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Abstract

Self-balanced unicycle has received the attention of researchers for decades. Over the
years, unicycle models with several different assemblies have been introduced by them. A
thorough analysis of the dynamics of a unicycle with a frame and a rotating disk is discussed in
this research. A torque applied to the rolling wheel maintains the longitudinal stability of the
system by moving forward and backward. The rotating disk mounted on the top of the frame
maintains the lateral stability of the system by providing a torque. Due to this torque the rolling
wheel precess and change its yaw direction. The components of the unicycle assembly are
addressed separately for the analysis of the dynamics. First, only the rolling wheel considered.
Then, the rolling wheel and the frame are analyzed. Finally, the completed assembly with the
rotating disk considered to build the dynamics model. In each of these cases both Newton-Euler

and Lagrangian methods are used to obtain the dynamics equations for the unicycle.
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Chapter 1 - Introduction

The unicycle has received attention for research for more than twenty years. Over the years,
unicycle models with several different assemblies have been introduced by researchers. One of the
earliest works found on unicycle, done by A.Schoonwinkle [1], mimics a human riding a unicycle.
As illustrated in Figure 1.1, it consists of a wheel, the unicycle frame representing the lower part

of the rider’s body, and A rotary turntable modeling the rider’s twisting torso and arms.

Figure 1.1. Computer Stabilized Unicycle

In this research [1], a linear dynamic model for the unicycle was found using Newton-
Euler, Lagrange and D’ Alembert’s principle. In [2], there are few extra links compared to the

configuration of [1] to represent the riders thighs, shanks and pedals as shown in Figure 1.2.



Figure 1.2. Model of a Human Riding Unicycle

These links provide the assistance to maintain the longitudinal stability of the unicycle
while, lateral stability achieved by turning the unicycle in the direction it is falling. Another
interesting model has been introduced in [3], by replacing the wheel with a rugby ball shaped
wheel. Figure 1.3 shows this distinctive feature which helps to keep its rolling stability to a large

extent.

Figure 1.3. Unicycle with Rugby Ball Shaped Wheel

In [4], a single wheel, gyroscopically stabilized robot is developed using the principle of

gyroscopic precession. Here, a gyroscope is installed to the wheel such a way to help stabilize the



rolling motion and an inbuilt tilt mechanism enables the steering of the wheel. A sketch of this

model is demonstrated in Figure 1.4.
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Figure 1.4. Gyroscopically Stabilized Unicycle Robot

The idea of using the precession to steer the wheel i1s again used in [5]. Figure 1.5 exhibits
the unicycle they introduced, which equipped with a pendulum to control the lateral stability
instead of a reaction wheel. It acts as the arms of a unicycle rider and maintains the stability by
moving in left and right directions. Steering of the wheel is achieved by controlling the wheel and
pendulum actuators at the same time. Once a constant speed has been gained by the wheel,
pendulum provides a lateral torque for the wheel in order for it to precess. A detailed analysis on

dynamics has been provided in a later article [6] by the same group with some additional work.
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Figure 1.5. Pendulum-Balanced Autonomous Unicycle

The most common and vastly used method found in literature to stabilize a unicycle is the
use of a reaction wheel or a flywheel, as shown in Figure 1.6. This wheel is attached to the unicycle
frame such a way that its rotating axis is perpendicular to the driving wheel’s spinning axis. In
[7],[8] and [9] dynamic models were provided for a unicycle in 2D space, which have used this
configuration. Several instances were found in literature [10],[11],[12],[13] and [14] where yaw
angle control also taken in to consideration when building the dynamics model.

In the process of analyzing the dynamics of a unicycle with actuators for this study, the
same model in Figure 1.6 is taken in to consideration. It is found much simpler to analyze the
dynamics of the parts of the unicycle separately and add them together. Therefore, first the
dynamics of the wheel has found in Chapter 2, following both Lagrangian and Newton- Euler
methods. The results obtained in the second chapter for the dynamics of the rolling wheel, agrees
with the examples found in [15] and [16], for the situation where, there aren’t any actuators.
Second, in Chapter 3, the dynamics of the frame is analyzed along with the rolling wheel. The
frame is considered as a rod for the calculations, which is connected at the center of the wheel and

1t 1s free to rotate about the wheel axis.



Figure 1.6. Unicycle with a Reaction Wheel

Again, both Newton-Euler and Lagrangian analysis carried out for this assembly. Finally,
in Chapter 4, the dynamics of the complete unicycle assembly is analyzed. Here, a rotating disk is
connected to the end of the rod such a way that, its axis is perpendicular to the rolling wheel axis.
The calculations carried out related to these three chapters are included in Appendix A, B and C.

This thesis provides the dynamics equations for the entire system of unicycle in Figure 1.6,
using the Lagrangian and Newton-Euler methods. It is for the first time, the Newton-Euler method
is used to analyze this assembly. A similar system to this work is found in [11] but, it includes only
the Lagrangian analysis. When comparing the final dynamics equations of [11] to this work, it is
found that the generalized force vector has some dissimilarities. Since, the Newton-Euler method
calculates the generalized force vector automatically, it can be considered as much reliable method,

instead of a user defined vector as in the Lagrangian method.



Chapter 2 - Dynamics of a Rolling Wheel

Introduction

In this chapter, the dynamics of the rolling wheel of the unicycle with one actuator is found,
following both Newton-Euler analysis and Lagrangian analysis. As mentioned earlier, due to the
complexity of the system, only the wheel is considered first here. A matching set of equations of
motion is found at the end of each method.

Dynamics of the Rolling Wheel - Newton Euler Analysis

Figure 2.1 illustrates the reference frames used to model the wheel orientation, geometry
of the rolling wheel, and the external forces acting on it. The coordinate system (XYZ) represents
the global coordinate system and (X’Y’Z’) represents the local coordinate system fixed at the
center of the rolling wheel. This frame is oriented with a yaw angle of ¢ about Z axis, and a pitch

angle of 8 about X’ axis. The wheel roll about Y’ axis and the roll angle is represented by .

V4
0
b ¢ Y
5 PN
Z ; 7 a—y !
mg.
3 b
X o
R\\; ,(’X;Y) y
‘\_’ > /’/
Xa ’/[ FY /
FX N =4

Figure 2.1. Geometry and Free Body Diagram of the Rolling Wheel



The wheel radius is R and it has a mass of m. The coordinates (x, y) represents the contact
point of the wheel with the floor. The position coordinates (ry.1y.r7) of the wheel center is defined

with respective to the (XYZ) coordinate system as

ry = x + Rsin(¢)sin(6), 2-1)
ry =y — Rsin(6)cos(¢), 2-2)
and r; = Rcos(0). (2-3)

The time derivatives of the position of the wheel center is calculated to obtain the velocity

components
vy = X + Rcos(¢) sin(8) ¢ + Rsin(¢)sin(6)0, (2-4)
vy = ¥ + Rsin(¢))sin(8) ¢ — Rcos(¢)cos(H) b, (2-5)
and v, = —Rsin(8)6. (2-6)

In above equations, ¢ represents the time rate of change of yaw angle while, 8 represents
the rate of change of pitch angle of the wheel. The wheel satisfies the non-holonomic constraints
[15] defined by

% = Rcos(¢) Y (2-7

and y = R sin(¢) . (2-8)

Here, v is the time rate of change of roll angle of the wheel. The acceleration components
of the wheel center, relative to the global coordinate system, are found by taking the time derivative

of the velocities of the wheel center defined by (2-4) through (2-8) to achieve

ax = R (2 cos(@) cos(6) ¢6 — sin(¢) sin(6) ¢~ — sin(¢) sin(6) §” +
(2-9)
cos(¢) sin(6) ¢ + sin(¢p) cos(6) § — sin(¢) pyp + cos(¢) ¢)

ay =R (((—q’)z - 92) sin(@) + cos(6) 6 — qfn/;) cos(¢)
(2-10)
_ o1
— 2 sin(¢) <cos(0) 0 + Esm(@) ¢+ 7))



and a; =—R (cos(@) 92 + sin(8) 0) (2-11)
The notations 1, 8 and ¢ represents the roll, pitch and yaw angular accelerations of the
wheel respectively in (2-9), (2-10) and (2-11).

The angular velocity components of the wheel with respective to the wheel centered frame

are
wyr = 0, (2-12)
wyr = P +sin(6) ¢, (2-13)
and w, = cos() ¢. (2-14)

The angular velocity vector of the wheel is

Q=

wX’
wy,]. (2-15)
(I)Z,

The calculations carried out to obtain these velocity components are described in the

Appendix A. Angular acceleration components of the wheel in the wheel centered coordinate

system are
ay =0, (2-16)
a, =P+ psin(8) + 6¢ cos(6), (2-17)
and a, = ¢ cos(8) — o sin(6). (2-18)

These are obtained by taking the time derivative of the angular velocity components of the

wheel, defined by (2-12), (2-13) and (2-14). The angular acceleration vector of the wheel is
Cle
o= [ay’]. (2-19)
azl
The inertia of the wheel along the principal axes in the (X’Y’Z’) frame are

I, = [ 0 Lyryr 0 ] = [ o 1, O ] (2-20)



The unknown reactions Fy, Fy and N at the contact point of the wheel with ground, are
found by applying the Newton equation

F =ma, (2-21)

to the wheel center in global frame. They are

Fy = may, (2-22)
Fy = may, (2-23)
and N = ma; + mg. (2-24)

These reaction forces are included in the Appendix A. The Euler equation of the rolling
wheel is calculated in (X Y’Z’) frame, using

M= H. (2-25)

Here, M is the external moment acting on the rigid body and H is the time rate of change
of angular momentum about the center of mass of the wheel. The contact point reactions found by
applying the Newton’s equation, are transformed to the (X Y’Z’) frame in order to determine the
external moments (M) applied to the system. M is calculated by taking the cross product between,
the wheel contact point vector in local frame and the contact point reaction forces vector in local
frame. The calculations and vectors related to this can be found in Appendix A. The calculated

external moment applied to the wheel in the (X’Y’Z’) frame is given by the vector
R(—Fx cos(0) sin(¢) + Fy, cos(8) cos(¢) + N sin(6))

M= —R(Fy cos(¢) + Fy sin(¢)) - (2-26)
0

Using the angular accelerations, inertia and angular velocities defined previously, the rate
of change of angular momentum is calculated for the wheel as
H=(H) +w xH. (2-27)
Here, (H)r is the rate of change of angular momentum with respect to the center of the
wheel, as viewed by an observer on the moving (X’Y’Z’) frame, which is calculated by multiplying

the angular accelerations in (2-16) through (2-18) with inertia values in (2-20). The vector



(l)Xl
w = [a)y, — (2-28)
a)ZI

is the angular velocity vector of the frame (X’Y’Z’) fixed at the wheel center. The angular

momentum (H) of the wheel in wheel centered frame is calculated by

H=1I,XxQ. (2-29)
The equation (2-25) was modified to include the known torque (7;) applied to the rolling

wheel to show

0
T3
0

The Euler equations calculated from (2-30) are

H=M+|1;| (2-30)

(R?m + 1,,,) sin(8) ¢ + (R2m + L,,) ¥ + 2 (Rzm + 'WTZ) cos(@)pb —1, =0,  (2-31)
(R*m +1,,) 6 — (R*m —1I,,; + I,,) cos(8) sin(0) % — (R?*m +
L,2) Py cos(8) — mgRsin(8) = 0,

and I, cos(8) & + <IW2 -2 (le - 'WTZ) sin(0) ¢3) 6=0. (2-33)

(2-32)

In order to obtain a symmetric mass matrix, a transformation was applied to the above
equations. Therefore, (2-31) was multiplied by a sin(8) term and, (2-33) was multiplied by a

cos(@) term and added them together to obtain the new equation
((y1 — I,, — mR?) cos?(0) + mR? + 1,,,)¢ + sin(0) (I,,, + mR*)Y

Iwzl/.)
2

+2cos(0) 0| (mR? — 1,1 + 1,,,) sin(6) ¢ + (2-34)

— 1, sin(#) = 0.

These dynamic equations are expressed in the matrix form at the end of this chapter.

10



Dynamics of the Rolling Wheel — Lagrangian Analysis

The Lagrangian (L) calculated for the same system illustrated in Figure 2.1 is

L=T-V, (2-35)

where T is the total kinetic energy and V is the gravitational potential energy of the rolling

wheel. Using the kinematic parameters found in previous section T and V are

1 : : - . 22
T=5m ((x + Rsin(0) cos(¢) ¢ + R sin(¢) cos() 6)
+ (7 + Rsin(¢) sin(6) § — R cos(8) cos($) 8) + R*sin(6)26°)  (2-36)
+%(1w192 + Lo (Y +5in(@) §)° + Lz cos(8)2 ")

and V = mgR cos(0). (2-37)

Since, the no slip condition is required for this problem the non-holonomic constraints for

this system are

% = R cos(¢) Y (2-38)

and y = R sin(¢p)y. (2-39)
The Lagrange dynamic equations for the wheel are obtained by

d(aL) ( o) = +ZZA 2-40

dt aql aql Ql kakl ( - )

Here, Q; are the generalized forces applied along the generalized coordinates denoted by

q; and A, are the Lagrange multipliers. The generalized forces obtained from Newton-Euler

method are
Qy = Tz, (2-41)
Qo =0, (2-42)
and Q¢ = T, sin(6). (2-43)

After calculating the derivatives in (2-40), the first time derivatives of the non-holonomic
constraints of (2-38) and (2-39) are substituted in order to find the Lagrange multipliers, 4.

Finally, the Lagrange dynamics equations for the wheel are obtained and they exactly match the

11



equations found in the Newton-Euler analysis. The calculations can be found in the Appendix A.

The final dynamic equations are

(R%m + 1,,,) sin(8) ¢ + (R2m + L,,) ¥ + 2 <R2m + IWTZ) cos(0) bl —1, =0,  (2-44)

(R*m +1,,) 6 — (R*m —1I,, + I,,) cos(8) sin(8) ¢? — (R*m +

. (2-45)
I,2) P cos(8) — mgRsin(8) = 0,
(I + mR? + (I,3 — I,, — mR?) cos(8)?) ¢ + (R*m + I,,,) sin(6)
and Ly . ) (2-46)
+2 (71/) + (Iyp — Iy3 + MR?)¢ sin(@)) cos(8) 8 — 1, sin(8) = 0.
The equations (2-44) through (2-46) can be arranged in the matrix form as
Mass,(G;) + Cuw(4,q,) + Gw(@ — Q; =0, (2-47)
where,
Mass,, =
mR* +1 0 mR* + 1., )sin(@
[ w2 , ( w2) ( ) ] (2-48)
0 mR” + le 0 D
(mR2 + Iwz)sin(e) 0 mR* 4 1,,, + (IW3 — 1, — mRZ) cos?(6)
(2mR* + Iz + L1 — L3) cos(6) @
- (sin(e) (MR? = Ly + Lo ) + (mR? + Iwz)) cos(8) ¢
C, = , (2-49)
R SPSTAW
2 cos(0) ((mR2 — Ly + 12 sin(6) ¢ + szl/’) 0
0
G, = —ngsin(H)], (2-50)
0
T2
and Q= [ 0 ] (2-51)
7,sin(0)

Analysis carried out to find the dynamic equations of the rolling wheel in this chapter,
using both Newton-Euler and Lagrangian methods, confirms the accuracy of the final set of
equations (2-44) through (2-46). Since, these two methods are independent from one another, it is

fair to state that they are reliable.
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Chapter 3 - Dynamics of the Rolling Wheel and Frame

Introduction

In this chapter, the dynamic equations for the rolling wheel and the frame are calculated.
The frame is attached to the rolling wheel’s axel, such a way that it is free to rotate independently
about the Y’ axis. Figure 3.1 illustrates this assembly and the coordinate systems used to describe
the orientation. The frame is considered as a rod for the calculations. A new local frame (X’Y”’Z”)
attached to the rod is introduced here. This frame rotates with the rod, about the Y’ axis and it

creates an angle of § with Z’ axis.

Figure 3.1. Orientation of the Rolling Wheel and Frame
As in Chapter 2, both Newton-Euler and Lagrangian methods were used to find the

dynamic equations for this system. A matching set of equations are obtained at the end of the
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chapter confirming the accuracy of the calculations. Since, the kinematics related to the wheel are

same as in Chapter 2, they are not repeated here.
Dynamics of the Wheel and Frame — Newton Euler Analysis
The free body diagram used for this analysis is shown in Figure 3.2. The frame is detached

from the rolling wheel’s axel in this figure. The forces acting on the rod and wheel at the joint

marked here.

ZI
¢
— Y
N_ "
X

Figure 3.2. Free Body Diagram of Wheel and Rod

The rod has a mass of m, and the distance [ to the center of mass from the joint is measured
along the Z” axis. The coordinates of the rod mass center (lx, ly, L;) with respective to the (XYZ)

frame are
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Iy = (cos(¢) sin(B) + sin(¢) sin(6) cos(B))l + sin(¢) sin(8) R + x, 3-1)
ly = (sin(¢) sin(B) — cos(¢) sin(@) cos(B))l — cos(¢p)sin(6) R + vy, (3-2)
and l; = cos(8)cos(B)l + cos(O)R. (3-3)

The velocity of the rod mass center in reference to the (XYZ) frame obtained by taking the

first time derivative of (3-1) through (3-3). The velocity components are

vy = % + ((—sin(¢) sin(B) + cos(¢) sin(6) cos(B)I + (-4
cos(¢) sin(8) R)¢ + (sin(¢) cos(8) cos(B) I + sin(¢) cos(6) R)6 +
(cos(¢) cos(B) — sin(¢) sin() sin(B))1B,
vy = ¥ + ((cos(¢) sin(B) + sin(¢) sin(6) cos(B))] + (3-5)
sin(¢) sin(8) R)¢p + (— cos() cos(6) cos(B) I — cos(p) cos(8) R)O +

(sin(¢p) cos(B) + cos(¢) sin(0) sin(B))1B,
and v,z = (=sin(@) cos(B) 1 — sin(8) R)O — cos(¥) sin(B) 1. (3-6)

Then, to obtain the acceleration of the rod mass center in (XYZ) frame, the time derivatives
of the velocity components in (3-4) through (3-6) calculated. They are

(3-7)
a;x = sin(¢) <sin(0) (—l([?z + @2 + 62) cos(B) — Blsin(B)

— R(§? +62)) + 1(cos(8) & — 2¢3) cos(B)

— 21 <é cos(0) B + %) sin(B) + R(cos(9) 8 — ¢1/J)>

+ cos(¢) ((—2 sin(B) lpB + 1¢ cos(B) + R(,l)) sin(6)
+ 21 <cos(0) $0 + g) cos(B) — (B2 + $?) sin(B)

+ R(Z cos(0) ¢6 —H/J) )
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(3-8)
a;y = cos(¢) | sin(8) (l(ﬁz + % + 62) cos(B) + Blsin(B)

+ R(q_")z + 92)) — l(cos(@) 6 — 2¢ﬁ) cos(B)

+ 21 (9’ cos(8) § + %) sin(8) — R(cos(8) 8 — ¢yp)
+ sin(¢) (—2 sin(B) lpB + I cos(B) + Rd)) sin(@)
+ 21 (cos(ﬁ) $0 + [2—3> cos(B) — (B2 + $?) sin(B)

+ R(2cos(8) $8 + 1) |,

and a;; = (—I(BZ + 62) cos(B) — R6? — ,Bilsin(ﬁ)) cos(6) (3-9)

— sin(0) (—2 sin(B) 186 + 16 cos(B) + Ré).

The angular velocity vector of the rod in (X”’Y”Z”) frame is

Wix (3-10)
Ql = | Wy,
Wz
and the angular velocity components are
wixr = 6 cos(B) — sin(B) cos(6) &, G-11)
Wy = B +sin(6) ¢, (3-12)
and w7 = cos(B) cos(8) ¢ + Bsin(B). (3-13)

The calculation carried out to obtain these angular velocity components are provided in

Appendix B. The angular acceleration vector of the rod in (X’Y”Z”) frame,
®ix" 3-14)
a; = |qyr
Az
is obtained by taking the first time derivative of (3-11) through (3-13). The angular

acceleration components are
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a;x = cos(B) 6 + sin(B) sin(8) $6 — cos(0) sin(B) ¢ + (—9 sin(B) — (3-15)

cos(B) cos(6) $)B,
ay = + cos(8) ¢ + sin() ¢, (3-16)
and a;z = sin(B) 6 — cos(B) sin(8) $8 + cos(8) cos(B) ¢ + (8 cos(B) — (3-17)
sin(f) cos(0) gb),B
The inertia matrix of the rod in (XY”Z”) frame along its principal axes is
Lyyr 0 0 I, 0 O (3-18)
Il:[ 0 Iy"y" 0 ]:[0 IlZ 0]
0 0 Iy 0 0 Ij

The unknown reactions Sy, Sy, S, at the joint and contact point reactions Fy,Fy, and F,
are calculated by applying (2-21) for the rolling wheel and the rod separately. It’s applied in

(X’Y’Z’) frame for the wheel and in (X”Y”’Z”) frame for the rod. The equations achieved for the

wheel are,
may — cos(¢) Fy — sin(¢p) Fy + Sy =0, (3-19)
may + sin(¢) cos(8) Fy — cos(¢) cos(0) Fy —sin(6) N + Syr + (3-20)
mgsin(6) = 0,
and may + mgcos(6) — sin(¢) sin(0) Fx + cos(¢) sin(0) Fy, — cos(6) N + (3-21)
Szl - 0.

The equations acquired for the rod are,

m,a;x — cos(B) Syr — mygcos(6)sin(B) + sin(B) S, = 0, (3-22)
myay — Sy’ + mygsin(6) = 0, (3-23)
and m,a;, — cos(f) S, — sin(B) Sy + m,gcos(8)cos(B) = 0. (3-24)

The accelerations and the solved force components in (3-19) through (3-24) are provided
in Appendix B. To obtain the Euler equations, (2-25) applied for both wheel and frame. The same
procedure described in Chapter 2 is followed to obtain the external moment and the rate of change
of angular momentum for the wheel. Since it is a repetition of the equations derived already, those

equations are not described here. The external moment applied to the rod is calculated by finding
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the moments about the center of mass of the rod in (X’Y”’Z”) frame. The external moment vector
of the rod is

ISy (3-25)
M; = |—I(cos(B) Sxr — sin(B) S, |-
0

The calculation carried out to obtain (3-25) is explained in Appendix B. To find the rate of
change of angular momentum of the rod, (2-27) is modified as
H; = (H)rl +Q;, X Hy, (3-26)
where, (H)rl is the rate of change of angular momentum of the rod, with respect to the
center of mass of rod as viewed by an observer on the moving (X”Y”Z”) frame. The calculation
of (H),, is carried out as
(H)rl =a; X I,. (3-27)
The angular momentum of the rod H; is calculated by
H =1xQ,. (3-28)
Since, an equal and opposite torque applied to the rod, (2-25) can be applied to the rod as

Hl:Ml+ —T,

0

The Euler equations obtained for the wheel are,

0 ] (3-29)

I I I .. -
2 (Reos(B)lmy + (m +my)R? + 222 4+ 22 - 42 4 cos(9) (3-30)

+ (Rplm, cos(B) — 2R¢B sin(B) Im,

+ ((m + my)R? + 1,,,)$) sin(8) + cos(B) Rlm,

- lez(,/?2 + gbz) sin(B) + Y(m + my)R? + I,,,0) — 1,
=0,
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(=$2(R cos(B) Im; + (m + m)R? + L, — L) sin(6) (3-31)
— 2R cos(B) lm, — Rlm, sin(B)
— @ ((m + mR? + I,3) ) cos(6) — Rg(m + my) sin(6)
+ cos(B) Rlm,6 — 2 sin(B) RBIm,0
+0((m+my)R?+1,,) =0,

and —pOUy1 — Ly + 1,3)sin(0) + 1,0 + 1,5 cos(8) ¢ = 0. (3-32)

The Euler equations retrieved for the frame using (3-29) are,

—sin(B) ¢2((1*my, + I;; — I;3) cos(B) + Rlm,) cos(9)? (3-33)
+ (20 (1%my, + I;; — Ij3) cos(B)? + 2R cos(B) Im,,
—sin(B) glm, — pO(I;; — I — I;3))cos(8) + (2(1>m
+ I;; — I;3)sin(B) + Rlm,(sin(8) ¢ + ))cos(B)
+ RIm,(sin(8) ¢y + 0% + ¢p?)sin(B) + p(I°m,
+ I,,)sin(0) + Pm_28 + I, + 1, = 0,

(3-34)

Gaamm+m—%mmm+dﬁz+%+%——ﬁmmm

— $(1*m, + I;1)sin(B) — RPplm,(sin(8) ¢ + 1)) cos(0)
+ 6(1*my + I;1)cos(B) + 6(d(yy — I, + I13)sin(6)

2 <12 m, + % +Il72 _ —) B)sin(B) + lm_2(Ré

— gsin(8)) =0,
and (cos(0) Iz — O(dp Uy — Iz + I13)sin(8) + By — Iz — I13)))cos(B) (3-35)
+ (p(pUn — Ix)sin(®) + By — I, — I13))cos(6)
+ 61;3)sin(B) = 0.
To obtain a symmetric mass matrix two new equations obtained after few transformations

were applied to the Euler equations found. First transformation applied is

(3 —31) + ((3 — 34) x cos(B)) + ((3 — 35) x sin(B), (3-36)

and the resulting equation is
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(_d)(lzmz + I,y — I;3)(sin(8) ¢ + 28) cos(B)? (3-37)

+ (—2Rq.’32 sin(0) Im, — ¢(1*m, + I;; — I;3) sin(B)

— Rplm, (v + 2f) ) cos(§)

— $2(R*m + R*my — Iy + I + Ly, — Ly3) sin(6)

— Rplm, sin(pB)

— (R®m + R¥Ym, + (—Iyy + Iy + ;)P

+ Iwztf))d)) cos(0) + 0(1?m, + I;; — I;3) cos(B)?

+ (—sin(8) glm, — 260 (1*m, + I;; — I;3) sin(B)

+ 2le29) cos(B) — Rg(m + m,) sin(0)

— 2sin(B) RBIm,0 + 6(R*m + R*m, + I3 + I,,,) = 0.
The second transformation is

(3 =32) x cos()) + ((3 = 35) x cos(B) cos(6)) (3-38)
— ((3 —34) xsin(B) cos(8)) + ((3 —30) x sin(H))
+ ((3 —33) x sin(8)),

And the resulting equation is
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(=d(2m, + Iy = I3) cos(B)? (3-39)

+ (Zq."),[;’(lzmz + Iy — Ij3) sin(B) — 2Rplm,) cos(B)
+ 2R¢B sin(B) Im,
—p(R*m +R*my — Iy + Iy + 1y — IW3)) cos(6)?
+ (20(1%my + I;; — I;3)(sin(8) ¢ — B) cos(B)?
+ (4R¢01sin(0)m, — Gsin(B) (I*m, + I;; — I;3))cos(p)
+ 20 (R*m + R*m, — Iy + I, + I, — I,,,3)sin(6)
— ROlsin(B)m,
+ (281%my + Iy + Iy — i) B + 1,21)0)cos(6)
+ ((6%(1*m, + Iy — I;3)sin(B) + RIm_2(3 + f))sin(6)
+ 2Rplmy)cos(B) + (—RIm, (B — 6)(B + §)sin(B)
+ (RZ’]’ + 128)m, + YR?*m + L) + I,8)sin(8)
+ Rplm, (3 — 2B)sin(B)
+ ¢((R?+ 1> )my + R?m + I3 + 1,5) = 0.
The symmetric mass matrix then built using (3-30), (3-37), (3-39) and (3-33). This model

built in matrix form is provided at the end of this chapter, since it is same for both Newton-Euler

and Lagrange methods.
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Dynamics of the Wheel and Frame — Lagrangian Analysis
The assembly displayed in Figure 3.1 is used to build the Lagrangian (L) utilizing (2-35).
The total kinetic energy T for this assembly is given by
T = %{(x + cos(¢) sin(8) R + sin(¢p) cos(6) RH')2 (3-40)

+ (y + sin(¢) sin(8) R$ — cos(¢p) cos(H) Ré)z

021, .\ (4 + sin(8) ¢) "I,

+ sin(6)? Rzgz} + > 5
cos(6)? 21,3

* 2

(o

+ ((— sin(¢) sin(B) + cos(¢) sin(0) cos(B))l

+ cos(¢) sin(6) R)d)

+ (sin(¢) cos(8) cos(B) L + sin(¢) cos(6) R)

+ (cos($) cos(B) — sin(¢) sin(6) sin(B) )’

+(y

+ ((cos(¢) sin(B) + sin(¢) sin(8) cos(B))!

+ sin(¢) sin(9) R) ¢

+ (= cos(¢p) cos(6) cos(B) L — cos() cos(6) R)6

+ (sin(¢) cos(B) + cos(¢) sin(8) sin(B) )’

+ (= sin(6) cos(B) L — sin(8) R)d — cos(9) sin(B) lB)z)
N (6 cos(B) — sin(zﬁ) cos(8) )1, N (B + sin(29) $)’I,

N (cos(B) cos(8) ¢ + 0 sin(ﬁ))zll3
> .

The kinematics defined in Chapter 2 and 3 used to calculate T. The total gravitational

potential energy is
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V = mgR cos(08) + m,g(cos(0) cos(f) [ + cos(6)R). (3-41)
The non-holonomic constraints defined in (2-38) and (2-39) applies to this assembly too.

The Lagrange dynamic equations are calculated using (2-40) again, and the generalized

forces for this setup defined according to Newton-Euler method. They are,

Qy = Ty, (3-42)
Qg =0, (3-43)
Qs =0, (3-44)
and Qp = —Ts. (3-45)

Following the same method in Chapter 2 the Lagrange dynamic equations are derived.

They are

(cos(B) Rplm, — 2sin(B) RBpIm, + ((m + mp)R? + I,,,)P)sin() +  (3-46)
20¢(Rlm,cos(B) + (m + my)R? + IWTZ)COS(Q) + Rlm,fBcos(B) —
RImy (5% + ¢p?)sin(B) + Y(m + my)R? + I, — 1, = 0,
(—p(sin(0) ¢ + 28)(1>m, + Iy — I;3) cos(B)? + (—2Rp? sin(0) lm, —  (3-47)
P(IPm, + Iy — Ii3)sin(B) — RPlm, (3 + 2))cos(B) — p2(R*m +
R?my — Iy + Iz + Ly — Ly3)sin(8) — R sin(B) Im, — (R*ym +
R2%ym, + (Iy + Iz — [))B + L) d)cos(0) + 6(1Pmy + Iy —
I;3) cos(8)? + (—g sin(0) Imy — 280 (1>m, + I,y — I;3)sin(B) +
2RIm,6)cos(B) — Rg(m + m,)sin(0) — 2 sin(B) RBIm,6 + 6(R*m +
R?*my + ;3 + 1,,1) =0,
(—$@Pm, + Iy — I13) cos(B)? + (2B (12my + Iy — Ii3) sin(B) — (3-48)
2Rplm,) cos(B) + 2sin(B) REPIm, — p(R*m + R*my — Iy + Iy +
Ly, — IW3)) cos(8)? + (20(1?my + I;; — I;3)(sin(8) ¢ — B) cos(B)? +
(4R$01sin(0) m, — Gsin(B) (1*m, + I;; — I;3))cos(B) + 20 (R*m +
R*m, — Iy + Iy + 1y, — I,,3)sin(8) — R1G sin(B) m, + 6 (2B1%m, +
(I — I3 + 1)B + Lyz))cos(8) + ((02(1*m_2 + Iy — Ii3)sin(B) +
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Rim, () + £))sin(8) + 2Rplm;)cos(B) + (—RIm, (5 — 8 )(B +
0)sin(B) + (R%) + 12f)my + R2Ym + L, + I;f)sin(0) +
Rlm, (1 — 2B)sin(B) + ((R? + 1D)m, + R*m + Ip + I,,5)P = 0,
and —(,1,">2((lzm2 + I, — I;3) cos(B) + lez) sin(B) cos(0)? (3-49)
+ (20(1?my + I;; — I13) cos(B)? + 2R cos(B) Im,,
— gsin(B) lmy, — O, — I;; — I;3))cos(8) + (8% (1*m,
+ I;; — I;3)sin(B) + Rlm,(¢sin(8) + 1)) cos(p)
+ Rlm, (pPsin(0) + ¢2 + 62)sin(B) + ¢(I*m,
+ I,)sin(8) + ?m,fB + I, + 7, = 0.
The equations (3-46) through (3-49) arranged in matrix form according to (2-47) as,

Massy4 0 Mass;; Massy, (3-50)
_ 0 Mass,, Mass,s 0
Mass = Mass;; Mass;, Massz; Masss,
Mass,q 0 Mass,; Mass,,

where,
Mass;; = (m+ my)R? + 1,5,
Mass,3 = (R cos(B) lm, + (m + m,)R? + 1,,,) sin(8) = Masss,,
Mass;, = R cos(B) lm, = Mass,,,
Mass,, = (I?m, + I; — Ij3) cos(B)? + 2R cos(B) lm, + R>m + R*my, + I ;3 + 1,4,
Mass,; = —sin(B) cos(8) ((1*my + I;; — I13) cos(B) + Rlm,) = Masss,,
Massss = ((=1?my — I;; + I;3) cos(B)? — 2Rcos(B)lm; — R®*m — R®my + Lz + I;y — I, —

I,2) c0s(0)% + 2R cos(B) Im, + (R + [2)m, + R*m + I + 1,5,

Masssz, = sin(0) (R cos(B) Im, + 1*m, + I;;) = Mass,s,
and MaSS4_4 = lzmz + 112.

The C vector is

Gy (3-51)

where,
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I I I ..
C, =2 (R cos(B) lm, + (m + m,)R? + 2L 4 22 _ ﬂ) 0¢ cos(H)

2 2 2
— Rsin(B) lm,(2sin(0) $p + ¢ + p2),

= m,g(sin(8) (l cos(B) + R))

— ((lzm2 + Iy — I;3)(sin(8) ¢ + 28) cos(B)?

+ 2IRm, (sin(e) b + % + B) cos(f)

+ G(R*m + R*my — Iy + Iy + Ly — L,3) sin(8) + R*Ym, + (I + Iz — 1))
+Y(R*m + Iwz)> ¢ cos(6)

+ (=g sin(8) Imy — 260 (12m, + Iy — I;3) sin(B)) cos(B)

sin(@
g 2( )) Rim,,

-2 <ﬁ9 sin(B) l +
C; = 2(f5((l2m2 +I; — I;3) cos(B) + lez) sin(B) B cos(6)?
+ 2 <q">((lzm2 + Iy — I;3) cos(B)? + 2Rlm, cos(B) + R*m + R?my, + I, + 1,

Iy Tz I3

— Iy — 1) sin(8) — B(1my + Iy — Iis) cos(B)? + (zzmz Rl 7) g

+ IW22¢> 6 cos(6)

+ sin(B) ((éz(lzmz + I,; — I;3) cos(B) — Rlm, (B — 8) (B + 6)) sin(0)

+ Rlmy (4 — 26)),
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and Cy = —((1Pmy + Iy — I;3) cos(B) + Rlmy)d? sin(B) cos(6)?

) A 2 2 Ill 112
+26¢( (1Pmy + Iy = I13) cos(B)? + Rlm, cos(B) = < + =

2
+ (9'2(l2m2 + I, — Ij3) cos(B)

+ Rlm,(¢py sin(6) + ¢ + 92)) sin(B).

+ Il—3> cos(60)

0 (3-52)
—mgRsin(6) — m,g(sin(8) R + sin(@) cos(B) 1)
0
—m, gcos(0) sin(B) [
and 12 (3-53)

0
Q; = 0

The equations (3-30), (3-37), (3-39) and (3-33) found by Newton -Euler method also

G =

provide the same matrices as (3-50) through (3-53).
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Chapter 4 - Dynamics of the Unicycle with Rotating Disk

Introduction

The dynamic equations of the whole assembly of the unicycle are derived in this chapter.
Figure 4.1 exhibits the model discussed here. A rotating disk is attached to the frame such a way
that, it’s rotating axis X’ is perpendicular to the wheel’s rotating axis Y. The orientation of this
disk is described using the new local frame introduced as (X’Y’Z”’). Origin of this new frame
is at the center of the disk which has a radius of r and a mass of m,. The distance from wheel

center to disk center is [;. The disk rotates with an angular velocity of 7).

Z”,Zﬁﬁi /,

Figure 4.1. Unicycle with Rotating Disk Attached to the Frame

In addition to the equations derived in previous chapters, Newton- Euler and Lagrangian
equations are derived for the unicycle with rotating disk here. A matching set of equations are

obtained at the end of this chapter also, while confirming the accuracy of the analysis.
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Dynamics of the Unicycle with Rotating Disk — Newton Euler Analysis

The free body diagram used for this analysis is shown in Figure 4.2. It illustrates the

unicycle with its parts disassembled to mark the internal forces and the reactions.

Z”, Zaaa Z
.
.
.
.

X’DD

99 999 RN
Z ) Z ,‘/" Id
./A A

Figure 4.2. Free Body Diagram of Unicycle Assembly
The coordinates of the center of the disk (I;x,lzy,lqz) In (XYZ) frame are

lax = (cos(¢) sin(B) + sin(¢) sin(6) cos(B))l; + sin(¢)sin(O)R + x, 4-1)

lgy = (sin(¢p) sin(B) — cos(¢) sin(8) cos(f))l; — cos(¢p)sin(O)R + y, 4-2)

and lyz = cos(8) cos(B) Iy + cos(6)R. (4-3)
The velocity of the disk center obtained by taking the first time derivative of (4-1) through

(4-3). Those velocity components are
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vax = X + ((—sin(¢) sin(B) + cos(¢) sin(8) cos(B))ly + 4-4)
cos(¢) sin(6) R)¢ + (sin(¢) cos(8) cos(B) Iz + sin(¢) cos(8) R)O +
(cos(¢) cos(B) — sin(¢) sin(8) sin(B))lup,
vay = ¥ + ((cos(¢) sin(B) + sin(e) sin(6) cos(B))ly (4-5)
+ sin(¢) sin(8) R)q,')
+ (= cos(¢) cos(8) cos(B) I; — cos(¢) cos(6) R)6
+ (sin(¢) cos(B) + cos(¢) sin(8) sin(B))14f3
vaz = (=sin(@) cos(B) l; — sin(8) R)O — cos(8) sin(B) I (4-6)

The accelerations of the disk center with respective to (XYZ) frame calculated by taking
the first time derivative of (4-4) through (4-6). The acceleration components are
4-7)
agx = sin(¢) | sin(8) (—ld(ﬁz + % + 62) cos(B) — Blysin(B)
— R(q,">2 + 92)) + ld(cos(H) 6 — 2(,[)[3) cos(B)

—2l, (9 cos(8) B + %) sin(B) + R(cos(@) 6 — ¢l/))>

+ cos(¢p) ((—2 sin(B) Ly + lqd cos(B) + Re) sin(6)
+ 21, (cos(@) $6 + éi) cos(B) — 14 (B? + $?) sin(B)

+ R(Z cos(0) ¢p8 + l/J)>,
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(4-8)
agy = cos(¢) | sin(0) (ld(ﬁ"z + % + 62) cos(B) + Blysin(B)

+ R($? +62)) — Ly(cos(8) & — 2¢3) cos(B)

+ 21, <é cos(8) B + %) sin(8) — R(cos(9) 6 — ¢y)

+ sin(¢) | (—2sin(B) lipB + 13 cos(B) + R)sin(0)
+ 21, (cos(H) $0 + g) cos(B) — ld([?z + gbz) sin(B)

+ R(Z cos(60) (]59 +l/)) ,

and Aqz = (—ld(/j’z + 92) cos(B) — RO? — ﬁldsin(ﬁ)) cos(@) — 4-9)

sin(@) (—2 sin(B) 1,80 + 1,6 cos(B) + Ré).

The angular velocity of the disk in (X’Y*’Z”) frame is given by the vector

Qd — a)dYHI

wdx"'] (4-10)
deIII

and the angular velocity components are

wyx =1+ 6 cos(B) — sin(B) cos(8) ¢, 4-11)
wqym = B +sin(6) ¢, 4-12)
and w4, = cos(B) cos(8) ¢ + Osin(p). 4-13)

The angular acceleration vector of the disk in (X’Y*”’Z”’) frame is

Aax"" (4-14)
ad — adyul .
adzul

The acceleration components of (4-14), obtained by taking the first-time derivative of (4-

11) through (4-13) are
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ayym = ij + cos(B) 6 + sin(B) sin(6) $0 — cos(8) sin(B) ¢ + (4-15)
(=6 sin(B) — cos(B) cos(9) )P,

agyr = B + cos(8) $p8 + sin(6) P, (4-16)
and Qqz = sin(B) @ — cos(B) sin(8) ¢ + cos(8) cos(B) ¢ + (6 cos(B) —  (4-17)
sin(pB) cos(0) d))ﬁ

The inertia matrix of the disk in (X’Y*’Z”’) frame along its principal axes is
Ly 0 0 I;qv O 0 (4-18)
Id = 0 ]YHIYH/ 0 ] = [ 0 IdZ 0 ]
0 O IZIIIZIII 0 0 1d3

Newton’s equation in (2-21) is applied to the components shown in Figure 4.2 separately.
For the rolling wheel, equations obtained in Chapter 3, (3-19) through (3-21) valid for this

calculation also. Newton’s equations derived for the rod in (X”’Y”Z”) frame are,

m,a;x — cos(B) Syr — my,g cos(@) sin(B) + sin(B) S, — Sy =0, (4-19)
My — Sy + myg sin(@) — Sy =0, (4-20)
and m,a;z — cos(B) S, — sin(B) Sy + m,g cos(8) cos(f) — Sy = 0. (4-21)

The equations obtained for the rotating disk by applying (2-21) in (X’Y*’Z”") frame are,

Mgagxr —Mgg cos(8) sin(B) + Sy = 0, (4-22)
mdadY”’ + mugg sm(H) + SYI” = 0, (4'23)
and Mmyagy,m + mgyg cos(8) cos(B) + S, = 0. (4-24)

The results retrieved for unknown reactions, contact point reactions and the acceleration
components are provided in Appendix C.

The Euler equations are derived for the separated components in Figure 4.2 by applying
(2-25). For the rotating wheel it’s the same procedure followed in Chapter 2 repeated. Therefore,
only the final results are displayed in this chapter. When considering the rod, since there are new
external forces and torques present, (3-29) is modified as

, —7; (4-25)
H =M, + I—Tzl,
0
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where ISyr = (lg — DSy (4-26)
M; = |—I(cos(B) Syr — sin(B) S, + (Ig — DSy |-
0

The same procedure in Chapter 3 is followed to calculate H,. In the calculation of Euler
equations for the disk, external moments acting on the disk M; = 0, since the moments are taken
about the center of the disk. The rate of change of angular momentum is calculated as

H; = (H)r T QX Hy, 4-27)

where, (H)r d is the rate of change of angular momentum of the disk, with respect to the
center of the disk as viewed by an observer on the (X”’Y’Z”’) frame. (H )r d is calculated as

(H),,=asx1q4. (4-28)

In (4-27), Q; is used since the frame (X’Y*’Z”’) also has the same angular velocity. The
angular momentum of the disk Hy, in (X’Y*”’Z’) frame is calculated by

Hy=1,%9Q,. (4-29)

Euler equations for the disk is obtained by solving

: 1 (4-30)
Hd = Md + lOl
0

The final Euler equations obtained for the rotating wheel are,

) I I -
206 (R(Ums + lama) cos(B) + (my + mg + m)Re — 22 4 bt (43D

+ IW72> cos(60)

+ (RGUm, + 1gmy) cos(B) — 2R[ (Im; + 1gmg) sin(p)
+ ((my + mg + MR? + 1,,,) ) sin(6)

+ RB(Imy + lymy) cos(B)

— R(B% + ¢?)(Imy, + lymy) sin(B) + P(m; + my + m)R?

+IW211[) — T = 0,
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(—g[)z(R(lm2 + 1zmg) cos(B) + (my, + my + m)R? + 1, — I,,3) sin(8) — (4-32)
2RPL(Im, + lgmy) cos(B) — Rp(Imy + lymy) sin(B) — d((m, + my +
m)R? + I,,,)¥) cos(8) — Rg(m, + my + m)sin(8) + RO(Im, +
lamg) cos(B) — 2RBO(Im; + lymy) sin(B) + 6((m, + my + m)R? +
Iy1) =0,
and —p0(I,1 — Ly + 1,3) sin(@) + 1,900 + 1,5 cos(8) ¢ = 0. (4-33)

The Euler equations calculated for the rod from (4-25) are

((d)(—lzmz — 13my — I, + I;3) sin(6) (4-34)
+ B(=202my = 203my — Iy — I + 1))  cos(8)
— R$2(lmy + lymy) sin(8) — p(1?my, + 13my + I,;) sin(B)
— Rpyp(lm, + ldmd)) cos(6)
+ 6(1%m, + 12my + I;y) cos(B)
+ (48 Us + Iy — I2) sin(B) — g(Imy + Lymg) ) sin(6)
+ BO(=21%m, — 213my — I;; — I;; + I;3) sin(B) + Rlm,6
+Rlgmgf + 1, =0,
—2¢6 cos(8) (—1?m, — 12my — I;; + I;3) cos(B)? (4-35)

+ <(cos(0) ¢ —0)(cos(8) d + 8)(—1?my — I3my — Iy

+ I;3) sin(B)

+ 2(lm, + Iymy) (cos(G) P06 + sin(29) ¢ + %) R) cos(B)

- (Rcos(t9)2(,1.">2 + g cos(0)

— R(q.’n/; sin(@) + 6% + gbz)) (Im, + lymy) sin(B)
+ ¢O(I;3 — I + I)5) cos(8) + p(1Pm, + 12my + I,,) sin(H)
+ Pmyf 4+ imgf + 1,6 + 1, = 0,
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and  (cos(6) s — ($CUis + I — 112) sin() + Bl — I — 113)) 8) cos(p) ~ (4-36)
+ (¢ (@Ups — I2) sin(8) + f (U — Iz = I13) ) cos(6)

+ 1139) sin(B) = 0.

Euler equations derived for the disk from (4-30) are
(=6 cos® 1y “-37)

+6 (d)(ldl — Iz + 143) sin(0) — BUq1 + lap — Id3))) sin(B)
— cos(8) (@ Uz — las) sin(6)

+BUgr + Iaz — 1d3)) ¢ cos(6) + Igy cos(B) 6 + Iqsfj — 74
-0,

— cos(B) sin(B) $2(Igy — I43) cos(0)? (4-38)

la1 cos(B) 1)

+2¢ (9(1d1 — I43) cos(B)? + >

00ar— oz — Laz)
2

+ I3, sin(B) 16 + I, (sin(Q) ¢+ ,8) =0,

9 (Lt os(8) = 8 (¢ Ular = L + 1as) 5in(8) + s — La = ) ) cos(8

) cos(8) + sin(B) 6° (a1 — Ias) cos(B)

) (@-39)

+ ¢ sin(B) (¢ Uax — Iaz) sin(6)
+ By — laz — 143)) c05(8) = Ly SIn(B) b + I3 sin(B) &

— I41m = 0.

Three new Euler equations were derived by applying few transformations to the Euler
equations obtained above to build a symmetric mass matrix. One of the transformations applied is,

(4—-32)+ (4 —34) xcos(B) + (4 —36) xsin(B) + (4 —37) X cos(B) + (4-40)
(4 —39) xsin(B) = 0.

The results is
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($(sin(@) ¢ +28) (—1Pm, — lamg = gy + Ly = I + ) cos(g)? 44D

+ (—2R<i>2(lm2 + I;my) sin(0)

+G(=1Pmy — 1Gmg — lgy + lgg — Iy + I13) sin(B)

— Rp(Imy + Lymy) (P + 2,8)) cos(p)
—P2((my+mg+MIR? + 1gy — Iy + Iig + Ly — L3
— Idl) sin(0) — Rp(Im, + l;my) sin(B)

— ¢(P(m, + my + m)R?

+ gy + gz — I + I+ Iis — 1) + 1W2¢)) cos(6)
— 6(=1Pmy — IGmg — g1 + Ig3 — Iy + I;3) cos(B)?
+ (—g(lmy + lymy) sin(6)

+2B0(=1Pm, — 13my — gy + Igz — Iy + Ij3) sin(B)
+ 26(lmy + lymg)R + I447i) cos(B)

+ (—77()5 sin(B) I;; — Rg(m, + my + m)) sin(6)

—28 (9(lm2 +l;mg)R + %) sin(fB)

+ ((my + mg + MR? + Iys + I3+ 1,,,)6 = 0.
Next transformation applied is
(4 —33) x cos(8) + (4 — 36) x cos(B) cos(h) (4-42)
+ (4 — 39) X cos(B) cos(8) — (4 — 34) x sin(B) cos(0)
— (4 —37) x sin(pB) cos(0) + (4 — 31) x sin(B)
+ (4 — 35) x sin(0) + (4 — 38) x sin(8) = 0.

The resulting Euler equation is
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(‘ﬁ (=1Pmgy — I§mg — Igg + lg3 — Iy + I13)(cos(B))? (4-43)

+ (—2¢'>/§(—12m2 — Bmy — gy + Iz — Iy + I;3) sin(B)

— 2R$(Im, + lymy)) cos(B) + 2RPB(Im, + lamy) sin(B)
— ¢ ((my +mg + MIR? + Iy — Iy + Iz + Ly — L3

~ 1)) (cos(0))*

+ (—zé(sin(e) b — B)(=12my — 12" — Igy + g5 — Iy

+ I13) (cos(B))?

+ (4RO (Im; + lymy) sin(0)

+6(=1Pmy — IGmg — gy + Ig3 = Iy + I;3) sin(B)

— 14151 cos(B)

+20((my +mg + MIR? + Iyy — Iy + I + Ly — L3

— Idl) sin(@) + (—9(lm2 + l;mg)R — Idlﬁ) sin(f)

= 0((=2 Pmy — 203mg — Igy = laz + laz — Iy — Lz + 113)B
~ luzth) ) cos(6)

+((-02-12my = Bing = gy + 1y = L + 1) sinB)

+ R( + B)(Im; + Lgmy)) sin(6)

+ 2R, + lgmg) ) cos(B)

+ ((RUM, + 1amg0? + 14510 = RE?Umy + Lgmg) ) sin(B)
+P(my + my + MR + Pmyf + Bmgf + (L + 1a2)B

+ Luath ) sin(6) + R (Im; + Lym) (- 26) sin(8)

+ <i5((m2 +mg +m)R* + IPmy + Gmg + I + 1y, + Idz)

=0.

Final transformations applied is
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(4—35) + (4 —38) = 0. (4-44)

The result is

—sin(B) ((lzm2 + img + Igq — Igz + Iy — I;3) cos(B) (4-45)

+ R(lm, + ldmd))(,bz cos(0)?

+ <_2é¢}(_12m2 - l?zmd =gy +1g3 — I}y +113) COS(,B)Z

1P AW
“40) cos()

+2 (6’?(lm2 + ly;mg)R +
— g(m; + lgmy) sin(B)
+0PUaz + 13— Iy + Iy + I3 — Id1)> cos(8)
+ (—éz(—lzmz - lfimd —lag1 + gz — Iy + I13) sin(p)
+ R(lm, + ldmd)(sin(e) ¢+ 1/))) cos(B)
+ (qut/)(lmz + lymg) sin(@) + R(Im, + lymy)p?
+ (8(Imy + lymg)R + 14177)8) sin(B)
+ ¢(1Pmy + 12my + gy + I)5) sin(0) + 12myf + 1Pmyf8
+ Iy +1g2)B + 1, = 0.
Symmetric mass matrix of the unicycle model was built using (4-31), (4-41), (4-43), (4-

45) and (4-37). These equations are expressed in matrix form at the end of this chapter.
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Dynamics of the Unicycle with Rotating Disk — Lagrangian Analysis

The Lagrangian (L) is derived for the unicycle with the rotating disk shown in Figure 4.1 using
(2-35). The total kinetic energy T for this assembly is given by
m . A
=3 ((x + cos(¢) sin(8) R¢ + sin(¢) cos(0) RH)2 (4-46)
+ (¥ + sin(¢) sin(8) R — cos(¢) cos(H) Ré)2 + sin(6)? Rzéz)
621, (1/1 + sm(@) ¢>) J cos(6?)2 X -
+— +
+ m; (x (( sm(qb) sin(B) + cos(¢) sm(9) cos(B)1 +) é
2 cos(¢) sin(6) R

+ (sin(¢) cos(8) cos(B) L + sin(¢) cos(6) R)8
2
+ (cos(¢) cos(B) — sin(¢) sin(0) sin(ﬂ))lB)

(cos(¢) sin(B) + sin(¢) sin(8) cos(B))I +
* ( ( sin($) sin(8) R )¢’

+ (= cos(¢) cos(8) cos(B) I — cos(¢) cos(0) R)6
2
+ (sin(¢) cos(B) + cos(¢) sin(0) sin(ﬁ))lﬁ)
+ ((— sin(0) cos(B) | — sin(8) R)O — cos(8) sin(B) ZB)2>

(9 cos(B) — cos(0) sin(B) (fb)zlll (,8 + sin(8) ¢ )2112
2 2
(cos(ﬁ) cos(0) gb +6 sm(ﬁ)) I3

m (- sm(qb) sin(B) + cos(¢) sin(6) cos(B))l
+ 2d (( ( cos(¢) sin(6) R ‘ ) ¢

+ (sin(¢p) cos(8) cos(B) I + sin(¢) cos(8) R)O

+ (cos(¢) cos(B) — sin(¢) sin(6) sin(ﬁ))ldﬁ>

+(y

+ ((cos(q.')) sin(B) + sin(¢) sin(0) cos(B))l,; + sin(¢p) sin() R)q.')
+ (= cos(¢) cos(8) cos(B) Iy — cos(¢) cos(8) R)O

+ (sin(¢) cos(B) + cos(¢) sin(8) sin(ﬁ))ldﬂ')2

+ ((— sin(0) cos(B) l; — sin(8) R)O — cos(0) sin(B) ldﬁ")2>

N (77 +6 cos(B) — cos(0) sin(B) g[))zldl N (,8 + sin(@) (fb)zldz
2 2
N (cos(B) cos(8) ¢ + 6 sin(ﬁ))zld3
> :
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The total gravitational potential energy is

V = mgR cos(8) + m,g(cos(8) cos(f) l + cos(6) R) (4-47)
+ myg(cos(@) cos(B) Ly + cos(0) R).

The non-holonomic constraints in this system are defined in (2-38) and (2-39). The
generalized forces for the Lagrange equations calculation using (2-40) are obtained from the

Newton-Euler method in Chapter 4. The generalized forces are

Qy = T2, (4-48)

Qg =0, (4-49)

Q4 =0, (4-50)

Qp = — Ty, (4-51)

and Q=T (4-52)

The final Lagrange equations for the unicycle are same as the (4-31), (4-41), (4-43), (4-45)

and (4-37). These equations are arranged in a matrix form described in (2-47) as

Massq4 0 Mass;; Massyy 0 (4-53)
0 Mass,, Mass,; 0 MaSSZS]
Mass = |Mass3; Massz, Masssz Massz, Massss|,
Mass,q 0 Mass,; Massy, 0
0 Masss, Massss 0 Massss

where,
Massy; = (m + my, + myg)R? + I,,,,
Mass,3 = (R cos(B)(lmy + lymy) + (m + my, + my)R? + 1,,,) sin(8) = Mass,;,
Massq, = Rcos(B) (Im, + lymy) = Mass,,
Mass,, = —(=1?m, — 13mg — Igy + I3 — I + I;3) cos(B)? + 2R(Im, + lymy)cos(B) +
(my +mg + m)R? + Iy + I3+ 1,4,
Massyz = ((=1?my — lGmg — lgy + Iz — Iy + I;3)sin(B)cos(B) — R(Im, +
lymg)sin(B))cos(8) = Masss,,

Mass,s = I3, cos(B) = Masss,,
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Massz; = ((—lzm2 —13my — Iy + g3 — I;y + I;3) cos(B)? — 2R(Imy + lymy) cos(B) —
(my+mg+m)R?> — Iy +1Ij; — Iy — Ly + 13 + Idl) cos(0)? + 2R(Im, + lymy)cos(B) +

(my + myg + MR+ P’my + img + 1y + Ly + 142,
Masss, = R(Imy + lymg)sin(8)cos(B) + (12m, + 2my + 14, + 1;)sin(8) = Mass,s,
Massss = —Iz1sin(f)cos(8) = Massss,
Massy, = >my + 15my + Igp + 115,
and Massss = 144.

The C vector is

(4-54)

where,
I I
C,=2 (R(lmz + lymy) cos(B) + (m, + my + m)R? — %3 + %1

* sin(B) (Im, + lymy)(2sin(0) $f + $2 + 2),
C,=—¢ (—(sin(@) ¢ + Zﬁ)(—lzmz —1Gmg — Igq + lgz — Iy + I;3) cos(B)?
%+ ,8) R * cos(B)
+d((my + mg + MR? + Iy — Ly + Iz + Ly — Lz — I41) sin(6)

+ IWTZ> 6¢ cos(6) — R

+ 2(lm2 + ldmd) <Sln(0) (I) +

+ gy + gz — Iy +1p + 113 — Id1)B + ((mz +mg + m)R* + Iwz)lp) cos(6)
+ (2B6(=1Pmy — 1Gmg — gy + las — Iy + I3) sin(B)) cos(B)

+ (—17(}.’3 sin(B) Idl) sin(8) — 2[3’ (9(lm2 + l;my )R + %) sin(B),
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C; = 2¢ B sin(B) ((lzm2 + 13mg + 14 — Igs + I;; — I;3) cos(B) + R(Im, + ldmd)) cos(0)?
+ (2(WPmy + 13mg + Loy = Lgs + Iy — I13) cos(B)?
+ 2R(Im, + Iymy) cos(B) + (my + myg + m)R? — Iy +Ipp + Ly — Lz — Igq
+ Idz)é sin(8) + 286 (=12m, — 12my — Iy + Iys — I;; + I;3) cos(B)?
- ﬁB cos(B) Iay
~ (22my = 213m ~ las ~ lap + las = lis = Iz + 112)B — Lu2ib) 6) cos(6)
+ sin(p) <(—92(—12m2 - lczimd — g1 + gz — Iy + I13) cos(B)
+ R(Im, + lymy)02 + 11,0 — RB?(Im, + ldmd)) sin(0)
+ R (Um; + L) (i — 28)),

Cy = —(ﬁz((lzmz + 15mg + 14y — gz + I;; — I;3) cos(B) + R(Im, + ldmd)) sin(B) cos(0)?

+ 24) <_9(—lzm2 - lfimd —Igq + Ig3 — Iy + I13) cos(B)?
+ (6.?(lm2 +Il;my)R + %) cos(B)
4 OUaz + gz — 1112‘" Iy + Ij3 — Idl)) cos(6)
+ (—6%(—1Pmy — 1img — Iy + lgz — Iy + 13) cos(B)
+ Rpyp(Im, + lymy) sin(0) + R(Im, + ly;my) >
+ (6(tmy + lymR + 11 4,)0) sin(B),
Cs = ($Uas = Lz + Iaz) sin(0) = Blas + Lz = Luz) ) 6 sin(B)
— ($Uaz = 143) sin(®) + BUas + laz — Lz) ) b cos(B) cos(®),

n(O)R )= mag(,  SMOR ) s
Sin Sin
— Iltg

—mgR sin(0) — m,g (

G = +sin(@) cos(B) [ Mag\ 4 sin(0) cos(B) I,
O 9
—m, gcos(0) sin(B) I — myg cos(0) sin(B) I,
0
and [ 1(')2 1 (4-56)
Q:=|0
—1,
51
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Conclusion

The main goal of this research was to build and check the accuracy of the equations of
motion of the unicycle. In this study Newton Euler method and Lagrange method were used to
accomplish the main goal. This work fills a gap in the literature available for the unicycle dynamics
by providing the Newton Euler method. The unicycle was modeled in three-dimensional space
considering the yaw angle which incorporates with the steering direction. It was separated in to
three components namely, driving wheel, frame, and rotating disk, and analyzed separately using
both methods. The dynamic equations obtained from the Lagrange method are exactly matches
with the equations obtained from Newton Euler method with transformations. These equations are
(4-31), (4-41), (4-43), (4-45) and (4-37). Therefore, it is reasonable to declare that the equations
of motion developed for this unicycle model are accurate. Finally, for the easiness of comparison
they are expressed in matrix form in (4-53) through (4-56).

The Newton Euler method provides 18 equations of motion before the transformations. For
each component mentioned earlier 3 Newton equations and 3 Euler equations were derived. After
careful comparison and using some mathematical transformations for Newton Euler method, a
matching set of equations were obtained from both methods. These transformations can be found
in (4-40), (4-42) and (4-44). Even though the Lagrange method is much simpler and faster in this
calculation, the Newton Euler method provides much accurate results. The reason for this is, in
Lagrange method the user must introduce the generalized force vector (4-56), by observing the
free body diagram. This can be erroneous. But in Newton Euler method, after the transformations,
this generalized force vector can be obtained automatically from the calculations.

The equations obtained from this work are highly coupled and non-linear. As for the next

step of this project, the dynamics model can be simulated using MATLAB after linearizing the
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model. A state space system can be built for the linearized model. The states can be chosen
considering the degrees of freedom and the actuators used in the unicycle. A numerical analysis
can be carried out assigning some numerical values for the components, velocities, and the angles.
Thus, the unicycle can be modeled and simulated in MATLAB. After modelling the unicycle, it is
capable to build a controller for the latitude and longitude control of the unicycle. Finally, a
unicycle can be built, and the optimized controllers can be utilized to control the stability of the

unicycle.
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Appendix A - Dynamic Calculations of Rolling Wheel

Maple ® [17] software is used to do all the calculations in this research. Some complex

derivations and long expressions obtained for results are presented here.

Newton-Euler Method

The free body diagram in Figure 2.1 is referred in order to do the calculations in this section. The
variables used in the thesis are defined in the nomenclature section.

The transformation matrices used to do the kinematic calculations are defined in the immediate
text to follow.

The transformation from global origin to point of contact is

1 0 0 x (A-1)
101 0 y
PoC = o0 1 ol
0 0 0 1
Transformation from point of contact to wheel center is given by
1 00 0 (A-2)
_10 1 0 O
TR=10 0 1 &r|
0 0 0 1

The rotation matrix for the rotation of ¢ angle about the Z axis is

cos(¢p) —sin(p) 0 O (A-3)
RotZ = sin(¢p) cos(p) 0 O .
0 0 1 0
0 0 0 1
The rotation matrix for the rotation of 8 angle about the X axis is
1 0 0 0 (A-4)

0 cos(@#) —sin(@) O
0 sin(8) cos(@) Of
0 0 0 1

The description of the wheel centered frame (X Y’Z’), in terms of the global coordinate system

RotX =

1s calculated as

WCF = PoC X Rotz X Rotx X TR, (A-5)
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and WCF (A-6)

cos(¢p) —sin(¢)cos(@) sin(¢) sin(0) sin(¢) sin(@) R + x
sin(¢p) cos(6)cos(¢p) —sin(B)cos(¢p) —cos(¢p)sin(6)R+y
0 sin(6) cos(60) cos(@)R
0 0 0 1

)

is the output.

The description of the global frame orientation in terms of the (X’Y’Z’) frame is obtained by

GFO = (RotX)" x (RotZ)T, (A-7)
and cos(¢p) sin(¢) 0 0 (A-8)
GFo = |~ sin(¢) cos(f) cos(¢)cos(8) sin(@) 0
ol

sin(¢) sin(8)  — cos(¢) sin(8) cos(H)
0 0 0 1

Here the superscript T denotes the transpose of that matrix. The wheel center kinematics are
derived using the above matrices. The wheel center location coordinates in (XYZ) frame are
obtained from W CF matrix and they are expressed in (2-1) through (2-3).

The angular velocity of the wheel is calculated in the wheel centered frame (X Y’Z’) for the
easiness of the calculations. The velocity vector consists of three velocity components namely,
wheel’s rolling velocity 1, pitch angular velocity 8 and yaw angular velocity ¢. While, roll and
pitch angular velocities are expressed in the (X Y’Z’) frame, the yaw angular velocity is given in
(XYZ) frame. Therefore, the ¢ velocity component was transformed in to the (X’Y’Z’) frame
using the rotation matrix GFO. The translational part of this matrix is disregarded in this case. The

angular velocity of the wheel calculated as

2 0 0 (A-9)
Q=|o|+ |y +(GFO)><[Q],
0 0 o)
2] (A-10)
Q = |y + ¢sin(8)|.
¢ cos(8)

The reaction forces at the wheel contact point with the ground, calculated using (2-21) are
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(A-11)
Fy = mR ((—(sz — 6?)sin(8) + 6 cos(8) — d)lp) sin(¢)

+ 2 cos(¢) <¢9 cos(6) + ¢ si;(Q) + %) )
(A-12)
—(| (=% —02)sin(8) + 8 cos(6) — Ppy)cos(¢p)
_ . ¢sin(@) Y
— 2 sin(¢) (ng cos(0) + 5 + E) ,
and N = mg — mR6? cos(8) — mR6 sin(8). (A-13)

In order to determine the external moments (M) applied to the wheel, the contact point reactions

are transformed in to the (X’Y’Z’) frame. The local force vector in wheel centered frame is

calculated by
LocalF = GFO X RF, (A-14)
where Fy (A-15)
rF =]
0
and cos(¢) Fx + sin(¢) Fy (A-16)

—sin(¢) cos(8) Fx + cos(¢) cos(8) Fy + sin(8) N
sin(¢) cos(@) Fy — cos(¢) sin(8) Fy, + cos(6) N
0

LocalF
_|LocalFy:

~ |LocalF |
0

M is calculated by taking the cross product between, the wheel contact point vector in local frame

LocalF =

and the contact point reaction forces vector in local frame as

0 LocalF g (A-17)
M=| 0 |x|LocalFy:
—R LocalF ,

—R(Fy cos(¢) + Fy sin(¢))

[R( Fy cos(0) sin(¢) + Fy cos(8) cos(¢) + N sin(8))
0
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Then, the Euler’s equations are calculated using (2-25) and (2-27), where
(H) =axl,. (A-18)
The final set of dynamic equations for the wheel calculated using the Newton-Euler Method are

expressed in (2-31), (2-32) and (2-34).

Lagrangian Method

The Lagrange dynamic equations for the wheel are obtained by

;t((g;) <6ql) Qi+ zﬂkakl

The variables in (A-19) are defined in Chapter 2 and the Nomenclature section. The results of

(A-19)

this calculation are provided here. The equations obtained for g; = 1, 8,¢, x and y, respectively,

are
(¥ + 6cos(8)p + sin(®) §)I,,, — 7, — Rcos(dp) A, — Rsin(¢p)A, =0, (A-20)
(R*m + I,,)0 + %sin(¢) cos(8) Rm — j cos(¢) cos(9) Rm — (A-21)
cos(8) sin(0) (R*m + I, — ly3)$? — Ip¢ cos(6)p — mgR sin(0) = 0,
((=R*m — I, + I,3) *cos?(0) + R*m + I,,5)¢ + 1,2 sin(6) (A-22)
+ X cos(¢) sin(6) Rm + sin(0) sin(¢) yRm
, R .
+ 2 <sm(t9) (R®’m + I, — I,3)0 + 1/J7> cos(6) 6
—sin(8) 7, =0,
. A-23
2@* R <<i> cos($) 0 cos(6) - §2sin(@) T2 —sing) g2 50D T
smz( ) (¢)9 os(6 )>>m+11=0,
and - (—ji + R(—cos(¢) sin(6) ¢p? — cos(¢) sin(8) 62 — (A-24)

2 sin(¢) cos(0) 0 + cos(¢) cos(8) 6 — sin(¢) sin(h) ¢)) m+ 1, =0.
The first time derivatives of the non-holonomic constraints of (2-38) and (2-39) are respectively
¥ = Ry cos(¢p) + Ry sin(¢), (A-25)
and y = —Rysin(¢) — Rp¢b cos(¢). (A-26)

49



These results in (A-25) and (A-26) then substituted in (A-23) and (A-24) to calculate A; and A,.

They are
A = —m(¥ + R¢ cos(¢) sin(6) — Rp? sin(¢p) sin(0) + (A-27)
2R¢ cos(¢) 0 cos(8) + R sin(¢p) 6 cos(8) — R sin(¢) 82 sin(8),
and A, = —m(3J — RO cos() cos(¢p) + RO? sin(8) cos(¢) + (A-28)

2R0 cos(0) ¢ sin(¢) + Rsin(8) ¢ sin(¢) + R sin(8) ¢? cos(¢h)).
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Appendix B - Dynamic Calculations of Rolling Wheel and Frame

Newton-Euler Method

The calculations in this section is carried out in reference with Figure 3.2. The kinematics
relationships related to wheel, explained in Appendix A are not repeated in here. Reader may
refer to previous chapters to see those calculations.

The transformation from wheel center to the center of mass of frame is

1 0 0 O (B-1)
_10 1.0 0
=10 0 1 1
0 0 0 1
The rotation matrix for the rotation of § angle about the Y’ axis is
cos(f) 0 sin(B) O (B-2)
1 0 0

_ 0
Rot¥ =1_ sin() 0 cos(B) Of
0 0 0 1

The description of the center of mass of rod, in terms of the global coordinate system is
calculated by

LCF = WCF X RotY X TL. (B-3)
The coordinates of the center of mass of the rod is provided in (3-1) through (3-3). The
description of the (X’Y’Z’) frame in terms of the (X’Y”’Z”) is obtained by

WFO = (RotY)T , (B-4)
and cos(B) 0 —sin(B) 0 (B-5)
0 1 0 0
WFO = :
sin(B) 0 «cos(B) O
0 0 0 1
The angular velocity vector €, of the rod with respective to (X Y’Z’) frame is given by
6 (B-6)
Q, = |B + ¢sin(6)|.
¢ cos(8)
The angular velocity vector £; of the rod with respective to the (X”Y”’Z”) frame is calculated as
Q, =WFO x Q,, (B-7)
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where, 6 cos(B) — sin(B) cos(0) ¢ (B-8)
Q= P + sin(6) ¢
cos(B) cos(8) ¢ + 8 sin(pB)
The translational part of WFO matrix is disregarded in above calculation.
In order to apply the Newton’s equation (2-21) for the rod in (X”’Y”’Z”) frame, the reactions at
the joint were transformed in to the (X”’Y”Z”) frame first. The reaction force vector at the joint is

calculated as

LocalF2 = WFO X CF, (B-9)

where Sy (B-10)
Syur
CF=|"Y

SZ/ ’

0

and cos(B) Sy — sin(B) S, LocalF2yn (B-11)

LocalF2 = . SY’ — LOCCllFZYH '
Sln(ﬁ) Sx’ + COS(IB) SZ’ LOCCllFZZH
0 0

Also, the wheel center accelerations calculated with respect to the (XYZ) frame in (2-9) through
(2-11) transformed to the (X Y’Z’) frame as

a,.. = GFO X a,.q, (B-12)

where ax (B-13)
Awee = Z;
0

and ay R(2 cos(6) $6 + sin(8) ¢ + ) (B-14)

QoL = ay’| _ R(cos(0) ¢(sin(0) ¢ + ) — ) _
ag' R(cos(68)? ¢? — ¢y sin(6) — ¢ — 6?)
0

The description of the (XYZ) frame orientation in terms of the (X’Y”Z”) is obtained by
GFO02 = (RotY)" x (RotX)T x (RotZ)T (B-15)

c(p) c(B) —s(¢)s(0)s(B)  s(P)c(B) + c(P)s(0) s(B)  —c(0)s(B)
GF02 = _S(d))c(e) C(¢)C(9) 5(6)
c(@)s(B) +s(P)s(@)c(B)  s(P)s(B) — c(@)s(@)c(B)  c(B)c(B)
0 0 0

= o O O

The terms cos() and sin() represented by c() and s() respectively in (B-15).
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The accelerations of the rod center calculated with respect to the (XYZ) frame in (3-7) through
(3-9) transformed to the (X’Y”’Z”) frame as

a,o = GFO2 X ¢, (B-16)

where, Arx7 (B-17)
ary
iz

0 .

and Aix' (B-18)
Ary"

Areg =

Qe = a;n |

0

The acceleration components of (B-18) are

a5 = 2 cos(6) cos(B)? plO

+{ (- cos(6)? 192 + 162) sin(B)

+ 2R <cos(9) PO + sin(29) ¢ + %) cos(B)

— R(cos(8)? ¢? — ¢y sin(8) — p? — 62) sin(B) + I(sin(8) ¢ + ﬁ),
ayr = (1p(sin(8) ¢ + 2) cos(B) + Rsin(8)p? + Ry + L sin(B)) cos(6)
+ 2sin(B) 16 — 16 cos(B) — R6,
and a;zm = (cos(0)? g2 — 16?) cos(B)?

+ (R cos(0)? $2 + 26 sin(B) I cos(0)
— R(dysin(6) + 62 + ¢2)) cos(B) + 2 cos(8) sin(B) RPp8

. . pr B2
+ R(sin(0) ¢ + ) sin(B) — 21 <sin(9) OB + -+ 7).

After solving (3-19) through (3-24), the contact point forces and the reaction force components

at the wheel center are calculated. They are
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Fy = ((—lmz(ﬁ’z + 2% + 92) cos(B) — Blm, sin(B) (B-19)

— R(§? + 62)(m + my) ) sin(8) — 2m,L(pf

cos(@)

Yeos(B) + (=26 sin(B) Im, + 6R(m

+ mz))COS(H) — ¢lm,sin(B) — YR (m + m,))sin(¢)
+ ((plmycos(B) — Zgbﬁ sin(B) Im, + pR(m

+ m;))sin(8) + 2m,(cos(8) 6 + E)lcos(ﬂ) + 2¢OR(m

+ my)cos(8) — lm, (B2 + $2)sin(B) + PR(m
+m;))cos(¢p),
Fy = ((Imy(B% + 2 + 6%)cos(B) + Blmzsin(ﬁ) +R(P2+6%)(m  (B-20)

_ .. s( )6
+ m,))sin(8) + 2m,l(¢pf —

)cos(B)

+ (286 sin(B) Im, — 6R(m + my))cos(0) + plm, sin(B)
+ GPYR(m + my))cos(p)

+ (($1m; cos() — 26 sin(p) tm,

+ dR(m + mz)) sin(0) + 2m, (cos(@) $0 + B) lcos(B)

+ 2¢0R(m + my)cos(0) — Im,(B? + $?)sin(B) + PR(m
+my))sin(e),

N = (—lmz(,B2 + 602) cos(B) — flm, sin(B) — RO?(m + mz)) cos(9) (B-21)
+ (=6lmycos(B) + 280 sin(B) Im, — 6R(m
+ m,))sin(0) + g(m + m,),

S0 = 2my(~(sin@) 36 + 2 + Dtsingg) + ttcos() g + DL B

()¢> g))

Syr = —my((—$?(lcos(B) + R)sin(8) — 2 cos(ﬁ) IS — Ry (B-23)
— I$sin(B))cos(0) — 2 sin(B) 136 + l6cos(B) + RO
—sin(6)g),

+ g)cos(ﬁ) + R(cos(6) ¢6 +
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and S, = —m_2(1(— cos(8)? ¢ + 2sin(8) P + 0% + $? + ) cos(B) (B-24)
— Rcos(8)%¢? — cos(0)g + (RPY + Lpsin(B))sin(8)
+ Blsin(B) + R(p? + 62)).
M, is calculated about the rod center by taking the cross product between, the wheel center position

vector in (X”Y”Z”) frame and the wheel center reaction forces vector in same frame as

0 LocalF2yn (B-25)
M, = [0] X [LocalF2yn
-l

LocalF?2 ;i

ISy
= [_Z(COS(,B) Sy — sin(p) Sz’)]
0

Lagrangian Method
The Lagrange dynamic equations for the rolling wheel and frame are obtained by applying (A-
19). The results of this calculation are provided here. The equations obtained for q; = v, 8,¢,0,
x and y, respectively, are
I, + cos(8) ¢l,,,0 + sin(0) I,,,¢p — 7, — R cos(¢p) A, — Rsin(¢p) A, = 0, (B-26)
(—p(sin(0) ¢ + 2)(12m, + Iy — Ii3) cos(B)? + (—2Rp? sin(6) lm, —  (B-27)

$UPmy + Iy — Is)sin(B) — 2 (Rpp + =22 — ZE) 1m,)cos () —
$2(R*m + R?>m, — Iy + I, + 1., — I,,3)sin(8) — R sin(B) lm, —
Rj(m + m,)cos(¢) + Rx¥(m + my)sin(p) + ¢((I;; — Iy — I13)B —
L,,))cos(8) + 6(12m, + I;; — I;3) cos(B)? + (—g sin(8) Im, —
2B6(1*m, + I, — I;3)sin(B) + 2RIm,0)cos(B) — Rg(m + m,)sin(8) —
2RBIm,0sin(B) + 6(R?*m + R*my + I;3 + 1,,,1) = 0,
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(QB(_lzmz — Iy + I13) cos(B)? (B-28)
+ (—Z(ﬁﬁ(—lzmz — Iy + Ij3) sin(B) — 2Rlm,) cos(B)
+ 2RB¢pIm, sin(B)
—p(R*m+R*my — Iy + 1y + 1y — IW3)) cos(6)?
+ (2((lzm2 + Iy — I;3) cos(B)? + 2Rlm, cos(B) + R*m
+ R*my + Iy + Ly — Ly — 11 )0 sin(6)
+ 2B6(=1?m, — I}, + I;3) cos(B)>?
+ 6 sin(B) (=1?my — I;; + Ij3) cos(B) — RIO sin(B) m,

+0(2B12my + (U — iy + 1)B + Ly2h) ) cos(6)
+((-02-12my = 1y + 1) sin(B)

+ lm, (Rﬁ + X% cos(¢p) + sin(¢p) y)) cos(B)

— RImyz_gy(p+6)sin(B) + RE(m + my) cos(¢)

+ Ry(m + my) sin(¢) + 2m,B + I,5 + Iwzll}> sin(8)

+ 2R¢lm, cos(B)
-2 (R(,b,[? — COS(Z¢) y + sin(qu) x) Im, sin(B)

+ d((R?2+ 2)my + RPm + Iy + 1,2),
—2¢0 cos(8) (—1?m, — I;; + I;3) cos(B)? (B-29)

+ (¢p? sin(B) (=1?my — I; + I;3) cos(8)?

+ 2R¢0 cos(0) Im, — 62 (—1?>m, — I}y + I;3)sin(pB)

+ Im,(R¢sin(8) + ¥cos(¢p) + sin(¢) 3))cos(B)

— sin(B) cos(0)? Rp?lm, + (—g sin(B) Im, + PO (I},
+ I3 — I11))cos(8)

+1((cos($) 3 — sin(¢) %) sin(6)
+ R(§? + 62) ) mysin(B) + G(12m; + I1;)sin(6)

+ Pm,f + I8 + 15,
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((=lm, (B2 + $2 + 6%)cos(B) — Blm,sin(B) — R(¢p? + 62)(m (B-30)

_ .. Bcos(8)
+m2))sin(8) — 2m,l(f¢ — ————)cos(f)

+ (=26 sin(B) lm, + RG(m + m,))cos(6)

— ¢ sin(B) Imy)sin(¢) + (plmycos(B) — 2 sin(B) Im,
+ Rep(m + my))cos(¢)sin(6)

+ (2 <¢>9 cos(0) + g) mylcos(B) + 2RO (m

+ m,)cos(8) — sin(B) Im, (8% + ¢p?))cos(¢) + im
+ Xm, + A4,
and ((Imy(B? + $2 + 0%)cos(B) + Blm,sin(B) + R(p? + 62)(m (B-31)

+ m,))sin(0) + 2m,l (ﬁd) — 02c05(0)> cos(B)

+ (26 sin(B) lm, — RO (m + my))cos(6)
+ ¢ sin(B) Im,)cos(p) + sin(¢)(Pplm,cos(B)
— 2B sin(B) Im,¢ + Rp(m + m,))sin(0)

+ (2 <¢>6 cos(0) + g) m,lcos(B) + 2RO (m

+ my)cos(0) — sin(B) Im,(B% + $2))sin(¢) + ym

+ ym, + 4,.
The results in (A-25) and (A-26) then substituted in (B-30) and (B-31) to calculate A; and A,.
They ar
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A1 = ((Imy(B? + ¢% + 6%)cos(B) + flmysin(B) + R(¢? + 62)(m (B-32)

_ .. Bcos(8)
+ m,))sin(8) + 21 <ﬁ¢> — > )mzcos(ﬁ)

+ (2B6 sin(B) lm, — RG(m + my))cos(H)
+ ¢ sin(B) lm, + RpyP(m + m,))sin(¢)
— cos(¢) (($lmycos(B) — 2 sin(B) Im,p + Rp(m

+ m,))sin(8) + 2lm,(8 cos(8) ¢ + g)cos(ﬁ) + 2RO¢(m

+ m,)cos(8) — sin(B) Im, (B + ¢?) + RYP(m + my)),
Ay = ((—lmy(B? + 2 + 6% cos(B) — flm,sin(B) — R($? + 62)(m (B-33)
6 cos(6)

+ m,))sin(@) — 21 (,qu — )mzcos(ﬁ)

+ (=246 sin(B) Im, + R (m + m;))cos(6)
— ¢ sin(B) lm, — Rgyp(m + my))cos(¢)
— ((¢lmycos(B) — 2B sin(B) Im,d + Rp(m

+ my))sin(8) + 2lm, (60 cos() ¢ + g)cos(ﬁ) + 2RO¢p(m

+ m,)cos(8) — sin(B) Im,(B? + ¢p?) + RY(m
+ m,))sin(¢).
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Appendix C - Dynamic Calculation of Unicycle with Rotating Disk

Newton-Euler Method
The free body diagram used for the calculations in this section is shown in Figure 4.2.

The transformation from rolling wheel center to center of disk is

100 0 (C-1)
lo 1 0 o
Td=1y o 1 1,

000 1

The description of the center of mass of rotating disk, in terms of the global coordinate system is
calculated by

DCF = WCF X RotY X Td. (C-2)
The coordinates of the center of the disk obtained from (C-2) is given in (4-1) through (4-3).
The accelerations of the rotating disk center calculated with respect to the (XYZ) frame in (4-7)
through (4-9) transformed to the (X’Y’Z”’) frame as

a4 = GFO2 X ay.¢, (C-3)
where, Aax (C-4)
Agce = ZZZ ;
0
and Aax' (C-5)
P
0
The acceleration components of (C-5) are
agxm = 2 cos(0) cos(B)? Pplyh + ((— cos(8)? lyp? + 1;6?)sin(B) (C-6)
+ 2R(cos(8) ¢ + w + %))cos(ﬁ) — R(cos(8)? ¢?

— ipsin(6) — 2 — 62)sin(B) + L4(sin(6) ¢ + B),
agyr = (Lu@(sin(8) ¢ + 2)cos(B) + R sin(8) ¢p? + Rpyp (C-7)
+ 1ypsin(B))cos(8) + 2 sin(B) 1,660 — 1;6cos(B) — RE,

59



and Qg7 = (COS(@)Z ldd)z - ldéz) COS(ﬁ)2 (C'S)

+ (R cos(0)? ¢2 + 26 sin(B) Iy ¢ cos(6)

— R(dysin(6) + 62 + ¢2)) cos(B) + 2 cos(8) sin(B) RPp8
g g

+ R(sin(8) ¢ + ) sin(B) — 2 (sm(@) B + - + 7) Ly
The contact point forces, reaction force components at the joint where wheel and frame connects
and the reaction force components at the rotating disk joint are calculated, by solving (3-19)
through (3-21) and (4-19) through (4-24). They are,

Fx = ((=(B* + §* + 6*)(lmy + lgmg)cos(B) — B(lmy + lgmg)sin(B)  (C-9)
— R($? + 6%)(my + my + m))sin(8) — 2(Im,

.. cos(0)6 ..
+lama)(9f — ————)cos(B) + (=240 (Im,

+ lymg)sin(B) + OR(m, + my + m))cos(8) — P(Im,
+ lgmg)sin(B) — pYR(m; + mg + m))sin(¢)
¢(Um, + ldzmd) 0SB _ 55 (im,
dR(m, + my +m)
2

+ 2cos(@)((

+ lymg)sin(B) +

)sin(8) + (Im,

+ lymg)(cos(0) ¢p6 + g)cos(ﬁ) + ¢OR(m, + my

(B? + $*)(Im, + lgmy) sin(B)
2

+ m)cos(0) —

N YR(m, +2md + m))’
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Fy = (((52 + 2 + 02)(Imy + lymy) cos(B) + f(Im, + lgmy) sin(B) (C-10)
+R(P%+02)(my + my + m)) sin(60)

cos(0) 6

+2(Im, + lymy) <¢[)’ — )cos(ﬂ)

+ (2B9(lm2 + lymy) sin(B) — OR(m, + my + m)) cos(6)

+ ¢(Im, + lymy) sin(B) + ¢pYR(m, + my + m))cos(¢)

$(im, + ldzmd) cos(f3) _ b (m,

dR(m, + my +m)
2

+ 2sin(¢) ((

+ lymy)sin(B) +

)sin(6) + (Im,

+ Iymg)(cos(0) ¢p8 + lzj)cos(ﬁ) + $pOR(m, + my

(32 + ¢32)(lm2 + lgmg) sin(B)

+ m)cos(0) —

2
N YR(m, +2md + m))'
N = (—(B? + 0%)(Im, + lgmg)cos(B) — f(Im, + lgmg)sin(B) (C-11)

— RO2(my + my + m))cos(8) + (=8 (Im, + l;mg)cos(B)
+ 286 (lm, + l;my)sin(B) — R(m, + my + m))sin(0)
+g(m, + my +m),
Sy = (P(Im, + lymg)cos(B) — 2L (Im, + lymy)sin(B) + Rp(m, (C-12)

+ my))sin(0) + 2(Im, + ly;mg)(cos(8) $6 + lzi)cos(ﬁ)

= (B* + ¢H)(Um, + lgmy)sin(B) + R(m,
+my) (2 cos(0) ¢ + 1),
Syr = (((lm2 + lymy) cos(B) + R(m, + md))dbzsin(e) + 2B¢(Im, (C-13)
+ lymg)cos(B) + p(lmy + lymy)sin(B) + Rypp(m,
+ mg))cos(8) + g(m, + my)sin(8) — 6(Im,
+ lymg)cos(B) + 2B68(Im, + lymgy)sin(B) — RA(m,
+my),
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S, = —(lmy + lgmy)(— cos(8)? ¢p? + 2sin(8) ¢S + % + 62 (C-14)
+ ¢p?)cos(B) + Rp?(m, + my) cos(6)? + g(m,
+mg)cos(8) + (—=p(Im; + lgmg)sin(B) — Ripp(m,
+my))sin(0) — f(lm, + lymy)sin(B) — R($"2 + 62)(m,
+my),
Sy = —mg(((— cos(8)? lyp? + 1;6%)cos(B) — R * cos(9)? p? (C-15)
— gcos(0) + R(pysin(0) + 6% + $?))sin(B)
+ 2 cos(6) cos(B)? ply0 + R(2 cos(0) ¢ + sin(8) ¢
+P)cos(B) + La(sin(6) ¢ + B)),

Sy = ((=$2(q cos(B) + R) sin(9) — 2 cos(B) lapf — Ry (C-16)
— Ly sin(B)) cos(8) — 2 sin(B) 148 + 146 cos(B) + RE
— sin(0) g) mg,
and Sy = —mgy((cos(8)? 1yp? — 1362) cos(B)? + (R cos(9)? ¢? (C-17)

+ (20 sin(B) Iy + g)cos(8) — R(Ppysin(8) + 6>
+ $?))cos(B) + 2 cos(8) sin(B) RpO + R(sin(0) ¢
. _ .. pE p?
+ Y)sin(p) — 2 <sm(9) op + - + 7) ld).
Lagrangian Method
The Lagrange dynamic equations for the unicycle with rotating disk are obtained by applying (A-
19). The results of this calculation are provided here. The equations obtained for q; = v, 8,¢,0,

1n.,x and y, respectively, are

Iy2) + cos(8) ¢l,,,0 + sin(8) I,,,¢p — T, — R cos(¢p) A; — Rsin(¢p) 1, = 0, (C-18)
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(C-19)
((ﬁ(sin(e) ¢+ 28)(—1Pmy — I5mg — gy + gz — Iy + Ij3) cos(B)?

+ (—Zquz(lmz + lymy) sin(0)
+ G(—1Pmy — Zmg — Iy + Igz — Iy + I3) sin(B) — 2(Rpp

. cos<2¢>> i Si“(z‘l’) X (tmy + zdmd)> cos(B)

— d2((my + mg + MIR? + Iy — Iy + Iz + Ly — L3
— I41) sin(0)

— Rp(Im, + lgmy) sin(B) — Ry(m, + my + m)cos(¢)
+ RX(m, + my + m)sin(¢)

— ¢ ((Idz + gy — I+ Ip + I3 — 1g1)B + 1w2’l")> cos(6)

—6(=1’my — 2my — Iy + 143 — Iy + I;3) cos(B)?
+ (—g(lm2 + l;my) sin(8)

+2B0 (—1m;, — [3mg — Igy + Igz — Iy + I;3) sin(B)
+ 26(Imy + lymg)R + 1447i) cos(B)

+ (—77¢3 sin(B) I;1 — Rg(m, + my + m)) sin(6)

—2p (9'(lm2 + l;my)R + %) sin(B)

+ ((my + mg + MR? + Iy + I3+ 1,,1)6 = 0.
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((;b (=1Pmy — 1Gmg — lgq + lgs — I + I13)(cos(B))? (C-20)

+ (_Z(ﬁﬁ(_lzmz — lGmg — Iy + gz — Iy + I3) sin(B)
— 2Rp(Im, + ldmd)) cos(B) + 2RpB(Im, + ly;my) sin(B)
— ¢ (Mg +mg +MIR? + Iy — Iy + Iz + Ly — L3

~ Ia1) ) (cos(0))*

+ (=20(sin(0) ¢ — B) (~Pmy = 162" = Ias + gz — I

+I13) (cos(B))?

+ (4RO (Im; + lymy) sin(0)

+0(=1?my — Zmg — gy + gz — Ly + Ii3) sin(B) — 1417 cos(B)
+20¢p((my + mg + M)R? + Iy — Iy + Iig + Ly — L3

— Idl) sin(0) + (—(9'(lm2 + l;my)R — Idlr'j) sin(f)

=0 (=2 12my = 213mg = las = laz + las — In = Iz + 112

~ lzih) ) cos(©)

+ ((—92(—127712 — 1Gmg — Igy + Igz — Iy + I;3) sin(B) + (Im,

+ lgmg)(RB + ¥ cos(¢) + sin(¢) 7)) sin(6)

+ 2R (Im; + lymy) ) cos(B)

+ (R, + 14mg)0? + 14110 = RE? Uy + Lgmg) ) sin(B)

+ RX(my + mg + m)cos(¢) + Ry(m, + my + m)sin(¢) + 1*m,f3
+ Zmgf + (Ip + 132)f + Iwzz]}) sin(6)

-2 (qu,[i’ — cos(zq.')) y + sin(2¢) x) (Im, + ly;my) sin(B)

+ dj((m2 +mg + M)R? + Pmy + Iimg + Iy + 1y + Idz) =0,
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240 cos(0) (1Pmy + 12my + 14y — I3 + Iy — I;3) cos(B)? (C-21)

+ (—qbz sin(B) (I’my + limg + Iy — I43 + Iy — I3) cos(6)?

+2 (9(zm2 + 1;m R + %) ¢ cos(6)

+02(1Pmy + U3mg + Igy — gz + I;; — I;3) sin(B)

+ (Imy + lgma)(Ré sin(6) + % cos($) + sin() 'y‘)> cos(B)
— R$p? sin(B) (Im;, + lgmg) cos(6)?

+ (=g Umy + Lygmy) sin(B)

= $0Uas — laz — las + In — Iy = I13) ) cos(6)

+ ((cos(¢) 7 — sin(¢) &) (Im;, + Lgmg) sin(8)

+ R(Im, + lgma)§? + 6(0(Imy + Lymg)R +7ilay) ) sin(B)

+ ¢(Pmy, + 13my + Iy + Iy) sin(0) + fmyl3 + fm,1?
+ g2 + 112)[; +17,=0,
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(—((lzmz + lémd + Ig1 — gz + Iy — I3) cos(B) (C-22)
+ R(lm, + ldmd))q_")z cos(6)?
+ (—é}'/(lm2 + lymg) cos(p) + 8x(Im, + lymy) sin(¢)

—mggly — mygl — I31¢) cos(6)
+ éz(lzmz + lczlmd + Idl - Id3 + 111 - 113) COS(,B)

+ (2(tmy + lgmyg) cos() + Y(Imy + lgmg) sin($) + Ig10
+ RE(Um, + Lgmy) ) b sin(8) + B (Im; + Lymy) cos(9)
+ By(Im, + lymy) sin(@) + R(Imy + lgmy)d?

+(6Um; + 1ama)R + 14 (7 = £)) 6) sin(B)

+(2002m, + g + 1y = Ly + Iy = 1) cos(6)?

+ (6Umy + Lgma)R + 141 (3 = ) ) cos(B)

—0(Pmy + 2my + Iy — gz + 1y — 113)) ¢ cos(0)

+ (=B (cos(¢) y — sin() V) (Im; + lgmy) sin(6)

— dy(Im, + lgmy) cos(¢) + ¢px(Im, + lgmy) sin(e)
+ Idlé) cos(B) +1jl;; — 1, =0,

(=B + % + 0D (Im; + lgmg)cos(B) — B(Im, + lgmy)sin(B) — R(¢p? (C-23)
-y . .. Bcos(d)
+ 0°)(m, + my; + m))sin(0) — 2(¢f — > )(lm,

+ lymg)cos(B) + (—2B9(lm2 + lymy)sin(B) + Ré(mz +my
+m))cos(8) — dsin(B)(Imy + lgmy))sin(@) + (d(Im,

+ lymy)cos(B) — 2¢B(Im, + lymy)sin(B) + Rp(m, + my

+ m))cos(¢p)sin(6) + (2(¢pHcos(0) + g)(lmz + lymg)cos(B)

+ 2RO (m, + my + m)cos(8) — sin(B)(B? + $2)(Im,
+ lymg))cos(¢p) + Xm + ¥m, +imy + A, =0,
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and  (((B% + ¢p% + 62)(Imy + lymg)cos(B) + f(Imy + Iymy)sin(B) (C-24)
+ R(¢2 + 0% (m, + my + m))sin(0) + 2(pB
B 6 cos(6)

Y(Im,, + lymy)cos(B) + (286 (Im,
+ lymg)sin(B) — RO(m, + my + m))cos(6)
+ ¢sin(B)(Im, + lymg))cos(¢) + (d(Im,

+ lgmg)cos(B) — 2B (Im; + lymy)sin(B)
+ R$p(my + my + m))sin(¢)sin(8) + (2(¢pHcos(6)

+ g)(lmz + lgmg)cos(B)

+ 2RpH(my + my + m)cos(8) — sin(B) (B>
+ $2)(Im; + lgma))sin(@) + ym + ym, + Img
+1,=0
The results in (A-25) and (A-26) then substituted in (C-23) and (C-24) to calculate A; and A,.
They are
L = (((B% + §* + 69)(Im, + [gmg)cos(B) + f(Im; + lamg)sin(F) ~ (C-25)
+ R(¢p? + 6%)(my + my + m))sin(0) + 2(¢f

6 cos(0) ..
— > Y(Im, + [y;mg)cos(B) + (260 (Im,

+ lymg)sin(B) — RO(m, + my + m))cos(6)
+ ¢sin(B)(Im, + lymy) + Rpyp(m, + my + m))sin(¢)

~ 2cos(d) (<¢<lm2 + ldzmd) cos(B)

Rp(my + my + m)
2

— d)[?(lmz + l;my) sin(B) + ) sin(8)

+ (Imy, + lymg)(PpOcos(0) + g)cos(ﬁ) + RpO(m, + my

sin(f) (ﬁz + ) (Imy + lgmy)

+ m)cos(6) — >

RY(m, + my + m)
2
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Ay = ((—(BZ + 2+ 92)(lmz + lymg)cos(B) — S (Im; + lgmg)sin(B)
— R(¢? + 0% (m, + my + m))sin(0) — 2(pB

6 cos() ..
- > Y(Imy, + [ymg)cos(B) + (=260 (Im,

+ 1ymy)sin(B) + RO(m, + my + m))cos(8)
— $sin(B)(Imy + lymg) — Rpp(m, + mg + m))cos(¢)

_ 2((45(1"12 + ldzmd) cos(f)

Rp(my, + my + m)
2

— ¢B(Im; + lymy)sin(B)

)sin(8) + (Imy + lymy)(pHcos(8)

+ g)cos(ﬁ) + Rp0(m, + my + m)cos(H)

_sin(B) (B2 + dH)(Umy + lgmy)
2
N RY/(m, +2md +m)

)sin(¢)
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