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ABSTRACT

Millipyde: A Cross-Platform Python Framework for Transparent GPU Acceleration

James Asbury

The prevalence of general-purpose GPU computing continues to grow and tackle a

wider variety of problems that benefit from GPU-acceleration. This acceleration of-

ten suffers from a high barrier to entry, however, due to the complexity of software

tools that closely map to the underlying GPU hardware, the fast-changing landscape

of GPU environments, and the fragmentation of tools and languages that only sup-

port specific platforms. Because of this, new solutions will continue to be needed to

make GPGPU acceleration more accessible to the developers that can benefit from

it. AMD’s new cross-platform development ecosystem ROCm provides promise for

developing applications and solutions that work across systems running both AMD

and non-AMD GPU computing hardware.

This thesis presents Millipyde, a framework for GPU acceleration in Python using

AMD’s ROCm. Millipyde includes two new types, the gpuarray and gpuimage, as

well as three new constructs for building GPU-accelerated applications – the Oper-

ation, Pipeline, and Generator. Using these tools, Millipyde hopes to make it easier

for engineers and researchers to write GPU-accelerated code in Python. Millipyde

also has the potential to schedule work across many GPUs in complex multi-device

environments. These capabilities will be demonstrated in a sample application of aug-

menting images on-device for machine learning applications. Our results showed that

Millipyde is capable of making individual image-related transformations up to around

200 times faster than their CPU-only equivalents. Constructs such as the Millipyde’s

Pipeline was also able to additionally improve performance in certain situations, and
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it performed best when it was allowed to transparently schedule work across multiple

devices.
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Chapter 1

INTRODUCTION

GPUs have incredible advantages when it comes to accelerating applications that

expose data parallelism. In these applications, compute time often becomes a bottle-

neck when similar or identical operations are performed across large input data sets.

The advantages provided by the SIMD (single-instruction, multiple-data) nature of

GPUs allows programmers to create solutions for these problems that can run up-

wards of hundreds of times faster than solutions that run entirely on the CPU. This

has given rise to the general-purpose GPU computing (GPGPU) paradigm where the

use of GPUs has expanded far beyond their original purpose of accelerating graphical

programs, and are now being targeted towards applications that traditionally would

run on a CPU. Such GPGPU applications include image processing, video processing,

audio signal processing, machine learning, and more.

One disadvantage of GPGPU programming is that accelerating code on GPU de-

vices often has a high barrier to entry. Often times the most performant tools and

languages that allow for GPU acceleration map very closely to GPU hardware. This

involves dividing the data into groups and hierarchies that can run efficiently on

the given platform, and exploiting various memory systems on the device to find an

optimal configuration. On top of this, many tools are platform-dependent. Tools,

libraries, and frameworks that are built for the CUDA environment, for example, can

only run on NVIDIA GPUs unless work is done to port them over to other devices.

Many developers have recently aimed to solve this the tool-complexity problem

by writing libraries and tools in the language Python. Python is a dynamically-

1



typed multi-paradigm programming language with incredible abstraction capabilities.

The speed and ease at which python code can be written in combination with a

massive ecosystem of tools and libraries has made it a popular choice in scientific and

engineering communities. By leveraging Python’s natural abstraction level, many

library designers aim to create Python tools that can more easily accelerate code for

GPU devices without the typical knowledge overhead that was previously required

for GPGPU programming. Such examples include TensorFlow for GPU-accelerated

machine learning, Numba for just-in-time (JIT) NumPy compilation for GPUs, CuPy

for GPU-accelerated computing, and more.

This thesis introduces Millipyde which aims to be a framework that can be used in

combination with NumPy and other NumPy compatible libraries to accelerate Python

code on the GPU. Millipyde is one of few libraries that was created from the ground-up

to run in AMD’s ROCm ecosystem. Because of this, it is cross-platform capable and

able to run seamlessly on a variety of both AMD and NVIDIA devices that support

ROCm and its cross-platform C++ dialect HIP. Millipyde also focuses on multi-

GPU capabilities and includes programming constructs for more easily accelerating

functions across all devices recognized by the system. Millipyde is a young framework,

and many plans exist for expanding upon the current functionality discussed in this

thesis.

The rest of this thesis will be outlined as follows. Chapter 2 will cover a variety

of topics relevant to better understanding this thesis such as GPU computing, the

ROCm ecosystem, and the Python language. Chapter 3 cover related Python libraries

and framework for code acceleration and scientific computing. Chapter 4 explains how

Millipyde was implemented with both its back-end and its Python interface. Chapter

5 shows an example of a Python image augmentation application written using the

Millipyde framework. Chapter 6 evaluates Millipyde’s performance using a variety

2



of testing configurations. Chapter 7 discusses Millipyde at a high level including its

acceleration benefits and the drawbacks of its current design. Chapter 8 lists many

possible enhancements to the current design that Millipyde can incorporate in the

future. Chapter 9 details the Millipyde API with code examples for how Millipyde

can be used today within Python code.
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Chapter 2

BACKGROUND

2.1 GPU Computing

To understand how GPU software works, it’s important to first understand GPU

hardware since the code used to program GPUs aligns very closely with the underly-

ing hardware. Today’s GPUs have many fundamental design decisions that may seem

unfamiliar when compared to that of a CPU’s architecture. This paper uses AMD’s

GCN architecture as an example for many of the GPU metrics and comparisons.

This is due to the fact that the GCN architecture is an extremely prevalent GPU

architecture, and it is the main architecture currently supported by AMD’s ROCm

ecosystem. This includes the Radeon Vega Pro cards with the 2017 GCN 5 archi-

tecture that was used for this thesis’ tests and experiments. As of November 2021,

ROCm has expanded its list of supported devices to include the AMD Radeon Pro

W6800 GPU which was released in 2020 and uses the newer RDNA 2 architecture

[18]. We hope that in the near future, ROCm will continue to evolve and support

new GPU architectures and devices.

2.1.1 Modern GPU Architecture

The fundamental building block of all modern GPU designs are clusters of processing

elements grouped together with resources. AMD refers to these processing groups as

Compute Units (CUs) which can be equated with the term Streaming Multiprocessors

(SMs) on CUDA capable GPUs [43]. AMD’s GCN architecture groups many of

these CUs into processors called Shader Units that are each managed with their own
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Workload Manager as seen in Figure 2.1. Each Compute unit has its own resources

such as a scalar unit for flow control, cache memory, registers, and more. The main

computation unit for each CU is a collection of vector units, or Streaming Processors

in CUDA terminology, that share an instruction cache. These vector units can be

conceptually thought of as SIMD (Single Instruction/Multiple Data) units that are

capable of performing floating point calculations since each SIMD contains its own

a floating point unit. They are capable of treating arrays of data as single elements

through which an operation should be applied across. In AMD’s GCN architecture,

each Compute Unit is divided up into four SIMD units where each unit is 16 lanes

wide and therefore capable of simultaneously executing a single operation across 16

work items [13]. This gives us a throughput of 64 single-precision operations per-cycle

on each CU.

Figure 2.1: A GCN-based AMD GPU that groups Compute Units into
Shader Engines that are each managed by a Workload Manager [43].

Threads within a GPU are not scheduled individually. Instead, threads are grouped

into units called wavefronts on AMD devices or warps for CUDA devices. Wavefront

size is a property of the hardware architecture. They are 64 threads wide for GCN-

based architectures, for example, or 32 threads wide on NVIDIA’s CUDA-capable

5



architectures. Wavefronts are executed on a single SIMD in four consecutive cycles.

A one-cycle instruction therefore is executed in four batches across the each of the four

16-lane-wide SIMD units to cover all 64 lanes in an AMD wavefront. This hierarchy

of CUs, SIMD units, wavefronts, and threads is illustrated in Figure 2.2.

Figure 2.2: The contents of a Compute Unit is divided up into a group
of resources and SIMD units that are each in turn separated out into
wavefronts and threads [28].

GPU architectures are further complicated by their multi-tier hierarchy of memory.

Visible to all CUs on the entire GPU is gigabytes of Graphics Double Data Rate

(GDDR) synchronous DRAM and sometimes High-Bandwidth Memory (HBM) on

newer devices. This memory is collectively referred to as ‘global memory’. When

compared to CPU DRAM, the off-chip global memory for GPUs is designed for high

bandwidth due to characteristics of the data commonly used for GPU acceleration.

Unfortunately, global memory is still susceptible to longer latency times which is a

fundamental property of the memory type [26, 27]. This latency can often act as

a bottleneck for GPU acceleration. PCIe controllers help with the transfers across

the PCIe bus with host memory, and some devices have Infinity Fabric Controllers

that can manage communication with other GPUs on the system. The inclusion of
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DMA engines allows for asynchronous memory transfers between the device and the

host, or between multiple devices. This layout of memory controllers and engines is

illustrated in Figure 2.3. At a finer level, each compute unit also has its own scratch-

pad memory called the Local Data Share (LDS) which is typically 64KB for AMD

and NVIDIA architectures. This data share is shared across SIMD units, and it can

be used for communication between threads. Accessing shared memory is much faster

than global memory, so a variety of techniques exist to help capitalize on this data

share during execution time.

Figure 2.3: A high level overview of the memory architecture on a GCN-
based AMD GPU [43].

2.1.2 GPU Software

When writing applications that must run on GPUs, code is split into two main parts

— host code and device code. Host code is the normal part of an application that

will run on the CPU and is written in a standard language such as C++. Device code

on the other other hand are functions that are written to be run on SIMD units on

a GPU. The entry point to device code sections are functions called kernels. Kernels

make use of memory buffers that are allocated on the device from host code in order

7



to manipulate a set of data. This means that most GPU-accelerated applications use

a repeating pattern of allocating space on the device, copying data into the memory

buffer, running a device kernel, and copying the data back to the host.

When GPU kernels are launched, they make use of the underlying architecture’s

SIMD units to execute the work across many parallel workers which are often referred

to as threads. These threads are organized into groups called workgroups on AMD

devices or thread blocks on CUDA compatible devices. All threads within a work-

group exist on the device and the CU at the same time. These workgroups are made

up of multiple wavefronts as discussed earlier, and GCN hardware uses 16 wavefronts

per workgroup. Finally, workgroups are organized into a grid of multiple workgroup

blocks as shown in Figure 2.4. The number and organization of the blocks and grid are

under programmer control within the size limits allowed by the architecture. Blocks

can be organized logically into 1, 2, or three dimensional grids, which is usually de-

cided by the topology of the data. Kernels executing on images, for example, often

work well as 2-dimensional grids.

The hierarchy of grids, blocks, and threads closely matches the organization of the

underlying GPU hardware. Blocks are dynamically scheduled onto compute units,

and all threads in a block execute on the same compute unit. This allows threads to

share LDS memory and L1 cache. The downside to this hierarchy and memory model

is that it provides an extra layer of complexity for the programmer. The parameters

for the grid and block sizes must be chosen to make use of both the data and the

device’s architecture, and kernel code should be designed to take advantage of faster

LDS and cache memory when possible to avoid slower access to global memory.

The final software detail for GPU programming that needs to be discussed are

streams. Streams are a way of dividing up the resources of the device for further

parallel execution. Streams are queues of tasks that are guaranteed to complete in
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Figure 2.4: GPU kernels divide data elements into logical groupings of
grids, threads, and blocks [26].

order on a given stream, and each stream is allowed to overlap and run synchronously

with other streams on the same device. The exception to this rule is a special stream

known as the null-stream. Tasks in the null-stream are not allowed to overlap with

any tasks on any other stream. They only begin execution once all tasks enqueued

on all other streams have completed. Blocking calls like memory copies will always

happen on the null-stream.

2.2 ROCm

For a long time, NVIDIA has continued to dominate the GPU industry. As of Quarter

2 of 2021, NVIDIA is estimated to hold 83% marketshare of the discrete GPU market

over AMD’s 17% [37]. In the world of GPGPU computing, this dominance has come

from its proprietary software included in the CUDA Toolkit which allows for the cre-

ation of GPU-accelerated software for embedded systems, workstations, data centers,
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cloud platforms, and HPC computers [35]. This flexibility comes from its compiler,

NVCC, which leverages the widely used LLVM infrastructure to allow developers to

write kernels in modified syntax in C++ programs and compile them it for execu-

tion on NVIDIA devices [34]. On top of this, CUDA’s early entry and dominance in

the industry has given it the advantage of a strong community and ecosystem. The

Radeon Open eCosystem (ROCm) is AMD’s answer to CUDA which it describes as

its “open software platform for GPU-accelerated computing” [14]. Launched as part

of AMD’s “Boltzmann Initiative” in 2015, ROCm aims to solve new problems in GPU

computing while maintaining an open source and multi-platform identity. This new

ecosystem provides a wide range of programming models and languages to choose

from. Among those is a C++ dialect called HIP (the Heterogeneous-Computing In-

terface for Portability) that provides many APIs and interfaces that mirror CUDA’s

[16]. It even includes a tool called HIPify that does most, if not all, of the work in con-

verting CUDA programs to HIP. Unlike CUDA which is exclusive to NVIDIA devices,

HIP allows for portability across platforms at the expense of a few API limitations

[15].

ROCm uses what is called the ROCr runtime which itself is based on the Heteroge-

neous System Architecture (HSA) Runtime API. The runtime is language-independent

which allows it to serve many GPU-compatible languages including AMD’s Heteroge-

neous Compute Compiler (HCC) which provides full control over AMD devices, or the

Heterogeneous-Computing Interface for Portability (HIP) which specializes in cross-

platform compatibility with both AMD and NVIDIA. To service these languages, the

ROCm stack includes both GCN and LLVM compiler toolchains to compile GPU code

for all compatible devices. This setup is illustrated in Figure 2.5. ROCm also pro-

vides a variety of tools for supporting multiple GPUs. The ROCK kernel itself ROCm

includes what is known as ROCmRDMA. It allows third party kernel drivers to use

direct GPU memory access (DMA) and for DMA-based peer-to-peer data exchanges
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Figure 2.5: An overview of the various systems in place that make up
ROCm’s foundation including compilers for both GCN and LLVM-based
device runtimes [19].

between devices using PCI express. ROCm also uses the Unified Communication X

(UCX) library for both inter-node communication and intra-node communication, as

well as the the open source message passing interface OpenMPI.

2.3 Python

2.3.1 Python Language

Python is a dynamically-typed high-level scripting language that has become increas-

ingly popular in recent years. According to Stack Overflow’s 2021 Developer Survey,

Python gained in popularity over the previous year to become the 3rd most popular

language of 2021 with more than 48% of developers saying they use Python, and the

sixth most loved language with more than 67% of developers expressing interest in

continuing to develop with it [2]. Python has become immensely popular in areas of
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computing such as machine learning, data analytics, and scientific computing. One

of the biggest advantages Python provides is its high level of abstraction and low-

verbosity that makes it one of the most concise programming languages – even when

compared with functional languages [31]. This can allow for developers to focus more

on high-level designs and processes and less on syntax [27]. When it comes to scien-

tific computing, for example, it has been shown that Python’s high level interfaces

can help reduce the amount of time that scientists and researchers have to spend

writing code [24].

Python also comes with the advantage of a large compute-ecosystem and many open

source libraries available for developers to use. Many libraries for scientific computing

have historically been focused on raw performance and achieve this through lower level

languages such as Fortran, C, and C++ [38]. Performance and ease-of-use do not have

to be mutually exclusive, however. More recently, library designers have been writing

performance-driven code in existing lower-level languages while designing interfaces

for this code in a thin layer of Python function-wrappers. The language Python is

now becoming synonymous with its massive collection of community-driven libraries

and frameworks that tackle just about every computing need imaginable. The most

popular of which are open source, open for contributors, and free for programmers to

use.

2.3.2 CPython

CPython is the original reference implementation of the Python language. As the

name suggests, CPython is implemented in the language C. This is the reason it is

so easy for developers to extend the Python language through extension modules

written in C or C-compatible languages. Although Python is often described simply

as an interpreted language, the CPython implementation includes both a compiler
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and an interpreter. The compiler generates an AST from the Python source code

and compiles it down into bytecode instructions. This bytecode gets executed by

CPython’s stack-based virtual machine as a giant evaluation loop that terminates

once the Python program should stop for any reason.

A very important part of the CPython runtime to understand is the way it handles

concurrency. When it comes to maintaining thread-state, the CPython interpreter

was created with what is known as the “Global Interpreter Lock” or GIL. It imposes

the restriction that only one thread within a given Python process is allowed to process

Python bytecode at a time. This means that multi-threading is often restricted to

tasks such as IO operations that don’t require access to CPython objects, functions,

or memory, which all require the GIL to be held [5]. Python programmers often

have to turn to multiprocessing to achieve parallelism. Since each process runs in its

own instance of the Python interpreter and occupies its own region of memory, each

Python process has a distinct GIL instance.

One of the next distinct features of CPython is how it handles Python types. Its

easy to generalize Python by saying the language has no types. But in reality, within

the CPython implementation, everything has one type – the “Python Object” type.

All values, error types, functions, and more are represented as objects that can be

stored and passed around. To make this more confusing, every Python object has to

be carefully reference-counted for the Python garbage collector to work. When an

object is shared or duplicated, this count is incremented. Each time a reference is no

longer needed, this count is manually decremented within CPython code. Once the

count reaches zero, the Python interpreter knows that the object is no longer needed

and its resources can safely be de-allocated.
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Chapter 3

RELATED WORKS

3.1 NumPy

NumPy is an open source library that has become fundamental to scientific computing

in Python. Its main contribution to the language is the ndarray object representing

a multi-dimensional array that can contain a variety of supported data-types. Since

NumPy was developed in C, NumPy contains a range of useful C API tools that

allow for other extension modules to take advantage of its functionality [11]. Today,

NumPy is the backbone for countless scientific and mathematical libraries that build

on ndarrays and NumPy functionality.

One of the biggest draws for NumPy is its speed and efficiency. Without NumPy,

Python programmers are limited to the built-in Python list which grows dynamically

and can support content of mixed data types. NumPy arrays on the other hand are

able to achieve better performance through constraints that allow them to behave

like arrays in languages like C. NumPy’s ndarray objects can only contain a consis-

tent data type, and arrays must maintain a fixed shape and size [23]. Using these

constraints, operations can be optimized and parallelized to efficiently act on the se-

quence of data. NumPy uses the idea of vectorization for its operations which are

built on pre-compiled C code [7]. These vectorized functions “broadcast” operations

across the entire sequence in a notation that is similar to what is seen in mathematics

[7]. This improves readability by removing the need for explicit loops and iteration

within Python.
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3.2 SciPy and Scikits

SciPy is a library that has become the standard for modeling and computing scientific

problems in Python. SciPy is built on top of NumPy and the ndarray, but it adds

a variety of new data structures such as sparse matrices and k-dimensional trees

[44]. These, in combination with methods for manipulating and visualizing data,

create an ecosystem for solving a wide variety of problems. Today, more than 100,000

different code repositories use SciPy as a dependency [44]. For specialized tasks,

SciPy introduced the concept of SciPy toolkits, or SciKits, that add on packages for

SciPy. Each SciKit brings specialized functionality for a variety of use-cases. Among

these are scikit-image for image processing and scikit-learn which has become the

gold-standard for machine learning in Python [9].

3.3 Numba

Numba is a just-in-time (JIT) compiler for CPython that is written as an extension

library so that the interpreter does not need to be modified or replaced. Numba spe-

cializes in accelerating functions that use ndarrays, NumPy functions and operators,

and loops. It includes function decorators such as @jit that can be dropped in to ex-

isting code to make it easy to accelerate without needing to be rewritten. Internally,

Numba uses the LLVM compiler infrastructure. Python bytecode is analyzed and

turned into an intermediate representation called the Numba IR [36]. From there,

Numba will attempt to infer types and lower the code to LLVM so that it can be

compiled into efficient machine code. This compilation happens during the runtime of

an application when the decorated function is called, but it only has to happen once

for each function written since the compiled version is stored in a cache. Because this
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code is compiled and does not incur the overhead of the Python interpreter, Numba

is able to achieve speeds comparable to those of C programs.

Numba acceleration is not just limited to the CPU. Numba is able to take advantage

of GPU acceleration by leveraging CUDA’s version of the LLVM library, NVVM.

Numba is even able to support ROCm-compatible GPUs by compiling code into HSA

kernels and device functions following the HSA execution model [1]. Numba is not

perfect, however. Due to Numba’s high level of abstraction, details and tuning are lost

in translation and Numba lacks support for features such as dynamic parallelism and

texture memory [24]. Python applications using Numba usually reach between 50%

and 85% performance of the equivalent C/C++ CUDA implementations on compute

heavy workloads. [36].

3.4 CuPy

CuPy is an open source Python library that aims to bring GPU acceleration to

NumPy and SciPy. CuPy includes a wide variety of accelerated functions including

linear algebra operations, sorting, sparse matrices, and more. In many ways, CuPy

can function as a drop-in replacement for NumPy by providing functions of the same

names. Originally, CuPy was designed to support CUDA-capable GPUs and leveraged

popular CUDA-accelerated libraries such as cuBLAS, cuDNN, cuRAND, cuSOLVER,

and cuSPARSE. Now, CuPy has expanded into experimental support for the ROCm

ecosystem, and it and uses the equivalent ROCm-based computing libraries [4].

One of CuPy’s most versatile features is the ability for users to create their own

GPU kernels. Code snippets can be created in C++ syntax that are compiled into

binaries that can be cached and used in subsequent runs. User defined kernels have

the flexibility to either perform element-wise operations on all items in the data, or
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reduction kernels to fold data using binary operators [33]. This allows for powerful

flexibility and more control over GPU execution from Python at the expense of re-

quiring the programmer to know kernel code design in C++ syntax. Even using the

built-in functions, however, CuPy programmers can see tens to 100s of times speedup

over NumPy when playing to CuPy’s strengths.

3.5 PyCuda and PyOpenCL

PyCUDA and PyOpenCL are two open source toolkits built on CUDA and OpenCL

respectively. They take the approach of using runtime code generation (RTCG) in

order to take advantage of GPU parallelism from within Python code. RTCG works

off of the idea of “metaprogramming” where code is tasked with interpreting and

creating different sets of code to solve a problem [27]. In the case of PyCUDA, CUDA

kernels can be written as strings within the Python code that are compiled at runtime

using the NVCC compiler and run on the GPU as a binary. The compiled GPU code

can be cached for future re-use which increases the efficiency of the application on

subsequent runs. By extending support to OpenCL, PyOpenCL is able to work across

a variety of platforms independent of the GPU manufacturer.

PyCUDA and PyOpenCL use a variety of techniques to tune the generated code.

Loop slicing helps preserve locality of data access and use cache memory efficiently.

The code can also can also adapt based on the amount of on-chip user-managed

memory as well. Finally, tuning is performed based on available DRAM bandwidth.

Although PyCUDA and PyOpenCL reduce the overhead of writing applications in

pure C, C++, and CUDA, the programmer still needs to be familiar with the creation

of GPU kernels in order to write the code templates within the Python program. This

is not unlike kernel generation mechanisms in other libraries such as CuPy.
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3.6 TensorFlow

TensorFlow is one of the most prevalent libraries for developing and training machine

learning models, specializing in deep neural networks. It is compatible with a variety

of architectures allowing TensorFlow to be deployed on CPU, GPU and TPU-based

environments [6]. It is also extremely flexible when it comes to the scale of the

system it is deployed on. TensorFlow can run on devices as small as mobile phones

or embedded devices, and it can scale up to run on large scale distributed systems

with thousands of compute devices [12]. This makes it a powerful tool for a variety

of machine learning fields such as speech recognition, natural language processing,

computer vision, and more. TensorFlow also fits in very well with Python’s library

ecosystem. It is built around a multi-dimensional array type called a tensor, which

are comparable to NumPy’s ndarrays, and these tensors are even compatible with

NumPy operations.

3.7 Keras

Keras is a high-level API for neural networks that is built on top of TensorFlow

and other supported backends. Its interface is designed to be as simple and flexible

as possible, allowing its users to quickly prototype and create deep learning models.

Keras is built around two data structures called models and layers. At its most simple

level, a sequential stack of layers are combined together to create a sequential model.

More complicated models are built around arbitrary graph topologies that can handle

a wide variety of machine learning problems [25].
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Chapter 4

IMPLEMENTATION

Millipyde intends to provide a framework for Python developers to accelerate tasks

workloads transparently on cross-platform ROCm compatible GPUs. To do this,

Millipyde is written as a C/C++ Python extension module that uses HIP for device

code sections. Through its Python interface, Millipyde exposes two new types to

developers to use - the gpuarray and gpuimage. These types can be used directly for

a variety of functions. In addition, Millipyde also gives programmers three new GPU-

workflow specific constructs to help tackle a variety of problems - the Operation, the

Pipeline, and the Generator. This section explains the implementation and design of

the Millipyde module itself as well as the two types and three workflow tools.

The code is split into two main parts. The first are the functions that are exposed

to Python when importing Millipyde as a library. For the rest of this chapter, we

will refer to these as the API functions. Within the codebase, these function names

are given the “Py” prefix. The other functions are those that are internal only to

Millipyde and are not exposed to Python developers. We will refer to these as backend

functions.

All of Millipyde’s functionality is validated using a large suite of test cases built on

Python’s unittest framework. These test cases used an AMD Vega 10 XTX (gfx900)

GPU. Two of these GPUs were used together in test cases that relied on multi-GPU

execution. To confirm cross-platform capabilities, these unit tests are were also run

on an NVIDIA Titan X (GP102) GPU. The full code repository is available with

an MIT license at https://github.com/jasbury1/millipyde. Millipyde also has a
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Docker container available for use at

https://hub.docker.com/repository/docker/jasbury/millipyde.

4.1 Millipyde C-Extension Module Design

To build Millipyde as a Python extension module, it makes use of the library Setuptools.

The setup entry-point, setup.py, builds a module object by specifying all of the

C/C++ files as well as any included header directories. A partner file, setup.cfg,

contains project-specific metadata such as Millipyde’s version, documentation, de-

scription, author, and more. Setuptools by default will use the C and C++ compil-

ers specified by the “CC” and “CXX” environment variables for any extension module

files. These are overwritten by the Millipyde build system to instead point to the sys-

tem’s copy of the hipcc HIP compiler. Additional build scripts set the HIP_PLATFORM

environment variable to amd or nvidia based on the system we are compiling for. If

we are compiling for an AMD system, the amd value is used which directs HIP to use

its clang-based compiler and the ROCclr runtime. If set to nvidia, it instead uses

an nvcc-based compiler and the CUDA runtime.

4.1.1 Error Handling

Python has two types of errors that can occur – syntax errors and exceptions. Syntax

errors are errors in the parsing phase of the program such as missing characters or

invalid white-space. All other errors that can happen during runtime fall into the

second category of exceptions. When an exception occurs, it comes with two pieces

of information: the exception type and a message of explanation. An example is

the ‘ZeroDivisionError’ which provides the concise message “division by zero.” Since

Millipyde is written in C and C++, a wide variety of different errors can occur. Most

20



of these are to do with misusing types or memory. To make errors easy to understand

from developers using Millipyde, the framework has an error handing system to turn

almost all failure points into Python-accessible exception types with easily-understood

error messages.

Inside the extension module’s backend, Millipyde has an enum type called MPStatus

that enumerates every supported exception. An effort is made to ensure almost all

backend functions return an MPStatus value if it is reasonable to assume a failure

could occur. From the Millipyde API functions, these status values are read and

tested. If the status is not a success value, the status can be converted into an error

string using mperr_str. Python’s thread error indicator is set to this string’s value

along with the type of exception. From here, the API function can return an indicator

value (usually NULL) to signal to the interpreter that an error has occurred and to

throw the stored exception.

4.2 Device Management

4.2.1 Device State Data

When the Millipyde module is initialized, it does a pre-processing step of analyzing

the devices that are in the system. It starts by querying the ROCm runtime for the

number of devices that are accessible. If there is more than one device, Millipyde cre-

ates a special data structure called the peer_access_matrix. The pre-processing step

tries every combination of two unique devices on the system and determines whether

or not peer-to-peer data transfer is possible between them. If so, the associated bit in

the matrix, whose row is represented by the first device and column represented by

the second device, is flipped to be a 1. This makes it fast and easy for future functions

involving data transfer to tell if it should try a peer-to-peer transfer. If peer-to-peer
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is not enabled, these functions will default to using slower transfers using the CPU

main memory as an intermediate between the two devices. It’s important to note that

peer-to-peer access will only be supported if large-BAR address modes are enabled

for the GPUs in the system BIOS. In addition to setting up any necessary data struc-

tures and populating the peer_access_matrix, the pre-processing step will attempt

to find the best device available. It does this by iterating through all available devices

to find the device with the highest metric (mcu ∗mcf) where mcu is the maximum

number of compute units and mcf is the maximum clock frequency. The result is

stored as a variable called the recommended_device.

In addition to maintaining a variable for the recommended device, Millipyde’s de-

vice manager also maintains a variable called target_device. This is the device

that was explicitly specified as the device to use by the user in Python. If we are

in a scope where no target device was specified, this variable defaults to the macro

value DEVICE_LOC_NO_AFFINITY which means that Millipyde can schedule it on any

device available. In most cases, this will be the recommended_device. There is one

more case in which target_device will be ignored. GPU-compatible types such as

gpuarrays and gpuimages can be ‘pinned’ to a device meaning that kernels using

that object will only operate on the device they are ‘pinned’ to, regardless of what

device is targeted for the given scope. This feature is not exposed to Python. It

is only used internally to Millipyde for workflow constructs that are executed on a

specific device. This will be discussed later in more detail. The general algorithm is

shown in Algorithm 1

The final data structure that Millipyde’s device manager uses is an array of MPDevice

structures which are pictured in Figure 4.1. These structures have a boolean value

for whether or not each enumerated device is usable or not. Millipyde does a sweep

through all detected devices during the module initialization phase and attempts to
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if o is pinned to device d then
if o.location ̸= d then

o.location← d;

else
if target device ̸= DEV ICE LOC NO AFFINITY & o.location ̸=
target device then

o.location← target device;
Algorithm 1: The decision algorithm for moving an object o to a different logical
device for future kernel execution.

use each device. If the device is not useable for any reason, the respective MPDevice

structure is registered as invalid. Millipyde will never schedule any operations on

unusable devices. In addition, it will throw an exception if the user attempts to set

an invalid device as the target_device from inside a Python program.

typedef struct mp_device {
MPBool valid;
hipStream_t streams[DEVICE_STREAM_COUNT];
MPDeviceWorkPool *work_pool;

} MPDevice;

Figure 4.1: The definition for MPDevice.

MPDevices help coordinate parallel kernel execution by maintaining the streams

that have been created on each respective device. If many functions are attempting

to launch parallel kernels in separate streams, its possible that synchronous execution

on the CPU may become the bottleneck for performance. An example of this is

demonstrated in Figure 4.2. Because of this, each MPDevice structure also maintains

a pool of CPU threads equal to the amount of streams on the device. Each pool has

a single queue through which work can be submitted and distributed to each of the

parallel workers. These pools for each device are created at module initialization, and

their threads remain idle while no work is en-queued inside of the work queue.
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Figure 4.2: Potential benefits to threading CPU work associated with
parallel GPU streams.

Millipyde registers an exit function using the Python API call Py_AtExit. This

function guarantees that all allocated device data is freed such as the peer_access_matrix

and the array of MPDevices. For each MPDevice, all thread pools will be safely stopped

and all threads and remaining work will be deleted. The exit function waits for all

work in all streams to synchronize before destroying each stream. This function gets

triggered regardless of how the Python code exited. By doing this, we are able to

ensure safe cleanup of all data, even in the case of run-time exceptions.

Figure 4.3: A separate thread pool of workers is allocated based on the
number of devices.
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4.2.2 Device Object

Millipyde uses a class called ‘Device’ to control the device that is targeted for a specific

scope. Each instance of a Device is known as a Python “context manager” to make

sure values and state are only maintained for a specific scope. This is a common

technique used in other libraries, and Millipyde’s device context managers therefore

look and function in a way that is very familiar to equivalent constructs in other

GPU-compatible Python libraries such as CuPy. Millipyde’s Device objects handle

the context manager protocol by providing its own implementations of the special

__enter__ and __exit__ methods. These methods are automatically compatible

with Python’s with statements which allows them to set up a specific context at the

start of the with, and clean up the context when exiting the with block or context.

On entrance, the Device objects save the current target_device, and switch it over

to the new one specified. On exit, the Device will transition back to the previously

stored target_device. By doing this, scopes for specific devices can be nested along

with each nested with block. Examples of this can be seen in the API in Chapter 9.

One of the main purposes of context managers in Python is making sure resources

are properly released when a context is exited. This needs to happen both when the

end of a context is naturally reached, and when an end of a context is prematurely

reached due to an exception. Although no actual resource needs to be officially

released for our device contexts, Millipyde still takes advantage of this functionality

to change behavior based on whether the context’s execution was successful. If it

was successful, __exit__ will synchronize with the targeted device to make sure

execution has fully completed before reverting the target back to the previous device.

If an exception occurred within the with statement’s context, the state of the target

device is reset and the exception is passed along to the calling code. This reset includes

deleting all streams, memory allocations, kernels, and events so that the device is left
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with a blank state for future use. Millipyde will then also reset and restore all managed

data structures such as streams in the case of one of these exceptions. By doing this,

users have the option to recover from a failure and still be able to use all of Millipyde’s

functionality.

4.3 GPU-Compatible Types

Millipyde includes two types that are compatible with Millipyde’s GPU-accelerated

methods and constructs – the gpuarray and the gpuimage. Collectively these types

are referred to as Millipyde’s GPU-compatible types. Between these two types, the

gpuarray contains most of the implementation details while the gpuimage type is only

a subtype of the gpuarray. It inherits all of the same functionality, attributes, and

array structure as the gpuarray, but it adds on additional image-specific functionality

and constraints. All gpuimages are only allowed to be 2-dimensional arrays of doubles

for greyscale images, or 3 dimensional arrays of 8-bit values for colored images. In

these 3-dimensional arrays, the inner most dimension can either be three values wide

for RGB or four values wide for RGBA. The gpuarrays on the other hand are allowed

to represent any number of dimensions which can be any chosen size. These two types

are initialized using any existing array-like arguments. This includes, for example,

the builtin Python list, or even NumPy’s own ndarrays or SciPy’s ndimages.

4.3.1 NumPy compatibility

Millipyde’s gpuarrays and gpuimages aim to be the GPU-accelerated equivalents to

NumPy’s ndarrays. Its important to note, however, that neither type is a subtype

of the ndarray. Although NumPy’s C APIs do allow for subtyping, the gpuarray

and gpuimages types distinct enough in their use-cases to warrant the creation of
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their own distinct types. They still maintain compatibility with NumPy, however,

by registering appropriate conversion functions and following NumPy protocols for

special functions. As mentioned previously, all ndarrays can be converted into one

of our GPU-compatible types by using it in the type’s constructor. They can also be

explicitly cast back into ndarrays using NumPy’s numpy.array or numpy.asarray

functions. This is done by including our own implementation of the __array__ in-

terface that Numpy uses for array testing and conversion.

For any NumPy-specific function calls, our types can be implicitly converted to

ndarrays as well to maintain compatibility. Both gpuarrays and gpuimages provide

implementations of the NumPy protocols __array_function__ and __array_ufunc__.

When either a standard NumPy function or universal function is called, an ndarray-

equivalent copy of the respective gpuarray/gpuimage argument is created. The given

function or ufunc is re-called using the ndarray argument, and the copy can be

safely used and reused without worrying about mutability issues with the original

gpuarray/gpuimage. To store the result back as our GPU-compatible type, we can

re-call the gpuarray or gpuimage constructors using the result of the NumPy func-

tion.

4.3.2 MPObjData

All gpuarrays, and therefore gpuimages, compartmentalize their data in a structure

called MPObjData. This data structure, as shown in Figure 4.4 contains pointers

any array data that is allocated on the device as well as the arrays dimensions, type,

number of bytes, the device ID where the memory is located, and a boolean value

for whether or not the data is ‘pinned’ on a specific device. They also contain a

reference to which stream is in use so that we know which stream to use in the case

of sequences of streamed operations. As mentioned previously in this chapter, device
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pinning has no relation to actual pinned memory. It is a flag that means an instance

of a type should only be operated on using a specific logical device, and should not

be moved for any reason. While gpuarray objects and gpuimages are allocated on

the Python heap, the MPObjData objects that they hold references to are allocated on

the standard process heap that is handled by the C library allocator using malloc()

calls. This is because some functions operate entirely in C-space and do not contain

any references to Python functions, objects, or memory. By drawing a clear line

between what data structures use Python data and which ones don’t, Millipyde can

more safely make assumptions about what functions and data can be operated on in

threads that bypass the Global Interpreter Lock.

typedef struct {
void *device_data;
int ndims;
int *dims;
int type;
int mem_loc;
void *stream;
MPBool pinned;
size_t nbytes;

} MPObjData;

Figure 4.4: Encapsulated data associated with each GPU-type.

The array data pointer stored in the MPObjData, called device_data as seen in

Figure 4.4, is copied to GPU memory as soon as the respective GPU-compatible

type is created. This memory is left on the device across subsequent calls to GPU-

compatible methods that operate on the object. This reduces the overhead of copying

memory back and forth between the host and the device when multiple function calls

are performed on the device. Since kernel calls on the GPU can run asynchronously,

any functions modifying this memory can continue to run even after the Python API

function causing the modification has returned.
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Millipyde will synchronize with the GPU and copy the memory back to the host

any time a function is called that works on the host rather than the GPU. This

includes Numpy functions which automatically convert our GPU-compatible types

to ndarrays using __array_function__ or __array_ufunc__. Users can also force

GPU-compatible types to synchronize and copy back to the host by manually call-

ing a conversion function to a host-based type such as NumPy’s numpy.array or

numpy.asarray. All of these functions go through the gpuarray or gpuimage’s

__array__ interface that is responsible for memory transfer and releasing of GPU

resources. If this call mutated the only reference to a gpuarray or gpuimage, all

GPU-based resources will be cleaned up and disposed of. If this was only one of

many references to the object, a host-based copy will be created, and the original

gpuarray or gpuimage will keep its GPU-based resources available for future kernel

calls. All GPU allocations and resources are also safely freed when the respective

object is deleted following its reference count reaching 0.

4.3.3 MPFunc

All methods that operate on GPU-compatible types are split into two parts. The first

part is the API component that is written to be compatible with CPython’s APIs and

to be callable from Python. It handle’s type checking, exception handling/throwing,

and acts as a wrapper function for the second part which is referred to as an MPFunc.

MPFuncs are the functions that actually operate on the MPObjData for the GPU-

compatible type that the method was called on. All MPFuncs follow a standard format

as shown in Figure 4.5. They return an MPStatus value, and take in the pointer to

the GPU-Compatible type’s MPObjData as well as a void pointer containing any other

parameters needed.
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typedef MPStatus (*MPFunc)(MPObjData *, void *);

Figure 4.5: The definition for MPFunc

The reason behind this split is to provide a clean separation of concerns between

the CPython API functions and the backend C/C++ functionality. By doing this,

Millipyde can internally call the MPFunc itself rather than going through the wrap-

ping API functions. This is commonly done any time Millipyde uses CPU threads.

Since MPFuncs are internal only to Millipyde and never call CPython functions or use

CPython data, they are safe to call internally without needing the GIL to be held.

By following a consistent format with both the return type and parameters, pointers

to MPFuncs can be passed around and stored for all methods that operate on GPU-

compatible types. This is done with the Pipeline objects that are discussed later in

this chapter. These functions still have the flexibility of returning any of our defined

MPStatus value, and the wrapping CPython function can turn this status value into

a Python exception for any status that is not MILLIPYDE_SUCCESS.

4.4 Execution Constructs

Millipyde’s types, the gpuarray and gpuimage, can be used in standalone functions to

achieve acceleration on the GPU. An example of this is calling the included gaussian

blur function on a gpuimage instance. For more complicated execution, such as

performing lots of transformations on many objects or scheduling functionality across

multiple devices, Millipyde includes several of what we will refer to as “execution

constructs.” They include the Pipeline object, the Generator object and their building

block the Operation object.
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4.4.1 Operation Object

In Python, almost everything is represented as an object. This includes variables,

classes, built-in functions, user defined functions, methods, and more. The last three

of those all fall under the category ‘callable’ representing objects that can be called.

Internally in the CPython backend, a parameter called tp_call in a given object’s

type structure holds a function pointer that gets used whenever a Python user calls

a function, method, or other callable object. At a high level, Millipyde’s Operation

objects are wrappers around python callables that add extra data such as probabili-

ties.

Operations for all callables besides instance methods are constructed using the

callable name itself, the parameters with which to call the callable with, and optionally

a float parameter between one and zero representing a probability. A reference to the

callable and a tuple object for the arguments all get copied to the Operation’s internal

memory so that they can be run one or more times using the Operation’s run method.

Examples of this are shown in the API documentation in Chapter 9.

Instance methods are handled in mostly the same way with one small difference.

When constructing an Operation, the operation doesn’t know what instance the in-

stance method will be called on, or even what type the instance method is associated

with. Because of this, Operations that represent instance methods are constructed

with a string method name rather than the method name itself. These Operations can

be invoked one or more times using the run_on command, and run-time lookup is per-

formed to find the corresponding method with a matching name from the instance’s

attribute lookup table.
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4.4.2 Pipeline Object

The goal of Millipyde’s Pipeline object is to get a group of inputs all passed through a

sequence of operations as quickly as possible. When instantiating a Pipeline, the user

provides a Python list of GPU-compatible inputs (gpuarrays and/or gpuimages),

a list of Operations to complete, and optionally a device ID of a GPU to perform

execution on. If no device ID was specified when the Pipeline was created, then the

Pipeline instance will defer to the target_device at run-time when the Pipeline is

executed. If no target_device is set, the Pipeline will attempt to use all available

resources to complete the operations.

Pipelines work based on mutation. Because of this, executing a Pipeline does not

return any specific output back to the user. Instead, the original list of inputs that

were passed in will now be modified to include all of the transformations included in

the list of Operations. This also means that the original size of the input set is left

unchanged throughout execution.

Pipelines take advantage of both CPU and GPU parallelization. Every input in the

input set is grouped together with a device ID of the device to execute on, a stream

ID of a stream to operate within, and its list of Operations. From there, they are

sent to the work queue associated with each device to be picked up by the workers

in the work pool. Once execution starts, the operations are applied to the individual

input one-by-one on the same CPU thread and within the same GPU stream. If the

input has memory on a different device than it is scheduled on, the memory only has

to be transferred once and all operations can be completed on the newly assigned

device. At most N inputs will be be processed per device where N is equal to the

amount of CPU workers and GPU threads. A sample scheduling is shown in Figure

4.6. In this example, the last three inputs will only be operated on once the respective
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thread/stream ID is free from the first batch on inputs that were scheduled on Device

0.

Figure 4.6: A sample scheduling of 11 inputs to two devices with four
worker threads and streams per device.

In order for this threading to be supported, the Python GIL has to be released.

The data handed off to each Operation only contains the gpuarray/gpuimage’s en-

capsulated obj_data entry which means that we do not operate on the Python object

structures themselves. For every operation, the Pipeline performs a pre-processing

look-up to see if the Operation is a GPU-compatible function. If so, it uses the sim-

plified MPFunc interface for execution so that no Python functions are called while

the GIL is released. If one of the Operations does not have a corresponding MPFunc

variant, such as user-defined functions, the GIL has to be re-acquired for the duration

of that Operation’s execution which will impact threading performance.

Individual Pipeline instances can be connected together. When this happens, the

outputs of one Pipeline become the inputs to another once the first Pipeline has

completed all Operations on the given input. An overview of this arrangement is

shown in Figure 4.7. One advantage of doing this is that separate groupings of

Operations can be executed on different devices. This might be preferable for users

who want a clear separation of tasks rather than wanting to bundle all Operations

together. As soon as one device finishes with an input, it can hand it off to the next
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device and immediately begin on the next input. Millipyde will attempt to schedule

both Pipelines on separate devices using the best device available. ‘Best’ is defined the

same way as previously described using the maximum metric (mcu∗mcf) where mcu

is the maximum number of compute units and mcf is the maximum clock frequency.

The method used for assignment is shown in Algorithm 2

Figure 4.7: Each output from one Pipeline becomes the input to a con-
nected Pipeline.

if Only one device is available then
i← only available device;
j ← only available device;

else if Neither i nor j are assigned to devices then
i← Best device available;
j ← Second best device available;

else if i is assigned to a device and j is not then
j ← The best device so that i ̸= j;

else if j is assigned to a device and i is not then
i← The best device so that j ̸= i;

Algorithm 2: Decision flow for assigning devices to Pipelines i and j.

Pipelines synchronize once all Operations have been completed on all inputs which

allows Python users to safely know that all work has been completed and all objects

are safe to use once the run method returns. This synchronization step also syn-

chronizes with all other pipelines that are connected to the current Pipeline before

returning. This also works for all Pipelines that are connected together if more than

two Pipelines are connected to form a long chain. This same synchronization point
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is also when the Millipyde backend waits for all thread workers to become idle again

and safely reclaims the GIL.

4.4.3 Generator Object

Generators, like Pipelines, take a list of GPU-compatible inputs (gpuarrays and/or

gpuimages) and perform a list of Operations on each one. Despite this, in many

ways Generators are the opposite of Pipelines. Rather than mutating the input list,

Generators copy each input so that the original list and list contents are left unmodi-

fied. While Pipelines have a fixed output size equal to the input size, Generators can

produce any number of outputs. While Pipelines wait for all work to be completed on

all inputs before synchronizing, Generators synchronize after each individual output

is produced. This is because Generators are designed to produce one output as a time

on-demand when the user is ready for the next one.

Generators use the Python iterator protocol by including definitions for the special

methods __iter__ and __next__. The __iter__ method produces a new instance of

our Generator, while __next__ produces the next output. The combination of these

two methods allows Python users to iterate through the Generator in a loop to produce

outputs, or to call the next() function when an output is desired. Examples of these

uses can be seen in the API in Chapter 9. When constructing a Generator, users

can optionally specify an ‘outputs’ argument for the maximum number of outputs to

produce. This value can be smaller than the included number of inputs, greater than

the included number of inputs, or be excluded entirely to produce infinite outputs. If

the value is not infinity, a StopIteration exception will be thrown once all outputs

have been produced allowing any loop-based iteration to safely stop.
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Generators also include an optional boolean parameter called return_to_host that

can be specified during construction. If this is set to True, the Generator will turn

the resulting GPU-compatible input into a NumPy ndarray before returning it to

the user. It will also free up any GPU-resources in the process. If this value is left

out or set to False, then the results produced by the Generator will be left in their

gpuarray/gpuimage form.
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Chapter 5

APPLICATION FOR IMAGE AUGMENTATION

5.1 Image Augmentation Background

Convolutional Neural Networks (CNNs) have quickly become a go-to solution for

image classification following the popularization of deep learning [30]. CNNs start

with an input representation of an image such as the a 3D matrix of RGB values.

With a convolution step, a tile is slid across the input and applies filters on each

region to compute new features and store them in an output feature map. The

CNN continues to learn by finding values for the filter matrix that can better extract

useful features from the input feature map. In a pooling step, the feature map is

downsampled while preserving its critical features. This means that with each new

layer in the network, the dimensions of the input are reduced while expanding the

depth of the feature map. The end result is one or more fully connected layers where

every node in a higher level layer is connected to every node in the lower level layer.

A final output function can use the final layer to compute the probability that the

input image matches a given classification.

One common problem with these networks, however, is overfitting. Overfitting

refers to a phenomena where the model created starts to closely match the input

training data. This is a problem if the input data set does not generalize well to

a variety of other valid inputs. The first most obvious solution to this problem is

to make sure input data sets are sufficiently large and varied. This is a problem,

however, in applications such as medical imaging where there aren’t enough inputs

available to overcome overfitting [41]. Data augmentation refers to another possible
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solution to this problem where a smaller input data set is augmented with a series of

transforms and modifications to produces a larger output set [30, 39].

Many tools exist for this such as the Python deep learning library Keras that in-

cludes whats called an ImageDataGenerator [25]. This class allows users to construct

an object instance using a variety of parameters that are used to generate augmented

output images. Using the ImageDataGenerator class, images are produced in real-

time as they are needed by the training model. Python image augmentation libraries

conventionally perform the augmentation itself on the CPU while performing the

learning itself on the GPU. This creates a unique opportunity to use the constructs

included in Millipyde to create an on-device augmentation function similar to Keras’

ImageDataGenerator.

5.2 Image Augmentation in Millipyde

In addition to having accessible CPU counterparts for comparison, there are many

other advantages to experimenting with image augmentation in Millipyde. Since

image augmentation is based on image transformations, it is ripe for GPU accelera-

tions, and it can leverage Millipyde’s builtin gpuimage methods. The results were also

easy to verify. Initial implementations used probabilities of 1 for guaranteed func-

tion execution as well as single-point ranges for each random image transformations.

Millipyde’s testing scripts could then verify with pixel-level accuracy that each image

matched the expected output. The probability could gradually be lowered in addition

to introducing larger random ranges to introduce higher degrees of variability into the

results. Each gpuimage can be manually inspected for verification, and multiple were

used to confirm that there was a degree of random variation.
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from skimage.io import imsave

import millipyde as mp

def augment():
images = mp.images_from_path("examples/augment_in")

ops = [
mp.Operation("transpose", probability=.2),
mp.Operation("fliplr", probability=.2),
mp.Operation("random_brightness", -.2, 1),
mp.Operation("random_gaussian", 0, 2),
mp.Operation("random_colorize", [.5, 1.5], [.5, 1.5], [.5, 1.5],

probability=.3),
mp.Operation("rgb2grey", probability=.3),
mp.Operation("random_rotate", 0, 120, probability = .5)

]

g = mp.Generator(images, ops, return_to_host=True)

for i in range(48):
img = next(g)
imsave("examples/augment_out/dog" + str(i) + ".png", img)

def main():
augment()

if __name__ == ’__main__’:
main()

Figure 5.1: The Python code used to augment images using Millipyde.

As shown in the sample code in Figure 5.1, the Millipyde code can closely mirror

the behavior of other image augmentation libraries. By choosing the Generator rather

than the Pipeline, results can be produced on the fly as they are needed by a future

training model. The Generator’s copy semantics also lets us produce an output set

that is larger than the original input set. For the purpose of this demonstration, the

return_to_host flag was set to true and the images were saved as output files that

can be viewed and studied. In practice, it may be desirable to avoid saving the images

entirely and to keep their memory contents on-device so that it can be used by the

learning-phase. This demo resulted in 48 new images created from an input size of 6

images as shown in Figure 5.2.
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Figure 5.2: Augmenting six input images to produce 48 output images
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5.3 Results Discussion

Each column in Figure 5.2 represents an augmentation of one of the same six original

input images. As seen in the diversity across each row, our implementation succeeded

in producing a wide variety of results. No two images ended up quite the same, but

each output could be used as an example of a dog for a future training algorithm. In

some cases, the transformations might be too extreme to work optimally for image

classification applications, so the parameters and probabilities can be further tuned

by users in this field. The dog in the first image, for example, loses some of its edges

to the background with the combination of random transformations selected. We look

forward to testing Millipyde augmentation in-depth with future practical computer

vision applications.
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Chapter 6

EVALUATION

6.1 Test and Development Environment

Millipyde was tested using a desktop workstation with the following specifications:

• Intel Xeon CPU E5-1620 @ 3.50GHz

• 32 GB memory

• Ubuntu 20.04.3 LTS Operating System

The workstation was equipped with two of the following GPU:

• AMD Vega 10 XTX (gfx900) GPU

• Wavefront size: 64

• 64 CUs with 4 SIMDs per CU

• 4 Shader Engines

• 16KB L1 cache, 4096KB L2 cache

Using the system BIOS, the workstation was configured to use large-BAR config-

uration to expose GPU local memory via PCIe memory BARs. This increased the

BAR size to 64 bits, and was required to allow Millipyde to use DMA peer-to-peer

memory transfers for any experiments that used both GPUs [17].
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6.2 Single Function Benchmarks

To test performance with individual functions, we used select Millipyde functions

that had functionally-equivalent implementations in the non-GPU accelerated library

scikit-image. These functions were run on identical images, and their performance

was measured using Python’s time.perf_counter function. This measurement only

included the time for the function itself to execute. It excludes the time for the

image to be opened and saved. To ensure accuracy and consistency across both

implementations, very pixel value in both the scikit-image output and the Millipyde

output were compared to 4 decimal places. These benchmark were run on 12 copies

of the same image in different sizes. They start at 500 pixels wide and go up to 6000

pixels wide, stepping by 500 pixels every time.

6.2.1 Gamma Correction

One of the most basic categories of parallel computations are element-wise calculations

where each data value in an array undergoes a standalone operation to compute the

respective output data value in the resulting array. One such example is Millipyde’s

adjust_gamma function. Each pixel is transformed using the equation Vout = A ∗ V γ
in

where A is a constant multiplier called ‘gain’, and γ is the gamma adjustment value.

This results in a brightness correction where gamma values less than one increase the

overall brightness, and values greater than one decrease the brightness. The effects

of this can be seen in Figure 6.1. For our experiments, we ran both the Millipyde

function and the scikit-image equivalent with a gamma of 2 and gain of 1.

43



Figure 6.1: The effects of gamma correction using a gamma value of 2.

Table 6.1: Timing results for gamma correction using scikit-image and
Millipyde.

image size scikit-image time (s) Millipyde time (s) % difference
500 0.0030651 0.0001561 1964
1000 0.0105069 0.0001869 5622
1500 0.0262136 0.0002929 8950
2000 0.0403756 0.0004912 8220
2500 0.0624683 0.0006293 9927
3000 0.0890932 0.0009215 9668
3500 0.1531737 0.0011845 12932
4000 0.1878477 0.0015242 12324
4500 0.2309318 0.0018687 12358
5000 0.2741731 0.0022279 12306
5500 0.3252361 0.0027007 12043
6000 0.3819223 0.0031833 11998
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Figure 6.2: Graphical representation of the time spent performing gamma
correction on an image in scikit-image compared to its GPU-accelerated
equivalent in Millipyde.

The results demonstrated a predictable decrease in runtime for the GPU-accelerated

function. It ranged from around 20x faster for the 500-pixel image to more than 100x

faster for larger images. These results when graphed followed a clean curve that

closely mirrored the scikit-image equivalent as shown in Table 6.1 and Figure 6.2.

Users can reliably expect the Millipyde gamma correction functionality to be faster

than CPU-only equivalent functions.

6.2.2 Greyscale

A slightly more complicated variation on a element-wise kernels happens when the

dimensions of the input array are different than that of the output array. This can

be seen in greyscale conversion functions which translates from a 3-dimensional RGB

array of 8-bit integer values to a 2-dimensional array of floating point values. This

computation is traditionally done using a weighted sum of the RGB components in an

image to produce a single greyscale value between 1 and 0. Both Millipyde and scikit-

image use the following weights in this calculation: Y = 0.2125R+0.7154G+0.0721B
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[8]. This makes it a good function to use in comparing scikit-image’s functionality

with the GPU-parallelized implementation in Millipyde.

Figure 6.3: The effects of greyscaling an RGB image.

Table 6.2: Timing results for greyscaling images using scikit-image and
Millipyde.

image size scikit-image time (s) Millipyde time (s) % difference
500 0.0063839 0.0014073 454
1000 0.0260336 0.0014537 1790
1500 0.0535500 0.0052456 1021
2000 0.0942788 0.0055702 1693
2500 0.1466724 0.0054552 2689
3000 0.2102404 0.0065436 3213
3500 0.2964064 0.0091423 3242
4000 0.3863234 0.0085288 4530
4500 0.4974762 0.0089737 5544
5000 0.6113694 0.0092912 6580
5500 0.7201406 0.0092047 7824
6000 0.8563366 0.0115259 7516
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Figure 6.4: Graphical representation of the time spent greyscaling an im-
age in scikit-image compared to its GPU-accelerated equivalent in Mil-
lipyde.

As shown in Table 6.2 and Figure 6.4, these results differed surprisingly from those

of the gamma correction function. On the surface, the kernels for both functions

look startlingly similar – both only perform a single element-wise computation on

each input pixel. This difference in performance is therefore likely to do with the

difference in shape between the input and output arrays. The resulting Millipyde

graph almost resembles stair steps with significant jumps in performance between

some image sizes, and stagnated performance between others. We were unable to

find a clear cause based on studying the profile results of the function’s runtime using

the ROCm profiler ‘rocprof’. Future experimentation is needed to understand this

behavior, and to see if better/more predictable performance is possible.

6.2.3 Gaussian Blur Convolution

Another large category of parallel computation is the convolution, often referred to as

the stencil computation, with applications ranging from signal processing, image pro-

cessing, video processing, and more [26]. It involves a more mathematically-complex
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array computation where each output element is a weighted sum of N number of

neighboring elements. The weights come from an input mask array called the ker-

nel. For this example, we will use a Gaussian blur convolution which is commonly

used in image processing and computer vision for applications such as edge detection

[20]. For this computation, the kernel can be modeled as a 2D convolution using

the kernel G(x, y) = 1
2πσ2 e

−x2+y2

2σ2 where σ represents standard deviation. This re-

sults in a symmetric kernel with stronger weights in the middle. The Gaussian blur

is also separable, meaning the same result can be achieved by a separate pass of a

1-dimensional Gaussian kernel on each axis. The calculation for the 1-dimensional

kernel is G(x) = 1√
2πσ2

e−
x2

2σ2 .

Figure 6.5: The effects of a Gaussian Blur.

Both Millipyde and scikit-image’s gaussian functions use two passes of a 1-dimensional

Gaussian kernel which makes it a great example for comparison [45]. Millipyde also

exploits the shared memory system on the GPU for the Gaussian function. A block

of the input image is first loaded into shared memory so that each thread block has

access to these pixel values. This technique was previously studied in CUDA, and it

was shown to produce excellent results for GPU runtime [40]. For this test, we used

a sigma value of 2 for both Millipyde and scikit-image’s benchmarks. To match the

way Millipyde handle’s pixel edge values and kernel widths, the following parameters
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were used for the scikit-image comparison: cval=0, truncate=8, mode="constant".

This ensures equal kernel sizes, and caps pixels outside of the image to a value of 0.

Table 6.3: Timing results for Gaussian blur using scikit-image and Mil-
lipyde.

image size scikit-image time (s) Millipyde time (s) % difference
500 0.0105292 0.0002608 4037
1000 0.0408449 0.0004123 9907
1500 0.0902537 0.0006834 13207
2000 0.1697805 0.0010704 15861
2500 0.2523343 0.0015845 15925
3000 0.3749286 0.0022314 16802
3500 0.5563606 0.0029901 18607
4000 0.7121980 0.0037107 19193
4500 0.8735706 0.0047103 18546
5000 1.0703184 0.0058559 18278
5500 1.2964685 0.0069618 18623
6000 1.5977196 0.0082425 19384

Figure 6.6: Graphical representation of the time spent performing a Gaus-
sian blur on an image in scikit-image compared to its GPU-accelerated
equivalent in Millipyde.

This algorithm proved to be incredibly efficient in our Millipyde environment. As

shown in Table 6.3 and Figure 6.6, our performance ranged from around 40x faster for

smaller images up to just under 200x faster in larger images. Much of this performance
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increase is thanks to the shared memory blocks whose access times were much faster

than always reading from global memory. This shows a lot of promise for future

convolutional functions in Millipyde, and more experimentation should be done on

utilizing shared memory in other image algorithms.

6.3 Pipeline Benchmarks

Since our Pipeline objects exploit multiple forms of parallelism, it is worth studying

the performance of various Pipeline configurations. Four our tests, we bench-marked

the Pipelines using multiple copies of the same image for our list of inputs. Each image

was 3500 pixels wide by 4666 pixels tall. The input list sizes ranged from 1 to 100.

From there, four different configurations were run on each group of inputs. The first

configuration, labeled ‘Control’ in each respective chart, executed every Operation

sequentially in a Python loop rather than using a Pipeline object at all. The test

labeled ‘Single GPU’ ran a single Pipeline that was bound to one given device so that

it would not use all GPUs available on the system. The 3rd test, labeled ‘Dual GPUs’

was not bound to a single device, so it was allowed to use both available devices for

scheduling. The final test, labeled ‘Connected GPUs’ split the work in half so that

each of two Pipeline objects had half of the Operations to be completed. These two

Pipelines were each bound to separate devices in the system and connected so that

the outputs that completed on the first Pipeline would be transferred over to the

second Pipeline to complete the remainder of the Operations.

6.3.1 Pipelines with 5 Operations

Our first experiment represented a standard small set of operations that may occur

in a variety of data manipulation programs. Each iteration of the experiment used
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a total of five image transformation Operations. These included a Gaussian blur,

gamma adjustment, horizontal flip, 45-degree rotation, and a greyscale conversion.

For the connected Pipeline, these Operations were split in half so that the Gaussian

blur, gamma adjustment, and flip were performed inside of the first Pipeline, and the

rotation and greyscale conversion were performed on the second Pipeline.

Table 6.4: Timing results for running a short 5-Operation pipeline.
Number of inputs Control Single GPU Dual GPUs Connected GPUs

1 0.0244971 0.0269347 0.2622321 0.0357248
5 0.1214234 0.1228287 0.1046105 0.1197764
10 0.2419561 0.2456722 0.1764512 0.2654271
20 0.4817377 0.4817598 0.3661450 0.4735247
50 1.2170164 1.3320313 0.8369642 1.1232160
75 1.9473421 2.1429327 1.2548219 1.8599911
100 2.9957998 2.9042716 1.6321600 2.5250520

Figure 6.7: Graphical results for running a short 5-Operation pipeline.

The results of this experiment are shown in Table 6.4 and Figure 6.7. Predictably,

the Pipeline that was able to use two GPUs performed the best. Its runtime was

51



often half of the single-GPU Pipeline and the control experiment. The two connected

Pipelines performed notably worse than the standard Pipeline despite the fact that

both Pipelines should theoretically be splitting work across two GPUs. This is easily

explained by the overhead from the transfer itself. When data is transferred from

one Pipeline to the next, it has to be offloaded from the first device’s work pool into

the second device’s work pool, and many small costs are incurred from operating

managing both Pipeline objects simultaneously.

The single GPU pipeline showed disappointing performance that was often com-

parable to the control. Since the operations used were image-based transformations,

little to no work was done on the CPU besides for immediate GPU kernel launches.

This means that the work pools associated with each device were not fully utilized,

and often only added scheduling overhead to the experiment. More work can be

done in the future to make Millipyde’s Pipeline scheduling more adaptable in these

situations.

6.3.2 CPU-bound Pipelines with 5 Operations

To expose the effects of having the work pools associated with each device, we ran

the same Pipeline tests as the previous experiment with the addition of simulated

CPU work. At the beginning of each of the five Operations, 0.002 seconds of sleep

was performed on the CPU. This was meant to represent time that could be incurred

with future functions that require CPU-based kernel preparation prior to the kernel

launch itself. Ideally, these experiments will be re-run and analyzed in the future

when a function like this is added to Millipyde.
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Table 6.5: Timing results for running a 5-Operation pipeline with simu-
lated CPU-bound pre-processing work.

Number of inputs Control Single GPU Dual GPUs Connected GPUs
1 0.0373815 0.0361518 0.0370423 0.0470410
5 0.1813750 0.1406366 0.1128026 0.1417612
10 0.3653580 0.2656119 0.1972203 0.2660218
20 0.7243550 0.5269443 0.3712618 0.5205974
50 1.9165390 1.6008312 0.9192495 1.2318530
75 3.0087808 2.4173886 1.3291795 1.8750082
100 4.4714676 3.3045429 1.7332253 2.5254060

Figure 6.8: Timing results for running a 5-Operation pipeline with simu-
lated CPU-bound pre-processing work.

As shown in Table 6.5 and Figure 6.8, these results were more dramatic than the

prior five-operation Pipeline experiment. The single-GPU pipeline was able to more

predictably outperform the control experiment. We still saw strong performance gains

from both of the two-GPU configurations. Despite this, the connected Pipelines still
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under-performed due to the cost of transferring the work from one Pipeline to the

next.

6.3.3 Pipelines with 20 Operations

Lastly, an experiment was performed to see the effects of having longer Pipelines with

many Operations. Each Pipeline in this test performed the same 20 Operations: seven

Gaussian blurs, four gamma adjustments, two horizontal flips, six 45-degree rotations,

and one greyscale conversion. This test is meant to represent more intensive GPU-

operations that should further outweigh the costs incurred by the Pipeline’s own

overhead. For the two connected Pipelines, this work was split down the middle so

that each Pipeline performed 10 Operations.

Table 6.6: Timing results for running a long 20-Operation Pipeline.
Number of inputs Control Single GPU Dual GPUs Connected GPUs

1 0.1210601 0.1236825 0.1229053 0.1325121
5 0.6136912 0.6081436 0.4897915 0.5424913
10 1.2329561 1.2234442 0.7826877 0.8564503
20 3.2071803 2.9295116 1.6075147 1.6007919
50 14.1225833 17.9376053 4.3081120 4.4900887
75 30.5186737 30.8800205 8.4228492 8.4681248
100 48.8984402 46.5367387 14.6403225 14.5740577
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Figure 6.9: Graphical results for running a long 20-Operation Pipeline.

As seen in Table 6.6 and Figure 6.9, this experiment produced the most dramatic

results. Now that the costs of Pipeline transfer were outweighed by the costs of the

GPU computations, both dual-GPU configurations were able to perform roughly the

same – almost always within 0.1 seconds of each other. Surprisingly, both the control

and the single-GPU pipeline performed poorly with more than double the runtime of

their dual-GPU equivalents.
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Chapter 7

CONCLUSION AND DISCUSSION

This thesis has presented the start to a Python GPU programming framework called

Millipyde. Millipyde specializes in problems that involve many transformations are

performed on array-like input data sets, as is the case with image augmentation.

Millipyde also takes takes full advantage of multi-device scheduling in systems that

contain more than one GPU. Python programmers who use Millipyde are given the

flexibility to let the framework schedule tasks across the available devices, or they can

take the reigns themselves with specifying the target device in a variety of situations.

Finally, Millipyde was designed in AMD’s ROCm platform from the ground up with

the goal of providing cross-platform support.

Millipyde provides two new types for Python programmers – the gpuarray and the

gpuimage. In order to maintain as much compatibility as possible in a complicated

landscape of existing Python tools and libraries, these types aim to be fully compatible

with NumPy’s ndarray and related types such as SciPy’s ndimage. Each of these

types can be used with a variety of individual functions that take advantage of GPU

acceleration. Millipyde also provides execution constructs, the Operation, Pipeline,

and the Generator, that allow users to transform data in a variety of ways. Each

of these constructs also allows for different scheduling patterns using the available

devices on the system.

Our benchmarks showed a lot of promise with Millipyde’s performance. The some

of the GPU-accelerated functions were able to perform up to tens to hundreds of

times faster than their respective CPU variants depending on the task and the size of
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the input. From there, further acceleration can be achieved by taking advantage of all

resources available on the system. Constructs such as the Pipeline can exploit multiple

levels of GPU parallelism by using streams on individual GPUs and transferring

work across multiple GPUs. In some cases, the performance benefits were less than

expected and sometimes resulted in strange benchmarking patterns. More work needs

to be done to analyze the program execution in these cases to look for unexpected

bottlenecks or data dependencies. More work also needs to be done on experimenting

with data types. It’s possible that alternative types such as smaller floating point and

reducing type conversions values might have improve performance for some functions.

Overall, ROCm proved itself to be a flexible and powerful choice for Millipyde’s

development. The benefits to cross-platform development are undeniable, and we

hope that this becomes the norm for GPU tools and ecosystems going forward. The

open nature of the ROCm community allowed us to track down many implementa-

tion nuances, bugs, and future plans that may have been harder to find in a closed

ecosystem. We hope that AMD stays committed to its view of the future of GPGPU

computing, and that more developers join this vision by contributing libraries to the

ROCm ecosystem.

The use of ROCm was not without downsides, however. Due to its infancy, the

tools available may not be as powerful as equivalents in environments such as CUDA.

One area this showed the most was with benchmarking and profiling. The current

profilers proved difficult to use and hard to parse, so we hope that this area gets more

attention from developers going forwards.
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Chapter 8

DIRECTIONS FOR FUTURE WORK

Millipyde is still only the beginning of a new framework. Over the course of its

development, it more often raised questions about modeling GPU programming than

it did answer existing questions. There are a variety of directions Millipyde can be

taken in going forward – both in regards to enhancing the current functionality and

expanding into new functionality. This chapter will discuss some of these potential

directions with the hopes that some of them will be tackled in future iterations of the

framework.

8.1 Parameter Tuning

By nature, GPU acceleration involves tuning and micro-benchmarking in order to

achieve the best results. It often involves finding the right balance of parameters

such as grid/block dimensions, shared memory utilization, memory access patterns,

and more. For Millipyde, these parameters were chosen based on the result of tests

performed on our experimental AMD workstation. The parameters were then hard-

coded into the Millipyde code-base. In practice, these values are likely to vary across

different machines with different hardware configurations. This is especially true

as new generations of GPUs are released. The trade-offs we made today may not

necessarily be the same trade-offs that would give us optimal performance in the

future.

Ideally, Millipyde should adapt to new environments and tune its parameters ac-

cordingly. A basic approach might be to analyze the properties of the devices that
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are recognized during module initialization. The framework can use these values to

make educated guesses about what parameters to use in executing device kernels. A

more sophisticated approach could leverage runtime analysis to make decisions and

change parameter values once a kernel has completed. For efficiency, it would be

important to cache these values so that they do not need to be re-computed each

time a Millipyde program is run. It may be possible to do this using the built-in

__pycache__ folder.

8.2 Runtime Scheduling Analysis

Millipyde makes scheduling decisions using two main steps. The first is to pick the

best devices available to use. If a problem is not going to use all available devices,

it selects from the available devices using their clock frequencies and maximum sup-

ported compute units. The second step is to attempt to divide up the task evenly

by distributing work to these devices. This means that Millipyde does not take into

account any changes that could happen during runtime. In the future, Millipyde

should have a way of monitoring the actual metrics of each device while scheduling

tasks. If one device is low on available global memory, for example, then the frame-

work should choose other devices for use in allocating new objects. If one device is

shown to have better runtime performance than another, Millipyde should factor that

in when making scheduling decisions. And ideally, Millipyde should be able to move

around tasks and data during runtime to respond to changes as they happen.

8.3 Multiprocess Utilization

Due to the GIL and limitations on Python’s ability to use threads, many Python

programs instead turn to multiprocessing as a means of parallel acceleration. This
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is usually done with the multiprocessing package that includes objects such as

the Pool and Process for organizing execution as well as objects such as the Queue

for exchanging data. In the future, it seems natural for Millipyde to support these

abstractions of process-based parallelization in its own framework. Ideally, GPU-

based tasks can be assigned to different processes, and integration with the existing

Python means of inter-process communication can enhance the tools that Millipyde

has for exchanging data. This could provide large benefits to any Millipyde users that

are already familiar with Python’s model of processing.

8.4 Multi-node Utilization

Another layer of abstraction that Millipyde could exploit for asynchronous execution

is multiple nodes in a computing cluster. As it is today, Millipyde is only able to rec-

ognize devices connected to the current system and perform intra-node levels of data

transfer. Although this is fine for many problems, GPUs are extremely prevalent in

multi-node computing clusters so this remains a huge area for potential future expan-

sion. Although it would likely require large changes to the Millipyde backend, it would

allow Millipyde users to tackle larger problems than would otherwise be supported.

Since Millipyde is based on the ROCm ecosystem, it would be natural to experiment

with ROCm’s current tools for inter-node communication. These include the Unified

Communication X (UCX) library, and the OpenMPI message passing specification.

This would open up many new questions about how work can be scheduled and how

systems can be analyzed both during module initialization and during runtime to

intelligently distribute work to available nodes and devices.
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8.5 Support for User-Defined Kernels

Currently, all Millipyde GPU kernels are built into the back-end source code itself as

pre-defined functions with Python interface wrappers. To make Millipyde as flexible

as possible, it should one day cater to the needs of developers who want to write

their own GPU-accelerated functions. Many libraries such as CuPy, PyCUDA, and

PyOpenCL have experimented with approaches involving Python strings containing

GPU kernels written in CUDA C++ syntax that can be then compiled and used in

the Python runtime. NVIDIA has taken a similar approach with Python CUDA ini-

tiatives announced in 2021 [32]. Many opportunities still exist for finding new ways of

allowing Python users to define their own GPU-accelerated functions. Ideally, future

solutions would not require Python users to have to know how to write C++ syntax

for kernels, and they should carry on Millipyde’s goal of cross-platform flexibility.

How these functions can be created and designed from within Python remains an

open problem for future work.

8.6 Integration with Other Libraries

Python libraries seldom exist in a vacuum. One of the great things about Python

is how libraries such as NumPy can become the foundation to many new libraries

and frameworks that tackle difficult computing problems. Millipyde aims to join

these communities and open ecosystems by providing an inter-operable tool for GPU

computing. Going forward, more work can be done with exploring interactions be-

tween Millipyde and other frameworks and libraries. CuPy, for example, contains

many GPU-accelerated functions and tools that can benefit Millipyde’s own frame-

work offerings. Another library, Dask, provides NumPy compatible data analysis,

data scheduling, and compute-cluster capabilities. These features could be combined
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with Millipyde’s own computing constructs to provide better scheduling and analyt-

ics for GPU-based tasks. And these libraries are just the tip of the iceberg. There

are many more exciting possibilities for where Millipyde can fit into the ever-growing

landscape of Python computing.
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Chapter 9

MILLIPYDE API

This section will explain the Millipyde API that is exposed to Python developers who

use the framework. The following are the imports used in our API example, including

the ‘millipyde’ package itself that has been imported as ‘mp.’

import numpy as np
from skimage.io import imsave, imread
import millipyde as mp

9.1 gpuarray

9.1.1 Construction

Description Creates a gpu-compatible array that is inter-operable with NumPy

ndarrays other ndarray compatible types and libraries.

Parameters An array-compatible type. Including but not limited to Numpy ndarrays,

SciPy ndimages, and Python’s built-in List Type

Returns A gpuarray instance

Raises

• ValueError if the argument is not array-compatible

• ValueError if the array’s contents are not a numeric type

Example
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numpy_array = np.array([1, 2, 3, 4])
gpu_array = mp.gpuarray(numpy_array)

numpy_array2 = np.array([[[1, 2, 3], [4, 5, 6]],
[[1, 2, 3], [4, 5, 6]]])

gpu_array2 = mp.gpuarray(numpy_array2)

gpu_array3 = mp.gpuarray([1, 2, 3, 4])

9.1.2 Methods

9.1.2.1 clone

Description Clone the gpuarray. Creates a deep copy so that all memory is unique.

The clone’s memory may not be on the same GPU device depending on what

device is targeted when the copy is created

Parameters None

Returns A new gpuarray

Raises None

Example

numpy_array = np.array([1, 2, 3, 4])
gpu_array = mp.gpuarray(numpy_array)
gpu_array2 = gpu_array.clone()

9.2 gpuimage

The gpuimage type is a subtype of gpuarray. All gpuarray functions can accept a

gpuimage as an argument. The gpuimage imposes additional dimensional and type

constraints, however, so not all gpuimage functions can accept all gpuarrays.
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9.2.1 Construction

Description Creates a gpu-compatible array representing an image. Construction

requires either a 2-dimensional array of float values for greyscale images, or a

3-dimensional array of integer values for colored images. The inner most array

dimension in colored images can either be 3 elements wide for RGB images, or

4 elements wide for RGBA images such as PNG files.

Parameters An array-compatible type. Including but not limited to NumPy ndarrays,

SciPy ndimages, and Python’s built-in List Type.

Returns A gpuarray instance

Raises

• ValueError if the argument is not array-compatible

• ValueError if the array’s contents are not a numeric type

• ValueError if the dimensions don’t match greyscale or RGB/RGBA images

Example Creating two images in two ways

img = mp.gpuimage(io.imread("images/charlie.png"))

array = np.array([[[64, 76, 32], [22, 65, 64]],
[[12, 53, 43], [33, 56, 42]]])

img2 = mp.gpuimage(array)

9.2.2 Methods

9.2.2.1 rgb2grey

Description Turns the given rgb or rgba image into a greyscale image represented

by floating point values between 0 and 1 for each pixel.
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Parameters None

Returns None

Raises None

Example Equivalent ways to greyscale a single image

img = mp.gpuimage(io.imread("images/charlie.png"))
img.rgb2grey()
# or
img.rgb2gray()
# or
img.rgba2grey()
# or
img.rgba2gray()

9.2.2.2 transpose

Description Rotates a gpuimage 90° counterclockwise using a transposition opera-

tion on the GPU.

Parameters None

Returns None

Raises None

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
charlie2.transpose()

9.2.2.3 gaussian

Description Blur a gpuimage using a Gaussian function. A clamping value of 0 is

used for calculation involving pixels past the edge of the image.
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Parameters

• sigma: An integer or float value to use as standard-deviation in the calcu-

lation of the convolution kernel

Returns None

Raises None

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
charlie2.gaussian(2)

9.2.2.4 random gaussian

Description Blur a gpuimage using a Gaussian function using a random standard

deviation in a given range. A clamping value of 0 is used for calculation involving

pixels past the edge of the image.

Parameters

• min sigma: An integer or float value to use as the minimum standard-

deviation in the calculation of the convolution kernel

• max sigma: An integer or float value to use as the maximum standard-

deviation in the calculation of the convolution kernel

Returns None

Raises None

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
charlie2.random_gaussian(0, 0.5)
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9.2.2.5 brightness

Description Adjust the brightness of a gpuimage by adding the percent change

specified by the delta

Parameters

• delta: A float value between -1 and 1 for how much to change the brightness

by.

Returns None

Raises

• ValueError if the delta value is not between -1 and 1

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
img.brightness(.2)

9.2.2.6 random brightness

Description Adjust the brightness of a gpuimage by adding the percent change

specified by a random delta in the given range

Parameters

• min delta: A float value between -1 and 1 for the minimum amount to

change the brightness by.

• max delta: A float value between -1 and 1 for the maximum amount to

change the brightness by.

Returns None
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Raises

• ValueError if either the maximum or minimum delta values are not between

-1 and 1

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
img.random_brightness(-.2, .5)

9.2.2.7 colorize

Description Adjust the color of a non-greyscale gpuimage multiplying the RGB

components by the given multipliers

Parameters

• r mult: A float value for how much the red value is multiplied by

• g mult: A float value for how much the green value is multiplied by

• b mult: A float value for how much the blue value is multiplied by

Returns None

Raises None

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
# Boost the red value and leave green and blue as-is
img.colorize(1.2, 1, 1)
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9.2.2.8 random colorize

Description Adjust the color of a non-greyscale gpuimage multiplying the RGB

components by random multipliers in the given ranges

Parameters

• r range: A list of two float values representing a lower and upper bound

for how much the red value is multiplied by

• g range: A list of two float values representing a lower and upper bound

for how much the green value is multiplied by

• b range: A list of two float values representing a lower and upper bound

for how much the blue value is multiplied by

Returns None

Raises None

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
img.colorize([.5, 1.5], [.5, 1.5], [.5, 1.5])

9.2.2.9 fliplr

Description Flip the gpuimage left-to-right

Parameters None

Returns None

Raises None
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Example

img = mp.gpuimage(io.imread("images/charlie.png"))
img.fliplr()

9.2.2.10 rotate

Description Rotate the gpuimage counter-clockwise by the given angle

Parameters

• angle: An integer or float value for the rotation angle in degrees

Returns None

Raises None

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
# Rotate 5 degrees counter-clockwise
img.rotate(5)

9.2.2.11 random rotate

Description Rotate the gpuimage counter-clockwise by a random angle within the

given range

Parameters

• min angle: An integer or float value for the minimum rotation angle in

degrees

• max angle: An integer or float value for the maximum rotation angle in

degrees
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Returns None

Raises None

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
# Rotate randomly between 45 and 180 degrees counter-clockwise
img.random_rotate(45, 180)

9.2.2.12 adjust gamma

Description Perform gamma correction on the gpuimage

Parameters

• gamma: An float value for gamma

• gain: A float value for gain that is used as a constant multiplier

Returns None

Raises None

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
# 2nd Power gamma with standard gain
img.adjust_gamma(2, 1)

9.2.2.13 random adjust gamma

Description Perform a random gamma correction on the gpuimage

Parameters
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• gamma range: A list of two float values representing a lower and upper

bound for gamma

• gain range: A list of two float values representing a lower and upper bound

for gain

Returns None

Raises None

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
img.adjust_gamma([2, 3], [1, 1.2])

9.2.2.14 clone

Description Clone the gpuimage. Creates a deep copy so that all memory is unique.

The clone’s memory may not be on the same GPU device depending on what

device is targeted when the copy is created

Parameters None

Returns A new gpuimage

Raises None

Example

img = mp.gpuimage(io.imread("images/charlie.png"))
img2 = img.clone()
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9.2.3 Related Module Functions

9.2.3.1 image from path

Description Create a gpuimage using the image file located at the given path

Parameters

• path: A string path for a specific image file. The file must be an appro-

priate image format such as PNG, JPEG, TIFF, BPM, etc.

Returns A new gpuimage

Raises None

Example

# Load from the local images directory
img = image_from_path("images/charlie.png")

9.2.3.2 images from path

Description Create a list of gpuimages using the all image files located at the given

path

Parameters

• path: A string path containing the images to load. Files that are not an

appropriate image format will be ignored.

Returns A new list of gpuimages

Raises None

Example
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# Load from the local images directory
img = images_from_path("images/")
# Paths can also exclude the final slash
img = images_from_path("images")

9.3 Device

The Device type can be used in coordination with Python with statements to set

which target device is used within a given scope. At exit, the with statement will

return the target Device back to the one used before the with call. When exiting

the scope, Millipyde will synchronize with the target Device to make sure all work

has finished. In the case of an error with the Device, the device will be reset so that

the exception thrown can be caught if desired and the target Device can be used

in future calls. These with statements can also be nested to use specific devices in

specific situations and to safely return back to the previous target device when back

in the outer with statement’s scope.

9.3.1 Construction

Description Creates a scope that uses a specific device ID as the gpu device to

target. All types constructed inside this scope will use this target for gpu-based

memory allocation. Any functions inside the scope will also be executed on the

gpu specified by the target Device.

Parameters

• device id: An integer representing the device ID to use

Returns A Device instance

Raises Any errors that occur inside the with statement
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Example

with mp.Device(0):
# img is created on device 0
img = mp.gpuimage(io.imread("images/charlie.png"))
with mp.Device(1):

# img is transferred to device 1 and greyscaled there
img.rgb2grey()

# img is transferred back to device 0 and transposed there
img.transpose()

9.3.2 Related Module Functions

9.3.2.1 get current device

Description Get the target Device for the given scope

Parameters None

Returns An integer device ID

Raises None

Example

with mp.Device(0):
# Returns 0
d = mp.get_current_device()
with mp.Device(1):

# Returns 1
d = mp.get_current_device()

9.3.2.2 get device count

Description Get the number of recognized devices on the system

Parameters None

Returns An integer device ID
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Raises None

Example

count = mp.get_device_count()
for i in range(count):

with mp.Device(i):
pass

9.4 Operation

9.4.1 Construction

Description Creates an operation around the given function or class method that

can be run later

Parameters

• function: A callable such as a function or lambda, or a string representing

a method name for instance methods

• params...: Variable length parameters to be used when calling ’function’

• probability [optional]: A float probability between 0 and 1 (exclusive) that

is re-evaluated each time this Operation is used to determine whether the

function is called

Returns An Operation instance

Raises

• ValueError for invalid probabilities

Example
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def add_two_nums(x, y):
return x + y

# Operation constructed from function in current scope
op = mp.Operation(add_two_nums, 4, 6)

# Operation constructed from instance method
grey_op = mp.Operation("rgb2grey")

# Operation with arguments and probability
gauss_op = mp.Operation("gaussian", 2, probability=.5)

9.4.2 Methods

9.4.2.1 run

Description Run the given Operation that represents a function. This method

cannot run an Operation representing an instance method. See run_on for

more.

Parameters None

Returns Return the result of calling the function represented by the Operation, or

None if the function did not run at all due to its probability

Raises

• RuntimeError if the probability calculation fails. This may be due to a

system call failure in the random number retrieval

Example

def print_hello():
print("Hello world!")

hello_op = mp.Operation(print_hello, probability=.8)
operation.run()
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9.4.2.2 run on

Description Run the given Operation that represents an instance method.

Parameters • instance: The instance to run the instance method on

Returns Return the result of calling the instance method represented by the Oper-

ation, or None if the function did not run at all due to its probability

Raises

• RuntimeError if the probability calculation fails. This may be due to a

system call failure in the random number retrieval

• ValueError if the given instance does not have this method

Example

img = mp.image_from_path("/images/charlie.png")
gauss_op = mp.Operation("gaussian", 2, probability=.5)

gauss_op.run_on(img)

9.5 Pipeline

9.5.1 Construction

Description Creates a Pipeline

Parameters

• inputs: A list of gpu-compatible types (gpuarray and/or gpuimage)

• operations: a list of Operation types. All Operatons representing instance

methods must be able to operate on gpu-types
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• device [optional]: An integer representing the ID of the device that the

pipeline will execute on. Overrides any targeted device. Will attempt to

use all available devices if none is specified and if no target device is set.

Returns A Pipeline instance

Raises

• ValueError for invalid parameters

Example

inputs = [mp.image_from_path("images/charlie.png"),
mp.image_from_path("images/aspen.png")]

operations = [mp.Operation("colorize", 1.5, .8. 1),
mp.Operation("transpose"),
mp.Operation("rgb2grey", probability=0.5)]

# The following pipeline will attempt to use all available devices
p1 = mp.Pipeline(inputs, operations)

# The following pipeline will only schedule on device 1
with mp.Device(1):

p2 = mp.Pipeline(inputs, operations)

# The following will only schedule on device 0
# It will override target device 1
with mp.Device(1):

p3 = mp.Pipeline(inputs, operations, device=0)

9.5.2 Methods

9.5.2.1 connect to

Description Connect one Pipeline to another so that the outputs from one become

the inputs to the other. They will execute concurrently as soon as any of the

outputs are ready from the first pipeline. Millipyde will attempt to find an

optimal way of scheduling each Pipeline on a separate device if one or both

Pipelines are not specified to use a specific device
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Parameters

• pipeline: The Pipeline that will accept this Pipeline’s results as inputs

Returns None

Raises None

Example

# Letting Millipyde find the best scheduling of devices it can
p = mp.Pipeline(inputs, operations)
p2 = mp.Pipeline([], operations2)
p.connect_to(p2)

# Forcing both pipelines to use specific devices
p = mp.Pipeline(inputs, operations, device=0)
p2 = mp.Pipeline([], operations2, device=1)
p.connect_to(p2)

9.5.2.2 run

Description Run the Pipeline instance. This function will only return once all

inputs have been operated on, and once all connected Pipelines have completed

as well. Running a pipeline mutates the inputs.

Parameters None

Returns None

Raises None

Example

p1 = mp.Pipeline(inputs, operations)
p2 = mp.Pipeline([], operations2)
p3 = mp.Pipeline([], operations3)
p1.connect_to(p2)
p2.connect_to(p3)

# Returns once p1, p2, and p3 have completed
p.run()
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9.6 Generator

9.6.1 Construction

Description Creates a Generator with the given inputs and operations

Parameters

• inputs: A list of gpu-compatible types (gpuarray and/or gpuimage), or a

string path that contains images that can be turned into gpuimages

• operations: a list of Operation types. All Operations representing instance

methods must be able to operate on gpu-types

• device [optional]: An integer representing the ID of device that the Gener-

ator will execute on. Overrides any targeted device. Will attempt to use

the best available device if none is specified and no target was specified for

this scope.

• outputs [optional]: An integer representing the amount of outputs to cre-

ate. The output set size will be infinite if none is specified

• return to host [optional]: A boolean value for whether or not the results

should be automatically turned into NumPy ndarrays.

Returns A Generator instance

Raises

• ValueError for invalid parameters

• StopIteration if we have generated all specified outputs

Example
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operations = [mp.Operation("colorize", 1.5, .8. 1),
mp.Operation("transpose"),
mp.Operation("rgb2grey", probability=0.5)]

# Will produce 3 outputs using device 1
g1 = mp.Generator("examples/images", operations,

return_to_host=True, outputs=3, device=1)

i = 1
for result in g1:

imsave("output" + str(i) + ".png", result)
i += 1

# Will produce N number of outputs on the best available device
g1 = mp.Generator("examples/images", operations, return_to_host=True)

for i in range(n):
result = next(g)
imsave("output" + str(i) + ".png", result)
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