the amount of training required for the observers, 
the types of personnel involved, and whether travel to the observation site was necessary.  
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One study that involved classroom observations with a pen and paper protocol (Hintze & Matthews, 
2004) yielded relatively low costs per label and low costs per hour of observation compared with other 
methods ($0.42 and $100 respectively). This was because graduate students collected the observation 
data, an existing observation protocol was used with only minor modifications, supervision 
requirements were negligible, training costs were fairly low because the students were trained together 
and for only half a day, and travel costs were minimal. However, because each learner was observed for 
a substantial amount of time (270 minutes), costs per student were the second highest among all 
studies at $449. The second study we analyzed that involved classroom observations with a pen and 
paper protocol (Gobel, 2008) yielded the highest cost per observation label ($7.36). This was primarily 
because it involved a professor conducting the observation and observation labels were assigned only 
every 60 seconds rather than every 15 or 20 seconds as in the other studies we analyzed.  

We analyzed three studies in which classroom observations were conducted with a smartphone 
application (HART) being used to record the observation labels. Costs per student were similar across 
the three studies ($23-$28) and among the lowest across all methods because students were observed 
for only a few minutes each in total. The Ocumpaugh et al. (2011) study yielded a high cost per label 
($6.34) and the highest cost per hour of observation across all methods ($1,804) because it collected the 
fewest labels and total observation time was the lowest at only 2 hours. Given the significant costs of 
BROMP training and air travel, this study suffered from diseconomies of scale. The other two studies in 
this category, Pardos et al. (2013) and Paquette et al. (2014), collected several thousand observation 
labels each over 17-23 hours and yielded among the lowest costs per label ($1.03 and $1.82 
respectively), and per hour of observation ($372 and $328 respectively). Costs per label for Paquette et 
al. were 75% higher primarily because for each coding interval only one label was assigned for affect 
while Pardos et al. assigned one for affect and one for behavior at each coding interval, doubling the 
yield of labels. 

Studies that involved classroom observations as opposed to video analysis or automated detectors were 
the lowest cost overall, ranging from around $3,500-$7,500. Inter-rater reliability was more or less 
comparable for observations recorded using a pen and paper protocol and those recorded using a 
smartphone application. All of them fell into Landis and Koch’s (1977) “substantial agreement” range, 
with one achieving a kappa at the top of this range, most likely because the observers were more 
experienced in the use of the observation protocol.  

The studies that involved video analysis were more costly overall than the classroom observations, 
ranging between $11,500 and $15,500, with costs increasing as judgments of affect were made by 
teachers instead of students and then by trained judges instead of teachers. The costs per label were in 
the middle of the range across all methods but the costs per student and costs per hour of observation 
were close to the highest as relatively few students were observed. The inter-rater reliability for each of 
the video analysis studies was low, falling into Landis and Koch’s (1977) “slight” or “fair” agreement 
range. This may be partially explained by the fact that these studies included a “neutral” construct 
which, according to D’Mello (personal communication, July 20th, 2015), is hard to assess accurately. 
Other studies involving video analysis have reported substantial interobserver agreement for constructs 
that are easier to assess such as happiness, frustration, and anxiety (see Lehman et al. 2008). 

Developing automated detectors of affect and engagement requires a significant upfront investment. 
Our cost results were reasonably consistent across two sets of detectors developed for two different 
ITSs: $13,490 for each of six detectors for ASSISTments and $12,460 for each of four detectors for Inq-
ITS. Applying the detectors to student log files costs several thousand dollars, comparable with the costs 
of the classroom observation studies we analyzed. However, given the ease with which the detectors 
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can be applied to many hours of log files for many students, they can yield several hundred thousand to 
several million observation labels at a cost of 1-28 cents per label, $23-$47 per student, and $4-$50 per 
hour, with the magnitude of cost being inversely related to the scale of application.  

While the low costs of applying automated detectors at scale are clearly attractive, accuracy of these 
detectors is less compelling. Agreement between the machine-assigned labels and the human coder 
labels averaged around 0.35 across all detectors, falling into Landis & Koch’s (1977) “fair agreement” 
range. One strategy we recommend trying in order to improve the detectors’ accuracy is to collect the 
initial observation data using two experienced observers who display a high level of interobserver 
agreement and subsequently only use the observation labels for which they show agreement to develop 
the automated detectors. Furthermore, given Hintze and Matthews’ (2004) suggestion that students 
need to be observed four times per day for 15 minutes over four weeks in order to assure that the 
assessment reflects the learner’s behavior in general, more extensive initial data collection per student 
should yield more reliable assessments of student affect and engagement while using an ITS. 
Additionally, given Ocumpaugh et al.’s (2014) finding that automated detectors developed using data 
from a population of students belonging to one demographic grouping did not generalize well to 
populations drawn from other groupings, we recommend further investigation of whether detectors 
need to be built specific to a population. This strategy would likely be more costly than building a 
universal set of detectors using data collected across several populations, but it may yield higher 
accuracy in assigning states of affect and engagement.  

An unresolved issue with respect to any observation method is the question of how well it can truly 
assess engagement and affect, that is, how close the method can get to ground truth with respect to the 
learner’s state. D’Mello suggested to us that the closest one might get to ground truth is by using a 
combination of physiological sensors and self-assessments to capture a predictable response to a 
contrived stimulus. While this would be prohibitively costly for most purposes, if automated detectors 
are to be built for large scale applications with thousands of learners in order to create responsive and 
adaptive learning environments, starting with more accurate data may lead to better academic 
outcomes for users due to a more appropriately responsive computer system. 

We conclude that for small-scale studies of engagement and affect, in-person classroom observations 
recorded using either pen and paper or a smartphone application are the least costly and the most 
reliable. For large-scale studies, automated detectors are vastly less costly per unit of data collected but 
are currently low in reliability. As automated detectors become more reliable in assessing learners’ 
affect and engagement, we expect they will be embedded in the software itself so that the learner’s 
state can be detected real-time and the software will respond accordingly with messages, talking agents, 
or different activities, just as a live teacher might change pace or activity if she sees students yawning or 
looking puzzled.  

 

אּאּ אּאּ אּאּ אּאּ אּאּ אּאּ אּאּ  
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Appendix A: Interviewees 
 

We are grateful to the following individuals who agreed to be interviewed to provide information for 
our cost analyses: 

Ryan Baker Associate Professor Teachers College, Columbia University 

Sidney D'Mello Assistant Professor University of Notre Dame 

Peter Gobel Professor Kyoto Sangyo University, Japan 

Adam B. Goldstein Software Engineer MeYou Health 

Sujith Gowda Research Programmer Metacog Inc. 

John Hintze Professor University of Massachusetts, Amherst 

Jaclyn Ocumpaugh Postdoctoral Fellow Teachers College, Columbia University 

Luc Paquette Postdoctoral Research Associate Teachers College, Columbia University 

George Schuessler Director of Academic Technology Teachers College, Columbia University 

M.T.Torres Director of Network Systems Teachers College, Columbia University 

Ermal Toto Senior Software Engineer Worcester Polytechnic Institute 
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Appendix B: Ingredients and cost tables 
Notes: We do not include time spent on any relevant Institutional Review Board application and approval process. All prices are expressed in 
2014 U.S. dollars.  Ingredient category cost totals may differ slightly from the sum of ingredient costs in each category due to rounding. 
 
Table B1. Ingredients and costs for Hintze & Matthews (2004) observation study  
Classroom observation of math/ELA with pen and paper observation protocol. Includes a half day of training with 2 trainers and 5 trainee 
observers. Each of 5 observers collected data in 18 class sessions over 9 days.  
 
Categories/ingredients Cost % of Total* 

Personnel  $5,960  95% 

Trainer I $509   

Trainer II    $611   

Training time for observers $420   

Researcher for analysis of observations $636   

Observers $3,783   

Facilities  $66  1% 

Office space for data analysis $27   

Program space for training $39   

Materials and equipment  $162  3% 

Computer and Excel for data analysis $1   

Clipboards for training $10   

Handheld recording device for timing intervals  $87   

Copies of BOSS paper recording forms   $20   

Pencils  $14   

Stopwatch to create the interval recording  $5   

Training video  $21   

Video recorder, cassette, and player  $3  

Other inputs  $99  2% 

Car mileage for trainers and observers $99   

Total cost  $6,286  100% 

*May not add to 100% due to rounding. 
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Table B2. Ingredients and costs for implementing the observation study: Student off-task behavior and motivation in the CALL classroom 
(Gobel, 2008) 

The subjects were university students learning English with DynEd software. A pen and paper observation protocol was used. 

 

Categories/ingredients Cost % of Total 

Personnel  $5,086  96% 
Observer/researcher $4,513   
Trainer $282   
University lecturers for time on study design $291   

Facilities $150  3% 
Computer Assisted Language Learning (CALL) classroom $120   
Office space for analysis $28   
Copies of observation grid $1   

Materials and equipment $67  1% 
Computer and Excel for data analysis $1   
Classroom computers and extra monitor for control console $31   
Classroom management software $1   
DynEd English Language software $32   

Total cost $5,302  100% 
Note: Costs of the classroom facilities and equipment were only counted for a small amount of training time on the basis  
that the costs of the classroom during the observation time were not attributable to the study but to the regular costs of  
classroom instruction. 
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Table B3. Ingredients and costs of a field observation of Reasoning Mind using the HART smartphone application  

Observations were conducted over three days. 

Categories/Ingredients Cost % of Total 

Personnel $915 25% 

Observer $878  

Analyst to summarize data $37  

Facilities $1 0% 

Office for analyst $1  

Materials and equipment $3 0% 

Android device, USB cable, data plan, battery $3  

Computer, Internet access, Excel $0  

Other inputs $2,690 75% 

Car mileage for transportation $76  

Air travel, hotel and per diem for observer $741  

BROMP training for observer* $1,873  

Total cost $3,609 100% 

*See Table B4 for a breakdown of these costs 
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Table B4. Ingredients and costs of a two-day training session for one observer in the use of BROMP (Baker Rodrigo Ocumpaugh Monitoring 
Protocol) 

Assumes one trainer and two days of training. 

Categories/ingredients Cost % of Total* 

Personnel $1,093  58% 

Trainee $496   

Trainer $585   

Manual editor $7  

Manual writer $4   

Facilities $2 0% 

Training room $2  

Materials and equipment $26 1% 

Android devices, battery replacements, USB cable $4  

Laptop with Excel, Internet, email, Google Drive $22  

Clipboard for phone and paper $0   

Computer for manual writing $0   

HART (data collection phone app) -  

Other inputs $752  40% 

Air travel for trainer/observer $396   

Hotel for trainer/observer $230   

Car mileage for transport $34   

Per diems $92  

Total cost $1,873  100% 

*May not add to 100% due to rounding. 
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Table B5. Ingredients and costs of a field observation of ASSISTments using the HART smartphone application 

Three days of observations by 2 observers 

Categories/Ingredients Cost % of Total 

Personnel $2,540  40% 
Analyst to summarize data $37   
Observer I $1,758   
Observer II $745   

Facilities $1  0% 
Office for analyst $1   

Materials and equipment $6  0% 
Android devices, USB cable, battery $6   
Computer to analyze data, Excel, Internet, email, Google Drive $0   

Other inputs $3,778  60% 
Car mileage for transportation $32   
Prior BROMP Training for trainer  $3,746   

Total cost $6,325  100% 
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Table B6. Ingredients and costs of a field observation of Inq-ITS using the HART smartphone application 

 

Categories/Ingredients Cost % of Total* 

Personnel $2,227 29% 

Observer I  $1,018  

Observer II $585  

Observer III  $293  

Observer IV  $293  

Analyst to summarize collected data $37  

Facilities $1 0% 

Office for analyst summarizing collected data $1  

Materials and equipment $6 0% 

Android devices, USB cable, battery, HART $6  

Computer with Internet, email, Google Drive, Excel $0  

Other inputs $5,317 70% 

Car mileage for travel to 3 schools $81  

BROMP training for trainer and observers $5,236  

Total cost $7,551 100% 

*May not add to 100% due to rounding. 
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Table B7. Ingredients and costs of assessing student affect using video analysis. Data collection costs apply to all judgment situations with 
judgment costs being additional. For example, the costs of the study that relied on teacher judgments of student affect were $9,307 plus $2,591. 

Cost Categories/Ingredients Data 
Collection 

Self- or peer 
judgment 

Teacher 
judgment 

Expert 
judgment 

Personnel $7,454  $1,859  $2,279  $4,666  

Program supervisors  $2,445     

AutoTutor - researcher time to secure license $37     

AutoTutor - lawyer time to review license $97     

Researcher A $2,179  $660    

Researcher B  $768  $293    

Researcher C  $604  $128    

Undergraduate researchers  $1,324  $778  $147  

Teacher time for coding   $2,132   

Trained coders – coding time    $1,934  

Trained coders – FACS certification    $2,733  

Facilities $538  $378  $253  $1,014  

Lab for data collection $473     

Office space for meetings $65     

Lab time for training, AutoTutor familiarization, and coding  $378  $253  $1,014 

Materials and equipment $1,315  $5  $3  $633  

Computer (with camera, Internet, email, Google Drive, Excel) for       
training, data collection, coding, analysis, AutoTutor familiarization 

$10  $5  $3  $37 

Camtasia Studio software $299     

Emotion Annotation Tool $1,006     

Mirror    $7  

FACS training manual (CD)    $590  

Other inputs $0  $0  $56  $0  

Car mileage   $56   

Total cost $9,307  $2,241  $2,591  $6,313  
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Table B8. Ingredients and costs of building six automated detectors of affect and engagement for ASSISTments  

Note: for total costs of development of detectors add data collection costs of $6,325 from Table B5 above. 

Categories/Ingredients Cost % of Total 

Personnel $67,400 90% 

Research programmer $39,620  

Supervising programmer $8,114  

Programmer II  $16,944  

Programmer III  $2,555  

Programmers for features brainstorming session $168  

Facilities $6,520 9% 

Lab space for programmers $6,287  

Office space for supervising programmer $233  

Materials and equipment $695 1% 

Computer, internet access, and Excel for all programmers and supervisor $586  

Refreshments for brainstorming session $109  

Other inputs $5 0% 

Car mileage to 1 school for synchronization $5  

Total cost $74,621 100% 
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Table B9. Ingredients and costs of building four automated detectors of affect for Inq-ITS 

Note: for total costs of development of detectors add data collection costs of $7,551 from Table B6 above. 

 

Categories/Ingredients Cost % of Total* 

Personnel $41,325 98% 

Supervisor programmer  $3,065  

PhD students for feature brainstorming  $252  

MA students for feature brainstorming  $63  

Research software engineer for correlator $2,674  

Programmer for detector building $33,993  

Programmer II for synchronization of Inq-ITS log files to HART $875  

Research associate supervising detector building work $402  

Facilities $723 2% 

Office space for programmers and supervisor $715  

Space for feature brainstorming event $9  

Materials and equipment $246 1% 

Computers with Excel, Internet, email, Google Drive $164  

Refreshments for feature brainstorming event $83  

Other inputs $5 0% 

Car mileage to 1 school for synchronization $5  

Total cost $42,300 100% 

*May not add to 100% due to rounding. 
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