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Abstract

The performance of an error correcting code is evaluated by its block error

probability, code rate, and encoding and decoding complexity. The performance

of a series of codes is evaluated by, as the block lengths approach infinity, whether

their block error probabilities decay to zero, whether their code rates converge to

channel capacity, and whether their growth in complexities stays under control.

Over any discrete memoryless channel, I build codes such that: for one, their

block error probabilities and code rates scale like random codes’; and for two, their

encoding and decoding complexities scale like polar codes’. Quantitatively, for any

constants π, ρ > 0 such that π+2ρ < 1, I construct a series of error correcting codes

with block length N approaching infinity, block error probability exp(−Nπ), code

rate N−ρ less than the channel capacity, and encoding and decoding complexity

O(N logN) per code block.

Over any discrete memoryless channel, I also build codes such that: for one,

they achieve channel capacity rapidly; and for two, their encoding and decoding

complexities outperform all known codes over non-BEC channels. Quantitatively,

for any constants τ, ρ > 0 such that 2ρ < 1, I construct a series of error cor-

recting codes with block length N approaching infinity, block error probability

exp(−(logN)τ ), code rate N−ρ less than the channel capacity, and encoding and

decoding complexity O(N log(logN)) per code block.

The two aforementioned results are built upon two pillars—a versatile frame-

work that generates codes on the basis of channel polarization, and a calculus–

probability machinery that evaluates the performances of codes.

The framework that generates codes and the machinery that evaluates codes

can be extended to many other scenarios in network information theory. To name

a few: lossless compression with side information, lossy compression, Slepian–Wolf

problem, Wyner–Ziv Problem, multiple access channel, wiretap channel of type
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I, and broadcast channel. In each scenario, the adapted notions of block error

probability and code rate approach their limits at the same paces as specified above.
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First there is Bo-Le1

Then can horses gallop hundreds of miles

Horses capable of galloping far are common

But Bo-Les are scarce

—Han Yu, On Horses

1The honorific name of Sun Yang, who is a horse tamer in Spring and Autumn period and

renowned as a judge of horses; also refers to those who recognize (especially hidden) talent.
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CHAPTER 1

Introduction

S
eventy-three years ago, Claude E. Shannon founded the theory of information

with an article titled A Mathematical Theory of Communication, which was

later republished under the name The Mathematical Theory of Communication to

reflect its omnipotence.

In the eternal work, Shannon explained how to measure the information content

of a random variable X and argued that, in the long term, the information content

carried by X costs H(X | Y ) + ε bits to be remembered, given that we have free

access to another random variable Y . Shannon also showed that, if sending X

results in the reception of Y , where X → Y is called a communication channel,

then the rate at which information can be transmitted is I(X ; Y ) − ε bits per

usage of channel. These results are now called [Shannon’s] source coding theorem

and noisy-channel coding theorem, respectively.

The famous article left two loopholes. Loophole one: Shannon’s proof involves

the existence of certain mathematical objects which, in reality, are next to impos-

sible to find constructively. As a consequence, Shannon’s protocol is never utilized

beyond academic interest. Loophole two: Whereas Shannon’s bound on ε is strong

enough to conclude that ε→ 0, which evinces that H(X | Y ) and I(X ; Y ) are the

limits we would like to achieve, we did not know how rapid ε decays to 0. That

is, Shannon identified the first order limit of coding, but left the second order limit

open.

The current dissertation aims to patch the two said loopholes and succeeds in

improving over existing patches. I will present an ε → 0 coding scheme whose

complexity is O(N log(logN)), where N is the block length, whilst the best known

result is O(N logN). This in turn patches the first loophole further, and is referred

to as the complexity paradigm of coding. I will also present an O(N logN) coding

scheme whose ε decays to zero at the pace that is provably optimal, while earlier

works only handle the binary case. This in turn fills the second loophole further,
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and is referred to as the second-moment paradigm of coding. I will then present a

joint scheme that achieves both O(N log(logN)) and the optimal pace of ε→ 0.

My codes are built upon two pillars. Pillar one: The overall code can be

seen as a modification of a recently developed code—polar code. Depending on

how we modify polar coding, we can inherit its O(N logN) complexity or reduce

it further down to O(N log(logN)). Pillar two: The polarization kernel can be

seen as a flag of the legacy codes—random codes. Since random coding is the

only way to achieve the second-moment paradigm, I incorporate it to boost the

performance of polar coding to the second-moment paradigm. The two pillars

support a coding scheme whose complexity scales like polar coding but performance

scales like random coding.

After mastering the complexity and second-moment paradigms of the source

coding theorem and the noisy-channel coding theorem, this dissertation moves for-

ward to a network coding scenario called distributed lossless compression. I will

then adapt the complexity and second-moment paradigms to these scenario. Using

similar techniques, the same result generalizes to even more coding scenarios such

as multiple access channels, wiretap channels of type I, and broadcast channels,

and is left for future research.

1.1. Organization of the Dissertation

The remaining sections of the current chapter map one-to-one to the remaining

chapters of the current dissertation and serve as their summaries.

Among the chapters: Chapter 2 was presented in the preprint [WD18b]. Chap-

ter 4 was presented in the preprints [WD18a] and [WD19a], the latter of which

was later published in IEEE Transactions on Information Theory [WD21a]. Chap-

ter 5 was presented in the preprint [WD18c]. Chapter 6 was presented in the

preprint [WD19b], which was later published in IEEE Transactions on Informa-

tion Theory [WD21b].

1.2. Original Channel Polarization

In Chapter 2, we will revisit Arıkan’s original proposal of polar coding that is

dedicated to binary-input channels and uses [ 1 0
1 1 ] as the polarization kernel. This

chapter serves three purposes: One, the construction by [ 1 0
1 1 ] is simple yet powerful
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enough to achieve capacity (the first order limit), and is of historical significance.

Two, I will provide a complete proof to the strongest version of the statements

available in the literature that unifies the techniques spanning across several state-

of-the-art works. Three, the main statement and its proof are the starting point of

at least three generalizations, and will be referred to as the prototype every now

and then.

In the seminal paper, Arıkan started with a symmetric binary-input discrete-

output memoryless channel W (y | x) and synthesized its children W (1)(y1y2 | u1)

and W (2)(y1y2u1 | u2) via

W (1)(y1y2 | u1) :=
∑

u2∈F2

1

2
W (y1 | u1 + u2)W (y2 | u2),

W (2)(y1y2u1 | u2) :=
1

2
W (y1 | u1 + u2)W (y2 | u2).

Treating •(1) and •(2) as transformations applied to channels, Arıkan continued syn-

thesizing, in a recursive manner, W ’s grandchildren (W (1))(1), (W (1))(2), (W (2))(1),

and (W (2))(2), followed by W ’s grand-grandchildren
(
(W (1))(1)

)(1)
,
(
(W (1))(1)

)(2)
,

etc, followed by their descendants ad infinitum.

Arıkan observed that a code can be established by selecting a subset of reliable

synthetic channels. To evaluate the performance of codes established this way,

we proceed to examine the stochastic process {Wn} defined by W0 := W and

Wn+1 := (Wn)(1 or 2 with equal chance). The evolution of the synthetic channels can

be controlled by Z(W (2)) = Z(W )2 and Z(W )
√

2− Z(W )2 ⩽ Z(W (1)) ⩽ 2Z(W )−
Z(W )2. From that I will prove

(1.1) P
{
Z(Wn) < e−2πn}

> P{Z(Wn)→ 0} − 2−ρn,

where (π, ρ) is any pair of constants that lies in the shaded area in Figure 2.1. This

inequality tells us how reliable Wn can be. Thus we learn how the original polar

coding performs.

1.3. Asymmetric Channels

In Chapter 3, I will bring up a “dual picture” of Chapter 2. The dual picture

consists of three elements: One, through examining the behavior of Wn when it

becomes noisy, i.e., when Z(Wn) ≈ 1, we have a more complete understanding of

{Wn} as a stochastic process. Two, the proof of said behavior is the mirror image

3



of the one given in Chapter 2, reinforcing the duality. Three, this result is pivotal

to source coding for lossy compressions, to noisy-channel coding over asymmetric

channels, and to a pruning technique that will be covered in upcoming chapters.

While inequality (1.1) addresses the behavior of Wn at the reliable end, another

parameter T and a stochastic process {T (Wn)} are defined to examine the behavior

of Wn at the noisy end. It satisfies T (W (1)) = T (W )2 and T (W (2)) ⩽ 2T (W ) −
T (W )2, and can be used to show that

(1.2) P
{
T (Wn) < e−2πn}

> P{T (Wn)→ 0} − 2−ρn,

where (π, ρ) is any pair of constants that lies in the same shaded area in Figure 2.1.

Note that T (Wn) → 0 iff Z(Wn) → 1, so inequality (1.2) is the mirror image of

inequality (1.1), telling us how noisy Wn can be.

Inequality (1.1) alone implies that polar coding is good for error correction

over symmetric channels and lossless compression (with or without side informa-

tion). Inequality (1.2) alone implies that polar coding is good for lossy compres-

sion. Together, inequalities (1.1) and (1.2) imply that (a) polar coding is good over

asymmetric channels, and (b) polar coding can be modified to attain an even lower

complexity. More on (b) in Chapter 4.

The proofs of inequalities (1.1) and (1.2) involve monitoring a “watch list”

subset Am of moderately reliable channels for m =
√
n, 2
√
n, . . . , n−√n for some

large perfect square n. When Wm ∈ Am is moderately good and Wm+
√
n becomes

extraordinary reliable, Wm+
√
n is moved from Am+

√
n to another “trustworthy”

subset Em+
√
n. On the other hand, when Wm+

√
n becomes noisy, it is temporary

removed from Am+
√
n, but has some chance to be added back to Am+l

√
n (for

some l ⩾ 2) once Wm+l
√
n becomes moderately reliable again. The rest of the

proof is to quantify moderate and extraordinary reliabilities and the corresponding

frequencies.

1.4. Pruning Channel Tree

In Chapter 4, I will introduce a novel technique called pruning. Pruning reduces

the complexity of encoder and decoder while retaining in part the performance of

polar codes. And it is reported prior that pruning reduces the complexity by a

constant factor. In this chapter, I will show that pruned polar codes can achieve
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capacity with encoding and decoding complexity O(N log(logN)), transcending the

old O(N logN) complexity. We will see in later chapters that pruning is a special

case of dynamic kerneling and can be applied to more general polar codes.

To explain pruning, I will establish the trinitarian correspondence among the

encoder/decoder, the channel tree, and the channel process {Wn}. Pruning the

channel tree corresponds to trimming the unnecessary part of the encoder and de-

coder, which reduces complexity. Viewed from the a different perspective, pruning

the channel tree corresponds to declaring a stopping time s that is adapted to {Wn}
so that the stochastic process {Wn∧s} stabilizes whenever channel transformation

becomes ineffective.

Now Ws becomes a random variable associated to code performance. For all

intents and purposes, it suffices to declare the stopping time s properly and prove

inequalities of the form

P
{
Z(Ws) < 4−n

}
> 1−H(W )− 2−ρn,

P
{
T (Ws) < 4−n

}
> H(W )− 2−ρn

and another inequality of the form

NE [s] ⩽ O(N log(logN)).

The first two inequalities imply that the code achieves capacity; the third inequality

confirms the complexity being O(N log(logN)).

1.5. General Alphabet and Kernel

In Chapter 5, I will investigate thoroughly two known ways to generalize polar

coding. One is allowing channels with arbitrary finite input alphabet. This extends

polar coding to all channels Shannon had considered in 1948. The other is utilizing

arbitrary matrices as polarizing kernels. Doing so provably improves the perfor-

mance in the long run, and is reportedly improving the performance for moderate

block length.

To begin, we will go over four regimes that connect probability theory, random

coding theory, and polar coding theory:

• Law of large numbers (LLN) and achieving capacity; this regime concerns

whether block error probability Pe decays to 0 while code rate R converges

to capacity.
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• Large deviation principle (LDP) and error exponent; this regime concerns

how fast Pe decays to 0 when an R is fixed.

• Central limit theorem (CLT) and scaling exponent; this regime concerns

how fast R approaches capacity a when Pe is fixed.

• Moderate deviation principle (MDP); this regime concerns the general

trade-off between Pe and R.

Next, I will go back to prove results regarding polar coding. For any matrix

G over any finite field Fq, the LDP data of G include coset distances D
(j)
Z :=

hdis(rj , Rj), where hdis is the Hamming distance, rj is the jth row of G, and Rj

is the subspace spanned by the rows below rj . Coset distances are such that

Z(W (j)) ≈ Z(W )D
(j)
Z .

This approximation is used to control small Z(Wn), which eventually proves a

generalization of inequality (1.1). For the dual picture, there is a parameter S

generalizing T and satisfying

S(W (j)) ≈ S(W )D
(j)
S ,

where D
(j)
S := hdis(cj , Cj) is the Hamming distance from cj the jth column of G−1

to Cj the subspace spanned by the columns to the left of cj . This eventually proves

a generalization of inequality (1.2).

The CLT data of an ℓ×ℓ matrix G consist of a choice of parameter H, a concave

function h : [0, 1]→ [0, 1] such that h(0) = h(1) = 0, and a number ϱ such that

1

ℓ

ℓ∑
i=1

h(H(W (j))) ⩽ ℓ−ϱh(H(W )),

where H could be the conditional entropy or any other handy parameter that

maximizes ϱ.

The contribution of Chapter 5 is a calculus–probability machinery that predicts

the MDP behavior of polar codes given the LDP and CLT data. The prediction is

of the form

P
{
Z(Wn) < e−ℓπn}

> 1−H(W )− ℓ−ρn,

where (π, ρ) lies to the left of the convex envelope of (0, ϱ) and the convex conjugate

of t 7→ logℓ

(
ℓ−1

∑ℓ
j=1(D

(j)
Z )t

)
. This generalizes inequality (1.1). Similarly, the

generalization of inequality (1.2) reads

P
{
S(Wn) < e−ℓπn}

> H(W )− ℓ−ρn,

6



where (π, ρ) ∈ [0, 1]2 to the left of the convex envelope of (0, ϱ) and the convex

conjugate of t 7→ logℓ

(
ℓ−1

∑ℓ
j=1(D

(j)
S )t

)
.

1.6. Random dynamic Kerneling

In Chapter 6, two novel ideas are invoked to help achieve the optimal MDP

behavior with low complexity. First, the matrix G that induces polarization is not

fixed but varying on a channel-by-channel basis. Second, since it is difficult to prove

that a specific G is good, a random variable G is to replace G and I will investigate

the typical behavior of G as a polarizing kernel.

The MDP behavior of random coding, which is provably optimal, reads

− lnPe

N(C −R)2
→ 1

2V
,

where C is channel capacity and V is another intrinsic parameter called channel

dispersion or varentropy. Our target behavior is less impressive, yet it is asymptot-

ically optimal in the logarithmic scale:

ln(− lnPe)

ln(N(C −R)2)
≈ 1.

Or equivalently, for any π + 2ρ < 1, there are codes such that Pe < exp(−Nπ) and

C −R < N−ρ.

For the typical LDP behavior of G, we need to understand, for each j, the

typical Hamming distance D
(j)
Z from its jth row to the subspace spanned by the

rows below. This step is essentially the Gilbert–Varshamov bound with slight

modifications so that it is easier to manipulate in later steps.

For the typical CLT behavior of G, I choose the concave function h(x) :=

min(x, 1− x)ℓ/ ln ℓ. Now we need to understand the typical behavior of

1

ℓ

ℓ∑
i=1

h(H(W (j))),

where W (j) is a random variable depending on G. This boils down to showing that

the first few H(W (j)) are close to 1, while the last few H(W (j)) are close to 0.

To show that H(W (j)) ≈ 1 and to quantify the approximation, I reduce this to

a reliability analysis of noisy-channel coding. To show that H(W (j)) ≈ 0 and to

quantify the approximation, I reduce this to a secrecy analysis of wiretap-channel

coding.

7



1.7. Joint Pruning and Kerneling

In Chapter 7, I will combine the techniques in Chapters 4 and 5 to depict a

trade-off between the complexity—ranging from O(N logN) to O(N log(logN))—

and the decay of Pe—ranging from exp(−Nπ) to exp(−(logN)τ ).

The main idea is to apply the stopping time analysis to any channel process

{Wn} whose MDP behavior is known. It could be a process generated by [ 1 0
c 1 ], for

which we know that it is guaranteed to have a positive ϱ. It could be a process

generated by a large kernel whose ϱ is bounded by some other method. It could

also be generated by random dynamic kerneling, for which we know ϱ→ 1/2.

The result is that, for any kernel, polar codes have the same gap to capacity

before and after pruning; and depending on how aggressively one wants to prune,

the complexity per bit is approximately the logarithm of the logarithm of the block

error probability.

For example, if the targeted block error probability is exp(−Nπ), then the pre-

dicted complexity is O(N logN). This recovers the result of the previous chapter.

On the other hand, if the targeted block error probability is exp(−(logN)τ ), then

the predicted complexity is O(N log(logN)). This is, by far, the lowest complexity

for capacity-achieving codes over generic channels. Plus the gap to capacity decay

to 0 optimally fast.

1.8. Distributed Lossless Compression

In Chapter 8, I will extend the theorems established in the previous chapters

to distributed lossless compression problems. A distributed lossless compression

problem is a network coding problem where there are m sources, each to be com-

pressed by a compressor that do not talk to each other, and a decompressor that

attempt to reconstruct all sources. I will go over the two-source case as a warm up,

the three-source case to demonstrate the difficulty, and finally the m-source case

for a general result.

I will explain that, modulo the previous chapters, the main challenge is to

reduce a multiple-sender problems to several one-sender problems. The reduction

consists of two steps. The first step is to demonstrate that a random source X can

be “split” into two random fragments X⟨1⟩ and X⟨2⟩ such that there is a bijection

X ↔ (X⟨1⟩, X⟨2⟩) and hence they carry the same amount of information. The

8



second step is to show that, by interleaving the fragments of sources in a way that

is related to Gray codes, we can fine-tune the workloads of every sender. That helps

us achieve every possible distribution of workloads.

A key to the second step is degree theory, an algebraic topology machinery that

determines the surjectivity of a continuous map. The degree theory offers a suffi-

cient condition on whether a map is onto the dominant face of a contra-polymatroid.

Here, it is the rate region of a distributed lossless compression problem that is a

contra-polymatroid. Dually, the capacity region of a multiple access channel is a

polymatroid and a similar argument applies. This fact indicates that, for both dis-

tributed lossless compression and multiple access channels, splitting coupled with

polar coding achieves the optimal block error probability and the optimal gap to

boundary at the cost of O(N logN) complexity. Or, following the complexity para-

digm, one prunes the complexity to O(N log(logN)) if a slightly higher block error

probability is acceptable.

9



CHAPTER 2

Original Channel Polarization

F
ifteen years ago, Erdal Arıkan developed a technique, called channel combin-

ing and splitting, to combine two identical channels and then split them into

two distinct channels [Ari06]. At the cost of having to prepare different codes to

deal with distinct channels, the two new channels enjoy better metrics. More pre-

cisely, the average of the cutoff rates rises. Arıkan then argued that, by recursively

synthesizing the children of the children of . . . of the channel, the rise in cutoff

rates eventually pushes them towards the channel capacity.

As it turns out, after a sufficient amount of recursion, one does not need 2n

different coding schemes to deal with the 2n descendants of W . This is because

most synthetic channels are either satisfactorily reliable—so we just transmit plain

messages through these—or desperately noisy—so we just ignore those. The phe-

nomenon is named channel polarization and the corresponding coding scheme polar

coding.

Arıkan showed that this original polar coding achieves channel capacity. That

is, if you follow Arıkan’s instruction to construct codes, then Pe → 0 and R→ I(W )

over any symmetric binary-input discrete-output memoryless channels. This is done

via proving, for some functions θ(n) and γ(n), (a) that

P
{
Z(Wn) < θ(n)

}
> I(W )− γ(n),

(b) that 2nθ(n) is an upper bound on Pe, and (c) that γ(n) is an upper bound on

I(W )−R.

In this chapter, I will characterize the pace of achieving capacity. We will see

that

P
{
Z(Wn) < e−2πn}

> I(W )− 2−ρn

if (π, ρ) ∈ [0, 1]2 lies to the left of the convex envelope of (0, 1/4.714) and 1− (the

binary entropy function). Prior to my work, the largest region of achievable (π, ρ)

10



1/4.714

1/5.714

0
0 1/2

ρ

π

(0.4208, 0.0182)

Figure 2.1. The achievable region of (log(− log2 Pe), log(C−R))

is shaded. The curve part is 1 minus the binary entropy function.

The straight part is the tangent line from (0, 1/4.714) to the curve,

the tangent point being (0.4208, 0, 0182). The lower left curve is

the previous result [MHU16], which attains (0, 1/5.714).

is considerably smaller and reaches only (0, 1/5.714) [MHU16]. See Figure 2.1 for

plots.

2.1. Problem Setup and Primary Definitions

After introducing some definitions, this section describes the main problem to

be solved in this chapter. First goes the definition of the channels we want to

attack.

Definition 2.1. A symmetric binary-input discrete-output memoryless channels

(SBDMCs) is a Markov chain W : F2 → Y, where

• F2 is the finite field or order 2;

• Y is a finite set;

• W (y | x) ∈ [0, 1], for x ∈ F2 and y ∈ Y, is an array of transition

probabilities satisfying
∑

y∈Y W (y | x) = 1 for both x ∈ F2; and

• there exists an involution σ : Y → Y such that W (y | 0) = W (σ(y) | 1) for

all y ∈ Y.

Denote by Q the uniform distribution on F2; treat this as the input distribution

of the channel W . Denote by W (x, y) the joint probability Q(x)W (y | x). Denote by

W (x | y) the posterior probability; note that W (• | •) assumes two interpretations,

depending on whether we want to predict y from x or the other way around. When

11



it is necessary, W (y) := W (y | 0)+W (y | 1) denotes the output probability. Capital

variables X and Y , usually with indices, denote the input and output of the channel

governed by Q and W .

The definitions of some channel parameters follow.

Definition 2.2. The conditional entropy of W is

H(W ) := −
∑
x∈F2

∑
y∈Y

W (x, y) log2 W (x | y),

which is the amount of noise/equivocation/ambiguity/fuzziness caused by W .

Definition 2.3. The mutual information of W is

I(W ) := H(Q)−H(W ) =
∑
x∈F2

∑
y∈Y

W (x, y) log2

W (x | y)

Q(x)
,

which is also the channel capacity of W .

Definition 2.4. The Bhattacharyya parameter of W is

Z(W ) := 2
∑
y∈Y

»
W (0, y)W (1, y),

which is twice the Bhattacharyya coefficient between the joint distributions W (0, •)
and W (1, •).

The overall goal is to construct, for some large N , an encoder E : FRN
2 → FN

2

and a decoder D : YN → FRN
2 such that the composition

URN
1 XN

1 Y N
1 ÛRN

1
E WN D

is the identity map as frequently as possible, and R as close to the channel capacity

I(W ) as possible.

Definition 2.5. Call N the block length. Call R the code rate. Denote by Pe,

called the block error probability, the probability that ÛRN
1 ̸= URN

1 .

To reach the overall goal of constructing good error correcting codes, I will

introduce the building block of all techniques we are to utilize–channel transforma-

tion.
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2.2. Channel Transformation and Tree

This section motivates and defines the channel transformation. For the pre-

cise connection between the transformation and the actual encoder/decoder design,

please refer to Arıkan’s original work [Ari09].

Let G ∈ F2×2
2 be the matrix 1 0

1 1

 .

Let U1, U2 ∈ F2 be two uniform random variables. Let X2
1 ∈ F2 be the vector[

X1 X2

]
:=

[
U1 U2

]1 0

1 1

 ,

or X2
1 := U2

1G for short. Let Y1, Y2 ∈ Y be the outputs of two i.i.d. copies of W

given the inputs X1 and X2, respectively. Then the combination of the two W ’s is

the channel with input U2
1 and output Y 2

1 .

To split the combination of the channels, consider a two-step guessing job:

• Guess U1 given Y 2
1 .

• Guess U2 given Y 2
1 , assuming that the guess Û1 of U1 is correct.

Pretend that there is a channel W (1) with input U1 and output Y 2
1 ; this channel

captures the difficulty of the first step. Pretend also that there is a channel W (2)

with input U2 and output Y 2
1 U1; this channel captures the difficulty of the second

step. The precise definitions follows.

Definition 2.6. Define synthetic channels

W (1)(y21 | u1) :=
∑

u2∈F2

1

2
W (y1 | u1 + u2)W (y2 | u2),

W (2)(y21u1 | u2) :=
1

2
W (y1 | u1 + u2)W (y2 | u2).

Clearly W (1) and W (2) are of binary input and discrete output. It can be

shown that they are symmetric, hence are SBDMCs. Therefore, the channel trans-

formation W 7→ (W (1),W (2)) maps the set of SBDMCs to the Cartesian square

thereof.

Once we accept the idea that the guessing jobs can be modeled as channels,

we can talk about manipulating the channels as if they were actual objects instead

of describing, abstractly, the change in ways we are guessing the random variables.
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Particularly, we can easily imagine that the channel transformation applies recur-

sively and gives birth to descendants W (j1), (W (j1))(j2), ((W (j1))(j2))(j3), and so

on and so forth. This family tree of synthetic channels rooted at W is called the

channel tree.

To construct a code, choose a large integer n and synthesize the depth-n de-

scendants of W , which are of the form
(
· · · ((W (j1))(j2)) · · ·

)(jn)
. Select a subset of

those channels, which is equivalent to selecting a subset of indices (j1, j2, . . . , jn) ∈
{1, 2}n. Call this subset J . Then by transmitting messages through the synthetic

channels in J , a code is established. This code has block length N = 2n, code rate

R = |J |/2n, and block error probability upper bounded by

(2.1) Pe ⩽
∑
jn1 ∈J

Z
((
· · · ((W (j1))(j2)) · · ·

)(jn))
.

In all papers I have seen, no upper bound on Pe other than inequality (2.1) was

used. So we may pretend that the right-hand side of inequality (2.1) is the design

block error probability of J .

To construct good codes, it suffices to collect in J synthetic channels with

small Z. But the more we collect, the higher the sum of Z’s. This induces a trade-

off between Pe and R, which is the subject of the current chapter. Let θ be the

collecting threshold; that is, J collects synthetic channels whose Z falls below θ.

Then θ parametrizes the trade-off in the sense that Pe < Nθ and R is the density

of the synthetic channels whose Z falls below θ.

In the next section, I will introduce some stochastic processes that help us

comprehend the trade-off between R and Pe.

2.3. Channel and Parameter Processes

We are to define some stochastic processes whose sample space is independent

of those of the channels and user messages. To help distinguish the new source of

randomness, I typeset the relevant symbols (such as P,E ) in sans serif font.

Definition 2.7. Let J1, J2, . . . be i.i.d. tosses of a fair coin with sides {1, 2}. That

is,

Jn :=

1 w.p. 1/2,

2 w.p. 1/2.

Let W0,W1,W2, . . . , or {Wn} in short, be a stochastic process of SBDMCs defined

as follows:
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• W0 := W ; and

• Wn+1 := W (Jn+1)
n .

This is called the channel process.

Definition 2.8. Let {Hn} be the stochastic process obtained by applying H to

{Wn}. That is, Hn := H(Wn). It is called Arıkan’s martingale.

Definition 2.9. Let {Zn} be the stochastic process obtained by applying Z to

{Wn}. That is, Zn := Z(Wn). It is called Bhattacharyya’s supermartingale.

The remainder of this section is devoted to explaining that Arıkan’s martingale

is a martingale and Bhattacharyya’s supermartingale is a supermartingale, as well

as other relations among H and Z. It will show that questions regarding the code

performance can be passed to questions regarding the processes {Hn} and {Zn}.

Proposition 2.10. Arıkan’s martingale {Hn} is a martingale.

Proof. It suffices to check if H(W (1))+H(W (2)) = 2H(W ). Recall the inputs

and outputs of W (1) and W (2); we have

H(W (1)) + H(W (2)) = H(U1 | Y 2
1 ) + H(U2 | U1Y

2
1 ) = H(U2

1 | Y 2
1 )

= H(X2
1 | Y 2

1 ) = 2H(X | Y ) = 2H(W ).

That finishes the proof. □

Proposition 2.11. Bhattacharyya’s supermartingale {Zn} is a supermartingale.

Proof. It suffices to check if Z(W (1)) + Z(W (2)) ⩽ 2Z(W ). But that is the

sum of inequalities (2.3) and (2.2) below. □

Lemma 2.12 (Evolution of Z). The following hold for all SBDMCs W :

Z(W (2)) = Z(W )2,(2.2)

Z(W (1)) ⩽ 2Z(W )− Z(W )2,(2.3)

Z(W (1)) ⩾ Z(W )
»

2− Z(W )2.(2.4)

For a proof of the first two inequalities, see [Ari09, Proposition 5]. Regarding

the third inequality, it is used in [MHU16, inequality (5)], wherein the authors
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1

0
0 1

Z

H

Figure 2.2. The possible region where (H(W ), Z(W )) could lie

in. The dark region is the exact one, whereas the outer boundaries

are loosened to two pieces so that they are easier to describe—they

are a parabola and a line of slope ln 2.

cited [RU08, Exercise 4.62]. The proofs consist of elementary manipulations of

summations and square roots.

The next lemma relates H and Z. Note that any relation automatically applies

to {Hn} and {Zn}.

Lemma 2.13 (Z vs H). The following hold for all SBDMCs W :

Z(W ) ⩾ H(W ),

Z(W )2 ⩽ H(W ),(2.5)

1− Z(W ) ⩾ (1−H(W )) ln 2.

For proofs, see [JA18, Corollary 5]; note that the last two inequalities are spe-

cializations of ϕ(Z(W )) ⩽ H(W ) for a smooth function ϕ(z) := h2((1−
√

1− z2)/2).

For a visualization of the region where (H(W ), Z(W )) could possibly be, see Fig-

ure 2.2.
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Remark: Imagine that we write down the parameter processes in an infinite

array H0 H1 H2 H3 · · ·
Z0 Z1 Z2 Z3 · · ·


then Propositions 2.10 and 2.11 and Lemma 2.12 are some horizontal relations, and

Lemma 2.13 is some vertical relations. These lemmas help us predict where the

processes are going. For example, if we happen to know Hn → 0, then Zn → 0

because inequality (2.5) says Zn ⩽
√

Hn. I call this the common-fate property.

The next lemma justifies why we want to predict the processes—because it

helps us evaluate code performance.

Lemma 2.14. Fix an n. Declare a code by letting J collect synthetic channels

with Z less than the threshold θ. Then the code rate R is P{Zn < θ}.

Proof. Recall that R = |J |/2n, where |J | is the number of depth-n synthetic

channels of the form
(
· · · ((W (j1))(j2)) · · ·

)(jn)
in J . Since Wn assumes each depth-

n channel with probability 1/2n, the code rate R is the probability that Wn is in

J . This quantity, by the definition of J , is the probability that Z(Wn) < θ; and

Z(Wn) is just Zn. This finishes the proof. □

Recap: When declaring a code by letting J collect synthetic channels with Z

less than θ, the block error probability has an upper bound Pe < Nθ, and the code

rate has an easy expression R = P{Zn < θ}. In summary, the following formula

depicts the trade-off between Pe and R:

P{Zn < Pe/N} ≈ R.

To rephrase it, we are interested in the cdf of Zn, especially how close it is to the

y-axis.

Our end-of-chapter goal is to characterize the pairs (π, ρ) ∈ [0, 1]2 such that

P
{
Zn < e−2πn}

> I(W )− 2−ρn.

That immediately implies the existence of codes with Pe on the order of exp(−2πn)

and the gap to capacity I(W ) − R on the order of 2−ρn. In the next section, we

approach this goal via first showing

(2.6) P
{
Zn < e−n2/3}

> I(W )− 2−ϱn+o(n)

for some ϱ > 0, where 1/ϱ is sometimes called the scaling exponent.
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2.4. Scaling Exponent Regime

As far as I can tell, the only way to show inequality (2.6) is through the eigen

behavior of Zn. More precisely, I will first declare a concave function h : [0, 1] →
[0, 1] and estimate the supremum

2−ϱ := sup
W : SBDMC

h(Z(W (1))) + h(Z(W (2)))

2h(Z(W ))
.

This is called the eigen behavior of Zn. From that we can infer E [Zn] ⩽ Z02−ϱ, and

then P{exp(−n2/3) ⩽ Zn ⩽ 1−exp(−n2/3)} < 2−ϱn+o(n), followed by P{Zn → 0} =

I(W ), and finally the en23 behavior P{Zn < exp(−n2/3)} > I(W )− 2−ϱn+o(n).

Let us walk through a toy example before we dive into the general case. Con-

sider any binary erasure channel (BEC) W . Then inequality (2.3) assumes equality;

that is, Z(W (1)) = 2Z(W )−Z(W )2. Declare an “eigenfunction” h(z) :=
√

z(1− z).

Then

(2.7) sup
W : BEC

h(Z(W (1))) + h(Z(W (2)))

2h(Z(W ))
= sup

0<z<1

h(2z − z2) + h(z2)

2h(z)
=

√
3

2
.

This means that
√

3/2 is the “eigenvalue” corresponding to h, hence the name eigen

behavior.

We now deduce that E [h(Zn+1)] = E [E [h(Zn+1) | Zn]] ⩽ E [h(Zn)
√

3/2]. Apply-

ing this iteratively, we arrive at E [h(Zn)] ⩽ h(Z0)(
√

3/2)n. From there we further

deduce that, by Markov’s inequality,

P
{
e−n2/3

⩽ Zn ⩽ 1− e−n2/3}
= P

{
h(Zn) ⩾ h

(
e−n2/3)}

⩽
E [h(Zn)]

h(exp(−n2/3))
⩽

h(Z0)(
√

3/2)n

h(exp(−n2/3))
<

(
√

3/2)n

exp(−n2/3)
<

(√3

2

)n−o(n)

.(2.8)

What we see here is that Zn refuses to stay around the middle of the interval [0, 1],

and we can quantify how unwilling Zn is.

Next, we run the following analysis nonsense to derive that P{Zn → 0} = I(W ):

Since E [h(Zn)] decays exponentially fast in n while h is bounded, h(Zn)→ 0 almost

surely. This implies that Zn might (a) converge to 0, (b) converge to 1, or (c) jump

back and forth between 0 and 1. The last one cannot happen to a supermartingale,

so there exists a random variable Z∞ such that Zn → Z∞ ∈ {0, 1}. By Lemma 2.13,

{Hn} obeys the same law—there exists a random variable H∞ such that Hn → H∞ ∈
{0, 1}. Now P{Zn → 1} = P{Hn → 1} = P{H∞ = 1} = E [H∞] = H0 = H(W ), so

the complement probability is P{Zn → 0} = I(W ).
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Inequality (2.8) and P{Zn → 0} = I(W ) are what we need to derive the en23

behavior of Zn—the former expels Zn to the ends of the interval [0, 1], and the

latter predicates how much Zn goes to which end. In detail, consider the bad event

Bn := {Zn ⩾ exp(−n2/3) but Zm → 0}. This event collects the samples where

Zn used to be moderate or bad but turns out to be good. By Lemma 2.12, there

must be some m ⩾ n such that Zm “visits the middle”, i.e., exp(−m2/3) ⩽ Zm ⩽

1−exp(−m2/3). But since the upper bound by inequality (2.8) is a geometric series

in m, the probability that some Zm (for some m ⩾ n) visit the middle is at most

(
√

3/2)n−o(n). We conclude that P{Zn < exp(−n2/3)} ⩾ P{Z → 0} − P(Bn) >

I(W )− (
√

3/2)n−o(n).

Remark on the last four paragraphs: We used an eigen-pair (h,
√

3/2) to quan-

tify the pace of decay of E [h(Zn)] and further computed how much Zn visits the

middle or close to 0. The general SBDMC version of this argument comes with

two modifications. First, the eigenvalue
√

3/2 could be improved if we use a better

eigenfunction h. Second, Z(W (1)) is not exactly 2Z(W ) − Z(W )2 but can be as

low as Z(W )
√

2− Z(W )2 (Lemma 2.12). This has to be taken into consideration

for the generalization of supremum (2.7).

The remainder of this section deals with the general SBDMC case.

Theorem 2.15 (SBDMC scaling exponent). Assume SBDMCs. There exists a

concave function h : [0, 1]→ [0, 1] such that h(0) = h(1) = 0 and

sup
W : SBDMC

h(Z(W (1))) + h(Z(W (2)))

2h(Z(W ))
> 2−1/4.714.

Proof. Thanks to Lemma 2.12, it suffices to find a function h that minimizes

(2.9) sup
0<z<1

sup
z
√
2−z2⩽z′⩽2z−z2

h(z′) + h(z2)

2h(z)
.

It is not known yet if there is an analytic form for such h, but numerical computation

in [MHU16, Theorem 2] suggests that 2−1/4.717 is achievable by some spline h,

and I will stick to this number.

Note one: By a compactness argument, supremum (2.9) is strictly less than 1.

As long as it is less than 1, the arguments in the remainder of this section apply

with 2−1/4.717 replaced by the weaker supremum. Therefore, readers should not

worry about whether 2−1/4.714 is mathematically sound.
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Note two: Despite of potential rounding errors, there is another reason why

I think 2−1/4.714 is not the final value. Recall that we took the supremum over

z
√

2− z2 ⩽ z′ ⩽ 2z− z2; this is a pessimistic estimate and chances are that we will

have tighter inequalities to bound Z(W (1)). □

Now, let us start deriving the en23 behavior of SBDMCs.

Lemma 2.16 (From eigen to en23). Fix ϱ := 1/4.714. Assume Theorem 2.15.

Then

((2.6)’s copy) P
{
Zn < e−n2/3}

> I(W )− 2−ϱn+o(n).

Proof. The proof was sketched when we walked through the toy example.

First, Theorem 2.15 yields that E [h(Zn+1)] ⩽ E [h(Zn)2−ϱ]. Telescoping, we obtain

that E [h(Zn)] ⩽ Z02−ϱn < 2−ϱn+o(n). By Markov’s inequality, we see

(2.10) P
{
e−n2/3

⩽ Zn ⩽ 1− e−n2/3}
⩽

E [h(Zn)]

h(exp(−n2/3))
< 2−ϱn+o(n).

Next, we recall why P{Zn → 0} = I(W ): By that {h(Zn)} is a bounded

supermartingale and decays by a constant factor every time n increases, it converges

to 0 almost surely. Since h is concave, h(0) and h(1) are the only places that

evaluate to 0, which means that Zn is getting closer and closer to either 0 or

1. By Lemma 2.12, or that {Zn} is a supermartingale, it cannot jump from the

neighborhood of 0 to the neighborhood of 1, so each realization of {Zn} must

choose either 0 or 1 and converge to it. By Lemma 2.13, {Hn} must converge, and

is converging to the same limit {Zn} does. But as {Hn} is a bounded martingale,

we know that E [limn→∞ Hn] = limn→∞ E [Hn] = H0 = H(W ). Hence H(W ) is the

probability that {Hn} and {Zn} converge to 1. Its complement is that {Hn} and

{Zn} converge to 0 with probability 1−H(W ) = I(W ).

Lastly, I explain why P{Zn < exp(−n2/3)} > P{Zn → 0} − 2−ϱn+o(n): In

general, we would like to believe that if a realization of {Zn} converges to 0, its

prefix (the first few terms) would be rather small. But there are exceptions: Let

Bn be the exceptional event {Zm → 0 but Zn ⩾ exp(−n2/3)}. We would like to

estimate P(Bn). To do so, realize that if Zn ⩾ exp(−n2/3), then either

• exp(−n2/3) ⩽ Zn ⩽ 1− exp(−n2/3), or

• 1− exp(−n2/3) ⩽ Zn and Zm will visit the closed interval

[exp(−m2/3), exp(−m2/3)] for some later m > n.
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Either case, Zn or its descendants will step in the left-hand side of inequality (2.10).

Sum inequality (2.10) over m ⩾ n and apply the union bound over m ⩾ n; we get

an upper bound P(Bn) <
∑

m⩾n 2−ϱm+o(m) < 2−ϱn+o(n). Consequently, P{Zn <

exp(−n2/3)} ⩾ P{Zn → 0}−P(Bn) > I(W )−2−ϱn+o(n). That closes the proof. □

So far I have proved P{Zn < exp(−n2/3)} > I(W )−2−n/4.714+o(n). In the next

section, I will prove the same inequality with exp
(
−en1/3)

in place of exp(−n2/3).

After that, I will prove the final goal—P{Zn < exp(−ℓπn)} > I(W )−2−ρn+o(n) for

some pairs (π, ρ) lying in the shaded area in Figure 2.1.

2.5. Stepping Stone Regime

In this section, we will verify the een13 behavior P
{
Zn < exp

(
−en1/3)}

>

I(W )− 2−n/4.714+o(n) on top of the en23 behavior proved in the last section. The

idea behind the proof is to keep track of how many Zm are moderately small, i.e.,

Zm < exp(−m2/3) and how many descendants Zn thereof become even smaller, i.e.,

Zn < exp
(
−en1/3)

for some n > m.

To understand the idea better, pretend that we have a Zn that is moderately

small—about exp(−n2/3) small. Then the punchline here is that squaring (Z 2
n)

will scale Zn down rapidly, while doubling (2Zn − Z 2
n) barely does anything to the

order of magnitude of Zn. So the problem boils down to counting how many times a

trajectory of {Zn} undergoes the squaring branches. This number obeys a binomial

distribution whose limiting behavior is well-known.

Before the actual proof, let me walk through a tentative strategy to demonstrate

what could go wrong. Let m < n be two large numbers, then Lemma 2.16 yields

(2.11) P
{
Zm < e−m2/3}

> I(W )− 2−ϱm+o(m).

In order to end up with Zn ≈ exp
(
−en1/3)

from Zm ≈ exp(−m2/3), it requires,

among the remaining n−m Bernoulli trials, n1/3 squaring branches. By Hoeffding’s

inequality, it would not meet the requirement with probability

(2.12) exp
(
−Ω

(n−m

2
− n1/3

))
.

Now we see the dilemma: If m is too small compared to n, i.e., m < n − Ω(n),

the right-hand side of inequality (2.11) is I(W )− 2−ϱn+Ω(n), which is too far away

from the expected code rate I(W ) − 2−ϱn+o(n). If, otherwise, m is comparable to
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n, i.e., m = n− o(n), the right-hand side of inequality (2.12) is exp(−o(n)), which

exceeds the expected gap to capacity 2−ϱn+o(n).

The preceding hand-waving argument demonstrates that no m can settle the

argument down once and for all. So the second punchline is to use multiple m’s.

In my case, I choose m =
√
n, 2
√
n, . . . , n−√n for some perfect square n to apply

Hoeffding’s inequality
√
n times. There are flexibilities in choosing m’s; for instance,

when n is not a perfect square, using m = ⌈√n⌉, 2⌈√n⌉, . . . , ⌊n/⌈√n⌉⌋⌈√n⌉ would

not alter the proof up to some little-o terms. So let us presume that n is always a

perfect square.

That could be the end of the proof if it were not for the falling of the assumption:

For an m, if the first few branches after Zm are doubling it, Zm will soon become

so large that the 2 in 2Zm is not negligible. For this concern, Hoeffding’s inequality

does not help—it does not control whether the n1/3 squaring branches take place

within the last few branches or spread out evenly. To resolve that, we need to keep

an eye on the entire trajectory Zm,Zm+1, . . . ,Zn to make sure that it stays in the

range where doubling is negligible.

The actual proof provided below aims to mimic the tentative argument for

multiple m’s at once while resolving the issue that doubling too much could break

things. I will keep monitoring two conditions—whether a trajectory of Zn undergoes

sufficiently many squaring branches and whether that trajectory of Zn stays low

enough such that doubling is negligible.

Lemma 2.17 (From en23 to een13). Given Lemma 2.16, that is, given

P
{
Zn < e−n2/3}

> I(W )− 2−ϱn+o(n),

we have

(2.13) P
{
Zn < exp

(
−en1/3)}

> I(W )− 2−ϱn+o(n).

Proof. (Select constants.) Consider the stochastic process {19Jn/20}. Since

2z − z2 ⩽ 2z ⩽ z19/20 whenever z < 2−20, we have Zn+1 ⩽ Z 19Jn+1/20
n whenever

Zn < 2−20. Also notice that, numerically, E [J−1
n ]61/20 ≈ 0.8202 < 2−1/3.6.

(Define events.) Let n be a perfect square. Let E 0
0 be the empty event. For

every m =
√
n, 2
√
n, . . . , n −√n, we define five series of events Am, Bm, Cm, Em,

and Em
0 inductively as below: Let Am be {Zm < exp(−m2/3)} \ Em−√

n
0 . Let Bm
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be a subevent of Am where Zl ⩾ 2−20 for some l ⩾ m. Let Cm a subevent of Am

where

(2.14) Jm+1Jm+2 · · · Jm+
√
n ⩽ 6

√
n/20.

Let Em be Am \ (Bm ∪Cm). Let Em
0 be Em−√

n
0 ∪ Em. Let am, bm, cm, em, and em0

be the probability measures of the corresponding capital letter events. Moreover,

let gm be I(W )− em0 .

(Bound bm/am from above.) Conditioning on Am, we want to estimate the

probability that Zl ⩾ 2−20 for some l ⩾ m. Recall that {Zl} is a supermartingale.

Hence by Ville’s inequality [Dur19, Exercise 4.8.2], P{Zl ⩾ 2−20 for some l ⩾

m | Am} ⩽ 220Zm < 220 exp(−m2/3). This is an upper bound on bm/am and will

be summoned in inequality (2.15).

(Bound cm/am from above.) We want to estimate how often inequality (2.14)

happens. That is the probability that (Jm+1Jm+2 · · · Jm+
√
n)−1 ⩾ 6−

√
n/20. This

probability cannot exceed E [(Jm+1Jm+2 · · · Jm+
√
n)−1]6

√
n/20 = E [J−1

1 ]
√
n6

√
n/20 =

(E [J−1
1 ]61/20)

√
n < 2−

√
n/3.6 by Markov’s inequality. This is an upper bound on

cm/am and will be summoned in inequality (2.15).

(Bound (gm−√
n − am)+ from above.) By definitions, gm−√

n − am = I(W ) −
(em−√

n
0 + am). The definition of Am forces it to be disjoint from Em−√

n
0 , thus

em−√
n

0 +am is the probability measure of Em−√
n

0 ∪Am. This union event must con-

tain the event {Zm < exp(−m2/3)} by how Am was defined. Recall the en23 behav-

ior P{Zm < exp(−m2/3)} > I(W )− ℓ−ϱm+o(m). Chaining all inequalities together,

we deduce gm−√
n− am < ℓ−ϱm+o(m). Let (gm−√

n− am)+ be max(0, gm−√
n− am)

so we can write (gm−√
n−am)+ < ℓ−ϱm+o(m). This upper bound will be summoned

in inequality (2.15).

(Bound en−
√
n

0 from below.) We start rewriting gm with g+
m being max(0, gm):

gm = I(W )− em0 = I(W )− (em−√
n

0 + em) = I(W )− em−√
n

0 − em

= gm−√
n − em = gm−√

n

(
1− em

am

)
+

em
am

(gm−√
n − am)

⩽ g+
m−√

n

(
1− em

am

)
+

em
am

(gm−√
n − am)+

⩽ g+
m−√

n

(
1− em

am

)
+ (gm−√

n − am)+

⩽ g+
m−√

n

(bm
am

+
cm
am

)
+ (gm−√

n − am)+
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< g+
m−√

n

(
220e−m2/3

+ ℓ−
√
n/3.6

)
+ ℓ−ϱm+o(m).(2.15)

The first four equalities are by the definitions of gm and Em
0 . The next equality

is simple algebra. The next two inequalities are by 0 ⩽ em/am ⩽ 1. The next

inequality is by the definition of Em. The last inequality summons upper bounds

derived in the last three paragraphs. The last line contains two terms in the big

parentheses; between them, 2−
√
n/3.6 dominates 220 exp(−m2/3) once m is greater

than O(n3/4). Subsequently, we obtain this recurrence relation:gO(n3/4) ⩽ 1,

gm ⩽ 2g+
m−√

n
ℓ−

√
n/3.6 + ℓ−ϱm+o(m).

Solve it (cf. the master theorem); we get that gn−√
n < ℓ−ϱn+o(n). By the definition

of gn−√
n, we immediately get en−

√
n

0 > I(W )− ℓ−ϱn+o(n).

(Analyze En−√
n

0 .) We want to estimate Hn when En−√
n

0 happens. To be

precise, for each m =
√
n, 2
√
n, . . . , n−√n, we attempt to bound Zm+

√
n when Em

happens. Fix an m. When Em happens, its superevent Am happens, so we know

that Zm < exp(−m2/3). But Bm does not happen, so Zl < 2−20 for all l ⩾ m. This

implies that Zl+1 ⩽ Z 19Jl+1/20
l for those l. Telescope; Zm+

√
n is less than or equal

to Zm raised to the power of Jm+1Jm+2 · · · Jm+
√
n(19/20)

√
n. But Cm does not

happen, so the product is greater than 6
√
n/20(19/20)

√
n = (6(19/20)20)

√
n/20 >

2
√
n/20. Jointly we have Zm+

√
n ⩽ Z 2

√
n/20

m < exp(−m2/32
√
n/20). Recall that

Zl+1 ⩽ 2Zl for all l ⩾ m +
√
n. Then telescope again; Zn ⩽ 2n−m−√

nZm+
√
n <

2n exp(−m2/32
√
n/20) < exp

(
−en1/3)

provided that n is sufficiently large. In other

words, En−√
n

0 implies Zn < exp
(
−en1/3)

.

(Summary.) Now we may conclude, for all perfect squares n, that P
{
Zn <

exp
(
−en1/3)}

⩾ P(En−√
n

0 ) = en0 > I(W ) − ℓ−ϱn+o(n). For non-squares, round

n down to the nearest square and rerun the whole argument above. We will get

Zn < 2n exp(−m2/32⌊
√
n⌋/20) with probability at least I(W )−ℓ−ϱ⌊√n⌋2+o(n), which

still leads to P
{
Zn < exp

(
−en1/3)}

> I(W ) − ℓ−ϱn+o(n). And hence the proof of

the een13 behavior, inequality (2.13), is sound for all n. □

This section is parallel to [WD18c, section V], to [WD19b, appendix C.C],

and to [GRY19, section 10.2]. Do not confuse this section with the next section.

The subtlety is explained in [WD18c, section III].
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Now we know P
{
Zn < exp

(
−en1/3)}

> I(W ) − 2−ϱn+o(n). We are ready to

learn what (π, ρ) pairs satisfy P
{
Zn < exp

(
−2πn

)}
> I(W )− 2−ρn+o(n).

2.6. Moderate Deviations Regime

I will build upon the een13 behavior and utilize a technique similar to before

to answer the following main question: Knowing P{Zn < exp(−20.499n)} > I(W )−
1/999 [AT09] and P{Zn < 1/999} > I(W ) − 2−ϱn+o(n) [MHU16], can we find a

interpolating result between these two results? This section, finally, offers an answer

by characterizing the region of pairs (π, ρ) that satisfy P
{
Zn < exp

(
−2πn

)}
>

I(W )− 2−ρn+o(n).

Recall ϱ := 1/4.714. Let h2(p) := −p log2 p− (1− p) log2(1− p) be the binary

entropy function. Let O ⊆ [0, 1/2]×[0, ϱ] be an open region defined by the following

criterion: for any (π, ρ) ∈ O, the ray shooting from (π, ρ) toward the opposite

direction of (0, ϱ) does not intersect the function graph of 1 − h2. See Figure 2.1;

this criterion is equivalent to that (π, ρ) lies to the left of the convex envelope of

(0, ϱ) and 1− h2. This criterion is also equivalent to

(2.16) 1− h2

( πn

n−m

)
>

ρn− ϱm

n−m

for all 0 < m < n. The last criterion is what will be used in the proof.

Theorem 2.18 (From een13 to e2pin). Fix a pair (π, ρ) ∈ O. Given the conclusion

of Lemma 2.17, that is, given

((2.13)’s copy) P
{
Zn < exp

(
−en1/3)}

> I(W )− 2−ϱn+o(n),

then

(2.17) P
{
Zn < e−2πn}

> I(W )− 2−ρn+o(n).

Proof. (Select constants.) Since inequality (2.16) holds, there exists a small

constant ε > 0 such that

(2.18) 1− h2

( πn

n−m
+ 2ε

)
>

ρn− ϱm

n−m

by the compactness argument. Fix this ε. There exists a small constant δ > 0 such

that Zn+1 ⩽ Z Jn+1(1−ε)
n whenever Zn < δ.

(Define events.) Let n be a perfect square. Let A0
0 and E 0

0 be the empty event.

For every m =
√
n, 2
√
n, . . . , n − √n, we define six series of events Am, Am

0 , Bm,
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Cm, Em, and Em
0 inductively as follows: Let Am be

{
Zm < exp(−em1/3

)
}
\Am−√

n
0 .

Let Am
0 be Am−√

n
0 ∪Am. Let Bm be a subevent of Am where Zl ⩾ δ for some l ⩾ m.

Let Cm a subevent of Am where

(2.19) Jm+1Jm+2 · · · Jn ⩽ 2πn+2ε(n−m).

Let Em be Am\(Bm∪Cm). Let Em
0 be Em−√

n
0 ∪Em. Let am, am0 , bm, cm, em, and em0

be the probability measures of the corresponding capital letter events. Moreover,

let fm be I(W )− am0 and let gm be I(W )− em0 .

(Bound bm/am from above.) Conditioning on Am, we want to estimate the

probability that Zl ⩾ δ for some l ⩾ m. Recall that Zl is a supermartingale. Hence

by Ville’s inequality ([Dur19, Exercise 4.8.2]), P{Zl ⩾ δ for some l ⩾ m | Am} ⩽
Zm/δ < exp

(
−em1/3)

/δ. This is an upper bound on bm/am and will be summoned

in inequality (2.20).

(Bound cm/am from above.) We want to estimate how often inequality (2.19)

happens. This is equivalent to asking how often do n −m fair coin tosses end up

with πn + 2ε(n−m) heads. By the large deviations theory, this probability is less

than 2 to the power of

−(n−m)
(

1− h2

( πn

n−m
+ 2ε

))
.

By inequality (2.18), this exponent is less than ϱm − ρn. Thus, the probability

is less than 2ϱm−ρn. This is an upper bound on cm/am and will be summoned in

inequality (2.20).

(Bound f +
m from above.) The definition of fm reads I(W ) − am0 . Here am0 is

the probability measure of Am
0 , and Am

0 is a superevent of Am by how the former

is defined. Event Am
0 must contain

{
Zm < exp

(
−em1/3)}

by how Am was defined.

By the een13 behavior, P
{
Zm < exp

(
−em1/3)}

> I(W )− ℓ−ϱm+o(m). Chaining all

inequalities together, we infer that fm < ℓ−ϱm+o(m). Let f +
m be max(0, fm) so we can

write f +
m < ℓ−ϱm+o(m). This upper bound will be summoned in inequality (2.20).

(Bound en−
√
n

0 from below.) We start rewriting gm − f +
m with (fm−√

n − am)+

being max(0, fm−√
n − am):

gm − f +
m = I(W )− em0 − (I(W )− am0 )+

= I(W )− em−√
n

0 − em − (I(W )− am−√
n

0 − am)+

= gm−√
n − em − (fm−√

n − am)+
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⩽ gm−√
n − em −

em
am

(fm−√
n − am)+

⩽ gm−√
n − em −

em
am

(f +
m−√

n
− am)

= gm−√
n − f +

m−√
n

+ f +
m−√

n

(
1− em

am

)
⩽ gm−√

n − f +
m−√

n
+ f +

m−√
n

(bm
am

+
cm
am

)
< gm−√

n − f +
m−√

n
+ ℓ−ϱ(m−√

n)+o(m−√
n)
(

exp
(
−em1/3)

/δ + 2ϱm−ρn
)
.(2.20)

The first three equalities are by the definitions of gm and fm. The next inequality

is by 0 ⩽ em/am ⩽ 1. The next inequality is by max(0, f − a) = max(a, f) − a ⩾

max(0, f) − a. The next equality is simple algebra. The next inequality is by the

definition of Em. The last inequality summons upper bounds derived in the last

three paragraphs. Now the last line contains two terms in the big parentheses;

between them, 2ϱm−ρn dominates exp
(
−em1/3)

/δ once n → ∞. Subsequently, we

obtain this recurrence relationg0 − f +
0 = 0;

gm − f +
m ⩽ gm−√

n − f +
m−√

n
+ 2ℓ−ρn+o(n).

Solve it (cf. the Cesàro summation); we get that gn−√
n− f +

n−√
n
< ℓ−ρn+o(n). Once

again we summon f +
n−√

n
< ℓ−ϱ(n−√

n)+o(n−√
n) < ℓ−ϱn+o(n); therefore gn−√

n <

ℓ−ρn+o(n). Based on the definition of gn−√
n we immediately get en−

√
n

0 > I(W )−
ℓ−ρn+o(n).

(Analyze En−√
n

0 .) We want to estimate Zn when En−√
n

0 happens. To be

precise, for each m =
√
n, 2
√
n, . . . , n − √n, we attempt to bound Zn when Em

happens . Fix an m. When Em happens, its superevent Am happens, so we know

that Zm < exp
(
−em1/3)

. But Bm does not happen, so Zl < δ for all l ⩾ m. This

implies Zl+1 ⩽ Z Jl+1(1−ε)
l for those l. Telescope; Zn is less than or equal to Zm

raised to the power of Jm+1Jm+2 · · · Jn(1−ε)n−m. But Cm does not happen, so the

product is greater than 2πn+2ε(n−m)(1− ε)n−m, which is greater than 2πn granted

that ε < 1/2. Jointly we have Zn ⩽ Z 2πn

m < exp
(
−em1/3

2πn
)
< exp(−2πn). In

other words, En−√
n

0 implies Zn < exp(−ℓπn).

(Summary.) Now we may conclude, for all perfect squares n, that P{Zn <

exp(−2πn)} ⩾ P(En−√
n

0 ) = en0 > I(W ) − 2−ρn+o(n). For non-squares, round n

down to the nearest square and rerun the whole argument above. We will get

Zn < 2n exp
(
−em1/3

2π⌊
√
n⌋2) with probability at least I(W )−ℓ−ρ⌊√n⌋2+o(n), which
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still leads to P{Zn < exp(−2πn)} > I(W )− 2−ρn+o(n). And hence the proof of the

moderate deviations behavior, inequality (2.17), is sound for all n. □

This section is parallel to [WD18b, section V], to [WD18c, section VI], to

[WD19b, appendix C.D], and to [GRY19, section 10.3]. Do not confuse this

section with the previous. The subtlety is explained in [WD18c, section III].

2.7. Chapter Summary

In this chapter, we defined SBDMC and set a goal—that we want to construct

error correcting codes and characterize their block error probabilities Pe and codes

rates R. We succeed in proving that Zn is such that

P{Zn < exp(−2πn)} > I(W )− 2−ρn+o(n),

which implies that there are codes with Pe < 2n exp(−2πn) and I(W ) − R <

2−ρn+o(n). By a topological argument that fluctuates π, we get Pe < exp(−2πn)

for n very large. By fluctuating ρ, similarly, we get I(W )−R < 2−ρn granted that

n is astronomically large.

Corollary 2.19 (Good code for SBDMC). Over SBDMCs, polar coding as con-

structed by Arıkan enjoys, for any (π, ρ) ∈ O, block error probability exp(−Nπ)

and code rate I(W )−N−ρ for large N .

Over BEC, we have a better estimate of ϱ = 1/3.627 [HAU14]. In this case,

the region O is with (0, 1/3.627) in place of (0, 1/4.714). See also Figure 2.3.

Corollary 2.20 (Good code for BEC). Over BECs, polar coding as constructed by

Arıkan enjoys, for any (π, ρ) lying to the left of the convex envelope of (0, 1/3.627)

and 1− h2, block error probability exp(−Nπ) and code rate I(W )−N−ρ for large

N .

In the next chapter, I will present the dual picture to this chapter. The duality

stands for three aspects: The scenario is in duality, the theorem statement is in

duality, and the proof technique is in duality.
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1/3.627

1/4.627

0
0 1/2

ρ

π

(0.3947, 0.0322)

Figure 2.3. BEC special case of (log(− log2 Pe), log(C − R)).

The tangent line is from (0, 1/3.6227) to (0.4208, 0, 0182). The

lower left curve is the previous result [MHU16], which attains (0, 1/4.627).
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CHAPTER 3

Asymmetric Channels

R
esearchers in the polar coding field, knowing the SBDMC results, had looked

forward to applying polar coding to more channels or sources. As it turns out,

polar coding also applies to source coding for lossy compression and noisy-channel

coding over asymmetric binary-input discrete-output channels. But for polarization

to work in those scenarios, the original analysis is subject to some modifications.

First and foremost, let us review lossy compression. In lossy compression, the

compressor is presented a random variable Y and wants to send some messages

to the decompressor so that the latter can generate a random variable X that is

close enough to Y under a certain distance metric. A trade-off emerges as the

compressor wants to send as few messages as possible while the X generated from

those messages should be as close to Y as possible. This subject is usually referred

to as the rate–distortion theory.

Polar coding applies to lossy compression by pretending that X and Y are the

input and output of an abstract channel, called the test channel. Once there is a

channel, it is polarized, a subset J of synthetic channels is selected, and synthetic

channels are handled in two ways depending on whether they are in selected J
or not. In this particular case, synthetic channels that are reliable correspond

to the bits that snapshot the essence of Y , and hence is worth messaging to the

decompressor. On the other hand, synthetic channels that are noisy correspond

to the randomness that separates X from Y , which can be simulated by a pseudo

random number generator on the decompressor side. By examining the pace the

test channel polarizes, we gain control of the rate–distortion trade-off.

Secondly, let me elaborate on asymmetric channels. Asymmetric channels differ

from symmetric ones by the fact that the uniform input distribution does not

necessarily achieve capacity. As a result, a code designer needs to spend extra

resources on shaping the input distribution apart from the usual anti-error routine.
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This shaping component of coding shares common elements with generating X from

the messages the compressor sends as in the lossy compression scenario.

Polar coding applies to asymmetric channels by using a specialized decoder as

an encoder. The new encoder polarizes the input distribution Q as if Q were a

channel with constant output. Now the reliable descendants of Q are those who

make Q in the shape of Q; they are inflexible, deducible form the other descendants,

and unable to carry new information. On the other hand, the noisy descendants of

Q are the source of the randomness of Q and can carry user messages. Meanwhile,

the actual channel W through which we transmit messages is polarized as usual.

It suffices to select a subset J of indices that correspond to, simultaneously, the

noisy descendants of Q and the reliable descendants of W .

It happens that the performances of lossy compression and coding over asym-

metric channels are both controlled by a stochastic process {T (Wn)}. By the end

of this chapter, I will prove

P
{
T (Wn) < e−2πn}

> H(W )− 2−ρn

in order to describe the performances of polar coding in those scenarios.

3.1. Problem Setup—Lossy Compression

Let F2 be the finite field of order 2. Let Y be any finite set equipped with

a probability measure W (y). Let dist : F2 × Y → [0, 1] be a bounded distortion

function; this function quantifies how well an x ∈ F2 represents/approximates a

y ∈ Y. For instance, we can have Y ⊆ [0, 1]2 as a set of pairs and dist(x, (y0, y1)) :=

yx.

The overall goal is to construct, for some large block length N , a compressor

C : YN → FRN
2 and a decompressor D : FRN

2 → FN
2 such that the composition

Y N
1 URN

1 XN
1

C D

minimizes D := E
[∑N

j=1 dist(Xj , Yj)/N
]
, the long-term average of the point-wise

distortion between XN
1 and Y N

1 , for a given code rate R. Or conversely, we want

to minimizes R for a given D. The standard result follows.

Theorem 3.1 (Rate–distortion trade-off). Allow arbitrarily large N . Then the

infimum of code rates R that are achievable within a fixed distortion ∆ is

(3.1) R(∆) := min
W (x|y)

I(X ; Y ),
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where the minimum is taken over all transition arrays W (x | y) such that, when X

is governed by W , the expected distortion is bounded as E[dist(X,Y )] ⩽ ∆.

For a proof, see standard textbooks, e.g., [Bla87]. See Figure 3.1 for an example

of the function R(∆).

To apply polar coding, we fix beforehand a transition array W (x | y) that

minimizes formula (3.1). Let X and Y be governed by W (x | y) and W (y). And

then pretend that W is a channel as if X were the input and Y were the output.

(Although in reality, it is Y that is given to the compressor and the decompressor

outputs X.) This W is called the test channel and we can apply the channel

transformation to it. It remains to specify what to do to the descendants of W and

explain how the behavior of {Wn} relates to the compression metrics D and R.

Note that a test channel is not a priori an SBDMC—it satisfies all conditions

of being an SBDMC but not the symmetry one. Plus, we sometimes want to com-

municate over asymmetric channels. So we have to deal with asymmetric channels

sooner or later. Or now.

3.2. Problem Setup—Asymmetric Channel

A BDMC (binary-input discrete-output memoryless channel) is an SBDMC

except that the involution σ : Y → Y is not mandatory. The main aftermath after

taking away the symmetry is that the uniform distribution is not guaranteed to be

optimal in terms of achievable code rates. That being the case, there always exists

another input distribution that achieves the optimal rate.

Theorem 3.2 (Asymmetric chapacity). The channel capacity of a BDMC W , the

supremum of codes rates at which reliable communication can happen, is

max
Q(x)

I(X ; Y ),

where the maximum is taken over all input distributions Q(x) on F2.

For a proof, see standard textbooks, e.g., [Bla87].

Fix this Q from now on. Then we can apply channel transformation following

the same philosophy. In detail, we define a vector U2
1 ∈ F2

2 by

(3.2)
[
U1 U2

]
:=

[
X1 X2

]1 0

1 1

 ,
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1− h2(p)

0
0 p

R

D

Figure 3.1. Assume lossy compression for a binary source of

mean p and Hamming distortion function hdis(x, y) := I{x ̸= y}.
The shaded area is where (R,D) is not possible. The curve part is

1− h2 shifted.

or U2
1 := X2

1G
−1 for short. Note that this implicitly assigns a non-uniform, non-

product distribution to U2
1 if Q is not uniform to begin with. Ignoring that, we

proceed to define W (1) to be an abstract channel with input U1 and output Y 2
1 ,

and W (2) a channel with input U2 and output Y 2
1 U1.

The question to answer is, How do asymmetric channels evolve under channel

transformation? It turns out that nothing really changes; the old theory extends

to the new channels seamlessly. And it is due to a symmetrization technique.

3.3. Channel Symmetrization

Given a BDMC W , we want to find an SBDMC W̃ such that any meaningful

property concerning the descendants of W̃ automatically applies to those of W . To

that end, a strategy is to define an equivalence relation ∼= such that (a) a BDMC

is equivalent to at least one SBDMC, (b) channel parameters such as H and Z are

functions in classes, meaning that H(W ) = H(W̃ ) if W ∼= W̃ , and (c) the channel

transformation respects the equivalence relation, meaning that W (j) ∼= W̃ (j) if

W ∼= W̃ . If such relation can be found, than almost all questions we want to ask

about W have answers when we, instead, ask an SBDMC in the same class as W .
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Definition 3.3. Two BDMCs, W and W̃ , are said to be equivalent, denoted by

W ∼= W̃ , if {W (0 | Y ),W (1 | Y )} and {W̃ (0 | Ỹ ), W̃ (1 | Ỹ )} obey the same

distribution on the power set of [0, 1].

Let me briefly remark what ∼= identifies. For one, the labeling on Y is not

important; after all, the decoder only care about the posterior probabilities. For

two, if two outputs y, y′ have the same posterior probabilities, that is, W (x | y) =

W (x | y′) for both x ∈ F2, the decoder might as well identify y and y′. For three,

relabeling the input F2 does not matter; the decoder just cares about how biased

{W (0 | Y ),W (1 | Y )} is, but not about toward which way it biases.

Lemma 3.4 (Reduction to symmetry). For any BDMC W , it is equivalent to at

least one SBDMC.

Proof. Let F ∈ F2 be a “flag” that obeys an independent uniform distribution

on F2. Let W̃ be a channel with input X − F and output (F, Y ). Intuition: When

the encoder attempts to input X into a channel, it sees the flag F and input X−F

instead; the decoder also sees the flag F so it would simply add that back after all

the decoding jobs.

This W̃ is a SBDMC because adding F to X will turn the input into a uniform

random variable. This W̃ is equivalent to W because

{W̃ (0 | fy), W̃ (1 | fy)} = {W̃ (0− f | fy), W̃ (1− f | fy)} = {W (0 | y),W (1 | y)}.

That is, the random sets {W̃ (0 | fy), W̃ (1 | fy)} and {W (0 | y),W (1 | y)} coincide,

and hence obey the same distribution. □

Before I state (b) that channel parameters are function in classes, one more

parameter is defined to be utilized in the remainder of this chapter. Note that the

definitions of H and Z automatically apply to the asymmetric case.

Definition 3.5. Define the total variation norm of W to be

T (W ) :=
∑
y∈Y

W (y)
∑
x∈F2

∣∣∣W (x | y)− 1

2

∣∣∣,
which is the total variation distance from W (• | y) to the uniform distribution,

weighted by the frequency each y ∈ Y appears.
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Lemma 3.6 (Parameters in class). For any two equivalent BDMCs, W and W̃ ,

H(W ) = H(W̃ ), Z(W ) = Z(W̃ ), T (W ) = T (W̃ ).

Proof. By definition. □

Remark: When W is BDMC and W̃ is SBDMC, I(W ) = H(Q) − H(W ) ̸=
1 − H(W̃ ) = I(W̃ ) unless H(Q) = 1 (i.e., Q is uniform). What used to be I(W̃ )

in the last chapter becomes 1−H(W ) in this chapter, In particular, results of the

form P{Zn < θ(n)} > I(W̃ )−γ(n) are becoming P{Zn < θ(n)} > 1−H(W )−γ(n)

when cited.

Lemma 3.7 (Transformation in class). For any two equivalent BDMCs, W and

W̃ ,

W (1) ∼= W̃ (1), W (2) ∼= W̃ (2).

Proof. By definition. □

We therefore conclude that, when it comes to channel transformation and chan-

nel processes, reasoning about W is logically equivalent to reasoning about W̃ .

Being able to control the descendants of a BDMC, we will connect the perfor-

mance of coding to channel parameters/processes in the next section.

3.4. Problem Reduction to Process

Now we can reduce lossy compression to operations on synthetic channels. Let

W be a test channel of a lossy compression problem. Then, for any descendant

Wn (including W itself), we want a compressor to observe Wn’s output and send

a message to the decompressor so that the latter can generate Wn’s input. By

that H(Wn)→ H∞ ∈ {0, 1}, the descendants of W are either extremely reliable or

completely noisy, and hence assume easy treatments.

When a realization of Wn is completely noisy, it means that its input Xn is

almost irrelevant to its output Yn. In this case, the decompressor does not need

to know anything about Yn and can query a pseudo random number generator to

simulate Xn. When a realization of Wn is (extremely) reliable, on the other hand,

its input Xn depends (heavily) on its output Yn. In this case, the compressor is

suggested to send Xn to the decompressor so that the latter can simply output Xn.
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The last paragraph can actually be translated into a lossy compression scheme

but I decided to omit the details as they can be found in past works, e.g., [KU10]. I

claim without a proof that the excess of distortion of this coding scheme is bounded

by the average of total variation norms of the noisy descendants. More symbolically,

(3.3) D −∆ ⩽
1

N

∑
jn1 ∈J

T
((
· · · ((W (j1))(j2)) · · ·

)(jn))
.

It remains to define J . Motivated by inequality (3.3), we simply let J collect

depth-n synthetic channels whose T is less than a threshold θ. Then, similar to

Chapter 2, we have that D −∆ < θ and R = 1 − P{T (Wn) < θ}. To rephrase it,

the trade-off between Pe and R for lossy compression is

P{T (Wn) < D −∆} ≈ 1−R.

Let {Tn} be the total variation process defined by Tn := T (Wn) .

The last paragraph is not the only driving force for learning the total variation

process {Tn}; channel coding over asymmetric channels enjoys a similar reduction.

Recall that Q(x), presumably non-uniform, is the capacity-achieving input dis-

tribution w.r.t. an asymmetric W . Pretend that Q(x,♣) models a channel with a

constant output ♣. Then we can polarize Q and talk about its descendants. Details

omitted, the block error probability of polar coding over W is [HY13]

(3.4) Pe ⩽
∑
jn1 ∈J

Z
((
· · · ((W (j1))(j2)) · · ·

)(jn))
+ T

((
· · · ((Q(j1))(j2)) · · ·

)(jn))
.

We know how to bound the sum of Z’s, so it remains to bound the sum of T ’s.

All in all, we now want to show

(3.5) P
{
Tn < e−2πn}

> H(W )− 2−ρn

for (π, ρ) lying in the same region as in Chapter 2. The following section argues

that we can reuse the same the proof.

3.5. Stochastic Process Nonsense

In this section, I will show that since the total variation process {Tn} satisfies

almost all properties satisfied by {Zn}, the majority of the proof of inequality (2.17)

applies to inequality (3.5).

Let us start with an counterpart to Lemma 2.12.
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1

0
0 1

T

H

Figure 3.2. The possible region where (T (W ), Z(W )) could lie

in. The curve part is half of h2 after rotating and rescaling.

Lemma 3.8 (Evolution of T ). [Mur21, Lemma 3] The following hold for all SB-

DMCs W :

T (W (1)) = T (W )2,(3.6)

T (W (2)) ⩽ 2T (W )− T (W ).(3.7)

This implies a nice consequence—that there is another supermartingale that

will dominate the behavior of Wn at the noisy end.

Lemma 3.9. The process of total variation norms, {Tn}, is a supermartingale.

Note that we do not have a counterpart to inequality (2.4). This will affect how

we deal with the en23 behavior of {Tn}. The counterpart of Lemma 2.13 follows.

Lemma 3.10 (T vs H). [Mur21, Lemma 4] The following holds for all SBDMCs

W :

1− T (W ) ⩽ H(W ) ⩽ h2

(1− T (W )

2

)
where h2 is the binary entropy function.

See Figure 3.2 for a visualization.

The counterpart to Lemma 2.16 follows. Note that we skipped Theorem 2.15,

but the following proof shows that we need not duplicate Theorem 2.15.

37



Lemma 3.11 (From eigen to en23). Fix ϱ := 1/4.714. Assume Theorem 2.15.

Then

P
{
Tn < e−n2/3}

> H(W )− 2−ϱn+o(n).

Proof. By Lemmas 2.13 and 3.10, T (W ) → 0 iff H(W ) → 1 iff Z(W ) → 1

on the noisy end and T (W ) → 1 iff H(W ) → 0 iff Z(W ) → 0 on the reliable end.

More strongly, each “iff” can be stated as two Hölder conditions in two directions.

That is to say, there exist constants c, d > 0 such that T (W ) ⩽ c(1−H(W ))d and

1 − H(W ) ⩽ cT (W )d, as well as 1 − H(W ) ⩽ c(1 − Z(W ))d and 1 − Z(W ) ⩽

c(1−H(W ))d, as well as the other four inequalities on the reliable end.

This common-fate property implies that, if n is sufficiently large,

P
{
e−n2/3

⩽ Tn ⩽ 1− e−n2/3}
< P

{
e−n3/4

⩽ Zn ⩽ 1− e−n3/4}
⩽

E [h(Zn)]

h(exp(−n3/4))
⩽

h(Z0)2−ϱ

exp(−n3/4)
< 2−ϱn−o(n).

This is the counterpart to inequality (2.10).

It remains to show that P{Tn → 0} = H(W ) and that the bad event Bn :=

{Tn → 0 but Tn ⩾ exp(−n2/3)} is exponentially rare, i.e., 2−ϱ(n)+o(n)-rare. The

former is again by the common-fate property P{Tn → 0} = P{Hn → 1} = E [H∞] =

E [H0] = H(W ). The latter is by that {Tn}, a supermartingale, cannot jump back

and forth between the neighborhood of 0 and the neighborhood of 1, so P(Bn) is

bounded from above by
∑

m⩾n 2−ϱm+o(m) < 2−ϱn+o(n).

We can finally conclude that

P
{
Tn < e−n2/3}

> P{Tn → 0} − P(Bn) > H(W )− 2−ϱn+o(n).

This calls the end of the proof. □

The last lemma is the most technical one in this chapter. It uses the common-

fate property to show that not only do {Zn}, {Hn}, and {Tn} control each other’s

limit, but they also control each other’s pace of convergence. In particular, we can

also show that P{Hn < exp(−n2/3)} > I(W ) − 2−ϱn+o(n) and that P{1 − Hn <

exp(−n2/3)} > H(W )− 2−ϱn+o(n) although it is not useful here.

The een13 behavior follows.

Lemma 3.12 (From en23 to een13). Given Lemma 3.11, that is, given

P
{
Tn < e−n2/3}

> H(W )− 2−ϱn+o(n),

38



we have

P
{
Tn < exp

(
−en1/3)}

> H(W )− 2−ϱn+o(n).

Proof. The proof is just a copy of that of Lemma 2.17. All we did there was

by that Zn is squared or doubled with equal probability. Since Tn is squared or

doubled with equal chance, the conclusion follows. □

The ultimate behavior follows.

Theorem 3.13 (From een13 to e2pin). Fix a pair (π, ρ) ∈ O. Given the conclusion

of Lemma 3.12, that is, given

P
{
Tn < exp

(
−en1/3)}

> H(W )− 2−ϱn+o(n),

then

P
{
Tn < e−2πn}

> H(W )− 2−ρn+o(n).

Proof. The proof follows the same type of argument as in Theorem 2.18. All

we need is based on the fact/axiom that the process is squared or doubled with

equal chance. □

3.6. Chapter Wrap up

In this chapter, we first see two coding problems—source coding for lossy com-

pression and noisy channel coding over asymmetric channels. I then argued that

polar coding applies to those scenarios with an extension to asymmetric (test)

channels. To deal with asymmetric channels, we prove a series of lemmas whose

takeaway is that we only have to consider the SBDMC W̃ that lies in the same

equivalence class. To characterize the performance of polar coding, it remains to

understand the behavior of {Tn}. And then we move on to proving the behavior

of {Tn} using the same techniques we used to handle {Zn}.
Now that we have proved P{Zn < exp(−2πn)} > I(W ) − 2−ρn+o(n) (from the

previous chapter) and P{Tn < exp(−2πn)} > H(W )− 2−ρn+o(n) (in this chapter),

plug them into inequalities (3.3) and (3.4). For lossy compression, my result implies

that lossy compression via polar coding enjoys code rate I(W ) + 2−ρn+o(n) and

distortion ∆ + exp(−2πn). Eliminate the o(n) term with a topological argument.
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Corollary 3.14 (good code for lossy compression). For any lossy compression

problem whose test channel W is a BDMC, using polar coding yields excess of

distortion D − ∆ < exp(−Nπ) and gap to capacity R − I(W ) < N−ρ for any

(π, ρ) ∈ O and big N .

The asymmetric channel case is more involved. We actually have, and need,

four inequalities

P{Z(Wn) < θ} > 1−H(W ) + γ,

P{T (Wn) < θ} > H(W ) + γ,

P{Z(Qn) < θ} > 1−H(Q) + γ,

P{T (Qn) < θ} > H(Q) + γ,

and basic facts

{Z(Wn) < θ} ∩ {T (Wn) < θ} = 0,

{Z(Qn) < θ} ∩ {T (Qn) < θ} = 0,

{Z(Qn) < θ} ∩ {T (Wn) < θ} = 0.

Here, {Qn} is the channel process grown from Q, and θ (threshold) and γ (gap)

are the shorthands of the complicated functions. The basic facts are consequences

of the common-fate property and the monotonicity property H(W ) = H(X | Y ) ⩽

H(X) = H(X | ♣) = H(Q).

Applying the inclusion–exclusion principle, we conclude that P{T (Qn) < θ and

Z(Wn) < θ} > H(Q) − H(W ) − 6γ = I(W ) − 6γ. This implies the existence of

codes with Pe < exp(−2πn) and R > I(W )− 2−ρn.

Corollary 3.15 (Good code for BDMC). For any BDMC, polar coding yields block

error probability Pe < exp(−Nπ) and gap to capacity I(W ) − R < N−ρ for any

(π, ρ) ∈ O and big N .

The next chapter contains yet another application of Theorems 2.18 and 3.13.

In brief, the idea is to prune the channel process when Wn becomes too reliable

or too noisy. And it is only after learning how reliable/noisy Wn is that we know

where to prune.
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3.7. A Side Note on Lossless Compression

Lossless compression with side information at the decoder side can be solved

by polar coding as well but assumes a different format [Ari10, CK10]. In this

scenario, the random variable to be compressed is denoted by X, and will be treated

as the input of an abstract channel W ; the side information accessible by the decoder

is denoted by Y and treated as the output of W .

W is then polarized. For if a descendant of W is reliable, it means that its input

is mostly determined by its output, and hence needs no extra action. If, otherwise,

a descendant of W is noisy, its input is largely independent from its output, and we

should record this input. The code rate is thus the density of the noisy descendants.

There will be a block error if the decoder fails to recover the input of a descendant

that was not recorded; the block error probability is thus the sum of the Z’s of the

reliable descendants.

This come down to the following corollary.

Corollary 3.16 (Good code for lossless compression). For any binary source X

to be compressed losslessly and side information Y , polar coding yields block error

probability Pe < exp(−Nπ) and gap to entropy R − H(X | Y ) < N−ρ, for any

(π, ρ) ∈ O and big N .
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CHAPTER 4

Pruning Channel Tree

C
omplexity of encoder and decoder influences, sometimes dominates, practi-

cality of a code. Throughout the history of coding—Hamming, Reed–Muller,

turbo, LDPC, polar, et seq—real world codes are always easy to implement in the

first place regardless of achieving capacity or not (usually not). This is why, apart

from N , P , and R, we should care about the complexities of codes.

Polar code, an outlier in said list, is the first code to achieve capacity in com-

bination with a very low complexity. Considering that the decoder should at least

read in all N symbols in a code block, which costs O(N) resources, polar coding’s

complexity of O(N logN) is impressive, if not surprising.

In this chapter, a modification is made to polar coding. It aims to eliminate

the inefficient components in the encoder/decoder to reduce the complexity even

further. By doing so carefully, the new complexity is O(N log(logN)), the block

error probability decays quasi-polynomially fast to 0, and the gap to capacity de-

cays as fast as before. For comparison, existing works like [AYK11, EKMF+17,

MHCG20] did not break the O(N logN) barrier, and some latest work [HMF+20]

achieves N log(logN) latency only in the fully-parallel mode.

Being called pruning, this technique is inspired by a trinitarian correspondence

among the encoder/decoder, the channel tree, and the channel process. The argu-

ment start from the channel process side: Since Hn → H∞ ∈ {0, 1}, the increments

Hn+1 − Hn converge to 0. By the correspondence, that means that on the channel

tree side, branches that are deep enough are purposeless—applying channel trans-

formation barely changes anything. Now turn our focus to the encoder/decoder

side; the said observation implies that some components in the encoder/decoder

are consuming resources without helping the code become better, and we should

have removed them.

The goal of the current chapter is to make precise the last paragraph.
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Figure 4.1. The design of encoder and decoder—level 1.
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Figure 4.2. The design of encoder and decoder—transforming

W (1) further at level 2.

4.1. Encoder/Decoder vs Tree vs Process

The design of the encoder and decoder of polar coding is best described by

figures. There is a device called EU (encoding unit) and another device called DU

(decoding unit); their actual implementations are not of interest here. But the

devices are such that, when you wrap two copies of W with one EU–DU pair, like

Figure 4.1 does, the top pair of pins (A and B) behaves like W (1), and the bottom

pair of pins (C and D) behaves like W (2). We say that Figure 4.1 corresponds to a

tree with three vertices: W the root and W (1) and W (2) its children.

To construct the grandchildren of W , wrap more EU–DU pairs around two

copies of Figure 4.1. For instance, in Figure 4.2, the two copies of pin A are

connected to another EU, the two copies of pin B to another DU. Recall that pin

A–pin B behaves like the input–output of W (1); so wrapping one more layer of

EU–DU transforms it further into (W (1))(1) (from pin E to pin F) and (W (1))(2)

(from pin G to pin H). Note that the two copies of pin C and pin D are naked

(not connecting to anything); this represents the fact that there are two copies of

W (2) that are not (yet) transformed into (W (2))(1) and (W (2))(2). Now Figure 4.2

corresponds to a channel tree with five vertices: W the root, W (1) and W (2) its

children, plus (W (1))(1) and (W (1))(2) the children of the elder sibling.
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Figure 4.3. The design of encoder and decoder—transforming

(W (1))(2) further at level 3.

Duplicate Figure 4.2. This time, wrap around the two copies of pin G and

H as shown in Figure 4.3. Then we are effectively transforming (W (1))(2) into

((W (1))(2))(1) and ((W (1))(2))(2). Now Figure 4.3 corresponds to a channel tree

with seven vertices: W , W (1), W (2), (W (1))(1), and (W (1))(2) and its children.

Lesson: Each pair of pins corresponds to a (synthetic) channel; one channel may

have multiple copies that each corresponds to a pair. For any synthetic channel,

we wrap another layer of EU–DU pair around the corresponding pins if we want to

transform it further. We leave the pins corresponding to a channel naked if we do

not want to transform it anymore.

Rephrase in terms of channel process: The channel process {Wn} is defined

prior to whether we want to transform channels or not. But we can choose “not

to look at it”. More rigorously, we look at the endless sequence J1, J2, . . . and

determine the least n such that (J1, J2, . . . , Jn) points to a channel we do not want

to transform anymore. Let s be that n in this case. That is, s is a random variable

depending on {Jn}; moreover, whether or not s = n is determined by the first

n terms of {Jn}. This makes s a stopping time adapted to {Jn}. Consequently,

{Wn∧s} is a stopped process that evolves like {Wn} at the beginning but halts at

Ws , a channel we are satisfied with.

It remains to do the following three things: (a) Show how s is related to the

complexity, (b) show how Ws is related to the code metrics Pe and R, and (c) define

a good stopping time s to optimize (a) and (b).
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4.2. Stopping Time vs Complexity

Fix an SBDMC W . Fix an n; we are to construct a low-complexity code of

block length N = 2n. Pretend that the complexity is the number of EU and DU

devices used. Doing so is backed up by the fact that, in reality, EU and DU cost

bounded amount of arithmetic and memory.

Let s be any stopping time adapted to {Jn}, and assume s ⩽ n. Having s ⩽ n

is to make sure that we do not transform any depth-n channel further. We have

the following lemma concerning s and the complexity.

Lemma 4.1 (Complexity in terms of s). Use s to generate a code. Then the

encoding and decoding complexity is O(NE [s]) per code block, or O(E [s]) per channel

usage.

Proof. Let us begin with N = 2n copies of the channel W . If s > 0, then

there are 2n−1 EU–DU pairs that wrap around W ’s to synthesize 2n−1 copies of

W (1) and W (2).

Next, let us consider the J1 = 1 case. If s > 1 in this case, it means that we

want to transform W (1). We need 2n−2 EU–DU pairs to wrap around the 2n−1

copies of W (1). Similarly, if s > 1 in the J1 = 2 case, then we are transforming

2n−1 copies of W (2) using another 2n−2 EU–DU pairs.

Next, consider the depth-2 branching of (J1, J2). For each of the four possible

realizations of the pair (J1, J2) = (j1, j2), if s > 2, then we are to transform the

2n−2 copies of (W (j1))(j2) with 2n−3 EU–DU pairs.

Finally, consider the general case at arbitrary depth: If s > m for a certain tuple

(J1, J2, . . . , Jm) = (j1, j2, . . . , jm), then we will transform 2n−m copies of Wm =(
· · · ((W (j1))(j2)) · · ·

)(jm)
further with 2n−m−1 EU–DU pairs. The total number of

EU–DU pairs is thus
n∑

m=0

∑
jm1

2n−m−1 · I{Jm
1 = jm1 and s > m} =

n∑
m=0

2n−1P{s > m} =
N

2
E [s].

Here I is the indicator of an event.

Recall that I claimed without a proof that EU and DU devices cost constant

resources. Thus, the complexity of a code is proportional to the number of such

devices used. So a code generated by s has complexity O(NE [s]) per code block or

O(E [s]) per channel usage. The end. □
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The last lemma connects a stopping time s to the cost of its code. Intuitively

speaking, it attributes to the fact that preparing a synthetic channel at depth m

costs m layers of EU–DU. Hence preparing Ws costs s layers, and preparing all

instances of Ws costs NE [s].

In the next section, we will see how Ws connects to the code performance in a

very similar way, i.e., Pe ⩽ NE [Zs · I{Zs < θ}] and R = P{Zs < θ}, due to very

similar reasons.

4.3. Stopped Process vs Performance

Thanks to the stopping time s, the channel tree is pruned, or “harvested”,

before it reaches depth n. This implies that the leafs Ws are not as polarized as

before. We therefore are liable to rebound the block error probability and code

rate.

Let J be some set of indices (J1, J2, . . . , Js) that point to the synthetic channels

we are to use to send plain messages. Lemmas follow.

Lemma 4.2 (R in terms of J ). The code rate

R = P{(J1, J2, . . . , Js) ∈ J }

is the probability that the prefix Js
1 is selected in J .

Proof. I claim without a proof that the code rate is the density of the naked

pins that correspond to channels in J .

Assuming that, we see that each Ws corresponds to 2n−s pairs of naked pins.

That is to say, each Ws assumes 2n−s copies in the EU–DU circuit. Since there

are always 2n pairs of naked pins (adding ED/DU does not alter the number of

naked pins), a pair of naked pins possesses probability measure 2−n. Thus each

Ws possesses probability measure 2−s , the same probability measure possessed by

(J1, J2, . . . , Js). This finishes the proof. □

Lemma 4.3 (Pe in terms of J ). The block error probability

Pe ⩽ NE [Zs · I{(J1, J2, . . . , Js) ∈ J }]

is bounded by the sum of Zs that are selected in J , weighted by multiplicity.
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Proof. I claim without a proof that the block error probability is bounded

from above by the sum of Z’s of the synthetic channels selected in J , multiplicity

included.

Assuming that, and knowing that each Ws assumes 2n−s copies and possesses

probability measure 2−s , we infer that each Ws contributes NP{Js
1 = js

1} · Z(Ws)

to the upper bound if it is selected, otherwise it would have contributed 0. Each

Ws contributing NP{Js
1 = js

1 ∈ J }·Z(Ws), their sum is clearly NE [Zs · I{Js
1 ∈ J }].

This is the upper bound we want to prove. □

It is time to declare an s and compute the induced R, Pe, and complexity. The

basic strategy, like what we did in Chapter 2, is to set a threshold θ and hope that

Ws is “at least θ-good”, or Zs ⩽ θ to be rigorous. In contrast to Chapter 2, we can

now control s, so it is actually more efficient if we incorporate θ into the declaration

of s.

4.4. Actual Code Construction

Let θ be 4−n. Define the stopping time s as below

(4.1) s := n ∧min{m : Tm < θ or Zm < θ}.

That is, we look for the first m such that either Tm or Zm are small enough; but

if we cannot find such m before reaching depth n, let s default to n. Let J be

the indices with Zs < θ. That is, if s is set to be m because Zm < θ, then the

corresponding Js
1 are included in J . If s is set to be m because Tm < θ or because

we reach m = n, then the corresponding Js
1 are not included in J .

The block error probability incurred by this choice of s and J is bounded by

the weighted sum of Z’s that are all smaller than θ := 4−n. Hence Pe < Nθ = 1/N

by Lemma 4.3.

The complexity and code rate are more complicated. See the next two theorems.

Theorem 4.4. Given that s is defined as in the first paragraph of this section, an

upper bound on the complexity is

O(NE [s]) = O(N log(logN)).
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Proof. By how s is defined, we have

(4.2) E [s] =

n−1∑
m=0

P{s > m} =

n−1∑
m=0

P{Tm ⩾ 4−n and Zm ⩾ 4−n}.

It remains to understand what is going on in {Tm ⩾ 4−n and Zm ⩾ 4−n}. For

that, recall the last two chapters:

P{Zm < exp(−2m/40)} > I(W ) + 2−m/5+o(m),

P{Tm < exp(−2m/40)} > H(W ) + 2−m/5+o(m).

Here I choose (π, ρ) = (1/40, 1/5) ∈ O. In words, I showed that either Zm or

Tm, exclusively, becomes small with high probability. Hence it is unlikely that

Tm ⩾ 4−n and Zm ⩾ 4−n at once unless m is small, in which case the proved

threshold exp(−2m/40) is less than the demanded 4−n.

We now classify m into two classes: Those such that exp(−2m/40) ⩾ 4−n are

called small m. Those such that exp(−2m/40) < 4−n are called large m. For small

m, we have nothing but P{both Tm,Zm ⩾ 4−n} ⩽ 1. For large m,

P{both Tm,Zm ⩾ 4−n} ⩽ P{both Tm,Zm ⩾ exp(−2m/40)} < 2−m/5+o(m).

Continue bounding inequality (4.2):

n−1∑
m=0

P{both Tm,Zm ⩾ 4−n}

=
∑

small m

P{both Tm,Zm ⩾ 4−n}+
∑

large m

P{both Tm,Zm ⩾ 4−n}

=
∑

small m

1 +
∑

large m

2−m/5+o(m) = #{small m’s}+ O(1).

The number of small m’s is the root of the euqation exp(−2m/40) = 4−n. The

root is m = O(log n). Hence the complexity E [s] < O(log n) = O(log(logN)), as

desired. □

Theorem 4.5. Given that s and J are defined as in the first paragraph of this

section, a lower bound on the code rate R is

R ⩾ I(W )− 2−n/5+o(n).

Proof. Just to clarify the whole picture, let me claim the following trichotomy:

• The frequency that s is set to m due to Tm < θ is H(W )− 2−n/5+o(n).

• The frequency that s is set to m due to reaching n is 2−n/5+o(n).
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• The frequency that s is set to m due to Zm < θ is I(W )− 2−n/5+o(n).

J collects those Js
1 when Zm < θ is the case. So the theorem statement is implied

by the last bullet point. I will show the last bullet point; the proof thereof applies

to the first bullet point, so I am effectively showing all three bullet points at once.

In order to show the last bullet point, it suffices to understand the bad event

B := {Zs ⩾ θ but Zm → 0}. Once we know how to bound P(B), we will conclude

that, with Lemma 4.2, the code rate is R = P{Zs < θ} ⩾ P{Zm → 0}−P(B), which

will be I(W ) − 2−n/5+o(n). To bound P(B), two cases will be discussed—Zs ⩾ θ

because Tm < θ happens first, and Zs ⩾ θ because we reach m = n.

Here goes the rigorous bound on P(B): If Zs ⩾ θ, then s is not set to the current

value because Zm < θ; it must be the case that the other criterion Ts < θ holds, or

that we reach s = n. For the former case, P{Ts < θ but Zm → 0} = P{Ts < θ but

Tm → 1} ⩽ θ = 2−n by the common-fate property and {Tn} being a martingale.

For the latter case, P{s = n and Zm → 0} < P{s = n} = P{both Tm,Zm ⩾ θ for

all m < n} < P{both Tn−1,Zn−1 ⩾ θ} = 2−(n−1)/5+o(n−1). Sum the upper bounds

of the two cases; it is 2−n/5+o(n).

Now that we get P(B) < 2−n/5+o(n), deduce the code rate R = P{Zs < θ} =

P{Zm → 0} − P(B) = I(W )− 2−n/5+o(n); that is what we want to prove. □

Recap: So far we had seen that, when a code is defined by my choice of s and

J , (a) the block error probability is 1/N , (b) the complexity is O(N log(logN))

per code block or O(log(logN)) per channel usage, and (c) the code rate is I(W )−
2−n/5+o(n). The minor term o(n) within R can be eliminated by a topological

argument. We summarize the chapter with the following corollary.

Corollary 4.6 (Log-log code for SBDMC). Over any SBDMC, there exist capacity-

achieving codes with encoding and decoding complexity O(N log(logN)) per code

block or O(log(logN)) per channel usage. Moreover, the said codes have gaps to

capacity I(W )−R < N−1/5.

In one sentence, log-logarithmic complexity achieves capacity.

4.5. A Note on Better Pace

The only place we used the pair (1/40, 1/5) ∈ O explicitly is when we were

solving exp(−2m/40) = 4−n for m and obtain that m = O(log n). We could,
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instead, choose another pair such as (1/150, 1/4.8) ∈ O. Then, we still get to keep

m = O(log n) but the gap to capacity is I(W ) − R < N−1/4.8. By a topological

argument, any ρ < 1/4.714 works. This is why I claimed that the pruned polar

code has the same gap to capacity as the original version.

Concerning the equation exp(−2m/40) = 4−n, we can also replace 4−n with

exp(−nτ ) for arbitrarily large τ . The root is then m = O(τ log n), which is O(log n)

if τ is fixed. That means the block error probability can be as low as exp(−nτ )

while keeping the log-logarithmic complexity. This asymptote lies below 1/ poly(N)

and belongs to exp(−1 poly(logN)). This is why I claimed that the pruned polar

code has quasi-polynomial block error probability.

4.6. A Note on Asymmetric Case

For if the concerned channel W is an asymmetric BDMC, we will need to apply

a similar argument to {Qn}, the channel process grown from the non-uniform input

distribution Q treated as a channel with constant output.

In the asymmetric case, the stopping time will be defined as

s := n ∧min{m : min(Z(Wm), T (Wm)) < 4−n and min(Z(Qm), T (Qm)) < 4−n}.

To put in another way, we are looking for the minimal m that satisfies any of the

following:

• Both Z(Wm), Z(Qm) are small.

• Both T (Wm), T (Qm) are small.

• Or, both Z(Wm), T (Qm) are small.

• (Both T (Wm), Z(Qm) being small is not possible.)

And if no m meets the requirement before depth n, the stopping time defaults to

n. Furthermore, J will be the indices Js
1 with small Z(Wm) and small T (Qs): that

is, the indices where s is set to m due to the third bullet point.

The block error probability is upper bounded similarly to inequality (3.4):

Pe ⩽ NE[Z(Ws)I (J )] + NE[T (Qs)I (J )] ⩽ 2N · 4−n = 2−n+1.

The complexity is upper bounded similarly to the symmetric case

E [s] =

n−1∑
m=0

P{s > m}
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=

n−1∑
m=0

P{max(Z(Wm), Z(Wm)) ⩾ 4−n or max(Z(Qm), Z(Qm)) ⩾ 4−n}

⩽
n−1∑
m=0

P{max(Z(Wm), Z(Wm)) ⩾ 4−n}+ P{max(Z(Qm), Z(Qm)) ⩾ 4−n}

= O(log n) + O(1) + O(log n) + O(1) = O(log n).

The code rate is lower bounded similarly to the symmetric case

R = P{Js
1 ∈ J } = P{both Z(Ws), T (Qs) < 4−n}

⩾ P{Z(Wm), T (Qm)→ 0} − P{Z(Wm)→ 0 but Z(Ws) ⩾ 4−n}

− P{T (Qm)→ 0 but T (Qs) ⩾ 4−n}

⩾ P{Z(Wm), T (Qm)→ 0} − P{Z(Wm)→ 0 but T (Ws) ⩽ 4−n}

− P{T (Qm)→ 0 but Z(Qs) ⩽ 4−n} − P{s = n}

⩾ I(W )− 4−n − 4−n − 2−ρn+o(n) = I(W )− 2−ρn+o(n).

Hence the following theorem.

Corollary 4.7 (Log-log code for BDMC). Over any BDMC, there exist capacity-

achieving codes with encoding and decoding complexity O(N log(logN)) per code

block or O(log(logN)) per channel usage. Moreover, the said codes have gaps to

capacity I(W )−R < N−1/5.

The same statement can be made to lossless and lossy compression.

Theorem 4.8 (Log-log code for lossless compression). If X is a binary source

and Y is the side information, then lossless compression can be done with encoding

and decoding complexity O(N log(logN)) per code block or O(log(logN)) per source

observation, block error probability Pe < 1/N , and gap to entropy H(X | Y )−R <

N−1/5.

Corollary 4.9 (Log-log code for lossy compression). If Y ∈ Y is a random source

and dist : F2 × Y → [0, 1] is the distortion function, then lossy compression can be

performed with encoding and decoding complexity O(N log(logN)) per code block or

O(log(logN)) per source observation. excess of distortion D−∆ < 1/N2, and gap

to capacity R− I(W ) < N−1/5.
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The discussion in the previous section applies. That is to say, the gap to

capacity can be made as low as N−1/4.8, the block error probability (or the excess of

distortion) as low as exp(−nτ ), while retaining the same log-logarithmic complexity.

4.7. Prospective Pruning

The pruning technique generalizes to arbitrary input (non-binary) and arbitrary

matrix (no longer [ 1 0
1 1 ]). The next two chapters establish the theory of {Wn} for

the general scenario. After that we can prune, yielding Ws , etc.
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CHAPTER 5

General Alphabet and Kernel

B
inary channel models, be it BEC, BSC, BDMC, or BI-AWGN, are favored in

theory for their simplicity and for real world communications. But the real

world is not always binary; we might want to compress losslessly a non-binary

source (yes, no, or unanswered); or we might want to approximate colors with a

256-color palette. This is one of the two generalizations I want to make in this

chapter—to enable all input alphabets of finite sizes [ŞTA09].

Enabling more input alphabets creates new challenges. The root of all chal-

lenges is that, to synthesize W (1) and W (2), we need to talk about the random

variables U2
1 := X2

1G
−1 (c.f. formula (3.2)). This does not a priori make sense as

the addition structure on the input alphabet X does not uniquely exist. Plus, even

if we equip X with some group structure (abelian or not), there are cases where

the descendants Wn are not polarized. This chapter addresses this challenge—how

to equip X with a proper algebraic structure to facilitate polarization, even if it

means adding dummy symbols into X .

Specking of the root of the definition U2
1 := X2

1G
−1, it is not hard to imagine

that, if we substitute G with a general ℓ×ℓ matrix, the overall performance of polar

coding may differ [KSU10]. To tell if it becomes better, worse, or not working at

all, we need a machinery that predicts the performance of each matrix. This is the

second generalization I want to make in this chapter—to judge all matrices as the

polarizing kernel.

The judgement of a matrix will be very similar to those in Chapters 2 and 3. We

will need to prove (or assume) an eigen behavior. From that we can derive the en23

behavior (named after exp(−n2/3)), the een13 behavior (named after exp
(
−en1/3)

),

and finally the elpin behavior (named after exp(−ℓπn)). Along the way, I will

explain how these behaviors relate to LLN, LDP, CLT, and MDP in probability

theory.

This is a long chapter. Here goes the actual plan for this chapter.
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5.1. Chapter Organization

I will define the most general channel (section 5.2). Following that is a re-

duction of input alphabet to prime size or prime-power size (section 5.3). Even

more definitions are then made, including channel parameters Pe, Z, Zmxd, T ,

S, and Smax (section 5.4) and how to use an invertible ℓ × ℓ matrix to synthe-

size W (1),W (2), . . . ,W (ℓ) (section 5.5). Inserted here is a briff review of LLN,

LDP, CLT, and MDP in probability theory and how they relate to coding theory

(section 5.6). I will then clarify that only a subset of matrices are qualified to

polarize channels (section 5.7). After that is a compactness argument that shows

ϱ > 0 for those qualified matrices (section 5.9). Finally, the region of (π, ρ) where

P{Zn < exp(−ℓπn)} > 1−H(W )+ℓ−ρn will be pictured in two steps (sections 5.10

and 5.11).

5.2. General Problem Setup

The following channel is what was considered by Shannon in the eternal paper,

followed by other big scholars who generalized Shannon. It is of historical interest

to prove theorems over the same class of channels.

Definition 5.1. A discrete memoryless channel (DMC) is a Markov chain W : X →
Y such that

• the input alphabet X is a finite set,

• the output alphabet Y is a finite set, and

• W (y | x) is the array of transition probabilities satisfying∑
y∈Y W (y | x) = 1 for all x ∈ X .

Denote by Q(x) an input distribution, by W (x, y) the joint distribution, by

W (x | y) the posterior distribution, and by W (y) the output distribution.

Definition 5.2. The conditional entropy of W is

H(W ) := −
∑
x∈X

∑
y∈Y

W (x, y) log|X | W (x | y),

which is the amount of noise/equivocation/ambiguity/fuzziness caused by W .
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Definition 5.3. The mutual information of W is

I(W ) := H(Q)−H(W ) =
∑
x∈X

∑
y∈Y

W (x, y) log|X |
W (x | y)

Q(x)
,

Fix a Q that maximizes I(W ). Call this Q a capacity-achieving input distribution.

Call this maximal I(W ) the channel capacity of W .

Let U be a finite set called the user alphabet. Messages to be transmitted over

W will be pre-encoded into U and distributed uniformly. The overall goal is to

construct, for some large N , an encoder E : URN → XN and a decoder D : YN →
URN such that the composition

URN
1 XN

1 Y N
1 ÛRN

1
E WN D

is the identity map as frequently as possible, and R as close to the channel capacity

I(W ) as possible.

Definition 5.4. Call N the block length. Call R the code rate. Denote by Pe,

called the block error probability, the probability that ÛRN
1 ̸= URN

1 .

In the next section, I will argue that we can reduce the problem of noisy-channel

coding over arbitrary DMCs to U and X having finite field structure.

5.3. Pay Asymmetry to Buy Non-Field

Reducing the size of user alphabet is easier and will be handled before the

reduction of input alphabet: Consider integer factorization |U| = pk1
1 pk2

2 · · · pkω
ω .

We can then choose a bijection

U ∼= F
p
k1
1
× F

p
k2
2
× · · · × Fpkω

ω
.

To transmit a symbol u ∈ U , it suffices to transmit its projections onto each of the

constituent fields F
p
k1
1
, . . . ,Fpkω

ω
. It remains to show, for each finite filed Fpk , how

to design encoder/decoder for the user alphabet U = Fpk .

Moreover, each finite field admits a vector space structure

Fpk
∼= Fk

p.

Therefore, when necessary, each u ∈ Fpk is considered as a vector in Fk
p, with

each of its coordinates treated as a standalone symbol in Fp. That is to say, when

necessary, we can even assume U = Fp is of prime order.
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Reducing the size of user alphabet takes effort and will be handled in the sequel:

Recall that |U| is either a prime or a prime power. Let q be any power of |U| greater

than or equal to |X |. Consider an embedding X ⊆ Fq; call an x ∈ X an actual

symbol; call a v ∈ Fq\X a virtual symbol. Define a preprocessor channel ♮ : Fq → X
that sends an actual symbol to itself, and a virtual symbol to a fixed actual symbol

x1 ∈ X . In terms of transition probabilities:

♮(y | x) =


1 if y = x ∈ X ,

1 if y = x1 and x /∈ X ,

0 otherwise.

That is to say, all virtual symbols are semantic copies of x1; they make no difference

to the decoder whatsoever.

Now build the following degraded channel

Fq X Y.♮ W

By the data processing inequality, the channel capacity of W ◦ ♮ is at most the

channel capacity of W . Hence using Fq as the input alphabet does no harm at

best, and handicaps ourselves at worst. The former is the case: If we take any

capacity-achieving input distribution Q of W and apply it directly to W ◦ ♮, then

we can transmit information at the same rate. In conclusion, W and W ◦ ♮ share

the same channel capacity. It suffices to consider W ◦♮—channels with prime-power

sized input alphabet—for the remainder of this chapter.

Remark: ♮ ◦W is not a symmetric channel; in particular, the uniform distribu-

tion does not achieve the best transmission rate. (Because that means x1 is input

more frequently than it should have been.) As a consequence, this technique of

allowing dummy symbols, albeit trivial, does not apply until [HY13] taught us

how to deal with asymmetric channels. Hence the section title pay asymmetry to

buy non-field.

We hereby assume that X = Fq is a finite field. If necessary, p is the character-

istic of Fq and Fp denotes the ground field of Fq. I am going to define more channel

parameters in the next section; some of them require the finite field structure on X
in a way that is not required/obvious when q = 2.
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5.4. Parameters and Hölder Tolls

Let W be any DMC with input alphabet X = Fq for some prime power q. To

emphasize that the input alphabet was reduced to q, we call W a q-ary channel.

The parameters below generalize H, I, and Z defined in Chapter 2 and T defined

in Chapter 3.

Definition 5.5. The bit error probability of a q-ary channel W is

Pe(W ) :=
∑
y∈Y

W (y)
(

1−max
x∈X

W (x | y)
)
,

which is how often the maximum a posteriori estimator y 7→ arg maxx∈X W (x | y)

makes a mistake.

Definition 5.6. The Bhattacharyya parameter of a q-ary channel W is

Z(W ) :=
1

q − 1

∑
x,x′∈Fq

x̸=x′

∑
y∈Y

»
W (x, y)W (x′, y).

In addition, define

Zmxd(W ) := max
0 ̸=d∈Fq

∑
x∈Fq

∑
y∈Y

»
W (x, y)W (x + d, y).

The parameter below is not used directly in this work, but plays a central role in a

theorem I cite. I include it for completeness:

Zd(W ) :=
∑
x∈Fq

∑
y∈Y

»
W (x, y)W (x + d, y).

Remarks: Z is the average of Zd over d ∈ F×
q and Zmxd is the maximum thereof.

The rescaling is such that 0 ⩽ Z ⩽ Zmxd ⩽ (q − 1)Z ⩽ q − 1 and that 0 ⩽ Zd ⩽ 1.

When q = 2, i.e., for the binary case, Z = Zmxd = Z1 = the Z-parameter defined in

Definition 2.4. Notice how the summation over distinct x, x′ ∈ F2 turns into twice

the case of (x, x′) = (0, 1).

Definition 5.7. The total variation norm of a q-ary channel W is

T (W ) :=
∑
y∈Y

W (y)
∑
x∈X

∣∣∣W (x | y)− 1

q

∣∣∣.
which is the total variation distance from W (• | y) to the uniform distribution,

weighted by the frequency each y ∈ Y appears.
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Definition 5.8. The Fourier coefficients of a q-ary channel W is

M(w | y) :=
∑
z∈Fq

W (z | y)χ(wz),

where χ : Fq → C is an additive character defined as χ(x) := exp(2πi tr(x)/p), and

tr : Fq → Fp is the field trace onto the ground field.

Definition 5.9. The Fourier ℓ1 norm of a q-ary channel W are

S(W ) :=
1

q − 1

∑
0̸=w∈Fq

∑
y∈Y

W (y) ·
∣∣∣M(w | y)

∣∣∣
In addition, define

Smax(W ) := max
0̸=w∈Fq

∑
y∈Y

W (y) ·
∣∣∣M(w | y)

∣∣∣.
Remarks: The rescaling is such that 0 ⩽ S ⩽ Smax ⩽ (q − 1)S ⩽ q − 1. When

q = 2, the parameters collapse—S = Smax = T = 1 − 2Pe = the T -parameter

defined in Definition 3.5.

I borrow some lemmas to relate these parameters.

Lemma 5.10 (P vs Z). [MT14, Lemma 22 with k = 1] For any q-ary channel

W ,

q − 1

q2

(»
1 + (q − 1)Z(W )−

»
1− Z(W )

)2

⩽ Pe(W ) ⩽
q − 1

2
Z(W ).

Lemma 5.11 (P vs T ). [MT14, Lemma 23 with k = q−1] For any q-ary channel

W ,

q − 1

q
− Pe(W ) ⩽

T (W )

2
⩽

q − 1

q
− 1

q

(
(q − 1)qPe(W )− (q − 1)(q − 2)

)
.

Lemma 5.12 (P vs S). [MT14, Lemma 26 with k = q−1] For any q-ary channel

W ,

1− q

q − 1
Pe(W ) ⩽ S(W ) ⩽ (q − 1)q

(q − 1

q
− Pe(W )

) 
1− q

q − 1

q − 2

q − 1
.

Lemma 5.13 (P vs H). [FM94, Theorem 1] For any q-ary channel W ,

h2(Pe(W )) + Pe(W ) log2(q − 1) ⩾ H(W ) log2 q ⩾ 2Pe(W ),

H(W ) log2 q ⩾ (q − 1)q log2

q

q − 1

(
Pe(W )− q − 2

q − 1

)
+ log2(q − 1).

Here, h2 is the binary entropy function. The upper bound is Fano’s inequality.

The first lower bound is useful when H(W ) and Pe(W ) are small; the second lower

bound is useful when H(W ) and Pe(W ) are close to 1.
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The phenomenon described by the cited lemmas is distilled to form the following

definition. It is the quantified version of the common-fate property.

Definition 5.14. Fix a q. Let A and B be two channel parameters. Say A and

B are bi-Hölder at (a, b) if there exist constants c, d > 0 such that, for all q-ary

channels, |A(W )− a| ⩽ c · |B(W )− b|d and |B(W )− b| ⩽ c · |A(W )− a|d.

Bi-Hölder-ness is clearly an equivalence relation. In particular, we will make

use of its transitivity property—if A and B are bi-Hölder at (a, b) and B and C

are bi-Hölder at (b, c), then A and C are bi-Hölder at (a, c). In this case, we

say A, B, and C are bi-Hölder at (a, b, c). This notion generalizes to arbitrarily

many parameters. What Lemmas 5.10 to 5.13 tell us is where the parameters are

bi-Hölder at.

Proposition 5.15 (Implicit bi-Hölder tolls). Fix a prime power q. Then channel

parameters H, Pe, Z, and Zmxd are bi-Hölder at (0, 0, 0, 0). Channel parameters

H, Pe, T , S, and Smax are bi-Hölder at (1, 1− 1/q, 0, 0, 0).

Proof. As for the first statement: Z,Zmxd are bi-Hölder at (0, 0) since Z ⩽

Zmxd ⩽ (q − 1)Z. Lemma 5.10 implies that Pe and Z are bi-Hölder at (0, 0).

Lemma 5.13 (with the first lower bound) implies that Pe and H are bi-Hölder at

(0, 0). Now apply the transitivity to conclude the first statement.

As for the second statement: S and Smax are bi-Hölder at (0, 0) since S ⩽

Smax ⩽ (q − 1)S. Lemma 5.12 implies that Pe and S are bi-Hölder at (1− 1/q, 0).

Lemma 5.11 implies that Pe and T are bi-Hölder at (1−1/q, 0). Lemma 5.13 (with

the second lower bound) implies that Pe and H are bi-Hölder at (1− 1/q, 1). Now

apply the transitivity to conclude the second statement. □

In short, when a channel is reliable, H,Pe, Z, Zmxd are small and T, S, Smax are

large. When a channel is noisy, H,Pe, Z, Zmxd are large and T, S, Smax are small.

See Figure 5.1 for an example of the possible region.

Sometimes, explicit bounds are desired as it saves some epsilon–delta notations.

The bounds do not have to be tight, but they should be as easy to manipulate as

possible. The next proposition serves exactly that purpose.
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1

0
0 1

Zmxd or Smax

H or 1−H

Figure 5.1. A figurative example of bi-Hölder relation. This

plot assumes c = 2 and d = 1/2. But c is in general greater, which

makes the dark region larger.

Proposition 5.16 (Explicit Hölder tolls). For all q-ary channels W , it holds that

Zmxd(W ) ⩽ q3
»

H(W ),(5.1)

H(W ) ⩽ q3
»

Zmxd(W ),(5.2)

Smax(W ) ⩽ q3
»

1−H(W ),(5.3)

1−H(W ) ⩽ q3
»
Smax(W ).(5.4)

Proof. The proof is nothing but working out Lemmas 5.10 to 5.13 very care-

fully. By “working out”, I mean to Taylor expand every inequality at a proper

point and keep track of how the constants c, d accumulate as transitivity applies.

In the upcoming arguments, H, Pe, Z, Zmxd, S, and Smax mean H(W ), Pe(W ),

Z(W ), Zmxd(W ), S(W ), and Smax(W ), respectively. Also q′ means q − 1, and q′′

means q − 2. Furthermore, lg means the base-2 logarithm; this is handy when we

jump back and forth between nats, bits, and q-bits.

First we show inequality (5.1). Start from Zmxd: By definition Zmxd ⩽ q′Z.

Move on to Z: By Lemma 5.10, q′q−2(
√

1 + q′Z−
√

1− Z)2 ⩽ Pe, hence
√

1 + q′Z−
√

1− Z ⩽ q
√
Pe/q′. Multiplying both sides by the conjugate yields (1 + q′Z) −
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(1 − Z) ⩽ q
√
Pe/q′(

√
1 + q′Z +

√
1− Z). The left-hand side is qZ; in the right-

hand side
√

1 + q′z +
√

1− z assumes the maximum q/
√
q′ at z = q′′/q′ by taking

derivative. So Z ⩽
√
Pe/q′(q/

√
q′) = q

√
Pe/q

′. Move on to Pe: By Lemma 5.13

(the first lower bound), 2Pe ⩽ H lg q or equivalently Pe ⩽ H log4 q. Now we chain

the inequalities Zmxd ⩽ q′Z ⩽ q
√
Pe ⩽ q

√
H log4 q. This completes inequality (5.1)

as q
√

log4 q < q3.

Second we show inequality (5.2). Start from H: By Lemma 5.13 (the upper

bound, Fano’s inequality), H lg q ⩽ h2(Pe) + Pe lg q′. By Figure 5.2, h2(Pe) +

Pe lg q′ ⩽
√
ePe + Pe lg q′ =

√
Pe(
√
e +
√
Pe lg q′). What is inside parentheses is

less than
√
e +

√
q′/q lg q′. Hence H ⩽

√
Pe(
√
e +

√
q′/q lg q′)/ lg q. Focus on the

scalar—(
√
e +

√
q′/q lg q′)/ lg q has maximum

√
e at q = 2 (remember that q ⩾ 2).

So H ⩽
√
ePe. Move on to Pe: By Lemma 5.10, Pe ⩽ q′Z/2. Move on to Z: By

definition Z ⩽ Zmxd. Now we chain the inequalities H ⩽
√
ePe ⩽

√
eq′Z/2 ⩽√

eq′Zmxd/2. This completes inequality (5.2) as
√
eq′/2 < q3.

Third we show inequality (5.3). Start from Smax: By definition Smax ⩽ q′S.

Move on to S: By Lemma 5.12, S ⩽ q′q(q′/q − Pe)
»

1− q
q′

q′′

q′ . The square root

simplifies to
√

1/(q′)2 = 1/q′ as qq′′ = (q′)2−1. So S ⩽ q′−qPe. Move on to q′−qPe:

By Lemma 5.13 (the upper bound, Fano’s inequality), H lg q ⩽ h2(Pe)+Pe lg q′. We

claim that h2(Pe) + Pe lg q′ ⩽ lg q − 2(q′/q − Pe)
2/ ln 2. To prove the claim, Taylor

expand both sides at Pe = q′/q. Verify that both evaluate to lg q at Pe = q′/q;

verify that both have derivative 0 at Pe = q′/q; and verify that the acceleration of

the left-hand side, −1/(Pe(1−Pe) ln 2), is more negative than the acceleration of the

right-hand side, −4/ ln 2. By Taylor’s theorem, mean value theorem, or the Euler

method, the function with greater acceleration is greater; hence the claim. See also

[FM94, Fig. 1]; the Φ-curve seems parabolic at the upper right corner. Now we have

H lg q ⩽ lg q− 2(q′/q−Pe)
2/ ln 2, which is equivalent to 2(q′/q−Pe)

2/ ln q ⩽ 1−H

and to q′ − qPe ⩽ q
√

(1−H) ln(q)/2. Now we chain the inequalities Smax ⩽

q′S ⩽ q′(q′ − qPe) ⩽ q′q
√

(1−H) ln(q)/2. This completes inequality (5.3) as

q′q
√

ln(q)/2 < q3.

Fourth we show inequality (5.4). Start from 1−H: By Lemma 5.13 (the second

lower bound), H lg q ⩾ q′q lg(q/q′)(Pe− q′′/q′) + lg q′. The right-hand side is lg q−
q′ lg(q/q′)(q′ − qPe) by matching the (rational) coefficients of Pe lg q, Pe lg q′, lg q,

and lg q′, respectively. As H lg q ⩾ lg q − q′ lg(q/q′)(q′ − qPe) we bound lg(q/q′) =
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0
0 1

h2(p)

√
ep

p

Figure 5.2. The binary entropy function and an upper bound of
√
ep.

lg(1 + 1/q′) ⩽ 1/q′ by the tangent line at 1/q′ = 0. So H lg q ⩾ lg q− (q′− qPe) and

hence 1−H ⩽ (q′−qPe)/ lg q. Move on to q′−qPe: By Lemma 5.13, 1−qPe/q
′ ⩽ S

so q′ − qPe ⩽ q′S. Move on to S: By definition S ⩽ Smax. Now we chain the

inequalities 1 − H ⩽ (q′ − qPe)/ lg q ⩽ q′S/ lg q ⩽ q′Smax/ lg q. This completes

inequality (5.4) as q′/ lg q < q3. □

Hölder-ness is a “toll” because, while Propositions 5.15 and 5.16 are the bridges

that connect channel parameters, it feels like we pay fees, or taxes, to translate

bounds on channels; and the fee/tax is charged regardless we go one way or an-

other. For example, say we start with H(Wn) < exp(−n2/3), then Zmxd(Wn) <

q3 exp(−n2/3/2), which contains annoying minor terms that harden the proof. Once

we succeed in proving Zmxd(Wn) < exp
(
−en1/3)

, we pay the price again when trans-

lating it back to H(Wn) < q3 exp
(
−en1/3

/2
)
.

The next section synthesizes channels on the basis of general matrices, and

shows how synthetic channels relate to parameters defined here.
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Figure 5.3. The design of encoder and decoder when ℓ = 3.

5.5. Kernel and Fundamental Theorems

Fix a prime power q. Let ℓ ⩾ 2. Let G ∈ Fℓ×ℓ
q be an invertible ℓ × ℓ matrix

over Fq. This matrix is to replace [ 1 0
1 1 ] that was used to polarize channels in

Chapters 2 to 4, and is called a kernel. See creffig:nine for an illustration of the

EU–DU pairs that corresponds to a 3 × 3 kernel and how to wrap them around

(synthetic) channels.

Let Xℓ
1 be ℓ i.i.d. random variables that follow Q, the capacity-achieving input

distribution of W . Define U ℓ
1 := Xℓ

1G
−1. Let Y ℓ

1 be the outputs of ℓ i.i.d. copies

of W given the inputs Xℓ
1. That is to say, each (Xj , Yj) is governed by Q(x) and

W (y | x). Now consider the following guessing job:

• Guess U1 given Y ℓ
1 .

• Guess U2 given Y ℓ
1 , assuming that the guess Û1 of U1 is correct.

• Guess U3 given Y ℓ
1 , assuming that the guesses Û2

1 of U2
1 are correct.

...

• Guess Uℓ given Y ℓ
1 , assuming that the guesses Û ℓ−1

1 of U ℓ−1
1 are correct.
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For each j = 1, 2, . . . , ℓ, pretend that W (j) is a channel whose input is Uj and

output is Y ℓ
1 U

j−1
1 . This channel captures the difficulty of the jth guessing job. The

precise definition follows.

Definition 5.17. For each j = 1, 2, . . . , ℓ, define a synthetic channel

W (j)(yℓ1u
j−1
1 | uj) :=

P{Y ℓ
1 U

j−1
1 = yℓ1u

j−1
1 }

P{Uj = uj}
=

∑
uℓ
j+1∈Fℓ

q

W (uℓ
1G, yk)

∑
vj−1
1 uℓ

j+1∈Fℓ−1
q

Qℓ(vj−1
1 uℓ

jG)
,

where Qℓ is the product measure and W ℓ is the product channel, i.e.,

Qℓ(xℓ
1) =

ℓ∏
j=1

Q(xj), W ℓ(xℓ
1, y

ℓ
1) :=

ℓ∏
j=1

W (xj , yj),

and vj−1
1 uℓ

jG is vector concatenation before vector-matrix multiplication.

There are three results that control W (j) via the parameters H,Zmxd, Smax

defined in the last section. These results play central roles in the theory of polar

coding and is bestowed the title of fundamental theorems.

Theorem 5.18 (Fundamental theorem of polar coding—H version (FTPCH)).

For any q-ary channel W and any invertible matrix kernel G ∈ Fℓ×ℓ
q ,

ℓ∑
j=1

H(W (j)) = ℓH(W ).

Proof. We derive that

ℓ∑
j=1

H(W (j)) =

ℓ∑
j=1

H(Uj | Y ℓ
1 U

j−1
1 ) = H(U ℓ

1 | Y ℓ
1 ) = H(Xℓ

1 | Y ℓ
1 ) = ℓH(X | Y ).

The first equality is by definition. The next equality is by the chain rule of con-

ditional entropy. The next equality is by G being invertible. The last equality is

because (Xℓ
1, Y

ℓ
1 ) are i.i.d. copies of (X,Y ). □

Fundamental theorem stated and proved, the other two fundamental theorems

require more details about G to be stated.

Let 0j−1
1 1ju

ℓ
j+1 ∈ Fℓ

q be a vector of 0 repeated j − 1 times followed by a 1

and ℓ − j arbitrary symbols. A coset code is a subset of codewords of the form

{0j−1
1 1ju

ℓ
j+1G : uℓ

j+1 ∈ Fℓ−j
q } ⊆ Fℓ

q. The coset codes have weight distributions just
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like every other code does. Let hwt(xℓ
1) be the Hamming weight of xℓ

1. The weight

enumerator of the jth coset code is this one-variable polynomial over the integers

f
(j)
Z (z) :=

∑
uℓ
j+1

zhwt(0j−1
1 1ju

ℓ
j+1G) ∈ Z[z].

Note that this coincides with the distance enumerator from the jth row of G to the

span of the rows beneath.

Theorem 5.19 (Fundamental theorem of polar coding—Z end (FTPCZ)). For

any q-ary channel W and any invertible matrix kernel G ∈ Fℓ×ℓ
q ,

Zmxd(W (j)) ⩽ f
(j)
Z (Zmxd(W )).

Proof. By the definition of the synthetic channel W (j) and that of the Bhat-

tacharyya parameter, Zmxd(W (j)) is

max
0̸=dj∈Fq

∑
uj∈Fq

∑
uj−1
1 yℓ

1∈Fj
q×Yℓ

»
W (j)(uj , yℓ1u

j−1
1 )W (j)(uj + dj , yℓ1u

j−1
1 ).

By the nature of max0̸=dj∈Fq , it suffices to show that the double sum within is at

most f
(j)
Z (Zmxd(W )) for arbitrary nonzero dj .

In the upcoming argument, vector concatenation takes precedence over vector-

matrix multiplication and vector addition. Fix a dj ∈ F×
q , we argue that∑

uj∈Fq

∑
yℓ
1u

j−1
1 ∈Yℓ×Fj

q

»
W (j)(uj , yℓ1u

j−1
1 )W (j)(uj + dj , yℓ1u

j−1
1 )

=
∑
uj
1y

ℓ
1

»
W (j)(uj , yℓ1u

j−1
1 )W (j)(uj + dj , yℓ1u

j−1
1 )

=
∑
uj
1y

ℓ
1

√ ∑
uℓ
j+1∈Fℓ−j

q

W ℓ(uj
1u

ℓ
j+1G, yℓ1)

∑
vℓ
j+1∈Fℓ−j

q

W ℓ(uj−1
1 (uj + dj)v

ℓ
j+1G, yℓ1)

⩽
∑
uj
1y

ℓ
1

∑
uℓ
j+1

∑
vℓ
j+1

√
W ℓ(uj

1u
ℓ
j+1G, yℓ1)W ℓ(uj−1

1 (uj + dj)vℓj+1G, yℓ1)

=
∑
yℓ
1

∑
uℓ
1

∑
dℓ
j+1∈Fℓ−j

q

√
W ℓ(uℓ

1G, yℓ1)W ℓ(uj−1
1 (uℓ

j + dℓj)G, yℓ1)

=
∑
yℓ
1

∑
xℓ
1∈Fℓ

q

∑
dℓ
j+1

√
W ℓ(xℓ

1, y
ℓ
1)W ℓ(xℓ

1 + 0j−1
1 dℓjG, yℓ1)

=
∑
dℓ
j+1

∑
yℓ
1

∑
xℓ
1

»
W ℓ(xℓ

1, y
ℓ
1)W ℓ(xℓ

1 + eℓ1, y
ℓ
1)

=
∑
dℓ
j+1

∑
yℓ
1

∑
xℓ
1

∏
k∈[ℓ]

»
W (xk, yk)W (xk + ek, yk)
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=
∑
dℓ
j+1

∑
yℓ
1

∑
xℓ
1

∏
k∈K

»
W (xk, yk)W (xk + ek, yk)

∏
k/∈K

W (xk, yk)

=
∑
dℓ
j+1

∏
k∈K

(∑
xkyk

»
W (xk, yk)W (xk + ek, yk)

) ∏
k/∈K

(∑
xkyk

W (xk, yk)
)

=
∑
dℓ
j+1

∏
k∈K

(∑
xkyk

»
W (xk, yk)W (xk + ek, yk)

)
⩽

∑
dℓ
j+1

∏
k∈K

max
0̸=ek∈Fq

(∑
xkyk

»
W (xk, yk)W (xk + ek, yk)

)
=

∑
dℓ
j+1

∏
k∈k

Zmxd(W ) =
∑
dℓ
j+1

Zmxd(W )|K| =
∑
dℓ
j+1

Zmxd(W )hwt(0j−1
1 djd

ℓ
j+1G)

=
∑
dℓ
j+1

Zmxd(W )hwt(0j−1
1 1jd

ℓ
j+1G) = f

(j)
Z (Zmxd(W )).

The first equality abbreviates the summation. The next equality expands W (j)

by the very definition, where uℓ
j+1 and vℓj+1 are free variables in Fq. The next

inequality is by sub-additivity of square root. In the next equality we define dℓj+1 :=

vℓj+1−uℓ
j+1; so summing over vℓj+1 is equivalent to summing over dℓj+1. In the next

equality we define xℓ
1 := uℓ

1G; so summing over uℓ
1 is equivalent to summing over xℓ

1

as G is invertible. In the next equality we substitute eℓ1 := 0j−1
1 dℓjG and reorder the

summation. The next equality expands the product of the memoryless channels.

The next equality classifies the indices into two classes—k ∈ K are those such that

ek ̸= 0 and k /∈ K are those such that ek = 0. The next equality is the distributive

law ax+ay+ bx+ by = (a+ b)(x+y). The next equality uses the fact that W (x, y)

sum to 1. In the next inequality we replace ek by a nonzero element that maximizes

the sum in the parentheses. In the next equality we realize that the maximum is

the Bhattacharyya parameter (surprisingly). The second last equality uses the fact

that multiplying a vector by a scalar preserves its Hamming weight. And quod erat

demonstrandum. □

The last fundamental theorem lives in the dual picture. Let uj−1
1 1j0

ℓ
j+1 ∈ Fℓ

q

be a vector of j − 1 arbitrary symbols followed by a 1 and 0 repeated ℓ− j times.

Let G−⊤ be the inverse transpose of G. The jth dual coset code of G is a subset

of codewords of the form {uj−1
1 1j0

ℓ
j+1G

−⊤ : uj−1
1 ∈ Fj−1

q } ⊆ Fℓ
q. The weight

enumerator of the jth dual coset code is defined to be this one-variable polynomial
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over the integers

f
(j)
S (s) :=

∑
uj−1
1

shwt(uj−1
1 1j0

ℓ
j+1G

−⊤) ∈ Z[s].

We can now state the dual of the second fundamental theorem.

Theorem 5.20 (Fundamental theorem of polar coding—S-end (FTPCS)). For

any q-ary channel W and any invertible matrix kernel G ∈ Fℓ×ℓ
q ,

Smax(W (j)) ⩽ f
(j)
Z (Smax(W )).

Proof. (Reminder: For those who attempt to skip the proof, the proof spans

about 2.2 pages.)

Recall the character χ(x) := exp(2πi tr(x)/p). We need these properties of χ:

(xa) χ(0) = 1; (xb) |χ(x)| = 1 for all x ∈ Fq; (xc) χ(x)χ(z) = χ(x + z) for all

x, z ∈ Fq; and (xd)
∑

x∈Fq
χ(x) = 0. See also [MT14, Definition 24] or a dedicated

book [Ter99]. To prove the theorem, we first verify that the Fourier coefficients

recover the origin: Let M(w, y) := W (y)M(w | y) =
∑

z∈Fq
W (z, y)χ(wz), then∑

w∈Fq

M(w, y)χ(−xw) =
∑
w∈Fq

∑
z∈Fq

W (z, y)χ(wz)χ(−xw)

=
∑
z∈Fq

W (z, y)
∑
w∈Fq

χ(w(z − x)) =
∑
z∈Fq

W (z, y)qI{z − x = 0} = qW (x, y).

The first equality expands M(w, y) by the definition. The next equality uses that χ

is an additive character (xc), and reorders the summation. The next equality uses∑
w∈Fq

χ(w) = 0 (xd) and
∑

w∈Fq
χ(0) = q (xa); and I is the indicator function.

Knowing W (xj , yj) = q−1
∑

wj∈Fq
M(wj , yj)χ(−xjwj), we proceed to

W (j)(uj , y
ℓ
1u

j−1
1 ) =

∑
uℓ
j+1

W ℓ(uℓ
1G, yℓ1) =

∑
uℓ
j+1∈Fℓ−j

q

W ℓ(xℓ
1, y

ℓ
1) =

∑
uℓ
j+1

∏
k∈[ℓ]

W (xk, yk)

=
∑
uℓ
j+1

∏
k∈[ℓ]

(1

q

∑
wk∈Fq

M(wk, yk)χ(−xkwk)
)

=
1

qℓ

∑
uℓ
j+1

∑
wℓ

1

∏
k∈[ℓ]

M(wk, yk)χ(−xkwk)

=
1

qℓ

∑
uℓ
j+1

∑
wℓ

1

χ(−xℓ
1(wℓ

1)⊤)
∏
k∈[ℓ]

M(wk, yk) =
1

qℓ

∑
uℓ
j+1

∑
wℓ

1

χ(−xℓ
1(wℓ

1)⊤)M ℓ(wℓ
1, y

ℓ
1)

=
1

qℓ

∑
uℓ
j+1

∑
wℓ

1

χ(−uℓ
1G(wℓ

1)⊤)M ℓ(wℓ
1, y

ℓ
1) =

1

qℓ

∑
uℓ
j+1

∑
wℓ

1

χ(−uℓ
1(wℓ

1G
⊤)⊤)M ℓ(wℓ

1, y
ℓ
1)

=
1

qℓ

∑
uℓ
j+1

∑
vℓ
1

χ(−uℓ
1(vℓ1)⊤)M ℓ(vℓ1G

−⊤, yℓ1)
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=
1

qℓ

∑
vℓ
1

χ(−uj
1(vj1)⊤)M ℓ(vℓ1G

−⊤, yℓ1)
∑
uℓ
j+1

χ(−uℓ
j+1(vℓj+1)⊤)

=
1

qℓ

∑
vℓ
1

χ(−uj
1(vj1)⊤)M ℓ(vℓ1G

−⊤, yℓ1)qℓ−jI{vℓj+1 = 0}

=
1

qj

∑
vj
1

χ(−uj
1(vj1)⊤)M ℓ(vj10ℓj+1G

−⊤, yℓ1).

The first equality expands the definition of W (j). In the next equality, we substitute

xℓ
1 := uℓ

1G. The next equality expands the definition of W ℓ down to W . The next

two equalities Fourier expand W and reorder the operators. The next equality

merges all χ(−xkwk) into one inner product by additivity (xc). In the next equality

we define M ℓ(wℓ
1, y

ℓ
1) to be the product of all M(wk, yk). The next two equalities use

xℓ
1(wℓ

1)⊤ = uℓ
1G(wℓ

1)⊤ = uℓ
1(wℓ

1G
⊤)⊤. In the next equality we define vℓ1 := wℓ

1G
⊤;

so summing over wℓ
1 is equivalent to summing over vℓ1. The last three equalities

sum over uℓ
j+1 to force vℓj+1 = 0.

Having that W (j)(uj , y
ℓ
1u

j−1
1 ) = q−j

∑
vj
1
χ(−uj

1(vj1)⊤)M ℓ(vj10ℓj+1G
−⊤, yℓ1) in

mind, we move on to

M (j)(ωj , u
j−1
1 yℓ1) :=

∑
zj∈Fq

W (j)(zj , y
ℓ
1u

j−1
1 )χ(ωjzj)

=
∑
zj∈Fq

1

qj

∑
vj
1

χ(−uj−1
1 zj(v

j
1)⊤)M ℓ(vj10ℓj+1G

−⊤, yℓ1)χ(ωjzj)

=
1

qj

∑
vj
1

χ(−uj−1
1 (vj−1

1 )⊤)M ℓ(vj10ℓj+1G
−⊤, yℓ1)

∑
zj∈Fq

χ(zj(ωj − vj))

=
1

qj

∑
vj
1

χ(−uj−1
1 (vj−1

1 )⊤)M ℓ(vj10ℓj+1G
−⊤, yℓ1)qI{ωj = vj}

=
q

qj

∑
vj−1
1

χ(−uj−1
1 (vj−1

1 )⊤)M ℓ(vj−1
1 ωj0

ℓ
j+1G

−⊤, yℓ1).

In the first line we let M (j) be the Fourier coefficients of W (j). The next equality

plugs in what we have in mind about W (j). The next three equalities sum over zj

to force vj = ωj .

With the fact that M (j)(ωj , u
j−1
1 yℓ1) is equal to q1−j

∑
vj−1
1

χ(−uj−1
1 (vj−1

1 )⊤)×
M ℓ(vj−1

1 ωj0
ℓ
j+1G

−⊤, yℓ1), we obtain that with arbitrary 0 ̸= ωj ∈ Fq,∑
uj−1
1 yℓ

1∈Fj−1×Yℓ

|M (j)(ωj , u
j−1
1 yℓ1)|(5.5)
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=
∑

uj−1
1 yℓ

1

∣∣∣ q
qj

∑
vj−1
1

χ(−uj−1
1 (vj−1

1 )⊤)M ℓ(vj−1
1 ωj0

ℓ
j+1G

−⊤, yℓ1)
∣∣∣

⩽
∑

uj−1
1 yℓ

1

q

qj

∑
vj−1
1

|M ℓ(vj−1
1 ωj0

ℓ
j+1G

−⊤, yℓ1)|

=
∑
yℓ
1

∑
vj−1
1

|M ℓ(vj−1
1 ωj0

ℓ
j+1G

−⊤, yℓ1)| =
∑
yℓ
1

∑
vj−1
1

∏
k∈[ℓ]

|M(wk, yk)|

=
∑
yℓ
1

∑
vj−1
1

∏
k∈K

|M(wk, yk)|
∏
k/∈K

|M(wk, yk)|

=
∑
vj−1
1

∏
k∈K

(∑
yk

|M(wk, yk)|
) ∏

k/∈K

(∑
yk

|M(wk, yk)|
)

=
∑
vj−1
1

∏
k∈K

(∑
yk

|M(wk, yk)|
)
⩽

∑
vj−1
1

∏
k∈K

Smax(W )

=
∑
vj−1
1

Smax(W )|K| =
∑
vj−1
1

Smax(W )hwt(vj−1
1 ωj0

ℓ
j+1G

−⊤)

=
∑
vj−1
1

Smax(W )hwt(vj−1
1 1j0

ℓ
j+1G

−⊤) = f
(j)
S (Smax(W )).

The first equality expands the Fourier coefficients. The next inequality is triangle

inequality plus (xb). The next equality cancels the summation over uj−1
1 with q1−j .

In the next equality we substitute wℓ
1 := vj−1

1 ωj0
ℓ
j+1G

−⊤; slightly different from

the free wℓ
1 before, they are now restricted to a proper subspace. The next equality

classifies the indices into two classes—j ∈ K are those such that wj ̸= 0 and k /∈ K

are such that wk = 0. The next two equalities reorder the operators and simplify∑
yk
|M(0, yk)| =

∑
yk

W (yk) = 1. The next inequality replaces wj by one that

maximizes
∑

yk
|M(wj , yk)|. The rest is trivial.

Theorem 5.20 claims that Smax(W (j)) ⩽ f
(j)
S (Smax(W )). Since Smax(W (j)) is

merely the maximum of formula (5.5) over 0 ̸= ωj ∈ Fq, we arrive at Smax(W (j)) ⩽

f
(j)
S (Smax(W )). And quod erat demonstrandum. □

Sometimes, a simpler bound is enough for the analysis—instead of the exact

weight enumerator, we use (#codewords)zminimum distance as an upper bound. The

number of codewords is easy to predict (it is some power of 2). So one only needs

to record the minimum distances.

Definition 5.21. For any G ∈ Fℓ×ℓ
q , define coset distance

D
(j)
Z := hdis(rj , Rj),

69



where hdis is the Hamming distance, rj is the jth row of G, and Rj is the subspace

spanned by the rows beneath rj .

Then FTPCZ reads Zmxd(W (j)) ⩽ qℓ−jZmxd(W )D
(j)
Z . The dual picture obeys

the same logic.

Definition 5.22. For any G ∈ Fℓ×ℓ
q , define dual coset distance

D
(j)
S := hdis(cj , Cj),

where hdis is the Hamming distance, cj is the jth column of G−1, and Cj is the

subspace spanned by the columns before cj .

Then FTPCS reads Smax(W (j)) ⩽ qj−1Smax(W )D
(j)
Z .

The fundamental theorems introduced here are the “local relations” that control

how one iteration of the channel transformation manipulates W . But in the end,

we want to talk about all of its descendants at once, hence the introduction of the

stochastic processes.

Definition 5.23. Let J1, J2, . . . be i.i.d. uniform random variables taking values

in {1, 2, . . . , ℓ}. Fix a q-ary channel W and an invertible matrix G ∈ Fℓ×ℓ
q . Let

W9,W1,W2, . . . , or {Wn} in short, be a stochastic process of DMCs defined as

follows:

• W0 := W ; and

• Wn+1 := W (Jn+1)
n .

This is called the channel process.

Imagine the following infinite array:

Smax(W0) Smax(W1) Smax(W2) Smax(W3) · · ·
T (W0) T (W1) T (W2) T (W3) · · ·
H(W0) H(W1) H(W2) H(W3) · · ·
Pe(W0) Pe(W1) Pe(W2) Pe(W3) · · ·

Zmxd(W0) Zmxd(W1) Zmxd(W2) Zmxd(W3) · · ·


The Hölder tolls, Lemmas 5.10 to 5.13 and Propositions 5.15 and 5.16, are ver-

tical relations. The fundamental theorems, Theorems 5.18 to 5.20, are horizontal

relations. The top two rows are related to the distortion of lossy compression and

shaping the input distributions for asymmetric channels. The bottom two rows
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are related to the block error probability of lossless compression and the anti-error

part of noisy-channel coding. The middle row controls the code rate. In particular,

Theorem 5.18 implies the following generalization of Proposition 2.10.

Proposition 5.24. {H(Wn)} is a martingale.

Propositions 5.15 and 5.16 and Theorems 5.18 to 5.20 are all we need to control

the behavior of {Wn}. But before we make use of these tools to examine the

performance of polar coding, let us walk through some terminologies to see the big

picture and what to expect.

5.6. Probability Theory Regimes

There is an analogy between coding theory and probability theory that connects

the results from both sides and the proofs thereof. This analogy constituents the

picture of the expected performance of coding. This section is a brief introduction

to that and is inspired by [AW14].

Consider i.i.d. copies of some bounded random variable X1, X2, . . . , XN and

their average X̄N . We want to understand the distribution of X̄N , i.e., we want to

understand P{X̄N ⩽ x} for various x. The key is to identify the following

• the mean µ := E[X1] with channel capacity C,

• the number of copies N with the block length N ,

• the cutoff x with the code rate R

• the cumulative probability P{X̄N ⩽ x} with the block error probability

Pe, and

• the variance σ2 with another channel parameter called V .

For example, when Shannon said there exist error correcting codes with code

rate R < C close to channel capacity and block error probability Pe → 0, this

translates into when the cutoff x < µ is close to the mean, the cumulative probabil-

ity P{X̄N ⩽ x} converges to 0 as N → ∞. The latter is the law of large numbers

(LLN). That establishes the first analogue.

Later, Gallager said that the block error probability scales like exp(−Er(R)N)

for a fixed R < C. It translates into that the cumulative probability scales like

P{X̄N ⩽ x} ≈ exp(−L(x)N) for a fixed cutoff z < µ [Gal68]. The former is called

the error exponent regime; the latter is called the large deviation principle (LDP).
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Moreover, Gallager’s error exponent function Er is analogous to Cramér’s rate

function L(x). (To avoid abusing the word rate, I will referred to this as the Cramér

function.) The former is the convex conjugate of Gallager’s E0 function; the latter

is the convex conjugate of the cumulant generating function t 7→ lnE[exp(tX1)].

That establishes the second analogue.

On a parallel track, Strassen said that the code rate scales like C + Φ−1(Pe)×√
V/N , where Φ is the cdf of the standard normal distribution, and V is another

intrinsic parameter called channel dispersion or varentropy [Str62]. It translates

into that the cutoff scales like x ≈ µ + Φ−1(p)
√

σ2/N in order to attain a cer-

tain cumulative probability p. The former is called the finite block length regime

(although, in fact, both this and the error exponent regime has finite N); the lat-

ter is called the central limit theorem (CLT). That establishes the third analogue.

Moreover V is the analog of variance in coding theory.

It is clear that LDP and CLT generalize LLN in ways that fix a variable and

inspect the asymptote of the other variable. A third regime varies both. By [AW14,

PV10],
− lnPe

N(C −R)2
−→ 1

2V
.

And it specializes to Pe ≈ exp(−Ω(N)) for a fixed R < C and R ≈ C −O(1)/
√
N

for a fixed Pe. Similarly, in probability theory, there is

lnP{X̄ − µ > γ(N)x}
Nγ(N)2

−→ L(x),

where γ(N) is some appropriate re-scalars, and L(x) = 1/σ2x2 is another Cramér

function . This is called the moderate deviation principle (MDP). That establishes

the fourth analogue.

For their achievability bounds, the aforementioned results use random coding

whose complexity is out of control. Beside random coding, polar coding is the only

low-complexity code that is strong enough to approach the LDP, CLT, and MDP

regimes. Some history is briefed below. See also Table 5.1 for a comparison among

probability theory and random and polar coding.

Arıkan’s original works on channel polarization [Ari09] established the foun-

dation of polar coding, placing polar coding in the LLN paradigm. Arıkan–Telatar

[AT09] characterized the LDP behavior of polar coding, showing that Pe scales

like exp(−
√
N) when an R < I is fixed. Later, Korada–Şaşoğlu–Urbanke [KSU10]
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Table 5.1. An analogy among probability theory, random coding

theory, and polar coding theory. All δ > 0 can be made arbitrarily

close to 0.

Random variables Random codes Polar codes

LLN X̄ → µ (Pe, R)→ (0, C) (Pe, R)→ (0, C)

LDP P{X̄ − µ > x} ≈ e−NL(x) Pe ≈ e−Er(R)N Pe ≈ e−N1−δ

CLT X̄ − µ ∼ N (0, σ√
N

) C −R ≈ Q−1(Pe)√
V N

C −R ≈ N−1/2+δ

MDP − lnP{X̄−µ>γ(N)x}
γ(N)2 ≈ NL(x) − lnPe

(C−R)2 ≈ N
2V

− lnPe

(C−R)2 ≈ N1−δ

generalized polar codes from Arıkan’s kernel [ 1 0
1 1 ] to any invertible ℓ × ℓ matrix

G over F2, granted that ℓ ⩾ 2 and G is not column-equivalent to a lower triangu-

lar matrix. And then they showed that the LDP behavior is Pe ≈ exp(−NEc(G))

where Ec(G) is a constant depending on the kernel matrix G. In fact, Ec(G) is

the expectation of − logℓ D1. The notation Ec(G) is meant to resemble Gallager’s

error exponent Er(R); but be aware of that the former is inserted at exp(−N this)

place while the latter is inserted at exp(−thisN) place. The LDP behavior of polar

codes is then refined in [HMTU13]. Therein, Pe is approximated by exp(−ℓE)

where E := Ec(G)n −
√

Vc(G)nQ−1(R/I) + o(
√
n) is a more accurate exponent, ℓ

is the matrix dimension, n is the depth of the code, and Vc(G) is another constant

depending on G. The notation Vc(G) is meant to resemble the channel dispersion

V . Appearing to be a CLT behavior, this result lies in the corner of the LDP para-

digm that touches the MDP paradigm. Finally, Mori–Tanaka [MT14] generalized

everything above from binary input to channels with prime-power input. Over arbi-

trary input alphabets, [ŞTA09, Sas11] showed the equivalence of [Ari09, AT09].

Over binary but asymmetric channels, [SRDR12, HY13] showed the counterpart

of [Ari09, AT09] with the channel capacity in place of the symmetric capacity I.

No further result on the LDP side, e.g. over non-binary asymmetric channels, is

known. The technique in [HY13] (inequality (3.4)) and section 5.3 fill the gap.

The CLT behavior of polar codes turns out to be difficult to characterize. It

was Korada–Montanari–Telatar–Urbanke [KMTU10] who came up with the idea
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that approximating an eigenfunction tightly bounds the eigenvalue ℓ−ϱ. Here ϱ > 0

will become a number such that R scales like I −N−ϱ with a fixed Pe. It is called

the scaling exponent because it controls the scaling of N as a function of the gap

to capacity I −R. (Although the LDP regime can also be rephrased as the scaling

of N as a function of lnPe, it was named error exponent regime beforehand. Thus

the name scaling exponent [regime] is dedicated to the CLT regime). They had

0.2669 ⩽ ϱ ⩽ 0.2841 over binary erasure channels (BECs). The upper bound was

brought down to 3.553ϱ ⩽ 1 over binary-input discrete-output memoryless channels

(BDMCs) [GHU12]. Hassini–Alishahi–Urbanke [HAU14] moved down the upper

bound to 3.627ϱ ⩽ 1 over BECs and 3.579ϱ ⩽ 1 over BDMCs. They also proved a

lower bound 1 ⩽ 6ϱ over BDMCs. The latter is suboptimal and [GB14, MHU16]

improved the bound to 1 ⩽ 5.702ϱ and to 1 ⩽ 4.714ϱ. Additive white Gaussian

noise channles (AWGNCs) have continuous output alphabet, but [FT17] show that

they have 1 ⩽ 4.714ϱ too. Over BECs particularly, [FV14, YFV19] examined a

series of larger kernels; the current record is a 64 × 64 kernel believed to have

1 ⩽ 2.9ϱ. Near the end of the road to 2ϱ < 1, [PU16] showed that by allowing

q → ∞, Reed–Solomon kernels achieve 2ϱ < 1 over q-ary channels. This does

not really prove that polar codes achieve 2ϱ < 1 over any specific channel, but

gave hopes. Fazeli–Hassani–Mondelli–Vardy [FHMV17, FHMV18, FHMV20],

eventually, showed that large random kernels achieve 2ϱ < 1 over BECs, breaking

the barrier. Guruswami–Riazanov–Ye [GRY19, GRY20] extended their result to

all BDMCs utilizing the dynamic kernel technique. Our paper [WD21b] fills the

gap.

Between LDP and CLT is polar coding’s MDP behavior. First, Guruswami–Xia

[GX13, GX15] showed that there exists ρ > 0 such that Pe scales like exp(−N0.49)

while R scales like I − N−ρ over BDMCs. This raised a question about what

are the possible pairs (π, ρ) such that (Pe, R) scales like (exp(−Nπ), I − N−ρ).

Mondelli–Hassani–Urbanke [MHU16] answered this, partially, in the same paper

they bounded ρ. They showed that under a certain curve connecting (0, 1/5.714)

and (1/2, 0) all (π, ρ) are achievable over BDMCs. For BECs the upper left corner

is (0, 1/4.627). A straightforward generalization to AWGNCs was also given in

[FT17]. We in [WD18b, WD18c] improved their result, suggesting that via a

combinatorial trick the upper left corner of the curve is (0, ϱ) for any ϱ that is
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π

ρ

conjectured boundary

for V = 0

[FHMV18, GRY20]

[GRY20]
[WD21b]

[YFV19]

[HAU14]

[WD18b]

[MHU16]
[KSU10, MT14]

[GX13]

[BGN+18]

[BGS18]
[AT09, Sas11, HY13]

Figure 5.4. Recent works on polar coding arranged on a ρ–

π plot. Note that results utilizing different kernels over various

channels are mixed. The higher ρ, π, the better performance.

valid in the CLT regime. The same trick also implicated that over BECs all (π, ρ)

such that π + 2ρ < 1 are achievable, which is mainly owing to [FHMV17]’s result

that 2ρ < 1 over BECs is achievable. Meanwhile, [BGN+18] made the first step

to investigate the general kernel matrices over general prime-ary channels. They

showed that it is possible to achieve ρ > 0 with Pe ≈ N−Ω(1). This is, strictly

speaking, “only” a CLT behavior as the desired block error probability in the MDP

world is exp(−Nπ). Later, B lasiok–Guruswami–Sudan [BGS18] were able to show

that for all π < Ec(G) there exists ρ > 0 such that (π, ρ) is achievable. This

makes it a direct generalization of [GX13] to all polarizing kernel matrices G over

all prime-ary channels. The preprint [GRY20] contains a section that pushes the

conference abstract [GRY19] to positive π while maintaining ρ ≈ 1/2. Over the

general DMCs, our [WD21b] fills the gap.

See Figure 5.4 for a comprehensive plot of all these results.

In Chapter 2, I presented the main contribution of [WD18b] which, to be more

precise, is an interpolating result (Pe, R) ≈ (exp(−Nπ), C − N−ρ) for pairs (π, ρ)

lying in the region O that touches (0, 1/4.714) and (1/2, 0). This is the result I want

to generalize in this chapter. Id est, I want to characterize the region of π, ρ for any

invertible matrix G over any finite field Fq. And this region will be determined by

the best ϱ > 0 one can find (or believe in) plus the coset distance profile D
(j)
Z and

D
(j)
S .
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I will do this step-by-step. First, I will show that most kernels enjoy a (very

weak) CLT behavior. More precisely, kernels that satisfy a certain ergodic precon-

dition will enjoy an eigen behavior with positive ϱ. After that, we either stick to

the weak but provable ϱ or assume a higher ϱ based on experiments, simulations,

and/or heuristics. And then we go through an ergodic–eigen–en23–een13–elpin that

resembles the eigen–en23–een13–elpin chain in Chapters 2 and 3.

5.7. An Ergodicity Precondition

Before we board the long proof train eigen–en23–een13–elpin, I want to recall

the classification of matrix kernels into two groups. The bad group consists of

matrices that do nothing to the channels, and hence get no chance to polarize

channels, let alone enjoying any LDP, CLT, or MDP behavior. The good group

consists of matrices that can polarize channels in a calculus regard. And then in

the next section I will show that all of them enjoy some LDP, CLT, and MDP

behaviors. This strengthens the dichotomy even further—a matrix is either not

altering the channels at all, or polarizing the channels exponentially fast.

To motivate the classification, recall that channels W (j) are synthesized based

on the matrix-multiplication Xℓ
1 = U ℓ

1G. The kernel G ∈ Fℓ×ℓ
q is said to be ergodic

if it mixes/blends the content U ℓ
1 such that there are nontrivial relations between

each Uj and all of Y ℓ
1 . The following two counterexamples demonstrate the necessity

of this condition.

Example 5.25. Consider any prime power q and any ℓ ⩾ 2. If G ∈ Fℓ×ℓ
q is an

upper triangular matrix with 1’s on the diagonal, then Xℓ
1 = U ℓ

1G is such that

Xj − Uj is a linear combination of U j−1
1 . Therefore, when we want to guess Uj

given Y ℓ
1 U

j−1
1 , it suffices to guess Xj based on Yj and then subtract the correction

term Xj−Uj = U ℓ
1G = U j−1

1 0ℓjG. That is to say, we are facing essentially the same

guessing job as if we were facing W ; the channel transformation does no benefit

to us. In this case, H(Wn) stays where H(W ) is and does not polarize to {0, 1}.
Lesson: G must not be upper triangular. In fact, it can be shown that if two

matrices G and G̃ differ by some upper triangular row-operations, i.e., G̃ = G,

then they share the same polarizing ability.
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Example 5.26. Consider q = 4 and G = [ 1 0
1 1 ]. Let W be the independent product

of BEC(1/3) and BEC(2/3). That is, W takes a pair (x′, x′′) ∈ F2
2 as an input and

then outputs 

(x′, x′′) w.p. 2/9,

(?, x′′) w.p. 1/9,

(x′, ?) w.p. 4/9,

(?, ?) w.p. 2/9.

Let c ∈ F4 \ F2 be a non-binary element, and identify each (x′, x′′) ∈ F2
2 with

x := x′ + cx′′ ∈ F4, then W behaves like a channel with input alphabet F4, and[
x′
1 x′

2

]
+ c

[
x′′
1 x′′

2

]
=

[
x1 x2

]
=

[
u1 u2

]
G =

[
u′
1 u′

2

]
G + c

[
u′′
1 u′′

2

]
G.

In plain English, G multiplies the prime component and the double-prime compo-

nent separately. Now we attempt to use G to polarize W . Doing that is equivalent

to polarizing BEC(1/3) and BEC(2/3) separately. Then, with probability 1/3, the

entropy process {H(Wn)} converges to 1/2 because the prime component converges

to the entirely noisy channel but the double-prime component converges to the com-

pletely reliable channel. Lesson: G needs to bring interaction to the vector space

substructure within a prime-power finite field.

The two examples motivate the following definition and theorem for classifying

and prejudging matrices.

Definition 5.27. For any invertible matrix G ∈ Fℓ×ℓ
q , the lowered form of G is the

lower triangular matrix G̃ with 1’s on the diagonal and such that G̃G−1 is upper

triangular. A matrix G is said to be ergodic if the off-diagonal entries of G̃ generate

Fq as an Fp-algebra; or Fq = Fp[G̃] for short.

Theorem 5.28 (Ergodic kernel polarizes). [MT14, Theorem 14] Let W be a q-ary

channel. The matrix kernel G ∈ Fℓ×ℓ
q is ergodic iff {H(Wn)} converges to 0 or 1

almost surely.

Sketch of the proof in [MT14]. The stated theorem is strong and gen-

eral, handling all edge cases. The majority of its proof involves reducing some

general situation (e.g., ℓ ⩾ 2) to a special case (e.g., ℓ = 2) to ease notational

burdens. I pick out what I think is the key part of the proof.
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First, we know that a bounded martingale will almost always converge, which

implies H(Wn) − H(Wn+1) → 0. So all we need to show is that when H(Wn)

starts slowing down, i.e., when |H(Wn) − H(Wn+1)| is small, Wn will be either

very reliable or very noisy. To put in another way, our goal is to prove H(Wn)

only slows down when it is reaching 0 or 1. Then we can conclude that the limit of

H(Wn) is either 0 or 1.

To show that Wn is not mediocre when |H(Wn) − H(Wn+1)| is small, the

subscript Bhattacharyya parameter Zd(W ) is introduced to inspect the relation

between W (x | y) and W (x + d | y), for any d ∈ F×
q . Now follow the recipe below

to show Wn is extreme:

• Show that if |H(W )−H(W (j))| is small, then |H(W )−H(W [c])| is small

for some simpler channel transformation •[c], where c is any nonzero entry

of G̃.

• Show that if |H(W )−H(W [c])| is small, then Zcd(W )(1−Zd(W )) is small

for all d ∈ F×
q .

• Show that if Zd(W ) is small, then Zcd(W ) is small for any nonzero entry c

of G̃. Or, if Zd(W ) is close to 1, then Zcd(W ) is close to 1 for any nonzero

entry c of G̃. This step is the scalar-multiplication part of Fp[G̃] as an

Fp-algebra.

• Show that if both Zc(W ) and Zd(W ) are small, then Zc+d(W ) is small for

any entries c and d of G̃. Similarly, if both Zc(W ) and Zd(W ) are close to

1, then Zc+d(W ) is close to 1 for any c, d ∈ F×
q . This step is the addition

part of Fp[G̃] as an Fp-algebra.

• Show that if {Zd(W ) : d ∈ F×
q } are all small, then W is very reliable.

Otherwise, if {Zd(W ) : d ∈ F×
q } are all close to 1, then W is very noisy.

The key to the first • is to simplify the given premise |H(W ) −H(W (j))| < ε

concerning G̃ to a condition |H(W )−H(W [c])| < ℓε concerning some 2× 2 matrix,

where

W [c](y1y2u1 | u2) :=
1

2
W (y1 | u1 + cu2)W (y2 | u2),

for any nonzero entry c of G̃. Note that W [c] represents the guessing job of U2

given Y1Y2U1 and the matrix kernel [ 1 0
c 1 ]. To simplify the premise, let (j, i) points
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to a non-zero entry c of G̃. By how Ui, Uj , Xi, Xj are related by c, one can prove

0 ⩽ H(W )−H(W [c]) ⩽ (ℓ− j + 1)H(W )−
ℓ∑

k=j

H(W (k)).

In layman’s terms, the extra amount of information W [c] can steal from W is at most

the amount that was stolen by W (j),W (j+1), . . . ,W (ℓ) from W ℓ−j+1. Therefore,

the difference |H(Wn)−H(W [c]
n )| converges to 0.

The key to the second and third • is to show f(Zcd(W )(1−Zd(W ))) ⩽ H(W )−
H(W [c]) for all d ∈ F×

q , where f is some monotonically increasing function that

passes (0, 0). Once this is done, we have that either Zcd(Wn) is small or Zd(Wn)

is close to 1. If small Zcd(Wn) is the case, then we obtain small Zc2d(Wn) when

plugging in d = cd; we further obtain small Zc3d(Wn) when plugging in d = c2d;

and so on. A similar argument applies if we choose close-to-1 Zd(Wn)—we will

obtain close-to-1 Zd/c(Wn), Zd/c2(Wn), etc.

The fourth • is by an independent inequality. And it implies that “being small”

and “being close to 1” are properties that can propagate among Zd(Wn) for distinct

d’s. The first four •’s together imply that either all of {Zd(W ) : d ∈ F×
q } are small

or all of them are close to 1. The last • is just some Hölder tolls that connect the

fact that all Zd(W ) are small with the fact that H(W ) is small, and vice versa.

And the Hölder tolls imply that Wn is extreme. This finishes the sketch of the

proof. □

Remark on the theorem: Knowing that {H(Wn)} converges to 0 or 1 says

nothing about the pace of convergence. In particular, we do not even know if

at least one of H(W (j)) is not equal to H(W )—it could be that H(Wn) stays

unchanged for many n’s and then moves a little bit before another long relaxing.

For instance, 1/⌊lnn⌋ eventually converges to 0 but it moves occasionally.

Our next goal in this section is to extract, from the proof of Theorem 5.28, a

lemma that some H(W (j)) is different from H(W ). This lemma will evince that

the pace of convergence is exponential in n in the next section.

Lemma 5.29 (Ergodic kernel perturbs). Let W be a q-ary channel. Let G ∈ Fℓ×ℓ
q

be an ergodic kernel. Then H(W (j)) ̸= H(W ) for some 1 ⩽ j ⩽ ℓ unless H(W ) ∈
{0, 1}.
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Proof. First and foremost, assume that W is a symmetric channel with uni-

form input and that G = G̃ is a lower triangular matrix. The former is due

to a symmetrization technique that identifies the conditional entropy of a q-ary

channel W and its symmetric sibling W̃ . The latter is by that upper triangular

row-operations do not alter the synthetic channels up to some equivalence relation.

See [MT14] for more details about these two reductions.

Now we assume the opposite of the conclusion, that H(W (j)) = H(W ) for all

1 ⩽ j ⩽ ℓ. Then, for any 1 ⩽ j ⩽ ℓ,

(ℓ− j + 1)H(W ) =

ℓ∑
k=j

H(W (k)) =
ℓ∑

k=j

H(Uk | Y ℓ
1 U

k−1
1 ) = H(U ℓ

j | Y ℓ
1 U

j−1
1 )

=

ℓ∑
k=j

H(Uk | Y ℓ
1 U

j−1
1 U ℓ

k+1) ⩽
ℓ∑

k=j

H(W ) = (ℓ− j + 1)H(W ).

The equality that starts the second line changes the order we guess Uk—the new

order is k = 1, 2, . . . , j − 1, ℓ, ℓ − 1, . . . , j. The inequality in the second line is by

that G̃ is lower triangular, and hence guessing Uk is no harder than guessing Xk

from Yk follow by the subtraction of the correction term Xk − Uk = U ℓ
k+1G̃. Now

the inequality squeezes, so all H(Uk | Y ℓ
1 U

j−1
1 U ℓ

k+1) are equal to H(W ).

Plugging in k = j yields, particularly, H(Uj | Y ℓ
1 U

j−1
1 U ℓ

j+1) = H(W ). That is,

the last guessing job, which is supposedly the easiest, turns out to be as difficult as

the others. Fix any pair i < j such that the (j, i)th entry of G̃ is c ̸= 0. Then

H(W ) = H(Uj | Y ℓ
1 U

j−1
1 U ℓ

j+1) ⩽ H(Uj | YiYjU
j−1
1 U ℓ

j+1) ⩽ H(W ).

The first inequality is by monotonicity. The second inequality is by that guessing

Uj is no harder than guessing Xj up to the subtraction of some correction term.

Now the inequalities squeeze and H(Uj | YiYjU
j−1
1 U ℓ

j+1) = H(W ).

Now look closer at the “channel” Uj | YiYjU
j−1
1 U ℓ

j+1. We get a second chance to

learn more about Uj—since Xi is a linear combination of U ℓ
i , wherein the coefficient

of Uj is c, the output Yi corresponding to the input Xi also carries information about

Uj . The way this information is carried is the same as the outputs corresponding

to the inputs Ui and cUi. This comes down to the second synthetic channel of the

2× 2 kernel [ 1 0
c 1 ], i.e.

W [c](y1y2u1 | u2) :=
1

2
W (y1 | u1 + cu2)W (y2 | u2).
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Hence H(Uj | YiYjU
j−1
1 U ℓ

j+1) ⩽ H(W [c]) ⩽ H(W ). The inequalities squeeze again,

H(W [c]) = H(W ).

Now we cite a difficult inequality in [MT14, Appendix A]:

H(W )−H(W [c]) ⩾ − ln
(

1− 1

q

∑
d∈F×

Zcd(W )2(1− Zd(W ))
)
⩾ 0.

Squeeze one more time; we end up with Z2
cd(1− Zd) = 0, for all d ∈ F×

q . (We omit

the argument “(W )” from now on.) If it is the case that Zcd = 0, then the next

factor 1−Zcd around the corner is 1, which forces Zc2d to be 0. The latter in turns

forces Zc3d to be 0. This argument propagates throughout the multiplicative orbit

⟨c⟩d ⊆ F×
q . Similarly, if it is the case that Zd = 1, then Zd/c, Zd/c2 , . . . , Zd are,

forcably, all 1. In summary, all Zd in the orbit ⟨c⟩d share a common fate. In fact,

since c can be any nonzero off-diagonal entry of G̃, we deduce that all Zd in the big

orbit ⟨G̃⟩d share a common fate.

The last piece of the jigsaw puzzle is to show that all Zd, no matter which orbit

they lie in, share the same common fate. We hereby cite [MT14, Lemma 21]: If

Zd = Ze = 1 and d + e ̸= 0, then Zd+e = 1. Therefore, if Zd = 1 for some d ∈ Fp

in the ground field, then Zd = 1 for all d ∈ Fp. By that off-diagonal entries of

G̃ generate Fq as an Fp-algebra and that Zd’s lying in the same G̃-orbit share the

common fate, we conclude that Zd = 1 for all d ∈ Fq. If, otherwise, no d in the

ground field has Zd = 1, then all d have Zd = 0.

Now we have that all d ∈ Fq share the common fate—either all Zd(W ) are 1

or all Zd(W ) are 0. So Z(W ) is either 1 or 0. Thus H(W ) is either 1 or 0. This

completes the proof. □

We just see that either G does nothing to the channel W or G will synthesize

a W (j) that has a distinct conditional entropy. In other words, H(W1) is not a

constant but a true random variable. In the next section, I will leverage the fact

that H(W1) is not constant, regardless how small its variance is, to show that

H(W0), H(W1), H(W2), . . . polarizes in an exponential pace.

5.8. Eigen Behavior

What constitutes this section is a compactness argument that aims to show

that every ergodic kernel has a positive ϱ as in the eigenvalue formula

(5.6) ℓ−ϱ := sup
W : q-ary

h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (ℓ)))

ℓh(H(W ))
,
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where h is an easy-to-handle eigenfunciton. From that we can conclude E [h(Wn)] <

ℓ−ϱn and then move on to the en23 behavior.

We can almost see how supremum (5.6) can be estimated: Take a (strictly)

concave h. By the last section, H(W (j)) are not equal to each other whilst their

average is H(W ). By Jensen’s inequality, E [h(H(W1))] ⩽ h(H(W0)), and the

equality cannot hold. This means that the fraction within the supremum is strictly

less than 1. Should the supremum be less than 1, a positive ϱ exists. Now we see

why supremum (5.6) is nontrivial: The supremum of some less-than-1 numbers can

be 1, especially when the domain is not compact.

The remainder of this section finds a compact subset of q-ary channels, on

which the supremum is strictly less than 1, and handles the supremum over the

complement set separately.

Lemma 5.30 (Eigen for mediocre channels). Fix a G ∈ Fℓ×ℓ
q . Fix an h(z) :=√

min(z, 1− z). For any δ > 0,

(5.7) sup
δ⩽H(W )⩽1−δ

h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (ℓ)))

ℓh(H(W ))
< 1,

where the supremum is taken over all q-ary (Q,W )-pairs whose conditional entropy

lies within [δ, 1− δ].

Proof. Approach one: All delta–epsilon arguments in Lemma 5.29 (which is

inspired by Theorem 5.28) can be made explicit. That will give an upper bound on

supremum (5.7).

Approach two: It suffices to show that the space of q-ary channels with mediocre

conditional entropy is sequentially compact, plus •(j) and H are continuous w.r.t.

the same topology. Once this is done, any sequence W1,W2, . . . whose correspond-

ing fractions converge to 1 must converge to the corresponding fraction of some

W∞, which is strictly less than 1 and leads to a contradiction.

Let the simplex ∆X be the closed subset of [0, 1]X constrained by that the sum

of coordinates is 1. This is the set of all probability distributions on X . Let P(∆X )

be the set of probability distributions on ∆X . A pair (Q,W ) of a DMC W with an

input distribution Q corresponds to a distribution on ∆X , i.e. an element of P(∆X ),

through the posterior probabilities seen by the decoder. In details, whenever the
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decoder sees Y = y, it looks up the symbol y in the table of posterior probabilities

and learns a tuple

(W (x1 | y),W (x2 | y), . . . ,W (xq | y)),

where x1, x2, . . . , xq enumerate the symbols of X . This tuple is an element of

∆X . Now that the channel output Y is a random variable, the tuple of posterior

probabilities

(W (x1 | Y ),W (x2 | Y ), . . . ,W (xq | Y ))

is itself random. This tuple is a ∆X -valued random variable and obeys some dis-

tribution in P(∆X ). This distribution of a random tuple is the representative of

(Q,W ) in P(∆X ).

Here comes the measure theory nonsense: Since X is finite, [0, 1]X and ∆X

are compact w.r.t. the Euclidean topology. So P(∆X ), the set of all distributions

on ∆X , is tight. By Prokhorov’s theorem, P(∆X ) is sequentially compact w.r.t.

the topology of weak convergence. Now notice that H(W ) is just the expecta-

tion/integral

E
[∑
x∈X
−W (x | Y ) logq W (x | Y )

]
=

∫ ∑
x∈X
−W (x | y) logq W (x | y) dy.

Note that the “integratee”
∑

x∈X −W (x | y) logq W (x | y) ⩽ q is bounded and

continuous in the tuple. So H can be extended to a continuous map from P(∆X )

to [0, 1]. By extension I mean that H is now defined over all q-ary input channels

regardless of whether the output alphabet is discrete or continuous. Similarly, all

H(W (j)) can be written as more complicated expectations/integrals of W (x | Y ).

They are all continuous w.r.t. the topology of weak convergence.

Finally, this is what happens if there exists a sequence of channels W1,W2, . . . ,

(notice the font) whose corresponding fractions

h(H(•(1))) + h(H(•(2))) + · · ·+ h(H(•(ℓ)))
ℓh(H(•))

converge to 1: Map these channels to P(∆X ). A sequence in P(∆X ) must contain

a convergent subsequence. Let W∞ be the limit of any such subsequence. Then, as

W∞ also satisfies Lemma 5.29,

h(H(W
(1)
∞ )) + h(H(W

(2)
∞ )) + · · ·+ h(H(W

(ℓ)
∞ ))

ℓh(H(W∞))
< 1.
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(In particular, the denominator is ⩾ h(δ) =
√
δ.) A contradiction. This means the

supremum is strictly less than 1 and is what I calimed.

This proof is partially inspired by [Nas18a, Nas18b]. □

The case of mediocre channels is done. It remains to upper bound the supre-

mum for channels in the neighborhoods of H = 0 and H = 1. First goes the

neighborhood of H = 0.

Lemma 5.31 (Eigen for reliable channels). Fix a G ∈ Fℓ×ℓ
q with coset distance

D
(j)
Z ⩾ 5 for some j, that is, the Hamming distance from some row to the subspace

spanned by the rows below is 5 or farther. Fix an h(z) :=
√

min(z, 1− z). Then

there exists an δ such that

(5.8) sup
0<H(W )<δ

h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (ℓ)))

ℓh(H(W ))
< 1,

where the supremum is taken over all q-ary (Q,W )-pairs whose conditional entropy

lies within the interval (0, δ).

Proof. Let us assume that it is the last row of G that has Hamming weight

5. For if hdis(rj , Rj) ⩾ 5 is satisfied with other index j < ℓ, the following proof

works with minor modifications.

Temporarily let δ be H(W ) and assume that this is really small. This paragraph

bounds ε =: H(W (ℓ)) from above: Pay the explicit Hölder toll (Proposition 5.16),

we obtain Zmxd(W ) < q3
√
H(W ) = q3

√
δ. Apply FTPCZ (Theorem 5.19), we see

that Zmxd(W (ℓ)) ⩽ f
(ℓ)
Z (Zmxd(W )) = Zmxd(W )5 < q15δ2.5. Pay the Hölder toll for

the return-trip (Proposition 5.16), we arrive at ε = H(W (ℓ)) < q3
√

Zmxd(W (ℓ)) <

q10.5δ1.25, or ε < q10.5δ1.25 for short. This is the only H(W (j)) I know how to

estimate.

Look at the fraction in supremum (5.8). The last term in the numerator is

h(ε) ⩽
√
ε <

√
q10.5δ1.25. We do not know about the other terms in the numerator;

but at least we can apply Jenson’s inequality (i.e., we assume they are all equal to

minimize the extent of polarization)

h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (ℓ−1)))

⩽ (ℓ− 1)h
(H(W (1)) + H(W (2)) + · · ·+ H(W (ℓ−1))

ℓ− 1

)
= (ℓ− 1)h

(ℓδ − ε

ℓ− 1

)
⩽ (ℓ− 1)

 
ℓδ − ε

ℓ− 1
=
√
ℓ− 1

√
ℓδ − ε <

»
(ℓ− 1)ℓδ.
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The first equality is by FTPCH (Theorem 5.18).

Now the fraction in supremum (5.8) has its numerator simplified down to two

terms:

(5.9) supremum (5.8) ⩽

√
(ℓ− 1)ℓδ +

√
ε

ℓ
√
δ

=

…
ℓ− 1

ℓ
+

1

ℓ

…
ε

δ

If we let δ → 0, then ε/δ ⩽ q10.5δ1.25/δ = q10.5δ0.25 → 0. So there is a positive

δ such that the right-hand side of inequality (5.9) is strictly less than 1. This

completes the proof. □

Next goes the neighborhood of H = 1. But it is just the dual of the previous

lemma.

Lemma 5.32 (Eigen for noisy channels). Fix a G ∈ Fℓ×ℓ
q with dual coset distance

D
(j)
S ⩾ 5 for some j, that is, the Hamming distance from some column of G−1

to the subspace spanned by the column to the left is 5 or farther. Fix h(z) :=√
min(z, 1− z). Then there exists an δ such that

sup
1−δ<H(W )<1

h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (ℓ)))

ℓh(H(W ))
< 1,

where the supremum is taken over all q-ary (Q,W )-pairs whose conditional entropy

lies within the interval (1− δ, 1).

Proof. The proof is merely the dual of the proof of Lemma 5.31. We shall

not repeat. □

Lemmas 5.30 to 5.32 together imply that, if G and G−1 have large Hamming dis-

tances among their rows and columns, respectively, then supremum (5.6) is strictly

less than 1. However, this does not imply anything about matrices with shorter

distances, especially when G is 4 × 4 or smaller. Thankfully, Kronecker product

(tensor product) leverages the Hamming distances.

Lemma 5.33 (Thress steps as one big step). Fix any ergodic matrix K ∈ Fℓ×ℓ
q .

Its cubic Kronecker power G := K⊗3 (a) is ergodic, (b) has some D
(j)
Z ⩾ 8, and (c)

has some D
(j)
S ⩾ 8.

Proof. For (a): It suffices to consider the Kronecker power of the lowered

form K̃. Since the diagonal of K̃ is all 1, any Kronecker power K̃⊗n keeps a copy
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of the original K̃ around the diagonal. Use the original copies to generate Fq as an

Fp-algebra.

For (b): The proof is the combination of two simple facts:

• An ergodic matrix must have some coset distance ⩾ 2.

• Let (u, U) be a vector–subspace pair of some ambient vector space U and

(v, V ) a vector–subspace pair of another ambient vector space V, then

hdis(u⊗ v, u⊗ V + U ⊗ V) ⩾ hdis(u, U) hdis(v, V ).

The first bullet point is again a consequence of Theorem 5.28. To elaborate, note

that K and and its lowered form K̃ share the same coset distance profile. Then note

that K̃ has at least one off-diagonal entry that is nonzero. Let j be the last row

with nonzero off-diagonal entry, then D
(j)
Z ⩾ 2. Hence K has some coset distance

⩾ 2. The second bullet point is worth a standalone lemma and will be proved as

Lemma 5.34. The two bullet points imply that the (jℓ2 + jℓ + j)th coset distance

of G := K⊗3 is at least 8.

For (c): It is the dual of (b). The proof ends here. □

Lemma 5.34. Let (u, U) be a vector–subspace pair of some ambient vector space U

and (v, V ) a vector–subspace pair of another ambient vector space V, then it holds

that hdis(u⊗ v, u⊗ V + U ⊗ V) ⩾ hdis(u, U) hdis(v, V ).

Proof. View u, v and u ⊗ v as a column vector, a row vector, and a rank-1

matrix, respectively. Now we want to compute the Hamming distance from the

matrix u⊗ v to a subset of matrices u⊗ V +U ⊗V. This is equal to the Hamming

distance from u ⊗ (v + V ) to U ⊗ V. Let v′ ∈ v + V be any row vector (whose

Hamming weight is at least hdis(v, V )). It suffices to prove hdis(u ⊗ v′, U ⊗ V) ⩾

hdis(u, U) hwt(v′).

Without loss of generality, assume that the first coordinate of v′ is nonzero.

Then the first column of u⊗v′ is a nonzero multiple of u, whilst the first column of

any matrix in U⊗V is a column vector in U . The number of mismatching entries in

the first column is thus ⩾ hdis(u, U). Repeat this argument for all columns where v′

is nonzero, then the total number of mismatching entries is ⩾ hdis(u, U) hwt(v′) ⩾

hdis(u, U) hdis(v, V ). This is what we want to show. □
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Remark: There is no practical reason to use a large matrix with poor coset

distance profile to polarize channels. What Lemma 5.33 is good for is to prove that

easy-to-implement 2× 2 matrices such as1 0

c 1


polarize channels, given that c generates Fq over Fp.

Recap of this section: Up to this point, we have seen that an ergodic kernel G

will make H(W1) non-constant, that the eigenvalue is < 1 for mediocre channels,

that the eigenvalue is < 1 for reliable channels given D
(j)
Z ⩾ 5, that the eigenvalue

is < 1 for noisy channels given D
(j)
S ⩾ 5, and that the third Kronecker power

K⊗3 has sufficient coset distances. These result in K⊗3 having eigenvalue (i.e.,

supremum (5.6)) < 1. The next theorem summarizes the eigen behavior of any

ergodic kernel.

Theorem 5.35 (From ergodic to eigen). If K ∈ Fℓ×ℓ
q is an ergodic matrix, then

G := K⊗3 is a kernel such that

sup
0<H(W )<1

h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (ℓ3)))

ℓ3h(H(W ))
< 1,

where the supremum is taken over all q-ary channels that are not completely noisy

or entirely reliable.

The next section will take advantage of the eigen theorem to show that every

ergodic kernel enjoys an en23 behavior with positive ϱ.

5.9. En23 Behavior

Fix a q-ary W and an ergodic G ∈ Fℓ×ℓ
q . The latter could be a large matrix

with sufficient coset distances or the cubic power of any ergodic matrix. Let the

entropy process {Hn} be defined by Hn := H(Wn), where {Wn} is the channel

process grown from W via G. Let the Bhattacharyya process {Zn} be defined by

Zn := Zmxd(Wn), We want to understand the asymptotic behavior of {Hn} and

{Zn}.
To get the asymptotic behavior, Lemma 2.16 provides a template to translate

an eigen behavior into an en23 behavior. The only difference is that there, the eigen

behavior was given in terms of Z, and here, the eigen behavior is given in terms of
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H. This turns out to be ineffective to the proof; in fact, an eigen behavior can be

given in terms of any parameter that is bi-Hölder to H and Z. Beyond this, there

is nothing new to comment on. Let us go straight toward the lemma.

Lemma 5.36 (From eigen to en23). If a kernel G ∈ Fℓ×ℓ
q and a concave function

h are such that h(0) = h(1) = 0 and

sup
0<H(W )<1

h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (ℓ)))

ℓh(H(W ))
= ℓ−ϱn,

then

P
{
Zn < e−n2/3}

> 1−H(W )− ℓ−ϱn+o(n).

Proof. Telescope E [h(Hn)] ⩽ E [E [h(Hn) | J1J2 · · · Jn−1]] ⩽ E [h(Hn−1)]ℓ−ϱ ⩽

ℓ−ϱn. So Hn refuses to stay around the middle

P
{
e−n3/4

⩽ Hn ⩽ 1− e−n3/4}
= P

{
h(Hn) ⩾ h

(
e−n3/4)}

⩽
E [h(Hn)]

h(exp(−n3/4))
⩽

h(H0)ℓ−ϱn

h(exp(−n3/4))
<

ℓ−ϱn

exp(−n3/4)
< ℓ−ϱn+o(n).

Next, recall that Hn → H∞ ∈ {0, 1} and P{Hn → 0} = 1− H0 = 1−H(W ). So

P
{
Hn < e−n3/4}

⩾ P{Hn → 0} − P
{
Hm → 0 but Hn ⩾ e−n3/4}

= 1−H(W )− P
{
Hm will visit

[
e−m3/4

, 1− e−m3/4]
for some m ⩾ n

}
> 1−H(W )−

∞∑
m=n

ℓ−ϱm+o(m) = 1−H(W )− ℓ−ϱn+o(n).

Now pay the Hölder toll to translate the inequality into one about Zn. That is,

P{Zn < exp(−n2/3)} > 1 − H(W ) − ℓϱn−o(n). That is exactly the inequality we

want. □

Before the section ends, I want to comment on possible sources of the eigen

behavior. As one can see in Chapter 2, the eigen behavior for BDMC and [ 1 0
1 1 ] was

given in terms of Z because it is easier to bound Z back then (cf. Lemma 2.12).

Here, the eigen behavior is given in terms of H because it forms a martingale, and

Jensen’s inequality indicates that the eigenvalue is ⩽ 1. In the next chapter, readers

will see H again for the same reason. In general, eigen behavior can be stated in

any parameter such that YourParametern ⩽ exp(−n3/4) implies Zn ⩽ exp(−n2/3);

because then the proof given above works.

In the next section, we will go one step further to the een13 behavior that

will be built on top of this section’s en23 behavior, which was built on top of last
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section’s ergodic behavior. The proof in the next section assumes the same format

as that in Lemma 2.17.

5.10. Een13 Behavior

The derivation of the een13 behavior from the en23 behavior uses the fact that

Zmxd(W (j)) is about Zmxd(W ) to the power of D
(j)
Z . By that an ergodic kernel has

nontrivial coset distance profile, at least one D
(j)
Z will square the Zmxd(W ). Now

it is a matter of Hoeffding’s inequality to control the frequency that a trajectory of

{Zn} undergoes squaring.

To facilitate the reasoning about coset distances, define the distance process

{Dn} via Dn := D
(Jn)
Z . Then, by FTPCZ, Zn+1 ⩽ qℓ−Jn+1ZDn+1

n ⩽ qℓZDn+1
n ≈

ZDn+1
n . And now we can telescope and talk about the product D1D2 · · ·Dn. For

instance, the product is 1 with probability P{D1 = 1}n. This is the probability that

Z0–Zn do not undergo any squaring or higher powering, and we have no control on

such Zn (except the trivial one Zn ⩽ q(ℓ−1)nZ0). Hence, I hope that P{D1 = 1}n is

dominated by the desired gap to capacity ℓ−ϱn. Equivalently, I hope that P{D1 =

1} ⩽ ℓ−ϱ.

Conjecture 5.37 (Good D implies good ϱ). For any kernel G ∈ Fℓ×ℓ
q ,

P{D1 = 1} < ℓ−ϱ.

Even if P{D1 = 1} ⩾ ℓ−ϱ, we can still re-choose a lower ϱ > 0 to satisfy

P{D1 = 1} < ℓ−ϱ. This is one of the two new issues, in contrast to Chapter 2,

that we need to take care of in this section. The other new issue is that {Zn} is no

longer a supermartingale.

Lemma 5.38 (Artificial supermartingale). For any ε > 0, there exist a smaller

ε > 0 and a small δ > 0 such that {Z ε
n ∧ δ} is a supermartingale. Here Z ε

n ∧ δ is a

shorthand for min(Z ε
n, δ).

Proof. It suffices to pick ε and δ such that E [Z ε
1 ∧ δ] ⩽ Z ε

0 ∧ δ for any W .

If Z ε
0 ⩾ δ, there is nothing to prove; thus we may assume that Z ε

0 < δ. Start

from P{D1 = 1} < ℓ−ϱ < 1. Then either qℓεP{D1 = 1} < 1 or we can reselect
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a smaller ε > 0 to make it true. We then choose a small δ > 0 such that qℓε×
P{D1 = 1} + qℓεδP{D1 ⩾ 2} ⩽ 1. Now upper bound the conditional expectation

by handling the two cases:

E [Z ε
1 ∧ δ] ⩽ (qℓZ0)εP{D1 = 1}+ (qℓZ 2

0 )εP{D1 ⩾ 2}

= Z ε
0 (qℓεP{D1 = 1}+ qℓεZ ε

0P{D1 ⩾ 2}) ⩽ Z ε
0 · 1 = Z ε

0 ∧ δ.

This finishes the proof of E [Z ε
1 ∧ δ] ⩽ Z0. By the tree structure of the process,

E [Zn+1 | J1J2 · · · Jn] versus Zn is just E [Z1] vs Z0 with W ← Wn. This completes

the proof of the whole lemma. □

Remark: The choice of δ in the lemma implies that qℓεδ is less than (1 −
qℓεP{D1 = 1})/P{D1 ⩾ 2} < 1, or equivalently qℓε ⩽ δ−1. Thus Zn+1 ⩽ qℓZDn+1

n ⩽

δ−1/εZDn+1
n ⩽ ZDn+1−ε

n whenever Z ε
n < δ. In other words, when we look at Z ε

n in

the “safe zone” [0, δ], not only is Z ε
n a supermartingale, but FTPCZ also takes a

simpler form Zn+1 ⩽ ZDn+1−ε
n ⩽ ZDn+1(1−ε)

n that facilitates telescoping.

The main statement of the een13 behavior follows.

Lemma 5.39 (From en23 to een13). Given P{D1 = 1} < ℓ−ϱ and Lemma 5.36,

that is, given

P
{
Zn < e−n2/3}

> 1−H(W )− ℓ−ϱn+o(n),

we have

(5.10) P
{
Zn < exp

(
−en1/3)}

> 1−H(W )− ℓ−ϱn+o(n).

Proof. (Select constants.) Since P{D1 = 1} < ℓ−ϱ, there exists a large λ >

1 such that E [D−λ
1 ] < ℓ−ϱ. Pick a small ε > 0 such that E [D−λ

1 ]8ελ < ℓ−ϱ.

Invoke Lemma 5.38; pick a smaller ε > 0 and a small δ > 0 such that {Z ε
n ∧ δ}

is a supermartingale. According to the proof of Lemma 5.38 (and the remark

underneath), this δ is such that Zn+1 ⩽ ZDn+1−ε whenever Zε
n < δ.

(Define events.) Consider only perfect square n. (If it is not the case, follow

the workaround in Lemma 2.16.) Let E 0
0 be the empty event. For every m =

√
n, 2
√
n, . . . , n − √n, we define five series of events Am, Bm, Cm, Em, and Em

0

inductively as below: Let Am be {Zm < exp(−m2/3)} \ Em−√
n

0 . Let Bm be a

subevent of Am where Z ε
l ⩾ δ for some l ⩾ m. Let Cm a subevent of Am where

(5.11) Dm+1Dm+2 · · ·Dm+
√
n ⩽ 8ε

√
n.
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Let Em be Am \ (Bm ∪Cm). Let Em
0 be Em−√

n
0 ∪ Em. Let am, bm, cm, em, and em0

be the probability measures of the corresponding capital letter events. Moreover,

let gm be 1−H(W )− em0 .

(Bound bm/am from above.) Conditioning on Am, I want to estimate the prob-

ability that Z ε
l ⩾ δ for some l ⩾ m. Recall that {Z ε

l ∧δ} is made a supermartingale.

By Ville’s inequality, P{Z ε
l ⩾ δ for some l ⩾ m | Am} ⩽ Z ε

m/δ < exp(−m2/3ε)/δ.

This is an upper bound on bm/am and will be summoned in inequality (5.12).

(Bound cm/am from above.) I am to estimate how frequently inequality (5.11)

happens. It is the probability of (Dm+1Dm+2 · · ·Dm+
√
n)−λ ⩾ 8−ελ

√
n. This prob-

ability must not exceed E [(Dm+1Dm+2 · · ·Dm+
√
n)−λ]8ελ

√
n = E [D−λ

1 ]
√
n8ελ

√
n =

(E [D−λ
1 ]8ελ)

√
n < ℓ−ϱ

√
n by Markov’s inequality. This is an upper bound on cm/am

and will be summoned in inequality (5.12).

(Bound (gm−√
n − am)+ from above.) By definitions, gm−√

n − am = 1 −
H(W )− (em−√

n
0 + am). The definition of Am forces it to be disjoint from Em−√

n
0 ,

thus em−√
n

0 + am is the probability measure of Em−√
n

0 ∪ Am. This union event

must contain the event {Zm < exp(−m2/3)} by how Am was defined. Recall the

en23 behavior P{Zm < exp(−m2/3)} > 1 − H(W ) − ℓ−ϱm+o(m). Chaining all

inequalities together, we deduce gm−√
n − am < ℓ−ϱm+o(m). Let (gm−√

n − am)+

be max(0, gm−√
n − am) so we can write (gm−√

n − am)+ < ℓ−ϱm+o(m). This upper

bound will be summoned in inequality (5.12).

(Bound en−
√
n

0 from below.) We start rewriting gm with g+
m being max(0, gm):

gm = 1−H(W )− em0 = 1−H(W )− (em−√
n

0 + em)

= 1−H(W )− em−√
n

0 − em = gm−√
n − em

= gm−√
n

(
1− em

am

)
+

em
am

(gm−√
n − am)

⩽ g+
m−√

n

(
1− em

am

)
+

em
am

(gm−√
n − am)+

⩽ g+
m−√

n

(
1− em

am

)
+ (gm−√

n − am)+

⩽ g+
m−√

n

(bm
am

+
cm
am

)
+ (gm−√

n − am)+

< g+
m−√

n

(
e−m2/3ε/δ + ℓ−ϱ

√
n
)

+ ℓ−ϱm+o(m).(5.12)

The first four equalities are by the definitions of gm and Em
0 . The next equality is

by elementary algebra. The next two inequalities are by 0 ⩽ em/am ⩽ 1. The next
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inequality is by the definition of Em. The last inequality summons upper bounds

derived in the last three paragraphs. The last line contains two terms in the big

parentheses; between them, ℓ−ϱ
√
n dominates exp(−m2/3ε)/δ once m is greater

than O(n3/4). Subsequently, we obtain this recurrence relation:gO(n3/4) ⩽ 1,

gm ⩽ 2g+
m−√

n
ℓ−ϱ

√
n + ℓ−ϱm+o(m).

Solve it (cf. the master theorem); we get that gn−√
n < ℓ−ϱn+o(n). By the definition

of gn−√
n, we immediately get en−

√
n

0 > 1−H(W )− ℓ−ϱn+o(n).

(Analyze En−√
n

0 .) We want to estimate Hn when En−√
n

0 happens. To be

precise, for each m =
√
n, 2
√
n, . . . , n−√n, we attempt to bound Zm+

√
n when Em

happens. Fix an m. When Em happens, its superevent Am happens, so we know

that Zm < exp(−m2/3). But Bm does not happen, so Z ε
l < δ for all l ⩾ m. This

implies that Zl+1 ⩽ ZDl+1(1−ε)
l for those l. Telescope; Zm+

√
n is less than or equal

to Zm raised to the power of Dm+1Dm+2 · · ·Dm+
√
n(1 − ε)

√
n. But Cm does not

happen, so the product is greater than 8ε
√
n(1− ε)

√
n = (8 ε

√
1− ε)ε

√
n. The latter

is greater than 2ε
√
n granted that ε < 1/2. Jointly we have Zm+

√
n ⩽ Z 2ε

√
n

m <

exp(−m2/32ε
√
n). Recall that Zl+1 ⩽ qℓZl for all l ⩾ m +

√
n. Then telescope

again; Zn ⩽ qℓ(n−m−√
n)Zm+

√
n < qℓn exp(−m2/32ε

√
n) < exp

(
−en1/3)

provided

that n is sufficiently large. In other words, En−√
n

0 implies Zn < exp
(
−en1/3)

.

(Summary.) Now we may conclude P
{
Zn < exp

(
−en1/3)}

⩾ P(En−√
n

0 ) = en0 >

1−H(W )− ℓ−ϱn+o(n). And hence the proof of the een13 behavior is sound. □

In the next section, I will show the elpin behavior of {Zn}. That will imply the

MDP behavior of polar coding and the latter will specialize to the LDP and CLT

behaviors of polar coding. In contract to this section, where we used P{Dn = 1}
and P{Dn ⩾ 2} to determine the behavior of {Zn}, we will have to use the “full

power” of {Dn} in what follows.

5.11. Elpin Behavior

As the een13 behavior lowers Zm to the order of exp
(
−em1/3)

, we can afford

telescoping Zl+1 ⩽ ZDl+1−ε
l for more l’s without having to worry about Z ε

l ⩾ δ.

So the trade-off between the block error probability (≈ ∑
Zn) and the code rate

(≈ P{Zn < · · · }) amounts to the behavior of the product Dm+1Dm+2 · · ·Dn or,
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as probability theorists may prefer, the behavior of the i.i.d. sum logℓ Dm+1 +

logℓ Dm+2 + · · ·+ logℓ Dn.

As section 5.6 suggests, the limiting behavior of i.i.d. sums is well known. In

particular, I will borrow the LDP result that concerns the limiting behavior of

P{X̄n < x} when x is fixed and n increases. First goes some definitions.

Definition 5.40. The cumulant generating function of logℓ D1 is defined to be the

logarithm of its moment generating function or, more precisely,

K (t) := logℓ(E [Dt
1]) =

1

ln ℓ
ln

ℓ∑
j=1

Dt
1

ℓ
.

Definition 5.41. The Cramér function of logℓ D1 is defined to be the convex

conjugate of the cumulant generating function or, more precisely,

L(s) := sup
t⩽0

st− K (t).

L(s) controls the limiting law of the sum of logℓ Dl or the product of Dl. An

example (which we have seen) is that, when Dl ∈ {1, 2}, its logarithm is just a coin

toss, and 1− h2 controls the limiting law.

Theorem 5.42 (Cramér’s theorem). For any n,

P{D1D2 · · ·Dn ⩽ ℓsn} ⩽ ℓ−nL(s).

Furthermore, L(s) is the greatest value satisfying that, i.e.,

lim
n→∞

1

n
logℓ P{D1D2 · · ·Dn < ℓsn} = −L(s).

Proof. What I actually need in the sequel is the upper bound on P. The fact

that L(s) gives the best upper bound is irrelevant to the validity of the theorems

in this chapter, but indicates that the theorems are somewhat optimal. The proof

of the latter is thus omitted; see standard textbooks instead (e.g., [DZ10]).

To prove the upper bound, recall that L(s) is a supremum. This supremum, by

some compactness argument, turns out to be a maximum. Let t be the argument

that maximizes st−K (t). Then D1D2 · · ·Dn ⩽ ℓsn is equivalent to (D1D2 · · ·Dn)t ⩾

ℓstn. Apply Markov’s inequality, the probability that Dt
1D

t
2 · · ·Dt

n ⩾ ℓstn is at most

E [Dt
1D

t
2 · · ·Dt

n]ℓ−stn = (E [Dt
1]ℓ−st)n = ℓ(K(t)−st)n = ℓ−nL(s) □
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Now we define the achievable region in terms of L(s); it ought to be the set of

(π, ρ) pairs such that P{Zn < exp(−ℓπn)} > 1−H(W ) + ℓ−ρn. Consider ϖ being

the mean of logℓ D1. We know that, most of the times, i.i.d. averages of logℓ Dl

concentrate around the mean so we should not expect that π > ϖ. Similarly, we

do not expect that ρ > ϱ. The remaining characterization of (π, ρ) is in terms of

L(s).

Definition 5.43. Let O ⊆ [0, ϖ]× [0, ϱ] be an open region defined by the following

criterion: for any (π, ρ) ∈ O, the ray shooting from (π, ρ) toward the opposite

direction of (0, ϱ) does not intersect the function graph of ρ = L(π).

Note that the criterion is equivalent to, geometrically, that (π, ρ) lies to the left

of the convex envelope of (0, ϱ) and L(s). So is it equivalent to

(5.13) L
( πn

n−m

)
>

ρn− ϱm

n−m

for all 0 < n < m. The main theorem of this chapter can now be stated and proved.

Theorem 5.44 (From een13 to elpin). Fix a pair (π, ρ) ∈ O. Given Lemma 5.39,

that is, given

P
{
Tn < exp

(
−en1/3)}

> H(W )− ℓ−ϱn+o(n),

we have

P
{
Tn < e−ℓπn}

> H(W )− ℓ−ρn+o(n).

Proof. (Select constants.) Since inequality (5.13) holds, there exists a small

constant ε > 0 such that

(5.14) L
( πn

n−m
+ 2ε

)
>

ρn− ϱm

n−m

by the compactness argument. Pass this ε to Lemma 5.38: There exists a smaller

ε > 0 and a small δ > 0 such that Z ε
n∧δ is a supermartingale and Zn+1 ⩽ ZDn+1(1−ε)

n

whenever Zn < δ.

(Define events.) Let n be a perfect square. (If it is not the case, see how

Theorem 2.18 bypasses.) Let A0
0 and E 0

0 be the empty event. For every m =
√
n, 2
√
n, . . . , n − √n, we define six series of events Am, Am

0 , Bm, Cm, Em, and

Em
0 inductively as follows: Let Am be

{
Zm < exp(−em1/3

)
}
\ Am−√

n
0 . Let Am

0 be
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Am−√
n

0 ∪ Am. Let Bm be a subevent of Am where Z ε
l ⩾ δ for some l ⩾ m. Let Cm

a subevent of Am where

(5.15) Dm+1Dm+2 · · ·Dn ⩽ ℓπn+2ε(n−m).

Let Em be Am\(Bm∪Cm). Let Em
0 be Em−√

n
0 ∪Em. Let am, am0 , bm, cm, em, and em0

be the probability measures of the corresponding capital letter events. Moreover,

let fm be 1−H(W )− am0 and let gm be 1−H(W )− em0 .

(Bound bm/am from above.) Conditioning on Am, we want to estimate the

probability that Zl ⩾ δ for some l ⩾ m. Recall that Zl is a supermartingale. Hence

by Ville’s inequality, P{Z ε
l ⩾ δ for some l ⩾ m | Am} ⩽ Z ε

m/δ < exp
(
−em1/3

ε
)
/δ.

This is an upper bound on bm/am and will be summoned in inequality (5.16).

(Bound cm/am from above.) We want to estimate how often inequality (5.15)

happens. This is equivalent to asking how often do n −m fair coin tosses end up

with πn+ 2ε(n−m) heads. By Theorem 5.42, this probability is less than ℓ to the

power of

−(n−m)L
( πn

n−m
+ 2ε

)
.

By inequality (5.14), this exponent is less than ϱm − ρn. Thus, the probability

is less than ℓϱm−ρn. This is an upper bound on cm/am and will be summoned in

inequality (5.16).

(Bound f +
m from above.) The definition of fm reads 1−H(W )−am0 . Here am0 is

the probability measure of Am
0 , and Am

0 is a superevent of Am by how the former is

defined. Event Am
0 must contain

{
Zm < exp

(
−em1/3)}

by how Am was defined. By

the een13 behavior, P
{
Zm < exp

(
−em1/3)}

> 1−H(W )−ℓ−ϱm+o(m). Chaining all

inequalities together, we infer that fm < ℓ−ϱm+o(m). Let f +
m be max(0, fm) so we can

write f +
m < ℓ−ϱm+o(m). This upper bound will be summoned in inequality (5.16).

(Bound en−
√
n

0 from below.) We start rewriting gm − f +
m with (fm−√

n − am)+

being max(0, fm−√
n − am):

gm − f +
m = 1−H(W )− em0 − (1−H(W )− am0 )+

= 1−H(W )− em−√
n

0 − em − (1−H(W )− am−√
n

0 − am)+

= gm−√
n − em − (fm−√

n − am)+

⩽ gm−√
n − em −

em
am

(fm−√
n − am)+

⩽ gm−√
n − em −

em
am

(f +
m−√

n
− am)
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= gm−√
n − f +

m−√
n

+ f +
m−√

n

(
1− em

am

)
⩽ gm−√

n − f +
m−√

n
+ f +

m−√
n

(bm
am

+
cm
am

)
< gm−√

n − f +
m−√

n
+ ℓ−ϱ(m−√

n)+o(m−√
n)
(

exp
(
−em1/3

ε
)
/δ + ℓϱm−ρn

)
.(5.16)

The first three equalities are by the definitions of gm and fm. The next inequality

is by 0 ⩽ em/am ⩽ 1. The next inequality is by max(0, f − a) = max(a, f) − a ⩾

max(0, f)− a. The next equality is by elementary algebra. The next inequality is

by the definition of Em. The last inequality summons upper bounds derived in the

last three paragraphs. Now the last line contains two terms in the big parentheses;

between them, ℓϱm−ρn dominates exp
(
−em1/3

ε
)
/δ once n→∞. Subsequently, we

obtain this recurrence relationg0 − f +
0 = 0;

gm − f +
m ⩽ gm−√

n − f +
m−√

n
+ 2ℓ−ρn+o(n).

Solve it (cf. the Cesàro summation); we get that gn−√
n− f +

n−√
n
< ℓ−ρn+o(n). Once

again we summon f +
n−√

n
< ℓ−ϱ(n−√

n)+o(n−√
n) < ℓ−ϱn+o(n); therefore gn−√

n <

ℓ−ρn+o(n). Based on the definition of gn−√
n we immediately get en−

√
n

0 > 1 −
H(W )− ℓ−ρn+o(n).

(Analyze En−√
n

0 .) We want to estimate Zn when En−√
n

0 happens. To be

precise, for each m =
√
n, 2
√
n, . . . , n − √n, we attempt to bound Zn when Em

happens . Fix an m. When Em happens, its superevent Am happens, so we know

that Zm < exp
(
−em1/3)

. But Bm does not happen, so Zl < δ for all l ⩾ m. This

implies Zl+1 ⩽ ZDl+1(1−ε)
l for those l. Telescope; Zn is less than or equal to Zm

raised to the power of Dm+1Dm+2 · · ·Dn(1 − ε)n−m. But Cm does not happen,

so the product is greater than ℓπn+2ε(n−m)(1 − ε)n−m, which is greater than ℓπn

granted that ε < 1/2. Jointly we have Zn ⩽ Z ℓπn

m < exp
(
−em1/3

ℓπn
)
< exp(−ℓπn).

In other words, En−√
n

0 implies Zn < exp(−ℓπn).

(Summary.) Now we may conclude P{Zn < exp(−ℓπn)} ⩾ P(En−√
n

0 ) = en0 >

1−H(W )− ℓ−ρn+o(n). And hence the proof of the elpin behavior is sound. □

5.12. Consequences, Dual Picture Included

That Zn can be proved low implies that we have good codes over symmetric

channels of prime-power input alphabet. To code over the most general DMCs, we
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need to talk about {Sn}—it is the process of Smax(Wn) that controls the behavior

of Wn when it becomes noisy.

Smax (and {Sn}) really is the dual counterpart of Zmxd (and {Zn}). The Hölder

tolls we pay to translate between H and Zmxd is the same amount as the tolls we pay

to translate between 1−H and Smax. Plus, FTPCZ (Theorem 5.19) and FTPCS

(Theorem 5.20) state almost the same phenomenon in terms of Zmxd and Smax,

respectively. By the process nonsense that was once used to show Theorem 3.13

out of Theorem 2.18, Theorem 5.44 assumes an S-version.

Theorem 5.45 (From eigen to elpin). Fix a pair (π, ρ) lying to the left of the

convex envelope of (0, ϱ) and the Cramér function of logℓ D
(J1)
S . Given the premise

of Lemma 5.36, that is, given

sup
0<H(W )<1

h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (ℓ)))

ℓh(H(W ))
= ℓ−ϱn,

then

P
{
Sn < e−ℓπn}

> H(W )− ℓ−ρn+o(n).

This theorem together with Theorem 5.44 implies good codes over all DMCs.

This is because the block error probability is bounded from above by the sum of

small Pe(Wn) and small T (Wn), and they are further bounded by Zn and Sn.

Corollary 5.46 (Good code for DMC). Fix a q-ary DMC. Fix an ergodic G ∈ Fℓ×ℓ
q

with a positive ϱ > 0. Fix a pair (π, ρ) lying to the left of (a) the convex envelope

of (0, ϱ) and the Cramér function of logℓ D
(J1)
Z and (b) the convex envelope of (0, ϱ)

and the Cramér function of logℓ D
(J1)
S . Then polar coding with kernel G enjoys

block error probability exp(−ℓπn) and code rate N−ρ less than the channel capacity.

The same can be stated for lossless and lossy compression. For lossless com-

pression, if the source alphabet X is not a prime power, add dummy symbols till it

is. Then the block error probability is the sum of small Pe(Wn). For lossy compres-

sion, if the palette X in the distortion function dist : X × Y → [0, 1] is not prime

power, add dummy symbols and penalize dummy symbols with distortion 1 (i.e.,

dist(x, y) = 1 if x is dummy). Then the excess of distortion is the average of small

T (Wn).
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Corollary 5.47 (Good code for lossless compression). Fix a q-ary source X and

side information Y . Fix an ergodic G ∈ Fℓ×ℓ
q (whose ϱ is guaranteed to be positive).

Fix a pair (π, ρ) lying to the left of the convex envelope of (0, ϱ) and the Cramér

function of logℓ D
(J1)
Z . Then polar coding with kernel G enjoys block error probability

exp(−ℓπn) and code rate N−ρ plus the conditional entropy.

Corollary 5.48 (Good code for lossy compression). Fix a random source Y ∈ Y
and a distortion function dist : Fq × Y → [0, 1]. Fix an ergodic G ∈ Fℓ×ℓ

q (whose

ϱ is guaranteed to be positive). Fix a pair (π, ρ) lying to the left of the convex

envelope of (0, ϱ) and the Cramér function of logℓ D
(J1)
S . Then polar coding with

kernel G enjoys excess of distortion exp(−ℓπn) and code rate N−ρ plus the test

channel capacity.

There are questions to be answered. One, how can we predict the best ϱ for

a specific G? Two, what is the best ϱ among all G? Can we achieve the optimal

exponent ϱ = 1/2? Three, Can we reduce the complexity? The first question is

open. The next chapter answers the second question. The chapter after answers

the third question.
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CHAPTER 6

Random dynamic Kerneling

S
ignificant is the fact that random coding achieves capacity. Researchers have

been using random coding to prove the first achievability bounds for various

coding scenarios. This evinces that random coding is the very reason why capacity,

or capacity region when there are more than two users, is what it is. This is the

first moment of coding theory. In addition, random coding achieves capacity at an

unbeatable pace—the block error probability decays exponentially fast in the block

length, and the block length grows inverse-quadratically in the gap to capacity.

This sets up a holy grail that is left to code designers to chase after, which is the

second-moment paradigm of coding theory.

The question is simple, Can polar coding touch the second-moment paradigm,

i.e., achieve capacity at a pace that is comparable to random coding?

This chapter gives an affirmative answer. But it requires one to rethink the

polarizing kernel from the bottom up. As mentioned in Chapter 5, a general kernel

G can be implemented as an EU–DU pair, and some copies of EU–DU pairs will

wrap around the parent channels to synthesize the child channels. In doing so, not

all channels need to be wrapped. As demonstrated in Chapter 4, A channel (a

pair of pins) is left naked if an algorithm decides that the channel is sufficiently

polarized and not worth more EU–DU pairs. The contribution made in Chapter 4

is that this reduces complexity. Stretching this idea a bit, we see that a channel (a

pair of pins) can also be wrapped by an EU–DU pair that corresponds to a different

kernel [YB15]. Once we accept the idea that G can vary on a channel-by-channel

basis, the problem becomes how to find the best G that fits a given channel.

So the simple question becomes, Can we find a good kernel for each and every

channel to help polar coding touch the edge of the second-moment paradigm, i.e.,

to achieve capacity at a nearly-optimal pace?

Now we rethink what exactly is needed here. Do we need an algorithm to

generate, for each and every channel, a kernel plus a certificate that this particular
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kernel is good at polarizing? Or, only do we need to prove that, for each and

every channel, there exists at least one kernel that polarizes decently. The latter

is considerably easier than the former because we do not specify which kernel is

good—only that it exists. And we know how this could be done: random coding.

Use a random matrix G to polarize a channel and show that, on average, the channel

is polarized to a satisfactory extent. Then we are done; the rest is the pigeonhole

principle.

I call selecting a kernel for each channel dynamic kerneling, This chapter in its

entirety is a quantization of random dynamic kerneling.

6.1. The Holy Grail

Fix a DMC W and a capacity-achieving input distribution Q. The following

optimality bound is borrowed.

Theorem 6.1 (Optimal codes). [AW14, Theorem 2], [PV10, Theorem 6]. Fix

constants π, ρ > 0 such that π + 2ρ > 1. Assume V > 0, that is, assume

V := Var
[
ln

W (X | Y )

Q(X)

]
> 0.

(Remark: This is an easy assumption to meet; it mostly excludes trivial channels

such as those with H = 0, 1.) Then no block code assumes Pe < exp(−ℓπn) and

R > C −N−ρ except for sufficiently small N .

Fix exponents π, ρ > 0 such that π + 2ρ < 1. I am to construct a series of

codes with error probability exp(−Nπ) and code rate N−ρ less than the channel

capacity. The construction, based on polar coding, will enjoy encoding and decoding

complexity O(N logN).

6.2. Why Dynamic Kernels

Readers may prefer numerical evidence for why dynamic kerneling is superior.

Since there is essentially one matrix of 2×2 size, I will take 3×3 for demonstration.

Over F2, there are essentially two matrices of 3× 3 size:

GYe :=


1

0 1

1 1 1

 GBarg :=


1

1 1

1 0 1
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(0, 1− b)

(1, 1)(0, 1)

(b, 1− b)

(0, 1/4.938)

(0.167, 0.064)

(1/3, 0)
(0.368, 0.014)

(2b/3, 0)

Figure 6.1. The two regions and Cramér functions of GYe over

BECs. Here b = log3 2. The curve passing (0, 1−b)–(0.167, 0.064)–

(1/3, 0)–(1, 1) is the Cramér function of the uniform distribution

on {0, 0, 1} and also the KL divergence of p+(1−p) w.r.t. 1/3+2/3.

The curve passing (0, 1/4.938)–(0, 1 − b)–(0.167, 0.064)–(1/3, 0) is

the boundary of realizable (π, ρ)-pairs in the estimate of Zn. The

curve passing (0, 1)–(0.368, 0.014)–(2b/3, 0)–(b, 1−b) is the Cramér

function of the uniform distribution on {b, b, 0} and also the KL

divergence of p/b + (1 − p/b) w.r.t. 2/3 + 1/3. The curve passing

(0, 1/4.938)–(0.368, 0.014)–(2b/3, 0)–(1, 0) is the boundary of real-

izable (π, ρ)-pairs in the estimate of Sn. For GBarg over BECs,

swap the two curves.

GYe has coset distances {1, 1, 3} and dual coset distances {1, 2, 2}. And GBarg is

its dual: GBarg has coset distances {1, 2, 2} and dual coset distance {1, 1, 3}. Both

GYe and GBarg have ϱ = 1/4.938 over BECs. Their regions of realizable (π, ρ)-pairs

over BECs are plotted in Figure 6.1.

Now consider this variant of polar coding: When H(W ) ⩽ 1/2, wrap the

channel with GBarg; when H(W ) > 1/2, wrap the channel with GYe. Let G denote

an amoebic kernel that becomes GBarg when it sees a reliable channel and becomes

GYe when it sees a noisy one. Then two things change. Firstly, the estimate of ϱ
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(0, 1)

(b, 1− b)

(0, 1/4.183)

(0.357, 0.020)
(2b/3, 0)

(1, 1)

Figure 6.2. The region and Cramér function of G, the compound

strategy, over BECs. The old regions and Cramér functions are in

gray for the ease of comparison.

rises from 1/4.938 to 1/4.183. This is because GBarg is better at polarizing reliable

channels and GYe is better at polarizing noisy ones. This is the division of labor.

Secondly, the coset distances are now {1, 2, 2} on both reliable and noisy ends.

Comparing to {1, 1, 3}, which reward you more (3) with a lower probability (1/3),

distances {1, 2, 2} reward you less (2) but with a higher probability (2/3). And the

random variable that rewards you less, but steadily, is preferred. Now G’s region

of (π, ρ)-pairs becomes Figure 6.2.

For if we allow larger matrices, then it is not hard to imagine that the space

of DMCs is partitioned into several territories, each is “ruled by” the kernel that

is best at polarizing the channels living within. These kernels will be collectively

called G, and then we can talk about the (π, ρ)-pairs of G.

6.3. Why Random Kernels

Before the construction begins, let me elaborate on why random matrices are

preferred. As the last chapter paved the way to the determination of the MDP

region O of a kernel, we know G should meet the following three requirements:

• LDP requirement: The coset distances of G should be large. Namely,

the matrix that G becomes when it sees reliable channels should have
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large coset distances. In particular, the geometric mean of D
(j)
Z should be

ℓ− o(ℓ).

• Dual LDP requirement: The geometric mean of logℓ D
(j)
S should be ℓ−o(ℓ).

Namely, the matrix that G becomes when it sees noisy channels should

have large coset distances.

• CLT requirement: The performance of G measured by the eigenvalue ℓ−ϱ

should be good. Namely, ϱ = 1/2− o(1) as ℓ→∞.

It is not easy to meet any of the requirements, let alone all of them at once. As a

comparison, classical coding theory usually concerns how to construct a rectangular

matrix (a code) with high Hamming weights. Less frequently it concerns finding

nested matrices (aka. a flag of codes) with high Hamming weights. In this viewpoint,

the LDP requirement is equivalent to finding a maximal chain of nested matrices (a

full flag of codes) with high Hamming weight. The CLT requirement, on the other

hand, does not seem to have classical counterpart.

Polarizing W is just side of the story. On the other side, we have to polarize

Q, the input distribution seen as a channel, for asymmetric channels and lossy

compression. Thus we have four requirements to meet—LDP, dual LDP, W ’s CLT,

and Q’s CLT.

Random coding is the perfect remedy for this because it measures the density of

the “good objects” that meet various conditions. Take the LDP requirement as an

example. If G is a random matrix that is drawn uniformly, then any rectangular sub-

matrix is uniformly random. By classical coding theory, we know how to compute

the Hamming weights of a random rectangular matrix. To be more precise, we

know how to compute the probability that the minimum distance of a random

linear code is at least a certain threshold. We just have to repeat the argument for

all rectangular sub-matrices, and then apply the union bound.

Random matrices have more uses than that. If we draw G from the uniform

ensemble of invertible matrices, then its Hamming distances are still under control.

(In fact, excluding singular matrices avoids low Hamming distances in a helpful

manner, so we are actually doing a favor for the random coding argument.) Now

that the inverse G−1 follows the uniform distribution on invertible matrices, bound-

ing the dual coset distances of G is as easy as bounding the primary coset distances

of G—just multiply the union bound by 2.
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Below goes the actual plan to attack the problem: In section 6.4, I will show

that a random matrix G has sufficient distances, and meet the LDP requirement

(and its dual). In section 6.5, I will attempt to bound the eigenvalue of G; this

bound then comes down to four bounds:

• a bound derived from the LDP requirement via Hölder tolls,

• a bound derived from the dual LDP requirement via Hölder tolls,

• a bound for noisy-channel coding via random linear codes, and

• a bound for wiretap-channel coding via random linear codes.

Section 6.6 prepares some materials for the last two •. In section 6.7, the noisy-

channel coding bound will be proved. In section 6.8, the wiretap-channel coding

bound will be proved.

Notice that the random matrix G is typeset in the blackboard bold font. So

will the related notations (such as P,E) be typeset in the blackboard bold font.

6.4. LDP Data of Random Matrix

This section is dedicated to showing that a random matrix G ∈ Fℓ×ℓ
q drawn

uniformly from the general linear group GL(ℓ, q) has good distances D
(j)
Z anf D

(j)
S .

But before that, What is “good”? Let us consider q = 2 as an example. The

following hand-waving argument is borrowed from [BF02].

To understand the typical behavior of D
(j)
Z when G varies, it is easier if we

compute the average of f
(j)
Z (z) over G, where f

(j)
Z (z) is the weight enumerator

of the coset code {0j−1
1 1ju

ℓ
j+1G : uℓ

j+1 ∈ Fℓ−j
q } ⊆ Fℓ

q. Since G is invertible and

distributed uniformly, 0j−1
1 1ju

ℓ
j+1G is just a random nonzero vector drawn from

Fℓ
q. So every message uℓ

j+1 contributed ((1+z)ℓ−1)/(2ℓ−1) to the average of f
(j)
Z ,

where −1 is to exclude the all-zero vector. Overall, the average of f
(j)
Z (z) over G is

((1 + z)ℓ − 1)/2j . Forget about the −1; the zk coefficient of (1 + z)ℓ/2j is
(
ℓ
k

)
/2j .

By the large deviations theory, [zk]f
(j)
Z =

(
ℓ
k

)
/2j ≈ 2ℓh2(k/ℓ)−j . Roughly speaking,

the coefficient would (very likely) be 0 for a realization of G if the average is less

than 1 (by a lot). So we conclude a rule of thumb: D
(j)
Z > k iff [zk]f

(j)
Z < 1 iff

h2(k/ℓ) < j/ℓ. See Figure 6.3 for an illustration.

Let us not forget that we are to bound the distances with high probability.

Therefore, there is not a clear cut at h2(k/ℓ) < j/ℓ; we have to leave a gap between

h2(k/ℓ) and j/ℓ to facilitate Markov’s inequality. Here, I will use the upper bound
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.0000000000000000000000000000000000000000000000000000000000000001

.0000000000000000000000000000000000000000000000000000000001100000

.0000000000000000000000000000000000000000000000000001000111010000

.0000000000000000000000000000000000000000000000100010111000100000

.0000000000000000000000000000000000000000001100101011000001101000

.0000000000000000000000000000000000000011101001001010110111100000

.0000000000000000000000000000000000110111010000011010001001110000

.0000000000000000000000000000001011000110011100000111000110100000

.0000000000000000000000000001111011011111101000101111000000010100

.0000000000000000000000010010110111100000000000000100011111100000

.0000000000000000000010100100001001010000000000100111000101010000

.0000000000000000010100000011010011111101001010100101111010100000

.0000000000000010001110000010001000000001010000010111001110011000

.0000000000001110010101110000001100011011110011100100110101100000

.0000000001010101000000111101101110010010100100000011100001110000

.0000000111010000101111111100000101100101011110101100111000100000

.0000100100110000110010101100001100010001101111011011001110000010

.0010101100111111111101100110100011001011111101010010111010100000

.1011110111010001100111010000010011010100011110110011000000110000
11.0000101101000001100100100001001111010100000101001010101011100000

1011.1011100000100010110110001100110001010110111010010010101101111000
101010.0110100110100010101011110001010001000110101110011001000100100000

10010000.1001011010101010100110101010110111011001110101011011010010010000
111010001.0011001010101010011101110011101001111010000100111011111101100000

10110000110.1111101000011011110101010101000111011101111111000001000011000100
111111101011.0010001000111011101011100000101001111111010100001101010000100000

10101101111000.0011111111110001101111011011101000110100010010010000100000110000
111000010110011.0000010010011000101010011000001111101111110110011100100101100000

10001010110111001.0010011011000001010110001001011101101010011111010100001010001000
101000101100110110.1000111111010111000001001011001001111110000111001110001010100000

1011010111001100000.0100000100111110000100110000011000011001101001101110100100010000
11000001100001101001.1101010100111001110101011110101111110100100011001010010111100000

110001001000110010110.1111100100011101011110101000011101001000101111011011000011101111
1011111010010111111110.0000001000101001101001111101000000010000111100111100001111000000

10110000100101000101001.0111110001111010010111001001100000011111011010010101010000100000
100111000110011000011101.1001101010101100110111101000100111010001001111100011110101000000

1000010010000001001011100.1101010001001111100101011000010111110111111000100101100110010000
1101011011011111010100100.0101111100110100111100100111100001100001100010101011101011000000

10100110110011110000110101.0001101010001110110101101100100001100001100011010100101001100000
11111000000100110001101001.0011101100110000010100110001110011011111110110001011000001000000

101100001100000011001111100.0101101010111110011101100110111110001011110001111111101100101000
111100010110101101000000111.1000001000101111110110011111011000000011100110101000001011000000

1001111000010010011010101000.0100111100001101111001101001000101100110001111100010010100100000
1100011010000010010010100011.1011110010010100011011101111001000100001001001000101111001000000
1110111100011100111100001011.0000101111100001010101110001100000000101000000110001010001110000

10001010001001110111100111111.1111011011111001000000111110111000111110101011100011100111000000
10011001001010111100010001111.0100001111100111100011110111110100000010101101100000100001100000
10100010111100101010010101110.0011001001110011100111100001100000001101110001110001100101000000
10100110010101111011001110001.1101001110000000101100010110001100111000101110110011111100011100
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Figure 6.3. The binary representations of
(
96
k

)
/264 for k = 0

(top) to k = 48 (bottom). Note how the leading digits depict the

rotation of h2. (Zoom out if it is not clear).

√
ep ⩾ h2(p) shown in Figure 5.2, and will leave a gap by loosening the bound to
√

3p ⩾ h2(p). The formal statement and proof is below.

Theorem 6.2 (Typical LDP behavior). Let z := Zmxd(W ). Fix an ℓ ⩾ 30. Draw

a G ∈ GL(ℓ, q) uniformly at random. Fix a j ∈ [ℓ]. Then, with probability less than

3q−
√
ℓ/13, the following fails:

(6.1) f
(j)
Z (z) ⩽ ℓ(1 + q′z)ℓ−1(q′z)⌈j

2/3ℓ⌉,

where q′ := q − 1. In particular, we have D
(j)
Z ⩾ ⌈j2/3ℓ⌉.

Proof. Divide j into two cases: 1 ⩽ j ⩽
√

3ℓ and
√

3ℓ < j ⩽ ℓ. For j =

1, 2, . . . ,
√

3ℓ, the exponent ⌈j2/3ℓ⌉ is nothing but 1, thus the inequality to be
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proved reads f
(j)
Z (z) ⩽ ℓ(1 + q′z)ℓ−1q′z, coefficient-wisely. The right-hand side

overcounts all nonzero codewords by choosing a position (ℓ), assigning a nonzero

symbol (q′z), and arbitrarily filling in the rest of ℓ−1 blanks ((1+q′z)ℓ−1). On the

left-hand side, f
(j)
Z (z) enumerates only codewords of the form 0j−1

1 1ju
ℓ
j+1G, which

are all nonzero as G is invertible. Hence inequality (6.1) holds for j ⩽
√

3ℓ and

nonnegative z regardless of what kernel G is in effect.

For j = ⌊
√

3ℓ⌋ + 1, ⌊
√

3ℓ⌋ + 2, . . . , ℓ, let d := j2/3ℓ. To make inequality (6.1)

hold, we execute a two-phase procedure to avoid all codewords of weight less than

d and to eliminate kernels with poor overall score. In further detail, we will reject

a kernel G if there exists uℓ
j+1 such that hwt(0j−1

1 1ju
ℓ
j+1G) < d and call it phase I.

Afterwards, among surviving kernels with only heavy (high weight) codewords, we

will reject a kernel if its overall score f
(j)
Z (z) is too low and call it phase II. The

failing probability 3q−
√
ℓ/13 is the price we pay for rejecting. Up to this point, two

things remain to be analyzed: how much probability we pay for rejecting light (low

weight) codewords in phase I (answer: q−
√
ℓ/13), and what is the Markov cutoff

that honors inequality (6.1) in phase II (answer: 2q−
√
ℓ/13).

Phase I analysis is as follows: Fix uℓ
j+1 and vary G ∈ GL(ℓ, q); the codeword

Xℓ
1 := 0j−1

1 1ju
ℓ
j+1G is a nonzero vector distributed uniformly on Fℓ

q \ {0ℓ1}. This

distribution is almost identical to the uniform distribution on Fℓ
q. Assume Xℓ

1

follows the latter; this makes Xℓ
1 lighter, which is compatible with the direction of

the inequalities we want. Then the probability that Xℓ
1 has weight less than d is

the probability that ℓ Bernoulli trials—each Xj is “zero” with probability 1/q and

“nonzero” with probability q′/q—result in less than d “nonzero”s. By the large

deviations theory [DZ10, Exercise 2.2.23(b)], hwt(Xℓ
1) < d holds with probability

less than

exp
(
−ℓD

(d
ℓ

∥∥∥ 1

2

))
= 2−ℓ(1−h2(d/ℓ))

for the q = 2 case, where D is the Kullback–Leibler divergence. For general q,

similarly, hwt(Xℓ
1) < d holds with probability less than

exp
(
−ℓD

(d
ℓ

∥∥∥ 1− 1

q

))
⩽ q−ℓ(1−h2(d/ℓ)).

It is less than q−ℓ(1−h2(d/ℓ)) by the comparison made in Figure 6.4 (meaning that

q = 2 is the most difficult case). Now we obtain h2(d/ℓ) <
√
ed/ℓ =

√
ej2/3ℓ2 =

(
√
e/3)j/ℓ < 0.952j/ℓ. Therefore, the single-word rejecting probability is less than
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q−ℓ(1−h2(d/ℓ)) < q−ℓ+0.952j . Take into account that there are qℓ−j codewords, one

for each uℓ
j+1. The union bound yields qℓ−jq−ℓ+0.952j = q−0.048j < q−0.048

√
3ℓ <

q−
√
ℓ/13. Therefore, the total rejecting probability is q−

√
ℓ/13. Phase I ends here.

Phase II analysis is as follows: After we reject some G in phase I, some code-

words will disappear; particularly, this includes all light codewords. Therefore, the

expectation of f
(j)
Z (z) is bounded by the weight enumerator of all heavy codewords

rescaled by the number of codewords. In detail, start from

E[f
(j)
Z (z) | G survives phase I] = E[f

(j)
Z (z) · I{G survives}]/P{G survives}

⩽ E[f
(j)
Z (z) · I{G survives}]/(1− q−

√
ℓ/13).(6.2)

I is the indicator function. In the denominator, 1− q−
√
ℓ/13 > 1/4 as ℓ ⩾ 30. Put

that aside and redefine d := ⌈j2/3ℓ⌉. The expected value part is bounded from

above by

E[f
(j)
Z (z) · I{G survives}] = E

[∑
uℓ
j+1

zhwt(0j−1
1 1ju

ℓ
j+1G) · I{G survives}

]
⩽ E

[∑
uℓ
j+1

zhwt(0j−1
1 1ju

ℓ
j+1G) · I{hwt(0j−1

1 1ju
ℓ
j+1G) ⩾ d}

]
=

∑
uℓ
j+1

E[zhwt(0j−1
1 1ju

ℓ
j+1G) · I{hwt(0j−1

1 1ju
ℓ
j+1G) ⩾ d}]

⩽ qℓ−jE[zhwt(Xℓ
1) · I{hwt(Xℓ

1) ⩾ d}] = qℓ−jq−ℓ
∑
xℓ
1

zhwt(xℓ
1) · I{hwt(xℓ

1) ⩾ d}

= q−j
∑
w⩾d

( ℓ
w

)
(q′z)w ⩽ q−j

∑
w⩾d

(ℓ
d

)( ℓ−d
w−d

)
(q′z)w

= q−j
(ℓ
d

) ∑
w⩾d

( ℓ−d
w−d

)
(q′z)w−d(q′z)d = q−j

(ℓ
d

)
(1 + q′z)ℓ−d(q′z)d

(overestimate the scalar q−j
(ℓ
d

)
)

⩽ (q−
√
ℓ/13ℓ/2)(1 + q′z)ℓ−d(q′z)d.

The first equality expands the definition. The next inequality replaces G surviv-

ing phase I by a weaker condition. The next equality swaps E and
∑

. The next

inequality replaces the ensemble of 0j−1
1 1ju

ℓ
j+1G by a uniform Xℓ

1 ∈ Fℓ
q. The next

equality expands the definition of the expectation over Xℓ
1. The next equality

counts codewords. The next inequality selects w positions by first selecting d and

then selecting w − d. The next two equalities factor and apply the binomial theo-

rem. The rest is by a series of inequalities that overestimate the scalar: q−j
(
ℓ
d

)
=
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1

0
0 1

q = 2

√
ep

q = 3

q = 4

q = 5

q = 7

p

Figure 6.4. One minus the Kullback–Leibler divergences 1 −
D(p ∥ 1− 1/q)/ ln(q) for q = 2, 3, 5, 7 and an upper bound of

√
ep.

q−j
(

ℓ
⌈j2/3ℓ⌉

)
< q−j

(
ℓ

j2/3ℓ

)
ℓ/2 < q−j2ℓh2(j

2/3ℓ2)ℓ/2 ⩽ q−j+ℓh2(j
2/3ℓ2)ℓ/2. Similar to

the end of phase I, the exponent part is −j + ℓh2(j2/3ℓ2) < −j + ℓ
√

ej2/3ℓ2 =

−j+j
√

e/3 < −0.048j < −0.048
√

3ℓ < −
√
ℓ/13. Hence the scalar part is less than

q−
√
ℓ/13ℓ/2. Put 1− q−

√
ℓ/13 > 1/4 back to the denominator as in inequality (6.2);

E[f
(j)
Z (z) | G survives phase I] has an upper bound of

2q−
√
ℓ/13ℓ(1 + q′z)ℓ−d(q′z)d.

By Markov’s inequality, inequality (6.1) holds with probability 1 − 2q−
√
ℓ/13, i.e.,

the rejecting probability is 2q−
√
ℓ/13. Phase II ends here.

The sum of the two rejecting probabilities is 3q−
√
ℓ/13 as claimed in the theorem

statement, hence settles the proof of Theorem 6.2. □

The bound I just proved,

((6.1)’s copy) f
(j)
Z (z) ⩽ ℓ(1 + q′z)ℓ−1(q′z)⌈j

2/3ℓ⌉,

implies its dual siblings because G−1 is uniform on GL(ℓ, q).
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Corollary 6.3. Let s := Smax(W ). Then, with probability 1 − 3q−
√
ℓ/13, the fol-

lowing holds for each j ∈ [ℓ]:

(6.3) f
(ℓ−j+1)
S (s) ⩽ ℓ(1 + q′z)ℓ−1(q′s)⌈j

2/3ℓ⌉.

Together, we have that with failing probability at most 6ℓq−
√
ℓ/13, both inequal-

ities (6.1) and (6.3) hold for all j ∈ [ℓ]. In particular, we have that D
(j)
Z ⩾ ⌈j2/3ℓ⌉

and D
(ℓ−j+1)
Z ⩾ ⌈j2/3ℓ⌉.

Does the preceding result allow the possibility that π → 1? That is to say,

Does inequality (6.1) imply that the average of logℓ D
(j)
Z is 1−o(1) as ℓ→∞? The

answer is

1

ℓ

ℓ∑
j=1

logℓ D
(j)
Z ⩾

1

ℓ

ℓ∑
j=

√
3ℓ

logℓ

j2

3ℓ
≈ 2

ℓ ln ℓ

∫ ℓ

√
3ℓ

ln j dj − logℓ 3ℓ ≈ 1− 3.1

ln ℓ
−
√

3√
ℓ
.

Now readers can see why I insist on loosening h2 to the square root—I do not want

to integrate ln(h−1
2 (p)).

The next section estimates the eigenvalue, ℓ−ϱ, of random kernels.

6.5. CLT Data of Random Matrix

This section is devoted to proving the eigen behavior of random kernels. To that

end, we first need a concave eigenfunction h : [0, 1] → [0, 1]. Let α := ln(ln ℓ)/ ln ℓ

and define

h(z) =: min(z, 1− z)α.

From our experience in Lemma 5.31, the eigenvalue for reliable channels is a supre-

mum taken over an open condition 0 < H(W ) < δ, and hence requires explicit

bounds coming from FTPCs and Hölder tolls. The next lemma does that and

shows that h has a good eigenvalue if H(W ) < ℓ−2.

Lemma 6.4 (Typical CLT—reliable case). Let ℓ ⩾ max(3q, e4, q5). Assume that

0 < H(W ) < ℓ−2 and that G ∈ Fℓ×ℓ
q satisfies inequality (6.1), then

(6.4)
h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (ℓ)))

ℓh(H(W ))
< 2ℓ−1/2+3α.

Proof. In the proof of Lemma 5.31, we classify h(H(W (j))) into two cases—

those with coset distance treated as 1 and those with nontrivial (⩾ 5) coset distance.

Now that we have a spectrum of coset distances (⌈j2/3ℓ⌉), there will be as many

cases as there are coset distances.
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Consider first j ⩽ k := ⌊ℓ1/2+5α/2⌋. This is the case when H1 goes up but how

far it can go is limited by FTPCH (Theorem 5.18). More precisely,

h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (k))) ⩽ kh
(H(W (1)) + · · ·+ H(W (k))

k

)
⩽ kh

(ℓH(W )

k

)
⩽ kℓαh(H(W ))k−α ⩽ ℓα(ℓ1/2+5α/2)1−αh(H(W ))

⩽ ℓα+1/2+5α/2−α/2−5α2/2h(H(W )) ⩽ ℓ1/2+3αh(H(W )).

That is to say, the terms h(H(W (j))) with j ⩽ k := ⌊ℓ1/2+5α/2⌋ contribute ℓ1/2+3α

to the right-hand side of inequality (6.4). We now have another ℓ1/2+3α to spare

for larger j.

Consider next j ⩾ k := ⌈ℓ1/2+5α/2⌉. This is the case where we can invoke

FTPCZ (Theorem 5.19) to show that Zmxd(W (j)) is significantly smaller than

Zmxd(W ). So we just sandwich FTPCZ by Hölder tolls to translate it into control

on H. In greater detail, with z := Zmxd(W ),

h(H(W (k))) + H(H(W (k+1))) + · · ·+ h(H(W (ℓ))) ⩽ ℓmax
j⩾k

H(W (j))α

⩽ ℓmax
j⩾k

q3αZmxd(W (j))α/2 ⩽ ℓq3α max
j⩾k

f
(j)
Z (z)α/2

⩽ ℓq3α max
j⩾k

(
ℓ(1 + (q − 1)z)ℓ−1((q − 1)z)⌈j

2/3ℓ⌉)α/2
⩽ ℓq3α max

j⩾k
ℓα/2eqzℓα/2(qz)j

2α/6ℓ ⩽ ℓq3αℓα/2eqzℓα/2(qz)k
2α/6ℓ

⩽ ℓq3αℓα/2eqzℓα/2(qz)ln(ℓ)
5α/6 ⩽ ℓq3αℓα/2eq

4α/2(qz)ln(ℓ)
5α/6

⩽ ℓq3αℓα/2eq
4α/2(q8H(W ))ln(ℓ)

5α/12.(6.5)

Here, the first inequality uses the largest H(W (j)) to bound the rest. The next

inequality pays the Hölder toll. The next inequality applies FTPCZ. The next

inequality applies the assumption that inequality (6.1) holds. The next inequality

simplifies q − 1 and ℓ − 1 and the ceiling function. The next inequality knows

that the maximum happens at j = k. The next inequality uses k2/ℓ = ℓ1−5α/ℓ =

ℓ5 ln(ln ℓ)/ ln ℓ = e5 ln(ln ℓ) = ln(ℓ)5. The next inequality pays the Hölder toll for the

return trip to simplify z ⩽ q3
√

H(W ) ⩽ q3
√

H(W ) ⩽ q3/ℓ in the exponent. The

next inequality pays the Hölder toll for the other z in the base.

We are half way to the goal. To show that formula (6.5) ⩽ ℓ1/2+3αh(H(W )),

raise them to the power of 12/α and take the quotient:(
ℓq3αℓα/2eq

4α/2(q8H(W ))ln(ℓ)
5α/12

)12/α ÷ (
ℓ1/2+3αh(H(W ))

)12/α
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= ℓ12/αq36ℓ6e6q
4

(q8H(W ))ln(ℓ)
5

ℓ−6/α−36H(W )−12

= e6q
4

ℓ6 ln ℓ−30H(W )ln(ℓ)
5−12q8 ln(ℓ)5+36 < e6q

4

ℓ6 ln ℓ−30ℓ−2 ln(ℓ)5+24q8 ln(ℓ)5+36

< e6q
4

ℓ6 ln ℓ−2 ln(ℓ)5q8 ln(ℓ)5+36 = e6q
4

ℓ6 ln ℓ−0.4 ln(ℓ)5ℓ−1.6 ln(ℓ)5q8 ln(ℓ)5+36

⩽ e6q
4

ℓ6 ln ℓ−0.4 ln(ℓ)5q−8 ln(ℓ)5q8 ln(ℓ)5+36 = e6q
4

ℓ6 ln ℓ−0.4 ln(ℓ)5q36

= e6q
4

ℓ−0.3 ln(ℓ)5ℓ6 ln ℓ−0.1 ln(ℓ)5q36 < e6q
4

e−0.3 ln(41)2(q ln 3)4ℓ6 ln ℓ−0.1 ln(ℓ)5q36

< e6q
4

e−6.02q4ℓ6 ln ℓ−0.1 ln(ℓ)5q36 < ℓ6 ln ℓ−0.1 ln(ℓ)5q36

= ℓ6 ln ℓ−ln(ℓ)5/15ℓ− ln(ℓ)5/30q36 = ℓ6 ln ℓ−ln(ℓ)5/15q−5 ln(19)5/30q36

< ℓ6 ln ℓ−ln(ℓ)5/15q−36.8q36 < ℓ6 ln ℓ−ln(ℓ)5/15 ⩽ ℓ6 ln ℓ−ln(22)4 ln(ℓ)/15

< ℓ6 ln ℓ−6.08 < ℓ0 ⩽ 1.

The inequality involving 1.6 uses ℓ ⩾ q5. The inequality involving 0.3 uses ℓ ⩾

max(41, 3q). The inequality involving /30 uses ℓ ⩾ max(19, q5). The inequality

involving /15 uses ℓ ⩾ 22. I have just showed that formula (6.5)/ℓ−1/2+3αh(H0) is

less than 1, with and hence without the power of 12/α.

To summarize, we saw that h(H(W (k)))+H(H(W (k+1)))+ · · ·+h(H(W (ℓ))) ⩽

formula (6.5) ⩽ ℓ−1/2+3αh(H0). Hence the summands h(H(W (j))) with j ⩾ k :=

⌈ℓ1/2+5α/2⌉ contribute ℓ1/2+3α to the right-hand side of inequality (6.4). Both small

j case and large j case together contribute 2ℓ1/2+3α, as desired. This is the end of

Lemma 6.4. □

The following is automatic by duality given Lemma 6.4.

Lemma 6.5 (Typical CLT—noisy case). Assume 1 − ℓ−2 < H(W ) < 1 and that

G ∈ Fℓ×ℓ
q satisfies inequality (6.3). Then

ℓh(H(W (1))) + ℓh(H(W (2))) + · · ·+ ℓh(H(W (ℓ)))

ℓh(H(W ))
< 2ℓ−1/2+3α.

We are left with the case when ℓ−2 < H(W ) < 1− ℓ−2. In this zone, neither of

FTPCZ and FTPCS can help because the Hölder tolls do not yield any meaningful

estimate on Zmxd(W ) or Smax(W ) to begin with. The contribution I make here is

to reduce the estimate of H(W (j)), with large j, to noisy-channel coding and to

reduce the large j cases to wiretap-channel coding.

Lemma 6.6 (Typical CLT—mediocre case). Assume ℓ−2 ⩽ H(W ) ⩽ 1− ℓ−2 and

that G ∈ GL(ℓ, q) is drawn uniformly at random. Then, with exceptional probability
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2ℓ− ln(ℓ)/20,

h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (ℓ)))

ℓh(H(W ))
< 4ℓ−1/2+3α.

Proof. The desired inequality is the sum of the following three inequalities:

ℓ∑
j=⌈H(W )ℓ+ℓ1/2+α⌉+1

h(H(W (j))) < ℓ1/2+α,(6.6)

⌈H(W )ℓ+ℓ1/2+α⌉∑
j=⌊H(W )ℓ−ℓ1/2+α⌋+1

h(H(W (j))) < 2ℓ1/2+α,

⌊H(W )ℓ−ℓ1/2+α⌋∑
j=1

h(H(W (j))) < ℓ1/2+α.(6.7)

Here ℓ−2 ⩽ H(W ) ⩽ 1 − ℓ−2 is used to rewrite the denominator h(H(W )) ⩾ ℓ2α.

The middle one is trivial because h ⩽ 2−α. Inequality (6.6) will be proved in

section 6.7. Inequality (6.7) will be proved in section 6.8. □

Let me comment on the heuristic behind those inequalities: To show that

h(H(W (j))) is in general small, we first have to identify at which end each H(W (j))

will be. We learned from the [ 1 0
1 1 ] case that smaller indices usually imply noisier

synthetic channels. So we believe that for j ≪ ℓH(W ), the conditional entropy

H(W (j)) is high, and for j ≫ ℓH(W ), the conditional entropy H(W (j)) is low. We

also believe that there is a ambiguous zone j ≈ H(W (j)) where the conditional

entropy can be anywhere. From the CLT regime of random coding, we believe that

the width of the ambiguous zone should be on the order of
√
ℓ, hence the partition.

Once we have Lemmas 6.4 and 6.5 (proved above) and Lemma 6.6 (part of

whose proof is in the next two sections and no later), we can conclude the eigen

behavior of a random kernel G.

Theorem 6.7 (Typical CLT behavior). Assume W is a q-ary channel. Assume

ℓ ⩾ max(3q, e4, q5). Assume G ∈ GL(ℓ, q) is drawn uniformly at random. Then,

with failing probability at most 2ℓ− ln(ℓ)/20 + 6ℓq−
√
ℓ/13,

h(H(W (1))) + h(H(W (2))) + · · ·+ h(H(W (ℓ)))

ℓh(H(W ))
< 4ℓ−1/2+3α.

This is equivalent to saying that 4ℓ−1/2+3α is the eigenvalue, or ϱ ≈ 1/2− 4α.

This exponent approaches 1/2 as ℓ→∞. Hence we know, at least, that there is a

chance to achieve ρ + 2π → 1. How exactly Theorems 6.2 and 6.7 imply that all

ρ + 2π < 1 are possible will be explained in section 6.9.
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6.6. Symmetrization and Universal Bound

Before the actual proof of inequalities (6.6) and (6.7), There are two more tools

to be developed. First is a reduction borrowed from [MT14] that says, instead of

considering general q-ary channel W , it suffices to consider a symmetric one W̃ . A

convenient consequence is that the uniform input distribution will achieve capacity.

This helps simplify the inequalities further.

Lemma 6.8 (Symmetrization). For any q-ary channel, there is a symmetric q-ary

channel W̃ such that H(W̃ ) = H(W ) and H(W̃ (j)) = H(W (j)) for all j ∈ [ℓ].

Proof. The strategy here is close to what we did in Chapter 3—one can estab-

lish an equivalence relation W ∼= W̃ on channels and show that channel parameters

and channel transformations respect the equivalence relation.

Please see [MT14, Definition 6 and Lemmas 7 and 8] plus the arguments in

between for the formal treatment. □

The second tool, built on top of the first one, is an inequality concerning Gal-

lager’s E0 function. Let us start from the definition.

Definition 6.9. Define Gallager’s E-null function

E0(t) := − ln
∑
y∈Y

(∑
x∈X

Q(x)W (y | x)
1

1+t

)1+t

and its complement

Ē0(t) := ln
∑
y∈Y

(∑
x∈X

W (x, y)
1

1+t

)1+t

.

Ē0 is said to be the complement of E0 as

Ē0(t) = ln
∑
y∈Y

(∑
x∈X

(q−1W (y | x))
1

1+t

)1+t

= t ln q + ln
∑
y∈Y

(∑
x∈X

q−1W (y | x)
1

1+t

)1+t

= t ln q − E0(t).

Or E0(t) + Ē0(t) = t ln q in short. That Q is uniform is used, otherwise a non-

constant cannot penetrate the summations. The E-null function and its complement

are deeply connected to the following family of measures.
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Definition 6.10. For any t ∈ [−2/5, 1], define the t-tilted probability mass function

W t : X × Y → [0, 1] as in [CS07, Definition 1]:

W t(x, y) :=

(∑
ξ∈X W (ξ, y)

1
1+t

)1+t∑
η∈Y

(∑
ξ∈X W (ξ, η)

1
1+t

)1+t ×
W (x, y)

1
1+t∑

ξ∈X W (ξ, y)
1

1+t

When t = 0, the tilted W t(x, y) falls back to its italic origin W (x, y). These

measures can be interpreted as follows: W t behaves like a channel with a dedicated

input distribution. The first fraction in the definition specifies the output distri-

bution W t(y). The second fraction specifies the posterior distribution W t(x | y)

when y is known. As W t is not an actual channel, it is not meaningful to alter the

input distribution and ask for the corresponding output. Like the symmetrization

technique, all that matters is that we can compute the conditional entropies as if

they were real channels. Quantities we are interested in are listed below.

Definition 6.11. Let He be the base-e entropy. Let He(W
t) be He(X

t | Y t)

where (X t,Y t) is a random tuple that obeys W t. Let He(X
t ↾ y) be the entropy

of the posterior distribution of X t given Y t = y; to be specific, He(X
t ↾ y) =∑

x∈XW t(x | y) lnW t(x | y).

Then Ē0 and W t are connected in the following manner—W t is a family of

channels that “lives along the path” Ē0(t).

Lemma 6.12 (Second derivative). [CS07, Formula (13) and (19)] For t ∈ [0, 1],

d

dt
Ē0(t) = Ē0

′
(t) = He(W

t)

and

d2

dt2
Ē0(t) = Ē0

′′
(t) =

d

dt
He(W

t) =
1

1 + t

∑
y∈Y

W t(y)
∑
x∈X

W t(x | y) ln(W t(x | y))2

+
t

1 + t

∑
y∈Y

W t(y)He(X
t ↾ y)2 −He(W

t)2.(6.8)

Since Ē0
′′
(t) and every other term in equation (6.8) is holomorphic in t, the

equation holds in any region that assumes no poles. In particular, −2/5 ⩽ t ⩽ 1 is

such a region. In that region, the next lemma helps bounding the terms in Ē0
′′
(t).

Lemma 6.13 (Second moment). If w1, w2, , . . . , wq are positive numbers that totals

to 1, then ∑
i

wi ln(wi)
2 ⩽

ln(q)2 for q ⩾ 3

0.563 for q = 2

 ⩽ 1.2 ln(q)2.
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Lemma 6.12 (with the holomorphic continuation to t = −2/5) and Lemma 6.13

jointly imply the following universal quadratic bound.

Lemma 6.14 (Universal quadratic bound). [CS07, Theorem 2] Let W be a q-ary

channel. Assume the uniform input distribution. Then Gallager’s E-null function

satisfies

E0(0) = 0,

E′
0(0) = I(W ) ln q,

E′′
0 (t) ⩾ −2 ln(q)2

for all t ∈ [−2/5, 1]. In particular, it satisfies

E0(t) ⩾ I(W )t ln q − t2 ln(q)2.

Proof. With Lemma 6.13,
∑

x∈XW t(x | y)(lnW t(x | y))2 ⩽ 1.2 ln(q)2 can

be stated. Now equation (6.8) becomes

Ē0
′′
(t) ⩽

1

1 + t

∑
y∈Y

W t(y) · 1.2 ln(q)2 +
max(0, t)

1 + t

∑
y∈Y

W t(y) ln(q)2

⩽
1

1 + t
· 1.2 ln(q)2 +

max(0, t)

1 + t
ln(q)2 ⩽ 2 ln(q)2

for all t ∈ [−2/5, 1].

Since E0(t) is a linear function t ln q minus Ē0(t), their first derivatives sum to

ln q while their second derivatives are opposite. That means that E0(t) = E0(0) +

E0(0)′t + E′′
0 (τ)t2/2, for some τ ∈ [−2/5, 1], and therefore ⩾ 0 + I(W )t ln q −

t2 ln(q)2. □

After seeing that it suffices to consider symmetric channels and that E(t) has a

universal quadratic bound, we are now ready to prove inequalities (6.6) and (6.7).

6.7. Noisy-Channel Random Coding

This section and the next take advantage of the universal bound developed

three lines ago and continues proving Theorem 6.7. This section deals with

((6.6)’s copy)

ℓ∑
i=⌈H(W )ℓ+ℓ1/2+α⌉+1

h(H(W (i))) < ℓ−1/2+α

by passing it to an estimate that captures the performance of noisy-channel coding.
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Proof of inequality (6.6). Owing to h’s concavity, the left-hand side of

inequality (6.6) is first simplified into

(6.9)

ℓ∑
i=j+1

h(H(W (k))) ⩽ (ℓ− j)h
( 1

ℓ− j

ℓ∑
i=j+1

H(W (i))
)
,

where j := ⌈H(W )ℓ+ℓ1/2+α⌉ for short. It suffices to prove that the right-hand side

is less than ℓ−1/2+α. But what lies inside the h on the right-hand side is a sum of

H(W (i)), which is equal to, by the chain rule, H(U ℓ
j+1 | U j

1Y
ℓ
1 ). In order to prove

inequality (6.9), I will then show

(6.10) (ℓ− j)h
( 1

ℓ− j
H(U ℓ

j+1 | Y ℓ
1 U

j
1 )
)
< ℓ−1/2+α.

But what is H(U ℓ
j+1 | Y ℓ

1 U
j
1 )? It measures the equivocation at Bob’s end when

U j
1 is known to Bob. In other words, we may as well pretend that

• there is a random rectangular full-rank matrix G′ with ℓ columns and only

k := ℓ− j = ⌊I(W )ℓ− ℓ1/2+α⌋ rows,

• Alice computes and sends Xℓ
1 := U ℓ

j+1G′ to Bob, and

• Bob attempts to decode Û ℓ
j+1 upon receiving Y ℓ

1 using the maximum a

posteriori decoder.

The equivocation is thus, by Fano’s inequality, bounded in terms of the probability

that Bob fails to decode U ℓ
j+1:

H(U ℓ
j+1 | Y ℓ

1 U
j
1 ) ⩽ −Pe lnq Pe − (1− Pe) lnq(1− Pe) + Pe lnq(qk − 1)

⩽ −Pe lnq Pe +
Pe

ln q
+ Pe = Pe ·

(1− lnPe

ln q
+ k

)
.(6.11)

Here Pe is the probability that Bob fails to decode, Û ℓ
j+1 ̸= U ℓ

j+1.

In what follows is how to compute Bob’s block error probability. The generator

matrix G′ used by Alice is selected uniformly from the ensemble of full-rank k-by-

ℓ matrices. The difference of every pair of codewords distributes uniformly on

Fℓ
q \ {0ℓ1}. Over symmetric channels, the difference alone determines the difficulty

of decoding because W ℓ(yℓ1 | ξℓ1 + xℓ
1) = W ℓ(σℓ

1(yℓ1) | xℓ
1) for some component-wise

involution σℓ
1 on Yℓ depending on ξℓ1. Therefore, Gallager’s bound applies. To

elaborate, let t ∈ [0, 1]. Then Bob’s average error probability satisfies [Gal68,

Inequalities (5.6.2) to (5.6.14)]

EPe = EEP{Bob fails to decode U ℓ
j+1 given G′, Y ℓ

1 }
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= E
∑
uk
1

1

qk

∑
yℓ
1

W ℓ(yℓ1 | uk
1G′)I{Bob has Û ℓ

j+1 ̸= uk
1 given G′, yℓ1 | U ℓ

j+1 = uk
1}

= E
∑
yℓ
1

W ℓ(yℓ1 | 0ℓ1)I{Bob has Û ℓ
j+1 ̸= 0k1 given G′, yℓ1 | U ℓ

j+1 = 0k1}

⩽ E
∑
yℓ
1

W ℓ(yℓ1 | 0ℓ1)

Å ∑
vk
1 ̸=0k1

I{Bob prefers vk1 over 0k1 given G′, yℓ1}
ãt

⩽ E
∑
yℓ
1

W ℓ(yℓ1 | 0ℓ1)
( ∑
vk
1 ̸=0k1

W ℓ(yℓ1 | vk1G′)
1

1+t

W ℓ(yℓ1 | 0ℓ1)
1

1+t

)t

= E
∑
yℓ
1

W ℓ(yℓ1 | 0ℓ1)
1

1+t

( ∑
vk
1 ̸=0k1

W ℓ(yℓ1 | vk1G′)
1

1+t

)t

⩽
∑
yℓ
1

W ℓ(yℓ1 | 0ℓ1)
1

1+t

(
E

∑
vk
1 ̸=0k1

W ℓ(yℓ1 | vk1G′)
1

1+t

)t

=
∑
yℓ
1

W ℓ(yℓ1 | 0ℓ1)
1

1+t

( ∑
xℓ
1 ̸=0ℓ1

qk − 1

qℓ − 1
W ℓ(yℓ1 | xℓ

1)
1

1+t

)t

⩽ qkt
∑
yℓ
1

W ℓ(yℓ1 | 0ℓ1)
1

1+t

( ∑
xℓ
1 ̸=0ℓ1

1

qℓ
W ℓ(yℓ1 | xℓ

1)
1

1+t

)t

⩽ qkt
∑
yℓ
1

W ℓ(yℓ1 | 0ℓ1)
1

1+t

(∑
xℓ
1

1

qℓ
W ℓ(yℓ1 | xℓ

1)
1

1+t

)t

= qkt
∑
yℓ
1

(∑
xℓ
1

1

qℓ
W ℓ(yℓ1 | xℓ

1)
1

1+t

)(∑
xℓ
1

1

qℓ
W ℓ(yℓ1 | xℓ

1)
1

1+t

)t

= qkt
∑
yℓ
1

(∑
xℓ
1

1

qℓ
W ℓ(yℓ1 | xℓ

1)
1

1+t

)1+t

= qkt
∑
yℓ
1

(∑
xℓ
1

Qℓ(xℓ
1)W ℓ(yℓ1 | xℓ

1)
1

1+t

)1+t

= exp(kt ln q − (the E-null function of W ℓ)(t))

= exp(kt ln q − ℓE0(t)).

In summary, the average block error probability EPe = EEP{Bob fails to de-

code U ℓ
j+1 given G′} is no more than exp(kt ln q− ℓE0(t)) whenever 0 ⩽ t ⩽ 1. Re-

call the universal quadratic bound developed in Lemma 6.14: E0(t) ⩾ I(W )t ln q−
t2 ln(q)2. We obtain that the exponent is

kt ln q − ℓE0(t) ⩽ (I(W )ℓ− ℓ1/2+α)t ln q − ℓE0(t)

⩽ (I(W )ℓ− ℓ1/2+α)t ln q − ℓ(I(W )t ln q − t2 ln(q)2)

= (ℓt ln q − ℓ1/2+α)t ln q
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(redeem the inequality at t = ℓ−1/2+α/2 ln q)

7→ (ℓℓ−1/2+α/2− ℓ1/2+α)ℓ−1/2+α/2

= −ℓ2α/4 = −ℓ2 ln(ln ℓ)/ ln ℓ/4 = − ln(ℓ)2/4.

So far, the average error probability EPe is shown to be less than exp(− ln(ℓ)2/4) =

ℓ− ln(ℓ)/4.

Run Markov’s inequality with cutoff ℓ− ln(ℓ)/20. To put it another way, we

sample a random full-rank matrix G′ ∈ Fk×ℓ
q and reject it if P{Bob fails to decode

U ℓ
j+1 given G′} ⩾ ℓ− ln(ℓ)/5. Then the rejecting probability is ℓ− ln(ℓ)/20 because

1/20+1/5 = 1/4. An upper bound on Bob’s error probability being Pe < ℓ− ln(ℓ)/5,

an upper bound on Bob’s equivocation is

H(U ℓ
j+1 | Y ℓ

1 U
j
1 ) ⩽ ℓ− ln(ℓ)/5

(1− ln ℓ− ln(ℓ)/5

ln q
+ k

)
= ℓ− ln(ℓ)/5

(1 + ln(ℓ)2/5

ln q
+ k

)
by inequality (6.11). Plugging the right-hand side into kh(this place/k), we derive

that the left-hand side of inequality (6.10) is less than

kh
(ℓ− ln(ℓ)/5

k

(1 + ln(ℓ)2/5

ln q
+ k

))
= k ·

(
ℓ− ln(ℓ)/5

(1 + ln(ℓ)2/5

k ln q
+ 1

))α

= ℓ−α ln(ℓ)/5k ·
(1 + ln(ℓ)2/5

k ln q
+ 1

)α

< ℓ−α ln(ℓ)/5ℓ ·
(1 + ln(ℓ)2/5

ℓ ln q
+ 1

)α

< ℓ−α ln(ℓ)/5 · ℓ · 2α = 2αℓ ln(ℓ)− ln(ℓ)/5.

The first inequality uses that the left-hand side increases monotonically in k and

k is ℓ − j = ⌊I(W )ℓ − ℓ1/2+α⌋ < ℓ. The second inequality uses the assumption

ℓ ⩾ 2. The quantity at the end of the chain of inequalities decays to 0 as ℓ → ∞,

so eventually it becomes less than ℓ1/2+α, the right-hand side of inequality (6.10).

This proves that inequalities (6.6) and (6.9) hold with failing probability ℓ− ln(ℓ)/20

as soon as ℓ is large enough.

The lower bound on ℓ in the statement of Lemma 6.6 is large enough (ℓ > 20).

Hence inequality (6.6), the first half of Lemma 6.6, is settled. □

That random kernels make h(H(W (j))) small for large j ≫ ℓH(W ) is the first

half; the next section settles the second half of Lemma 6.6, making h(H(W (j)))

small for small j ≪ ℓH(W ).
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6.8. Wiretap-Channel Random Coding

This subsection contains the very last ingredient of the proof of Lemma 6.6 and

Theorem 6.7. We dealt with inequality (6.6) in the last subsection. We now deal

with

((6.7)’s copy)

⌊H(W )ℓ−ℓ1/2+α⌋∑
i=1

h(H(W (i))) < ℓ1/2+α.

by passing it to an estimate that captures the performance of wiretap-channel

coding.

Proof of inequality (6.7). Similar to how we motivated inequality (6.10),

we hereby apply Jensen’s inequality and the chain rule of conditional entropy to

simplify inequality (6.7). The left-hand side becomes jh(H(U j
1 | Y ℓ

1 )/j) where

j := ⌊H(W )ℓ− ℓ1/2+α⌋ for short. (This is not the same j as in the last subsection.)

The input being uniform, the argument of h is H(U j
1 | Y ℓ

1 )/j = 1 − I(U j
1 ; Y ℓ

1 )/j,

which can be replaced by I(U j
1 | Y ℓ

1 )/j thanks to the symmetry h(1 − z) = h(z).

We will show

(6.12) jh
(1

j
I(U j

1 ; Y ℓ
1 )
)
< ℓ1/2+α.

But what is I(U j
1 ; Y ℓ

1 )? It is the amount of information Eve learns from

wiretapping Y ℓ
1 if Eve knows that U ℓ

j+1 are junk. In other words, we may pretend

that

• Alice transmits Xℓ
1 := U j

1V
ℓ
j+1G, wherein U j

1 are the confidential bits and

V ℓ
j+1 are the obfuscating bits,

• Bob receives Xℓ
1 in full, and

• Eve learns Y ℓ
1 .

This context falls back to (a special case of) the traditional setup of wiretap channels

[Wyn75] where various bounds are studied, some in terms of Gallager’s E-null

function.

Here are some preliminaries to control the information leaked to Eve. We

follow the blueprint of how Hayashi derived the secrecy exponent in [Hay06, In-

equality (21)]. Consider the communication protocol depicted in Figure 6.5: Karl

fixes a kernel G ∈ GL(ℓ, q) and everyone knows G. Alice chooses the confidential

message U ℓ
1 . Vincent chooses the obfuscating bits V ℓ

j+1. Charlie generates Y ℓ
1 by
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Karl
chooses

G

Alice
chooses

U j
1

Vincent
chooses
V `
j+1

X`
1 let

to be
U j
1V

`
j+1G

Charlie
generates
Y `
1 by X`

1

Eve
learns
G, Y `

1

The channel Eve cares about

Figure 6.5. A finer setup for Hayashi’s secrecy exponent. Char-

lie generates Y ℓ
1 such that Xℓ

1 := U j
1V

ℓ
j+1G and Y ℓ

1 follow W ℓ.

Despite of the seemingly sequential structure, Karl, Alice, and Vin-

cent work independently.

plugging Xℓ
1 := U j

1V
ℓ
j+1G into a simulator of W ℓ. Eve learns Y ℓ

1 and is interested

in knowing U j
1 alone. So the channel on topic is the composition of Vincent and

Charlie. Notation: Running out of symbols, we all use P with proper subscripts to

indicate the corresponding probability measures. That said, indices in the subscript

will be omitted. As Eve is interested in the relation between U j
1 and Y ℓ

1 , let Y ℓ
1 ↾Guj

1

be the r.v. that follows the posterior distribution of Y ℓ
1 given G = G and U j

1 = uj
1.

More formally, PY ↾Gu(yℓ1) = PY |GU (yℓ1 | G, uℓ
1) = PGUY (G, uj

1, y
ℓ
1)/PGU (G, uj

1). We

could have defined Y ℓ
1 ↾G to be the posterior distribution of Y ℓ

1 given G = G; but it

is simply the same distribution as Y ℓ
1 since U j

1V
ℓ
j+1G traverses all inputs uniformly

regardless of the choice of G. That is, PY |G(yℓ1 | G) = PY (yℓ1) for all yℓ1 ∈ Yℓ.

Fix G as an instance of G. Let Ie be the base-e mutual information. The

channel Eve cares about leaks information of this amount:

Ie(U
j
1 ; Y ℓ

1 | G) =
∑
uj
1y

ℓ
1

PUY |G(uj
1, y

ℓ
1 | G) ln

PY |GU (yℓ1 | G, uj
1)

PY |G(yℓ1 | G)

=
∑
uj
1

PU (uj
1)

∑
yℓ
1

PY |GU (yℓ1 | G, uj
1) ln

PY |GU (yℓ1 | G, uj
1)

PY |G(yℓ1 | G)

=
∑
uj
1

PU (uj
1)

∑
yℓ
1

PY ↾Gu(yℓ1) ln
PY ↾Gu(yℓ1)

PY (yℓ1)
=

∑
uj
1

PU (uj
1)D(Y ℓ

1 ↾Guj
1 ∥ Y1).(6.13)

D(Y ℓ
1 ↾Guj

1 ∥ Y ℓ
1 ) is the Kullback–Leibler divergence from the posterior distribution

of Y ℓ
1 given G, uj

1 to the coarsest distribution Y ℓ
1 . We are to take expectation over G

to find the average information leak since we are interested in Markov’s inequality.

Formula (6.13) gives rise to

EIe(U j
1 ; Y ℓ

1 | G) =
∑
G

PG(G)Ie(U
j
1 ; Y ℓ

1 | G)
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=
∑
G

PG(G)
∑
uj
1

PU (uj
1)D(Y ℓ

1 ↾Guj
1 ∥ Y ℓ

1 ).(6.14)

We now discover that there are redundancies in traversing all G and uℓ
1: After all,

Xj
1 is uj

1V
ℓ
j+1G = uj

10ℓj+1G + 0j1V
ℓ
j+1G, which is a fixed linear combination of the

first j rows plus a random vector from the span of the bottom ℓ − j rows. When

V ℓ
1 varies, the track of Xℓ

1 forms an affine subspace of Fℓ
q, a coset code as in the

context of the fundamental theorems. So what matters is the distribution of this

coset code.

In the aforementioned manner, we replace the uniform ensemble of (G, U j
1 )

by the uniform ensemble of K, a rank-(ℓ − j) affine subspace of Fℓ
q, where j :=

⌊H(W )ℓ − ℓ1/2+α⌋. Karl and Alice together choose K uniformly. Vincent chooses

Xℓ
1 ∈ K uniformly. Charlie generates Y ℓ

1 by entering Xℓ
1 into a simulator of W ℓ.

See Figure 6.6 for the depiction of the new scheme. Hence formula (6.14) induces

EIe(U j
1 ; Y ℓ

1 | G) =
∑
K

PK(K)D(Y ℓ
1 ↾K ∥ Y ℓ

1 )

where Y ℓ
1 ↾ K is the a posteriori distribution of Y ℓ

1 given K = K. Suddenly, the

quantity EIe(U j
1 ; Y ℓ

1 | G) we are interested in turns into the mutual information

Ie(K ; Y ℓ
1 ) between K and Y ℓ

1 as K replaces the role of U j
1 in formula (6.13). Recall

that in Lemma 6.14 the mutual information is the derivative of Gallager’s E-null

function. We exploit this. Define the double-stroke E-null function for (K, Y ℓ
1 ) as

follows

E0(t) := − ln
∑
yℓ
1

(∑
K

PK(K)PY |K(yℓ1 | K)
1

1+t

)1+t

.

Then E′
0(0) = Ie(K ; Y ℓ

1 ) = EIe(U j
1 ; Y ℓ

1 | G). Owing to the concavity of the E-null

function, E′
0(0) ⩽ E0(t)/t whenever −2/5 ⩽ t < 0. Recap: To bound the average

leaked information EIe(U j
1 ; Y ℓ

1 | G) it suffices to bound Ie(K ; Y ℓ
1 ), which is then

morphed to bound E′
0(0) from above and to bound E0(t) from below.

The double-stroke E-null function is bounded as below. Assume −2/5 ⩽ t < 0.

Let s be −t/(1 + t); so 0 < s ⩽ 2/3 and (1 + s)(1 + t) = 1. For any fixed K and

fixed xℓ
1 ∈ K, the base of the (1 + t)-th root in the definition of the double-stroke

E-null function is

PY |K(yℓ1 | K) =
∑
ξℓ1∈K

PX|K(ξℓ1 | K)PY |X(yℓ1 | ξℓ1)
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Karl and
Alice choose

K

Vincent
chooses
X`

1 ∈ K

Charlie
generates
Y `
1 by X`

1

Eve
learns
Y `
1

The modified channel

Figure 6.6. A simplified setup for Hayashi’s secrecy exponent.

Charlie generates Y ℓ
1 such that Xℓ

1 and Y ℓ
1 follow W ℓ.

=
∑
ξℓ1∈K

qjPX(ξℓ1)PY |X(yℓ1 | ξℓ1) =
∑
ξℓ1∈K

qjPXY (ξℓ1, y
ℓ
1)

= qj
(
PXY (xℓ

1, y
ℓ
1) +

∑
xℓ
1 ̸=ξℓ1∈K

PXY (ξℓ1, y
ℓ
1)
)

= qj
(
PXY (xℓ

1, y
ℓ
1) + PXY (K\xℓ

1, y
ℓ
1)
)
.

Here PXY (K\xℓ
1, y

ℓ
1) is a temporary shorthand for the summation of PXY (ξℓ1, y

ℓ
1)

over ξℓ1 ∈ K that excludes xℓ
1. Raise PY |K(yℓ1 | K) to the power of s; it becomes

qjs(PXY (xℓ
1, y

ℓ
1) +PXY (K\xℓ

1, y
ℓ
1))s ⩽ qjs(PXY (xℓ

1, y
ℓ
1)s +PXY (K\xℓ

1, y
ℓ
1)s) by sub-

additivity. Put that aside; raise PY |K(yℓ1 | K) to the power of 1 + s = 1/(1 + t):

PY |K(yℓ1 | K)1+s = PY |K(yℓ1 | K)PY |K(yℓ1 | K)s =
∑
xℓ
1∈K

qjPXY (xℓ
1, y

ℓ
1)PY |K(yℓ1 | K)s

⩽
∑
xℓ
1∈K

qjPXY (xℓ
1, y

ℓ
1)qjs

(
PXY (xℓ

1, y
ℓ
1)s + PXY (K\xℓ

1, y
ℓ
1)s

)
= qj+js

( ∑
xℓ
1∈K

PXY (xℓ
1, y

ℓ
1)1+s +

∑
xℓ
1∈K

PXY (xℓ
1, y

ℓ
1)PXY (K\xℓ

1, y
ℓ
1)s

)
.

The inequality rewrites the sth power of PY |K(yℓ1 | K). Then the inner sum of the

E-null function morphs as follows∑
K

PK(K)PY |K(yℓ1 | K)1+s ⩽
∑
K

PK(K)qj+js
( ∑
xℓ
1∈K

PXY (xℓ
1, y

ℓ
1)1+s

+
∑
xℓ
1∈K

PXY (xℓ
1, y

ℓ
1)PXY (K\xℓ

1, y
ℓ
1)s

)
= qj+js

∑
K

PK(K)
∑
xℓ
1∈K

PXY (xℓ
1, y

ℓ
1)1+s(diagonal arc)

+ qj+js
∑
K

PK(K)
∑
xℓ
1∈K

PXY (xℓ
1, y

ℓ
1)PXY (K\xℓ

1, y
ℓ
1)s.(off-diagonal arc)

The inequality rewrites the (s+ 1)th power of PY |K(yℓ1 | K). Divide and conquer—

the inner sum of the double-stroke E-null function is split into two arcs as labeled.
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The diagonal arc is exactly

qj+js
∑
K

PK(K)
∑
xℓ
1∈K

PXY (xℓ
1, y

ℓ
1)1+s = qj+js 1

qj

∑
xℓ
1∈Fℓ

q

PXY (xℓ
1, y

ℓ
1)1+s

= qjs
∑

xℓ
1∈Fℓ

q

PX(xℓ
1)1+sPY |X(yℓ1 | xℓ

1)1+s = qjs−ℓs
∑

xℓ
1∈Fℓ

q

PX(xℓ
1)PY |X(yℓ1 | xℓ

1)1+s.

The off-diagonal arc is

qj+js
∑
K

PK(K)
∑
xℓ
1∈K

PXY (xℓ
1, y

ℓ
1)PXY (K\xℓ

1, y
ℓ
1)s

= qj+js
∑

xℓ
1∈Fℓ

q

PXY (xℓ
1, y

ℓ
1)

∑
K∋xℓ

1

PK(K)PXY (K\xℓ
1, y

ℓ
1)s.

The inner sum is loosened to∑
K∋xℓ

1

PK(K)PXY (K\xℓ
1, y

ℓ
1)s =

1

qj

∑
K∋xℓ

1

PK|X(K | xℓ
1)PXY (K\xℓ

1, y
ℓ
1)s

⩽
1

qj

( ∑
K∋xℓ

1

PK|X(K | xℓ
1)PXY (K\xℓ

1, y
ℓ
1)
)s

=
1

qj

( ∑
K∋xℓ

1

PK|X(K | xℓ
1)

∑
xℓ
1 ̸=ξℓ1∈K

PXY (ξℓ1, y
ℓ
1)
)s

=
1

qj

(qℓ−j − 1

qℓ − 1

∑
xℓ
1 ̸=ξℓ1∈Fℓ

q

PXY (ξℓ1, y
ℓ
1)
)s

⩽
1

qj+js

( ∑
xℓ
1 ̸=ξℓ1∈Fℓ

q

PXY (ξℓ1, y
ℓ
1)
)s

The last equality counts the multiplicity of ξℓ1. So the off-diagonal arc is loosened

to

qj+js
∑

xℓ
1∈Fℓ

q

PXY (xℓ
1, y

ℓ
1)

∑
K∋xℓ

1

PK(K)PXY (K\xℓ
1, y

ℓ
1)s

⩽
∑

xℓ
1∈Fℓ

q

PXY (xℓ
1, y

ℓ
1)
( ∑
xℓ
1 ̸=ξℓ1∈Fℓ

q

PXY (ξℓ1, y
ℓ
1)
)s

⩽
∑

xℓ
1∈Fℓ

q

PXY (xℓ
1, y

ℓ
1)
( ∑
ξℓ1∈Fℓ

q

PXY (ξℓ1, y
ℓ
1)
)s

=
∑

xℓ
1∈Fℓ

q

PXY (xℓ
1, y

ℓ
1)PY (yℓ1)s = PY (yℓ1)PY (yℓ1)s = PY (yℓ1)1+s.

Both the diagonal and off-diagonal arcs being conquered, merge them and raise

to the (1 + t)-th power. The summand for any fixed yℓ1 in the definition of the

double-stroke E-null function is(∑
K

PK(K)PY |K(yℓ1 | K)
1

1+t

)1+t

= (off-diagonal + diagonal)1+t
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⩽ off-diagonal1+t + diagonal1+t ⩽
(
PY (yℓ1)1+s

)1+t

+ diagonal1+t

= PY (yℓ1) + diagonal1+t ⩽ PY (yℓ1) +
(
qjs−ℓs

∑
xℓ
1∈Fℓ

q

PX(xℓ
1)PY |X(yℓ1 | xℓ

1)1+s
)1+t

= PY (yℓ1) + qℓt−jt
( ∑
xℓ
1∈Fℓ

q

PX(xℓ
1)PY |X(yℓ1 | xℓ

1)1+s
)1+t

The first equality divides. The next inequality applies the sub-additivity of (1+t)th

power (note that t < 0). We can finally bound the double-stroke E-null function

per se:

exp(−E0(t)) =
∑
yℓ
1

(∑
K

PK(K)PY |K(yℓ1 | K)
1

1+t

)1+t

⩽
∑
yℓ
1

PY (yℓ1) + qℓt−jt
( ∑
xℓ
1∈Fℓ

q

PX(xℓ
1)PY |X(yℓ1 | xℓ

1)1+s
)1+t

= 1 + qℓt−jt
∑
yℓ
1

( ∑
xℓ
1∈Fℓ

q

PX(xℓ
1)PY |X(yℓ1 | xℓ

1)1+s
)1+t

= 1 + qℓt−jt exp(−(the E-null function of W ℓ)(t))

= 1 + qℓt−jt exp(−ℓE0(t)).

All efforts we spent on bounding Ie(U
j
1 ; Y ℓ

1 ) are for three creeds: First, it

demonstrates that Gallager’s bounds via E-null functions (which behaves like cu-

mulant generating functions) is a powerful tool that can be useful to the dual case.

Second, it fits the paradigm that solving the primary (noisy channel) and the dual

(wiretap channel) problems as a whole is easier than solving the primary problem

alone. Third, the universal quadratic bound can be used to further bound the

E-null function.

We infer that

EIe(U j
1 ; Y ℓ

1 | G) = Ie(K ; Y ℓ
1 ) = E′

0(0) ⩽
1

t
E0(t) =

1

−t ln
(

exp(−E0(t))
)

⩽
1

−t ln
(

1 + qℓt−jt exp(−ℓE0(t))
)
<

1

−tq
ℓt−jt exp(−ℓE0(t))

= exp(− ln(−t) + (ℓ− j)t ln q − ℓE0(t)).

Recall the universal quadratic bound E0(t) ⩾ I(W )t ln q − t2 ln(q)2 as stated in

Lemma 6.14 and used in the previous subsection. But this time −2/5 ⩽ t < 0. We

obtain that the exponent is

− ln(−t) + (ℓ− j)t ln q − ℓE0(t)
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= − ln(−t) + (ℓ−H(W )ℓ + ℓ1/2+α)t ln q − ℓE0(t)

= − ln(−t) + (I(W )ℓ + ℓ1/2+α)t ln q − ℓE0(t)

⩽ − ln(−t) + (I(W )ℓ + ℓ
1
2+α)t ln q − ℓ(I(W )t ln q − t2 ln(q)2)

= − ln(−t) + (ℓt ln q + ℓ1/2+α)t ln q

(redeem the inequality at t = −ℓ−1/2+α/2 ln q)

7→ − ln
(ℓ−1/2+α

2 ln q

)
−

(
−ℓℓ−1/2+α

2
+ ℓ1/2+α

)ℓ−1/2+α

2

=
ln ℓ

2
− α ln ℓ + ln 2 + ln(ln q)− ℓ2α

4

=
ln ℓ

2
− ln(ln ℓ) + ln 2 + ln(ln q)− ℓ2 ln(ln ℓ)/ ln ℓ

4

<
ln ℓ

2
+ ln(ln q)− ln(ℓ)2

4
.

The first inequality uses ℓ − j = ℓ − H(W )ℓ + ℓ1/2+α. The last inequality uses

the assumption ℓ > e2. With the last line we conclude that EIe(U j
1 ; Y ℓ

1 | G) <

exp(ln(ℓ)/2+ln ln q− ln(ℓ)2/4) = ℓ1/2−ln(ℓ)/4 ln q. Switch back to the base-q mutual

information EI(U j
1 ; Y ℓ

1 | G) < ℓ1/2−ln(ℓ)/4.

We now reject kernels G such that I(U j
1 ; Y ℓ

1 | G) ⩾ ℓ1/2−ln(ℓ)/5. By Markov’s

inequality, the opposite direction (<) holds with probability 1− ℓ− ln(ℓ)/20 because

1/5 + 1/20 = 1/4. Plug this upper bound into h. The left-hand side of inequal-

ity (6.12) is less than

jh
(1

j
ℓ1/2−ln(ℓ)/5

)
= jj−αℓα/2−α ln(ℓ)/5 < ℓ1−αℓα/2−α ln(ℓ)/5

= ℓ1−α/2−α ln(ℓ)/5 = ℓ ln(ℓ)−1/2−ln(ℓ)/5.

The inequality uses that the left-hand side increases monotonically in j and j :=

H(W )ℓ − ℓ1/2+α < ℓ. The quantity at the end of the inequalities decays to 0 as

ℓ → ∞, so eventually it becomes less than ℓ1/2+α, the right-hand side of inequal-

ity (6.12). This proves that inequality (6.7) holds with failing probability ℓ− ln(ℓ)/20

as soon as ℓ is large enough.

The lower bound on ℓ in the statement of Lemma 6.6 is large enough, hence

inequality (6.7), the second half of Lemma 6.6 settled. That means the proof of the

whole Theorem 6.7 is complete. □

We just finished the last piece of the proof of Theorem 6.7, which states that

random kernels possesses good ϱ with high probability. The next section combines
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this fact with the coset distance profile ⌈j2/ℓ⌉ to conclude that low-complexity

nearly-optimal polar codes exist when π + 2ρ→ 1.

6.9. Chapter Conclusion

Theorem 6.2 shows that, with high probability, a random kernel enjoys coset

distance profile D
(j)
Z ⩾ ⌈j2/ℓ⌉. And its dual D

(ℓ−j+1)
S ⩾ ⌈j2/ℓ⌉ is immediate.

Theorem 6.7 shows that, with high probability, a random kernel enjoys eigenvalue

ℓ−1/2+4α, which means ρ = 1/2 − 4α, where α := ln ℓ/ ln(ln ℓ). Now, Does any

pair (π, ρ) lying under the line π + 2ρ = 1 lie to the left of the convex envelope of

(0, 1/2− 4α) and the Cramér function of logℓ⌈J2
1/ℓ⌉ for some large ℓ?

Let us not go all the way down to a derivation of the Cramér function of

logℓ⌈J2
1/ℓ⌉; a one-sided bound suffices. Consider the moment generating function

evaluated at slope −1/2 (that is the slope of π + 2ρ = 1):

E [D−1/2
1 ] =

1

ℓ

ℓ∑
j=1

(⌈j2
3ℓ

⌉)−1/2

<
1

ℓ

⌊
√
3ℓ⌋∑

j=1

1−1/2 +
1

ℓ

ℓ∑
j=⌊

√
3ℓ⌋+1

(j2
3ℓ

)−1/2

<
1

ℓ

√
3ℓ +

1

ℓ

√
3ℓ

∫ ℓ

√
3ℓ

dj

j
=
√

3ℓ +

√
3√
ℓ

ln j
∣∣∣ℓ√

3ℓ
<
√

3ℓ +
√

3ℓ ln ℓ

= ℓ−1/2 + 2ℓ−1/2+α < 4ℓ−1/2+α < ℓ−1/2+2α.

So the cumulant generating function is bounded as

K (−1/2) = logℓ E [D−1/2
1 ] < −1/2 + 2α.

The Cramér function as a supremum is then bounded by

L(s) ⩾ s · (−1/2)− K (−1/2) ⩾ −s/2 + 1/2− 2α.

The convex envelope of (0, 1/2 − 4α) and the segment ρ = −π/2 + 1/2 − 2α

(note that only the part with ρ ⩾ 0 counts) is a straight line connecting (0, 1/2−4α)

and (1−4α, 0). As ℓ goes to infinity, α goes to 0, hence the convex envelope reveals

the right triangle (0, 1/2)–(0, 0)–(1, 0).

By Chapter 5, any (π, ρ) in this right triangle is realizable by some polar codes,

with complexity O(N logN). Let me state the full theorem here.

Theorem 6.15 (Hypotenuse). Fix a q-ary channel W . Fix exponents π + 2ρ < 1.

Then there exists a large ℓ and an amoebic kernel (a strategy to assign kernels to

synthetic channels) G such that

P{Zn < exp(−ℓπn)} > 1−H(W )− ℓ−ρn,
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Table 6.1. The references to the various performances of polar

codes over various channels. The starred behaviors are weak—only

requiring π or ρ or both to be positive.

Symmetric Asymmetric

BEC SBDMC p-ary q-ary finite BDMC finite

LLN [Ari09] [Ari09] [ŞTA09] [ŞTA09] [ŞTA09] [SRDR12] Cor 6.16

LDP⋆ [AT09] [AT09] [ŞTA09] [MT10] [Sas11] [HY13] Cor 6.16

CLT⋆ [KMTU10] [HAU14] [BGN+18] Cor 6.16 Cor 6.16 Cor 6.16 Cor 6.16

MDP⋆ [GX15] [GX15] [BGS18] Cor 6.16 Cor 6.16 Cor 6.16 Cor 6.16

LDP [KSU10] [KSU10] Cor 6.16 Cor 6.16 Cor 6.16 Cor 6.16 Cor 6.16

CLT [FHMV18] [GRY20] Cor 6.16 Cor 6.16 Cor 6.16 Cor 6.16 Cor 6.16

MDP Cor 6.16 Cor 6.16 Cor 6.16 Cor 6.16 Cor 6.16 Cor 6.16 Cor 6.16

P{Sn < exp(−ℓπn)} > H(W )− ℓ−ρn

for large n.

Recall that at the beginning of Chapter 5, I have demonstrated how to reduce

arbitrary input alphabet to prime-power input alphabet. Hence the theorem applies

to all DMCs, and we have reached the holy grail at the beginning of the chapter.

Corollary 6.16 (Random codes’ durability, polar codes’ simplicity). Over any

discrete memoryless channel, for any constants π, ρ > 0 such that π + 2ρ < 1,

there is a series of error correcting codes with block length N approaching infinity,

block error probability exp(−Nπ), code rate N−ρ less than the channel capacity,

and encoding and decoding complexity O(N logN) per code block.

This is the second-moment paradigm code that was promised in the abstract.

Table 6.1 compares this corollary to past works. The same can be stated for lossless

compression and lossy compression.

Corollary 6.17 (Very good code for lossless compression). For any lossless com-

pression problem, for any constants π, ρ > 0 such that π + 2ρ < 1, there is a series
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of source codes with block length N approaching infinity, block error probability

exp(−Nπ), code rate N−ρ plus the conditional entropy, and encoding and decoding

complexity O(N logN) per code block.

Corollary 6.18 (Very good code for lossy compression). For any lossy compression

problem, for any constants π, ρ > 0 such that π+ 2ρ < 1, there is a series of source

codes with block length N approaching infinity, block error probability exp(−Nπ),

code rate N−ρ plus the test channel capacity, and encoding and decoding complexity

O(N logN) per code block.

The next chapter prunes.
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CHAPTER 7

Joint Pruning and Kerneling

C
ombination of two techniques, when executed properly, gives results that in-

herit advantages from the two individual techniques. In this chapter, I want

to combine pruning from Chapter 4 and random dynamic kerneling from Chap-

ter 6, and will verify that the chimera codes have the optimal gap to capacity and

log-logarithmic complexity.

Let me elaborate. First, we do not expect the resulting codes to have elpin error,

that is, block error probability exp(−ℓπn). This is because we set the threshold

θ := N−2 and prune the channel tree whenever Zm reaches θ. Should we wait for

Zm to become as small as θ := exp(−ℓπn), pruning will not take place at O(log n)

depth, and there will be little to no savings on EU–DU pairs. In conclusion, there

is a conflict between elpin error and log-logarithmic complexity, and I will give up

the optimal decay of error to favor low complexity.

That being said, theer is no obvious conflict between complexity and code rate,

and it is very likely that we can retain both from Chapter 4 and Chapter 6, respec-

tively. Hence this constituents the goal for this section—Construct error correcting

codes with gap to capacity close to N−1/2, encoding and decoding complexity

O(N log(logN)) per block, and block error probability as small as possible.

7.1. Toolbox Checklist

From Chapter 6, it is possible to construct a channel process {Wm} such that,

for any π + 2ρ < 1 and large m (depending on π, ρ),

P
{
Zm < e−ℓπm}

> 1−H(W )− ℓ−ρm,(7.1)

P
{
Sm < e−ℓπm}

> H(W )− ℓ−ρm.(7.2)

From Chapter 5, we know that every ergodic kernel assumes a positive ϱ, so every

kernel assumes at least a pair π, ρ > 0 such that inequalities (7.1) and (7.2) hold.
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From Chapter 4, we can set a threshold θ, which serves two purposes: One, we

prune the channel tree at the point where Zm or Sm falls below θ. This in turn

defines the stopping time

s := n ∧min{m : min(Zmxd(Wm), Smax(Wm)) < θ}.

Two, we collect in J indices that point to synthetic channels Wm whose Zmxd-

parameter reaches θ, which is the cause why s is set to this depth m.

For the asymmetric case, θ defines the stopping time

s := n ∧min

m :
min(Zmxd(Wm), Smax(Wm)) < θ and

min(Zmxd(Qm), Smax(Qm)) < θ

 .

J will then collect indices pointing to Wm whose Zmxd-value reaches θ and to

Qm whose Smax-value reaches θ. To put it differently, J is the event where both

Zmxd(Ws), Smax(Qs) < θ.

θ and s determine a code. We have three lemmas that generalize Lemmas 4.1

to 4.3 to arbitrary matrix kernels. Their proofs are straightforward (perhaps tau-

tological) and will be sketchy.

Lemma 7.1 (Complexity in terms of s). The encoding and decoding complexity is

O(E [s]) per channel usage, or O(NE [s]) per code block.

Proof. Similar to Lemma 4.1, I claim without a proof that the encoding

and decoding complexity is proportional to the number of EU–DU devices in the

circuit and to the number of synthetic channels (multiplicity included) that undergo

channel transformation.

Since a trajectory W0,W1, . . . ,Ws undergoes the transformation s times, the

average number of transformations is E [s], and hence the total number of transfor-

mations is NE [s]. □

Lemma 7.2 (R in terms of J ). The code rate is P{Js
1 ∈ J }, or P(J ) for short.

Proof. Similar to Lemma 4.2, I claim without a proof that the code rate is

the density of naked pins that are selected in J .

Every pair of naked pins possesses probability measure 1/N because there are

always N pairs of naked pins. Every synthetic channel Ws assumes N/2s copies in

the circuit, hence possesses probability measure 2−s . All indices Js
1 in J possesses

probability measure 2−m, which coincides with the measure of pins. Thus the

density of selected pins is P{Js
1 ∈ J }. □
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Lemma 7.3 (Pe in terms of J ). The block error probability is NE [Pe(Ws) · I{Js
1 ∈

J }] ⩽ qNθ for the symmetric case. For the asymmetric case, the block error

probability is NE [Pe(Ws) · I{Js
1 ∈ J }] ⩽ qNθ +NE [T (Ws) · I{Js

1 ∈ J }], witch is at

most 3qNθ in total.

Proof. Similar to Lemma 4.3, I claim without a proof that, for the symmetric

case, the block error probability is the sum of the Pe-values of the Ws in J (mul-

tiplicity included). And for the symmetric case, the block error probability is the

said sum plus the total of the T -values of the Qs in J (multiplicity included).

For the sum of Pe(Ws), we learn from Lemma 5.10 that Pe(Ws) ⩽ qZ(Ws)/2 ⩽

qZmxd(Ws)/2 ⩽ qθ/2. Hence a sum of at most N items, each at most qθ/2, is at

most qNθ.

For the sum of T (Qs), we learn form Lemma 5.11 that

T (Qs) ⩽
2(q − 1)

q
− 2

q

(
(q − 1)qPe(W )− (q − 1)(q − 2)

)
=

2(q − 1)

q

(
1−

(
qPe(Qs)− (q − 2)

))
=

2(q − 1)2

q

(
1− q

q − 1
Pe(Qs)

)
and then from Lemma 5.12 that

⩽
2(q − 1)2

q
S(Qn) ⩽ 2qS(Qn) ⩽ 2qSmax(Qn) ⩽ 2qθ.

Hence a sum of at most N items, each at most 2qθ, is at most 2qNθ. The contri-

butions of Pe(Ws) and T (Qn) amount to 3qNθ; that finishes the proof. □

Now I can state and prove the main theorem in this chapter. My contribution

is twofold. First contribution: If you insist on using a certain matrix G to construct

polar codes, then either G is not ergodic (in which case there is no polarization at

all), or you can construct log-logarithm codes with some positive ρ. Second contri-

bution: If you allow dynamic kerneling with very large ℓ, then you can construct

log-logarithm codes whose ρ is arbitrarily close to 1/2, the optimal exponent.

7.2. Log-logarithmic Codes

The first case I want to discuss here is when a fixed kernel G is selected prior.

In this case, the best ρ we can hope for is the ϱ in the eigen/en23/een13 behavior

of G. (After all, pruning should not improve the extent of polarization.)
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Theorem 7.4 (Log-log for asymmetric q-ary). Fix a q-ary channel W . Fix a kernel

G ∈ Fℓ×ℓ
q and a pair (π, ρ) that satisfy the two-sided elpin behavior

P
{
Zm < e−ℓπm}

> 1−H(W )− ℓ−ρm+o(m),

P
{
Sm < e−ℓπm}

> H(W )− ℓ−ρm+o(m).

Then pruning the channel tree with threshold θ := 1/3qN2 yields

E [s] = O(log(logN)),

P(J ) = I(W )−N−ρ+o(1),

NE [Pe(Ws) · I (J )] + NE [T (Qs) · I (J )] ⩽ 1/N.

Proof. To estimate E [s] =
∑n−1

m=1 P{s > m}, we mimic Theorem 4.4. Con-

sider small m and large m. Those with exp(−ℓπm) ⩾ θ are called small m. Those

with exp(−ℓπm) < θ are called large m. For small m, we do not expect decent

polarization and assume s ⩾ m. That is, we upper bound P{s > m} ⩽ 1 by a

pessimistic value. For large m, we argue that

P{s > m} ⩽ P{Zmxd(Wm) ∨ Smax(Wm)) ⩾ θ or Zmxd(Qm) ∨ Smax(Qm) ⩾ θ}

⩽ P{max(Zmxd(Wm), Smax(Wm)) ⩾ θ}+ P{max(Zmxd(Qm), Smax(Qm)) ⩾ θ}

⩽ P
{
Zmxd(Wm) ∨ Zmxd(Wm) ⩾ e−ℓπm}

+ P
{
Smax(Qm) ∨ Smax(Qm) ⩾ e−ℓπm}

⩽ 2ℓ−ρm+o(m) + 2ℓ−ρm+o(m) = ℓ−ρm+o(m).

As a result, the complexity is

E [s] =

n−1∑
m=0

P{s > m} = #{small m}+
∑

large m

ℓ−ρm+o(m)

= O(log n) + O(1) = O(log(logN)).

Here we use the fact that the number of small m’s is the root of the equation

exp(−ℓπm) = θ = 1/3qN2 = 1/3qℓ2n, which is log(n) (note that N = ℓn).

To estimate R = P(J ), we mimic Theorem 4.5. It is the same as estimating

the frequency that s is set to m due to Zmxd(Wm) < θ and Smax(Qm) < θ. This

frequency is

R = P(J ) = P{Zmxd(Ws) ⩽ θ and Smax(Qs) ⩽ θ}

⩾ P{Zmxd(Wm)→ 0 and Smax(Qm)→ 0}

− P{Zmxd(Wm)→ 0 but Zmxd(Ws) ⩾ θ}

− P{Smax(Qm)→ 0 but Smax(Qs) ⩾ θ}
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⩾ I(W )− P{Zmxd(Wm)→ 0 but Smax(Ws) < θ}

− P{Smax(Qm)→ 0 but Zmxd(Qs) < θ} − P{s = n}.

Here we use the fact that if Zmxd(Ws) ⩾ θ, then s is set to its current value due

to Smax(Ws) < θ or, otherwise, due to hitting n. It remains to estimate the three

minus terms on the right-hand side.

To bound P{Zmxd(Wm) → 0 but Smax(Ws) < θ}, notice that 1 − H(Ws) ⩽

q3
√
Smax(Ws) < q3/N

√
3q ⩽ N−1+o(1). Now the probability that H(Wm) → 0

given H(Ws) ⩾ 1−N−1+o(1) is N−1+o(1) by the martingale property. For a similar

reason, P{Smax(Qm) → 0 but Zmxd(Qs) < θ} is no greater than the probability

that H(Qm) → 1 given H(Qs) < N−1+o(1), which is N−1+o(1) by the martingale

property again. Last is to bound P{s = n}, but that is just P{s > n−1}−P{s > n},
and is thus ℓ−ρ(n−1)−o(n−1) = N−ρ+o(1). We conclude

R ⩾ I(W )−N−1+o(1) −N−1+o(1) −N−ρ+o(1) = I(W )−N−ρ+o(1).

The bound NE [Pe(Ws) · I (J )] + NE [T (Qs) · I (J )] ⩽ 1/N is tautological. And

the proof ends here. □

When allowing dynamic kerneling, random or not, the proof of the last theorem

does not change—we still set a threshold θ and prune the channel tree by θ. The

only difference is that ρ can now be arbitrarily close to 1/2.

To put it another way, like I once commented under Lemma 5.34, there is

no point to use a large kernel without knowing that it has a good (π, ρ) pair.

So Theorem 7.4 mainly has three use cases: (a) To estimate the behavior of a

minimalist kernel such as [ 1 0
c 1 ], (b) to estimate the behavior of a larger kernel with

a bound on ρ, and (c) to estimate the behavior of random dynamic kerenling. That

leads to the following corollary.

Corollary 7.5 (Log-log code for DMC). Given any q-ary DMC (presumably with

virtual symbols) and any ergodic kernel G ∈ Fℓ×ℓ
q , pruned polar coding achieves en-

coding and decoding complexity O(log(logN)) per channel usage, block error prob-

ability 1/N , and code rate 1/Nρ less than the channel . Here, ρ is a number

guaranteed to be positive, lower bounded if you know more about the eigen/en23/

een13/eplin behavior of G, and very close to 1/2 as ℓ → ∞ if you allow dynamic

kerneling.

133



The same can be stated regarding lossless and lossy compression, and is omit-

ted.

The next section discusses a continuous trade-off between Pe and complexity.

7.3. Error–Complexity Trade-off

In the proof of Theorem 7.4, the complexity E [s] and θ = θ(n) are linked by the

equation exp(−ℓπm) = θ that determines how many m’s are small. The root thereof

m = m(θ) = m(θ(n)) will be the complexity. We may as well alter θ(n) and obtain

a different error–complexity pair. The only restriction is ℓ−2n ≪ θ(n)≪ exp(−ℓπn)

to avoid the necessity to deal with special/edge cases.

Corollary 7.6 (Continuous error–complexity trade-off). Let θ(n) be an asymptote

lying between ℓ−2n and exp(−ℓπn). Then pruned polar coding achieves complexity

O(log|log θ(n)|) per channel usage and block error probability ℓnθ(n).

In particular, if θ(n) := exp(−ℓπn), then the complexity is O(log|log θ(n)|) =

O(log|ℓπm|) = O(n) = O(logN). This restores the case where one insists on re-

taining the exp(−Nπ) error while pruning, which only gives you constant-scalar

improvement in complexity. In fact, we can almost prove this tight: The complex-

ity, E [s], is the (average) number of transformations a trajectory Wn undergoes.

Since each transformation, at best, raises Zmxd(Wn) to the power of ℓ, you need

logℓ(logZmxd(W ) θ) transformations to lower Zmxd(Wn) to θ. That implies that

E [s] ⩾ logℓ(logZmxd(W ) θ).

On the other hand, if θ(n) := exp(−nτ ) for some very large τ > 0, then

E [s] = O(log|log θ(n)|) = O(log|−nτ |) = O(τ log(logN)). If τ is a constant despite

of being very large, then the complexity is still O(log(logN)). This is the complexity

paradigm code that was promised in the abstract. Table 7.1 compare this result

and Corollary 6.16 to past works.

The same can be stated concerning lossless and lossy compression, and is omit-

ted.

The next chapter generalizes the second-moment paradigm and complexity par-

adigm to some network coding scenarios.
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Table 7.1. A comparison concerning the error–rate–complexity

asymptotes of some well-known capacity-achieving codes.

Code Error Gap Complexity Channel

random e−Nπ

N−ρ exp(N) DMC

concatenation e−Nπ → 0 poly(N) DMC

RM → 0 → 0 O(N2) BEC

LDPC → 0 → 0 unclear SBDMC

RA family → 0 → 0 O(1) BEC

MDP-polar e−Nπ

N−ρ O(logN) DMC

loglog-polar e−nτ

N−ρ O(log(logN)) DMC
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CHAPTER 8

Distributed Lossless Compression

N
etwork coding emerges as a generalization of one-to-one communication as

there are, naturally, more than one party willing to participate. One of the

easiest scenarios (in comparison with other network scenarios, not necessarily easy

compared to one-to-one) is when there are more than two random sources to be

compressed, each by a compressor that does not talk the other compressors, and a

decompressor will gather all messages and reconstruct the original random sources.

This scenario is referred to as distributed compression.

Distributed compression can be further divided into several sub-scenarios that

are treated differently. Depending on whether a reconstruction needs to be faithful

or can be fuzzy, there are distributed lossless compression and its lossy variants.

Depending on whether a random source needs to be reconstructed or it provides

side information to the other sources, the responsible compressor is called a sender

or a helper. To summarize, there are three types of sources—those that need to be

reconstructed as is, those whose reconstruction can be less accurate, and those that

need no reconstruction at all. And a distributed compression problem consists of

any combination of theses three sources.

Thanks to the infrastructures built in the past three chapters, if we manage to

reduce a network coding problem to several one-to-one problems, then each of the

one-to-one problems can be solved by polar coding that achieves capacity at a good

pace and with low complexity. In this chapter, I will overview distributed lossless

compression problems with two senders, one sender plus one helper, three senders,

and finally many senders plus one helper. These are the problems whose rate region

is known [EGK11], thus it makes sense to pursue the second-order behavior of the

rate tuples.
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X̂[2]N1 = X[2]N1

Figure 8.1. A Slepian–Wolf problem.

8.1. Slepian–Wolf: The Two Sender Problem

A Slepian–Wolf problem is a distributed lossless compression problem with two

senders, which is the first of the several cases we will consider. See Figure 8.1 for

the specification. In this and the other scenarios, the “array access” operator [•]
will be used to distinguish random sources. The pair (R[1], R[2]) will be called the

rate pair. The N is still the block length. And Pe is the block error probability,

the probability that either X̂[1]N1 ̸= X[1]N1 or X̂[2]N1 ̸= X[2]N1 .

The rate region of a Slepian–Wolf problem is a region in R2 of all achievable

rate pairs (R[1], R[2]). There are clearly three pessimistic criteria:

• About H(X[1] | X[2]) bits of information is only available at source[1],

hence compressor[1] should at least send out this much information, R[1] ⩾

H(X[1] | X[2]).

• About H(X[2] | X[1]) bits of information is only available at source[2],

hence compressor[2] should at least send out this much information, R[2] ⩾

H(X[2] | X[1]).

• About H(X[1]X[2]) bits of information are generated in total, hence the

two compressors should at least send out this many bits in total, R[1] +

R[2] ⩾ H(X[1]X[2]).

As it turns out, these necessary criteria are sufficient.

Theorem 8.1 (Slepian–Wolf Theorem). [SW73] The rate region of a Slepian–Wolf

problem consists of pairs (R[1], R[2]) ∈ R2 such that

R[1] ⩾ H(X[1] | X[2]),
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H(X[2])

H(X[2] | X[1])

H(X[1] | X[2]) H(X[1])

R[2]

R[1]

Figure 8.2. Slepian–Wolf problem’s rate region.

R[2] ⩾ H(X[2] | X[1]),

R[1] + R[2] ⩾ H(X[1]X[2]),

and is supported by the vertices(
H(X[1] | X[2]), H(X[2])

)
and

(
H(X[1]), H(X[2] | X[1])

)
.

See also Figure 8.2.

Notation: When the context is clear, H(1), H(2), H(12), H(1|2), H(2|1) denote

the corresponding (conditional) entropies with “X[•]” wrapping around every Ara-

bic number.

The problem here is, How fast can R := (R[1], R[2]) approach the boundary

that passes (H(1|2),+∞)–(H(1|2), H(2))–(H(1), H(2|1))–(+∞, H(2|1))? Random

coding allowed, this was discussed in [TK12] for the CLT regime. More elaborately,

fixing a Pe, the (Euclidean) distance from R to the boundary scales as O(1/
√
N).

Although there seems to be no references for the LDP and MDP regimes, we may

presume that it obeys the same law as in the one-to-one case—namely,

− lnPe

dist(R,boundary)2
≈ N.

And we thus pose to ourselves a challenge about constructing polar codes (or any

low-complexity codes) with Pe ≈ exp(−Nπ) and dist ≈ N−ρ whenever π + 2ρ < 1.

An obvious strategy is to execute time-sharing, which is based on this simple

idea: If we know how to achieve the point (H(1), H(2|1)) using a coding scheme
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and the point (H(1|2), H(2)) using another coding scheme, then we can alternate

between two said schemes to approach any point lying on the sum-rate segment

(H(1), H(2|1))–(H(1|2), H(2)). And this time-sharing scheme, indeed, reaches the

second moment goal in part.

Theorem 8.2 (Timed Slepian–Wolf). Let B be any point on the boundary of the

rate region. Fix exponents π + 2ρ < 1. Then combining polar coding and time-

sharing yields Pe < exp(−Nπ/(1+ρ/2)) and dist(R,B) < N−ρ/(1+ρ/2) at the cost of

O(logN) complexity per source observation. (Notice the penalty (1 + ρ/2).)

Proof. Let us first eliminate some trivial cases. Case one: If B is on the

vertical ray (H(1|2),+∞)–(H(1|2), H(2)), then the problem reduces to achieving

the nontrivial vertex (H(1|2), H(2)). For this vertex, ask compressor[2] to compress

X[2] and ask compressor[1] to compress X[1] with side information X[2], both

using polar coding. Note that compressor[1] need not, and cannot, access the side

information X[2].

Case two: If B is on the horizontal ray (H(1), H(2|1))–(+∞, H(2|1)), then the

problem reduces to achieving (H(1), H(2|1)). For this vertex, ask compressor[1] to

compress X[1] and ask compressor[2] to compress X[2] with side information X[1].

For this case and case one, the problem reduces to one-to-one lossless compression

and can be solved by polar coding within the specified gap to boundary/block error

probability/complexity.

Case three: Assume that B is lying on the sum-rate segment (H(1|2), H(2))–

(H(1), H(2|1)) and is a rational combination of the two end points. That is, there

exist positive integers s, t such that (s + t)B = s(H(1|2), H(2)) + t(H(1), H(2|1)).

Then this is what we do: For every s + t code blocks, apply the coding scheme in

case one for s blocks and then apply the coding scheme in case two for t blocks.

Note that s and t are fixed constants, so the penalties imposed on N , Pe, dist(R,B),

and the complexity are all constant scalars.

Now we deal with the nontrivial case. Case four: Assume B is on the sum-rate

segment (H(1|2), H(2))–(H(1), H(2|1)) and is an irrational combination of the two

ends. Then this is what we do: Prepare the case-one scheme and case-two scheme

with a large block length M . By the polar coding infrastructure in the past few

chapters, the gap to entropy is M−ρ and the error is exp(−Mπ).
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Here comes the punchline for case four: Pick large integers s, t > 0 such that

s + t is about the size of Mρ/2 and B is very close to (measured in the Euclidean

distance)

(8.1)
s

s + t
(H(1|2), H(2)) +

t

s + t
(H(1), H(2|1)).

In other words, we use the denominator s+ t ≈Mρ/2 to approximate the irrational

coefficients in the combination. Now, for every s+ t code blocks, we apply the case-

one scheme for s blocks and then apply the case-two scheme for t blocks. Unlike the

rational case, where the penalty is constant scalars, the penalty here scales as M

grows. Hence, in particular, the de facto block length is N = (s + t)M ≈M1+ρ/2.

The error in terms of the de facto block length is exp(−Mπ) = exp(−Nπ/(1+ρ/2)),

which suggests that the “de facto pi” is π/(1 + ρ/2). And the gap to boundary

caused by the imperfect coding is M−ρ = N−ρ/(1+ρ/2), which suggests a “de facto

rho” of ρ/(1 + ρ/2).

But coding is not the only cause of the gap. Approximation (8.1) is very far

away from B. In fact, by the Thue–Siegel–Roth theorem and its converse, the dif-

ference between an irrational number and its rational approximation is roughly the

inverse square of the denominator, unless the irrational number lies in a measure-

zero set. As a consequence, we almost alwayse have

dist(B, approximation (8.1)) = Θ((s + t)−2) = Θ(M−ρ) = Θ(N−ρ/(1+ρ/2)).

This gap is comparable to the coding gap, so the overall gap is still O(N−ρ/(1+ρ/2)).

That finishes the proof. □

Remark: the de facto pi and rho satisfy 2 · π/(1 + ρ/2) + 5 · ρ/(1 + ρ/2) =

(2π + 4ρ+ ρ)/(1 + ρ/2) < (2 + ρ)/(1 + ρ/2) = 2. Thus the region of de facto pi–rho

pairs is strictly smaller than π + 2ρ < 1.

Bibliographical remark: It is once suggested that a Slepian–Wolf problem can

be solved by one polar code via a technique called monotonic chain rule [Bil12].

However, the CLT aspect of the monotonic chain rule is as capable as time-sharing;

in fact, its CLT behavior is worse than my estimate here because the denominator

therein can only be a power of ℓ. It would not help us cancel the (1 + ρ/2) penalty.

In the next section, I borrow a technique that avoids approximating an irra-

tional number using rational numbers. Intuitively speaking, this technique tunes the
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distribution of random variables (note that probabilities are real numbers, mostly

irrational) to attain any necessary irrational number.

8.2. Slepian–Wolf via Source-Splitting

Source-splitting, in one sentence, divides the randomness carried by X[2] into

two random variables X[2]⟨1⟩ and X[2]⟨2⟩ and then uses them to sandwich X[1].

By choosing a proper configuration of X[2]⟨1⟩ and X[2]⟨2⟩, we can attain any irra-

tional combination on the sum-rate segment without referring to the time-sharing

technique.

In more detail, there will be X[2]⟨1⟩ and X[2]⟨2⟩ and a global “knob variable”

Q satisfying the axioms:

• Q is independent of X[1]X[2], i.e., the knob is a purely artificial variable;

• H(X[2]⟨1⟩X[2]⟨2⟩ | X[2]Q) = 0, i.e., the knob fully controls how X[2] is

split;

• H(X[2] | X[2]⟨1⟩X[2]⟨2⟩) = 0, i.e., piecing together the fragments of X[2]

yields the complete X[2]; and

• H(X[2]⟨1⟩ | Q), when Q is tuned properly, varies from 0 to H(X[2]),

continuously and inclusively.

• (Alternative to the fourth) H(X[2]⟨2⟩ | Q) varies from 0 to H(X[2]),

continuously and inclusively.

By the axioms, especially the fourth one,

• H(X[2]⟨1⟩ | X[1]X[2]⟨2⟩Q) + H(X[1] | X[2]⟨2⟩Q) + H(X[2]⟨2⟩ | Q) =

H(X[1]X[2] | Q); and

• H(X[1] | X[2]⟨2⟩Q) varies from H(X[1]) to H(X[1] | X[2]), continuously

and inclusively.

Now we let compressor[1] compress X[1] | X[2]⟨2⟩Q. Or equivalently, let it com-

press X[1] given side information X[2]⟨2⟩Q. We also let compressor[2] compress

X[2]⟨1⟩ | X[1]X[2]⟨2⟩Q and X[2]⟨2⟩ | Q. Or equivalently, let it compress X[2]⟨1⟩
given side information X[1]X[2]⟨2⟩Q, and then compress X[2]⟨2⟩ given side informa-

tion Q. By that B[1] := H(X[1] | X[2]⟨2⟩Q) varies from H(X[1]) to H(X[1] | X[2])

and that B[2] := (the sum of the other two conditional entropies) is H(X[1]X[2])−
B[1], we conclude that B := (B[1], B[2]), as a function in the distribution of Q, can

exhaust all points on the sum-rate segment.
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The formal statements are as follows.

Definition 8.3. Let random variable Q ∈ {1, 2} be independent of X[1]X[2]. Let

X[2]⟨1⟩ :=

X[2] if Q = 1,

♠ if Q = 2,

where ♠ is a placeholder symbol that replaces X[2] when Q decides that it should

hide X[2]. Similarly,

X[2]⟨2⟩ :=

♠ if Q = 1,

X[2] if Q = 2.

To abuse symbols, we can also say X[2]⟨Q⟩ = X[2] and X[2]⟨3 −Q⟩ = ♠. This is

called source-splitting or coded time-sharing.

Theorem 8.4 (Qed Slepian–Wolf). Let B be any point on the boundary of the rate

region. Fix exponents π+2ρ < 1. Then combining polar coding and source-splitting

(coded time-sharing) yields Pe < exp(−Nπ) and dist(R,B) < N−ρ at the cost of

O(logN) complexity per source observation. (Notice the absence of penalty.)

Proof. Given the definition of X[2]⟨1⟩ and X[2]⟨2⟩, we give

• compressor[2] the task of compressing X[2]⟨1⟩ given X[1]X[2]⟨2⟩Q,

• compressor[1] the task of compressing X[1] given X[2]⟨2⟩Q, and

• compressor[2] the task of compressing X[2]⟨2⟩ given Q.

By the polar coding infrastructure developed before, these tasks can be done with

the specified error and gap to entropy. The only problem is, Does this coding

scheme approach the correct entropy pair?

To find out, let

B[1] := H(X[1] | X[2]⟨2⟩Q),

B[2] := H(X[2]⟨1⟩ | X[1]X[2]⟨2⟩Q) + H(X[2]⟨2⟩ | Q).

Then B[1] + B[2] = H(X[2]⟨1⟩X[1]X[2]⟨2⟩ | Q) = H(12), so (B[1], B[2]) is always

on the sum-rate segment. When E[Q] = 1, that is, when Q is always 1, we see that

X[2]⟨2⟩ is just a useless constant. In this case, B[1] = H(X[1] | Q) = H(1) and

thus B[2] = H(12) −H(1) = H(2|1). When E[Q] = 2, that is, when Q is always

2, we see that X[2]⟨2⟩ = X[2]. In this case, B[1] = H(X[1] | X[2]Q) = H(1|2) and

thus B[2] = H(12)−B[2] = H(2).
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Figure 8.3. Lossless compression with one helper.

All in all, when E[Q] varies continuously from 1 to 2, the pair (B[1], B[2]) varies

continuously from (H(1), H(2|1)) to (H(1|2), H(2)), and there must be a moment

where B = (B[1], B[2]). Unless B is on the vertical or horizontal ray, in which case

the theorem is trivial. That ends the proof. □

That is how to generalize the second-moment paradigm to Slepian–Wolf prob-

lems. Similar statements can be made for exp(−nτ ) error and log(logN) complex-

ity. The proof will be essentially the same and is omitted.

In the next section, we talk about a variant of Slepian–Wolf where the second

source is not of interest, but compressing it helps the decompressor reconstruct the

first.

8.3. Compression with Helper

A lossless compression problem with a helper is a distributed lossless compres-

sion problem with one sender and one helper. See Figure 8.3 for the specification.

The pair R := (R[1], R[∞]) is still called the rate pair and the region of possible

rate pairs is still called the rate region. The only difference is, this time, the block

error probability Pe is the probability that X̂[1]N1 ̸= X[1]N1 .

Similar to the Slepian–Wolf case, the rate region of the one-helper problem can

be characterized by an easy observation that “it should satisfy this” and a proof

that confirms the observation.

The easy observation is that, if we manage to find a random variable U [∞] that

represents X[∞] pretty well, then compressor[1] needs only to compress X[1] given

U [∞] while compressor[∞] needs to assure that the decompressor receives U [∞].

For the latter, compressor[∞] sends I(X[∞] ; U [∞]) bits per source observation.
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H(X[∞])

H(X[1] | X[∞]) H(X[1])

R[2]

R[1]

Figure 8.4. An example rate region of lossless compression prob-

lem with one helper. The gray segment is to contract the curved

(unioned) boundary. Here, both X[1] and X[∞] are uniform bi-

nary sources with correlation I(X[1] ; X[∞]) = 3/4.

Theorem 8.5 (Lossless compression with one helper). [AK75] The rate region

for lossless source coding of X[1] with a helper source X[∞] consists of all pairs

(R[1], R[∞]) ∈ R2 such that

R[1] ⩾ H(X[1] | U [∞]),

R[∞] ⩾ I(X[∞] ; U [∞])

unioned over all random variables U [∞] that depend on X[∞] but not on X[1].

Moreover, it is sufficient to consider the size of the alphabet of U [∞] that is one

plus the size of the alphabet of X[∞]. See also Figure 8.4.

Remark: A subtle detail in the theorem statement is that the rate region is

the union of all (R[1], R[∞]), not the convex hull of the union of all (R[1], R[∞]).

In other words, the rate region for this one-sender one-helper scenario does not

need time-sharing to become convex—every point on the boundary is achievable by

some clever choice of U [∞]. In fact, the variable U [∞] can itself be the knob that

controls, continuously, the time-sharing coefficient if there are really two schemes

to be combined.

Per the remark, we now have a very straightforward scheme to achieve the

second moment behavior for this problem—for any B on the boundary, pick a
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U [∞] that achieves this B, use lossless compression to approach H(X[1] | U [∞]),

and use lossy compression to approach I(X[∞] ; U [∞]).

Theorem 8.6 (Polar coding with one helper). Let B be any point on the boundary

of the rate region. Fix exponents π + 2ρ < 1. Then polar coding alone yields

Pe < exp(−Nπ) and dist(R,B) < N−ρ at the cost of O(logN) complexity per

source observation.

Proof. Let U [∞] be the auxiliary variable such that

B =
(
H(X[1] | U [∞]), I(X[∞] ; [∞])

)
.

Tell compressor[1] to compress X[1] losslessly with U [∞] as the side information.

Tell compressor[∞] to do lossy compression with U [∞] → X[∞] being the test

channel. Both of them are covered by the infrastructure and can be done with the

specified error and gap to entropy. □

Remark: The same can be stated with error exp(nτ ) and complexity log(logN).

The proof is exactly the same and thus omitted.

It is pointless to have two helpers and no senders. So two senders and one-

sender–one-helper are all we need to consider for two random sources. In the

upcoming sections, we will see scenarios with more than two sources. The very

next scenario we will go over is when there are three senders.

8.4. Three-Sender Slepian–Wolf

Starting from three senders, a rate region of a distributed compression problem

will be a subset in a higher-dimensional Euclidean space. Most importantly, the

sum-rate segment will become a sum-rate polygon or even a sum-rate polyhedron.

They are also called the dominant face, where dominance refers to the fact that it

is the set of minimal points under coordinate-wise comparison, and face refers to

that it has co-dimension 1 in the ambient space.

To achieve the sum-rate polyhedron, we can always apply time-sharing and

accept the penalty (1+2ρ/3). (Note that it is even harder to approximate multiple

irrational numbers using a common denominator, so ρ/2 will become 2ρ/3, 3ρ/4,

etc. as the dimension increases.) We can also generalize source-splitting to multiple

senders. In the latter case, the problem boils down to why source-splitting exhausts

all points in the sum-rate polyhedron; and this is nontrivial.
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Figure 8.5. Distributed lossless compression with three senders.

To demonstrate the non-triviality of source-splitting, consider three senders.

See Figure 8.5 for the specification. An easy observation is that, for any sender,

its corresponding rate is at least the entropy of its source conditioned on the other

two sources. That is,

(8.2) R[1] ⩾ H(1|23) R[2] ⩾ H(2|13) R[3] ⩾ H(3|12).

Similarly, any two senders should send out the entropy of their sources conditioned

on the remaining one source. That is,

(8.3) R[1] + R[2] ⩾ H(12|3) R[1] + R[3] ⩾ H(13|2) R[2] + R[3] ⩾ H(23|1).

And lastly, the sum-rate is no less than the overall entropy:

(8.4) R[1] + R[2] + R[3] ⩾ H(123).

Theses inequalities turn out the be the only inequalities that a feasible rate tuple

needs to satisfy.

With only inequalities (8.2), the rate region looks like a cube (which actually

extends to infinity). Now inequalities (8.3) will chamfer the three edges that are

closest to the axes. And finally, inequality (8.4) will truncate the corner that is

closest to the origin. See Figure 8.6 for an illustration of the result. The rate

hexagon is the intersection of the rate region with inequality (8.4) replaced by

equality.

Now consider the following source-splitting setup.
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R[1]
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Figure 8.6. The rate region for if there are three senders. The

camera is inside the rate region, looking at the origin. A pentagon

with square mesh is when one of inequalities (8.2) is forced to be

an equality. A rectangle with rectangular mesh is when one of

inequalities (8.3) is forced to be an equality. The hexagon is when

the sum-rate equals the total entropy.

• X[1] will not be split, but will be denoted by X[1]⟨1⟩ for notational com-

patibility;

• X[2] will be split into X[2]⟨1⟩ and X[2]⟨2⟩; and

• X[3] will be split into X[3]⟨1⟩, X[3]⟨2⟩, X[3]⟨3⟩, and X[3]⟨4⟩.

And now we use the fragments of X[3] to sandwich “the sandwich made out of X[1]

and X[2]”. More precisely, we order them as

(8.5) X[3]⟨1⟩, X[2]⟨1⟩, X[3]⟨2⟩, X[1]⟨1⟩, X[3]⟨3⟩, X[2]⟨2⟩, X[3]⟨4⟩.

In general, the fragment X[m]⟨l⟩ will be placed at (2l− 1)/2m on the number line,

and then we read off the fragments from left to right.
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Table 8.1. Splitting three sources per the permutation Q. Note

that there are eight rows because two permutations (312 and 213)

assume two solutions.

Q X[3]⟨1⟩ X[2]⟨1⟩ X[3]⟨2⟩ X[1]⟨1⟩ X[3]⟨3⟩ X[2]⟨2⟩ X[3]⟨4⟩

123 ♠ ♠ ♠ X[1] ♠ X[2] X[3]

132 ♠ ♠ ♠ X[1] X[3] X[2] ♠

312 ♠ ♠ X[3] X[1] ♠ X[2] ♠

312 X[3] ♠ ♠ X[1] ♠ X[2] ♠

321 X[3] X[2] ♠ X[1] ♠ ♠ ♠

231 ♠ X[2] X[3] X[1] ♠ ♠ ♠

213 ♠ X[2] ♠ X[1] X[3] ♠ ♠

213 ♠ X[2] ♠ X[1] ♠ ♠ X[3]

Let Q be a random variable that outputs a permutation of {1, 2, 3}. That is to

say, Q ∈ S3 := {123, 132, 312, 321, 231, 213}. Depending on Q, we want to assign

each fragment a true value or a placeholder symbol. For a fixed m, all X[m]⟨l⟩ will

be ♠ except that one will be X[m]. The fragments that get the true values are

such that X[Q(1)] will appear first on the number line, followed by X[Q(2)], and

finishing with X[Q(3)]. For example, if Q = 231, then X[2]⟨1⟩ gets the true value

of X[2] and X[3][2] gets the true value of X[3]. Now sequence (8.5) becomes

♠, X[2]⟨1⟩ = X[2], X[3]⟨2⟩ = X[3], X[1]⟨1⟩ = X[1], ♠, ♠, ♠.

See Table 8.1 for the other Q’s. The assignment is not necessarily unique (e.g.,

when Q = 213 or Q = 312); we will get back to this soon.

With the fragments defined, I will specify the coding scheme: For each X[m]⟨l⟩,
it will be compressed by compressor[m] given all fragments to the right and Q. More

precisely,

• compressor[3] will compress X[3]⟨1⟩ given X[2]⟨1⟩X[3]⟨2⟩X[1]⟨1⟩X[3]⟨3⟩
X[2]⟨2⟩X[3]⟨4⟩Q,
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• compressor[2] will compress X[2]⟨1⟩ given X[3]⟨2⟩X[1]⟨1⟩X[3]⟨3⟩X[2]⟨2⟩
X[3]⟨4⟩Q,

• compressor[3] will compress X[3]⟨2⟩ given X[1]⟨1⟩X[3]⟨3⟩X[2]⟨2⟩X[3]⟨4⟩
Q,

• compressor[1] will compress X[1]⟨1⟩ given X[3]⟨3⟩X[2]⟨2⟩X[3]⟨4⟩Q,

• compressor[3] will compress X[3]⟨3⟩ given X[2]⟨2⟩X[3]⟨4⟩Q,

• compressor[2] will compress X[2]⟨2⟩ given X[3]⟨4⟩Q, and finally

• compressor[3] will compress X[3]⟨4⟩ given Q.

Let B[m] be the sum of the conditional entropies of the duties of compressor[m].

It is clear that the sum of these conditional entropies is H(X[1]X[2]X[3]) by the

chain rule; so B := (B[1], B[2], B[3) lies on the sum-rate hexagon. The claim is

that, by equipping Q with the correct distribution, B achieves any point on the

sum-rate hexagon.

Theorem 8.7 (Onto the hexagon). B := (B[1], B[2], B[3]) exhausts all points on

the sum-rate hexagon as Q varies over all distributions on S3.

Proof. The sum-rate hexagon has vertices

(H(1|3), H(2|13), H(3)), (H(1|23), H(2|3), H(3)),

(H(1), H(2|31), H(3|1)), (H(1|32), H(2), H(3|2)),

(H(1), H(2|1), H(3|21)), (H(1|2), H(2), H(3|12)).

Each permutation on {1, 2, 3} corresponds to a vertex by specifying which sources

are compressed in full and which are conditioned on the others. For instance, the

permutation 123 corresponds to the vertex on the top right, and the permutation

321 corresponds to the vertex on the bottom left. See Figure 8.7 for more on this

correspondence. (Note that (H(3|21), H(2|1), H(1)) does not make sense, because

compressor[1] cannot access X[3].)

Our strategy is as follows: We first show that every vertex is achievable. We

then show that every edge is achievable. We lastly show that the entire hexagon is

achievable.

The first goal is straightforward. If we want to achieve, for instance, the vertex

(H(1), H(2|31), H(3|1)) corresponding to the permutation 231, then let Q = 231

with probability 1. This means that X[2]⟨1⟩ = X[2] and X[3]⟨2⟩ = X[3] constantly,

149



and the other fragments are all ♠ constantly. As a result, compressor[2] will have

to compress X[2] | X[3]X[1], compressor[3] will have to compress X[3] | X[1], and

compressor[1] will have to compress X[1]. Now B := (B[1], B[2], B[3]) becomes

(H(1), H(2|31), H(3|1)), as desired. For any other vertex, the argument is similar

and thus omitted.

To achieve the second goal, take the edge 312–321 as an example. Now we let

Q = 312 with probability 1− t and let Q = 321 with probability t. As t goes from

0 to 1, the knob Q varies from constantly 312 to constantly 321. This means that

B moves from the vertex 312 to the vertex 321. Along this process, X[3] is always

compressed conditioned on the other two, so B[3] is always H(3|12) = H(3|21).

This means that B(t), as a function in t, maps surjectively onto the edge 312–321

of the hexagon. For any other edge, the argument is similar and thus omitted.

It remains to show that B, as a function in the distribution of Q, maps sur-

jectively onto the hexagon. To this end, consider the following “Tour de France”

definition of Qt

Qt =



constantly 123 when t = 0,

constantly 132 when t = 1,

constantly 312 when t = 2,

constantly 321 when t = 3,

constantly 231 when t = 4,

constantly 213 when t = 5,

constantly 123 when t = 6,

and filling in the non-integer t by interpolation

Qt =

Q⌈t⌉ with probability ⌈t⌉ − t,

Q⌊t⌋ with probability t− ⌊t⌋.

By the previous paragraph, B(t) will travel through each edge of the hexagon

(although we have no idea the velocity it travels) in the order given in Table 8.1.

Now let me borrow some algebraic topology nonsense: The space of the distri-

butions on S3 is contractible to the uniform distribution. Thus the Tour de France

Qt is a cycle (mapped to 0 by the co-differential operator ∂) that happens to be

the boundary (the image under ∂) of some disk D. This disk D has its boundary
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Figure 8.7. The sum-rate hexagon with vertices indexed by permutations.

mapped to the boundary of the hexagon with winding number 1 (degree 1), so D

will map surjectively onto the hexagon. That completes the proof. □

The proof is inspired by [GRUW01], where multiple access channels are con-

sidered. Once we know how to use Q to attain any point on the sum-rate hexagon,

use the infrastructure to code.

Corollary 8.8 (Polar coding for three senders). For three-sender distributed loss-

less compression, polar coding coupled with source-splitting attains every point on

the boundary of the rate region with N−ρ gap.

The next section combines everything we learned so far in this chapter to attack

the problem with more than three senders and one helper.

8.5. Many Senders with One Helper

Below [EGK11, Theorem 10.4], the authors commented that the optimal rate

region is unknown when there are two helpers. That is to say, the most general case

with known rate region is when there are multiple senders and one helper. We stick

to the cases with known rate region because we want to state theorems about the

pace of convergence; only when the aimed limit is optimal is this pace meaningful.
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For a many-sender one helper problem, the description of the rate region is a

combination of inequalities of the form R[1]+R[3]+R[5] ⩾ H(135|246) and R[∞] ⩾

the capacity of a proper test channel.

Theorem 8.9 (Distributed lossless compression with a helper). The optimal rate

region for lossless source coding of X[1], . . . , X[M ] with helper source X[∞] is de-

scribed by

(8.6)
∑
m∈S

R[m] ⩽ H(X[S] | U [∞], X[S∁])

for all subsets S ⊆ {1, . . . ,M} and

R[∞] ⩾ I(X[∞] ; U [∞])

unioned over all random variables U [∞]. Here, X[S] is the tuple (X[m] : m ∈ S)

and X[S∁] is what is left (X[m] : m /∈ S).

Note that the theorem implicitly uses U [∞] as a coded time-sharing knob so

there is not need to take the convex hull of the union. Now fix a point B on the

boundary of the rate region. Fix a U [∞] that achieve this point in the rate region.

Then inequalities (8.6) is a family of inequalities parametrized by the subset S of

{1, . . . ,m}. The right-hand side of the inequalities,

H(X[S] | U [∞], X[S∁]) = H
(
(X[m] : m ∈ S) | U [∞], (X[m] : m /∈ S)

)
,

is a supermodular function in S. To verify this, it suffices to check the three variable

case.

Lemma 8.10 (Supermodularity). For any random variables X,Y, Z,

H(XY | Z) + H(Y Z | X) ⩽ H(Y | XZ) + H(XY Z).

Proof. Subtract 2H(XY Z) from both sides; the desired inequality is equiva-

lent to H(X) + H(Z) ⩾ H(XZ). □

A supermodular function comes with a contra-polymatroid defined by the sum

of coordinates over a subset S being greater than or equal to the function evaluation

at S. In other words, the rate region with a fixed U [∞] is a contra-polymatroid.

This is the dual case of a polymatroid defined by a submodular function. The

latter is seen when one considers the capacity region of a multiple access channel

[GRUW01].
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By the duality between (submodular function, polymatroid) and (supermodular

function, contra-polymatroid), the proof given in [GRUW01] applies here. The

proof therein says that the rate-splitting technique exhausts all points on the sum-

rate polyhedron of a multiple access channel. And here, we conclude that the source-

splitting technique exhausts all points on the sum-rate polyhedron of a distributed

lossless compression.

Corollary 8.11 (Polar coding for many-sender one-helper). Polar coding coupled

with source-splitting attains every point on the boundary of the rate region with N−ρ

gap.

Sketch of the proof. Given the polar coding infrastructure, it suffices to

construct a scheme to split sources and show that it exhausts all point on the

sum-rate polyhedron (aka. the dominant face).

The splitting scheme will look like the following: For each m, the mth source

X[m] will be split into 2m−1 fragments and the latter are named X[m]⟨1⟩, . . . ,
X[m]⟨2m−1⟩. Each fragment X[m]⟨l⟩ will be placed at (2l − 1)/2m on the number

line. The mth compressor will compress X[m]⟨l⟩ given everything to its right. The

mth duty entropy, B[m], will be the sum of H(X[m]⟨l⟩ | fragments to its right)

over all l, which will also be the limit of R[m] as the block length goes to infinity.

Now apply induction to show that every d-dimensional facet of the sum-rate

polyhedron is achievable by source-splitting.

• Show that every vertex of the sum-rate polyhedron corresponds to a per-

mutation of {1, . . . ,M}; and show that by reordering the sources in all

possible ways, the duty tuple (B[1], . . . , B[M ]) attains all vertices.

• Show that every edge of the sum-rate polyhedron corresponds to a smooth

transition between two permutations that differ by a swap.

• Show that every face (2-dimensional facet) is mapped surjectively because

there is a Tour de France Qt whose image goes around the boundary once

while the domain is contractible.

• Show the similar argument that if a map from a topological ball maps

the boundary to the boundary of a facet of the polygon, plus the induced

map on the top homology groups is 1 (multiplying by one), then the map

is surjective.
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Û [1]
R[1]N
1
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Figure 8.8. Multiple access channel with three senders.

For more details, see [GRUW01]. □

A similar statement can be made with log(logN) complexity. The proof is

essentially the same except that when we invoke the infrastructure, the log-log

code is used instead of the second-moment code.

I will end the dissertation with a remark on the dual of distributed compression.

8.6. On Multiple Access Channels

Multiple access channels are noisy channels that take multiple inputs—each

from a different encoder—and output to a unified decoder. The assumption that

the encoders cannot talk to each other and that the decoder has all information in

hand to make decisions make this problem a proper dual of distributed compression.

See Figure 8.8 for an example specification of a multiple access channel with three

senders and compare it with Figure 8.5.

The capacity region of a multiple access channel is defined similarly to the

rate region of distributed compression. For instance for three senders, the capacity

region is the set of (R[1], R[2], R[3]) such that a reliable communication can be

carried. Then the pessimistic criteria are, for instance

• sender[1] can send out at most I(X[1] ; Y | X[2]X[3]) bits reliably,

• senders [1] and [2] together can send out at most I(X[1]X[2] ; Y | X[3])

bits reliably, and
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Figure 8.9. The capacity region of a three-sender multiple access channel.

• all three senders together can send out at most I(X[1]X[2]X[3] ; Y ) bits

reliably.

Hence the following characterization of the capacity region. See also Figure 8.9.

Theorem 8.12 (Rate region of multiple access channel). For any multiple access

channel with M senders, the capacity region is the set of points (R[1], . . . , R[M ])

such that, for all subsets S ⊆ {1, . . . ,M},∑
m∈S

R[m] ⩽ I(X[S] ; Y | S[S∁], Q),

unioned over all possible distributions of the inputs X[1], . . . , X[M ] and the knob

variable Q.

As commented before, [GRUW01] showed that one can split a multiple ac-

cess channel into several one-to-one DMCs. Once that is done, we can apply the

infrastructure.
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Corollary 8.13 (Polar coding for multiple access channel). Polar coding coupled

with rate-splitting attains every point on the boundary of the capacity region with

N−ρ gap.

Proof. [GRUW01] reduces this problem into at most 2M (twice the number

of senders) DMCs. For each DMC, apply the polar coding infrastructure. □

A similar statement can be made with log(logN) complexity. The proof is

essentially the same except that when we invoke the infrastructure, the log-log

code is used instead of the second-moment code.
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