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ABSTRACT

Towards On-Device Detection of Sharks with Drones

Daniel Moore

Recent years have seen several projects across the globe using drones to detect sharks,

including several high profile projects around alerting beach authorities to keep people

safe. However, so far many of these attempts have used cloud-based machine learning

solutions for the detection component, which complicates setup and limits their use

geographically to areas with internet connection. An on-device (or on-controller)

shark detector would offer greater freedom for researchers searching for and tracking

sharks in the field, but such a detector would need to operate under reduced resource

constraints. To this end we look at SSD MobileNet, a popular object detection

architecture that targets edge devices by sacrificing some accuracy. We look at the

results of SSD MobileNet in detecting sharks from a data set of aerial images created

by a collaboration between Cal Poly and CSU Long Beach’s Shark Lab. We conclude

that SSD MobileNet does suffer from some accuracy issues with smaller objects in

particular, and we note the importance of customized anchor box configuration.
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Chapter 1

INTRODUCTION

Shark populations off the California coast have increased in recent years [30][7], a

successful result of protective measures. However, this brings with it increased po-

tential for human-shark interactions, including shark bites. Protecting beach-goers

in an ecologically-friendly way is an ongoing challenge for countries across the world

that are home to shark populations. However, modern UAV technology may offer a

less destructive alternative to more traditional culling strategies.

UAVs (unmanned aerial vehicles)—or drones as they are colloquially referred to—

are revolutionizing the ability of beach communities with sharks to maintain safe

beaches through the implementation of real-time shark notification systems that alert

lifeguards when sharks are present in the water [8]. Though still an area of research,

these systems hold promise for aiding beach authorities in identifying shark species

and discriminating between sharks that may pose danger to humans and those that do

not [8]. Not only have drones become useful for real-time shark beach alerts, they also

have greatly expanded opportunities for shark research. While traditional methods

such as autonomous underwater vehicles (AUVs), remotely operated vehicles (ROVs),

shark cages, and observation from boats offer some visibility into shark activity, many

of these methods of data collection involve close proximity with sharks in a way that

is known to alter their behavior [8]. Drones offer an ideal birds-eye-viewpoint for

observing sharks, and their small size and low noise output make them unlikely to

influence shark activity [8].
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While the task of detecting sharks for beach safety can be done by patrolling a

fixed area of water surrounding a beach, using a drone to find and study sharks for

research is more exploratory in nature. Depending on the drone and controller, this

may involve searching for sharks on a small screen embedded in the controller or

attached tablet while flying. Sometimes sharks are missed during flight but later

noticed during viewing of the recorded video on a larger screen [34]. Though drone

flight times are on the order of 12-40 minutes (which can limit tracking) [12], multiple

drones or a battery charger can enable several hours worth of flying [8]. On a small

controller screen, after several hours of searching, pilot fatigue may affect their ability

to locate sharks for study [8]. In this scenario, real-time shark detection could also be

useful in helping scientist drone pilots find sharks in the field. To be useful to a pilot,

and because shark research observations may take place at remote locations far from

an internet connection, shark detection processing would need to take place on the

drone itself or on the controller/tablet. Such a system, even if operating at limited

accuracy, could aid shark researchers in their search for sharks.

However, detection in these scenarios would require a machine learning model capable

of performing reasonably well with limited computing resources. In this work we look

at the performance of SSD MobileNet [29][22], a lightweight object detection model,

as a candidate for on-device shark detection.
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Chapter 2

RELATED WORK

2.1 Drones and Shark Research

Marine biologists use a variety of tools for studying sharks in the wild including

satellite tags, recoverable biologgers, underwater video systems, acoustic telemetry,

animal-borne cameras and aerial video capture to name a few [10]. Aerial methods,

including manned aircraft, drones, and balloons are useful for doing population sur-

veys over a large area or for studying animal behavior from above [10]. Though sharks

spend much of their time in deep water not visible from the air, aerial studies are still

useful for analyzing behavior of larger species in coastal or shallower ecosystems [10].

Additionally, there have been a few attempts to identify via aerial study the inter-

section of areas of high shark activity with areas of high human activity in order to

better protect both sharks and humans from mutually harmful interactions [10].

As drones have become more popular, they offer a cheaper alternative to manned

aircraft surveys. UAVs are also safer than manned aircraft, something made poignant

by the death of at least 11 marine mammal researchers in aerial survey airplane

crashes over the last several decades [19]. UAVs come in a wide variety of capacities

from expensive military-grade drones with a large range and a flight time of a couple

days to consumer-grade devices with localized ranges and flight times less than an

hour [10]. Larger drones have the same benefits of manned aircraft—larger area

coverage and ability to fly further offshore. Rotored drones have the ability to fly

in a stationary position or to follow slow-moving animals for behavioral analysis,

enabling aerial observation of feeding activities, socializing, interspecies interaction,
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and other behaviors in a way that is impossible for manned surveys by plane. Drones

are also likely to be substantially less noisy than manned aircraft, with a potentially

lower impact on the behavior of the animals under study [10]. UAV data can also

be combined with data from other tracking sources to supplement more traditional

means of gathering data. For an exploration of the advantages of using drones to

study sharks, see Butcher et al. [8].

In aerial and other types of studies, video may be analyzed in real-time or saved

for later analysis [8]. When analyzing after-the-fact, the task of manually counting

hundreds of sharks in video footage is a daunting one, as well as going through large

time periods of footage to identify segments worthy of attention by researchers. To

speed up these efforts, researchers have turned to computer vision techniques [10].

2.2 Deep Learning and Drones

Since the the Deep Convolutional Neural Network (DCNN) AlexNet [24] emerged

as victor in the Large Scale Visual Recognition Challenge (ILSRVC) [35] in 2012,

the computer vision community has shifted focus from handcrafted feature extrac-

tion towards deep learning [28]. DCNN architectures have not only the advantage

of improved accuracy, but they also require less domain-specific knowledge. As com-

puter vision research has evolved, research into new applications of domain-specific

features has been largely supplanted by inquiry into new network architectures and

new network training regimens [28].

In the last 5 years or so, three of the most popular computer vision architecture

families that have emerged are Faster-RCNN (Faster Regions with Convolutional

Neural Net features) [33], YOLO (You Only Look Once) [32], and SSD (Single Shot

MultiBox Detector) [29]. Faster-RCNN represents a more accurate two-stage family
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Table 2.1: Comparison by Hossain et al. [21] of the speed of various object
detection architectures on UAVs equipped with different NVIDIA Jetson
modules and one UAV streaming to a machine on the ground

of detectors that first proposes candidate regions and then refines them. YOLO and

SSD represent the family of “single shot” detectors, which generate detections in a

dense manner across an entire image in a single stage. Faster-RCNN is a common

“go-to” solution for computer vision tasks, while YOLO and SSD are often used

in scenarios requiring near-real-time speed at the expense of some accuracy. These

characteristics make YOLO and SSD likely candidates for running on-board a UAV

device.

Using deep learning object detection with a drone in real-time can be done either

on the UAV device itself or on a ground station computer receiving a video stream

from the drone. Hossain et al. [21] compared the performance of various computer

vision architectures on several UAV configurations, including UAVs with 1) on-device

detection with a NVIDIA Jetson embedded GPU, 2) on-device detection with a non-

GPU processor (such as a Raspberry Pi) augmented with an Intel Neural Compute

Stick (NCS), and 3) off-device detection in which data is streamed to a ground station

where detection is performed with a full video card. Table 2.1 on page 5and Table 2.2

on page 6show the results of their comparison. Note that SSD performs at the highest

speed in both tables.
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Table 2.2: Comparison by Hossain et al. [21] of the speed of YOLO and
SSD MobileNet on various GPU-less UAVs, mostly augmented by a Mo-
vidius Neural Compute Stick (NCS). For info on the difference between
SSD MobileNet and plain SSD see Background section.

2.3 Deep Learning and Sharks

As both drones and deep learning have gained popularity, there have been several

applications of deep learning computer vision architectures to the detection of sharks.

Saqib and Sharma et al. compared results of Faster-RCNN object detection of aerial

shark images with various base networks in two studies [36][37]. More recently, the

SharkEye project—a joint effort between SalesForce, the Benioff Ocean Initiative

from the University of California Santa Barbara, and San Diego State University—

used drones with regular flight paths to collect video data and stream to SalesForce’s

Einstein Vision system in order to report the number of sharks in real-time to beach-

goers and scientists [4]. Another project by the University of Wollongong in Australia,

also named Sharkeye, similarly provides real-time detection to smart watches and

phones of beachgoers and lifeguards [17]. This system works by streaming footage

from a blimp and drones to a beach laptop ground station, which then sends the

data to a YOLO-based [32] machine learning pipeline in the cloud. A computer

monitor at the ground station with a view of the blimp’s camera feed was noted as

giving lifeguards an increased ability to respond to people in trouble even without

the object detection [17]. Besides the above, other projects include SharkSpotter,

6



a partnership between Ripper Corp. and abovementioned Dr. Nabin Sharma at

the University of Technology Sydney [5].Finally, New South Wales’ Department of

Primary Industries’ SharkSmart program [3] is worth mentioning because of their use

of drones to monitor sharks, but we were unable to find evidence of machine learning

use on their website.

Most of the shark detection solutions so far have run the machine learning portion

of the solution on a server or in the cloud as opposed to on the drone itself [4][17].

This is obviously optimal from a computing perspective and also avoids modifying

the drone (which can have implications on FAA compliance), taking advantage of

the drone’s built in streaming capabilities. After their trials however, Gorkin et al.

expressed a desire to “explore where it makes sense to do the process computing ‘at

the edge’ (on the beach) sending only essential data or notifications via the cloud,

given the bandwidth constraints (that may vary from beach to beach) as well as

operating costs” [17]. Bandwidth issues are even more relevant to the shark researcher

who may travel to exotic locations far from wireless infrastructure. While a ground

station with a good video card may fit this need, a more streamlined option would

be to run the model on the drone itself or on a tablet connected to a controller. A

simplified configuration like this might also enable participation by citizen scientists,

thus expanding the number of drones collecting data. Such a configuration would

need a model conforming to the more restricted computing resources available.

Starting with some student class projects and continuing with the summer SURP

program, Cal Poly has recently partnered with the Shark Lab at CSU Long Beach

to create a data set of shark aerial footage of over 4,000 labelled images from 60

videos including multiple days, drone heights, and lighting conditions [25]. Various

student groups have experimented with architectures such as Mask RCNN, YOLO,

and Faster-RCNN, including a field test of Faster-RCNN against a live video stream

7



from a drone via YouTube. On-board deployment of the object detector has also been

discussed for the future. SSD MobileNet is one of the fastest state-of-the-art object

detectors, designed for object detection on edge devices, making it a good candidate

for use in on-device detection with drones. We look at SSD MobileNet’s performance

on shark data and compare our results with those from Faster-RCNN.
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Chapter 3

BACKGROUND

3.1 Object Detection

The general problem of object recognition—that is, identifying the category and loca-

tion of all the objects present in an image—is usually organized into several related

problems. Object classification or object categorization is the identification of objects

present in an image without determining their locations. Object detection involves

identifying both the object classes in an image as well as their locations, usually

denoted by bounding boxes. Object detection can be either specific, for detecting a

single type of object (faces, pedestrians, etc.) or generic, aiming to determine the class

and location of objects from a variety of object categories. Semantic segmentation

assigns a category (but not a specific object) to each pixel in an image, while object

instance segmentation determines which object instance each pixel belongs to [28].

3.2 SSD MobileNet

Modern object detection architectures can be divided into two categories: single and

two-stage detectors. Two-stage detectors like Faster-RCNN [33] perform a region

selection in the first stage to select candidate regions from the image, then refine and

categorize those regions in the second stage. Single-stage detectors skip the region

selection stage and instead perform a large number of object detections over the whole

image. Single-stage detectors have traditionally been faster, but have lagged behind

the accuracy of two-stage detectors [28].
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Figure 3.1: The SSD original architecture. A VGG-16 base network is
followed by a tapering series of feature maps, allowing detections to be
made at 6 different resolutions. At each resolution detections are made
across the layer using anchor boxes, producing for each detection a per
class probability and a box position. The tensorflow/models implemen-
tation we used used MobileNets v1 as a base network instead of VGG-16.
Adapted from the original SSD paper [29].

SSD, standing for “single shot detector”, is a single-stage detector which has gained

popularity because of its speed and simplicity [29]. SSD is composed of a base network

followed by a tapering series of detection layers of diminishing height and width

(see Figure 3.1 on page 10). The original SSD [29] used VGG-16 [39] as a base

network, but different base networks may be used and varying results have been

examined [23] using base networks like MobileNet [22] and ResNet [18].

MobileNet [22] is a convolutional neural network which trades some accuracy for per-

formance by replacing convolution operations with the less computationally expensive

depthwise separable convolutions introduced by Sifre [38]. It includes hyperparam-

eters for adjusting the tradeoff between speed and accuracy. As the name implies,

MobileNet targets lower-performance environments like embedded and mobile de-

vices. SSD with MobileNet as a base network is a popular combination, combining

two architectures which both aim to increase speed while retaining reasonable accu-

racy.
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After the base network, SSD adds successively smaller convolutional feature layers.

From each of these layers SSD performs detection using object detectors in a grid

pattern across the feature layer, with the grid size scaled according to the layer’s size.

The fact that different layers of varying size each have their own set of detectors has

the effect of applying object detection at a variety of image resolutions and object

sizes. The earlier feature layers are larger, corresponding to finer resolution and

smaller object detection. For each layer’s grid, at each point in the grid detection

occurs at several varying aspect ratios such as 1:1, 1:3, 3:1, 1:2, 2:1, etc. Each of these

aspect ratio positions on a grid in a layer constitutes a default box or anchor box,

which predicts a confidence per category and a box location as a relative offset from

the anchor box. In contrast with 2-stage architectures containing a separate region

proposal stage, SSD’s strategy is to cover most of the image with anchor boxes of

varying size/resolution and aspect ratio, thereby generating a large and fixed number

of detections corresponding to each layer/grid position/aspect ratio. During training,

this large number of anchor box detections is then matched with ground truth boxes

by first matching each ground truth box to the detection box with the highest IoU,

and then matching remaining detection boxes to any ground box with an IoU of over

0.5. IoU stands for intersection over union and is a common measure of how much

two boxes overlap. Given two bounding boxes, the IoU is calculated as the area of

their intersection divided by the area of their union.

After creating a large number of detections driven by the dense placement of anchor

boxes, SSD uses a non-maximum suppression step. In general, non-maximum sup-

pression is an algorithm for removing duplicate overlapping detection boxes detecting

the same object. First, detected boxes with a confidence less than a set threshold are

discarded (0.01 in the original SSD), eliminating most of the detections. Then the

detected box with the maximum confidence is chosen and all other detected boxes

overlapping with an IoU more than 0.5 are suppressed, i.e. discarded. Then the next

11



Figure 3.2: An example of anchor boxes at two levels of resolution, (b) and
(c), to detect a dog and a cat (a). The cat is detected by two anchor boxes
in the 8x8 layer (b) while the larger dog is detected by one anchor box in
the lower-resolution 4x4 layer (c). In this example each point of the grid
of each layer has 4 anchor boxes with different aspect ratios, which tend
to detect objects close to that shape. loc indicates the location output by
the detector as an offset from the anchor box. conf indicates confidences
output by the detector for each of the p categories. From the original SSD
paper [29].

remaining detected box with the maximum confidence is chosen, etc., until there are

no remaining candidate detected boxes.

Because the matching and non-maximum suppression steps occur outside of the neural

network, general neural network performance optimizations like neural acceleration

hardware do not apply, and some work has been done on improving performance at

this part of the architecture in other ways. In particular, the choice of anchor box

configuration–aspect ratios, sizes, and positions–has a direct effect on the number

of candidate detected boxes that need to be processed for each iteration. Several

popular object detection architectures including YOLO [32] and Faster-RCNN [33]

use variations on the anchor box concept and so improvements in this area bene-

fit multiple architectures. Strategies such as anchor pruning [6] show that often a

significant number of anchor boxes can be removed to decrease total computations

while retaining accuracy. In addition to performance considerations, anchor boxes
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may be tailored to a particular data set. YOLO, for example, uses k-means of a data

set’s bounding boxes to choose anchor box aspect ratios [31, 32]. Besides improving

performance, these automated configuration efforts also have the benefit of removing

anchor box configuration as a hyperparameter that requires tuning.

While detection of small objects is an ongoing challenge for object detection systems

in general, SSD in particular performs poorly on small objects [29] even compared

with other state-of-the-art architectures [23].

The original SSD included SSD300 and SSD512, corresponding to the resolutions of

the input images, 3002 and 5122 respectively. A higher resolution leads to higher

accuracy, but can also correspond with a larger number of configured anchor boxes

and slower frames-per-second at inference time.

The TensorFlow Model Garden project on GitHub [43] (from here on referred to as

TFMG) is a collection of cutting-edge machine learning models implemented in Ten-

sorFlow and maintained by Google. It includes models on problems including image

classification, object detection, image segmentation, natural language processing, re-

inforcement learning, recommendation systems, and more. The implementations are

created based on recent machine learning papers chosen by the TFMG team and the

community. Some of the implementations are considered “research” quality, subject

to change and experimentation. This includes their object detection API.

TensorFlow Model Garden’s object detection API is a framework built to facilitate

experimentation with different object detection architectures. Notably, it makes use

of a protobuf configuration file system that includes abstractions of common object

detection devices, including things like input resizing, anchor box configurations,

batch normalization, loss functions, matching algorithms, hard example mining, non-

max suppression, data augmentation, and many other concepts. This configuration

13



system makes it easy to make common alterations in your model and run experiments.

Also provided are a folder of sample configurations for different models and a number

of pre-trained models for transfer learning.

In addition to the object detection API implementation at TFMG, Google Research

also did a broad analysis of various configurations of popular object detection architec-

ture and base network combinations [23]. Figures 3.3-3.5 and Table 3.1 on pages 14-16

show some of the results demonstrating characteristics of SSD MobileNet compared

to other architectures and configurations. We have highlighted SSD MobileNet in

each.

Figure 3.3: Accuracy for various model/base network combinations with
an image resolution of 3002. We have highlighted SSD MobileNet, which
has a poorer accuracy for small/medium objects, but a more competitive
accuracy for larger ones. Taken from Huang et al. [23].

14



Table 3.1: Accuracy and number of parameters of various base networks.
Top-1 accuracy is the classification accuracy on ImageNet. Note that Mo-
bileNet has significantly fewer parameters (ostensibly better performance)
while remaining reasonably competitive in accuracy compared with the
other base networks. Taken from Huang et al. [23].

Figure 3.4: GPU time (milliseconds) for various model/base network com-
binations with an image resolution of 3002. We have highlighted SSD Mo-
bileNet. Taken from Huang et al. [23].
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Figure 3.5: Accuracy vs time, with marker shapes according to architec-
ture family (meta-architecture) and colors indicating base network (fea-
ture extractor). SSD MobileNet with input of 3002 resolution has a red
box around it. A given architecture/base network combination can occur
more than once because of different input sizes, stride, etc. The dotted line
represents an “optimality frontier” of the accuracy/speed tradeoff. The
arrows indicate the fastest, the most accurate, and those at what they
term as the “Sweet Spot”. Note that Faster-RCNN may be configured
for high accuracy at the right, or for higher speed in the “Sweet Spot”.
Taken from Huang et al. [23].
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Chapter 4

DESIGN/METHODOLOGY

One of the technical goals of the Cal Poly shark group has been the ability to detect

sharks in UAV footage in real-time. Running a machine learning model to detect

sharks from live video in an embedded environment such as on board a UAV requires

a model that can perform at a high rate of FPS with few resources. To that end,

we’ve focused on SSD MobileNet, identified in the study by the TensorFlow Model

Garden’s Huang et al. [23] as both the fastest model in their study and one of the

models using the least memory. We use the implementation in the TensorFlow Model

Garden.

4.1 Anchor Box Configuration

While many modern object-detection architectures perform poorly on smaller objects,

SSD is among the worst [29][23]. This is possibly due in part to an “out-of-the-

box” anchor box configuration that favors larger objects. Figure 4.1 (Top left) on

page 20 shows the default TensorFlow Model Garden anchor box aspect ratio and

size configuration. Each dot represents a group of anchor boxes of a certain aspect

ratio spread in a grid over their layer, and each dot’s color represents the feature

map layer of a certain resolution to which they belong. Smaller anchor boxes are

used on higher-resolution layers and applied in grids of smaller cells, requiring more

anchor boxes to cover the layer. Because of this the highest-resolution layer only has

3 anchor box aspect ratios per cell for the sake of performance. The dots overlay a

two-dimensional histogram of the widths and heights of the objects in our data set.
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It can be noted that most of the bounding boxes in the data set are much smaller

than the anchor boxes. The right side of the figure shows a new configuration with

two of the smallest anchor boxes shrunk to a size closer to that of the objects. This

new configuration does not change the resolution of the convolutional feature map

layers that the anchor boxes operate on, it just changes two of the anchor box sizes

used to calculate the object detection location values at the highest-resolution layer.

4.2 Image Resolution and Sampling

The original SSD input image sizes are 3002 and 5122, while our images are on the

order of 2,000 x 4,000 pixels. TFMG’s SSD provides for online preprocessing to resize

them to 3002, which we use for most of our experiments. However, 3002 is challenging

for even humans to pick out some of the objects. We run an experiment with 5122 for

comparison, noting the run time as well as the accuracy results. The default resize

method uses bilinear interpolation, which can leave objects blurry. We experiment

with using the provided nearest neighbor resizing interpolation setting to reduce the

blurring of object edges.

4.3 Measures for Mitigating Object Versus Background Imbalance

The architecture of SSD and other related single-stage detectors has also been shown

to suffer from a large class imbalance that negatively effects the ability of the network

to learn effectively. Because SSD creates a detection for each aspect ratio/anchor box

at each grid point in several grids covering different image resolutions, this results

in a large number of negative background “easy” matches. These high-confidence

background matches can overwhelm the loss function and have detrimental effects on

the accuracy [26]. One solution to this is hard example mining, where high-confidence

18



negative (background) detections are thrown out in favor of “harder” detections in

order to achieve a more favorable ratio of background-to-object detections during

training. SSD—and by default the implementation we used—uses hard example min-

ing during training to enforce a ratio of at most 3 negative (background) detections

per positive (object) [29].

A more effective solution to the problem of too many background detections during

training of single-stage object detectors was suggested by Lin et al.’s RetinaNet using

a modified loss function, Focal Loss [26]. Focal Loss adds an extra term to the cross

entropy loss function to give less weight to high confidence background examples.

Using Focal Loss, the one-stage RetinaNet is able to achieve accuracy comparable to

two-stage detectors like Faster-RCNN. We apply Focal Loss to SSD using the builtin

implementation.

4.4 Comparison With Faster-RCNN

Faster-RCNN is also considered one of the state-of-the-art object detection frame-

works, and was used in previous work by the Cal Poly shark group. Though it is in

general more accurate than SSD, it is also slower, though some configurations can be

made to run at a competitive speed [23]. We run an experiment with Faster-RCNN

as a comparison.

We use the default data augmentation during training, consisting of a random hori-

zontal flip and a random crop in the method described in the SSD paper [29].
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Figure 4.1: (Top left) Shows the size and aspect ratios of the orignal-SSD-
inspired anchor boxes used in most of the TFMG’s sample SSD configu-
rations. A dot shows an aspect ratio used by one or usually more anchor
boxes. The dot colors group anchor boxes of the same feature map layer,
with smaller boxes corresponding with higher resolution layers. Smaller
boxes will also be more numerous to cover their layer. The anchor box
dots overlay a histogram of the sizes of objects in our 4030 image shark
data set. The concentration of object sizes is at a much smaller size than
the smallest anchor boxes. (Bottom left) Shows a zoomed in version of
the graph above it. The prevalence of tall objects over wide ones in the
histogram is at least in part due to the horizontal squashing of landscape-
aspect images during preprocessing, when they are resized to 3002 (Top
right) We move two anchor boxes (in blue) to a smaller size more appro-
priate for our objects. (Bottom right) Shows a zoomed in version of the
graph above it.
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Chapter 5

IMPLEMENTATION

Our data was obtained from CSU Long Beach’s Shark Lab and consisted of videos

taken from aerial UAV footage. Images were extracted from the videos and then

uploaded to Labelbox [1], a SAAS labeling solution1. Twelve team members from

CSU Long Beach and Cal Poly labelled objects in the images with a bounding box

and one of five categories: {“boat”, “person”, “dolphin”, “sealion”, or “shark”} [25].

Subcategories were labelled as well but were not used in this paper. Images with no

objects were discarded. Images were then shuffled using data from RANDOM.ORG [2]

and split into a training group (2824 images), a validation group (706 images), and

a final test group (500 images), for a total of 4030 images. The final test group was

not used except for during analyses treating the entire data set such as Figure 4.1 on

page 20.

Jobs were performed on one of several Intel Xeon E5 2695 2.30GHz machines, with 28

CPUs and 31GB of memory running Linux. TensorFlow 1.15.2 was used in CPU mode

and small modifications were made to the TFMG codebase to fix a bug regarding the

loading of models for transfer learning.

Transfer learning was applied according to the instructions in the TFMG pets tuto-

rial [41]. Weights from a Microsoft COCO-trained model were used before training,

available from TFMG under the name “ssd mobilenet v1 coco 2018 01 28”. An ini-

tial training job was run for several days and based on its results an early stopping

point of 200,000 steps was chosen for future jobs, which was also the number of steps

1The code to download and transform the data from Labelbox’s format was adapted from work
by Casey Daley and is available at https://github.com/caseydaly/LabelboxToTFRecord
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used by the pets tutorial. All the SSD jobs also use the same constant learning rate

of 0.004 as the pets tutorial, which is low to preserve the value of the transferred

weights. The batch size was set to 24 for all SSD jobs.

Following one of the TFGM SSD focal loss configuration examples, the focal loss

experiment used α = 0.25 and γ = 2.0 for the loss function hyperparameter values,

which are also the values that produced the highest accuracy using RetinaNet in the

ablation experiments by Lin et al. [26].

The Faster-RCNN experiment was run on a machine with the same specifications, also

in CPUmode. Its configuration differed but was also mostly a use of the corresponding

pets example configuration. Instead of resizing to a square 3002, it was configured to

rescale each image, preserving aspect ratio. The rescaling applies first to reduce the

image’s smaller dimension to 600px. If at this point the image’s larger dimension is

larger than 1024px, the size is further reduced so that the larger dimension is equal

to 1024px. The learning rate was a constant 0.0003 and a batch size of 1 was used.

ResNet 101 was used as a base network and TFMG’s provided COCO-trained model

was used for transfer learning. Data augmentation consisted of a randomly applied

horizontal flip. Training was run for 200,000 steps, the same number used for the

SSD runs.
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Chapter 6

RESULTS/VALIDATION

6.1 Results

Results can be seen in Table 6.1 on page 23. To reach 200,000 steps (a little over 70

epochs), all of the SSD 300 training runs took around 5 days. The two runs working

with higher resolutions took longer, with Faster-RCNN taking 7.3 days, and SSD 512

taking the longest at 14.6 days. For measuring accuracy we use the normal Microsoft

COCO metrics [27].

Table 6.1: Duration, mean average precision (mAP), and average recall
(AR) for several configurations of SSD 300, one of SSD 512 and one of
Faster-RCNN. All jobs were run to 200,000 steps.

Duration
(days)

mAP
mAP

S M L
SSD 300 [29] Baseline 5.5 0.275 0.00282 0.119 0.468

Focal Loss [26] 5.0 0.267 0.00332 0.0989 0.459
NN Resizing 5.4 0.274 0.0015 0.138 0.456

Modified anchors 5.5 0.296 0.002 0.181 0.473
SSD 512 [29] 14.6 0.306 0.004 0.219 0.509

Faster-RCNN [33] 7.3 0.426 0.109 0.314 0.619

AR
AR

S M L
SSD 300 [29] Baseline 0.363 0.0112 0.202 0.567

Focal Loss [26] 0.347 0.0072 0.149 0.568
NN Resizing 0.361 0.0064 0.25 0.56

Modified anchors 0.385 0.008 0.28 0.583
SSD 512 [29] 0.404 0.0168 0.307 0.608

Faster-RCNN [33] 0.501 0.143 0.406 0.71
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None of the SSD 300 configurations noticeably improved the the overall mAP over

the baseline of 0.275, with the exception of modifying the anchors, which improved

it by 2.1 percentage points. This increase in the overall mAP is due to increased

performance of the medium category, discussed below. However, while modest in-

creases may indicate higher performance, small improvements (or decreases) should

be taken with a grain of salt. Runs appeared to show some moderate instability in

the reported metrics over the course of a run, and small mAP differences between

runs may possibly be accounted for by these fluctuations. With this in mind, the

only runs that appeared to significantly increase the overall mAP over that of the

SSD 300 baseline were the higher resolution runs, SSD 512 and Faster-RCNN, which

showed results of 0.306 (3.1 percentage points higher) and 0.426 (15.1 percentage

points higher) respectively. A higher-resolution SSD leading to better results is not

surprising, and Faster-RCNN is known to have better accuracy than SSD at the cost

of speed.

The large (L) mAP category was also mostly the same across all SSD 300 configu-

rations, with focal loss and nearest-neighbor interpolation-based resizing resulting in

lower mAP by 0.9 and 1.2 percentage points. These decreases may be due to train-

ing instability. Again SSD 512 performed better than the baseline, this time by 4.1

percentage points, with Faster-RCNN performing the best by a significant margin of

11 percentage points.

The medium (M) mAP category may be the most beneficial target of improvement

because it contains roughly half of the objects in our data set and yet has a much

poorer baseline performance of 0.119, a staggering 34.9 points below the large (L)

category’s 0.468. Our SSD 300 experiments show modest improvements in this cate-

gory, with nearest-neighbor resizing showing a result of 0.138, 1.9 percentage points

over the baseline of 0.119. If this is not the result of convergence instability, then
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it makes sense intuitively that nearest neighbor would be more effective for smaller

objects, since they would likely benefit the most from sharper edges. Of the SSD 300

runs, the anchor box modification shows the largest improvement, resulting in 0.181,

6.2 over baseline. This anchor box change is targeted specifically towards improving

smaller objects detection, as seen by Figure 4.1 on page 20, so an improvement in the

medium category confirms the effectiveness of anchor box configuration changes to

this end. Of the SSD 300 results, this is the strongest. For the rest of the medium cat-

egory, SSD 512 performed 10 percentage points over the baseline and Faster-RCNN

performed 19.5 percentage points over.

The AR results follow the mAP results, with the slight exception of nearest neighbor

resizing in the medium category. This configuration shows a slight increase of 1.9

percentage points over the baseline medium mAP, and a larger medium AR increase

of 4.8 percentage points over the baseline. This difference could be due to training

instability, or it could indicate that nearest-neighbor resizing, perhaps through a

hardening of object edges, results in more detections partially through the inclusion

of more background objects such as seaweed or sand colorations, which can be very

similar to sharks.

All SSD runs performed extremely poorly (less than 0.01 mAP) in the small category.

Even Faster-RCNN, the best result, was only 0.109. This reinforces past findings of

poor SSD performance on small objects [29][23], but it is also likely amplified by the

paucity of small objects in our data set. Additionally, it is difficult for even humans

to detect some objects of this size, especially after images are resized, introducing

some interpolation blur.
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6.2 Discussion

The SSD 512 results are consistently better than SSD 300, and the Faster-RCNN

results are the best, which is in accordance with the literature [29][23]. Also, all of

the configurations performed best on large objects, which is again an established re-

sult [29][23]. Faster-RCNN is more accurate and in fact, as of the writing of Liu et

al. [28], is a common starting point for winning entries of object detection competi-

tions. SSD MobileNet’s main benefit is that it is fast, and the speed comes at the

cost of accuracy.

In a comparison between F-RCNN and SSD 300 baseline in the medium and large

categories, the gap between detectors for medium is only 4.4 percentage points more

than for the large category. This suggests that the weakness of SSD 300 is more pro-

nounced for medium objects than large ones, but only moderately so. Nevertheless,

because of its low baseline, the medium category may still be a good target of ef-

forts to improve. In particular, the anchor box modification result demonstrates that

out-of-the-box detector configurations may be configured towards larger objects than

appropriate for our data set. Our anchor box configuration change shows that im-

provement is possible. The anchor box configuration change we made is minimal and

there is much room for more experimentation in this area to improve both accuracy

and speed [6].

The nearest neighbor configuration results appear inconclusive, but may be worth

keeping in mind for a very small potential accuracy boost on medium objects. How-

ever, its effects may be limited to low-resolution configurations.

The focal loss results did not seem to show any improvement, which may be because

the original focal loss [26] was applied to a different CNN architecture, RetinaNet,
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and because we used the default hyperparameter values without any ablation exper-

imentation. Additionally, SSD’s hard example mining [29] has a purpose similar to

that of focal loss, though the results of Lin et al. with RetinaNet indicate that focal

loss should be more effective.
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Chapter 7

FUTURE WORK

The challenge of shark object detection can be split into real-time and non-real-time,

on-device and off-device. We have focused on SSD MobileNet as a model for use

in real-time on-device detection. However, future work may focus on other shark-

detection scenarios. We see the following as possible next steps particular to the Cal

Poly Shark group.

7.1 Collaboration

Since the field is new, there appear to be only a handful of research organizations

building prototypes of shark detection solutions at the moment. While some of the

more commercial offerings may be less willing to share proprietary information, there

may be opportunities for Cal Poly and CSU Long Beach to collaborate with the more

academic groups from around the world. In particular, sharing and combining data

would likely benefit all, as the effort of collection and labelling is so high, and we are

not the only group to express a need for more data [17]. A larger number of training

images could increase accuracy, and images from different locations across the world

with different weather, water/sand coloring, etc. may improve the diversity of the

data set. Additionally, with the exception of Saqib and Sharma et al. [36][37], there

have not been many instances of shark detection results being published in a raw,

comparable form using standard metrics like COCO. Another advantage of combining

the data sets between groups into a common set (with common performance metrics)

is that machine learning results between groups and publications would be more
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directly comparable, like it is between work using crafted public data sets such as

COCO, Pascal VOC, etc. While the shark data need not be formalized and made

public to provide similar value between the handful of shark detection research groups,

publishing the data may be a way to attract interest and help from non-shark machine

learning practitioners. Besides data sharing, other knowledge sharing between shark

research groups in high-skill areas such as machine learning and drone development

could also be beneficial.

7.2 Model and Hardware Selection

The appeal of SSD MobileNet is its reduced number of computations and its faster

speed for use on edge devices such as a drone. However, to increase accuracy, other

models may be more desirable. Valuable to this end is the work of Huang et al. [23],

which shows the result of speed and accuracy tests across a broad number of object

detection architectures and configurations (though regrettably not YOLO). As stated

in the paper, their work is intended as a guide to help people choose object detection

models at a scale and accuracy level appropriate for their applications. Though a few

years old now, we believe it to still be useful in selecting object detection models and

their base networks, though newer models and base networks should be considered as

well. One notable result of the study is that Faster-RCNN can be configured to run

at speeds somewhat approaching that of SSD MobileNet but with better accuracy.

Also relevant is the comparison of performance of object detection architectures on

different drone configurations performed by Hossain et al. [21]. Though the range of

models compared was more limited than in the Huang analysis, SSD MobileNet and

variations of YOLO were the fastest. This comparison also looks at on-device vs off-

device detection as well as performance with different on-device processing hardware,
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including some low-cost hardware similar to devices already available to the Cal Poly

Shark group.

Faster-RCNN is the obvious choice for cloud solutions, from our limited experiments,

and past team members have had success with Faster-RCNN as well. But object-

detection is still an unresolved problem and new architectures are coming out each

year. Perhaps future work should expect to need to change models every few years to

keep up with state-of-the-art. TFMG’s configuration DSL offers a way to do this, and

TFMG already contains some newer models that we were unable to try (mentioned

also below). Additionally, YOLO [32] is one of the leading architectures which we

did not examine because it is not implemented in TFMG, but would probably be

worth exploring, especially because of its performance in the on-device drone tests

performed by Hossain et al. [21].

7.3 Where to Perform Object Detection

The decision of where to run the model (cloud, local ground station, drone, tablet/-

controller, etc.) is central because it can have a large impact to how useful the solu-

tion will be to CSU Long Beach research and because it defines constraints around

model and programming framework choice which are not easy to change down the

line without starting over. Model training and research into domain-specific model

improvements, for example, may not be transferable across model architectures, and

programming work done for an iPad will not be very relevant to a solution in the

cloud. Knowing the exact specifications of the target environment (like the incoming

resolution) would also help with model training and design [25]. A usability study

of CSU Long Beach shark researchers might help inform this decision to insure that

solutions were useful to researchers.
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Regarding the challenges of installing an object detection model on an actual device

(FAA regulations, closed platforms, etc.), we believe an attractive alternative would

be to run the model on a tablet device connected to a controller. DJI, a popular

drone manufacturer, offers a Mobile SDK that appears to be compatible with some

of the drones used by CSU Long Beach. There is a similar Onboard SDK whose

documentation even includes a tutorial on object detection with YOLO [13], but it

appears to only be compatible with a small subset of drones marketed and priced for

industrial use [14].

On the other hand, performing real-time object detection in the cloud on a live

stream from a drone allows for more computational resources for the object detector

and doesn’t require drone modification. However, this introduces the potential for

connectivity challenges and latency, which may be more relevant to scenarios of shark

research than the more stationary beach alert systems.

The target environment also affects the testing that can be performed, but we encour-

age future students to explore testing setups that mimic the target environment as

close as reasonably possible without waiting for access to an actual drone. For exam-

ple, if the video quality of a drone’s live stream was known, a cloud/drone streaming

solution could be tested by playing a video with the same quality instead of training

against the quality of our existing test data. Or, to test an on-drone solution, a drone

flight or even a flight-worthy drone may not be necessary if an embedded device was

available that approximated the drone’s on-board computing constraints. This re-

quires investigation into the technical specifications of the devices used by CSU Long

Beach shark researchers.
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7.4 Improving Accuracy

Within the scope of improving SSD MobileNet there are several unexplored areas.

The most straightforward is to replace MobileNet with a different base network such

as ResNet [18]. TFMG contains other transfer learning models with varying accu-

racy including several for ResNet. Regarding other configuration changes, our re-

sults showed some modest improvements in the medium category due to anchor box

changes. The changes we made were minimal and could very likely be expanded to

improve accuracy further. YOLO for example uses k-means clustering to determine

a good set of anchor box aspect ratios [31]. One thing that we did not try was anchor

box modifications on the more accurate SSD 512 model, which we expect would yield

good results. It is also likely that some of the overly-large anchor boxes could be

removed to improve performance [6]. Finally, our changes did not change the actual

layer sizes that the anchors were connected to, and it may be that the default SSD

layers could be better sized for our data set.

SSD and Faster-RCNN are both generic DCNN object detectors in the sense described

by Liu et al. [28]. One approach for increasing accuracy could be to focus on creating

hand-crafted features or image preprocessing techniques that would be helpful specif-

ically in the domain of aerial marine data, though determining how best to integrate

these techniques with out-of-the-box frameworks may be challenging. For example,

fluid lensing [11] is a technique for removing water distortions that has been used to

increase the quality of marine drone footage of underwater objects. Similarly, there

may be domain-specific data augmentation techniques that could be explored, as we

only used the default TFMG SSD data augmentation.

The difficulty in understanding the meaning of neural network output is well-known.

One thing that may help is to go beyond reported COCO metrics and perform an
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analysis of the evaluation results, looking at where false positive bounding boxes were

detected or where false negatives were missed. This could help determine where a

model is weak and perhaps identify targets of the domain-specific techniques men-

tioned above. Hoiem [20] has written such an analysis and has made available some

MATLAB tools that create charts from annotated Pascal VOC data showing the

prevalence of different types of false positives. We considered such an analysis, but it

requires manually inspecting all of the evaluation images and annotating them with

the type of false positive.

7.5 Real-Time Video Detection

While this work and much of the literature have focused on the detection of objects

within individual images, the best application of an image detector to video is still

a matter of investigation. The naive strategy of running the detector on every video

frame is computationally expensive to do in real-time, though like Gorkin et al. [17]

detection may be performed every n frames to help performance. However, doing a

full object detection for each frame even when sampling the frames may be unnec-

essary. Once an object is detected in a frame, the object is likely to be at a nearby

location in the next frame. We have not investigated object detection using contex-

tual information from previous video frames to track objects across frames but we

believe it may be a promising line of inquiry that could reduce the computational

resources needed.

7.6 Small Object Detection

Small object detection is an ongoing area of computer vision research, as our results

demonstrate clearly. This may make it difficult for our group to appreciably increase
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accuracy for small objects beyond the default for a given model, though domain-

specific tricks may help. Small objects may be particularly troublesome because

when researchers are looking for sharks, they may fly as high as possible in order

to see the most area at once and save battery life. Flying higher makes the sharks

appear smaller, making it more difficult for an object detection system. However,

object detection may still be useful once sharks are found and drone height is lowered

for automated photogrammetry. Ultimately, as with the overall imperfect detection

accuracy, it remains to be seen what level of accuracy would be required for a solution

to be useful to researchers in the field.

One way to increase the size of objects under detection would be to cut the images

into tiles before inital image resizing, and then resize each tile to 3002 or 5122 to feed

individually to the detector. In fact, though it is a little unclear from the description of

Gorkin et al. [17], this appears to be the strategy adopted by the Australian Sharkeye

project with their YOLO-based model.

7.7 Drone Height Data

Our data set did not contain drone heights, but height is reported by the drones at

flight time, and may be able to be incorporated into future data sets. Height data

as an extra input feature might be useful for improving object detection, as it has

a direct relationship with object size. How to incorporate this extra feature into an

existing model like SSD or Faster-RCNN would need to be explored.
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7.8 Usefulness in Shark Research

While we have focused on real-time on-device object detection, value can also be

had from offline detection. The current workflow of shark researchers at CSULB

involves manually going through footage post-flight to find instances of sharks to

study, a tedious process. A tool that could automate this search through footage

could save researchers time, and may not require 100% accuracy. Similarly, tools to

automate shark photogrammetry (taking measurements of the sharks’ sizes, distances

from other people, body bending angles, etc.) could aid shark research as well. For

example, a tool might identify timestamps in a video where a shark was less than

10 feet from a person. Additionally, the ability to automatically count sharks could

be useful in population sampling studies. Whether in offline or real-time scenarios,

success in object detection may be able to be extended to related computer vision

problems such as object tracking, enabling researchers track and study the movements

of individual sharks within large groups. Finally, shark species identification may be

useful in beach safety scenarios to help beach authorities without in-depth shark

species knowledge to know which shark detection events necessitate a beach closure.

7.9 Data Set

Though this work has touched upon it, further interesting work could include a more

in depth analysis of the existing shark data set. In particular, comparisons with

how this data set compares with popular test sets like Microsoft COCO [27], Pascal

VOC [15] or iNaturalist [42] could bring interesting insights into both the performance

of this model as well that of other models. Different data sets have different difficulty

levels for object detection due to things like the size of the objects and the number

of categories. Moreover, there may be domain-specific characteristics to our data set
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that could be exploited for better accuracy that do not apply to other data sets. To

name a couple (hypothetical) examples, marine aerial data may have distinct qualities

like a characteristic background color spectrum or a narrow range of object sizes per

image based on drone height and ground sample distance. One observation we have

made is that in some images, sharks very similar in color to water and sand features

are distinct to the human eye because they are positioned at a different angle from the

grain of the sand. Such qualities may be exploitable to improve our domain-specific

results.

Additionally, it would probably help accuracy to increase the number of training

images. Besides further manual labelling on our part, there may be other shark

researchers willing to share, or existing data sets online that could be combined with

ours. One such example is the recent aerial data set created by Gasienica-Józkowy et

al. [16]. Additionally, a transfer learning data set consisting of data more similar to

ours than COCO may help.

7.10 Computation Resources for Training

Our group has taken two approaches so far for training environments. One approach

is to use a Google Colab notebook, the other is to use a machine from Cal Poly’s

Massively Parallel Accelerated Computing (MPAC) lab. The Colab notebook is run

from a web browser against a GPU, and can have problems of reliability with long-

running jobs. The MPAC machines, which our experiments used, contain 28 CPUs

each, but from our experiments are significantly slower than the Colab notebooks.

We believe this to be due to the CPU/GPU difference. This would seem to indicate

that an on-campus dedicated machine running in GPU mode could combine the best

of both worlds. Additionally, TensorFlow has built-in ability for clustering training

36



jobs, and it may be feasible to configure more than one machine to create a cluster

on-campus for faster training.

It would be remiss to go without mentioning cloud platforms as an option for training.

Cal Poly ITS has formed a relationship with Amazon in moving its infrastructure to

AWS within the last several years, and in the creation of its Digital Transformation

Hub. In fact there has already been effort by another group at Cal Poly doing marine

object recognition on AWS through the Digital Transformation Hub [9]. Additionally,

TensorFlow comes with built in integration with Google Cloud, and it is fairly trivial

to run the TFMG pets tutorial on Google Cloud. We experimented with Google

Cloud but our new user free credits were only sufficient to run two successful runs.

From these runs alone it is difficult to compare the speed of the Google Cloud cluster

settings we used with the MPAC lab setup, but a rough comparison appears to show

this particular Google Cloud configuration to be on the order of seven times faster

than our single-machine MPAC setup.

The challenge of the cloud across platforms seems to be that the cost of resources is

often difficult to predict—perhaps meant to be absorbed on the scale of a business

budget and not that of a student. Additionally we could not find any safeguards on

Google Cloud for preventing long jobs or mistaken configurations from running their

full course and resulting in large bills.

One possible mitigating strategy to this problem could be to establish a shared group

pipeline in place of separate student projects. If student experiments were run on the

same code base and cloud pipeline, repeated cloud runs would in theory have compa-

rable cost, though consideration would still need to be made for configurations that

greatly changed training time (such as model changes or input resolution changes).

With a large enough team, this could be done in a controlled manner such as at the

same time once week, perhaps even with a code review for new experiments as a
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gateway to protect against accidental large and expensive job runs. It may also be

possible to create the pipeline in such a way that students could run smaller jobs

locally to test changes out before submitting them to the large shared group pipeline.

However, all this would require continued infrastructure work and administration.

Another factor that could aid in improving the computing story is to decrease the re-

sources used by the code through configuration changes (like removing anchor boxes)

or by trying newer and more efficient models. Determining which models is a topic

for more research, but TFMG has some newer models in their TensorFlow 2 section

that we were not able to try (see below).

The challenge of adequate computing capacity is very relevant for students working on

machine learning projects at Cal Poly. In our work, the length of time to run each job

was part of what caused us to forego ablation experiments in place of trying a handful

of strategies. Solving this problem would greatly aid future student experiments.

7.11 TensorFlow Model Garden

If future students choose to use TensorFlow Model Garden, a few things are worth

taking note of. Object detection in TFMG is a research-quality project which may

frequently be undocumented, misdocumented, or have documented features that have

been broken for long periods of time. Our work required tracking down an open

GitHub issue to apply a brief 3rd-party suggested code patch to fix the transfer

learning feature. We also spent time fixing the image export feature for TensorFlow

1 with the goal of performing an analysis similar to that of Hoiem [20]. However,

we did not use this fix. The TFMG codebase is complicated and was designed very

generically we believe to facilitate the broad cross-model testing performed by Huang

et al. [23]. A simpler framework may be more helpful for future students wanting to
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try only one or two models. Finally, TFMG is a fast-moving repository that receives

a large number of commits, and it may be useful to pin to a particular release. Since

our work began, TFMG has released official pip packages, which may make things

easier to install but more difficult to alter the underlying code.

While we started with and decided to stay with TensorFlow 1, there are several

promising new models available from TFMG only for TensorFlow 2 which we have not

experimented with, including RetinaNet [26], CenterNet [44], and EfficientDet [40].

There are also a variety of new transfer learning models for the abovementioned as

well as SSD and Faster-RCNN with higher resolutions and better base networks. We

would strongly recommend trying some of these new TensorFlow 2 models.

Though this is not specific to TFMG, we have found it a good practice to pin specific

library versions using conda and pip. This can even be done after the fact by looking

to see what version was installed and freezing to a particular version. This has enabled

us to reproduce our set up quickly on multiple machines. In contrast, there was an

old group Colab notebook we had difficulty running which may have been helped by

pinning library versions.

Finally, the TFMG code base appears to have undergone a large reorganization since

our work, and many of the above comments may or may not still hold true.
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Chapter 8

CONCLUSION

On-drone and on-controller shark detection provide a simpler setup than cloud so-

lutions, the advantage of not relying on internet connectivity, and the potential for

low-latency flight-time detection to aid drone pilots. As object detection improves,

things like single and multi object tracking may enable drones to automatically follow

sharks, allowing more flight automation.

SSD MobileNet shows promise for on-device detection because of its speed, but it does

perform substantially worse than Faster-RCNN on our shark data when it comes to

accuracy. It performs moderately on large objects, but struggles on medium ones

(COCO size categories). While the speed-accuracy tradeoff may be acceptable for

some use cases, users of SSD should be sure to configure anchor boxes according to

the underlying data since the default anchor box sizes do not appear to be ideal for

small-to-medium objects. Moreover, increasing the input image size to SSD beyond

the default 3002—to the extent possible on an embedded device—may be an effective

means of improving performance, as well as trying more accurate (and compute-

intensive) base networks. Finally, it remains to be seen what level of accuracy a

model requires to be of use to shark researchers in the field, which is an important

consideration for making decisions trading speed and accuracy.
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