
© 2021 Raunak Sengupta

FAIR ALLOCATION OF OPERATIONS AND MAKESPAN
MINIMIZATION FOR MULTIPLE ROBOTIC AGENTS

BY

RAUNAK SENGUPTA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Industrial Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Advisers:

Professor Rakesh Nagi
Professor R.S. Sreenivas

Abstract

We study the problem of allocating a set of indivisible operations to a set

of agents in a fair and efficient manner while also minimizing the makespan.

We first present the Operation Trading Algorithm that generates allocations

satisfying the DEQx (Duplicated Equitability up to any operation) fairness

criterion while also guaranteeing an upper bound of 2 on the makespan for

identical agents. The algorithm also guarantees an upper bound of 1.618

for 2 uniformly related agents and 1+
√
4n−3
2

for n uniformly related agents.

The pairwise approach used in this algorithm has the added advantages of

being decentralizable, reactive and robust. A new protocol named as the

Decentralized Random Group Formation (DRGF) Protocol is presented for

implementing the Operation Trading Algorithm in a decentralized manner

and for dealing with communication failures. We then define a relaxed version

of the DEQ1 (Duplicated Equitability upto some operation) fairness crite-

rion called partial-DEQ1. A market-based algorithm is presented to achieve

partial-DEQ1 along with Pareto Optimality. Following this, it is shown that

the algorithm also guarantees an upper bound of 1.618 on the makespan for 2

non-identical agents. Parametric pruning further improves the upper bound

to 1.5, which is theoretically the best possible upper bound. To the best of

our knowledge, these are the first algorithms designed to achieve the men-

tioned fairness criteria. The algorithms additionally guarantee upper bounds

on the makespan. Finally, we show the efficacy of the algorithms in generat-

ing allocations with near optimal makespans by numerically evaluating the

algorithms on randomly generated problem instances.

ii

To my parents, for their love and support.

iii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisors

Prof. Rakesh Nagi and Prof. Ramavarapu S. Sreenivas for their continuous

support, guidance, patience, and immense knowledge. Through their guid-

ance, I was able to shape my thoughts and ideas and mature as a researcher.

I would like to thank Dr. Dustin Nottage and Dr. Ahmet Soylemezoglu

from Construction Engineering Research Laboratory (CERL), U.S. Army

for their support and also for providing me exposure to some of the cutting

edge research in Autonomous Construction.

I would like to thank my friends Ayush Rajput, Anunay Sharma, Vivek

Gupta, Anirudh Sharma, Akhil Gupta and Avirup Kundu for being by my

side at all times. Their immense help, support and friendship cannot be

expressed in words.

Most importantly, I would like to express my gratitude to my mom, Malan-

cha Gupta and dad, Aniruddha Sengupta for their endless and unconditional

love and support, and for instilling in me the right values and mindset.

iv

Table of Contents

List of Tables . vii

List of Figures . viii

Chapter 1 Introduction . 1
1.1 Motivation . 2
1.2 Literature Review . 2
1.3 Our Contributions . 4
1.4 Organization of the thesis . 6

Chapter 2 Preliminaries . 8
2.1 The Makespan Minimization Problem 8
2.2 Makespan Minimization for Uniformly Related Agents 9
2.3 Equitability and Fairness Concepts 9

Chapter 3 Generating DEQx Allocations: The Operation Trading
algorithm . 12
3.1 The Operation Trading Algorithm 12
3.2 Upper Bound of OTA(n) for Identical Agents 16
3.3 Upper Bound of OTA(n) for Uniformly Related Agents 18
3.4 Upper Bounds for Practical Scenarios with Uniformly Re-

lated Agents . 21
3.5 Advantages of the Operation Trading Algorithm 22

Chapter 4 Decentralized OTA(n) (Dec-OTA(n)) 24
4.1 Limitations of the Operation Trading Algorithm 26

Chapter 5 A market based algorithm for generating partially-DEQ1
+ PO allocations . 28
5.1 Preliminaries and Definitions for Market-Based Algorithm . . 28
5.2 Market Based Algorithm for partial-DEQ1 + PO allocation . 30
5.3 Convergence and Complexity of Proposed MBA 31
5.4 Proof of Correctness of MBA 39
5.5 Upper Bounds on Makespan for 2 Non-Identical Agents 42

Chapter 6 Parametric Pruning leads to improved performance 45

v

Chapter 7 Results . 49
7.1 Numerical Results on Identical Agents 49
7.2 Numerical Results on Uniformly Related agents and Non-

Identical Agents . 50
7.3 Numerical Evaluation of the DRGF Protocol 53

Chapter 8 Conclusion and Future Work 59

References . 61

vi

List of Tables

1.1 Upper Bounds and Fairness for different algorithms 6
1.2 Upper Bounds and Fairness for different algorithms 6
1.3 Upper Bounds and Fairness for different algorithms 7

3.1 Upper Bounds on the makespan for different lower bounds
on κ and fi

f1
. 22

7.1 Ratios (Algorithm Makespan/Optimal Makespan) obtained
for identical agents . 51

7.2 Ratios (Algorithm Makespan/Optimal Makespan) obtained
for uniformly related agents agents 53

7.3 Ratios (Algorithm Makespan/Optimal Makespan) obtained
for non-identical agents . 54

7.4 Ratios (Algorithm Makespan/Optimal Makespan) obtained
for uniformly related agents using Dec-OTA(n) 55

7.5 Ratios (Algorithm Makespan/Optimal Makespan) obtained
for uniformly related agents using Dec-OTA(n) 56

vii

List of Figures

3.1 Example illustrating UB in Theorem 3 is tight 17

4.1 Example illustrating the DRGF protocol 26

5.1 MnBB-allocation graphs and Alternating Paths 30

7.1 Approximation factors for agents with higher speeds 57

viii

Chapter 1

Introduction

There are several applications that require a team of autonomous agents

to intelligently cooperate, collectively make decisions and performs tasks.

Parallel machine scheduling problems arise naturally in such systems and

are thus an integral part of multi-agent systems. Such systems are also very

often set in an unpredictable and hostile environment. An example would be

a team of self-directed agents that execute construction tasks autonomously.

Applications such as this demand scheduling algorithms that are preferably

decentralizable, simple to perform, and do not require large communication

overhead. Different objective functions have been considered for parallel

machine scheduling in the literature such as: linear sum of costs, weighted

completion time, makespan, etc.

The makespan is an important objective function, especially for time-

critical applications since it is a direct measure of the overall completion time

of a project. In many situations, a near optimal value of the makespan also

implies the same work accomplished in a shorter amount of time, and thus,

higher production efficiencies. Traditional methods to solve the makespan

minimization problem for non-identical parallel machines primarily include

centralized Linear Programming (LP) based methods [1, 2, 3]. The current

state of the art in “centralized” algorithms guarantees an upper bound of

2− (1/n) where n is the number of agents [4]. This algorithm is an improve-

ment over the algorithm due to [1], which is an LP-based method. Interest-

ingly, majority of the results in the current literature on decentralized task

scheduling for multi-agent systems do not consider the makespan objective.

It can be observed that if an allocation has loads that are as balanced as

possible and there exists no other allocation that is strictly better (i.e., the

allocation is Pareto Optimal), the corresponding makespan must be at the

minimum. Thus, an alternative approach to tackle the problem of makespan

minimization is to set up the problem in the fair allocation paradigm. The

1

literature on fair allocation has recently seen a rise in algorithms that gen-

erate “approximately equitable” and Pareto Optimal allocations of indivisi-

ble goods among multiple non-identical agents. An allocation is said to be

equitable if every agent derives equal utilities under the given allocation.

Recently, algorithms to generate equitable allocations of chores were pro-

posed in [5], where a chore is defined as an item with negative valuation.

Tasks/operations in a multi-agent setting can be modelled in a similar way.

1.1 Motivation

Equitable allocation of operations is of importance in settings where the

agents are either humans or robots obtained from different contractors. To

satisfy every entity in such a scenario, equitable allocations are necessary.

The allocation must however satisfy a global objective function at the same

time, which in our case is the maximum completion time among all jobs

(makespan).

In this thesis, we explore the possibility of generating allocations that

satisfy certain equitability criteria and at the same time obtain an upper

bound on the makespan by taking advantage of the similarities in both the

problems. This approach also offers a new way of looking at the makespan

minimization problem in an agent based manner which we believe will enable

the design of efficient decentralized and robust algorithms.

1.2 Literature Review

The existence of a polynomial time algorithm with an upper bound lesser

than 1.5 on the makespan would imply that P = NP [1]. Reference [1] in-

troduced a polynomial time LP-based algorithm that guarantees an upper

bound of 2. This was further improved upon by reference [4] which presented

an algorithm that guaranteed an upper bound of 2− 1
n

where n is the number

of agents. The existence of an algorithm that obtains a strict upper bound of

1.5 remains open. There are algorithms with better upper bounds for special

cases of the problem such as the graph balancing problem [6]. The literature

has efficient algorithms for makespan minimization of identical agents, such

2

as the LPT rule [7] that guarantees an upper bound of 4
3
− 1

3n
. The Graham’s

list scheduling algorithm [7] guarantees an upper bound of 2− 1
n

for identical

agents with/without precedence constraints. Reference [8] showed that the

classic LPT rule guarantees an approximation factor of 2n
2n+1

for uniformly re-

lated agents. [9] analyzed a variant of the MULTIFIT algorithm and showed

that it guarantees an approximation factor of 1.4, which is currently the best

known approximation factor for uniformly related agents using a centralized

approach.

Majority of the literature on Decentralized Task Scheduling for multi-agent

systems use a linear sum of costs as the objective function. A large collection

of results use market-based algorithms such as auctions for task allocation [10,

11, 12]. However, the auction algorithm can lead to arbitrarily poor solutions

in a number of situations [13]. A different approach to task allocation is to

use consensus algorithms [14, 15]. The thesis [16] introduced the algorithm

Consensus Based Bundle Allocation (CBBA) which can be implemented in

a decentralized manner and gives an upper bound of 2 for the linear sum

of costs objective function. CBBA combines the advantages of both the

consensus and auction algorithms.

References [17, 18] introduce decentralized gossip-based algorithms which

minimize the makespan for a networked system of agents. These algorithms

provide guarantees on the convergence time of the algorithm. Further, [18]

provides an upper bound on the makespan which is a function of the largest

operating time. These gossip based algorithms are however not defined for

unrelated/non-identical parallel machines. [19, 20, 21] are metaheuristic ap-

proaches for minimizing the makespan. Metahueristics however do not ac-

company theoretically-grounded performance bounds. To the best of our

knowledge, there do not exist decentralized algorithms for makespan min-

imization that guarantee a constant factor approximation on the optimal

makespan.

Fair allocation of indivisible goods has received considerable interest in the

recent years. Several notions of fairness have been defined in the literature

such as Maximin Fair Share (MMS) [22, 23], Envy Freeness (EF) [24, 25],

Equitability (EQ) [26], etc. In this thesis, we deal with the equitability

fairness criterion. An allocation is said to be equitable if every agent derives

equal utilities under the given allocation. When the goods are divisible,

perfectly equitable allocations are guaranteed to exist [26]. However, for

3

indivisible goods, such an allocation may not always exist. Reference [27]

introduced relaxed versions of equitability with stronger existence results.

These relaxed versions of EQ were formalized into the terms EQ1 and EQx

in reference [28]. An allocation A is equitable up to one good (EQ1) if for

every pair of agents, the disparity can be reversed by removing some good

from the higher-valuation-agent’s bundle. An allocation A is equitable up to

any good (EQx) if for every pair of agents, the disparity can be reversed by

removing any good from the higher-valuation-agent’s bundle. Reference [28]

presented algorithms to generate allocations that are EQ1 + Pareto Optimal,

EQx, etc. Thesis [5] extended the definitions of EQ1 and EQx to the context

of chores (goods with negative valuations). They showed that for chores,

an EQx + Pareto Optimal allocation may not always exist. Following this,

they presented the fairness notions DEQ1 and DEQx. An allocation A is

said to be equitable upto one duplicated chore (DEQ1) if for every pair of

agents, the disparity can be reversed by duplicating some chore from the

lower-valuation-agent’s bundle to the higher-valuation-agent’s bundle. An

allocation A is equitable upto any duplicated chore if the disparity can be

reversed by duplicating any chore from the lower-valuation-agent’s bundle

to the higher-valuation-agent’s bundle. Algorithms to generate DEQx and

DEQ1 + Pareto Optimal allocations were left as open problems.

1.3 Our Contributions

The main contributions of this thesis are listed as follows:

• We present the Operation Trading Algorithm (OTA) which is guaran-

teed to generate a DEQx allocation. Although the existence of a DEQx

allocation at all times was proven in [5], no systematic algorithm was

shown to generate such allocations prior to this.

• The proposed algorithm guarantees an approximation factor less than

1.618 for 2 uniformly related agents and an approximation factor less

than 1+
√
4n−3
2

for n uniformly related agents, assuming a fully connected

communication network.

• The algorithm also guarantees an approximation factor less than 2 for

n identical agents assuming fully connected communication network.

4

• The DRGF Protocol is presented for implementing OTA(n) in a de-

centralized manner. The upper bounds do not hold if the agents are

not fully connected. However, it has been shown that the algorithm

generates near optimal allocations for most cases even under severe

communication link failures (assuming that the agents cannot act as

relays).

• It has also been shown that OTA(n) is fast and can start from any

random allocation. Thus, the algorithm can be easily used for quick

re-planning in case of various failures and changes in the environment.

• In OTA(n), an agent communicates only its personal allocation at a

time to its neighbors instead of costs associated to all the operations

in the mission like in CBBA [16] and other similar algorithms. This

reduces the communication overhead significantly.

• This thesis presents a new equitability measure which we call partial-

DEQ1 (p-DEQ1) which is a relaxed version of DEQ1 (Defined in Section

2). A market-based algorithm (referred to as MBA) similar to those

presented in [28] [5] is proposed to generate allocations that are p-DEQ1

and Pareto optimal.

• It is then proven that for 2 non-identical agents, the market-based al-

gorithm guarantees an upper bound of
√
5+1
2
≈ 1.618 on the makespan.

• We then present how Parametric Pruning as in [1] can be combined with

the presented algorithms to improve the performance on the makespan.

It is proven that for 2 non-identical agents, the market-based algorithm

combined with Parametric Pruning guarantees an upper bound of 1.5

on the makespan (this is the best possible upper bound that can be

obtained by any polynomial time algorithm).

• We finally show through numerical results that the presented algo-

rithms almost always generate allocations with a near-optimal makespan.

• It must be noted that unlike a number of heuristics in the literature,

the presented algorithms do not have any hyper-parameters that need

to be tuned.

The obtained results are also presented in Tables 1.1, 1.2 and 1.2.

5

Table 1.1: Upper Bounds and Fairness for different algorithms

Identical Agents
2 Agents n Agents

UB Fairness UB Fairness
OTA(n) 1.33* DEQx 2− 2

n+1
* DEQx

OTA(n) + Pr 1.33* DEQx 2− 2
n+1

* DEQx

MBA 1.5 DEQ1 2− 2
n+1

p-DEQ1

MBA + Pr 1.5 DEQ1 2− 2
n+1

p-DEQ1

pairwise-MBA 1.5 DEQ1 - DEQ1
pairwise-MBA + Pr 1.5 DEQ1 - DEQ1

Pr: Pruning; UB: upper bound; *: Tight Bound; - : Not Known

Table 1.2: Upper Bounds and Fairness for different algorithms

Uniformly Related Agents
2 Agents n Agents

UB Fairness UB Fairness

OTA(n) 1.619 DEQx 1+
√
4n−3
2

DEQx

OTA(n) + Pr 1.619 DEQx 1+
√
4n−3
2

DEQx
MBA 1.619* DEQ1+PO - p-DEQ1+PO

MBA + Pr 1.5* DEQ1 + PO - p-DEQ1+PO
pairwise-MBA 1.619* DEQ1 - DEQ1

pairwise-MBA + Pr 1.5* DEQ1+PO - DEQ1+PO

Pr: Pruning; UB: upper bound; *: Tight Bound; - : Not Known

1.4 Organization of the thesis

The remainder of the thesis is structured as follows. Chapter 2 presents

the preliminaries and formulations pertaining to the makespan minimization

problem and the fair allocation problem. Chapter 3 presents the Opera-

tion Trading Algorithm for generating DEQx allocations along with all the

necessary proofs. Chapter 4 presents the DRGF protocol for decentraliza-

tion. Chapter 5 presents a Market Based Algorithm for generating partial-

DEQ1 allocations along with all the necessary proofs and upper bounds on

makespan. Following this, Chapter 6 shows how Parametric Pruning can be

used to improve the performances of the algorithms. Chapter 7 presents all

the numerical results and finally Chapter 8 presents the conclusions.

6

Table 1.3: Upper Bounds and Fairness for different algorithms

Non-Identical Agents
2 Agents n Agents

UB Fairness UB Fairness
OTA(n) - DEQx - DEQx

OTA(n) + Pr - DEQx - DEQx
MBA 1.619* DEQ1+PO - p-DEQ1+PO

MBA + Pr 1.5* DEQ1 + PO - p-DEQ1+PO
pairwise-MBA 1.619* DEQ1 - DEQ1

pairwise-MBA + Pr 1.5* DEQ1+PO - DEQ1+PO

Pr: Pruning; UB: upper bound; *: Tight Bound; - : Not Known

7

Chapter 2

Preliminaries

2.1 The Makespan Minimization Problem

The makespan minimization problem is a well-studied problem in the schedul-

ing literature. Makespan is defined as the maximum time required to com-

plete all the operations. This problem has numerous variations and assump-

tions. In this thesis we assume that there are n agents and m operations.

In the most general case, the agents may have different processing times for

the same operation. In such a case, the agents are said to be unrelated or

non-identical. Let the processing time for operation j corresponding to agent

i be vi,j. Then, the makespan minimization problem for non-identical agents

is captured by the following Integer Program:

min Z (2.1)
m∑
j=1

xi,jvi,j ≤ Z ∀i ∈ {1, 2, ..., n}, (2.2)

n∑
i=1

xi,j = 1 ∀j ∈ {1, 2, ...,m}, (2.3)

xi,j ∈ {0, 1} i ∈ {1, 2, ..., n}, j ∈ {1, 2, ...,m}. (2.4)

In this integer program, xi,j = 1 if operation j is assigned to agent i and 0 oth-

erwise. Z represents the makespan. As mentioned earlier, the makespan min-

imization problem tries to minimize the maximum completion time among

the agents. When there is no precedence order among operations and all op-

erations are available initially, this is equivalent to minimizing the maximal

workload on an agent.

8

2.2 Makespan Minimization for Uniformly Related

Agents

A special case of the makespan minimization problem that appears very often

in practice is the case where the agents are uniformly related, i.e., the ratio

of operating times between any two agents is a constant independent of the

operation. This special case models agents with different speeds. Let the

processing time for operation j by the slowest agent be tj and the speed of

agent i be fi. We assume without loss of generality that the speeds of the

agents are normalized with respect to the slowest agent (i.e. the speed of the

slowest agent has a value of 1). Therefore, the time required by agent i to

complete operation j is tj/fi. The makespan minimization problem for this

setting is captured by the following Integer Program:

min Z (2.5)
m∑
j=1

xi,j
tj
fi
≤ Z ∀i ∈ {1, 2, ..., n}, (2.6)

n∑
i=1

xi,j = 1 ∀j ∈ {1, 2, ...,m}, (2.7)

xi,j ∈ {0, 1} i ∈ {1, 2, ..., n}, j ∈ {1, 2, ...,m}. (2.8)

In this formulation, xi,j = 1 if operation j is assigned to agent i and 0

otherwise. Z represents the makespan.

2.3 Equitability and Fairness Concepts

Let [k] denote the set {1, 2, ..., k}. An instance of fair division of operations is

given by 〈[n], [m], V 〉 where [n] denotes the set of agents, [m] denotes the set

of operations with strictly positive valuations and V = {v1, v2, ..., vn} are the

valuation profiles for each of the agents. vi,j denotes the valuation (processing

time) for operation j corresponding to agent i. An allocation A is a partition

of [m] into n disjoint subsets, (A1, A2, ..., An), where Ai is the bundle given

to agent i. vi(Aj) denotes how much agent i values bundle j. That is, vi(Aj)

is the completion time of agent i if it were to process operations in agent

9

j’s bundle. We invoke the concept of equitability from the Fair Allocation

literature to equalize the completion times of agents and, in turn, minimize

overall makespan. A formal proof of this equivalence is shown in Chapter 3.

Definition 1. An allocation A is called equitable (EQ) if for all pairs of

agents i, k ∈ [n], we have vi(Ai) = vj(Aj).

However, an equitable allocation may not always exist. Thus, relaxed

equitability criteria have been defined in the literature. Most of the research

in fair allocation aims at proving the existence of allocations that satisfy the

relaxed fairness criteria and subsequently generating allocations that achieve

the relaxed fairness criteria through an efficient algorithm.

The concepts of DEQ1 and DEQx were presented in [5]. This reference

considers a scenario where each agent has a negative valuation for each

chore/operation, and each agent maximizes its personal total valuation.

In this thesis, we follow a different perspective. We consider a scenario

where every agent has a strictly positive valuation for each of the operations

and every agent tries to minimize its personal total valuation. The total valu-

ation of an agent here represents the agent’s “dis-utility.” This is equivalent

to trying to maximize the valuations if they were negative. This perspec-

tive also ties in with the makespan minimization problem as we shall see

later. Hence, we provide the following alternative but equivalent definitions

of DEQ1 and DEQx:

Definition 2. An allocation A is equitable up to one duplicated operation

(DEQ1) if for every pair of agents i, k ∈ [n] such that Ai 6= φ, there exists

some operation j ∈ Ai such that vi(Ai) ≤ vk(Ak ∪ j).

Definition 3. An allocation A is equitable up to any duplicated operation

(DEQx) if for every pair of agents i, k ∈ [n] such that Ai 6= φ and for every

operation j ∈ Ai, we have vi(Ai) ≤ vk(Ak ∪ j).

Additionally, we propose a new concept for fair allocation which we call

partial-DEQ1 (p-DEQ1) which is defined as follows:

Definition 4. An allocation A is partially equitable up to one duplicated

operation (p-DEQ1) if for every agent k ∈ [n], there exists an operation

j /∈ Ak such that maxi{vi(Ai)} ≤ vk(Ak ∪ j).

10

Along with equitability, Pareto optimality is an equally important concept

in the fair allocation literature. Pareto optimality is defined as follows:

Definition 5. An allocation A is said to be Pareto dominated by another

allocation B if vk(Bk) ≤ vk(Ak) for all agents k ∈ [n] with at least one of

the inequalities being strict. An allocation A is said to be Pareto Optimal

(PO) if there exists no other allocation that Pareto dominates the allocation

A. This Pareto Optimal front corresponds to the situation where every agent

looks to minimize its personal valuation.

11

Chapter 3

Generating DEQx Allocations: The Operation
Trading algorithm

3.1 The Operation Trading Algorithm

Using the definitions provided in Section 2, we define the Minimax poten-

tial function as Φ(Ai, Aj) = max{vi(Ai), vj(Aj)}. This is essentially the

makespan (for two agents i and j). We now present a simple algorithm

which we call the Operation Trading Algorithm (n) or OTA(n) (Algorithm

2) for n agents.

The algorithm starts with an initial allocation, or a random one if none ex-

ists. It then iterates through every possible pair of agents looking for improve-

ments. For any pair of agents i and j, we obtain allocations Anewi and Anewj

respectively by applying OTA(2) on i and j. Let the allocations for agents i

and j before applying OTA(2) be Aoldi and Aoldj , respectively. If the new Min-

imax Potential function, Φ(Anewi , Anewj) is lesser than Φ(Aoldi , Aoldj), the old

allocations get replaced by the new allocations. The algorithm terminates

when there exists no pair of agents whose makepsan (Potential function) can

be further improved. OTA(n) calls the algorithm OTA(2) repeatedly, so we

now discuss OTA(2).

Consider any two agents i and j. In every iteration of the while loop,

OTA(2) (Algorithm 1) finds an operation which if transferred from one agent

to another leads to the maximum decrease of the potential function, Φ; i.e.,

a greedy approach is used. The algorithm converges once there exists no

operation transfer that leads to a decrease in Φ. At any iteration, if vi(Ai) <

vj(Aj), the algorithm looks for operations to transfer from Aj to Ai and

vice-versa if vi(Ai) > vj(Aj).

In OTA(n), for every pair of agents OTA(2) is invoked, and the correspond-

ing Minimax Potential function either improves or stays the same. Thus, the

total valuation of the agent with the highest load cannot increase. Once, the

12

Algorithm 1: OTA(2)

1: Initialize allocation (perhaps randomly) (Ai, Aj)
2: flag = 0
3: Φ(Ai, Aj) = max(vi(Ai), vj(Aj))
4: while flag == 0 do
5: P = Φ(Ai, Aj)
6: if vi(Ai) < vj(Aj) then
7: k = arg max

c∈Aj
(P − Φ(Ai ∪ {c}, Aj\{c}))

8: ∆P = (P − Φ(Ai ∪ {k}, Aj\{k}))
9: if ∆P > 0 then

10: Transfer operation k from Aj to Ai
11: else
12: flag = 1
13: end if
14: else
15: k = arg max

c∈Ai
(P − Φ(Ai\{c}, Aj ∪ {c}))

16: ∆P = (P − Φ(Ai\{k}, Aj ∪ {k}))
17: if ∆P > 0 then
18: Transfer operation k from Ai to Aj
19: else
20: flag = 1
21: end if
22: end if
23: end while

13

valuation of the agent with the highest load ceases to decrease, the valua-

tion of the agent with the second highest load starts decreasing till it cannot

decrease any more. Following this, the valuation of the agent with the third

highest load starts decreasing and so on. Due to the discrete nature of the

problem, this cannot continue indefinitely. Thus, the algorithm must always

converge. This algorithm can be seen as pairs of agents trading operations

between themselves until the potential value cannot decrease further, and

hence the name Operation Trading Algorithm.

Algorithm 2: OTA(n)

1: imp flag = 1; Begin with allocations (A1, A2, ..., An)
2: while imp flag == 1 do
3: imp flag = 0
4: for i = 0 : N do
5: for j = 0 : N do
6: P old ← Φ(Ai, Aj)
7: Apply OTA(2) on i and j
8: Anewi ← Alloc. obtained by OTA(2) for i
9: Anewj ← Alloc. obtained by OTA(2) for j

10: P new ← Φ(Anewi , Anewj)
11: if P new < P old then
12: imp flag = 1
13: Ai ← Anewi

14: Aj ← Anewj

15: end if
16: end for
17: end for
18: end while

Theorem 1. OTA(n) always generates an allocation that is DEQx even for

general valuation functions.

Proof. Once OTA(n) converges, no pair of agents exists whose corresponding

Minimax Potential function can be improved. Let us consider any pair of

agents i and j.

The valuations for both the agents may or may not be equal. In the case

that the valuations are equal, the allocation is already DEQx for the pair of

agents i and j. In the case that they are not equal, without loss of generality

we assume that vi(Ai) < vj(Aj). Since the state has converged, transfer

14

of any operation c from Aj to Ai must lead to an increase in the potential

function Φ(Ai, Aj). This gives us the following:

max{vi(Ai ∪ c), vj(Aj\c)} > max{vi(Ai), vj(Aj)},∀c ∈ A2

=⇒ vi(Ai ∪ c) > vj(Aj) ∀c ∈ A2. (3.1)

By definition, Equation (3.1) directly implies a DEQx allocation for the

pair i and j. Since Equation (3.1) holds for every pair of agents, OTA(n)

always leads to a DEQx allocation. Note that the proof does not make any

assumption about the valuation functions except that they are monotonically

increasing in addition of operations. Thus, the algorithm generates a DEQx

allocation even for general valuation functions.

Theorem 2. If the agents are uniformly related, all the possible allocations

are Pareto Optimal, i.e., a decrease in the completion time of some agent

is always accompanied by an increase in the completion time of some other

agent.

Proof. Let us assume that the statement is not true. Then, there must

exist some allocation B that strictly Pareto dominates A. Thus, vi(Bi) ≤
vi(Ai)∀i ∈ [n] and vi(Bi) < vi(Ai) for at least one i ∈ [n]. Thus, we have:

n∑
i=1

fivi(Bi) <
n∑
i=1

fivi(Ai). (3.2)

However, we know that

n∑
i=1

fivi(Bi) =
n∑
i=1

fivi(Ai) =
m∑
j=1

tj, (3.3)

where tj is the operating time of operation oj if the speed of agent was 1.

This is in contradiction to Equation (3.2). Thus, our initial assumption was

wrong and there exists no allocation B that Pareto dominates A.

15

3.2 Upper Bound of OTA(n) for Identical Agents

Theorem 3. OTA(n) for n identical agents always leads to an allocation

with makespan not more than κn
((κ−1)n+1)

z∗ where κ is the number of opera-

tions allocated to the agent with the highest valuation and z∗ is the optimal

makespan. Further, this upper bound is tight for a given value of κ and n.

Proof. Let A be the allocation obtained from OTA(n). Without loss of gen-

erality, we assume agent 1 to be the agent with the highest completion time.

Thus, v1(A1) is also the value of makespan. Let the optimal makespan value

be z∗.

Since, the agents are identical, we have:

z∗ ≥
∑n

i=1 vi(Ai)

n
(3.4)

=⇒ v1(A1) ≤ z∗ +

∑n
i=2(v1(A1)− vi(Ai))

n

=⇒ v1(A1)

z∗
≤ 1 +

∑n
i=2(v1(A1)− vi(Ai))

nz∗

≤ 1 +

∑n
i=2(v1(A1)− vi(Ai))∑n

i=1 vi(Ai)
. (3.5)

Now, since the allocation is DEQx, we have that:

v1(A1) ≤ vj(Aj ∪ g) ∀g ∈ A1,∀j ∈ [n]\1

≤ vj(Aj) + vj,g ∀g ∈ A1,∀j ∈ [n]\1

≤ vj(Aj) +min
g
{vjg} ∀j ∈ [n]\1

≤ vj(Aj) +
v1(A1)

κ
∀j ∈ [n]\1, (3.6)

where κ is the number of operations allocated to agent 1. It can be observed

that min
g
{vjg} ≤ v1(A1)

κ
and hence we obtain the inequality (3.6). Combining

inequalities (3.5) and (3.6), we get

v1(A1)

z∗
≤ κn

((κ− 1)n+ 1)
. (3.7)

Figure 3.1 presents an instance where this bound is tight. Here we have

agent 1 with κ operations each of length of a and n − 1 agents each with a

large number of infinitesimally small operations such that the total length is

16

(κ − 1)a. It can be observed that the allocation is DEQx and thus a valid

output of OTA(n).

Figure 3.1: Example illustrating UB in Theorem 3 is tight

Corollary 3.1. The upper bound (UB) on the makespan of n identical agents

induced by OTA(n) is 2− 2
n+1

.

Proof. Let agent 1 be the agent with the highest completion time. From

Theorem 3, we know that the UB is given by κn
((κ−1)n+1)

where κ is the number

of operations allocated to agent 1. κ = 1 implies that agent 1 has only

one operation. Since, the completion time of agent 1 is the highest, the

completion time of the operation belonging to agent 1 is also the highest.

Thus, the obtained makespan is an optimal one. Therefore, we only need to

analyze cases for κ ≥ 2.

=⇒ κn

((κ− 1)n+ 1)
≤ 2n

n+ 1

=⇒ κn

((κ− 1)n+ 1)
≤ 2− 2

n+ 1
= UB. (3.8)

The upper bound in Corollary 3.1 occurs in the worst case when κ is not

guaranteed to be greater than 2. However, there may be several applications

where the lower bound on κ is higher. For example, if the sum of the 3 largest

operations is less than the average load for identical agents, κ ≥ 4 and the

admitted upper bound is 4/3. As the lower bound on κ increases, the upper

bound admitted by OTA(n) improves as well.

17

It must be observed that there are other algorithms for makespan mini-

mization on identical agents such as the Graham’s List Scheduling algorithm

which admits an upper bound of 2− 1
n

[7] and the Longest Processing Time

rule [7] which has an upper bound of 4
3
− 1

3n
. However, these algorithms are

not defined for non-identical agents. On the contrary, OTA(n) is designed

to generate a DEQx allocation for non-identical agents with general valua-

tion functions. Additionally, the algorithm admits an upper bound on the

makespan for identical agents as well.

3.3 Upper Bound of OTA(n) for Uniformly Related

Agents

Theorem 4. OTA(n) generates an allocation with approximation factor
1+
√
4n−3
2

, where n is the number of uniformly related agents.

Proof. Without loss of generality, we assume that agent 1 has the highest

completion time. By design of OTA(n), for every agent i we have:

vi(Ai) +
f1
fi
tmin1 ≥ v1(A1)

=⇒ fivi(Ai) + f1t
min
1 ≥ fiv1(A1), (3.9)

where tmin1 is the smallest operation belonging to agent 1. The optimal

makespan must be greater than or equal to the time taken by the fastest

agent to complete the smallest operation in agent 1. This gives us:

z∗ ≥ f1t
min
1

fu
, (3.10)

where u is the index of the fastest agent. The optimal makespan must also

be larger that the weighted average of all the completion times. This gives

us:

z∗ ≥
∑n

i=1 fivi(Ai)∑n
i=1 fi

. (3.11)

18

By combining Equations (3.9) and (3.10), we get:

fivi(Ai) + fuz
∗ ≥ fiv1(A1) ∀i ∈ 2, 3, ..., n

=⇒
n∑
i=1

fivi(Ai) + (n− 1)fuz
∗ ≥ v1(A1)

n∑
i=1

fi. (3.12)

By combining Equations (3.11) and (3.12), we get:

v1(A1)

z∗
≤ 1 +

(n− 1)fu∑n
i=1 fi

. (3.13)

Since Equation (3.9) holds for agent u as well, we have:

fuvu(Au) + f1t
min
1 ≥ fuv1(A1)

=⇒
n∑
i=1

fivi(Ai) ≥ fuv1(A1)

=⇒ z∗
n∑
i=1

≥ fuv1(A1)

=⇒ v1(A1)

z∗
≤
∑n

i=1 fi
fu

. (3.14)

From Equations (3.13) and (3.14), we get:

v1(A1)

z∗
≤ max

(∑n
i=1 fi
fu

, 1 +
(n− 1)fu∑n

i=1 fi

)
. (3.15)

The approximation factor, v1(A1)
z∗

is maximum when the 2 arguments in the

max function are equal. Let y =
∑n
i=1 fi
fu

. Then, we get y = 1 + n−1
y

. Solving

this for y gives us y = 1+
√
4n−3
2

. Thus, the approximation factor is given by
1+
√
4n−3
2

.

Corollary 4.1. The makespan of the allocation obtained using OTA(2) does

not exceed 1.618z∗ where z∗ is the optimal makespan.

Proof. If we put n = 2 in the approximation factor for OTA(n), we get
1+
√
5

2
= 1.618.

We assume without loss of generality that the agent 1 has the highest

completion time.

19

Corollary 4.2. If in the allocation A obtained by OTA(n), all the comple-

tion times of agents 2, 3, ..., n are either greater than v1(A1)
2

or less than
v1(A1)

2
simultaneously, the makespan v1(A1) ≤ 2z∗, where z∗ is the optimal

makespan.

Proof. We have the following 2 cases:

• Case 1: vj(Aj) ≤ v1(A1)
2

∀j ∈ [n]\1.

Since A is obtained using the OTA(n) algorithm, we have:

v1(A1) ≤ vj(Aj ∪ g) ∀g ∈ A1, ∀j ∈ [n]\1

≤ vj(Aj) +
fitg
fj

∀g ∈ Ai,∀j ∈ [n]\1

=⇒ vi(Ai)

2
≤ fitmin

fj
∀g ∈ Ai,∀j ∈ [n]\1.

Since, at least one operation in agent 1 must be misplaced for the allo-

cation to not be optimal, fitmin
fj

becomes a lower bound on the optimal

makespan z∗. Thus, z∗ ≥ vi(Ai)
2

. This implies that v1(A1) ≤ 2z∗.

• Case 2: vj(Aj) ≥ v1(A1)
2

∀j ∈ [n]\1.

In this case, all completion times are larger than v1(A1)
2

. Since all pos-

sible allocations are Pareto Optimal for uniformly related agents, there

exists no allocation whose makespan is less than v1(A1)
2

. Thus, we have

v1(A1) ≤ 2z∗.

Corollary 4.3. If in the allocation A generated using OTA(n), the agent

with the largest completion time is also the slowest agent and has at least 2

operations allocated to it, the upper bound on the makespan cannot exceed 2.

Proof. Without loss of generality, we assume that agent 1 has the highest

completion time. Since, the allocation is being generated using OTA(n), we

have:

vi(Ai) +
f1
fi
tmin ≥ v1(A1)

=⇒ vi(Ai) +
f1
κfi
≥ v1(A1). (3.16)

20

where κ is the number of operations in agent 1 under allocation A.

A valid lower bound on the optimal makespan z∗ is given by:

z∗ ≥
∑n

i=1 fizi∑n
i=1 fi

(3.17)

=⇒ UB ≤
1 + f2

f1
+ ...+ fn

fi

1 + f2
f1

+ f3
f1

+ ...+ fn
f1
− (n−1)

κ

. (3.18)

The last inequality is obtained by combining (3.17) with (3.16). Now, since

agent 1 is the slowest agent, we have fi
f1
≥ 1∀i ∈ [n]. From this, we get:

UB ≤ 2n

2n+ 1
< 2. (3.19)

3.4 Upper Bounds for Practical Scenarios with

Uniformly Related Agents

In most practical scenarios, the ratio between the speeds of any two agents is

lower bounded by a small finite value. Thus, the ratios fi
f1

are lower bounded,

where f1 is the speed of agent 1 i.e., the agent with highest completion

time. Note that agent 1 need not be either the fastest or the slowest agent.

Further, the number of operations belonging to the agent with the highest

completion time, κ also has a lower bound in most practical cases. We can

use these bounds that occur in practical scenarios to analyze the worst case

performance in said practical scenarios and also get an intuition behind the

working of the algorithm. Below, we present the Upper Bounds for different

values of lower bounds on κ and fi
f1

obtained from Equation (3.18).

The variable κ will be guaranteed to have a lower bound K in a setting

if the sum of the operating times of K slowest operations on the slowest

processor is less than the value of z∗ given by Equation (3.17).

21

Table 3.1: Upper Bounds on the makespan for different lower bounds on κ
and fi

f1
.

Lower Bound on κ fi
f1
≥ 1 fi

f1
≥ 3

4
fi
f1
≥ 2

3
fi
f1
≥ 1

2

1 n - - -
2 2.0 3.0 4.0 -
3 1.5 1.8 2.0 3.0
4 1.33 1.5 1.6 2.0
5 1.25 1.36 1.42 1.66
6 1.2 1.28 1.33 1.5
7 1.16 1.23 1.27 1.4
8 1.14 1.2 1.23 1.33
9 1.12 1.17 1.2 1.28
10 1.11 1.15 1.17 1.25

3.5 Advantages of the Operation Trading Algorithm

We observed in the previous section that OTA(n) generates a DEQx alloca-

tion for n non-identical agents. Apart from this, the algorithm also guaran-

tees an upper bound of 2 − 2
n+1

. We present a few observations about the

practical importance of OTA(n):

• Decentralizable: Since this algorithm consists of forming pairs and

exchanging operations between them, this can be implemented as a

decentralized algorithm.

• Parallelizable: Since pairs of agents trading operations can be inde-

pendent, the algorithm is highly parallelizable.

• Dynamic: If new pop-up(s) appear, they can be assigned arbitrarily

to any agent. Then, the agent performs the operation trading with

other agents to distribute its load.

• Robust: If an agent malfunctions, all of its operations can get assigned

randomly to other agents which can then be followed by the OTA(n).

• Stochastic Processing Times: If an operation is taking unexpect-

edly longer time or finished faster than expected, the trading operations

can help redistribute the load.

• Partial Connectivity: The algorithm can operate under partial con-

nectivity by performing Operation Trading among connected agents

22

only. Although the performance may degrade, the algorithm will not

fail completely.

In the next chapter, we present a simple implementation of OTA(n) in a

decentralized manner, named as Dec-OTA(n). Later in the results section,

we evaluate the performance of Dec-OTA(n) on a network of agents that are

not fully connected and show the effectiveness of the algorithm empirically.

23

Chapter 4

Decentralized OTA(n) (Dec-OTA(n))

In OTA(n), iterations through every possible pair of agents are being per-

formed by a central computer. Now, consider the setting where a set of

uniformly related agents are present in a communication degraded environ-

ment and the agents must form groups in a decentralized manner to perform

Operation Trading (OTA(2)) between themselves. We must design a proto-

col by which agents can trade operations with as many as agents as possible

in a decentralized manner given some partially connected communication

graph between the agents. To achieve this, we propose the following simple

protocol for each agent, agent i:

1. Generate a random number, γi from a uniform distribution with a

predefined range (same for every agent).

2. Broadcast the number γi to all neighbors in the communication graph.

3. Receive the set of random values, Γ = {γj : j ∈ nbr(i)}.

4. k ← arg maxj γj ∀γj ∈ Γ.

5. Send allocation Ai to agent k for operation trading if γk > γi.

6. H = {j : j sent its allocation to i}.

7. After the updated allocation Ai is received from k, perform OTA(n)

with the set of agents H ∪ i.

8. Return updated allocations of every agent in H.

The agents run multiple iterations of this protocol to minimize the makespan.

It can be observed that since the protocol forms groups using random num-

bers at every iteration, every pair of agents that have an edge between them-

selves perform operation trading with each other with a positive probability.

24

Further, if two disconnected agents have a common agent in their neighbor-

hoods, they get to trade operations with each other with a certain probability.

We call this protocol the Decentralized Random Group Formation (DRGF)

protocol and the overall algorithm Decentralized OTA(n) (Dec-OTA(n)). It

must be noted that the upper bounds on the makespan derived for OTA(n)

do not hold for Dec-OTA(n) when the agents are partially connected.

Theorem 5. The DRGF protocol does not lead to a deadlock under the

assumption that the communication graph does not change during the con-

sidered iteration of group formation.

Proof. Let us assume that the DRGF protocol leads to a deadlock. This

implies that every agent is waiting to receive its updated allocation from the

agent it had sent its allocation to. This is possible only if a loop has formed

along which every agent has sent its allocation to the next agent. Consider

the loop of agents 1, 2, ..., k, 1 where every agent has sent its allocation to the

agent on its right. From this we get:

γk > γk−1 > ... > γ1. (4.1)

Since, agent k sends its allocation to agent 1, we also have:

γ1 > γk. (4.2)

This is however in contradiction to the Equation (4.1). Thus, we can

conclude that the DRGF protocol does not enter into a deadlock.

Lemma 1. In Dec-OTA(n), every agent trades operations with every other

agent with probability 1 when we have a fully connected graph.

Proof. If we have a fully connected graph, the agent with the highest random

value receives all the allocations and performs the OTA(n) algorithm. Thus,

every possible pair of agents is considered in this case.

Corollary 5.1. Dec-OTA(n) is guaranteed to converge after a finite number

of iterations.

Proof. To prove that the OTA(n) converges even when implemented in a

decentralized manner on a partially connected graph, we use the same po-

tential function argument that was used to prove the convergence of OTA(n).

25

Every time the OTA(n) function is called, the makespan either reduces or

stays the same. Since the makespan cannot decrease indefinitely, it ceases to

decrease after a finite number of iterations. Following this, the second high-

est completion time starts decreasing. After the second highest completion

time stops decreasing, the third highest completion time starts decreasing

and so on. When the lowest completion time stops decreasing, the algorithm

converges.

Figure 4.1: Example illustrating the DRGF protocol

Example 1. Figure 4.1 illustrates an example of the DRGF protocol where

some agent i is represented as node ai. An undirected edge between 2 agents

represents a 2 way communication link between them. Each agent generates

a random number between 1 and 10 which is shown adjacent to the node.

It can be observed that under the protocol, agents a0, a1 and a3 send their

allocations to a2 for processing. Agents a4 and a7 send their allocations to a6

while a5 sends its allocation to a4. a4 waits for a6 to update its allocation.

Following this, a4 performs OTA(n) using the allocations of a4 and a5. a4

then returns the updated allocation of a5 back to its owner. It can also be

observed in this example that, even though a0 and a3 cannot communicate

directly, they get to trade operations with each other via a2.

4.1 Limitations of the Operation Trading Algorithm

If the agents are identical or uniformly related, all possible allocations are

Pareto Optimal. However, if we have non-identical agents, this is not true.

Under such circumstances, OTA(n) may generate allocations that are far

from the Pareto Optimal front. Thus, OTA(n) does not give any acceptable

26

upper bound on the makespan for non-identical agents. This leads us to

the next chapter where we present a Market Based Algorithm (referred to

as MBA) to generate allocations that are guaranteed to satisfy the p-DEQ1

fairness criteria as well as Pareto Optimality. It is shown that guaranteeing

these two properties automatically leads to an upper bound of 1.618 on the

makespan for 2 non-identical agents. Further, the effectiveness of the algo-

rithm in generating allocations with near optimal makespan for any number

of non-identical agents is shown empirically in the results section.

27

Chapter 5

A market based algorithm for generating
partially-DEQ1 + PO allocations

5.1 Preliminaries and Definitions for Market-Based

Algorithm

Let M = 〈[n], [m], V, s〉 represent an instance consisting of n agents, a set

of m divisible operations, a valuation V and a vector s = (s1, s2, ..., sn)

where si is the total amount of money allocated to agent i. We also define

a reward vector r = (r1, r2, ..., rm) where rj is the reward corresponding to

operation j. The Bang per Buck ratio of agent i for operation j is given by

βij = vij/rj. The Minimum Bang per Buck ratio of agent i is βi = minjβij.

The Minimum Bang per Buck set of agent i is the set of all operations

that minimize the Bang per Buck ratio for agent i, i.e., MnBBi = {j ∈
[m] : vij/rj = βi}. Intuitively, the Bang per Buck ratio in this setting

represents the cost incurred per unit of reward for performing an operation.

The cost/valuation may represent the time taken to perform the operation

or the effort required to perform the operation. Finally, as in Section 2.1,

xij = 1 if operation j is assigned to agent i and 0 otherwise.

Theorem 6. Given an instance M = 〈[n], [m], V, s〉 and a reward vector r,

an allocation A is fractionally Pareto Optimal if the following conditions are

satisfied:

1. For each operation j ∈ [m],
∑n

i=1 xij = 1, i.e., all the operations are

completely allocated.

2. For each agent i ∈ [n],
∑m

j=1 xijrj = si, i.e., each of the agents perform

operations with total rewards worth exactly equal to the money given to

it.

3. For every agent i and every operation j allocated to agent i, we have

j ∈MnBBi, i.e., each agent’s allocation is a subset of its MnBB set.

28

Proof. Let us consider an instance M
′

= 〈[n], [m], V
′
, s〉, where V

′
= −V .

Therefore, M
′

has negative valuations. Let A be the allocation under M

satisfying the 3 conditions in the theorem. It is easy to observe that any

Minimum Bang per Buck set in M is the Maximum Bang per Buck set in M
′

(Since V
′

= −V). The 3 conditions thus imply a Fisher Market equilibrium

for A under M
′
. Using the first welfare theorem, it can be stated that the

allocation A is fractionally PO under M
′
[29]. Since V

′
= −V , the allocation

A must be fractionally PO under the instance M as well. This proves the

theorem.

MnBB-allocation graph and alternating paths: Let A denote an in-

tegral allocation and r denote a reward vector. A MnBB allocation graph

is an undirected bipartite graph G with vertex set [n] ∪ [m] and an edge

between agent i and operation j if either j ∈ Ai (called an allocation edge)

or j ∈ MnBBi (called an MnBB edge). Any allocation is said to be MnBB

consistent if each agent’s allocation is a subset of its MnBB set. In such an

allocation, the allocation edges are a subset of MnBB edges.

We define an alternating path P = (i, j1, i1, j2, . . . , iu−1, ju, k) from agent

i to agent k as a series of alternating allocations and MnBB edges such that

j1 ∈ Ai ∩ MnBBi1 , j2 ∈ Ai1∩ MnBBi2 and so on. If such a path exists, agent

k is said to be reachable from agent i. The length of such a path is 2u since

it consists of u allocation edges and u MnBB edges. Figure 5.1a shows the

alternating path P along with the allocation edges (represented using solid

edges) and MnBB edges (represented using dotted edges).

Reference Agent and Reachability Set: The agent with the largest

total valuation is called the reference agent. All the alternating paths are

constructed from this reference agent. Let the reference agent be denoted

by h. We define the level of an agent k as half the length of the shortest

alternating path from h to k if one exists, otherwise the level of k is set to n.

The level of the reference agent is defined to be 0. The reachability set Rh

of the reference agent h is defined as a level-wise collection of all agents that

are reachable from h. Thus, Rh = (R0
h, R

1
h, R

2
h, ...), where Ru

h denotes the set

of agents that are at level u with respect to agent h.

Violators and Path Violators: An agent k is said to be a violator if there

does not exist an operation j ∈ [m]\Ak such that vk(Ak ∪ j) ≥ vh(Ah). An

allocation A is p-DEQ1 if and only if there are no violators.

29

(a) Alternating Path (b) Before Transfer of j (c) After Transfer of j

Figure 5.1: MnBB-allocation graphs and Alternating Paths

An agent k ∈ Ri is a path violator with respect to the alternating path

P = (i, j1, i1, j2, i2, ..., iu−1, ju, k) if vk(Ak ∪ ju) < vi(Ai). It must be noted

that a path violator need not be a violator. However, if an agent is not a path

violator, it is definitely not a violator as well. Similarly, given any ε > 0,

an agent k is an ε-path violator with respect to the alternating path P if

(1 + ε)vk(Ak ∪ ju) < vi(Ai).

ε-rounded instance: In an ε-rounded instance, the valuations are either 0

or a positive integral power of (1 + ε), where ε > 0. Let us assume that we

have an instance I with valuations vij corresponding to every agent i and

every operation j. From this, we generate an ε-rounded instance I
′

with

valuations wij ∀i ∈ [n] and ∀j ∈ [m] using the following expression:

wij =

(1 + ε)dlog1+εvije, if vij > 0

0, otherwise.
(5.1)

This expression rounds vij to the closest exponent of (1 + ε).

5.2 Market Based Algorithm for partial-DEQ1 + PO

allocation

In this section, we present an algorithm to generate a partial-DEQ1 alloca-

tion. We first generate an ε-rounded instance I
′

= 〈[n], [m],W 〉 given an

input instance I = 〈[n], [m], V 〉. The instance I
′

is then used as an input to

the algorithm.

30

The algorithm has three phases. In the first phase, each operation is

assigned to the agent which has the lowest valuation for it. If the valuation

represents time, the operation gets assigned to the agent that performs it the

fastest. The rewards for each of the operations are initialized to the valuation

of the operation corresponding to the agent it is allocated to. Since the

rewards are equal to the valuations in this initialization procedure, the Bang

per Buck ratio for each of the agents is also 1. If the allocation at the end of

Phase 1 is ε-p-DEQ1, the algorithm returns this allocation and terminates;

otherwise, there must exist an ε-violator and we proceed to Phase 2.

Phase 2 performs a level-by-level search for an ε-path violator in the reach-

ability set of the reference agent starting from level u = 1. As soon as an

ε-path violator is found along some alternating path P , the algorithm per-

forms a transfer of operation from the agent preceding the ε-path violator to

the ε-path violator along the path P . Since, the transfer takes place along

the MnBB edges, the resultant allocation is also MnBB consistent and thus

PO. Figures 5.1b and 5.1c show the transfer of operation j from iu to iu+1.

After the transfer takes place, the algorithm restarts the Phase 2. Phase 2

terminates if there are no ε-path violators or if the allocation is ε-p-DEQ1.

If there are no ε-path violators, the algorithm moves to Phase 3.

In Phase 3, the rewards for all the reachable operations are raised uniformly

until a previously non-reachable agent becomes reachable due to a new MnBB

edge. After an edge has been added, the algorithm again goes back to Phase

2.

5.3 Convergence and Complexity of Proposed MBA

The proof of convergence of this algorithm relies on several intermediate

results. We first start with the analysis of Phase 2 of the algorithm. Let ht

denote the reference agent at time step t and Rht denote the reachability set

at time step t. The level of an agent i is defined as

level(i, t) =

u if i ∈ Ru
ht

n otherwise.
(5.2)

The level of the reference agent is thus 0. The level of any agent belonging

to the reachability set cannot be more than n− 1. An operation j is said to

31

Algorithm 3: Market Based Algorithm

1: Phase 1 : Initialization
2: Assign j ∈ [m] to agent i if i ∈ arg min

k∈[n]
(wkj)

3: r ← { rj = wij, if j ∈ Ai, ∀j ∈ [m] }
4: if A is ε− p−DEQ1 then
5: return A
6: end if
7: Phase 2 : Remove path violators in reachable agents
8: h ← reference agent in A
9: Rh ← Reachability set of h

10: u = 1
11: while Ru

h is non-empty and A is not ε-p-DEQ1 do
12: if i ∈ Ru

h is ε path violator along alternating path
P = (h, j1, i1, ..., iu−1, j, i) then

13: Ai ← Ai ∪ {j}
14: Aiu−1 ← Aiu−1\{j}
15: Repeat Phase 2 starting from Line 8
16: else
17: u← u+ 1
18: end if
19: end while
20: if A is ε− p−DEQ1 then
21: return A
22: end if
23: Phase 3 : Price Rise to add edges
24: ∆← mini∈[n]\Rh,j∈ARh

wij
βi×rj ,

where ARh = ∪i∈RhAi (set of reachable operations)
25: for all operation j ∈ ARh do
26: rj ← ∆.rj
27: end for
28: Repeat Phase 2 starting from Line 8

32

be critical to an agent i at level u and at time t if j is allocated to the agent

i and is also a part of some alternating path of length u+ 1 originating from

the reference agent. Git denotes the set of all critical operations belonging

to agent i at time step t.

Lemma 2. There can be at most O(poly(m,n)) consecutive swaps in Phase

2 before either the identity of the reference agent changes or a Phase 3 step

occurs.

Proof. Consider a potential function F (t) defined as

F (t) =
∑
i∈[n]

(m(n− level(i, t)) + |Git|), (5.3)

where |Git| is the cardinality of set Git. Note that the value of |Git| cannot

exceed m. The smallest value of level(i, t) = 0. Thus, the value of F (t)

cannot exceed
∑

i∈[n]m(n + 1) = mn(n + 1) which is a polynomial in terms

of both m and n. Also, the value of F (t) can never be negative.

Let iu and iu+1 be two agents on an alternating path at level u and u +

1, respectively. Now, consider a transfer of operation j from agent iu to

iu+1. Since this transfer does not affect the part of alternating path that

comes between agent ht and iu, the level of iu stays the same. However, the

agent loses an operation from its set of critical operations. Thus, |Giu(t+1)|=
|Giut|−1. This leads to a decrease in the potential function F (t) by 1. Now,

let us consider the change in the potential function contributed by agent iu+1.

After the transfer takes place, the agent iu+1 is not connected to ht via the

initial alternating path anymore since we now have a solid edge between j

and iu+1. This is illustrated in the Figures 5.1b and 5.1c. There are two

possibilities remaining. The first is that the agent iu+1 /∈ Rht+1 . In this case,

the level of agent iu+1 increases and |Giu+1,t| becomes 0. The potential value

therefore decreases. In the other case, there is a different alternating path

between ht and iu+1. The length of such an alternating path must be at least

as much as the initial alternating path and thus, the level of iu+1 either stays

the same or increases. It can be observed that the operation j cannot be

a part of any alternating path and thus the newly added operation j does

not contribute towards |Giu+1t|. Thus, the contribution of agent iu+1 to the

potential function is either 0 or negative.

Now, we finally consider the rest of the agents. The swap may introduce

33

new alternating paths. New alternating paths are introduced only when the

level of an agent increases. It can be observed that the level of an agent

cannot decrease since that would imply the existence of a shorter alternating

path than the one considered at time step t. The level term in the potential

function is scaled by a value of m. Thus, the decrease in F (t) due to increase

in the level of an agent cannot be negated by the increase in the number of

critical operations introduced due to the new alternating paths. Again, the

potential function either stays the same or decreases.

This proves that after every swap, the potential function must decrease by

at least 1. Since, the potential function is upper bounded by poly(m,n), there

can be at most O(poly(m,n)) consecutive swaps in Phase 2 before either the

identity of the reference agent changes or Phase 3 occurs.

Lemma 3. Consider any set of consecutive Phase 2 steps during the execu-

tion of the Market Based algorithm. Assume that the reference agent h turns

to a non-reference agent during the time step t. Let t′ > t be the first time

step after t at which h once again becomes a reference agent. Then, either

Ath is a strict superset of At
′

h or wh(A
t′

h) < 1
1+ε

wh(A
t
h) where Ath is the bundle

of operations belonging to agent i at time step t.

Proof. Agent h turns from a reference agent to a non-reference agent at time

step t by losing an operation. Thus, At+1
h is a strict subset of Ath. If the agent

never gains an operation between iterations t + 1 to t′, we have that Ath is

a strict superset of At
′

h . Let us now assume the case where agent h gains at

least one operation between the iterations t+ 1 to t′.

Among all the time steps between t+ 1 and t′, let τ be the last time step

at which agent h gains an operation. Let hτ be the reference agent at time

step τ . Since the total valuation of the reference agent never increases, we

have

whτ (A
τ
hτ) ≤ wh(A

t
h). (5.4)

Let g be the operation gained by agent h at time step τ . An agent that gains

an operation must be an ε-path violator. Thus,

(1 + ε)wh(A
τ
h ∪ g) < whτ (A

τ
hτ). (5.5)

34

Since h does not gain any operation between τ and t′, we get

wh(A
t′

h) ≤ wh(A
τ
h ∪ g). (5.6)

From Equations (5.4), (5.5) and (5.6), we have

wh(A
t′

h) <
1

1 + ε
wh(A

t
h).

Lemma 4. The total valuation of the reference agent decreases by a factor

of at least (1 + ε) after O(poly(m,n)) consecutive iterations of Phase 2.

Proof. From Lemma 3, we know that the total valuation of the reference

agent either decreases by a factor of 1 + ε or loses an operation when it

cycles back to being the reference agent. After n changes in the identity of

the reference agent, there must be some agent that cycles back to being the

reference agent. An agent cannot lose more than m operations consecutively.

Thus, after O(mn) changes in the identity of the reference agent, the total

valuation of the reference agent must decrease by a factor of at least 1+ε. We

also know from Lemma 2 that the identity of the reference agent changes after

O(poly(m,n)) iterations. Thus, the total valuation of the reference agent

must decrease by a factor of at least 1 + ε after O(poly(m,n)) iterations.

Lemma 5. There can be at most O(poly(m,n, 1/ε)) consecutive iterations

of Phase 2 before Phase 3 starts.

Proof. In Phase 1 of the algorithm, each operation is assigned to the agent

with minimum valuation for it. In the worst case, all the operations get

assigned to a single agent. Thus, the largest total valuation for an agent is

given by

Tmin =
∑
j∈[m]

min
i
{wij}. (5.7)

Ideally, this load should get equally distributed between all the agents.

Thus, the total valuation of the reference agent can never be lower than

Tmin/n. From Lemma 4, we know that the total valuation of the reference

agent decreases by a factor of 1+ ε after O(poly(m,n)) consecutive iterations

of Phase 2. If the maximum number of iterations of Phase 2 before Phase 3

35

starts is µ, we have
Tmin
n

(1 + ε)
µ

poly(m,n) ≤ Tmin

=⇒ µ ≥ ln(n)

ln(1 + ε)
poly(m,n). (5.8)

Now, for every ε ∈ (0, 1), we have 1
ln(1+ε)

≤ 2
ε
. Thus, there can be at most

O(poly(m,n, 1/ε)) consecutive iterations of Phase 2.

We now move to the analysis of Phase 3 of the algorithm. Let Et be the

set of all ε-violators at time step t. Then, with ht as the reference agent at

time step t, Et is defined as:

Et = {k ∈ [n] : (1 + ε)wk(A
t
k ∪ j) < wht(A

t
ht);∀j ∈ [m]\Atk}.

Lemma 6. We always have Et′ ⊆ Et if t < t′.

Proof. Let t and t′ be two consecutive Phase 3 time steps and Atk be the

bundle of operations belonging to agent k at time step t. Proving the result

for two consecutive Phase 3 time steps is enough. Since, t and t′ are two

consecutive Phase 3 time steps, time steps t+ 1, t+ 2, ..., t′− 1 are in Phase

2.

We shall prove the Lemma using contradiction. Let us assume that there

exists an agent k ∈ Et′\Et. Thus, agent k turned into an ε-violator in some

time step τ between t and t′, i.e., in Phase 2. The only way agent k can turn

into an ε-violator is through the transfer of some operation c from agent k at

level l to an agent at level l + 1. This will occur only if agent k was not an

ε-path violator at time step τ . Thus, at time step τ , there exists an operation

c′ belonging to the agent before k in the alternating path such that

(1 + ε)wk(A
τ
k ∪ c′) ≥ whτ (A

τ
hτ). (5.9)

After agent k loses operation c to become an ε-violator, we get

(1 + ε)wk(A
τ
k\c ∪ c′) < whτ+1(A

τ+1
hτ+1

).

It can be observed that the transfer of operation c does not alter the alternat-

ing path between the reference agent and the agent k. Also, since the iden-

tity and the allocation of the reference agent does not change, Aτ+1
hτ+1

= Aτhτ .

36

Agent k is now the only path violator. We have

(1 + ε)wk(A
τ
k\c ∪ c′) < whτ (A

τ
hτ).

Thus, in the iteration τ +1, the operation c′ gets transferred to agent k. The

new allocation of agent k is Aτ+1
k = Aτk\c ∪ c′. From Equation (5.9), we get

that agent k is non-ε-violator since adding the operation c to Aτ+1
k increases

the total valuation of agent k to more than whτ (A
τ
hτ

). This is a contradiction

to our initial assumption that k ∈ Et′\Et and thus proves the lemma.

Lemma 7. Let t and t′ be two Phase 3 time steps such that t < t′. Then,

for any k ∈ Et′, At
′

k ⊇ Atk where Atk is the bundle of operations belonging to

agent k at time step t.

Proof. Let us assume that there exists an operation c ∈ Atk\At
′

k . This implies

that agent k transferred operation c to some other agent at some time step

τ between t and t′. This can occur only if agent k was a non-ε-path violator

at time step τ . We know that agent k is an ε-violator at time step t′. Thus,

agent k turned from a non-ε-violator to an ε-violator. However, from Lemma

6 we know that any agent that is a non-ε-violator cannot become an ε-

violator in the next Phase 3 time step which is a contradiction. Thus, our

initial assumption was wrong and there exists no operation c such that c ∈
Atk\At

′

k .

Lemma 8. For any Phase 3 time step t, Et ∩Rht = φ.

Proof. Let us consider a Phase 3 time step t. If there exists an agent k that

belongs to Et∩Rht , then agent k is an ε-path violator that is reachable. This

implies that Phase 2 has not converged yet, which is a contradiction. Thus,

Et ∩Rht = φ for any Phase 3 time step.

Lemma 9. For every agent i ∈ [n], we have βti ≥ 1
wmax

where βti is the MnBB

ratio of agent i at time step t and wmax = maxi,j{wij}.

Proof. The market based algorithm converges only if the allocation is p-

DEQ1. Hence, if the allocation moves to Phase 3, there must exist some

agent k which is an ε-violator. Let this Phase 3 time step be t. From Lemma

6, 7 and 8, it can be concluded that agent k has never seen an increase in

37

price since the start of the algorithm. Thus, βtk = 1. For every operation j,

we have

wkj
rj
≥ βtk = 1

=⇒ rj ≤ wkj

=⇒ rj ≤ wmax. (5.10)

where wmax = maxi,j{wij}. By assumption, all the valuations in the original

instance I are integral. Thus, for every agent i and operation j ∈ Ati, we get

1 ≤ vij ≤ wij ≤ wmax

=⇒ wij
pj
≥ wij
wmax

≥ 1

wmax

=⇒ βti ≥
1

wmax
. (5.11)

Lemma 10. There can be at most O(poly(n, 1/ε)ln(vmax)) Phase 3 steps

during the execution of the Market Based Algorithm for obtaining a p-DEQ1

allocation, where vmax = maxi,j{vij}.

Proof. The proof of this Lemma is identical to Lemma 4 in Reference [28]

and is thus omitted.

Lemma 11. Given as input any ε-rounded instance I ′ with additive and

strictly positive valuations, the Market Based Algorithm generates an alloca-

tion A that is ε-p-DEQ1 and PO in O(poly(m,n, 1/ε)ln(vmax)) time steps,

where vmax = maxi,j{vij}.

Proof. It can be observed that the Market Based algorithm (Algorithm 3)

converges only if the allocation is ε-p-DEQ1. By design of the algorithm,

the allocation generated is MnBB consistent in every time step and is thus

also Pareto Optimal. From Lemma 5 and 10, it can be concluded that

the algorithm converges after O(poly(m,n, 1/ε)ln(vmax)) time steps. Thus,

given as input any ε-rounded instance I ′ with additive and strictly positive

valuations, the Market Based Algorithm generates an allocation A that is

ε-p-DEQ1 and PO in O(poly(m,n, 1/ε)ln(vmax)) time steps.

38

5.4 Proof of Correctness of MBA

We now prove that the algorithm indeed generates an allocation which is

p-DEQ1.

Lemma 12. Given any instance I, its ε-rounded version I ′ and ε > 0, an

allocation A that is PO for I ′ is ε-PO for I.

Proof. Let us assume for contradiction that there exists an allocation B that

ε-Pareto Dominates the allocation A in I and that the allocation A is PO in

I ′. Thus, for every agent k ∈ [n], we have (1 + ε)vk(Bk) ≤ vk(Ak) and for

some agent i ∈ [n], we have (1 + ε)vi(Bi) < vi(Ai). Since, I ′ is the ε-rounded

version of I, we have vij ≤ wij ≤ (1 + ε)vij for every agent i ∈ [n] and every

operation j ∈ [m]. Thus, for every agent k ∈ [n], we have wk(Bk) ≤ wk(Ak)

and for some agent i, we have wi(Bi) < wi(Ai). This implies that B Pareto

dominates A in I ′ which is a contradiction.

Lemma 13. Given any fair division instance I = 〈[n], [m], V 〉 with additive,

integral and strictly positive valuations, I ′ its ε-rounded version and for any

0 < ε < 1
2mvmax

, the allocation A returned by the market based algorithm for

the input I ′ is Pareto Optimal for I.

Proof. Let us assume that there exists an allocation B that Pareto Dominates

the obtained allocation A in the instance I. We then have vk(Bk) ≤ vk(Ak)

for all agent k ∈ [n] and vi(Bi) < vi(Ai) for some agent i. Since, we have

assumed integral allocations, we have vi(Bi) ≤ vi(Ai) + 1.

Now, since I ′ is an ε-rounded version of I, we have vkj ≤ wkj ≤ (1 + ε)vkj

for all agents k ∈ [n] and operations j ∈ [m]. Subsequently, we get

wkj ≤ (1 + ε)vkj

=⇒ min
j

wkj
pj
≤ (1 + ε) min

j

vkj
pj

=⇒ βk ≤ (1 + ε)αk

=⇒ 1

αk
≤ (1 + ε)

βk
, (5.12)

where αk and βk are the MnBB ratios of agent k in I and I ′. Let us define

p(Ak) as the total reward agent k receives for performing the operations in

39

the bundle Ak. Therefore,

vk(Ak)

αk
≤ wk(Ak)

αk
≤ (1 + ε)wk(Ak)

βk

=⇒ vk(Ak)

αk
≤ (1 + ε)p(Ak). (5.13)

We get the last inequality from the fact that the allocation A is MnBB con-

sistent which implies that p(Ak) = wk(Ak)
βk

. Let us now consider the allocation

B. By definition of MnBB ratio, we get

αk ≤
vk(Bk)

p(Bk)

=⇒ αkp(Bk) ≤ vk(Ak)

=⇒ p(Bk) ≤ (1 + ε)p(Ak). (5.14)

Similarly for agent i, we get

p(Bi) ≤ (1 + ε)p(Ai)−
1

αi
. (5.15)

Let the total reward over all the operations be p([m]). Note that this value

depends only on the reward vector and is independent of the allocation.

Thus,

40

p([m]) =
∑
k∈[n]

p(Bk)

= p(Bi) +
∑
k∈[n]\i

p(Bk)

≤ (1 + ε)p(Ai)−
1

αi
+ (1 + ε)

∑
k∈[n]\i

p(Ak)

≤ (1 + ε)
∑
k∈[n]

p(Ak)−
1

αi

=⇒ p([m]) ≤ (1 + ε)p([m])− 1

αi

=⇒ 1 ≤ εαip([m])

=⇒ 1 ≤ εp([m])

=⇒ ε ≥ 1

mwmax
(From Equation (5.10))

=⇒ ε(1 + ε) ≥ 1

mvmax
. (5.16)

We consider 0 < ε < 1
2mvmax

. Substituting this in Equation (5.16), we

get ε > 1 which is a contradiction since 1
2mvmax

< 1. Thus, our initial

assumption that there exists an allocationB that Pareto dominates allocation

A is incorrect and we get that the allocation A is Pareto Optimal for I.

Lemma 14. For an input instance I, its ε-rounded instance I ′ and ε > 0,

an allocation A that is ε-p-DEQ1 for I ′ is 3ε-p-DEQ1 for I.

Proof. Since I ′ is the ε-rounded version of I, we have that vkj ≤ wkj ≤
(1 + ε)vkj for every agent k and every operation j. Let i be the reference

agent (i.e., the agent with highest total valuation). Since A is ε-p-DEQ1, for

every agent k ∈ [n] there exists some operation j such that

(1 + ε)wk(Ak ∪ j) ≥ wi(Ai)

=⇒ (1 + ε)2vk(Ak ∪ j) ≥ vi(Ai). (5.17)

From Lemma 13, we know that ε < 1
2mvmax

< 1. Since ε < 1, we get

(1 + ε)2 < 1 + 3ε. Thus, for every agent k ∈ [n] there exists some operation

j such that

41

(1 + 3ε)vk(Ak ∪ j) ≥ vi(Ai). (5.18)

This implies that the allocation A is 3ε-p-DEQ1 in I.

Lemma 15. Given any instance I and ε < 1
3mvmax

, an allocation A is 3ε-p-

DEQ1 for I if and only if it is p-DEQ1 for I.

Proof. Let i be the reference agent under the allocation A. Since A is 3ε-p-

DEQ1 for I, for every agent k ∈ [n], we have

(1 + 3ε)vk(Ak ∪ j) ≥ vi(Ai)

=⇒ vi(Ai)− vk(Ak ∪ j) ≤ 3εvk(Ak ∪ j)

≤ 3εmvmax

< 1.

We get the last result since we are considering ε < 1
3mvmax

. Since the

valuations are integral, vi(Ai)− vk(Ak ∪ j) < 1 implies that vi(Ai)− vk(Ak ∪
j) ≤ 0. This is precisely the p-DEQ1 condition.

Theorem 7. Given any fair division instance I = 〈[n], [m], V 〉 with addi-

tive, integral and strictly positive valuations, an allocation that is partially

equitable up to one duplicated operation (p-DEQ1) and Pareto Optimal (PO)

always exists and can be computed in O(poly(m,n, 1/ε)ln(vmax)) time, where

vmax = maxi,j{vij}.

Proof. Let I ′ be the ε-rounded version of the input instance I. From Lemma

11, 13 and 15, it can be concluded that for ε < 1
3mvmax

and using I ′ as input,

the Algorithm 3 computes an allocation A which is Pareto Optimal and p-

DEQ1 in O(poly(m,n, 1/ε)ln(vmax)) time, where vmax = maxi,j{vij}.

5.5 Upper Bounds on Makespan for 2 Non-Identical

Agents

Theorem 8. The allocation generated by the Market Based Algorithm for 2

non-identical agents admits an upper bound of
√
5+1
2
≈ 1.618 on the makespan.

42

Proof. Let us consider 2 agents 1 and 2 and m operations. Let the ob-

tained allocation after the Market Based Algorithm converges be A. Let the

makespan of this allocation be z = max(v1(A1), v2(A2)). By design of the al-

gorithm, there exists an alternating path between the agents which includes

some operation k. Since the algorithm has converged, the allocation A is p-

DEQ1 and PO. Thus, transferring the operation k along the alternating path

must increase the value of makespan. It can be observed that the operation

k can be fractionally allocated to both the agents in a way such that both

their valuations become equal. Let this fractional allocation be A′. Addition-

ally, this allocation A′ is Pareto Optimal since the transfer of the fractional

operation takes place along the alternating path. This implies that no other

allocation with lower makespan can be obtained using fractional allocations.

The allocation A′ is thus an optimal solution to the Linear Program corre-

sponding to the makespan. The makespan of A′ is thus a lower bound on

the optimal makespan. Let this lower bound be z∗. Let x1k and x2k be the

fractions of the operation k assigned to agents 1 and 2. We can then write

the following:

z = z∗ + min(v1kx2k, v2kx1k). (5.19)

The fractions must sum to 1. Thus, x1k + x2k = 1. Also, the value of

the fractional operation k allocated to agent 2 must be less or equal to the

optimal makespan corresponding to the LP relaxation. Thus, v2kx2k ≤ z∗.

Combining these two constraints with Equation (5.19), gives us

z ≤ z∗ + min(v1k(1− x1k), x1k
z∗

(1− x1k)
). (5.20)

Let us assume without loss of generality that v1k ≤ v2k. This also implies

that v1k ≤ z∗. This gives us:

z ≤ z∗ + min(v1k(1− x1k), x1k
z∗

(1− x1k)
)

≤ z∗ + min(z∗(1− x1k), x1k
z∗

(1− x1k)
)

=⇒ z

z∗
≤ 1 + min(1− x1k,

x1k
1− x1k

). (5.21)

The maximum of this term occurs when the 2 terms inside the min operator

43

are equal i.e. 1 − x1k = x1k
1−x1k

. Solving the equation gives us x1k = 3−
√
5

2
.

Substituting this value gives us

UB =
z

z∗
≤
√

5 + 1

2
. (5.22)

In the next chapter, we prove that combining parametric pruning as in

[1] with MBA leads to an upper bound of 1.5 for two non-identical agents,

which is theoretically the best possible upper bound.

44

Chapter 6

Parametric Pruning leads to improved
performance

In this chapter, we discuss the concept of Parametric Pruning and how it

improves the performance of the algorithms introduced in this paper. Specif-

ically, we shall prove that for 2 non-identical agents, combining Parametric

Pruning with the Market Based Algorithm improves the upper bound from

1.618 to 1.5 which is the best possible upper bound [1].

Parametric Pruning was used in reference [1] to obtain schedules for non-

identical parallel machines. In this method, we first define some threshold

T . All the values of vi,j > T are ’pruned off’ by setting them to a very large

value M , i.e., they are not considered for generating the schedule. Following

this, we define the linear program LP1(T) as:

∑
j:(i,j)∈ST

xi,jvi,j ≤ T ∀i ∈ [n],

∑
i:(i,j)∈ST

xi,j = 1 ∀j ∈ [m],

xi,j ≥ 0 ∀i ∈ [n], ∀j ∈ [m],

where ST is the set of agent-operation pairs such that the operating time

is not greater than T . In reference [1], it has been shown that the smallest

value of T which generates a feasible solution for LP1 is a lower bound on

the makespan. Let this value be T ∗ = min{T : LP1(T) is feasible}. We

further define v′i,j ∀i ∈ [n],∀j ∈ [m] as:

v′i,j =

vi,j , if vi,j < T ∗

M , otherwise.

Theorem 9. For two non-identical agents, performing the Market Based

Algorithm on the set of operating times generated using the threshold T ∗

guarantees an upper bound of 1.5 on the makespan.

45

Proof. Let the 2 agents be 1 and 2. We already know that a feasible solution

to LP1 exists with the threshold as T ∗. Once MBA converges, we obtain

an allocation A with an alternating path from agent 1 to agent 2 (We have

assumed without loss of generality that the total valuation/completion time

of agent 1 is greater than or equal to that of agent 2). Let the index of the

operation in the alternating path be k. It can be observed that the operation

k can be fractionally allocated to both the agents in a way such that both

their valuations are equal. Let this fractional allocation be A′. Additionally,

this allocation A′ is Pareto Optimal since the transfer takes place along the

alternating path. Thus, A′ is an optimal solution to LP1(T ∗). Let the fraction

of the operation k transferred from agent 1 to agent 2 be x and the makespan

corresponding to the fractional allocation A′ be z. Since, the allocation A′ is

feasible, v′1,k ≤ T ∗. We thus have the following two cases:

• Case 1 [v′2,k ≤ T ∗]:

In this case, we have the following equations:

v1(A1) ≤ v2(A2) + v′2,k, (6.1)

z = v1(A1)− xv′1,k, (6.2)

z = v2(A2) + xv′2,k, (6.3)

v1(A1) ≥ v2(A2), (6.4)

v′1,k ≤ T ∗, (6.5)

v′2,k ≤ T ∗. (6.6)

From Equations (6.2) and (6.3), we can write:

x =
v1(A1)− v2(A1)

v′1,k + v′2,k

=⇒ x ≤
v′2,k

v′1,k + v′2,k
[From Eq. (6.1)]

=⇒ xv′1,k ≤
v′1,kv

′
2,k

v′1,k + v′2,k

=⇒ xv′1,k ≤
T ∗

2
[From Eqs. (6.6) and (6.5)]. (6.7)

Since A′ is the optimal solution to LP1 for the threshold T ∗, we also

46

have that:

z ≤ T ∗

=⇒ v1(A1) ≤ T ∗ + xv′1,k [From Eq. (6.2)]

=⇒ v1(A1) ≤ T ∗ +
T ∗

2
[From Eq. (6.7)]

=⇒ UB =
v1(A1)

T ∗
≤ 3

2
. (6.8)

• Case 2 [v′2,k > T ∗]:

In this case, we have the same equations as Eqs. (6.1), (6.2), (6.3),

(6.4) and (6.5). Additionally, we also have that v′2,k = M . We again

generate a fractional allocation. In this case, the fraction transferred

from agent 1 to agent 2 would be infinitesimally small since v′2,k is a

very large number. Thus the upper bound in this case is 1 + ε, where

ε is a very small value.

From the 2 cases, it can be concluded that the upper bound is 3
2

= 1.5.

However, we would not know the value of T ∗ beforehand. Thus, we now

present an algorithm that generates the required allocation by searching

through different values of the threshold.

Let T1 = maxi minj{vi,j} where i represents agents and j represents op-

erations. It can be observed that any value of threshold less than T1 would

generate an infeasible allocation. Let Tarr be a list of all the values of vi,j ≥ T1

arranged in ascending order. The lower bound T ∗ must lie in between some

Tt and Tt+1 or exactly on some Tt. It can be observed that for any value of

threshold T such that Tt ≤ T < Tt+1, the allocation generated would be the

same. Thus, the allocation corresponding to T ∗ would be the same as that

for Tt.

Since T ∗ is the smallest value with a feasible solution to LP1, any value

smaller than Tt would generate an infeasible solution to LP1. Either Tt

or Tt+1 would be the first threshold value to generate a feasible solution,

following which we need not search further. Based on these observations, we

propose Algorithm 4 to generate an allocation with upper bound of 1.5.

Whether this approach can be used to generate allocations with an upper

bound for more than 2 agents is not known and is left as an open problem.

47

Algorithm 4: Market Based Algorithm + Pruning (for 2 agents)

1: T1 = maxi minj{vi,j}
2: Tarr ← {vi,j : vi,j ≥ T1}
3: Sort elements of Tarr in ascending order
4: Alist ← φ
5: while i ≤ |Tarr| do
6: Set vi,j = M ∀vi,j > Tarr,i
7: A← Market Based Algorithm
8: Alist ← Alist ∪ A
9: A′ ← Optimal fractional allocation

10: Z ′ ← Makespan of fractional allocation A′

11: if Z ′ < Tarr,i then
12: Break Loop
13: end if
14: end while
15: Output the allocation with best makespan from Alist

48

Chapter 7

Results

In this section, we numerically evaluate the Dec-OTA(n) algorithm on ran-

domly generated instances by comparing the obtained makespan to the opti-

mal makespan. The experiments were conducted on a Lenovo Yoga i9 laptop

with 3 GHz 11th Gen Intel Core i7 CPU and 16GB RAM. The programs

were coded in Python on Jupyter notebook. The optimizer used to obtain

the optimal makespans is Gurobi Optimizer version 9.0.

Along with OTA(n) (Algorithm 2) and MBA (Algorithm 3), we also con-

sider pairwise-Market based Algorithm. In the pairwise-MBA, we consider all

possible pairs (exactly like in OTA(n)) and generate an allocation using MBA

for every pair. We continue this until no pair exists which can be improved

using MBA. We consider this particular variation of MBA because unlike the

original MBA, pairwise-MBA can be decentralized easily. It must be noted

that the pairwise-MBA is not guaranteed to generate a Pareto Optimal al-

location. It is easy to observe that for 2 agents, partial-DEQ1 and DEQ1

are equivalent. Thus, in the final allocation generated by pairwise-MBA,

every pair of agents is DEQ1. This implies that the allocation generated by

pairwise-MBA also satisfies DEQ1 overall.

7.1 Numerical Results on Identical Agents

The results of the three algorithms on identical agents are presented in Ta-

ble 7.1 along with a comparison with the Longest Processing Time (LPT)

rule. We have chosen the LPT rule for comparison mainly because of its

popularity, simplicity and extremely good upper bound (4
3
− 1

3n
). There do

exist algorithms which have better upper bounds [30][31], but they come at

the cost of higher running times and no visible improvement on most practi-

cal applications. Each entry is the ratio of obtained makespan and optimal

49

makespan averaged over 5 random instances. The number of agents (n)

considered are 2, 5, 10 and 20. The number of operations (m) considered

are 25, 50, 100, 200 and 500. The processing times are integers between 1

and 50 generated using a uniform probability distribution. The important

observations are listed below:

• All the algorithms generate near optimal solutions for almost all of the

cases.

• MBA performs better than OTA(n) and pairwise-MBA even though

it has the weakest guarantee in terms of fairness. MBA is guaranteed

to generate only a partial-DEQ1 allocation compared to the DEQx

guarantee of OTA(n) and DEQ1 guarantee of pairwise-MBA.

• The performance improves as the number of operations increase with

respect to the number of agents. This can be explained using the

expression derived in Theorem 3.

• The LPT rule performs much better than the Fair Allocation algorithms

presented in this paper. The performance of MBA however is almost

as good as the LPT rule.

7.2 Numerical Results on Uniformly Related agents

and Non-Identical Agents

For uniformly related agents and non-identical agents, we consider Paramet-

ric Pruning as well. For each algorithm, we generate results with and without

Pruning. Additionally, we also present the performance of the Lenstra’a al-

gorithm [1] for comparison. We have chosen Lenstra’s algorithm even though

it is old because it is still one of the very few algorithms which guarantees

a constant factor approximation of 2 on the makespan on unrelated parallel

machines in polynomial time. The Lenstra’s algorithm is the most widely

studied algorithm for this particular problem in the literature. The only

other algorithm that we know of with a better upper bound is an extension

of the Lenstra’s algorithm which optimizes the rounding [4]. The results

are presented in Table 7.3 and 7.2. Each entry is the ratio of the obtained

50

Table 7.1: Ratios (Algorithm Makespan/Optimal Makespan) obtained for
identical agents

n m OTA(n) MBA pairwise-MBA LPT
2 25 1.00 1.00 1.02 1.00

50 1.00 1.00 1.01 1.00
100 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00

5 25 1.03 1.03 1.10 1.03
50 1.01 1.01 1.01 1.00
100 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00

10 25 1.20 1.15 1.22 1.03
50 1.06 1.02 1.15 1.02
100 1.01 1.01 1.01 1.00
200 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00

20 25 1.00 1.00 1.00 1.00
50 1.28 1.09 1.31 1.05
100 1.03 1.03 1.13 1.02
200 1.01 1.01 1.01 1.00
500 1.00 1.00 1.00 1.00

51

makespan and optimal makespan averaged over 5 random instances. The

number of agents (n) considered are 2, 5, 10 and 20. The number of opera-

tions (m) considered are 25, 50, 100, 200 and 500. The processing times are

integers between 1 and 50 generated using a uniform probability distribution.

For the uniformly relate agents, the speeds of the agents lie between 1 and

2 and have been selected randomly using a uniform probability distribution.

For non-identical/unrelated agents, the processing times are different for ev-

ery agent. Columns indicated with (Pr) and (No Pr) represent Pruning and

no Pruning, respectively. The important observations are listed below:

• MBA generates near optimal allocations for almost all the cases. This

can be attributed to the fact that MBA always generates Pareto Opti-

mal allocations.

• Compared to MBA, OTA(n) and pairwise-MBA have poorer perfor-

mance, especially for the non-identical agents. This is primarily be-

cause these two algorithms may generate allocations that are far from

the Pareto Optimal front.

• Both MBA and pairwise-MBA significantly outperform the Lenstra’s

algorithm even without pruning for both uniformly related and unre-

lated agents. Additionally, the Lenstra’s algorithm is not guaranteed

to satisfy any fair allocation criteria, unlike MBA and pairwise-MBA.

• OTA(n) especially displays poor performance with the average ratio

reaching values as high as 1.69 for uniformly related agents and 1.59

for non-identical agents. Pairwise-MBA performs significantly better

than OTA(n).

• Pruning leads to significant improvements when combined with OTA(n).

By pruning out high operating times, Parametric Pruning helps in

generating allocations closer to the Pareto Optimal front. However,

OTA(n) combined with Pruning still does not perform as good as MBA

and pairwise-MBA.

• Pruning when combined with MBA or pairwise-MBA does not lead to

any improvement. For the case of MBA, this can be explained by the

fact that we always obtain allocations that are Pareto Optimal. This

52

Table 7.2: Ratios (Algorithm Makespan/Optimal Makespan) obtained for
uniformly related agents agents

OTA(n) MBA pairwise-MBA Lenstra
n m No Pr Pr No Pr Pr No Pr Pr
2 25 1.00 1.00 1.00 1.00 1.01 1.01 1.01

50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 25 1.08 1.03 1.04 1.03 1.07 1.05 1.21
50 1.01 1.01 1.02 1.00 1.02 1.01 1.11
100 1.01 1.00 1.01 1.00 1.01 1.00 1.05
200 1.00 1.00 1.00 1.00 1.00 1.00 1.03
500 1.00 1.00 1.00 1.00 1.00 1.00 1.01

10 25 1.24 1.38 1.14 1.11 1.19 1.20 1.68
50 1.31 1.05 1.07 1.02 1.07 1.08 1.26
100 1.33 1.02 1.02 1.01 1.01 1.01 1.16
200 1.05 1.01 1.01 1.00 1.00 1.00 1.05
500 1.02 1.00 1.00 1.00 1.00 1.00 1.03

20 25 1.49 1.18 1.22 1.00 1.33 1.18 1.62
50 1.69 1.28 1.17 1.12 1.21 1.24 1.60
100 1.45 1.17 1.08 1.05 1.11 1.12 1.36
200 1.16 1.03 1.03 1.02 1.01 1.01 1.15
500 1.23 1.02 1.01 1.00 1.00 1.00 1.08

is in contrary to the case of OTA(n) where pruning lead to solutions

closer to the Pareto Optimal front. Hence, numerically we do not see

any improvement. The explanation for pairwise-MBA is tougher to

find and is left as an open problem. We suspect that the reason behind

the observation is that in every pairwise interaction, the allocations

generated for each pair are Pareto Optimal at all instances due to

which any improvement cannot be observed numerically.

7.3 Numerical Evaluation of the DRGF Protocol

The results of the Dec-OTA(n) on uniformly-related agents are presented in

Tables 7.4 and 7.5, and Figures 7.1a and 7.1b. We present the results only

for uniformly related agents firstly because most practical applications have

53

Table 7.3: Ratios (Algorithm Makespan/Optimal Makespan) obtained for
non-identical agents

OTA(n) MBA pairwise-MBA Lenstra
n m No Pr Pr No Pr Pr No Pr Pr
2 25 1.25 1.08 1.04 1.01 1.01 1.01 1.03

50 1.23 1.11 1.01 1.02 1.01 1.00 1.01
100 1.31 1.26 1.01 1.01 1.01 1.00 1.01
200 1.32 1.29 1.00 1.01 1.01 1.00 1.00
500 1.28 1.24 1.00 1.00 1.00 1.00 1.00

5 25 1.34 1.15 1.08 1.08 1.07 1.08 1.19
50 1.29 1.19 1.09 1.05 1.03 1.09 1.19
100 1.29 1.20 1.03 1.04 1.04 1.02 1.05
200 1.39 1.17 1.02 1.02 1.02 1.02 1.04
500 1.45 1.31 1.01 1.01 1.01 1.01 1.01

10 25 1.38 1.16 1.13 1.07 1.26 1.17 1.50
50 1.34 1.19 1.15 1.07 1.17 1.10 1.32
100 1.37 1.27 1.07 1.07 1.07 1.09 1.19
200 1.50 1.24 1.05 1.03 1.05 1.04 1.14
500 1.41 1.26 1.02 1.02 1.02 1.02 1.04

20 25 1.34 1.12 1.02 1.00 1.08 1.00 1.45
50 1.44 1.20 1.06 1.02 1.26 1.30 1.60
100 1.59 1.28 1.15 1.11 1.20 1.19 1.38
200 1.52 1.29 1.09 1.05 1.17 1.19 1.23
500 1.42 1.25 1.03 1.04 1.07 1.08 1.13

54

Table 7.4: Ratios (Algorithm Makespan/Optimal Makespan) obtained for
uniformly related agents using Dec-OTA(n)

con = 1.0 con = 0.8 con = 0.5
n m UB Itr Time(s) UB Itr Time(s) UB Itr Time(s)
2 25 1.003 2 0.002 1.002 2 0.001 1.003 2 0.001

50 1.0 2 0.003 1.0 2 0.001 1.0 2 0.001
100 1.0 2 0.008 1.0 2 0.005 1.0 2 0.004
200 1.0 2 0.009 1.0 2 0.014 1.0 2 0.009
500 1.0 2 0.04 1.0 2 0.037 1.0 2 0.03

5 25 1.04 1.4 0.007 1.04 3 0.009 1.18 1.8 0.001
50 1.02 1.8 0.01 1.05 2.2 0.013 1.22 2.4 0.007
100 1.006 2 0.02 1.05 3.2 0.02 1.15 3.8 0.02
200 1.002 2 0.04 1.001 2.8 0.035 1.16 4.6 0.02
500 1.0 2.2 0.109 1.0 4.6 0.11 1.05 4.8 0.122

10 25 1.17 1.2 0.011 1.28 1.6 0.009 1.36 2.8 0.013
50 1.12 1 0.011 1.29 1.6 0.009 1.50 3.8 0.021
100 1.14 1.6 0.02 1.22 2 0.024 1.412 2.8 0.024
200 1.04 1.8 0.049 1.042 3.4 0.076 1.086 2.4 0.038
500 1.015 2 0.201 1.006 5 0.17 1.092 6.6 0.154

20 25 1.54 1 0.02 1.77 1.4 0.017 1.82 1 0.008
50 1.3 1.2 0.034 1.32 1.6 0.02 1.54 2.0 0.022
100 1.22 1.0 0.013 1.19 1.8 0.011 1.24 2 0.03
200 1.314 1 0.056 1.09 2.2 0.078 1.233 2.4 0.055
500 1.11 1.6 0.169 1.025 3.8 0.225 1.14 3.6 0.186

55

Table 7.5: Ratios (Algorithm Makespan/Optimal Makespan) obtained for
uniformly related agents using Dec-OTA(n)

con = 0.3 Line Graph
n m UB Itr Time(s) UB Itr Time(s)
2 25 1.002 2 0.001 1.003 2 0.002

50 1.0 2 0.003 1.0 2 0.002
100 1.0 2 0.004 1.0 2 0.004
200 1.0 2 0.01 1.0 2 0.009
500 1.0 2 0.034 1.0 2 0.036

5 25 1.18 2.8 0.006 1.3 3 0.0013
50 1.103 2.8 0.019 1.28 2.4 0.0036
100 1.57 3.0 0.013 1.22 4.4 0.015
200 1.26 3.6 0.02 1.18 4 0.033
500 1.16 3.2 0.07 1.15 3.4 0.043

10 25 1.63 1.6 0.006 1.42 2.4 0.007
50 1.31 1.8 0.012 1.49 2.8 0.007
100 1.17 3 0.021 1.38 3.1 0.018
200 1.255 3.4 0.032 1.54 4 0.027
500 1.167 3.2 0.1 1.6 3.1 0.046

20 25 1.74 1.2 0.005 1.97 1.6 0.0027
50 1.53 2 0.017 1.93 2 0.01
100 1.31 2.4 0.03 1.8 2.6 0.024
200 1.211 3.4 0.056 1.79 3.5 0.029
500 1.137 4.4 0.161 1.66 5.1 0.046

56

(a) n = 10 (b) n = 20

Figure 7.1: Approximation factors for agents with higher speeds

uniformly related agents and secondly because all possible allocations are

Pareto Optimal for such agents. This is not true for non-identical agents. If

two agents cannot communicate and the allocations are not guaranteed to be

Pareto Optimal, the allocation generated by Dec-OTA(n) can be arbitrarily

bad. We leave this problem for future work. The number of agents (n)

considered are 2, 5, 10 and 20. The number of operations (m) considered

are 25, 50, 100, 200 and 500. The processing times are integers between 10

and 50 generated using a uniform probability distribution. The speeds of

the agents in Tables 7.4 and 7.5 lie between 1 and 2 and have been selected

randomly using a uniform probability distribution. The variable con in the

table represents the probability that any 2 agents are connected given that

the overall graph is connected. con thus controls the connectivity in the

graph. The performance of Dec-OTA(n) is also evaluated on the line graph

which represents the worst case scenario under connected- set of agents. For

each level of connectivity, the table lists the Upper Bound (UB) (which is the

ratio of obtained makespan and optimal makespan), number of iterations to

converge (itr) and the time to converge, all averaged over 5 random instances.

In Figure 5.1, we present the approximation factors obtained numerically

considering a line graph (worst case scenario) when the speeds of the agents

lie between a larger range. The important observations from Tables 7.4 and

7.5, and Figure 7.1 are listed below:

• Dec-OTA(n) generates near optimal allocations for most cases, even

57

under severe communication failures, i.e., con = 0.3.

• The average performance of Dec-OTA(n) does not exceed an approxi-

mation factor of 2 even in the most extreme case, i.e., the line graph.

• The numerical performance of Dec-OTA(n) is just as strong when the

maximum possible normalized speed of an agent is 10 as it is when the

maximum possible normalized speed is 2 as considered in the Table. It

does not vary significantly when the range of the speeds of the agents

increases. This can be observed from Figure 5.1.

• The performance of Dec-OTA(n) improves as the number of operations

increases compared to the number of agents. This can be explained

using Equation (3.18). As the number of operations increases, the value

of k increases as well, resulting in an improved approximation factor

ratio. The algorithm is thus, a good choice for large scale practical

problems.

• The algorithm can start from any random initialization and generates

an allocation in under 0.6 seconds even for large scale problems. Thus,

the algorithm can be used for quick re-planning in case of machine

failures, pop-up jobs, changes in operating times, etc.

It can be concluded that Dec-OTA(n) is robust to communication and

machine failures due to the DRGF protocol. Additionally, the algorithm is

fast and can be used in a reactive manner to tackle constant changes in the

environment. The algorithm is also parameter-less, thus not requiring any

form of tuning.

The codes can be found at: Github Repository

58

https://github.com/19rick96/Makespan-Minimization-Fair-Allocation

Chapter 8

Conclusion and Future Work

In this thesis, we present the Operation Trading algorithm to generate DEQx

allocations and a Market Based Algorithm to generate partial-DEQ1 alloca-

tions. We then show both theoretically and numerically that these algorithms

can be effectively used to generate allocations with near optimal makespans.

OTA(n) guarantees an upper bound of 2− 1
n+1

for n identical agents and an

upper bound of 1.618 for 2 uniformly related agents. The algorithm also guar-

antees an upper bound of 1+
√
4n−3
2

for n uniformly related agents in general.

Further, we have shown that under certain cases which occur often in prac-

tical scenarios, OTA(n) guarantees acceptable upper bounds for uniformly

related agents. MBA guarantees an upper bound of 1.618 for 2 non-identical

agents. This shows the similarities in the mathematical structures between

the fair allocation problem and makespan minimization problem. Incorpo-

rating Parametric Pruning was further shown to improve the performances

both theoretically and numerically. The thesis also presents the idea of per-

forming allocation in a pairwise manner (OTA(n) and pairwise-MBA) which

has the advantages of being decentralizable, robust and reactive. The DRGF

protocol is presented to implement the algorithms in a decentralized and

distributed manner. It has been shown numercially that the DRGF proto-

col has fast convergence and generates near-optimal allocations even under

severe communication failures.

There are primarily two ways to extend this research. The first way is

to broaden the scope of the work and try to incorporate precedence con-

straints, travel times, spatially distributed tasks, geometric constraints (for

multi-robot systems), and alike. The second way to extend the paper is to

dive deeper and try to develop combinatorial (and preferably decentralizable)

algorithms that guarantee an upper bound for any number of non-identical

agents. The problem of generating DEQ1+PO allocations still remains an

open problem. An interesting approach would be to look for modifications

59

of the market based algorithm to generate DEQ1 allocations. Further, the

presented algorithms do not guarantee a constant factor approximation even

for identical agents if the agents are not fully connected. In order to investi-

gate the possibility of guaranteeing a constant factor approximation for the

makespan minimization problem of identical and uniformly related agents

even when the agents are not fully connected would require characterizing

the hardness of the makespan minimization problem in terms of decentral-

ization and distribution. Principled methods to achieve this does not exist

currently in the literature and is of great interest.

60

References

[1] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algorithms
for scheduling unrelated parallel machines,” in 28th Annual Symposium
on Foundations of Computer Science (sfcs 1987), 1987, pp. 217–224.

[2] C. Potts, “Analysis of a linear programming heuristic for scheduling
unrelated parallel machines,” Discrete Applied Mathematics, vol. 10,
no. 2, pp. 155 – 164, 1985. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/0166218X85900095

[3] D. S. Hochbaum and D. B. Shmoys, “A polynomial approximation
scheme for scheduling on uniform processors: Using the dual
approximation approach,” SIAM Journal on Computing, vol. 17, no. 3,
pp. 539–551, 1988. [Online]. Available: https://doi.org/10.1137/0217033

[4] E. V. Shchepin and N. Vakhania, “An optimal rounding gives a
better approximation for scheduling unrelated machines,” Operations
Research Letters, vol. 33, no. 2, pp. 127 – 133, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167637704000690

[5] R. Freeman, S. Sikdar, R. Vaish, and L. Xia, “Equitable allocations of
indivisible chores.” Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems, 2020.

[6] T. Ebenlendr, M. Krčál, and J. Sgall, “Graph balancing: A special
case of scheduling unrelated parallel machines,” ser. SODA ’08. USA:
Society for Industrial and Applied Mathematics, 2008, p. 483–490.

[7] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd ed.
Springer Publishing Company, Incorporated, 2008.

[8] T. Gonzalez, O. Ibarra, and S. Sahni, “Bounds for lpt schedules on
uniform processors,” SIAM J. Comput., vol. 6, pp. 155–166, 03 1977.

[9] D. Friesen and M. Langston, “Bounds for multifit scheduling on uniform
processors,” SIAM J. Comput., vol. 12, pp. 60–70, 02 1983.

[10] B. P. Gerkey and M. J. Mataric, “Sold!: auction methods for multirobot
coordination,” IEEE Transactions on Robotics and Automation, vol. 18,
no. 5, pp. 758–768, 2002.

61

http://www.sciencedirect.com/science/article/pii/0166218X85900095
http://www.sciencedirect.com/science/article/pii/0166218X85900095
https://doi.org/10.1137/0217033
http://www.sciencedirect.com/science/article/pii/S0167637704000690

[11] M. B. Dias and A. T. Stentz, “A free market architecture for distributed
control of a multirobot system,” in Proceedings of 6th International
Conference on Intelligent Autonomous Systems (IAS-6), July 2000, pp.
115–122.

[12] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257–1270, 2006.

[13] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy
of task allocation in multi-robot systems,” The International Journal
of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004. [Online].
Available: https://doi.org/10.1177/0278364904045564

[14] M. Alighanbari and J. How, “Decentralized task assignment for un-
manned aerial vehicles,” 01 2006, pp. 5668 – 5673.

[15] Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent sys-
tems and synchronization of complex networks: A unified viewpoint,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57,
no. 1, pp. 213–224, 2010.

[16] H. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[17] M. Franceschelli, A. Giua, and C. Seatzu, “Fast discrete consensus
based on gossip for makespan minimization in networked systems,”
Automatica, vol. 56, pp. 60–69, 2015. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0005109815001028

[18] M. Franceschelli, A. Giua, and C. Seatzu, “Gossip based asynchronous
and randomized distributed task assignment with guaranteed per-
formance on heterogeneous networks,” Nonlinear Analysis: Hybrid
Systems, vol. 26, pp. 292–306, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1751570X17300535

[19] M. Nouiri, A. Bekrar, A. Jemai, S. Niar, and A. C. Ammari,
“An effective and distributed particle swarm optimization algorithm
for flexible job-shop scheduling problem,” Journal of Intelligent
Manufacturing, vol. 29, no. 3, pp. 603–615, 2018. [Online]. Avail-
able: https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:3:
d:10.1007 s10845-015-1039-3

62

https://doi.org/10.1177/0278364904045564
https://www.sciencedirect.com/science/article/pii/S0005109815001028
https://www.sciencedirect.com/science/article/pii/S0005109815001028
https://www.sciencedirect.com/science/article/pii/S1751570X17300535
https://www.sciencedirect.com/science/article/pii/S1751570X17300535
https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:3:d:10.1007_s10845-015-1039-3
https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:3:d:10.1007_s10845-015-1039-3

[20] F. Y. Nedwed, I. Zinnikus, M. Nukhayev, M. Klusch, and L. Mazzola,
“shopst: Flexible job-shop scheduling with agent-based simulated trad-
ing,” in Multiagent System Technologies, J. O. Berndt, P. Petta, and
R. Unland, Eds. Cham: Springer International Publishing, 2017, pp.
121–137.

[21] L. Asadzadeh and K. Zamanifar, “An agent-based parallel approach
for the job shop scheduling problem with genetic algorithms,”
Mathematical and Computer Modelling, vol. 52, no. 11, pp. 1957–
1965, 2010, the BIC-TA 2009 Special Issue. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0895717710002098

[22] E. Budish, “The combinatorial assignment problem: Approximate
competitive equilibrium from equal incomes,” Journal of Political
Economy, vol. 119, no. 6, pp. 1061–1103, 2011. [Online]. Available:
https://doi.org/10.1086/664613

[23] A. D. Procaccia and J. Wang, “Fair enough: Guaranteeing approximate
maximin shares,” in Proceedings of the Fifteenth ACM Conference
on Economics and Computation, ser. EC ’14. New York, NY,
USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2600057.2602835 p. 675–692.

[24] B. Plaut and T. Roughgarden, “Almost envy-freeness with general
valuations,” in Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans,
LA, USA, January 7-10, 2018, A. Czumaj, Ed. SIAM, 2018.
[Online]. Available: https://doi.org/10.1137/1.9781611975031.165 pp.
2584–2603.

[25] D. Foley, “Resource allocation and the public sector,” Yale
Economic Essays, vol. 7, pp. 45–98, 1967. [Online]. Available:
https://ci.nii.ac.jp/naid/10009821677/en/

[26] L. E. Dubins and E. H. Spanier, “How to cut a cake fairly,” The
American Mathematical Monthly, vol. 68, no. 1, pp. 1–17, 1961.
[Online]. Available: http://www.jstor.org/stable/2311357

[27] L. Gourvès, J. Monnot, and L. Tlilane, “Near fairness in matroids,” ser.
ECAI’14. NLD: IOS Press, 2014, p. 393–398.

[28] R. Freeman, S. Sikdar, R. Vaish, and L. Xia, “Equitable allocations
of indivisible goods,” CoRR, vol. abs/1905.10656, 2019. [Online].
Available: http://arxiv.org/abs/1905.10656

[29] A. Mas-Colell, M. Whinston, and J. Green, Microeconomic Theory.
Oxford University Press, 1995. [Online]. Available: https://EconPapers.
repec.org/RePEc:oxp:obooks:9780195102680

63

https://www.sciencedirect.com/science/article/pii/S0895717710002098
https://doi.org/10.1086/664613
https://doi.org/10.1145/2600057.2602835
https://doi.org/10.1137/1.9781611975031.165
https://ci.nii.ac.jp/naid/10009821677/en/
http://www.jstor.org/stable/2311357
http://arxiv.org/abs/1905.10656
https://EconPapers.repec.org/RePEc:oxp:obooks:9780195102680
https://EconPapers.repec.org/RePEc:oxp:obooks:9780195102680

[30] C.-Y. Lee and J. David Massey, “Multiprocessor scheduling: combining
lpt and multifit,” Discrete Applied Mathematics, vol. 20, no. 3, pp.
233–242, 1988. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0166218X88900790

[31] J. N. D. Gupta and A. J. Ruiz-Torres, “A listfit heuristic for
minimizing makespan on identical parallel machines,” Production
Planning & Control, vol. 12, no. 1, pp. 28–36, 2001. [Online]. Available:
https://doi.org/10.1080/09537280150203951

64

https://www.sciencedirect.com/science/article/pii/0166218X88900790
https://www.sciencedirect.com/science/article/pii/0166218X88900790
https://doi.org/10.1080/09537280150203951

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Motivation
	Literature Review
	Our Contributions
	Organization of the thesis

	Chapter 2 Preliminaries
	The Makespan Minimization Problem
	Makespan Minimization for Uniformly Related Agents
	Equitability and Fairness Concepts

	Chapter 3 Generating DEQx Allocations: The Operation Trading algorithm
	The Operation Trading Algorithm
	Upper Bound of OTA(n) for Identical Agents
	Upper Bound of OTA(n) for Uniformly Related Agents
	Upper Bounds for Practical Scenarios with Uniformly Related Agents
	Advantages of the Operation Trading Algorithm

	Chapter 4 Decentralized OTA(n) (Dec-OTA(n))
	Limitations of the Operation Trading Algorithm

	Chapter 5 A market based algorithm for generating partially-DEQ1 + PO allocations
	Preliminaries and Definitions for Market-Based Algorithm
	Market Based Algorithm for partial-DEQ1 + PO allocation
	Convergence and Complexity of Proposed MBA
	Proof of Correctness of MBA
	Upper Bounds on Makespan for 2 Non-Identical Agents

	Chapter 6 Parametric Pruning leads to improved performance
	Chapter 7 Results
	Numerical Results on Identical Agents
	Numerical Results on Uniformly Related agents and Non-Identical Agents
	Numerical Evaluation of the DRGF Protocol

	Chapter 8 Conclusion and Future Work
	References

