
MAP-GAN: UNSUPERVISED LEARNING OF INVERSE PROBLEMS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Brandon Campanella

December 2021

© 2021

Brandon Campanella

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: MAP-GAN: Unsupervised Learning of In-

verse Problems

AUTHOR: Brandon Campanella

DATE SUBMITTED: December 2021

COMMITTEE CHAIR: Jonathan Ventura, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Foaad Khosmood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Dongfeng Fang, Ph.D.

Assistant Professor of Computer Science

iii

ABSTRACT

MAP-GAN: Unsupervised Learning of Inverse Problems

Brandon Campanella

In this paper we outline a novel method for training a generative adversarial network

based denoising model from an exclusively corrupted and unpaired dataset of images.

Our model can learn without clean data or corrupted image pairs, and instead only

requires that the noise distribution is able to be expressed analytically and that the

noise at each pixel is independent. We utilize maximum a posteriori estimation as

the underlying solution framework, optimizing over the analytically expressed noise

generating distribution as the likelihood and employ the GAN as the prior. We

then evaluate our method on several popular datasets of varying size and levels of

corruption. Further we directly compare the numerical results of our experiments

to that of the current state of the art unsupervised denoising model. While our

proposed approach’s experiments do not achieve a new state of the art, it provides an

alternative method to unsupervised denoising and shows strong promise as an area

for future research and untapped potential.

iv

ACKNOWLEDGMENTS

Thanks to:

• My Mother and Father, whose hard work laid the foundation for me to pursue

my dreams

• My advisor Dr. Ventura, for his advice, time, and patience with me on this

thesis

• My committee members Dr. Khosmood and Dr. Fang, for their time and

wisdom

• Dr. Sung-Jin Kim, Dr. Stephen Jenks, and Mr. Qian Zhang, who gave me my

first chance

• The educators and mentors of my life, who continue to inspire me

• My innumerable friends, family, and neighbors who have all contributed to my

well-being

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Intro . 1

1.1 Motivation . 1

1.2 Challenges . 3

1.3 Use of Generative Adversarial Networks 4

1.4 Contribution . 5

2 Related Work . 6

2.1 Intro to Noise Removal . 6

2.2 Classical . 7

2.3 Deep . 9

2.4 Unsupervised Noise Removal . 10

3 Background . 13

3.1 What is Noise . 13

3.1.1 Impulse Noise . 14

3.1.2 Multiplicative Noise . 14

3.1.3 Additive Noise . 15

3.2 Background of Deep Learning . 16

3.2.1 What is Deep Learning . 16

3.2.2 Math of Deep Learning and Backpropigation 18

3.2.3 Convolutional Neural Networks 20

vi

3.3 GAN Background . 22

3.3.1 Autoencoder . 22

3.3.2 GAN Architecture . 24

4 Methods . 26

4.1 Problem Scenario . 26

4.2 Approach . 27

4.2.1 Expressing the Likelihood . 28

4.2.2 Expressing the Prior . 29

4.2.3 All Together . 30

5 Dataset . 33

5.1 Collections . 33

5.1.1 Mnist . 33

5.1.2 CelebA . 33

5.1.3 Imagenet . 34

5.2 Testing Only . 35

5.2.1 Kodak . 35

5.2.2 BSDS300 . 36

6 Experiments . 37

6.1 Measurement . 37

6.2 Preliminary Experiments . 38

6.2.1 MNIST Experiment . 38

6.2.2 CelebA . 40

6.3 Imagenet . 41

6.4 Ablation Studies . 42

7 Results . 44

vii

7.1 Compared to Previous State of the Art 44

7.2 Abolition Results . 45

7.3 CelebA and MNIST . 46

8 Conclusion . 48

8.1 Future Work . 49

BIBLIOGRAPHY . 50

APPENDICES

A Implementation . 57

A.1 Training Inspirations . 57

A.1.1 Network . 58

B Appendix . 61

B.1 Additional Photos . 61

viii

LIST OF TABLES

Table Page

6.1 Results of Denoising Over Different Architectures. HQSS and Noise2Noise
Results Taken From [26]. 42

A.1 Generator Network . 59

A.2 Discriminator Network . 60

ix

LIST OF FIGURES

Figure Page

1.1 Showing the discrepancy of measurement methods and human per-
ception. Both the left and right photos have the same MSE compared
to the original. 3

2.1 Example of a 3x3 gaussian kernel 8

3.1 Example of a neural network with 2 input neurons, one hidden layer
of 3 neurons, and one output neuron 18

3.2 Example of a convolution operation. No padding and step size of 1 20

3.3 Sliding a convolution kernel over an image 21

3.4 Example of an autoencoder’s architecture 23

3.5 High level overview of a GAN. 24

4.1 MAP-GAN scheme . 30

5.1 MNIST examples . 34

5.2 CelebA examples . 34

5.3 ImageNet examples . 35

5.4 Kodak examples . 36

5.5 BSDS300 examples . 36

6.1 Results of network denoising MNIST where σ = 32 39

6.2 Results of network denoising MNIST where σ = 64 39

6.3 Results of denoising CelebA photos where σ = 25 40

6.4 Example denoising results of our network trained on ImageNet. Gaus-
sian noise where σ = 25 . 41

x

7.1 Example of poor MAP-GAN denoising over grassy image 45

xi

Chapter 1

INTRO

It has long been a desire to present a distorted or noisy image to a computer, com-

mand it to enhance, and output a crisp and clear image. The benefits from such an

advancement in technology are numerous and wide ranging, from simply increasing

the aesthetics of an ill timed family photo, to allowing a CT scan to use less radiation

shielding the patients from its potentially harmful effects. Cutting edge research in

machine learning like deep convolutional neural networks have advanced the state of

the art denosing capabilities under both traditional supervised learning and unsu-

pervised learning problem scenarios [44, 45, 26]. This thesis aims to provide a novel

method utilizing GANs to denoise images in a unsupervised scenario with a known

noise distribution prior expressed analytically, and present and compare experimental

results on a standardized set of images.

1.1 Motivation

The problem of image denoising has been the topic of study for decades intersecting

many different disciplines like physics, statistics, mathematics, and computer science

[35, 9]. While there are many techniques that attempt to solve this problem, an all

encompassing solution to real world image noise has yet to be found. The causes

of noise in images are just as plentiful as the solution space, with some causes being

imperfect digital sensors, sensitive data transmission media/signals, and discrete color

space just to name a few [35].

1

In almost every space where there exists image noise there is a desire to remove it.

Some example applications where denoising can be beneficial are photo restoration for

aesthetic purposes, low light photography, removal of noisy artifacts from telescopic

images, and cleaning up medical images like CAT scans in order to see biological

structures more clearly, to name a few. Historically this problem has fallen mostly in

the mathematical/statistical realm working with bespoke sliding kernels, commonly

Gaussian in design, that attempt to average surrounding pixels resulting in a pixelwise

smoother image but with the undesirable effect of blurring or softness [34]. Notably

“popular neural network technology has been applied in the field of image noise

reduction in recent years” leading to new techniques that attempt to model the noise

signal and remove it from data with state of the art accuracy [31, 52]. In the machine

learning space, denoising was originally studied through a process where the model

compares a reconstructed clean image of a noisy instance of the data, to a true clean

image allowing for the model to learn its mistakes directly from the data. This implied

that the data set contains pairs of noisy and clean images.

However previously mentioned machine learning solutions do not address the problem

of how to restore and denoise images when presented with an exclusively noisy data

set. Recent inventions like the generative adversarial network (GAN) and blind spot

networks have made it theoretically possible to reconstruct images corrupted with a

specific noise distribution, through a model that only has access to a domain of noisy

images with only one image per target. This problem set of restoring images while

only having access to single noisy images can be classified as unsupervised learning.

2

1.2 Challenges

A significant challenge with denoising in general is that the process frequently has

undesirable side effects on the images. It is not uncommon to see that ”noise removal

introduces artifacts and causes blurring of the images” [35].

As stated previously machine learning and deep neural networks (DNN) have shown

great promise and produce state of the art results on some denoising tasks but this

too is not without its drawbacks. Deep neural networks and their derivatives like

convolutional neural networks are notoriously difficult to train often having difficulty

with gradient propagation and achieving a stable loss minimum [13]. More so the

difficulty is exaggerated when the model only has noisy data to work with, presenting

the scenario where the model does not have a way to directly back propagate on and

therefore learn from its data.

Figure 1.1: Showing the discrepancy of measurement methods and human
perception. Both the left and right photos have the same MSE compared
to the original.

It is also important to note that the way in which we programatically measure the

reconstructed images similarity with clean images is an imperfect science, and that

3

the way humans perceive images could be at odds with the mesurement methods.

What exactly constitutes a better image and how to measure that is an active area of

research with applications in image compression alongside denoising [48]. For example

if using the popular mean squared error formula, a slight deviation in color over the

entirety of the image almost unnoticeable to the human eye could cause the same

score as a glaringly obvious hole in the middle of the image. Figure 1.1 is an example

of this measuring to perception discrepancy as the left and the right photos have

approximately the same MSE, and yet most observers would point to the left photo

as more severly distorted.

1.3 Use of Generative Adversarial Networks

With the invention of Generative Adversarial Networks (GAN) in 2014 by Goodfel-

low et al. new possibilities have opened up on the way a model can be trained and

what data is considered acceptable for a model to be trained on [15]. GANs are

classified as generative models, meaning that GANs can use their network to create

an instance of a distribution. This is in contrast to discriminative models that decide

whether an instance is from a given distribution or not. From a high level perspec-

tive GAN’s consist of two networks, a generator and a discriminator which compete

against each other in a zero sum game where the generator attempts to fool the dis-

criminator and the discriminator attempts to distinguish real data from generated

data. During training a GAN essentially uses their discriminator as as loss function

for their generator network, and has shown incredible flexibility in different task do-

mains ranging from creating deep fakes, to texture synthesis, to supervised denoising

[23, 20]. Research has also shown that using GANs for denoising can produce crisper

and more defined images then a classic denosing system like wavelet transform and

kernel methods [20] . Furthermore recent advances in denoising model architecture

4

like AmbientGAN have shown GAN’s generative nature allows for new advances in

unsupervised denoising [5].

1.4 Contribution

The contribution that this thesis aims to provide is to present a novel architecture,

called MAP-GAN, for unsupervised denoising that utilizes a generative adversarial

network and an analytic description of the noise generating distribution. We provide

the mathematical theories on which our architecture is based and proceed to test

our architecture on progressively harder datasets. We also set up an environment to

directly compare our networks capability against the current state of the art unsu-

pervised denoising work. Lastly we present our quantitative and qualitative findings,

alongside associated ablation studies to allow readers to judge the effectiveness of this

proposed scheme.

5

Chapter 2

RELATED WORK

Our research is just the latest in the interesting and storied field of image restoration

and noise removal, drawing upon a long and sometimes confusing history of methods

to remove noise under various circumstances of image quality and data set availability.

This section aims to give the reader a brief taste of the research states throughout

the years, the different techniques applied to try and find a solution to the denoising

problem, and a history of the tools used in MAP-GAN.

2.1 Intro to Noise Removal

Image denoising has been a topic of research for decades with scientists from different

fields like physics, math and computer science all approaching this problem through

their own lens [35]. In early digital research prior to the wide adoption of deep

learning, a popular approach to denoising was the use of filters over the images’

pixels in the form of a kernel function to reduce the intensity of noise and attempt to

smooth out the image. However these filters tended to have a blurring effect on the

denoised images along with “Reconstruction artifacts, e.g., “ringing” effects or color

speckles, [which] are inevitable because of high frequency loss in the blurred image”

[51]. Kernels also tended to be hand crafted leading to extensive development times

and narrow use cases. With these faults put together researchers were left dissatisfied

with the results and actively searched for a better, more comprehensive solution.

With the advent of deep learning and convolutional neural networks, a new previously

unreachable quality of denoising was able to be accomplished in a supervised learning

6

setting [6, 54]. Deep neural nets became a tool where a noise distribution could be

learned from the image distribution and relatively effectively removed from a noisy

image, if the original clean data was available. Open questions remained in the setting

where only noisy images were in the available dataset, but with the the introduction of

techniques like blind spot reconstruction and generative adversarial networks further

advances could be made in the realm of unsupervised image denoising.

2.2 Classical

For the purposes of this paper we will consider classical denoising to be all of the

methods and theories about denoising used prior to the advent and commonplace

usage of deep neural networks. Classical techniques tended to focus on identifying

specific characteristics of the noise in question and crafting a bespoke tool or strat-

egy in order to acquire a representative clean image. Some popular techniques that

proved effective and were well documented in literature are image filtering via a kernel

function and wavelet analysis, both of which will be explored in further detail in this

section [42, 35, 8].

Kernel filtering describes a wide swath of techniques that attempt to manage the

tradeoff between removing noise and retaining the original signal of the image. Ar-

guably the simplest kernel filter is a Gaussian kernel that effectively identifies the

signal in each channel and takes the average of all the surrounding pixels. While

effective at removing signal spikes, kernels of this class tend to produce a “blurred

and smoothed image with poor feature localization and incomplete noise suppression”

especially noticeable in places of sharp contrast like hard lines [2].

Nonconstant filters also exist such as the the Median Filtering Algorithm which pro-

poses taking the median value of an M ×N area of an image in order to attempt to

7

Figure 2.1: Example of a 3x3 gaussian kernel

denoise while retaining line sharpness and reducing the blurring effect seen in other

filters [18].

The previously mentioned kernel techniques are some of the simplest to apply and

conceptualize, but other authors have modified and used more advanced variations of

kernel filtering to varying success. An example would be the former state of the art

BM3D algorithm which first finds similar patches in an image, stacks the patches to

form a 3 dimensional array and computes a weighted average along with threshold

and Wiener filtering and returns a final estimate [10].

The wavelet category of classical denoising has also shown great effectiveness and

popularity among the image processing community. According to Zhang and Gun-

turk, wavelet thresholding is when “a signal is decomposed into its approximation

(low-frequency) and detail (high-frequency) subbands” [53]. Wavelet denoising can

be as simple as multiresolution thresholding of the wavelet coefficients as seen in [11],

or more complicated statistical analysis of the wavelets as seen in [43, 38].

It is also important to note that these techniques are not mutually exclusive and can

often be seen alongside each other. An example of this is kernel filtering alongside

8

multiresolution filters where images are expanded and shrunk in order to highlight

the difference between the noise signal and the original image signal, such as in the

paper “Multiresolution Bilateral Filtering for Image Denoising” [53].

2.3 Deep

Before diving into denoising in the deep learning space it is important to first define

what exactly deep learning means. One such definition of deep learning systems pro-

posed by some of the top researchers in the field is “representation-learning methods

with multiple levels of representation, obtained by composing simple but non-linear

modules that each transform the representation at one level (starting with the raw

input) into a representation at a higher, slightly more abstract level” [27]. Further

information on the underlying mechanisms and math behind deep neural networks,

autoencoders, and generative adversarial networks can be found in the background

section of this thesis.

Deep learning has revolutionized a large number of fields from natural language pro-

cessing, to computer vision, to stock market prediction, and signal denoising. In the

field of computer vision, deep learning made an unquestionable impact when in 2012

Krizhevsky, Sutskever and Hinton’s deep convolutional network architecture placed

first by a wide margin in the ImageNet challenge achieving never before seen image

categorization success rates [25]. Innovations in novel network architecture, and new

faster hardware to support them allowed for great advances in computer vision in the

early 2010s. But it is important to note that the much of the deep learning image

research going on in this time frame was primarily concerned with computer vision

and discriminative models such as image classification and object segmentation. It

was not until 2015 with the use of deep autoencoders that deep learning and denoising

9

became intertwined tasks, and was used very successfully as in Liang and Liu’s Stack

Denoising Autoencoder [30].

According to M. A. Kramer, an autoencoder “operates by training a feed forward

neural network to perform the identity mapping, where the network inputs are re-

produced at the output layer” after passing though a lower dimensional bottleneck

layer [24]. Over time both autoencoders and the more advanced sibling variational

autoencoders have shown to be good tools when it comes to denoising, used in many

different methods and architectures like standalone, stacked, or used as a pretrain-

ing tool for convolutional neural networks. However much like the kernel filtering

technique, a disadvantage of autoencoders and variational autoencoders is that its

objective function tends to create a blurry output[20].

In 2014 Ian Goodfellow created an adversarial method of training deep generative

models called the generative adversarial network (GAN) that provided a new approach

to identify and sample the distributions of image sets[15].

Within the last 5 years research into GANs used for denoising applications has been

increasing as state of the art results have been produced using this architecture. Some

early works have utilized GAN’s to replicate a noise distribution to enlarge a dataset

so a more traditional CNN model can train on many simulated clean/noisy image

pairs [7]. Other methods rely on the GAN to remove the noise itself from a dataset

of clean and noisy paired images in a supervised learning setup [50].

2.4 Unsupervised Noise Removal

Recently research interest has increased in the problem posed when there exist only

unpaired noisy images in the training dataset distribution. Training a machine learn-

10

ing model under this scenario is described as self-supervised learning. There have

been several notable attempts at this poised problem, with most successful methods

employing a U-net style deep neural network with a traditional loss function such

as the l2 loss in an attempt to find statistical properties to remove noise without an

adversarial process [49, 29].

The paper Noise2Noise trains a model on pairs of noisy images of the same scene,

each with unique sampling of the noise distribution. This allows the network to learn

a mean of all plausible explanation images for its output, but still maintain relative

sharpness. Their model is hinged on the fact that they can “in principle, corrupt the

training targets of a neural network with zero-mean noise without changing what the

network learns” [29]. While producing excellent results it is important to remember

that their framework is based on having two independently realized noisy images

which is not feasible in many cases, and arguably semi supervised.

Noisy-as-Clean takes a similar approach but instead of requiring two noisy images,

they require only one and create a second noisy image by adding additional noise to

the original noisy input. Noisy as clean hinges on the assumption that the expectation

of the signal of the clean image is much greater than that of the additive noise, and

therefore their simulated noisy image has similar expectation with the observed noisy

image [49].

The authors of AmbientGAN have shown that it is possible for a GAN to learn

the clean image distribution from only corrupted samples, but their model is a non-

conditional generator and samples random examples from the clean image distribution

[5]. It is also important to bring up the work of researchers from France in their paper

“Unsupervised Adversarial Image Reconstruction” where they use a GAN to attempt

to denoise a specific image but do not make any assumptions on the noise generating

distribution and so the results leave something to be desired[36].

11

To the best of our knowledge the current state of the art in singe image unsupervised

denoising is the paper from NVIDIA named “High Quality Self-Supervised Deep

Image Denoising”. They utilize a convolutional blind spot network in conjunction

with a residual U-net architecture to achieve impressive results. More so they also

utilize a known noise model in order to further induce their network to find the

appropriate clean image [26].

12

Chapter 3

BACKGROUND

In this section we will aim to give the reader a quick refresher on the common causes

of noise, the mathematical underpinnings of deep learning, and the architecture and

math behind generative adversarial networks. The goal of this section is to not to

give the reader a comprehensive overview of what is arguably a enormous section of

math, computer science, and statistics literature but rather to provide just enough

information at a high enough level so a reader with limited background in machine

learning can conceptualize the method that we present in later chapters. We would

encourage a reader new to this subject to find resources elsewhere to form a strong

base such as “Deep Learning” [14]. We also assume a beginner level understanding

in image representation and image processing.

3.1 What is Noise

This section aims to give a overview what of the common causes of noise in images

are, and how they are mathematically modeled. According to Verma and Ali “Noise

is a random variation of image intensity and visible as grains in the image” [46] and is

mostly an undesirable quality that users and developers wish to be not present in the

image. Most noise can be broken down into three characteristic types, impulse noise,

multiplicative noise, and additive noise with additive noise in the form of a Gaussian

distribution being the most common.

13

3.1.1 Impulse Noise

A commonly seen example of impulse noise is known as salt and pepper noise, where

strong dots appear throughout the image. This type of noise can be caused by several

reasons such as dust particles on the image sensor, or over heated faulty electrical

components [46]. A further example of a process that can cause salt and pepper noise

is when images are transmitted over noisy digital links, where each bit of a pixel has

a certain probability of being flipped [4]. According to [47] salt and pepper noise can

be approximately modeled by the distribution of

X(i, j) =


rmax with probability a

rmin with probability b

x(i, j) with probability 1− p

(3.1)

such that a + b = p ≤ 1, where rmax is the maximum luminance value a pixel can

take, and rmin is the minimum luminance value, x(i, j) is the noise free luminance

value of the pixel at (i, j) and X(i, j) is the luminance value at pixel (i, j).

3.1.2 Multiplicative Noise

Multiplicative noise is noise that can be decomposed as

f(·) = g(·)q(·) (3.2)

where g(·) is the clean image image, q(·) is the noise component and f(·) is the

resultant noisy image [4]. An example of noise that can be considered multiplicative

14

is speckle. Speckle noise is seen in active radar and synthetic aperture radar, due

to coherent processing of of back scattered signals from numerous down field points

or when the size of the item being scanned is less than a radar’s image processing

unit [46, 37]. The negative exponential is used to model speckle noise and would take

the place of q(·) in the example above. The negative exponential distribution can be

modeled as

p(x) = λe−λx (3.3)

3.1.3 Additive Noise

Similarly additive noise is noise that can be decomposed as

f(·) = g(·) + q(·) (3.4)

Where f(·), g(·), q(·) maintain the same meaning as in the multiplicative noise section.

Gaussian noise is an example of additive noise, and accurately represents commonly

seen noise in nature. Gaussian noise is often found in traditional film photography

and can be attributed to imperfections in the sensor and low light conditions. A

normal distributions pdf would be

p(x) =
1

σ
√

2π
e

(
− 1

2(x−µσ)
2
)

(3.5)

In this case p(·) would take the place of q(·) in the additive noise equation above.

15

3.2 Background of Deep Learning

This section aims to give a very brief background on the definition of deep learning,

and the conceptual principles of it. Aimed to be a refresher for those who have learned

about it at one point in the past.

3.2.1 What is Deep Learning

Deep learning is arguably one of the hottest computer science topics currently in

media and popular science. But what is deep learning? According to Guo et al.

“Deep learning algorithms are a subset of the machine learning algorithms, which

aim at discovering multiple levels of distributed representations” [16]. Deep learning

consists of multiple, possibly many layers of nonlinear functions that are composed

together in a network that when viewed as a graph have a deep representation. Deep

learning is usually supported by artificial neural networks, usually shorthanded to

neural networks (NN).

Neural networks can come in several different architecture configurations and styles

like the recursive neural net, but four our purpose we will be primarily concerned with

feed forward neural networks. Feed forward means that the flow of data throughout

the network is unidirectional with each layer getting activated only once while pro-

cessing an instance data. Neural networks consist of many layers of simple nonlinear

functions called neurons that receive a weighted input from previous neurons, com-

pute some form of calculation based on its internal parameters, and then output a

weighted real value to one or more child neurons. Each neuron usually consists of a

linear portion which weights and computes a summation of the inputs from the pre-

vious layer of neurons and a nonlinear function, such as a tanh, sigmoidal function,

16

or rectified linear unit among many other possibilities. The exception to this is the

first and last layers of the neural network, with the first layer being called the input

layer and receiving data from an external source, like an image, audio, table, or any

other form of information. The final layer is the output layer that produces an item

in the target space, weather that be a binary output, a series of binary outputs, a real

valued number or a complex structure like an image. Lastly the middle layers will

often be called hidden layers as they have no contact with and so are hidden from

the external environment.

A network is trained in a supervised fashion when it has access to the correct outputs

of a function for a given input, i.e. if a network has access to the labeled data (x, y)

for some function f(x) = y. A network is considered unsupervised if it only has access

to the inputs and not to the outputs, or if it has access to exclusively unpaired data.

A neural network is trained via a method called backpropagation, which finds the

gradient of each weight in the network based on an input and its loss, and updates the

weight with the goal of finding minimum loss. It essentially ammounts to performing

the chain rule over a stack of layers up until the target weight, starting from the

output layer and finishing at the input layer. This process is an efficient procedure

because previous layers derivatives do not need to be recalculated, and for each layer

only the current layer’s derivatives need to be calculated.

17

3.2.2 Math of Deep Learning and Backpropigation

Figure 3.1: Example of a neural network with 2 input neurons, one hidden
layer of 3 neurons, and one output neuron

In this section we will take a look at one forward and backward iteration of the target

neuron H0 in Figure 3.1. In a forward iteration the steps are

1. An input is given to the input layer I0 and I1

2. H0 uses its weights to take a linear combination of its inputs resulting in

hintermediate = I0 · w0 + I1 · w1

3. A nonlinear function f(·) is applied to the output of the previous summation

resulting in H0 out = f(hintermediate)

4. H0 out is then passed to the output neuron O0

Continuing with the other process in the full network, H1 and H2 follow steps 2, 3

and 4 with their own respective weights. O0 then follows step 2 with its weights

18

w
′
0, w

′
1, w

′
2, and optionally follows step 3 and applies a nonlinear function resulting in

O0 out. Finally O0 out is either passed to a loss function during training, or used as a

final prediction during testing.

In the backpropagation stage for H0 we want to find the gradients of w0 and w1 for

a given input value and loss function. We first assume that we have the upstream

derivative U ′, which is found in the same manner we are about to lay out for H0. We

then know that if we look at H0 in isolation we have the function of U(F (G(i0, i1)))

where F is the nonlinear function and G is the linear portion I0 ·w0 + I1 ·w1. In order

to get the gradient of w0 we want to find

∂U

∂w0

=
∂U

∂F
· ∂F
∂G
· ∂G
∂w0

(3.6)

With U ′ known it becomes a simple mater to find ∂F
∂G

and ∂G
∂w0

, which amounts to

just finding the derivative of this layers nonlinearity and the derivative of a linear

function.

With ∇w0 found we can now perform an update on the weight in order to lessen the

loss. This update is found by

wnew0 = wold0 − a · ∇w0 (3.7)

where a is a value known as the learning rate and allows the user to control the speed

at which the weight changes. The same process is applied to all other weights in the

network to complete the backpropigation step.

19

3.2.3 Convolutional Neural Networks

Convolutional neural networks take advantage of the convolution function in layers of

the networks. In deep learning a convolution is a mathematical operation that utilizes

sliding a discrete weighted kernel over an instance of discrete data, and measures the

interaction of the kernel and the data at each point. Convolutional neural networks

when used with images provide numerous benefits. The first benefit is quicker training

in high dimensional space; a convolutional kernel size is generally only a small fraction

of the size of the input and so when calculating the gradients it is significantly faster

using much less memory due to the decrease in the number of neurons.

Figure 3.2: Example of a convolution operation. No padding and step size
of 1

A powerful property that allow CNNs to be effective is the spatial locality of images,

meaning that pixels values are not independent of their neighbors values. Convolu-

tional kernels take advantage of this by using their shared weights to learn patterns

within an image in one location, and activating more strongly if that pattern is present

in a separate location.

Another advantage of convolutions is that fully convolutional neural networks allow

for varying input size of images, the sliding nature and reusable kernels allow for

a much more flexible interface than a non-fully convolutional network. Further in

practice it has been shown that convolutional neural networks tend to be a much more

20

stable to train then fully connected alternatives, and the lower number of weights tend

to help prevent over fitting on the training data.

When taking a convolution, the convolutional kernel is slid across the image in varying

step sizes. At each location a summation of the weights multiplied by the image pixel

values is taken. Next like a fully connected network, a non linearity is applied to the

summation value. If an image is color and contains a multichannel z-axis then the

kernel is also multi channel having a depth the same size as the z-axis, and includes

all the z-channels in the total summation. Often there are many convolutions applied

at each step leading to an output that has a depth dimension equal to the number

of different convolution kernels. These multiple convolutions can be done in parallel

and are performed very efficiently.

Figure 3.3: Sliding a convolution kernel over an image

After the forward pass, the backpropagation of the convolutional kernels is essentially

the same as previously described with the gradient for each kernel being calculated

at each convolutional usage, not just once per image. In practice, convolutions and

traditional fully connected neural networks often seen working in tandem, taking ad-

vantage of the benefits of each network architecture style. This is commonly seen in

image classification networks, where the first several layers are exclusively convolu-

tions and the last layers are a fully connected network.

21

3.3 GAN Background

Created in 2014 by Ian Goodfellow, GANs are considered to be generative models

meaning that they can create an item from a distribution given an input, as compared

to discriminative models that decide if an item is in a distribution or not. The method

of training a GAN is novel and represents a large independent advancement, but

GANs do not exist in a vacuum and have several precursors leading to their creation.

Autoencoders are also considered to be a generative neural network style and are

generally seen as an example of a precursor to GANs. Today it is common to see

network architectures used in autoencoders, utilized by GANs, specifically the choke

point style architecture characteristic of modern autoencoder networks.

3.3.1 Autoencoder

The history of autoencoders is a bit convoluted but is generally attributed to first

being created in the 1980s by Rumelhart et al. [40, 3]. Autoencoders are a gener-

ative machine learning algorithm that utilizes a neural network with a choke point

to express input in a compressed distribution, and inversely express the input distri-

bution from the compressed distribution. Ideally points drawn from the compressed

distribution not represented by an item from the data distribution should be able to

generate a novel item from the input distribuion. While applicable to general input

we will be looking at the image domain specifically.

During the training process autoencoders take some distribution of images as input

and use a network to then represent the image in a lower dimensional space as an

intermediate distribution. From that lower dimensional distribution space it then uses

a second network to attempt to recreate the input image in the original dimensional

22

space. This recreated output is then measured directly against the input, and a loss

like a mean squared error is applied.

At testing time, the first half of the network is removed and the second half of the

network, and the second half is used as a generating function. From here the gener-

ating portion is given either random input in the lower dimensional space, or a point

found by interpolating between two known images lower dimensional representations.

Figure 3.4: Example of an autoencoder’s architecture

This is the simplest version of autoencoders, with more more complicated versions

like the varaiational autoencoder attempting to solve issues found in the original

formulation, primarily that a large portion of the lower dimensional space maps to

junk outputs [22]. While autoencoers and their variants have seen much success,

their outputs all still have critical limitations in some regards, most notably that

the outputs are often blurry, dont represent fine details well, and that despite best

efforts there remains a large portion of the lower dimensional distribution creates

unintelligible output.

23

3.3.2 GAN Architecture

A GAN is a class of learning architecture that consists of two separate networks,

a generator and a discriminator that compete in a type of 0 sum game with each

other, learning from the others mistakes and successes. In the simplest configuration

a generator is given a seed input from a random distribution and uses its network to

attempt to produce an item from the target output distribution. At this point the

output of the generator is passed to the discriminator.

The discriminator takes input from the real data distribution and from the output of

the generator. Its goal is to discriminate between the generated output and the real

data identifying which is real which is fake.

The discriminator’s loss is calculated in the traditional way, via some sort of binary

cross entropy or other equivalent mechanism. The generator on the other hand uses

the discriminator as its loss function, essentially attempting to fool the discriminator

into believing that the output it produced was from the real data distribution.

Figure 3.5: High level overview of a GAN.

24

During training, the generator and the discriminator take turns trying to fool each

other; after each turn they update their respective networks based on the losses in-

curred. The discriminator updates itself like any other network via back propagation,

however the generator performs backpropagation but through the entirety of the dis-

criminator. The generator therefore finds its gradients over each pixel of the output

from the discriminators response. From that point the generator can back propagate

through its own network accordingly. Because the discriminator and generator are

competing against each other, when one gets better the other would incur a larger

loss assuming the ladder stays the same. This can be interpreted as a min max game

where,

min
G

max
D

V (D,G) = Ex∼preal [logD(x)] + Ez∼pfake [log(1−D(G(z))] (3.8)

It can be shown that under ideal training circumstances a Nash equilibrium between

the generator and discriminator is found, where they both achieve a 50% success rate

among each other. It can also be shown via Ian Goodfellow’s paper [15] that the

generators minimum loss is found when the generated distribution is equal to the

true data distribution. The discriminators minimum found when it discriminates all

it’s data correctly.

25

Chapter 4

METHODS

In this section we will discuss the problem scenario and the theory behind the MAP-

GAN method of denoising images.

4.1 Problem Scenario

Our problem scenario is, as expected, very similar to that proposed in [36]. Let

X ∼ PX be a signal that we want to recover, and assume further that we can only

access this signal through a noisy or otherwise erroneous measurement. Let that

erroneous measurement be Y ∼ PY . Let F be a probabilistic corruption/measurement

function that accepts items from X and outputs their measurements in Y . Lastly

assume that we only have access to a subset of the noisy distribution Ŷ ⊂ Y .

In other words we can say Y = {F (x)|x ∈ X} and given a set of noisy images

Ŷ and the measurement function F (·), for any y ∈ Y we would like to produce

x̂ s.t. y = F (x̂).

While our approach is applicable to a wide array of inverse problems, for the rest of

this explanation we will assume that items from X and Y are digital images.

26

4.2 Approach

It can be seen that this problem nicely presents itself in a Bayseian framework. We

would like to find

x̂ = arg max
x

pX|Y (x|y). (4.1)

So applying Bayes rule we can formulate our problem as

x̂ = arg max
x

pY |X(y|x) · pX(x)

pY (y)
= arg max

x
pY |X(y|x) · pX(x) (4.2)

pY |X(y|x) is known as the likelihood while pX(x) is known as the prior, and pY |X(y|x)pX(x)

is known as the posterior. Finding the x that maximizes the posterior is known as

finding the Maximum A Posteriori (MAP) estimate. The likelihood represents the

certainty that y is the result of a corruption measurement on x while the prior repre-

sents the certainty that x is part of the true image distribution.

Our solution utilizes a Generative Adversarial Network to identify the correct image,

similar to [36] we devise the problem of finding the a generator G : Y → X such that

for each input y the generated output is its associated MAP estimate x̂. However

unlike previous work we use an analytic form of the likelihood as will be shown in

upcoming sections. We can then describe our objective as finding

Ĝ = arg max
G

EpY {log pY |X(y|G(y)) + log pX(G(y))} (4.3)

The likelihood is now log pY |X(y|G(y)) and the prior is log pX(G(y)). To arrive at

equation 4.3 from equation 4.2, we is replaced x with G(y), and took the log of the

equation.

27

4.2.1 Expressing the Likelihood

In our method we assume that the noise is i.i.d. pixel wise and drawn from a distri-

bution that can be expressed analytically. We can then write the likelihood pY |X(y|x)

in its analytic form as pY |X(y|x) = p(y0|x0) · ... · p(yn|xn) and are therefore able to

maximize over it.

For example if we have additive zero mean Gaussian noise with standard deviation

σ, we would have

p(yi|xi) =
1√

2πσ2
e
−||yi−xi||

2

2σ2 (4.4)

and so if we once again substitute G for x we get

p(yi|G(y)i) =
1√

2πσ2
e
−||yi−G(y)i||

2

2σ2 (4.5)

which can then be used to express

pY |X(y|G(y)) = p(y0|G(y)0) · ... · p(yn|G(y)n) (4.6)

as the analytic form of the likelihood that we can optimize from. Note that equation

4.6 would force G to produce outputs similar to the input of y and not just some

random instance from the distribution of X. This can then be substituted into the

likelihood term of equation 4.3.

28

4.2.2 Expressing the Prior

The prior on the other hand is intractable to formulate explicitly and thus we must

turn to machine learning for the solution. As the literature has shown an uncondi-

tional GAN can be used to find a prior distribution PX from a (traditionally random)

input distribution PR. So given r ∈ R a GAN should be able to find G(r) = x where

the probability of x being drawn from PX is great. This is essentially the approach

taken by AmbientGAN to express the prior.

While MAP-GAN is similar to AmbientGAN in some respects, its import to remember

that we are opting to denoise specific images not randomly ascertain an example

from the target distribution X. The enforcement that the the output of G : Y → X

is similar to its input is taken care of by the likelihood, so for the prior portion of

equation 4.3 we want to optimize that the output of G is an item from the distribution

of X.

At this point it is worth talking about the GANs discriminator D and how it relates

to the loss function of the generator. We are trying to find the discriminator

D̂ = arg max
D

EpY {logD(y) + log(1−D(F (G(y))))} (4.7)

where D̂ is the optimal discriminator. This allows us to roughly apply lemma 5.1

and 5.2 with modifications from AmbientGAN [5] to show that by optimizing the

discriminator we will achieve an optimal generator within our solution architecture.

For our purposes an optimal generator means that it can provably recover the original

clean distribution.

Theorem 1. Let PX be the clean distribution and let PY be the measured noisy

distribution over X, and let FΘ be the measurement distribution parameterized by Θ.

29

Further assume that for the given noise generating distribution parameterized by Θ

there is a unique probability distribution, PX that induces the distribution PY from FΘ.

Then if the discriminator D is optimal, the generator G is optimal if iff PG(Y) = PX .

Proof of Theorem 1. The original GAN paper [15] states that if the discriminator is

optimal then

D̂(y) =
PY (y)

PY (y) + PF (G(Y))(y)
(4.8)

which therefore implies that the Generator is optimal iff PF (G(Y)) = PY (see [15]

Theorem 1 for details). Further because we are assuming there is a unique probability

distribution, PX ,that can induce the noisy distribution PY from FΘ, it can be deduced

that PG(Y) = PX .

The latter portion now involves showing that Fθ produces a unique probability dis-

tribution from its input. This must be taken on a case by case basis for the noise

producing distribution. If F is Gaussian this can be shown by theorem 5.2 from Bora

[5] and so we direct the reader to look there for further confirmation.

4.2.3 All Together

Figure 4.1: MAP-GAN scheme

30

In section 4.2.1 we demonstrated that it is possible to find an expression likelihood

that can be optimized inside of equation 4.3. Similarly in section 4.2.2 we demon-

strated that it is feasible to encourage a generator to produce examples from a clean

distribution while only having access to noisy data.

In creating a loss to enforce the likelihood term we must examine the unique analytic

expression of the noise distribution. For Gaussian noise we can see that the loss is

expressed in the form of

LossGaussian Likelihood(G) = EY {||y −G(y)||2} (4.9)

For the prior generator loss, remembering from equation 4.6 that D̂ is the optimal

discriminator we see that

Lossprior(G) = EY {1− D̂(F (G(y)))} (4.10)

With both penalties equation 4.10 and equation 4.9 put together our total objective

function can finally be expressed as

Losstotal(G) = λ · LossGaussian Likelihood(G) + Lossprior(G) (4.11)

The algorithm of the MAP-GAN training procedure is described below.

31

Algorithm 1: MAP-GAN Training Procedure

Initialize weights of G and D ;
for i from 1 to nepochs do

for j from 1 to nbatches do
for k from 1 to nD steps do

Yreal ← sample batch(Y);
Yfake ← f(G(sample batch(Y)));
update discriminator(Yreal, Yfake);

end
Yfake ← f(G(sample batch(Y)));
update discriminator(Yfake)

end

end

32

Chapter 5

DATASET

5.1 Collections

In this section I will briefly go over the main datasets that were used to both develop

and to evaluate the efficacy of this network. The three training datasets used are

the MNIST data set, the CelebA dataset, and the ImageNet data set. The datatsets

are ordered in increasing complexity of both image size and content, and allows us

to get a clear picture of the ability of our method. The testing datasets used are

KODAK and BSDS300. All datasets mentioned will be explored in greater detail in

this chapter.

5.1.1 Mnist

The MNIST dataset is a collection of handwritten digits, numbers 0-9, represented

as single channel greyscale images. MNIST images were collected in 2010 from the

NIST Special database by LeCun et.al. [28]. Due to their relative simplicity these

28x28 pixel images are often used as the first dataset from which to test the feasibility

of a machine learning project on. There are in total 60,000 training images used.

5.1.2 CelebA

The intermediate difficulty dataset used is the CelebA collection of images. According

to the official website and provider of this dataset, “CelebFaces Attributes Dataset

(CelebA) is a large-scale face attributes dataset with more than 200K celebrity images,

33

Figure 5.1: MNIST examples

each with 40 attribute annotations. The images in this dataset cover large pose

variations and background clutter” [32].The specific variant used for experimentation

is the Aligned and Centered CelebA dataset which took the liberty of aligning and

centering the celebraty faces. All images are 218x178 RGB in format.

Figure 5.2: CelebA examples

5.1.3 Imagenet

For our large and complex image dataset we chose to use the ImageNet validation

dataset, as it is the standard used to train denoising models in papers like [26, 29],

and allows us to accurately rank our denoising capability. The creators of ImageNet

describe it as an “image dataset organized according to the WordNet hierarchy”,

comprised of hand annotated image files from throughout the internet [41]. With

over 100,000 synsets listed by Wordnet, and with ImageNet aiming to have 1000

images per synset, there are a total of millions of labeled images represented by the

34

full dataset. The validation dataset is comprised of approximately 50,000 images of

various resolutions but all of which are represent by the RGB color space channel.

Figure 5.3: ImageNet examples

5.2 Testing Only

The datasets in the sections below are only for testing, and are commonly used testing

standards in all sorts of applications from image compression, to colorization. More

relevant to us is that they are used by peers to benchmark the capability of their

self-supervised denoising networks.

5.2.1 Kodak

The KODAK dataset represents 24 photos of size 768x512 with 3 channel RGB col-

orspace [12].

35

Figure 5.4: Kodak examples

5.2.2 BSDS300

The BSDS300 dataset consists of 300 photos of size 481x321 with 3 channel RGB

color space [33]. For our network simplicity we removed the rightmost column and

the bottom most row to have resultant images of size 480x320.

Figure 5.5: BSDS300 examples

36

Chapter 6

EXPERIMENTS

In this section we will present the results of our experiments. We will start by

presenting proof of concept results on the MNIST dataset, followed by results on

the CelebA dataset. We will then examine the results of our model trained on the

ImageNet validation dataset when attempting to denoise photos from the KODAK

and BSDS300 dataset, and compare our results against the current state of the art

models. Lastly we will perform an ablation test with our model to see if our network

is reaching its full capability.

6.1 Measurement

In order to measure the results of this networks output we will be using the peak

signal-to-noise ratio (PSNR). It is a metric that is commonly used to compare com-

pression quality, and is well positioned in identifying the discrepancy in noisy and

clean data. Further it is the standard measurement used by other papers in the de-

noising field and so along with using the correct image dataset and noise function,

it allows us to directly compare our results to other literature in the field [29, 26].

Notably PSNR uses the decibel (dB) scale. PSNR is calculated as

PSNR = 10 ∗ log10

(
R2

MSE

)
(6.1)

where R is the difference between the maximum and minimum value that a pixel may

take, and MSE (mean squared error) is calculated as

37

MSE =

∑M,N
m,n=0[I1(m,n)− I2(m,n)]2

M ∗N
(6.2)

Where I1, I2 are the images being compared, and M and N are the dimensions of the

images.

6.2 Preliminary Experiments

This section covers a progression of experiments showing the competency and pos-

sibility of the MAP-GAN architecture. The noise distribution used throughout the

experiments is a i.i.d. pixelwise additive Gaussian with zero mean and a standard

deviation that will be noted in each experiment. The GAN’s generator network

design that is used in all the experiments is a customized version of High-Quality

Self-Supervised Deep Image Denoising network (HQSS) [26]. This network in turn

is a modified version of the five-level U-Net [39] architecture used by Lehtinen et al.

[29], as stated in HQSS [26]. The discriminator is a convolutional network of our own

design. The exact network details will be outlined in the appendix of this thesis.

6.2.1 MNIST Experiment

We first apply our system on the MNIST dataset. For this evaluation we train two

separate models on the full training dataset. One model has been given a dataset

whose Gaussian corruption has standard deviation of σ = 32 and the other that has

standard deviation of σ = 64, both with zero mean. The optimal hyper parameters

were found via cross validation and both of these models were trained for 50 epoch

each.

38

Figure 6.1: Results of network denoising MNIST where σ = 32

Figure 6.2: Results of network denoising MNIST where σ = 64

39

6.2.2 CelebA

The next portion of evaluation of the MAPGAN architecture is on the CelebA dataset,

a significantly larger dataset both in terms of unique images and the size of the images

dimensions. Further that images present a more complex image distribution and are

in color. This then allows us to examine the architecture under a more complex image

distribution with a nontrivial target space. This dataset was corrupted with Gaussian

noise, with a standard deviation σ = 25.

Figure 6.3: Results of denoising CelebA photos where σ = 25

40

The model was trained for 30 epoch before stopping, reaching its maximum denoising.

Here we can see significant improvement over the original noisy images. Notice that

facial features remain sharp after denoising has been applied.

6.3 Imagenet

Here we will train our model on a portion of the imagenet dataset and compare our

results to the state of the art unsupervised denoising methods. The current state of

the art unsupervised denoising method, to the best of our knowledge, is High-Quality

Self-Supervised Deep Image Denoising (HQSS) by Samuli Laine et al. who use a

blind-spot method in conjunction with a deep convolutional neural net.

Like them our model will be trained on the 50,000 images contained in the ILSVRC2012

(ImageNet) validation set. In order to get an accurate comparative metric, for our

testing set we will use the popular KODAK and BSD300 datasets, the same as in

HQSS. The number of images in these datasets is quite small so in order to get an

accurate average PSNR we will expand the datasets by iterating over them for 10

rounds, with each round having an independently drawn noisy measurement.

Figure 6.4: Example denoising results of our network trained on ImageNet.
Gaussian noise where σ = 25

41

All images in the training and testing datasets were corrupted with Gaussian noise

with a standard deviation of σ = 25. Further the network was trained for 40 epoch,

at which point results diminished. Optimal parameters were found through cross

validation on a portion of the imagenet validation dataset.

Table 6.1: Results of Denoising Over Different Architectures. HQSS and
Noise2Noise Results Taken From [26].

Method Unsupervised Kodak BSDS300 Average
Noise2Noise No 32.45 31.07 31.76
HQSS Yes 32.45 31.03 31.74
MAP-GAN Yes 29.54 29.75 29.65
MAP-GAN Unpaired No 29.55 29.78 29.67
MAP-GAN Paired No 29.33 29.62 29.48

6.4 Ablation Studies

To further examine the underlying properties of MAP-GAN we also conducted two

ablation studies. Notably in both studies the underlying network architecture and

training schema stayed the same as the ImageNet experiments unless otherwise noted.

In the first study we provided the network with unpaired clean and dirty data in

a semi-supervised senario. In other words the architecture has access to the set of

clean data X and the set of noisy data Y , but not pairs (x, y). In this scenario the

discriminator will decide between the generated output (not renoised) and the clean

data distribution.

In the second study the network has access to clean and dirty data pairs, (x, y). The

modifications to the discriminator’s input from the first study remain, it will decide

between the generated output (not renoised) and the clean data distribution. In

42

addition the generator has an increased mean squared error loss of the clean data x

upon the the generated output G(y).

The quantitative results of these studies can be found in Table 6.1.

43

Chapter 7

RESULTS

In this section we will discuss the results and try to identify the strengths and weakness

that can be extrapolated from the previous experiments.

7.1 Compared to Previous State of the Art

From graph 6.1 and the output figures we can see that our method, while able to

quantitatively and qualitatively reduce the noise of the images a significant amount,

was thus far unsuccessful in achieving state of the art results with our architecture.

We notice that generally speaking we fell behind by approximately 2 DB. Notably

this gap is not so insurmountable as to draw a conclusion about the future potential

of the MAP-GAN system, but it does show that our current best effort network

architecture is likely not capable of surpassing the state of the art with any hyper

parameter combination.

While looking at the test image results like those provided in the appendix we can see

significant improvement in overall texture noise, while seemingly maintaining a strong

level of fine detail. We note that images composed of textures that have relatively

high levels of contrast in smaller areas, like choppy water or blades of grass such as

that seen in Figure 7.1, tend to have lower scores than that of uniform textures. We

hypothesise that the MAP-GAN model had difficulties learning the likelihood in these

scenarios and instead optimized for an average texture, that while looked reasonable

on a macro scale, caused a relatively poor per pixel score.

44

Figure 7.1: Example of poor MAP-GAN denoising over grassy image

7.2 Abolition Results

In order to test the effectiveness and the capacity of our network to learn in an un-

supervised setting as compared to a semi-supervised and fully supervised setting we

performed two abolition studies as presented in previous experiments. When exam-

ining the semi-supervised MAP-GAN’s numerical results we can see that it achieved

superior performance to the unsupervised version, but just barely. Interestingly the

fully supervised version of our network failed to achieve strong results when compared

to the semi-supervised and unsupervised versions, falling behind but only marginally

so.

There are several possible conclusions that can be drawn from these results. The

first is that the unsupervised MAP-GAN network has achieved full learning capacity;

despite not having access to clean data the network was able to successfully learn the

underlying clean distribution just as effectively as a semi-supervised or fully super-

vised GAN. This would tend to suggest that with the network, learning system, and

architecture given, the best capable loss has been achieved.

Another conclusion that could be drawn is that somewhere within our current setup

exists a flaw that impinges our network from learning an even more optimal clean

45

distribution. This fault could lie in the MAP-GAN system itself, the GAN, a poor

network design choice, or incorrect hyperparameters. We know this because of the

superior PSNR numbers produced under identical conditions in [26] show that there is

further information that can be extracted from the noisy dataset. In order to attempt

to identify the weakness of the system further experimentation is needed, primarily

different network architectures under the MAP-GAN scheme.

It is worth noting that the paired training variant scored slightly lower than the other

variants which is an unexpected result. Hyperparameters, specifically the learning

weight, was adjusted to attempt to find the best outcome but consistently scored

below the regular MAP-GAN and the unpaired MAP-GAN variants.

7.3 CelebA and MNIST

The purpose of the CelebA and MNIST tests were to see if the MAP-GAN architec-

ture was feasible, study how it responded to increasingly complex images, and de-

velop competent networks. Qualitative metrics provided the most utility during this

stage in development, while quantitative metrics could be seen on a per-image basis.

However without another network to compare with the PSNR scores for these tests

provided only moderate utility. The CelebA results were overall visually satisfactory,

particularly in managing to reconstruct fine texture like hair. Many human features

are already soft, without hard lines and so lend themselves to be reconstructed well.

MNIST results on the other hand left left something to be desired, notably in the

elimination of noise form the background of the images. While recognizing that both

tests shown have a significantly higher noise standard deviation, σ = 32, 64 while

other tests had σ = 25, we had expected that the MAP-GAN schema would be able

to eliminate the noise from a solid background better than the visual results show. We

46

hypothesize the reasoning for this is 2 fold; the first reason being that the network used

is too powerful for the given training images. The network used in these experiments

was developed and targeted at images of size 256x256 with 3 color channels and

50,000 training examples. The size of the MNIST images are 32x32 single channel

with an equivalent amount of training examples, so it is possible that the dataset

does not have the image size or dataset size to fully train the network. Second, the

MNIST photos represent large swaths of extreme black and white contrast, with the

background having 0 lumen, the numbers having full 255 lumen, and very little in

between. While in other image sets we have seen the network perform well on smooth

areas of low contrast, it is possible that the extreme variance of this dataset is causing

issues in estimating the likelihood.

47

Chapter 8

CONCLUSION

Our initial goal was to create a novel architecture that could compete or beat the state

of the art unsupervised denoising scheme. Unfortunatley we were unable to create

a network that was able to beat the current state of the art architecture, but we

were able to conclusively show the potential of the MAP-GAN schema and produce

respectable results.

We implemented our architecture utilizing a deep neural net validating the MAP-

GAN schema of using a known noisy prior in a generative adversarial network for

unsupervised denoising. We then trained our model over 3 popular datasets of pro-

gressing difficulty and variation, and extrapolated quantitative and qualitative data

therefore confirming that our schema is capable of practical and effective learning.

We also trained and tested our model in such a way that we could fairly compare our

results to the state of the art architecture of Laine et al. from both a quantitative

and qualitative perspective. Lastly we performed an abolition study to see the effects

of our network under semi-supervised and fully supervised scenarios. The conclusion

drawn is that our network scheme did not have the ability to supersede the state of

the art network, and our abolition study showed that our unsupervised method was

able to achieve very close to the results of a semi supervised and fully supervised

training implying that it successfully recovered the clean distribution to the best of

the network’s ability.

While our MAP-GAN model may not have achieved state of the art performance

compared to (HQSS) impressive results, we do not necessarily believe that this is

48

an inherit issue within the MAP-GAN scheme itself. Rather it is possible that an

incorrect deep neural network architecture was used or a more targeted learning rate

schedule could have been found.

8.1 Future Work

Within the direct scope of this project we can see multiple avenues for future work

and more in depth research. The first opportunity is to continue to modify the

deep network architecture used within our model along with different testing and

training methods and separate learning rate schedulers. We feel that there is room

for improvement within this area alone. Another excellent opportunity for future

work is to check this model out on different noise generating processes to identify its

strengths and limitations. Since our model requires that the noise generating process

be expressed analytically, this may limit the types of noise methods available, but we

believe that it is worth investigating available avenues such as salt and pepper noise.

49

BIBLIOGRAPHY

[1] Cal Poly Github. http://www.github.com/CalPoly.

[2] S. K. B. K. Image denoising based on non-local means filter and its method

noise thresholding. Signal, Image and Video Processing, 7:1211–1227, 11

2013.

[3] P. Baldi. Autoencoders, unsupervised learning, and deep architectures. In

Proceedings of ICML workshop on unsupervised and transfer learning, pages

37–49. JMLR Workshop and Conference Proceedings, 2012.

[4] C. Boncelet. Chapter 7 - image noise models. In A. Bovik, editor, The Essential

Guide to Image Processing, pages 143–167. Academic Press, Boston, 2009.

[5] A. Bora, E. Price, and A. G. Dimakis. Ambientgan: Generative models from

lossy measurements. In International Conference on Learning

Representations, 2018.

[6] S. Cha and T. Moon. Fully convolutional pixel adaptive image denoiser. In

2019 IEEE/CVF International Conference on Computer Vision, ICCV

2019, Seoul, Korea (South), October 27 - November 2, 2019, pages

4159–4168. IEEE, 2019.

[7] J. Chen, J. Chen, H. Chao, and M. Yang. Image blind denoising with

generative adversarial network based noise modeling. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages

3155–3164, 2018.

[8] D. Cho. Image denoising using wavelet transforms. PhD thesis, Concordia

University, 2004.

50

http://www.github.com/CalPoly

[9] E. Cohen, R. Heiman, M. Carmi, O. Hadar, and A. Cohen. When physics

meets signal processing: Image and video denoising based on ising theory.

Signal Processing: Image Communication, 34:14–21, 2015.

[10] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse

3-d transform-domain collaborative filtering. IEEE Transactions on image

processing, 16(8):2080–2095, 2007.

[11] D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via

wavelet shrinkage. Journal of the American Statistical Association,

90(432):1200–1224, 1995.

[12] R. W. Franzen.

[13] X. Glorot and Y. Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Y. W. Teh and M. Titterington, editors,

Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics, volume 9 of Proceedings of Machine Learning

Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May

2010. PMLR.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. Advances in

neural information processing systems, 27, 2014.

[16] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew. Deep learning

for visual understanding: A review. Neurocomputing, 187:27–48, 2016.

Recent Developments on Deep Big Vision.

51

[17] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the

IEEE International Conference on Computer Vision (ICCV), December

2015.

[18] T. Huang, G. Yang, and G. Tang. A fast two-dimensional median filtering

algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing,

27(1):13–18, 1979.

[19] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with

conditional adversarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1125–1134, 2017.

[20] A. Jabbar, X. Li, and B. Omar. A survey on generative adversarial networks:

Variants, applications, and training. ACM Comput. Surv., 54(8), Oct. 2021.

[21] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[22] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[23] P. Korshunov and S. Marcel. Vulnerability assessment and detection of

deepfake videos. In 2019 International Conference on Biometrics (ICB),

pages 1–6, 2019.

[24] M. A. Kramer. Nonlinear principal component analysis using autoassociative

neural networks. AIChE Journal, 37(2):233–243, 1991.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. Advances in neural information

processing systems, 25:1097–1105, 2012.

52

[26] S. Laine, T. Karras, J. Lehtinen, and T. Aila. High-quality self-supervised deep

image denoising. Advances in Neural Information Processing Systems,

32:6970–6980, 2019.

[27] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[28] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT

Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[29] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and

T. Aila. Noise2noise: Learning image restoration without clean data. arXiv

preprint arXiv:1803.04189, 2018.

[30] J. Liang and R. Liu. Stacked denoising autoencoder and dropout together to

prevent overfitting in deep neural network. In 2015 8th International

Congress on Image and Signal Processing (CISP), pages 697–701, 2015.

[31] B. Liu and J. Liu. Overview of image denoising based on deep learning.

Journal of Physics: Conference Series, 1176:022010, mar 2019.

[32] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the

wild. In Proceedings of International Conference on Computer Vision

(ICCV), December 2015.

[33] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented

natural images and its application to evaluating segmentation algorithms

and measuring ecological statistics. In Proc. 8th Int’l Conf. Computer

Vision, volume 2, pages 416–423, July 2001.

53

[34] P. Milanfar. A tour of modern image filtering: New insights and methods, both

practical and theoretical. IEEE Signal Processing Magazine, 30(1):106–128,

2013.

[35] M. Motwani, M. Gadiya, R. Motwani, and F. Harris. Survey of image denoising

techniques. 01 2004.

[36] A. Pajot, E. de Bezenac, and P. Gallinari. Unsupervised adversarial image

reconstruction. In International Conference on Learning Representations,

2018.

[37] P. Patidar, M. Gupta, S. Srivastava, and A. K. Nagawat. Image de-noising by

various filters for different noise. International journal of computer

applications, 9(4):45–50, 2010.

[38] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image denoising

using scale mixtures of gaussians in the wavelet domain. IEEE

Transactions on Image processing, 12(11):1338–1351, 2003.

[39] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for

biomedical image segmentation. In International Conference on Medical

image computing and computer-assisted intervention, pages 234–241.

Springer, 2015.

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal

representations by error propagation. Technical report, California Univ San

Diego La Jolla Inst for Cognitive Science, 1985.

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei.

ImageNet Large Scale Visual Recognition Challenge. International Journal

of Computer Vision (IJCV), 115(3):211–252, 2015.

54

[42] C. Saxena and D. Kourav. Noises and image denoising techniques: A brief

survey. International journal of Emerging Technology and advanced

Engineering, 4(3):878–885, 2014.

[43] L. Sendur and I. W. Selesnick. Bivariate shrinkage functions for wavelet-based

denoising exploiting interscale dependency. IEEE Transactions on signal

processing, 50(11):2744–2756, 2002.

[44] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin. Deep learning on

image denoising: An overview. Neural Networks, 2020.

[45] C. Tian, Y. Xu, L. Fei, and K. Yan. Deep learning for image denoising: a

survey. In International Conference on Genetic and Evolutionary

Computing, pages 563–572. Springer, 2018.

[46] R. Verma and J. Ali. A comparative study of various types of image noise and

efficient noise removal techniques. International Journal of advanced

research in computer science and software engineering, 3(10), 2013.

[47] X. Wang, S. Shen, G. Shi, Y. Xu, and P. Zhang. Iterative non-local means filter

for salt and pepper noise removal. Journal of Visual Communication and

Image Representation, 38:440–450, 2016.

[48] Z. Wang and A. C. Bovik. A universal image quality index. IEEE signal

processing letters, 9(3):81–84, 2002.

[49] J. Xu, Y. Huang, M.-M. Cheng, L. Liu, F. Zhu, Z. Xu, and L. Shao.

Noisy-as-clean: learning self-supervised denoising from corrupted image.

IEEE Transactions on Image Processing, 29:9316–9329, 2020.

[50] Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang,

L. Sun, and G. Wang. Low-dose ct image denoising using a generative

55

adversarial network with wasserstein distance and perceptual loss. IEEE

transactions on medical imaging, 37(6):1348–1357, 2018.

[51] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum. Image deblurring with

blurred/noisy image pairs. ACM Trans. Graph., 26(3):1–es, July 2007.

[52] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian

denoiser: Residual learning of deep cnn for image denoising. IEEE

Transactions on Image Processing, 26(7):3142–3155, 2017.

[53] M. Zhang and B. K. Gunturk. Multiresolution bilateral filtering for image

denoising. IEEE Transactions on image processing, 17(12):2324–2333, 2008.

[54] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu. Residual dense network for

image restoration. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 43(7):2480–2495, 2021.

56

APPENDICES

Appendix A

IMPLEMENTATION

The layout specified below is specifically for the ImageNet implementation. The

networks used in the other tests were similar, but had slight modifications to the

architecture and the hyperparameters.

A.1 Training Inspirations

We took inspiration from the work of [26] for the network architecture and training

style, seeing as how they currently hold the bar to beat.

We developed in a Python3 environment and utilized Tensorflow for their excellent

neural network library. We initialized our weights using the He Normal initializer [17].

We used the Adam learning rate optimizer [21] with a learning rate of alpha = 0.0004

and beta = 0.5 for both the generator and the discriminator, along with a cosine

decay of the learning rate that started at the half way training mark. The network

was trained for 40 epoch.

While training over the image net validation dataset we resized the images color

axis values to the range of [0, 1] and used a batch size of 4. The training set was

filtered to only contain images between 256x256 and 512x512, and training batches

were composed of random 256x256 crops from the images to stay consistent with

[26]. Test images were used as is, no padding was applied. All test image sets were

57

replicated 10 times, with each replication having an independent noisy measurement

taken, to ensure a consistent average PSNR.

A.1.1 Network

The generator is roughly inspired by [26] network, which is roughly a u-net style

with skip connections [39]. We used a bottleneck style fully convolutional network,

with most convolutions having a size of 3x3, and utilized a stride of two in order to

downsize the network. Similarly to first half of the generator network, in the second

half we used deconvolutional operators of size 3x3 with a stride of 2. At the end of

the generator we had several convolutions of size 1x1 with stride 1.

The discriminator that gave the best experimental results was a variant of the patch-

GAN discriminator as seen in the paper ”Image-to-image translation with conditional

adversarial networks” [19].

58

Table A.1: Generator Network
Name Nout Function Stride
Input 3
Conv0 48 Convolution 3x3 1
Conv1 48 Convolution 3x3 2
Conv2 48 Convolution 3x3 2
Conv3 48 Convolution 3x3 2
Conv4 48 Convolution 3x3 2
Conv5 48 Convolution 3x3 2
Conv6 48 Convolution 3x3 1
Deconv0 96 Transposed Convolution 3x3 2
Concat 144 Concatenate output of Conv1
Deconv0b 96 Convolution 3x3 1
Deconv1 96 Transposed Convolution 3x3 2
Concat 144 Concatenate output of Conv2
Deconv1b 96 Convolution 3x3 1
Deconv2 96 Transposed Convolution 3x3 2
Concat 144 Concatenate output of Conv3
Deconv2b 96 Convolution 3x3 1
Deconv3 96 Transposed Convolution 3x3 2
Concat 144 Concatenate output of Conv4
Deconv3b 96 Convolution 3x3 1
Deconv4 96 Transposed Convolution 3x3 2
Concat 99 Concatenate Input
Deconv4b 96 Convolution 3x3 1
Conv7 96 Convolution 1x1 1
Conv8 96 Convolution 1x1 1
Output 3 Convolution 1x1 1

59

Table A.2: Discriminator Network
Name Nout Function Stride
Input 3
Conv0 96 Convolution 3x3 1
Conv1 96 Convolution 3x3 2
Conv2 96 Convolution 3x3 1
Conv3 96 Convolution 3x3 2
Conv4 96 Convolution 3x3 1
Conv5 96 Convolution 3x3 2
Conv6 96 Convolution 3x3 1
Conv7 48 Convolution 3x3 1
Conv8 24 Convolution 3x3 1
Conv9 1 Convolution 3x3 1

60

Appendix B

APPENDIX

B.1 Additional Photos

Here we present additional photos from the testing dataset (Kodak and BSDS300)

denoised by the MAP-GAN model trained on the ImageNet Validation dataset.

61

62

63

	LIST OF TABLES
	LIST OF FIGURES
	1 Intro
	1.1 Motivation
	1.2 Challenges
	1.3 Use of Generative Adversarial Networks
	1.4 Contribution

	2 Related Work
	2.1 Intro to Noise Removal
	2.2 Classical
	2.3 Deep
	2.4 Unsupervised Noise Removal

	3 Background
	3.1 What is Noise
	3.1.1 Impulse Noise
	3.1.2 Multiplicative Noise
	3.1.3 Additive Noise

	3.2 Background of Deep Learning
	3.2.1 What is Deep Learning
	3.2.2 Math of Deep Learning and Backpropigation
	3.2.3 Convolutional Neural Networks

	3.3 GAN Background
	3.3.1 Autoencoder
	3.3.2 GAN Architecture

	4 Methods
	4.1 Problem Scenario
	4.2 Approach
	4.2.1 Expressing the Likelihood
	4.2.2 Expressing the Prior
	4.2.3 All Together

	5 Dataset
	5.1 Collections
	5.1.1 Mnist
	5.1.2 CelebA
	5.1.3 Imagenet

	5.2 Testing Only
	5.2.1 Kodak
	5.2.2 BSDS300

	6 Experiments
	6.1 Measurement
	6.2 Preliminary Experiments
	6.2.1 MNIST Experiment
	6.2.2 CelebA

	6.3 Imagenet
	6.4 Ablation Studies

	7 Results
	7.1 Compared to Previous State of the Art
	7.2 Abolition Results
	7.3 CelebA and MNIST

	8 Conclusion
	8.1 Future Work

	BIBLIOGRAPHY
	A Implementation
	A.1 Training Inspirations
	A.1.1 Network

	B Appendix
	B.1 Additional Photos

