
© 2021 Shant Boodaghians

SEARCH AND OPTIMIZATION WITH RANDOMNESS IN COMPUTATIONAL
ECONOMICS: EQUILIBRIA, PRICING, AND DECISIONS

BY

SHANT BOODAGHIANS

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Assistant Professor Ruta Mehta, Chair
Professor Chandra Chekuri
Professor Sariel Har-Peled
Assistant Professor Yang Cai, Yale University

Abstract

In this thesis we study search and optimization problems from computational economics

with primarily stochastic inputs. The results are grouped into two categories: First, we

address the smoothed analysis of Nash equilibrium computation. Second, we address two

pricing problems in mechanism design, and solve two economically motivated stochastic

optimization problems.

Computing Nash equilibria is a central question in the game-theoretic study of economic

systems of agent interactions. The worst-case analysis of this problem has been studied in

depth, but little was known beyond the worst case. We study this problem in the framework

of smoothed analysis, where adversarial inputs are randomly perturbed. We show that

computing Nash equilibria is hard for 2-player games even when input perturbations are

large. This is despite the existence of approximation algorithms in a similar regime. In

doing so, our result disproves a conjecture relating approximation schemes to smoothed

analysis. Despite the hardness results in general, we also present a special case of co-

operative games, where we show that the natural greedy algorithm for finding equilibria

has polynomial smoothed complexity. We also develop reductions which preserve smoothed

analysis.

In the second part of the thesis, we consider optimization problems which are motivated

by economic applications. We address two stochastic optimization problems. We begin

by developing optimal methods to determine the best among binary classifiers, when the

objective function is known only through pairwise comparisons, e.g. when the objective

function is the subjective opinion of a client. Finally, we extend known algorithms in the

Pandora’s box problem — a classic optimal search problem — to an order-constrained setting

which allows for richer modelling.

The remaining chapters address two pricing problems from mechanism design. First, we

provide an approximately revenue-optimal pricing scheme for the problem of selling time

on a server to jobs whose parameters are sampled i.i.d. from an unknown distribution. We

then tackle the problem of fairly dividing chores among a collection of economic agents via

a competitive equilibrium, which balances assigned tasks with payouts. We give efficient

algorithms to compute such an equilibrium.

ii

To my family and friends, who

have stood by me from the start.

iii

Acknowledgments

First, I would like to express my deepest gratitude towards my Ph.D. advisor, Ruta Mehta.

Very little of this thesis would have been possible without your diligent efforts, both as an

advisor and as a mentor. You have never hesitated to tackle hard problems alongside your

students when it was needed, you have introduced me to many new and interesting problems,

and you have provided a wealth of opportunities to work with amazing academics. These

experiences have been the highlight of my time here.

I am also grateful for the amazing colleagues and friends that I have found in the theory

group here, and the welcoming community they form. I am grateful to Mitchell Jones,

Sahand Mozaffari, Robert Andrews, Xilin Yu, Bolton Bailey, Patrick Lin, Ian Ludden, Vasilis

Livanos, Phil Amortila, Charlie Carlson, Tanvi Bajpai, Meghan Shanks, Zander Kelley,

Rucha Kulkarni, Pooja Kulkarni, Chao Xu, Belinda Tzen, Eliot Robson, Manuel Torres,

Samir Khan, and Spencer Gordon, for having been my friends and peers in these wonderful

years. Additionally, I would like to thank Robert, Sahand, and Mitchell, for always being

willing to hear me out when I needed to share what I was working on. Your patience and

curiosity is greatly appreciated, and my Ph.D. would not have been the same without it.

I have also had the fortune of working with many brilliant minds all around the world

during my Ph.D.: Professor Ruta Mehta, Prof. Yishay Mansour, Gaurush Hiranandani, Prof.

Sanmi Koyejo, Rucha Kulkarni, Prof. Karthekeyan Chandrasekaran, Prof. Stefano Leonardi,

Federico Fusco, Philip Lazos, Prof. Aviad Rubinstein, Joshua Brakensiek, and Bhaskar Ray

Chaudhury, in chronological order. I am very grateful to all of them for the time we have

spent together solving these hard problems, and the opportunity to work with other excited

minds on great papers. I would also like to thank Prof. Aviad Rubinstein and Prof. Stefano

Leonardi for giving me the opportunity to visit them, and to thank Joshua Brakensiek and

Federico Fusco, for being constant colleagues on these respective visits. My time spent

with both groups was productive and memorable. Furthermore, I would like to thank Prof.

Adrian Vetta for having started me along this path.

Finally, I would like to thank the many friends who have been a part of my life outside of

the University, and back home. This thesis would not have been possible without the friends

and my family who have always been supportive of me. To my parents and grandparents, to

my brother Levon, to my friends back home Thomas, Bruce, and Terrence, and to Christine,

I owe a debt of gratitude, for being there when I needed them, for teaching me to grow as a

person, and for stimulating, enlightening conversations.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Games, Equilibria, and Smoothed Analysis 2
1.2 Decision Theory and Optimal Pricing . 11
1.3 Outline of Thesis and Notation . 20

CHAPTER 2 SMOOTHED COMPLEXITY OF 2-PLAYER NASH EQUILIBRIA . 22
2.1 Overview . 23
2.2 An Anti-Concentration Lemma . 25
2.3 Bounding the Support Size of Equilibria . 29
2.4 Bounding the Norm of Equilibria . 34
2.5 The Reduction, and Proof of Main Theorem 37

CHAPTER 3 SMOOTHED EFFICIENT ALGORITHMS FOR NETWORK CO-
ORDINATION GAMES . 40
3.1 A Common Framework . 41
3.2 Results and Related Work . 44
3.3 Overview and Notation . 45
3.4 Rank Bounds and Union Bounds via Rounding, in Complete Graphs 50
3.5 Rank Bounds and Union Bounds via Cyclic Sums, for General Graphs 55
3.6 Combining the Bounds . 58

CHAPTER 4 SMOOTHNESS-PRESERVING REDUCTIONS 63
4.1 Smoothness-Preserving Reductions . 65
4.2 Reduction from 2-NetCoordNash to Local-Max-Cut 67
4.3 Reduction from k-NetCoordNash to Local-Max-Bisection 71

CHAPTER 5 THE PANDORA’S BOX PROBLEM WITH ORDER CONSTRAINTS 78
5.1 Overview . 79
5.2 Model and Preliminaries. 83
5.3 Optimal Search on Tree Constraints, New Proof 87
5.4 Adaptivity Gaps and Approximation Beyond Tree Constraints. 90
5.5 Impossibility and Hardness Results. 97
5.6 Robustness to Approximate Distributional Information, or Sample Access . . 101

CHAPTER 6 BINARY PERFORMANCE METRIC ELICITATION FROM PAIR-
WISE CLASSIFIER COMPARISONS . 105
6.1 Preliminaries . 108
6.2 Characterizing the Space of Confusion Matrices 111

v

6.3 Algorithms . 115
6.4 Eliciting Linear Performance Metrics . 120
6.5 Eliciting Linear Fractional Performance Metrics 124

CHAPTER 7 ONLINE REVENUE MAXIMIZATION FOR SERVER PRICING . . 129
7.1 Overview and Model . 130
7.2 Bayes-Optimal Strategies for Sever Pricing, Assuming Monotonicity 132
7.3 Concentration Bounds, and Extensions . 139
7.4 Robustness of Pricing with Approximate Distributional Knowledge 145
7.5 Log-Concave Distributions . 150

CHAPTER 8 EXTERIOR-POINT METHODS FOR FAIRLY ALLOCATING
CHORES . 153
8.1 Preliminaries . 153
8.2 Approximate KKT Suffices . 155
8.3 Algorithm, and Convergence Guarantees . 158

CHAPTER 9 CONCLUSIONS AND FUTURE DIRECTIONS 162
9.1 Smoothed Analysis for Nash Equilibrium Computation 162
9.2 Decision Theory Problems and Pricing Problems 163

REFERENCES . 165

vi

CHAPTER 1: INTRODUCTION

The classical study of microeconomics is concerned with the behaviour of rational, selfish

agents in economic interactions, with topics ranging from the decision problems of the agents

themselves, to the design of systems which incentivize desirable behaviour. The advent of

computational resources and optimization techniques has allowed economists to ask these

questions in the language of Algorithms and Complexity. This has come to be known as

Computational Economics, which includes Algorithmic Game Theory, the computational

study of classical game-theoretic problems such as equilibrium computation.

Algorithmic Game Theory as a field can be broadly divided into two main categories, which

are reflected in the organization of this thesis. The first of these is equilibrium computation,

which has centered around the notion of Nash equilibria in games — defined below — and

the computational considerations in finding equilibria, which has led to its own subfield of

complexity theory. The second category focuses on the optimization problems that a rational

economic agent would consider, such as asking how to behave optimally as a single agent

— referred to as decision theory — and asking how to set up a system or a market so that

others behave in a desirable way — referred to as mechanism design.

Games are a fundamental model of interaction between rational, selfish agents, due to

being both simple and expressive. The most widely studied solution concept for games is

that of Nash equilibria, which capture stable states where no agent is incentivized to change

their decisions, and is therefore central to understanding the eventual behaviour of rational

agents in games. (See e.g. [1] for a survey.) Despite this, a sequence of seminal results

established the worst-case complexity for the problem of Nash equilibrium computation,

conjecturing that equilibria can not be found in quasi-polynomial time.1 The complexity

class PPAD was introduced to capture these problems [2], and Nash equilibrium computation

was shown to be complete for this class [3]. Notably, approximately finding an equilibrium

in a game with only two players is also PPAD-complete [4]. For this reason, and due to the

importance of Nash equilibria, the community has turned its attention to beyond-worst-case

analysis, which seeks to theoretically model the “in-practice” performance of algorithms, by

arguing that worst-case instances are rare, or pathological. One of the most studied forms

of beyond-worst-case analysis is known as smoothed analysis, which fixes an algorithm for

some problem, and seeks to show that when an adversarially chosen input to this algorithm

is randomly perturbed, then with high probability, the running time of the algorithm is a

small function of the input size and of parameters of the perturbation’s distribution function.

1A function is said to be quasipolynomial in n if it is bounded by nO(logn).

1

In the first part of this thesis, we present smoothed analysis for Nash equilibrium com-

putation for two game models. For two-player games, we disprove a conjecture relating

smoothed complexity to approximation hardness, by giving a smoothed hardness result.

However, in a model of multi-player collaboration games, we show that a simple local im-

provement algorithm has polynomial smoothed complexity. In the former, we show that the

hardness-of-approximation results for 2-player implies hardness of equilibrium computation

still holds when the parameters of the game are randomly perturbed. Specifically, we show

the hardness of equilibrium computation holds even when the size of the random perturba-

tion is in a regime where efficient approximation is possible. To the best of our knowledge,

this beyond-worst-case hardness when approximation is possible is novel. Second, we show

positive results in a model of many-player co-operative play. We consider the “natural dy-

namic”, where players will greedily make changes that improve their individual outcome,

until an equilibrium point is reached. We show that such natural dynamics converge quickly

to an equilibrium, with high probability, when the game parameters are perturbed, despite

taking exponentially many transitions in the worst case.

When games are implicitly defined, finding the optimal behaviour for a rational agent can

also be a computationally challenging task. The computational complexity is even greater

when determining the parameters of a game so as to incentivize desirable behaviour in

players who optimize their reward. Such computational problems are known as decision

problems and mechanism design, respectively. In the second part of the thesis, we study a

variety of optimization problems, primarily stochastic, which arise in decision theory and

mechanism design, and present efficient algorithms to solve them. These problems combine

aspects of standard optimization theory with game-theoretic notions, such as the need to

model selfish play in an allocation problem, or to minimize the cost of optimization when

there is a financial cost attributed to exploration.

In the following sections, we introduce the historical context, and economic concepts, nec-

essary for the first part of the thesis. We begin by introducing game-theoretic concepts, the

specific notion of beyond-worst-case analysis considered, and our beyond-worst-case results

in Nash equilibrium computation. We then go on to introduce the background for the sec-

ond part of the thesis, laying out the economically motivated optimization problems that we

consider.

1.1 GAMES, EQUILIBRIA, AND SMOOTHED ANALYSIS

As discussed above, a game is a model that captures the rewards and costs to rational

economic decision-makers when they interact [1, 5]. Each agent or player has a finite col-

2

lection of strategies to choose from, and depending on everyone’s choice of strategy, each

player receives some reward, possibly negative. Our goal is to understand how the players

in the game are likely to behave, namely which strategies they are likely to choose.

As an example of a 2-player game, consider rock-paper-scissors. Each player has 3 strate-

gies to choose from, namely rock, paper, or scissors, and their reward depends on the choice

of both players. We say they both receive 0 if a tie occurs, and if a tie does not occur, the

winning player receives 1 and the losing player receives −1. Note that the rewards here do

not depend on which particular strategy was chosen that led to a win or a loss, but the

model could have been modified to account for this.

Formally, a game G with n players and m strategies, consists of a collection of n payoff

functions u1, . . . , un which determine the payoff to each player. Without loss of generality,

each player must choose a strategy from [m] := {1, . . . , m}. We denote the simultaneous

choice of strategy for each player as a vector σ ∈ [m]n. This is known as the strategy profile.

The i-th payoff function determines the payoff to player i ∈ [n] as a function of the strategy

profile, and is denoted by ui : [m]n → R.

A player wishes to maximize their payoff, in response to the strategy choice of the other

players. It is common to denote the strategy profile of all players except the i-th as the

(n− 1)-dimensional vector σ−i. Furthermore, writing σ = (σi,σ−i) highlights the choice of

the i-th player in σ. Thus, player i would prefer to select σi over σ′i as a response to σ−i if

ui(σi,σ−i) > ui(σ
′
i,σ−i).

Players may wish to randomize their strategy, and seek to maximize their expected reward.

As an example, in the rock-paper-scissors game introduced above, no pair of deterministic

strategies is stable, but if both players uniformly sample between all three options, then it

is not in either’s interest (in expectation) to deviate. Let ∆m denote the m-dimensional

probability simplex, i.e. the space of probability mass functions supported on the integers

1 through m, represented as a vector. Formally, each player chooses a distribution πi ∈ ∆m

over the m possible choices. Let π denote the simultaneous random strategy choice for all

players. We assume that the random strategies of the different players are independently

distributed. The notation of π−i is defined as in the deterministic case. The payoff to player

i is now their expected payoff, denoted by ui(π) := Eσ∼π[ui(σ)], in an abuse of notation.

3

1.1.1 Nash Equilibria

A strategy profile is at an equilibrium if no single player can benefit by changing their

strategy, assuming the strategies of the remaining players are kept fixed.2 An equilibrium is

said to be pure if none of the players are randomizing. We can assume that rational economic

agents will behave according to some equilibrium state of the game, as otherwise at least one

player is incentivized to move away from the current state. This effectively models Adam

Smith’s invisible hand of the market. In this sense, the study of equilibria allows us to predict

agent behaviour. The economic merits of this definition have been critiqued (see e.g. [6, ch.

1]), but the concept has nonetheless seen much interest.

Nash equilibria capture stable states when agents are randomizing over strategies, and

wish to maximize their expected returns, as introduced above. John Nash popularized this

concept by showing that such equilibria must exist in any game [7], which cemented their

importance as a solution concept. This is formalized in the following.

Definition 1.1 (Nash Equilibrium [7]). Let G be a game with n players and m strategies

each, with payoff functions ui : (∆m)n → R for all 1 ≤ i ≤ n, the abuse of notation

introduced above. Then a Nash equilibrium of G is a (randomized) strategy profile π such

that no player prefers to deviate when all other players’ strategies remain fixed, and thus all

players are simultaneously playing optimally in response to the other players. Formally,

ui(πi,π−i) ≥ ui(π
′
i,π−i) ∀ π′i ∈ ∆m for every player i. (1.1)

Nash’s original proof of the existence of these equilibrium points consisted of providing a

procedure to update the players’ strategy distributions to better respond to their adversaries’

decisions, and showing that there must exist a fixed-point to this procedure.

One may also choose to weaken this notion by requiring only approximately optimal play.

Here, we want a profile where no player can benefit too much by deviating.

Definition 1.2 (ε-approximate Nash Equilibrium). Let m, n, and the ui : (∆m)n → R
be as above. Then, an ε-approximate Nash Equilibrium (ε-NE) is a (randomized) strategy

profile π such that no player can benefit by more than ε by deviating when all other players’

strategies remain fixed. Formally,

ui(πi,π−i) ≥ ui(π
′
i,π−i)− ε ∀ π′i ∈ ∆m for every player i. (1.2)

2More general notions of equilibria exist, which require that no group of players be able to benefit as a
coalition, but they are not relevant to the work presented in this thesis.

4

It is worth noting that the payoff from any randomized strategy is a convex combination

of payoffs from deterministic strategies, and therefore the requirement to perform better

than any randomized strategy can be weakened to comparing exclusively to deterministic

strategies. Formally,

ui(πi,π−i) ≥ ui(π
′
i,π−i)− ε ∀ π′i ∈ ∆m

⇐⇒ ui(πi,π−i) ≥ ui(σ
′
i,π−i)− ε ∀ σi ∈ [m] (1.3)

1.1.2 Bilinear Notation for 2-Player Games

For clarity of presentation, we introduce notation specific to the case of 2-player games.

This case is of interest as it is conceptually simpler while still being computationally hard.

Let G be a game with 2 players choosing from m strategies each, then the payoff functions u1

and u2 are represented by m×m matrices A and B respectively. Let Ai,j := u1

(
(i, j)

)
and

Bi,j := u2

(
(i, j)

)
, where the arguments are pure (deterministic) strategy pairs. Note that,

effectively, the first player selects the row of the payoff matrices that the players observe,

and the second player selects the column, making them the row player and column player,

respectively.

When the players randomize, let x ∈ ∆m denote the distribution over the strategies for

the row player, and y ∈ ∆m for the column player. The expected payoff to the row and

column players are respectively given by

m∑
i=1

m∑
j=1

xiyjAi,j = x>Ay and
m∑
i=1

m∑
j=1

xiyjBi,j = x>By . (1.4)

Thus, the pair (x,y) is an ε-approximate Nash Equilibrium if

x>Ay ≥ ei>Ay − ε ∀ 1 ≤ i ≤ m , (1.5a)

x>By ≥ x>Bej − ε ∀ 1 ≤ j ≤ m , (1.5b)

where ei denotes the i-th standard basis vector.

1.1.3 Nash Equilibrium Computation and the class PPAD

As Nash equilibria are helpful in understanding the mechanics of a game, the computa-

tional task of finding the equilibrium points became of interest. We assume here that the

utility functions are given explicitly as lookup tables for every deterministic input. In this

5

case, we say that the game is given in normal form. A 2-player game is in normal form if

the payoff matrices A and B defined above are given in the input.

The first algorithm for finding equilibria in normal-form 2-player games was given by

Lemke and Howson [8]. The algorithm walks along the vertices of an appropriately defined

polytope and terminates at an equilibrium. The procedure is guaranteed to terminate, but

may walk through exponentially many vertices. It was hoped that due to its similarity to the

simplex algorithm for linear programming, this algorithm would eventually give way to more

efficient algorithms for equilibrium computation. However, no sub-exponential algorithms

were found, and the problem was conjectured to be hard. This led to the introduction of the

complexity class PPAD [2], for which Nash equilibrium computation in normal-form games

was shown to be complete in the many-player setting [3]. The class PPAD captures search

problems whose solution is guaranteed to exist via a characterization as the fixed-point of

an iterative procedure [2]. The algorithm of Lemke and Howson [8] is an example of this, as

the rule for walking along the polytope’s vertices is an update function that reaches a fixed-

point at an equilibrium. Notably, Nash’s original proof of the existence of equilibria [7] goes

through the Brouwer Fixed Point Theorem, and was updated to use the stronger Kakutani

fixed-point theorem at the time of publication.

Approximation Algorithms. In the multi-player setting, a first sub-exponential-time al-

gorithm for finding approximate equilibria was shown by Lipton, Marakakis, and Mehta [9].

They give a quasi-polynomial approximation scheme, showing that ε-approximate equilibria

can be found in nO(logn/ε2) time. This running time is conjectured to be tight for constant

ε, despite the algorithm being straightforward. Furthermore, assuming the exponential time

hypothesis for PPAD, the running time is indeed tight for constant ε [10]. Subsequent work

has given efficient methods for finding equilibria for special cases of games — mostly approx-

imate equilibria — such as sparse games [11], low-rank games [12, 13], positive-semidefinite

games [14], anonymous games [15, 16], and tree games [17, 18, 19].

Worst-Case Hardness of Approximation. In general, 2-player, m-strategy games,

Nash equilibrium computation remains PPAD-complete even computing an ε-approximate

equilibrium with ε = m−c for some constant c > 0 [4]. Note that finding approximate equi-

libria allows us to work with finite-precision arithmetic. Since the publication of this first

hardness result, many special cases have been shown to be hard as well, including sparse

games [20, 21], low-rank games [22], anonymous games [23], and tree games [24].

6

1.1.4 Beyond the Worst Case: Smoothed Analysis

The mostly-negative results discussed above for the worst-case complexity of Nash equi-

librium computation, and the economic importance of the concept, have led to the following

question: Can Nash equilibria be found more efficiently beyond the worst case? In the

average case, when payoff entries are sampled i.i.d., exact equilibria can be found in quasi-

polynomial time with high probability [25]. In this thesis, we consider this question under

the framework known as smoothed analysis. Before stating our results on Nash equilibrium

computation, we first introduce the framework, its relevance, and importance.

Smoothed analysis is one of the most important techniques for beyond-worst-case analysis

in the literature. It was introduced by Spielman and Teng [26] to explain why the Simplex

algorithm for solving linear programs (max 〈c,x〉 s.t. Ax ≥ b, x ≥ 0) performs well

in practice despite worst-case instances requiring exponential time [27]. In their model,

Gaussian N (0, σ2) noise is added to each of the entries of the constraints (A, b) and cost

vector c, i.i.d., and the performance of the simplex algorithm is analyzed probabilistically.

As a general framework, smoothed analysis consists of showing that randomly perturbed

inputs have efficient algorithms with running time guarantees that depend on “size pa-

rameters” of the input distributions, such as variance, or density upper bounds. Thus, an

adversary which chooses a point-mass on a worst-case input (zero variance, infinite density)

will get worst-case performance, and an adversary which samples the input from a well-

spread distribution (maximized variance, minimized density) will approximate average-case

performance. In this sense, smoothed analysis interpolates between worst-case and average-

case analysis. The goal is to show that when the smoothing noise is “small”, algorithms are

efficient even near “bad” instances. Formally, we wish to show that with high probability,

the running time of the algorithm is inversely polynomial in a spread-parameter for the

smoothing distribution, such as variance.

Intuitively, such performance guarantees show that bad instances are “scattered”, in a

probabilistic sense. This would suggest that for any “real-world” problems, they are unlikely

to fall into a bad instance, and may even benefit from measurement noise or from modelling

imprecision — at least in running time. Notice that this framework is oblivious and does not

require the problem to lie in a class of “reasonable” instances. It also directly bounds the

fraction of instances which are “bad”, showing that they are both few and also far between.

Smoothed analysis has been applied widely since its inception, often used to analyze

heuristics used in practice. Among these are TSP heuristics [28], k-means methods [29], edit

distance [30], local search methods for cuts [31, 32], and many more. The smoothed analysis

of certain special cases of integer linear programming was also characterized in terms of its

7

worst-case complexity [33], notably that a problem has polynomial smoothed complexity if

and only if it admits a pseudo-polynomial-time algorithm [34], since we can approximate by

truncating input parameters. A thorough survey of early results is presented in two earlier

publications of Spielman and Teng [35, 36], and a more recent survey is given by Manthey

and Röglin [37].

Nash Equilibrium Computation in 2-Player Games. Recall that we have asked

whether Nash equilibrium can be efficiently found in 2-player games, in a beyond-worst-

case sense. We ask if randomly perturbing the entries of the payoff matrices will help with

finding equilibria, with high probability.

Giving evidence for a “yes” answer, it was shown that when the parameters of the game

are sampled fully at random and i.i.d. then equilibria are easy to find [25]. Furthermore,

it is known that when equilibria are robust to input perturbations, finding equilibria can

be done efficiently [38]. However, the original approximation-hardness result of [4] argued

that, since it is PPAD-hard to find n−c-approximate equilibria in n × n games with O(1)-

sized payoff values, then equilibria cannot be found efficiently after n−c-sized perturbations

under standard conjectures. This is because an exact equilibrium of a perturbed game is

by definition an approximate equilibrium of the original, unperturbed game, where ε is the

size of the perturbations. Thus, a smoothed-efficient algorithm would allow for efficient,

randomized, n−c-approximation algorithms, by artificially perturbing the input game.

These two lines of work leave a gap when the payoff values are O(1), but the perturbations

are Ω(1). We show in Chapter 2 that it is hard to find equilibria in this regime, as these

also imply efficient algorithm for n−c-approximate NE, a PPAD-complete problem. This

is despite the existence of efficient approximation algorithms in the ε = Ω(1) regime [9].

Inspired by the smoothed-hardness result of [4] which relied on approximation-hardness,

Spielman and Teng [35] asked in a survey whether there was a connection between the two.

The result of Chapter 2 answers this in the negative, as we have a problem which admits

approximation algorithms, but no smoothed efficient algorithms, under standard conjectures.

1.1.5 Potential Games, the class PLS, and Network Coordination Games

Potential games are an important class of games that has seen much interest in the lit-

erature. Classic examples of potential games include congestion games, which model road

or internet traffic with selfish drivers or packets, and network coordination games, which

model social coordination among many agents. Potential games are so-called since they are

equipped with a global potential function that captures every player’s possible gains. For-

8

mally, the potential function is a mapping from the space of strategy profiles Φ : [m]n → R,

such that when a single player changes their choice of strategy, the potential function should

change by the same amount as that player’s reward,3 regardless of which player it is. For-

mally,

Φ(σ′i,σ−i)− Φ(σi,σ−i) = ui(σ
′
i,σ−i)− ui(σi,σ−i) ∀ i, σi, σ′i, σ−i . (1.6)

In this sense, an improvement for a player is an increase in the potential, and at an equi-

librium, when no player can improve, we are at a local maximum of the potential function.

This immediately implies the existence in potential games of equilibria where no player ran-

domizes, known as pure Nash equilibria. These can be found greedily by a potential-ascent

algorithm.

The Complexity Class PLS. The complexity class associated to such potential-following

algorithms, not just for equilibrium computation, is known as PLS, and finding pure Nash

equilibria in potential games is a PLS-complete problem. Furthermore, a canonical complete

problem for this class is that of finding a local-maximum to an integer-valued function

represented as a boolean circuit [40]. Here, we are looking for an input whose output cannot

be increased by flipping exactly one input bit. Another PLS-complete problem is finding a

locally maximal cut in a graph [41], defined as a cut whose value cannot be improved by

moving a single node across the cut. Although it is widely conjectured that PLS is unlikely

to lie in P [10, 42, 43], we note that problems in this class admit local-search algorithms [40],

which have been observed to be empirically fast [40, 44, 45], but require exponential time in

the worst case [41, 46].

Network Coordination Games. An important subclass of potential games is that of

network coordination games, which model collaboration between many agents. These games

naturally arise in various settings like social networks, biological networks, routing and con-

gestion on roads, etc. [47, 48, 49, 50, 51], and have been extensively studied in various areas

like economics, learning, networks, and more [52, 53, 54, 55, 56]. A network coordination

game is represented by an undirected game graph G = (V,E), where the nodes are the play-

ers, and each edge uv ∈ V represents a 2-player game (A,B) where A = B, so both players

receive the same reward, known as a coordination game. The player-nodes simultaneously

play in all incident game-edges, and must choose one strategy to play in all game edges. The

3Many generalizations of the concept of potential games which weaken the constraints on the potential
function exist in the literature (see e.g. [39]), though they will not be relevant to this thesis.

9

u v
wuv

u v
Auv =

[0 wuv
wuv 0

]
Figure 1.1: The reduction from local-max-cut to 2-strategy network coordination games:
Each edge (u, v) is mapped to a game-edge where the strategy chosen by the players repre-
sents the cut-side they have chosen. They receive as reward the edge’s weight if they choose
different sides, i.e. the edge spans the cut, or zero, if they choose the same side. Note that
the potential function (1.7) is exactly the total cut value.

players receive the sum of the payoffs from each incident edge.

We denote the number of strategies for each player in these games as k, to not confuse

with the parameter m for the number of edges of G. Thus, every edge in G is labelled with

a k × k payoff matrix Auv. Once every player chooses a strategy represented by the profile

σ, the payoff value for each edge is fixed, and each player gets the sum of the payoffs on its

incident edges,
∑

v:uv∈E Auv(σu, σv) for a fixed u. Network coordination games are potential

games, as witnessed by the following potential function:

Φ(σ) =
∑
uv∈E

Auv(σu, σv) . (1.7)

Observe that when a single player changes their strategy, the only terms in the sum which are

affected are from the edges incident to u, and the change is exactly the change to u’s payoff.

Thus, network coordination games are potential games, and always admit pure equilibria.

However, computing a pure equilibrium in network coordination games is a PLS complete

problem, even when k = 2, by a reduction from the PLS-complete problem of finding a

locally maximal cut in a graph [57], introduced above. See Figure 1.1 for an overview of the

reduction.

Smoothed Equilibrium Computation in Network Coordination Games. In Chap-

ter 3 we study the smoothed complexity of the natural greedy algorithm for computing pure

Nash equilibria in network coordination games: the algorithm arbitrarily chooses a player

who can improve their payoff, and arbitrarily chooses an improving strategy. We show that

this greedy algorithm converges in quasi-polynomially many steps with high probability,

when the entries of the Auv matrices are perturbed. This result extends recent results on

the smoothed analysis of the greedy algorithm for local-max-cut [31, 32].

10

1.1.6 Smoothness-Preserving Reductions.

Note that standard Karp reductions do not suffice to extend a smoothed efficient algo-

rithm from one problem to another. This is because, among other things, such a reduction

needs to ensure that independently perturbed parameters of the original problem produce

independent perturbations of all parameters in the reduced problem. In Chapter 4, we intro-

duce a notion of a smoothness-preserving reduction, which to the knowledge of the author,

has not been studied prior to the work on which the chapter is based [58].

Such a reduction allows us to translate smoothed analysis results from one problem to

another. Consider a reduction (f, g) from instances of a problem P to instances of Q. Given

an instance P of P , f(P) is an instance of Q such that, if y is the solution to f(P), then

g(y) is the solution to P . If we were to directly apply this reduction to a smoothed instance

of P , we would have a randomly distributed P , and map it to the random instance f(P).

However, if Q has a smoothed efficient algorithm, this result of smoothed efficiency only

holds when the random input satisfies certain distributional constraints. Therefore, unless

f is chosen carefully, we may not satisfy this conditions, depending on how P is sampled.

We argue that if f maps each individual input variable to some output variable, without

combining them, then most smoothed analysis results are likely to be translatable via such

a reduction. However, reductions of this form are rare. Instead, we show that when f is

a full-rank linear transformation, then reductions to the types of problems we consider in

this thesis will also allow smoothed-efficient algorithms to be translated back to the original

problem. A formal description of this, and two such reductions, are given in Chapter 4.

These rely on the proof methods presented in Chapter 3 in the smoothed analysis of Nash

equilibrium computation for network coordination games, which were originally introduced

in the study of local max cut [31, 32].

1.2 DECISION THEORY AND OPTIMAL PRICING

In the second part of this thesis, we focus on optimization problems that may be faced by

a rational agent in economic decision making, broadly categorized as decision theory, and

mechanism design. In the former, an agent is maximizing their own utility in an economic

setting, and we view their task through the lens of optimization. In the latter, an agent has

control over the parameters of a game, and seeks to influence behaviour. Recall that in the

definition of a game, it was assumed that agents have un-bounded computational power. In

some settings, however, the space of actions an agent may choose from is combinatorial, and

determining the optimal decision to take for a given agent in a given situation becomes a

11

nontrivial question.

In decision theory [59, 60], the problems are mostly economically motivated optimiza-

tion problems, where an agent must expend resources to explore their options and make a

utility-optimal choice. These include many classical optimal-stopping questions, such as the

secretary problem [61, 62].

In mechanism design, when the agent being considered has the power to design the game,

e.g. if they are a planner or a monopolist, they may wish to incentivize some behaviour in

the players. These problems are often cast in the language of optimization. See [63] for a

survey on the classical results and proof techniques of mechanism design. In this thesis, we

turn our attention to pricing problems, which focus on the mechanism designer’s task when

they only have control over prices. The goal may be profit maximization, or to set prices

and rewards to counteract issues in the fairness of an allocation.

1.2.1 Decision Problems

We consider first two optimization problems with economic motivations and non-standard

inputs. First, we ask how to design an optimal stopping rule in a variant of the secretary

problem known as the Pandora’s box problem, when we add precedence constraints. Second,

a common task in machine learning is choosing an optimal classifier. We consider the problem

when the objective function is not known, and we can only ask comparison queries to the

stakeholders. The following sections formalize these problems.

The Pandora’s Box Poblem

The first decision problem studied in this thesis concerns an extension of the classical

Pandora’s box problem, first introduced by Weitzman [64] to model the task of selecting one

of many alternatives when there is a cost to evaluating each option but the distribution of

possible rewards is known. As an example, consider the task of hiring for a specialized posi-

tion that only needs one candidate. We have a distribution over the skill of each candidate

from information found in their résumé, but time and resources must be spent to interview

a candidate to accurately gauge their skill level. Any one of the evaluated candidates may

be hired, but there is only one position. We seek to develop optimal-in-expectation strate-

gies to maximize the quality of the final outcome, minus the cost of evaluation. This sets

up a trade-off between exploration and exploitation, as further interviews give decreasing

marginal returns, for a similar cost.

Formally, we — or Pandora — are faced with boxes b1, . . . , bn. Box bi has a random

12

payoff Xi distributed according to Di, which is known, and it costs ci to observe Xi’s value,

or formally, to sample Di. We only get to keep one of the rewards, and so our objective

function is

ES,X1,...,Xn

[
max
i∈S

Xi −
∑
i∈S

ci

]
, (1.8)

where S is the random subset of boxes that the algorithm chooses to open, which can depend

adaptively on the observed Xi values. Our goal is to maximize this expected objective over

the space of adaptive strategies.

Notice that a box only has value in this objective if its reward is greater than the greatest

reward seen in the past. Formally, if St−1 is the (random) set of the first t− 1 boxes opened,

then the decision of which box to open as the t-th should only depend on the set of remaining

boxes, and on maxi∈St−1 Xi, independent of which box achieved this maximum, and at what

price. To this end, Weitzman [64] introduced the reservation price of a box, defined as the

solution σi to the following equation:

EXi [max{0, Xi − σi}] = ci . (1.9)

Informally, σi is the value of maxj∈St−1 Xj at which we are indifferent between opening bi as

the t-th box or stopping, since the expected marginal gain is equal to the price. Weitzman’s

proves that the optimal strategy opens the boxes in decreasing order of σi and stops when the

greatest seen value is greater than the next reservation value. Thus, the order of exploration

is independent of the values seen and can be pre-computed. This simple strategy is optimal

despite the breadth of complex strategies available to choose from.

Order Constraints. In Chapter 5, we extend the model of Weitzman by constraining

the order in which the boxes can be opened. This models, for example, a research-and-

development process, where new surveys or product trials are costly, but have a chance of

leading to a profitable product, and certain questions must be answered before others can

be asked. We can also extend the example of the hiring problem in the original Pandora’s

box problem with the order constraint. Now, each employee is associated with a collection

of boxes, which must be opened in order: the first one is the cost of interviewing, but gives

no reward, and the future ones model the expected revenue generated by an employee in a

year, and learning the true revenue value comes at the cost of their salary. We may choose

to terminate search along that path by laying off the employee, or proceed along the path,

paying their salary each time.

These order constraints add complexity to the search problem, requiring us to trade off

13

between exploring in depth a current “branch” of the order constraints, or going on to

explore the start of another “branch”. The order constraints are formally modelled as a

directed acyclic graph, where the nodes index the boxes, and a box can be opened if at

least one of its parents has been opened. The more natural model where all parents need to

be opened was considered, but we found no results in this setting. In Chapter 5, we show

that when the order constraint is rooted tree, or forest of rooted trees, then a Weitzman-

like strategy is still optimal. There exist efficiently computable thresholds for the boxes,

and the optimal strategy is to open the box with the largest available threshold, or to stop

if the remaining thresholds are less than the largest value seen in the past. When the

order constraints are more general DAGs, we give an example where the optimal order of

exploration cannot be fixed a priori, and must be chosen adaptively. We also show that

it is NP-hard to solve the problem approximately, even in small-depth, low-degree DAGs.

Finally, we extend past work to show that the approximation factor lost when restricting

ourselves to non-adaptively choosing which boxes to open is bounded. Using these results,

we give approximation algorithms in a special case.

The notion of approximation used in this context is not the traditional multiplicative

factor of the objective function. Instead, we say a policy is an α-approximation of the

optimal policy if it earns at least E[α ·maxi∈S∗ Xi−1 ·
∑

i∈S∗ ci] in expectation. Thus, we are

discounting the expected return by a multiplicative factor of the earned rewards, ignoring

costs. To motivate this notion of approximation, note that a single box with no reward

but adversarial cost may be placed as a root of the DAG, with the price chosen to bring

the optimal reward arbitrarily close to 0. In such a setting, any algorithm which yields any

positive-valued expected profit — let alone a constant-factor approximation to the optimum

— is effectively optimal. Furthermore, this notion of approximation has been used in similar

contexts.

Optimal Classification

The second problem considered is the task of finding an optimal classifier in a low-

information setting. Classification is a common machine learning problem, where elements

X from a population X have correlated labels Y ∈ {1, . . . , k}, and the goal is to develop

a classifier h : X → [k] which agrees with Y often. Common examples of classification

problems include loan decisions, where X ∈ X represents the details of a bank loan appli-

cation, such as loan size, along with measures of customer creditworthiness, and the label

Y is the (random) indicator for whether the customer(s) represented by X will re-pay their

debt. Another example is diagnostics, where X ∈ X represents a patient’s demographics,

14

lifestyle, and symptoms, and the label Y is the (random) indicator for whether or not the

patient(s) represented by X suffer from some illness. Both examples highlight the economic

importance of selecting optimal classifiers.

Formally, we assume that X is sampled from a probability distribution over X , and Y

is jointly distributed with X. Thus it need not be a deterministic function of X. In most

standard settings, it is always to our advantage to assume that h is a deterministic function

of X, despite Y ’s randomness. Usually this is because we want h to be the indicator of

the most likely label Y , therefore maximizing the probability of overlap. To measure the

performance of a classifier, we must introduce the confusion matrix C ∈ [0, 1]k×k. Here,

C(h)ij := Pr
X,Y,h

[Y = i, h = j] , (1.10)

and we recall that Y , and optionally h, are jointly distributed with X. Clearly, we would like

to choose h in such a way as to maximize the diagonal terms, and minimize the off-diagonal

terms. Unfortunately, this is a multi-objective problem, and a specific objective function

must be tailored to the specific application. Instead, we assume there is a performance

metric φ : [0, 1]k×k → R, which is a function on the confusion matrix, and does not otherwise

depend on h. The classification problem then becomes the task of finding a φ-maximizing

classifier h.

Most results concerning optimal classification in the machine learning literature focus on

the task of learning the joint distribution on x and y, so as to choose an optimal classifier.

Common objective functions include linear functions of the confusion matrix, or ratios of

linear functions [65, 66]. However, we focus on the problem of learning the parameters of

the objective function in these restricted families, assuming knowledge of the underlying

distributions. Learning a performance metric which correlates with human preferences has

been studied before [67, 68]; however, these studies learn a regression function over some

predefined features which is fundamentally different from our problem. In addition, while

[69, 70] address how one might qualitatively choose between metrics, no work addresses the

task of choosing the optimal metric from user feedback.

Comparison Oracles. In our setting, we assume that instead of being given access to the

oracle φ, we have an oracle which, given two classifiers h and h′, can determine whether or

not φ(C(h)) > φ(C(h′)). This oracle represents some form of external input on the quality

of classifiers. For example, in the application to classification for bank loans, a bank may be

offered to test two different classifiers and get a sense of when and how often they mis-predict

loan repayment, and in which demographic groups, whether it makes more false positive or

15

false negative errors, etc. The bank then has an opinion on which of the two it prefers, and

can report this, even without necessarily having explicit knowledge of their own objective

function.

In Chapter 6, we study the problem of finding optimal classifiers in the k = 2 setting —

known as binary classification — when the objective function is not known, but is known to

lie in a restricted family of classifiers. This restriction is required to ensure that comparison

oracles can be used efficiently, and commonly used objectives fall in the families considered.

We give bounds on the least number of oracle queries required to obtain desired approxi-

mation guarantees in the quality of the classifier. Furthermore, when restricting to these

common classes of objective functions, our algorithm will simultaneously learn the objective

φ while finding an approximately φ-optimal classifier. Furthermore, we assume that the ora-

cle can be noisy, i.e. may make a mistake when φ(C(h)) ≈ φ(C(h′)). This will be formalized

in Chapter 6.

1.2.2 Optimal Pricing

We consider here two mechanism design problems concerning optimal price selection.

First, we ask how to price time on a server with selfish jobs arriving online from an underlying

distribution. Second, we tackle the problem of computing competitive equilibria for chore

allocation, a notion of fair and efficient allocation which assigns tasks and payments to

balance disutility across agents. The following sections formalize these problems.

Server Scheduling, Posted Prices, and Revenue Maximization

A common modern application of mechanism design is to the problem of allocating time

on a server, such as in cloud computing applications (cf. [71, 72]). Due to the popularity of

these services, and the recurring, frequent, and measurable interactions between the services

and their customers, and the technical nature of the product, much work has been done by

practitioners in understanding the problem of pricing computational resources.

The problem is of theoretical interest as well: since the server capacity is limited, mech-

anisms must trade off immediate revenue for future supply, and must incentivize good be-

haviour from the agents who wish to schedule time on the server, while being profitable,

or attaining some other objective. For example, Chawla et al. [73] recently studied “time-

of-use” pricing mechanisms, to match demand to supply with deadlines and online arrivals.

Their result assumes large-capacity servers, and seeks to maximize welfare in a setting in

which the jobs arriving over time are not identically distributed. Further, [74, 75] give

16

methods for optimizing the sum of the values of schedules jobs, known as the social welfare.

In Chapter 7, we consider the problem of pricing time on a single server in real time, for

some long or infinite time horizon. In this model, the agents arrive online, each with a job

to complete, and some value attained from completing the job. Job lengths and values of

agents are drawn i.i.d. from an unknown distribution. Since agents are strategic they would

like to maximize the difference between their value, and the price paid. In fact, we are never

given access to a job’s true parameters even after they are scheduled, and we must infer

whatever we can from their behaviour. This can lead to complications as agents may lie

about their requirements if it is profitable to them.

Our goal is to design a pricing scheme that maximizes the revenue for the scheduler while

incentivizing truthful reporting from the agents. From the discussion above, prior work has

often sought to maximize the sum of valuations of scheduled jobs. The problem of revenue-

maximization has been more difficult. To better model the reality of server pricing, we

restrict ourselves to posted prices, where the mechanism broadcasts (posts) a price for each

job length, and the arriving jobs choose what they want to buy.

Posted price mechanisms (PPM) were introduced by [76] and have gained attention due

to their simplicity, robustness to collusion, and their ease of implementation in practice.

One of the first theoretical results concerning posted price mechanisms is an asymptotic

comparison to classical single-parameter mechanisms [77]. They were later studied by [78]

for the objective of revenue maximization, and further strengthened by [79] and [80]. [81]

shows that sequential posted prices can 1/2-approximate social welfare for XOS valuation

functions — a class which generalizes submodular functions — if the price for an item is

equal to the expected contribution of the item to the social welfare.

The result of Chapter 7 gives posted-price mechanisms for single-server scheduling which

maximize expected revenue up to additive error, for buyers arriving online, with parameters

of value, length and maximum delay drawn from an underlying distribution. The pricing

problem is first modelled as a Markov decision process with an exponentially large action

space. We then go on to show how the action space can be reduced under standard assump-

tions, to give an efficient algorithm. We then go on to show that these procedures are robust

to approximate knowledge of the distribution, and give learning procedures.

Competitive Equilibria

Mechanism design has often been concerned with the study of fair but efficient allocations

of goods to agents, where fairness has traditionally been measured with respect to envy-

freeness, meaning no agent would prefer another’s outcome to their own. The seminal work

17

in envy-freeness deal with cake cutting, first introduced by [82], where a “cake” with non-

homogeneous value is to be divided among n agents, who value the different portions of the

cake differently.

The goal is to achieve some sense of fairness, while also achieve some economic efficiency:

we should not be satisfied with assigning nothing to anyone. We should instead strive to

extract as much utility for the agents as possible from the cake, while maintaining fairness.

Fairness here can mean envy-freeness, where no agent prefers another agent’s piece, or fair-

share, where every agent values the portion they receive at least as much as a 1
n

fraction

of their value for the whole cake. Efficiency is often measured by Pareto-optimality: no

alternate way of dividing the cake leaves everyone better off. See [83] for a survey on the

rich literature that has developed around answering this question.

The notion of competitive equilibrium with equal income has emerged as capturing all

of these features simultaneously, and it can be proved to almost always exist. Thus, it is

one of the best mechanisms for this problem: it simultaneously guarantees envy-freeness,

fair-share, and Pareto-optimality, and has constructive proofs of existence. Competitive

equilibria were first introduced in [84] in the study of commodity markets. We seek to

divide m commodities among n agents. Assume there is a total of 1 unit of each commodity,

up to re-scaling quantities. Each agent i is allocated a vector xi = (xi1, . . . , xim), also known

as a bundle, where xij is the total fraction of good j that is allocated to agent i. Agent i has

a utility function ui : [0, 1]m → R on the space of bundles. Finally the goods have a price,

where each unit of good j has price pj, and the price of a bundle x is given by the inner

product 〈p,x〉. It is assumed that each agent has a budget equal to 1, i.e. that incomes are

all equal, and prices are re-scaled without loss of generality. A competitive equilibrium is a

combination of an allocation x1, . . . , xn, and a price vector p, such that :

• Every agent spends less than their budget, normalized to 1: 〈p,xi〉 ≤ 1 for all i.

• Every agent receives a utility-maximizing bundle, subject to the budget constraint.

• Every good is fully allocated, i.e.
∑n

i=1 xi = 1.

• The allocation, ignoring prices, is Pareto-optimal.

It was shown by [85, 86] that such an equilibria can be found by optimizing the product of

the agents’ utility when the utility functions are concave functions of x and 1-homogeneous.

Formally,

ui
(
λx+ (1− λ)y

)
≥ λui(x) + (1− λ)ui(y) and ui(a · x) = a · ui(x) . (1.11)

18

This allows us to conclude that the set of competitive equilibria with equal income (CEEI)

form a convex set. Furthermore, since the utilities are log-concave, then such an equilbrium

can be efficiently found by maximizing the logarithm of the product of utilities, as this is

a concave objective over a convex feasible region. When utilities are linear, folklore results

give strongly polynomial time algorithms for computing CEEI.

A recent work of [87] extends this result to the setting of mixed manna, where not all of

the items are goods that the agents desire, but instead, some are “bads”, such as chores

that the agents are required to complete, and have negative utility for. In this setting, costs

are allowed to be negative, as in payments for completing chores. In the special case where

all agents value all of the items negatively, such as when all items are chores, they show

that an allocation which is a local optimum for the product of the absolute values of the

utilities satisfies the conditions of competitive equilibria, as long as nobody is assigned a

zero allocation, as this would not be envy-free, unless it is the trivial (infeasible) allocation

where all agents get zero.

In Chapter 8, we provide an efficient FPTAS to find such an approximately-competitive

equilibrium in the negative utility setting. We give explicit algorithms when utilities are

linear, and our results can be extended to the general utility setting with separation oracles

and nearest-point-in-a-convex-set oracles.

Despite the breadth of knowledge in the positive-utility setting, where many (strongly)

polynomial time algorithms are known [88, 89, 90], few algorithmic results are known in

the negative utility setting. [87] show that in the negative-utilities setting, the space of

equilibria might be disconnected, whereas in the positive setting, they form a connected,

convex set, and would often be unique. When either the number of items or the number

of agents is a constant, efficient methods exist to find exact equilibria in the mixed utilities

setting [91, 92]. In general, a simplex-like method for finding competitive equilibria when

utilities are separable, piecewise-linear, and concave was shown to exist [93]. The problem

is known to be PPAD-hard to approximate in general, even when utilities are positive, but

requiring non-homogeneous valuations [94]. In the negative-utility setting, for a more general

“exchange” setting, a recent result showed PPAD-hardness of approximation for finding

competitive equilibria even when (negative) utilities are linear [93].

We tackle the problem of finding a approximately competitive equilibrium, in the setting

of negative utility items. Our algorithm seeks to find an extreme point for a concave mini-

mization problem (the product of the absolute values of the negative utilities) in a convex

region. Normally, extreme points can be found by gradient-following methods, even when

they do not guarantee optimality. Unfortunately, if any agent were to be allocated a zero

bundle, then we would lose envy-freeness, and the product of the utilities would be 0. Con-

19

straining that each agent is allocated a positive amount is an open constraint, and these are

not well-handled by standard optimization techniques. In brief experiments conducted by

the author, gradient descent methods which use log-barrier methods for the zero-allocation

boundary tend to get stuck arbitrarily close to this boundary.

Instead of minimizing the product of absolute utility inside the convex region, we develop

procedures to efficiently maximize the product outside the region. Since only local optima

on the boundary are required, solutions to both problems coincide. We develop an iterative

technique which alternatingly finds points on the boundary of the feasible region, and seeks

to increase the product of negative utilities along supporting hyperplanes. We show that

this procedure must efficiently converge to a point that approximately satisfies the KKT

conditions in a multiplicative sense, and extend the results of [87] to show that such a point

is approximately a competitive equilibrium, multiplicatively.

1.3 OUTLINE OF THESIS AND NOTATION

The first part of this thesis gives the details for our results on the smoothed analysis of Nash

equilibrium computation. In Chapter 2, we prove that finding Nash equilibria in 2-player

games will not admit smoothed efficient algorithms under standard complexity assumptions,

even for constant-sized perturbation, unless PPAD admits quasi-polynomial algorithms. In

Chapter 3, we prove that Nash equilibria in network coordination games can be found in

smoothed polynomial and quasi-polynomial time, for complete and general game graphs,

respectively. In Chapter 4, we introduce the notion of smoothness-preserving reductions,

and give two examples of smoothness-preserving reductions to the local max cut problem,

giving an alternate proof of one of the results of Chapter 3.

The second part of this thesis gives our decision theory and mechanism design results. In

Chapter 5, we extend the classical Pandora’s box problem of Weitzman [64], by adding a

precedence constraint on the order of search, and give efficient optimal methods when prece-

dence constraints are tree-like. For general constraints, we show hardness of approximation

and give approximation algorithms. In Chapter 6, we ask if good binary classifiers can be

found efficiently, when the objective function is not known to the algorithm, but instead, we

are given a comparison oracle which can determine which of two classifiers is better, up to

some noise.

In Chapter 7, we study the problem of pricing time on a single server to maximize revenue.

We reduce the problem to solving a Markov decision process, and give natural assumptions

under which the decision process can be optimally determined efficiently. Finally, in Chap-

ter 8, we given an efficient algorithm to find a fair and efficient allocation of chores to

20

agents, in a competitive equilibrium. This algorithm uses a recent characterization by [87]

of competitive equilibria in the language of convex optimization.

1.3.1 Notation

In this thesis, matrices will be denoted by capital letters, e.g. M , A, and B, and their

entries denoted by the double subscripts, e.g. Mi,j. Vectors are denoted by bold lowercase

variables, with entries unbolded, e.g. x = (x1, . . . , xn). It is common notation in game

theory to denote by x−i the vector x with its i-th entry excluded, and in an abuse of

notation, we write x = (xi,x−i), to highlight the i-th entry. Random variables are denoted

by capital letters, in both univariate and multivariate cases. The distinction will be made

clear from context, e.g. X ∈ R, or Y = (Y1, . . . , Yn). These will often be called X, Y , or Z.

The inner product between vectors may be denoted by the transpose-product x>y, or

with angle-bracket notation 〈x,y〉. These refer to the same operation, and we use whichever

is most clear in context. Inequality between vectors is taken to mean dominance, i.e. x ≥ y
refers to the relation xi ≥ yi ∀i. The vector 1 refers to the all-1’s vector, and 0 refers to

the all-0’s vector. If specifically mentioned in context, they may refer to the all-1’s or all-0’s

matrices, respectively, but this is not common. We commonly use x ≥ 0 to state that the

entries of x are non-negative.

The signed halves of the real line are denoted with inequalities in the subscripts, e.g. R≥0

or R<0, to denote non-negative numbers and strictly negative numbers, respectively. The

notation [k] denotes either {0, 1, . . . , k} or {1, 2, . . . , k}, and it will be specified if it is not

clear from context.

1.3.2 Acknowledgements

The major technical contributions found in this thesis are based on joint work [58, 95, 96,

97, 98] with all of the co-authors I have had the pleasure of working with during my Ph.D.

In alphabetical order, they are: Joshua Brakensiek, Federico Fusco, Gaurush Hiranandani,

Samuel B. Hopkins, Sanmi Koyejo, Rucha Kulkarni, Philip Lazos, Stefano Leonardi, Yishay

Mansour, Ruta Mehta, and Aviad Rubinstein.

21

CHAPTER 2: SMOOTHED COMPLEXITY OF 2-PLAYER NASH
EQUILIBRIA1

This chapter studies the Smoothed Analysis of Nash Equilibrium computation in standard-

form games, which have been defined in the introduction. We show that finding equilibria

for games that have been perturbed is computationally equivalent to finding equilibria in

worst-case games, even when the magnitude of perturbation is large relative to the payoff

entries. We formally define the model here.

Definition 2.1 (X-SMOOTHED-NASH). For a random variable X on R and problem size

n, fix worst-case n × n matrices WA,WB with entries in [−1, 1], and let NA, NB be n × n
matrices whose entries are i.i.d. copies of X. X-SMOOTHED-NASH is the problem of

computing, with probability at least 1− 1
n
, a Nash equilibrium of the game (WA+NA,WB +

NB).

This chapter gives the proof for the following result:

Theorem 2.1. There exists a universal constant ε > 0, such that for any random variable X

supported on [−ε, ε], X-SMOOTHED-NASH is PPAD-hard under a randomized reduction.

For complexity-theoretic implications, it will be necessary that samples from a distribution

approximating X be computable. This is formalized in the following assumption.

Assumption 2.2. We assume that there is a random variable X ′, which is jointly distributed

with X, such that with probability 1−1/ poly(n), we have |x−x′| < 1/ poly(n), and samples

of X ′ can be generated by a randomized polynomial-time algorithm.

Assumption 2.2 holds for any natural smoothing distribution, such as truncated Gaussian

noise or uniform noise. For most well-behaved distributions, it suffices to let X ′ be a rounding

of X to nearby multiples of 1/ poly(n), with weight shifted to nearby gridpoints so that

the probability mass function has polynomial description complexity, while maintaining the

high-probability proximity of X and X ′. A polynomial-sized description of the cumulative

density function suffices to sample X ′, and if it must be included as advice to the input, we

can only conclude that X-SMOOTHED-NASH is PPAD-hard under randomized reductions

with polynomial-length advice.

In their 2006 survey on smoothed analysis, Spielman and Teng posed the challenge ([35],

Open Question 11) of exploring the connections between smoothed complexity and hardness

1This chapter is based on collaboration with Joshua Brakensiek, Aviad Rubinstein, and Samuel B. Hop-
kins [97].

22

of approximation. Concretely, they considered the example of two-player Nash equilibrium

subject to σ-bounded perturbations: Given a hard game A,B ∈ [−1, 1]n×n, perturbing

each entry independently gives rise to a new instance Â, B̂ ∈ [−1 − σ, 1 + σ]n×n; any Nash

equilibrium of Â, B̂ is an O(σ)-approximate-Nash equilibrium of the original game A,B.

Hence, solving Nash equilibrium in the smoothed model is at least as hard as approximating

Nash [35, Proposition 9.12].

When σ is inverse-polynomial in n, the results of [4] imply that finding approximate Nash

equilibria and SMOOTHED-NASH are equally hard, namely, both are PPAD-hard problems.

However, when σ = Ω(1), the approximation algorithm of [9] runs in quasi-polynomial time.

Under the assumption that PPAD problems cannot be solved in randomized quasi-polynomial

time, our result shows a divergence between the approximate problem and the smoothed

problem in this regime, giving a negative answer to the conjecture of Spielman and Teng.

2.1 OVERVIEW

This section presents an overview of results and methods contained in this chapter. We

begin by recalling the original theorem by [4] on the hardness of equilibrium computation in

normal-form games.

Theorem 2.3 ([4]). For all c > 0, computing an n−c-approximate Nash equilibrium of an

n× n bimatrix game with entries bounded in [0, 1] is PPAD-complete.

The reduction, presented in Section 2.5, will ultimately take a hard instance of Theorem 2.3

and transform it into a instance of X-SMOOTHED-NASH, for suitable distributions X

supported on [−ε, ε]. The starting point of our reduction is the following simple idea: for

any mixed strategies (x,y) which are spread (in a sense we make precise later) over a large

number of actions, the noise from the smoothing averages out, and the payoffs to the two

players will be approximately equal to their original payoffs. Therefore, if we start with an

off-the-shelf PPAD-hard game (P,Q) and amplify it by simple repetition (formally, we tensor

both P and Q with the all ones matrix J := 1`×`), the signal from P,Q will remain strong

even with respect to “well-spread” strategies. This means that given a “well-spread” Nash

equilibrium x,y for a tensored, smoothed game (P ⊗ J +NP , Q⊗ J +NQ), we can recover

a 1/ poly(n)-approximate equilibrium for (P,Q).

There is one major problem with the reduction suggested above: solving X-SMOOTHED-

NASH on this tensored game might not return a well-spread equilibrium (x,y). Our goal

is therefore to to modify this construction to create a game where no Nash equilibrium has

strategies concentrated on a small number of actions. Notice that small-support equilibria

23

do not break this approach: they can be found efficiently by brute-force enumeration, so

such games cannot be hard.

This begs the question, which games have no strategies concentrated on a small number of

actions? At one extreme, if the entries of the payoff matrices are all sampled i.i.d. from any

continuous distribution, a folklore result [25] states that the game has a pure equilibrium

with probability approaching 1− 1/e, and therefore large, independently distributed, noise

may lead to equilibria with small supports, which will not be hard to find.

In contrast, we observe that random zero-sum games tend to have only well spread equi-

libria [99, 100]. For example, they are exponentially unlikely to have a pure equilibrium:

intuitively, if a pure strategy profile is exceptionally good for one player, it is likely ex-

ceptionally bad for the other. In the context of our proof approach, another advantage

of random zero-sum games is that with respect to well-spread mixed strategies, they will

also average out. That is, even if we add a random zero-sum game Z, we can still hope

to recover a 1/ poly(n) Nash equilibrium for (P,Q) from a well-spread equilibrium for

(P ⊗ J + Z + NP , Q ⊗ J − Z + NQ). Our main technical task is to show that adding a

random zero-sum game in this fashion produces a game with only well-spread Nash equilib-

ria, even in the presence of the i.i.d. smoothing NA, NB.

Outline of the proof method. Our first step is to rule out small-support equilibra. In

Section 2.3 we formalize the above intuition, showing that every equilibrium of a random

zero-sum game has large supports, even when we add constant-magnitude perturbations.

For technical reasons, our proof in this section works for random zero-sum games whose

entries are drawn uniformly from discrete {−1, 1}.
Our second step is to obtain a robust version of no-small-support. Namely, building on the

fact every equilibrium has large support, in Section 2.4 we prove that it must be well-spread

(formally, the mixed strategies have small || · ||2 norm). For technical reasons, our proof

in this section works for random zero-sum games whose entries are drawn uniformly from

continuous [−1, 1]. Fortunately, we can make both of proofs work simultaneously by taking

the sum of a {−1, 1} and a [−1, 1] zero-sum games.

Combining these steps, our final construction of hard instance is given by:

A := P ⊗ J + Z{−1,1} + Z[−1,1]

B := Q⊗ J︸ ︷︷ ︸
PPAD-hard

− Z{−1,1}︸ ︷︷ ︸
large support

− Z[−1,1]︸ ︷︷ ︸
well-spread

, (2.1)

where Z{−1,1}, Z[−1,1] are random matrices with i.i.d. entries uniformly sampled from {−1, 1}

24

and [−1, 1] (respectively), and (P,Q) is a PPAD-hard bimatrix game, and J is an (appropriate-

dimension) all-ones matrix.

In Section 2.5, we show that when the Nash equilibrium strategies are well-spread, the

random zero-sum games and random perturbations average out. Thanks to the amplification,

the signal from (P,Q) remains sufficiently strong. Thus, we can map any Nash equilibrium

of (A,B) to a 1/ poly(n)-approximate Nash equilibrium of (P,Q). By [4] this suffices to

establish PPAD-hardness (under randomized reductions).

2.2 AN ANTI-CONCENTRATION LEMMA

This section provides the proof of a concentration lemma which will be essential for the

following section, but does not provide much insight into the proof method itself.

We begin by formally defining the notation of the problem. Let ε > 0 be a sufficiently

small constant. Let X be any symmetric distribution on [−ε, ε]. Let n, b be positive integers

such that b divides n, b = n0.01, and n is sufficiently large. We divide [n] into b blocks which

we label Ii := {(i− 1)n
b

+ 1, (i− 1)n
b

+ 2, . . . , i · n
b
}. We let ` := n/b = n0.99 denote the block

length.

Let P,Q ∈ Rb×b be payoff matrices. Let J` denote the ` × ` all 1’s matrix. Let Z0 be an

n × n matrix whose entries are sampled i.i.d. from the Rademacher distribution (i.e., the

uniform distribution on {−1, 1}). Let Z1 be an n×n matrix whose entries are sampled i.i.d.

from the uniform distribution on [−1, 1]. Let Aε, Bε be n × n matrices whose entries are

i.i.d. sampled from X (all distributions independent).2

A := P ⊗ J` + Z0 + Z1 + Aε

B := Q⊗ J` − Z0 − Z1 +Bε, (2.2)

where P ⊗ J` denotes the n× n matrix, where every entries in block Ii × Ij is Pi,j.

Observe that a Nash equilibrium of (A,B) requires that

x>Ay ≥ e>i Ay for all i ∈ [n]

x>By ≥ x>Bej for all j ∈ [n]

=⇒ x>(A+B)y ≥ e>i Ay + x>Bej for all i, j ∈ [n]. (2.3)

In the following sections, we will show that (2.3) cannot hold when the support of (x,y) is

2The to meet the definition of X-SMOOTHED-NASH, which specifies that the hard game must have
entries between [−1, 1], we can scale the construction (and thus X) by a factor of 3.

25

sufficiently small. To do that, we introduce a “benchmark” function, to which both the LHS

and the maximum value of the RHS of (2.3) are comparable to. To define this benchmark, we

begin by introducing a notion of robust partition of the strategy vectors. Consider x ∈ Rn
≥0

such that ‖x‖1 = 1. Let L = dlog2 ne/2100. Let D = 22500 . Let E1, . . . , EL be intervals such

that Ei = (D−i, D−(i−1)] for all i < L and EL = [0, D−(L−1)]. Let x = x(1) + · · ·+ x(L) such

that

x
(i)
j =

xj xj ∈ Ei
0 otherwise

(2.4)

We say that x(i) is sparse if it has at most L nonzero coordinates; otherwise we say x(i)

is dense. Let xsparse be the sum of the sparse x(i)’s and xdense be the sum of the dense ones.

Note that x = xsparse + xdense. Now define the following quantity

β(x) :=
√

log n‖xdense‖2 + ‖xsparse‖1. (2.5)

We call β(x) the benchmark for x. This quantity will appear in a number of concentration

and anti-concentration inequalities. The goal of this section is to prove the following key

anticoncentration inequality concerning this robust partition.

Lemma 2.1. Assume that X is the uniform distribution on {−1, 1} (i.e., the Rademacher

distribution). There exists a universal constant c > 0 with the following property: For all

x ∈ Rn such that ‖x‖1 = 1, with probability at least n−0.001 over v ∼ Xn

〈v,x〉 ≥ cβ(x). (2.6)

In our result, we need the following bound of Erdős [101].

Theorem 2.4 ([101], variant of [102]). Let a1, . . . , an ≥ 1 be real numbers and ε1, . . . , εn be

Rademacher random variables (uniform distribution on {−1, 1}) then for all integers k ≥ 1,

Pr[a1ε1 + · · · anεn ≥ k − 1] ≥ Pr[ε1 + · · ·+ εn ≥ k]. (2.7)

Furthermore, the following binomial inequality will be useful:

Lemma 2.2 ([103]). For all k and n,(
n

k

)
≥ 2nH(k/n)

√
8n

, (2.8)

where H(·) is the binary entropy function.

26

Note that when k = n
2
(1 + δ), then

H(k/n) := −1 + δ

2
log2(1

2
(1 + δ))− 1− δ

2
log2(1

2
(1− δ))

≥ 1− 1

ln 2

(
1 + δ

2
· δ +

1− δ
2
· (−δ)

)
= 1− (log2 e)δ

2. (2.9)

Combining with the above inequality gives

1

2n

(
n

k

)
≥ 1√

8n
e−nδ

2

. (2.10)

This allows us to show the following:

Claim 2.5. For all integers n ≥ k ≥ 0 with n sufficiently large

1

2n

n∑
i=n+k

2

(
n

i

)
≥ 1

10000
exp

(
−10k2

n

)
. (2.11)

Proof. Note that here, δ = k
n
. If k ≥ n− 2

√
n, then

−10k2/n ≤ −10n+ 40
√
n− 400 ≤ −9n (2.12)

for n sufficiently large. Note that the LHS of 2.11 is at least 2−n > e−9n, and thus is at least

the RHS.

On the other hand, if k ≤ n− 2
√
n, then by Lemma 2.2, the sum of the first

√
n terms is

at least

√
n

(
n

n+k
2

+
√
n

)
≥
√
n

1√
8n

exp

(
−n ·

(
k + 2

√
n

n

)2
)

= 1√
8

exp

(
−k

2 + 4k
√
n+ 4n

n

)
≥ 1√

8
exp

(
−5k2 + 5n

n

)
=

1

e5
√

8
exp

(
−5k2

n

)
, (2.13)

which implies the claim. Q.E.D.

With the above results, we can prove the lemma.

27

Proof of Lemma 2.1. Recall, we have defined x(i) to be the vector x restricted to positions

i such that D−i < xi ≤ D−(i−1), for all i < L, or 0 ≤ xi ≤ D−(L−1) if i = L. Note that if

we drop x(L), β changes by at most
√

log n‖x(L)‖1 ≤ n
√

log n · n−2400+1, a negligeably small

term. Thus, we can without loss of generality assume that x(L) = 0.

Since β(x) = ‖xsparse‖1 +
√

log n‖xdense‖2, we have for any x, at least one of ‖xsparse‖1

or
√

log n‖xdense‖2 is at least 1
2
β(x). Assume we know that with probability at least

2n−0.001, 〈v,xsparse〉 = Ω(‖xsparse‖1); and with probability at least 2n−0.001, 〈v,xdense〉 =

Ω(
√

log n‖xdense‖2). Then, we know with probability at least n−0.001, one of 〈v,xsparse〉 and

〈v,xdense〉 is at least Ω(β(x)) and the other is at least 0 and thus their sum is at least β(x).

We split the remainder of the proof into two parts.

Part 1, 〈v,xsparse〉 = Ω(‖xsparse‖1). Let x′ be the 2L largest coordinates of xsparse. Note

that ‖x′‖1 is at leastD2 times the sum of the next 2L largest coordinates of xsparse and at least

D4 times the sum of the next 2L largest coordinates after that, etc. Thus, ‖x′‖1 ≥ 1
2
‖xsparse‖.

Now with probability 1/22L, because v has i.i.d. Rachemacher entries, 〈v,x′〉 = ‖x′‖1,

and with probability at least 1/2, 〈v,xsparse − x′〉 ≥ 0. Thus, with probability at least

1/22L+1 ≥ 2n−0.001, 〈v,xsparse〉 ≥ 1
2
‖xsparse‖1.

Part 2, 〈v,xdense〉 = Ω(
√

log n‖xdense‖2). Since xdense =
∑

i∈F x
(i), we have that

Pr

[
〈v,xdense〉 ≥

√
log n

1000D
‖xdense‖2

]
≥
∏
i∈F

Pr

[
〈v,x(i)〉 ≥

√
log n · ‖x(i)‖2

2

1000D‖xdense‖2

]
(2.14)

Consider i ∈ F , and let mi ≥ L+1 be the support size of x(i). Since x
(i)
j D

i ≥ 1 for all j in

the support of x(i), we have by Theorem 2.4 and Claim 2.5, that for any integer k ∈ [0,mi]

Pr

[
〈v,x(i)〉 ≥ k

Di

]
≥

mi∑
i=

mi+k

2
+1

(
mi

i

)
≥ 1

10000
exp

(
−10mi

(
k + 2

mi

)2
)
. (2.15)

Observe that ‖x(i)‖2 ≤
√
mi‖x(i)‖∞ ≤

√
miD

−(i−1). Thus,

Pr

[
〈v,x(i)〉 ≥ k

D
√
mi

‖x(i)‖2

]
≥ 1

10000
exp

(
−10mi

(
k + 2

mi

)2
)
. (2.16)

Let

k =

⌈
1

1000

√
mi log n · ‖x

(i)‖2

‖xdense‖2

⌉
. (2.17)

28

Then, note that
k + 2

mi

≤ 3

mi

+
1

1000

√
log n

mi

· ‖x
(i)‖2

‖xdense‖2

(2.18)

Thus, since (a+ b)2 ≤ 2a2 + 2b2,

−10mi ·
(
k + 2

mi

)2

≥ −180

mi

− log n

5 · 104
· ‖x

(i)‖2
2

‖xdense‖2
2

. (2.19)

Therefore,

Pr

[
〈v,x(i)〉 ≥

√
log n

1000D
· ‖x

(i)‖2
2

‖xdense‖2

]
≥ 1

104
exp

(
−180

mi

− log n

5 · 104
· ‖x

(i)‖2
2

‖xdense‖2
2

)
. (2.20)

Applying Eq. 2.14, and noting that each mi ≥ L ≥ |F |.

Pr

[
〈v,xdense〉 ≥

√
log n

1000D
‖xdense‖2

]
≥ 1

104L
exp

(
−
∑
i∈F

180

mi

− log n

5 · 104

)

=
1

104Le180
n−10−5

≥ n−2−90

n−10−5

≥ n−0.001, (2.21)

For n sufficiently large. This concludes the proof. Q.E.D.

2.3 BOUNDING THE SUPPORT SIZE OF EQUILIBRIA

In this section, we use the previous lemma and concepts to show that for any equilibrium

(x,y) on our smoothed input, the strategies will be supported on a large subset of the

coordinates. Using this, the next section will bound ‖x‖2, ‖y‖2, which is the key ingredient

in the proof of Theorem 2.1. The main result of this section is the following lemma.

Lemma 2.3. With probability 1−n−3, for every Nash equilibrium (x,y) of (A,B), we have

that |supp(x)| = |supp(y)| > n0.96.

We prove this result using methods partially inspired by [100]. The following concentration

bound will be of use. For any distribution X, we let Xn×n denote the distribution of n× n
matrices with entries i.i.d. samples from X. Recall, the benchmark function β introduced in

equation (2.5):

β(x) :=
√

log n‖xdense‖2 + ‖xsparse‖1. (2.22)

29

Claim 2.6. Let X be any distribution on [−1, 1]. There exists a universal constant C > 0

such that for all n ≥ 0, with probability 1 − 1/n4 over M ∼ Xn×n, for all x,y ∈ Rn such

that ‖x‖1 = ‖y‖1 = 1, we have that

|x>My| ≤ C · (β(x) + β(y)). (2.23)

To prove the claim, we will first need the following lemma. Recall, a random variable

X ∈ R is said to be sub-gaussian with variance proxy s2 > 0 if for all t > 0, E exp(tX) ≤
exp(s2t2/2).

Lemma 2.4. Let A be an n×n matrix with independent subgaussian entries with variance

proxy at most 1. For all u > 0, with probability at least 1 − exp(−u2), all x,y ∈ Rn with

‖x‖2 = ‖y‖2 = 1 have

x>Ay ≤ O(
√

log n+ u)(‖x‖1 + ‖y‖1) . (2.24)

As a corollary, with the same probability, all x,y ∈ Rn with ‖x‖1, ‖y‖1 ≤ 1 have

x>Ay ≤ O(
√

log n+ u)(‖x‖2 + ‖y‖2) . (2.25)

To prove this lemma, we rely on the following powerful comparison inequality of Talagrand.

Theorem 2.7 (Talagrand’s comparison inequality, high-probability version. [104], Exercise

8.6.5). Suppose that {Xs}s∈S is a collection of R-valued random variables, indexed by some

S ⊆ Rn, 0 /∈ S. Suppose that for all s, t ∈ S, Xs−Xt is subgaussian with variance proxy at

most ‖s− t‖2. There is a universal constant C > 0 such that for all u > 0, with probability

at least 1− exp(−u2),

sup
s∈S

Xs ≤ C

(
E

g∼N (0,I)
sup
s∈S
〈g, s〉+ u · sup

s∈S
‖s‖2

)
. (2.26)

Proof of Lemma 2.4. Consider for each x,y ∈ Rn the random variable x>Ay/(‖x‖1+‖y‖1).

Since the entries of A are subgaussian with variance proxy 1, there is a universal C > 0 such

that 〈U,A〉 is subgaussian with variance proxy C‖U‖2
F , where ‖ · ‖F is the Frobenius norm,

for any n× n matrix U . Hence, for x,y,x′,y′ ∈ Rn,

x>Ay

‖x‖1 + ‖y‖1

− (x′)>Ay′

‖x′‖1 + ‖y′‖1

(2.27)

30

is subgaussian with variance proxy C‖xy>/(‖x‖1 + ‖y‖1) − (x′)(y′)>/(‖x′‖1 + ‖y′‖1)‖2
F .

We claim that∥∥∥∥ xy>

‖x‖1 + ‖y‖1

− (x′)(y′)>

‖x′‖1 + ‖y′‖1

∥∥∥∥2

F

≤
∥∥∥∥ (x,y)

‖x‖1 + ‖y‖1

− (x′,y′)

‖x′‖1 + ‖y′‖1

∥∥∥∥2

2

, (2.28)

where (x,y) denotes the concatenation of x and y to a 2n-length vector. To see this, recalling

that ‖x‖2 = ‖y‖2 = ‖x′‖2 = ‖y′‖2 = 1, let m = ‖x‖1 + ‖y‖1 and m′ = ‖x′‖1 + ‖y′‖1 and

expand both sides, it is equivalent to prove

m2 + (m′)2 − 2m(m′)〈x,x′〉〈y,y′〉
m2(m′)2

≤ 2m2 + 2(m′)2 − 2m(m′)〈x,x′〉 − 2m(m′)〈y,y′〉
m2(m′)2

.

(2.29)

This is equivalent to

1

m2
+

1

(m′)2
− 2
〈x,x′〉+ 〈y,y′〉 − 〈x,x′〉〈y′,y〉

mm′
≥ 0 . (2.30)

Dividing by 2/mm′ and using 1/m2 + 1/(m′)2 ≥ 2/mm′, it is enough to show

1− 〈x,x′〉 − 〈y,y′〉 − 〈x,x′〉〈y′,y〉 ≥ 0 . (2.31)

This factors as (1− 〈x,x′〉)(1− 〈y,y′〉) ≥ 0 since we assumed x,x′,y,y′ were unit vectors.

Now we can apply Theorem 2.7 to see that with probability at least 1− exp(−u2),

sup
x,y

‖x‖2=‖y‖2=1

x>Ay

‖x‖1 + ‖y‖1

≤ C

 E
g∼N (0,I)

sup
x,y

‖x‖2=‖y‖2=1

〈(x,y), g〉
‖x‖1 + ‖y‖1

+ u

 (2.32)

where C is a universal constant, g is a length 2n Gaussian vector with independent coordi-

nates, and we have used that ‖(x,y)‖2 ≤ ‖(x,y)‖1 = ‖x‖1 + ‖y‖1. To finish the argument,

observe that

E
g∼N (0,I)

sup
x,y

‖x‖2=‖y‖2=1

〈(x,y), g〉
‖x‖1 + ‖y‖1

= E
g∼N (0,I)

‖g‖∞ ≤ O(
√

log n) . (2.33)

Finally, to prove the corollary, note that we just showed that with probability at least

1− exp(−u2), all x,y ∈ Rn with ‖x‖1 = ‖y‖1 = 1 have x>Ay/‖x‖2‖y‖2 ≤ O(
√

log n+ u) ·
(1/‖x‖2 + 1/‖y‖2). Multiplying by ‖x‖2‖y‖2 implies the corollary. Q.E.D.

With this lemma in hand, we can prove the claim.

31

Proof of Claim 2.6. Apply Lemma 2.4 to M with u =
√

3 log n. Then, there is a universal

constant C ′ such that with probability 1− 1/n3, for all x,y with `1 norm 1,

|x>denseMydense| ≤ C ′
√

log n(‖xdense‖2 + ‖ydense‖2). (2.34)

Thus, since the entries of M have absolute value at most 1,

|x>My| ≤ |x>Mysparse|+ |x>sparseMydense|+ |x>denseMydense|

≤ ‖ysparse‖1 + ‖xsparse‖1 + C ′
√

log n(‖xdense‖2 + ‖ydense‖2)

≤ max(C ′, 1)(β(x) + β(y)). (2.35)

Thus, we can set C = max(C ′, 1). Q.E.D.

These results will allow us to prove Lemma 2.3. We present first the following facts about

equilibria in random games.

Proposition 2.8. With probability 1, for nonempty S, T ⊂ [n] there is at most one Nash

equilibrium (x,y) of (A,B) with S = supp(x) and T = supp(y). Further, with probability

1 all such equilibria have |S| = |T |.

Proof. Fix nonempty S, T ⊂ [n]. Fix i0 ∈ S. Assume without loss of generality that |S| ≥
|T |. Denote A00 as the sub-matrix of A restricted to rows indexed by S and columns indexed

by T . For any equilibrium (x,y) with supports S and T , we have that x>Ay = e>i A
00y for

all i ∈ S, when treating x and y as |S|- and |T |-dimensional vectors, respectively. Therefore,

(ei − ei0)>A00y = 0 for all i ∈ S \ {i0}. (2.36)

Since all the entries of A00 are drawn independently from a continuous distribution, the null

space of the linear system (2.36) has dimension max(|T | − |S|+ 1, 0) ≤ 1 with probability 1.

Since y 6= 0 the null space must have dimension exactly 1. Thus, |T | − |S| + 1 ≥ 1, which

implies that |S| = |T | and the solution y is unique, as there can be at most one vector in a

1-dimensional subspace with coordinates summing to one. By a similar argument x is also

unique.

Since there are only finitely many choices of S and T , with probability 1 the proposition

holds for all Nash equilibria simultaneously. Q.E.D.

With probability 1, all equilibria of A and B will have the same support size, and further,

for every pair of possible supports S ⊂ [n] and T ⊂ [n] there is at most one equilibrium. We

32

let x,y ∈ Rn denote the probability distributions of strategies in this equilibrium. We can

now prove Lemma 2.3

Proof of Lemma 2.3. Assume (which happens with probability 1 − n−4) that the event de-

scribed in Claim 2.6 occurs for M = 1
2ε

(Aε + Bε). Fix S, T ⊂ [n] with |S|, |T | < `/10. We

seek to show that with probability at most 2−`, S and T can be the support of a Nash

equilibrium. By Proposition 2.8, we can assume that |S| = |T |.
Also by Proposition 2.8, with probability 1, there is at most one equilibrium (x,y) on

the game (A00, B00) with full support, where we have defined A00 to be A whose rows and

columns have been restricted to S and T , respectively. Note that x and y, if they exist, are

independent of the entries of A and B outside of S × T . As mentioned in Section 2.2, in

order for the equilibrium to extend, inequality (2.3) must hold:

x>(A+B)y ≥ e>i Ay + x>Bej for all i, j ∈ [n]. (2.37)

Say that i ∈ [n] \ S is S-good if e>i (Z0 + Z1 + Aε)y > cβ(y). By Lemma 2.1, we

know that e>i Z1y > cβ(y) with probability at least n−0.001. Independently, we have that

e>i (Z0 + Aε)y ≥ 0 with probability at least 1/2 (since Z0 + Aε is a mean-zero matrix

distribution). Therefore, both this event happens with probability at least n−0.001/2 ≥ n−0.01.

Likewise, say that j ∈ [n] \ T is T -good if x>(−Z0 − Z1 − Bε)ej > cβ(x). By the same

argument, this also happens with probability at least n−0.01 . Furthermore, the S-good

events and T -good events are independent of each other because each event is based on a

disjoint subset of entriesZ from Z0 and Z1.

Since x and y are probability distributions, there exists i0 ∈ S and j0 ∈ T such that

e>i0(P ⊗J`)y ≥ x
>(P ⊗J`)y and x>(Q⊗J`)ej0 ≥ x>(Q⊗J`)y. Let i′, j′ ∈ [b] be the indices

of the blocks such that i0 ∈ Ii′ and j0 ∈ Ij′ . Since we assume that |S|, |T | ≤ `/10, we have

that Ii′ \ S and Ij′ \ T both have size at least 9`/10.

Now, for any good i ∈ Ii′ \ S and good j ∈ Ij′ \ T , we have

x>(A+B)y = x>(P ⊗ J`)y + x>(Q⊗ J`)y + x>(Aε +Bε)y

≤ e>i0(P ⊗ J`)y + x>(Q⊗ J`)ej0 + 2Cε(β(x) + β(y))

= e>i (P ⊗ J`)y + x>(Q⊗ J`)ej + 2Cε(β(x) + β(y))

< e>i (P ⊗ J`)y + x>(Q⊗ J`)ej + c(β(x) + β(y)) (ε < 2c/C)

< e>i (P ⊗ J` + Z0 + Z1 + Aε)y + x>(Q⊗ J` − Z0 − Z1 +Bε)ej

= e>i Ay + x>By, (2.38)

33

which contradicts Ineq. 2.3. Thus, there must either be no good i ∈ Ii′ \ S or there is no

good j ∈ Ij′ \ T . This happens with probability at most

2
(
1− n−0.01

)9`/10 ≤ 2e−(0.9)`/n0.01 ≤ e−n
0.97

, (2.39)

where we use in the last inequality that n is sufficiently large. The number of pairs S, T

with support at most n0.96 is at most(
n

≤ n0.96

)2

≤ n2n0.96

. (2.40)

Note that for n sufficiently large, n2n0.96
e−n

0.97 � n−4. Thus, all equilibria have support

size greater than n0.96 with probability at least 1− 2n−4 ≥ 1− n−3. Q.E.D.

2.4 BOUNDING THE NORM OF EQUILIBRIA

Towards building the norm bound needed to show Theorem 2.1, the previous section

showed that with high probability, any equilibrium must have polynomially large support.

This section completes the proof of the norm bound. We wish to show the following.

Lemma 2.5. With probability 1 − 20n−3, for every Nash equilibrium (x,y) of (A,B), we

have that ‖x‖2, ‖y‖2 ≤ n−0.2.

We must, however, begin this section with a few technical results. We will need the follow-

ing theorem, which is derived from the fact that the VC-dimension of the set of halfspaces

in Rd has VC-dimension at most d + 1 – that is, the VC-dimension of {x 7→ 1[〈x,v〉 + t ≥
0] : v ∈ Rd, t ∈ R} is at most d+ 1. (See e.g. [105], Example 4.21.)

Theorem 2.9 (Multivariate Glivenko-Cantelli). Let X be a random vector in Rd and let

X1, . . . , Xn be independent copies of X. For all δ ∈ [0, 1], with probability 1− δ,

sup
v∈Rd,t∈R

∣∣∣∣∣ 1n
n∑
i=1

1[〈Xi,v〉 ≥ t]− Pr
X

(〈X,v〉 ≥ t)

∣∣∣∣∣ ≤ O

(√
d

n
+

√
log(1/δ)

n

)
. (2.41)

We also need the following Littlewood-Offord-type theorem.

Theorem 2.10 ([106], Theorem 1.2). Let X1, . . . , Xn be real-valued independent random

variables with densities almost everywhere bounded byK. Let a1, . . . , an ∈ R with
∑

i≤n a
2
i =

1. Then the density of
∑

i≤n aiXi is bounded by
√

2K almost everywhere.

34

The following lemma, which we obtain as a corollary of these two theorems, allows us to

argue that the entries of a product of a random matrix with a fixed vector are relatively

spread out.

Lemma 2.6. Let n, d be positive integers. Let X be an R-valued random variable with den-

sity bounded by K. Let g1 . . . , gn be independent random vectors in Rd whose coordinates

are independent copies of X. With probability 1 − δ, for all unit vectors v ∈ Rd and all

intervals [a, b] ⊂ R,

1

n

n∑
i=1

1[〈gi,v〉 ∈ [a, b]] ≤
√

2K|a− b|+O

(√
d

n
+

√
log(1/δ)

n

)
. (2.42)

Proof. By Theorem 2.9, with probability at least 1−δ, the CDFs of 〈g,v〉 and the empirical

distribution of 〈gi,v〉 have distance at most O

(√
d
n

+
√

log(1/δ)
n

)
, for all v ∈ Rd. So it

suffices to show that for every unit v ∈ Rd, Prg(〈g,v〉 ∈ [a, b]) ≤
√

2K|a − b|. This follows

immediately from Theorem 2.10. Q.E.D.

Finally, this lemma allows us to prove the following claim.

Claim 2.11. Let X be a distribution on [−1, 1] whose probability density is at most 100

everywhere. Let M ∼ Xn×n. With probability 1− n−4, for every S, T ⊂ [n] with |S| ≥ n0.95

and |T | ≤ n0.85, there exists disjoint S1, S2 ⊂ S of size at least n0.94 each such that for all

unit vectors y ∈ Rn with support in T there exists r ∈ R such that

e>i1My ≥ r + n−0.07 for all i1 ∈ S1

e>i2My ≤ r for all i2 ∈ S2.

Proof. For every T ⊂ [n] of size at most n0.85, apply Lemma 2.6 to the rows of M restricted

to the columns of T (so d = |T | ≤ n0.85) with δ = e−n
0.86

. Thus, with probability 1− e−n0.86
,

for every unit vector y ∈ Rd supported on T and every interval [a, b] of length n−0.06/10, the

number of i ∈ [n] such that e>i My ∈ [a, b] is at most

n

[
100
√

2|a− b|+O

(√
d

n
+

√
log(1/δ)

n

)]
= O(n0.94) (2.43)

choices of i ∈ [n] for which e>i Ay falls in that interval. Since |S| ≥ n0.95, this implies there

35

exist r ∈ R, and disjoint S1, S2 ⊂ S of size at least n0.94 such that

e>i1My ≥ r +
n−0.06

10
≥ r + n−0.07 for all i1 ∈ S1

e>i2My ≤ r for all i2 ∈ S2. (2.44)

Taking the union bound over all choices of T we get this all happens with probability at

most

1−
(

n

≤ n0.85

)
e−n

0.86 ≥ 1− e−n0.85 ≥ 1− n−4. Q.E.D. (2.45)

We can now prove Lemma 2.5.

Proof of Lemma 2.5. With probability 1− n−3, by Lemma 2.3, for every equilibrium (x,y)

of (A,B) with support S and T , respectively, we have that |S| = |T | ≥ n0.96. Since there are

n0.01 blocks. By the pigeonhole principle there exists i0, j0 ∈ [b] such that |S∩Ii0|, |T ∩Ij0| ≥
n0.95.

With probability 1 − 2n−4, Claim 2.11 holds with for both M = 1
2+ε

(Z0 + Z1 + Aε) and

M = 1
2+ε

(−Z0 −Z1 +Bε). Further, with probability at least 1− 2n−3, Lemma 2.4 holds for

M = 1
2+ε

(Z0 + Z1 + Aε) and M = 1
2+ε

(−Z0 − Z1 +Bε) with u =
√

3 log n.

We seek to show that any large-support equilibrium also has small `2 norm. Assume for

sake of contradiction (and without loss of generality) that ‖y‖2 ≥ n−0.2. Let S ′ = S ∩ Ii0
and T ′ be the set of coordinates of y which are greater than n−0.85. Clearly |T ′| ≤ n0.85. Let

yT ′ be the coordinates of y supported on T ′ and ȳT ′ be the remaining coordinates. Observe

that

‖ȳT ′‖2
2 ≤ n · (n−0.85)2 = n−0.7 ≤ ‖y‖

2
2

2
(2.46)

‖yT ′‖2
2 = ‖y‖2

2 − ‖ȳT ′‖2
2 ≥
‖y‖2

2

2
. (2.47)

Applying Claim 2.11 for M = 1
2+ε

(Z0+Z1+Aε) and the sets S ′, T ′ and the vector y′ :=
yT ′
‖yT ′‖2

,

there exists S ′1, S
′
2 ∈ S ′ and r ∈ R such that (scaling by 2 + ε ≥ 1)

e>i1(Z0 + Z1 + Aε)y
′ ≥ r + n−0.07 for all i1 ∈ S ′1

e>i2(Z0 + Z1 + Aε)y
′ ≤ r for all i2 ∈ S ′2. (2.48)

36

Thus,

u>S′1(Z0 + Z1 + Aε)y
′ ≥ r + n−0.07

u>S′2(Z0 + Z1 + Aε)y
′ ≤ r

=⇒ (uS′1 − uS′2)
>(Z0 + Z1 + Aε)y

′ ≥ n−0.07. (2.49)

Applying (2.47),

(uS′1 − uS′2)
>(Z0 + Z1 + Aε)yT ′ ≥ n−0.07‖y‖2/2 ≥ n−0.28. (2.50)

Since Lemma 2.4 holds for M = 1
2+ε

(Z0 + Z1 + Aε), we have that

(uS′1 − uS′2)
>(Z0 + Z1 + Aε)ȳT ′ ≥ −(2 + ε)C ′

√
log n(‖uS′1 − uS′2‖2 + ‖ȳT ′‖2)

≥ −n0.01 max(
√

2n−0.94/2, n−0.7/2)

≥ −n−0.34. (2.51)

Therefore, since y = yT ′ + ȳT ′

(uS′1 − uS′2)
>(Z0 + Aε)y ≥ n−0.28 − n−0.34 ≥ n−0.29. (2.52)

Since S ′1 and S ′2 are subsets of the same block, we have that uS′1(P ⊗ J`) = uS′2(P ⊗ J`).
Therefore,

(uS′1 − uS′2)
>Ay ≥ n−0.29. (2.53)

But, since S ′1 and S ′2 are subsets of the support of x, we know that

(uS′1 − uS′2)
>Ay = 0, (2.54)

thus we have a contradiction. Therefore, ‖y‖2 ≤ n−0.2. By a similar argument (also with

probability 1− 5n−3, ‖x‖2 ≤ n−0.2, as desired. By the union bound, the total probability of

success is at least 1− 20n−3 ≥ 1− n−2. Q.E.D.

2.5 THE REDUCTION, AND PROOF OF MAIN THEOREM

First, we show in Section 2.5.1 the reduction in the case that the noise distribution X is

symmetric, i.e., the probability of sampling a and −a is identical for all a > 0. We then

show in Section 2.5.2 a slight modification which works for any distribution X.

37

Recall, we have defined

A := P ⊗ J + Z{−1,1} + Z[−1,1] + Aε

B := Q⊗ J − Z{−1,1} − Z[−1,1] +Bε, (2.55)

where Z{−1,1}, Z[−1,1] are random matrices with i.i.d. entries uniformly sampled from {−1, 1}
and [−1, 1] (respectively), and (P,Q) is a n0.01 × n0.01 PPAD-hard bimatrix game, and J is

an n0.99 × n0.99 all-ones matrix. Aε and Bε denote the i.i.d. noise added in the setting of

X-SMOOTHED-NASH.

2.5.1 The symmetric case

We seek to show that equilibria of the reduced game (A,B) can be used to efficient produce

approximate equilibria to the game (P,Q), which we have assumed is hard to approximate.

Let (x,y) be an equilibrium of (A,B). In Section 2.4, we showed that, with high probability,

‖x‖2, ‖y‖2 ≤ n−0.2, even when ε is a constant. Note that b = n0.01 is the dimension of the

input game (P,Q). Define (x̂, ŷ) to be distributions over [b] such that for all i ∈ [n]

x̂i =
∑
i′∈Ii

xi′ , ŷi =
∑
i′∈Ii

yi′ . (2.56)

Theorem 2.12. With probability 1− n−2, we have that (x̂, ŷ) is a b−19-approximate equi-

librium of (P,Q).

Proof. We claim that (x̂, ŷ) is an b−19 = n−0.19-approximate equilibrium of (P,Q) with high

probability. Assume not, without loss of generality, Alice would benefit from deviating from

x̂. That is, there exists i ∈ [b] such that

x̂>P ŷ ≤ e>i P ŷ − b−19. (2.57)

Define uS to be the uniform probability vector on support S, then, the above is equivalent

to

x>(P ⊗ J`)y ≤ u>Ii(P ⊗ J`)y − b
−19. (2.58)

By Lemma 2.4, we may assume that the concentration inequality holds for 1
2+ε

(Z0 +Z1 +Aε),

38

then we know that

|x>(Z0 + Aε)y| ≤ O(
√

log n n−0.2) (2.59)

|u>Ii(Z0 + Aε)y| ≤ O(
√

log n n−0.2) (2.60)

Combining Eqs. 2.58, 2.59, and 2.60 we get

x>Ay ≤ u>IiAy − b
−19 +O(

√
log n n−0.2) < u>IiAy. (2.61)

since b = n0.01. This contradicts that (x,y) is a Nash equilibrium of (A,B).

By a similar argument, Bob does not wish to deviate with high probability. Therefore,

(x̂, ŷ) is a b−19-approximate Nash equilibrium of (P,Q). Q.E.D.

Since finding a b−19-approximate Nash equilibrium is PPAD-hard [4] when P and Q have

constant sized entries, finding the smoothed equilibrium of (A,B) is PPAD-hard. Since the

proofs of Sections 2.3 and 2.4 hold when X is supported on [−ε, ε] for ε > 0 constant, this

is an instance of X-SMOOTHED NASH, and therefore concludes the proof of Theorem 2.1

when X is a symmetric distribution.

2.5.2 General X

Let X be any distribution supported on [−ε/2, ε/2]. Let Y := X −X ′ be the distribution

on [−ε, ε] which takes two i.i.d. samples from X and subtracts them. Note that Y is a

symmetric distribution, so by the previous section we have that Y -SMOOTHED NASH is

hard. In particular, it is hard to find an equilibrium from the distribution

A := P ⊗ J` + Z0 + Z1 + AY

B := Q⊗ J` − Z0 − Z1 +BY , (2.62)

where AY and BY are matrix whose entries are i.i.d. samples from Y . We can rewrite

AY = AX − A′X and BY = BX − B′X , where AX , A
′
X , BX , B

′
X are all i.i.d. matrix samples

from X. Thus, the distribution can be rewritten as

A := (P ⊗ J` + Z0 + Z1 − A′X) + AX

B := (Q⊗ J` − Z0 − Z1 −B′X) +BX , (2.63)

This is an instance of X-SMOOTHED NASH, and we conclude Theorem 2.1 for arbitrary

X, losing a factor 2 on ε.

39

CHAPTER 3: SMOOTHED EFFICIENT ALGORITHMS FOR NETWORK
COORDINATION GAMES1

We consider here the smoothed analysis of the problem of finding a (pure) Nash equilibrium

in network coordination games, which were introduced in Section 1.1.5. Recall, a network

coordination game is an n-player game, represented by a graph G = (V,E), where the

vertices are the n players, and the edges represent 2-player coordination games, and are

labelled by the k × k payoff matrices. Here k and n are used rather than n and m to

not confuse notation with standard graph quantities. The players choose only one strategy

simultaneously for all incident game-edges, and earn the sum of their rewards. Formally,

ui(σ) =
∑

e=ij∈E

(Ae)σi,σj (3.1)

Recall, from Section 1.1.5, that network coordination games admit a potential function,

which is the sum of the edge payoffs. Namely,

Φ(σ) =
∑

e=ij∈E

(Ae)σi,σj = 1
2

∑
in∈V

ui(σ) (3.2)

Thus, the problem of finding equilibria in network coordination games lies in PLS, and was

in fact shown to be PLS-complete [57]. In this chapter, we consider the smoothed setting,

where the entries of the payoff matrices are independently distributed random variables

with bounded density, i.e. with density functions f : [−1, 1]→ [0, φ] for some density bound

φ ≥ 1
2
.

Related Work. In the following section, we formally define the smoothed Local Max Cut

problem in Definition 4.2: given a weighted graph G, whose edges weights are independently

distributed random variables with density bounded by φ, we wish to find a cut of G which

cannot be improved by moving one node across the cut. This smoothed problem was first

studied by [31], who showed that with high probability, any local-search algorithm which

only search in directions of strict improvement, must terminate in at most φnO(logn). This

bound was later improved to to φnO(
√

logn) [107]. In the special case of complete graphs, it

was shown that the local search procedure must terminate in poly(φ, n) steps [32, 108].

We begin this chapter by highlighting a proof framework that is common to many of these

smoothed analysis results, proceed to outline the results shown and give an overview of the

proof method, and then finally give the proof details.

1This chapter, along with the next, is based on collaboration with Rucha Kulkarni and Ruta Mehta [58].

40

3.1 A COMMON FRAMEWORK

The analyses of all Local Max Cut papers introduced above [31, 32, 107, 108], as well as

our result, all follow a common framework, and this framework will also be central to the

next chapter. We introduce it here as it is of independent interest, and will be relevant in

introducing part of our results. The main idea is to apply the anti-concentration bound

below to show slow improvements are unlikely in the smoothed setting, leading to a fast

convergence with high probability.

Lemma 3.1 ([109]). Let M ∈ Zn×n be a matrix with rank 0 ≤ r ≤ n, and let X be a random

vector whose entries are independently distributed random variables with density at most φ,

supported on [−1, 1]. Formally, the i-th entry of X has density function fi : [−1, 1]→ [0, φ].

Then for any ε > 0, and a ∈ R,

Pr[MX − a ∈ (0, ε)n] ≤ (φε)r (3.3)

We will present a proof in the following section. Note that, like the potential function

for Network coordination games (1.7), the total value of a cut in a graph is also a linear

combination of the input values, i.e. the edge weights. For consistent notation, we will

denote a cut in the graph G = (V,E) as σ : V → {0, 1}, and the cut value as

ΦG(σ) :=
∑

ij∈E wij · I[σi 6= σj] (3.4)

Therefore, if we denote as S = (σ0, σ1, . . . , σT) the sequence of cuts observed in any local-

search procedure, then the changes in the cut value throughout the local search can be given

as an integer-coefficient linear transformation of the edge weights. Formally, if w ∈ R|E| is

the vector of edge weights, then there exists MS ∈ {−1, 0, +1}T×|E| such that

Φ(σt − σt−1) = (MSw)t for all t = 1, 2, . . . , T (3.5)

For any fixed sequence local search sequence, if (MSw)t ≤ 0 for any t, then it cannot

be the result of a strictly improving search, and if (MSw)t ≥ ε for any t, then the total

improvement due to S must be at least ε. Therefore, the event that every strictly improving

search sequence of length T makes an improvement at least ε, is a subset of {MSw /∈ (0, ε)T}
for all sequences S.2 By applying Lemma 3.1, we can immediately bound the probability of

this event by (φε)rank(MS).

2This analysis was tightened in [108] to MS(w) /∈ {w ∈ (0, ε)T |
∑

i wi ≤ ε}, since it suffices to bound
the sum of terms, rather than the individual terms. This substitution adds an extra factor of 1/r! to the
probability bound, which tightens the running time analyses.

41

The Common Framework. The core idea to the common framework is an observation

that is at the beginning of all of the results included herein. Namely, we begin by first

observing that there is a potential function whose improvements can be seen as a linear map

of the (smoothed, independently distributed) input values, and then go on to apply this

lemma. If we can choose ε small enough, and work hard enough to bound the rank of MS,

we will then be able to take a union bound over all sequences S, and show that with high

probability, for every long-enough sequence, either it is not a legal local-search sequence,

or it makes improvement at least ε, and therefore we cannot make a large number of local

improvement moves.

If there are N moves to choose from at each local improvement step, then there will be

NT fixed sequences of length T . If we can bound rank(MS) ≥ r0 for every legal sequence

S of length T , then the probability of success will be lower-bounded by 1 − NT (φ, ε)r0 . If

the potential function has a bounded range of Φ ∈ [−M,M], then we can conclude that,

with probability at least 1−NT (φ, ε)r0 , the local search procedure will terminate in at most

2TM/ε steps, as any sequence of T steps is making an improvement of at least ε.

Note that any sequence of moves S which re-visits the same configuration twice is trivially

not a legal local-improvement sequence, and so we do not need to take these into account in

the computation of r0. This is essential for eliminating trivially low-rank MS matrices.

For example, for the case of the Local Max Cut problem, we have N = n, and M =
(
n
2

)
,

since we have assumed that the edge weights lie in [−1, 1]. Therefore, with probability

1−nT (φε)r0 , any strictly-improving local search procedure must terminate in at most Tn2/ε

steps. Therefore, if we can show that for T = n, r0 > n/c — as is shown in the result of [32]

— then setting ε = n−c/φ allows us to conclude that, with high probability, any local search

procedure will terminate in at most φnc+3 steps.

The main technical result therefore reduces to bounding this r0. Unfortunately, such a

näıve application of the union bound is often too loose, and further work is needed to refine

the probability bound.

3.1.1 An Anti-Concentration Bound

We prove here Lemma 3.1, which will be key to the analyses of this chapter and the

following. It was originally presented in [109], but it is central to the framework above, and

so we present it and its proof for completeness.

We first present a proof for the following statement, which will allow us to conclude the

above lemma, and will be of independent interest. The proof here follows closely with a

proof given in [31].

42

Proposition 3.1. Let X ∈ Rd be a random vector such that the joint probability on any

a ≤ d coordinates of X is upper-bounded by φa at all points, and let M ∈ R`×d be full-rank,

with entries which are multiples of η, for ` ≤ d. Then the random variable Y := MX also

has bounded joint density fY (y) ≤ (φ/η)` for all y ∈ Rd.

Proof, following [31]. Let e1, . . . , ed be the standard basis vectors of Rd, and let λ1, . . . , λ`

denote the (linearly independent) rows of M . Without loss of generality, {λ1, . . . , λ`,

e`+1 . . . , ed} is a basis for Rd. Let M̃ be the matrix whose rows are given by this basis.

Let x ∈ R`, and define Cε(x) := [x1, x1 + ε] × · · · × [x`, x` + ε], a rectangular region in R`,

and C̃ε(x) := Cε(x) × Rd−`. We have Pr[MX ∈ Cε(x)] = Pr[M̃X ∈ C̃ε(x)] = Pr[X ∈
M̃−1C̃ε(x)].

Observe that M̃−1 is the identity on the coordinates d−`, . . . , d, since M̃ is as well. Thus,

we have that M̃−1C̃ε(x) = C ′×Rd−` for some region C ′ of volume at most ε`/η`. Therefore,

Pr[X ∈ M̃−1C̃ε(x)] =

∫
C′

dfX1,...,X` ·
∫
Rd−`

dfX`+1,...,Xd

≤ φ` · (ε/η)` · 1 (3.6)

Where the first integral bound comes from our assumption on the joint densities of collections

of entries of X, and the second is simply integrating a probability density over the whole

domain. Now taking the limit

lim
ε→0

Pr[MX ∈ Cε(x)]

vol(Cε(x))
≤ φ`ε`η−`

ε`
= (φ/η)` (3.7)

which gives our desired bound on the density. Q.E.D.

The above proof in fact allows us to conclude the lemma, as follows:

Proof of Lemma 3.1. Since the entries of X are independently distributed, and have density

bounded by φ, then any sub-collection of a many entries has joint density bounded by φa.

Let M be as in the statement of the lemma, and assume without loss of generality that its

first r rows are linearly independent, letting M̂ be the restriction of M to its first r rows.

Node that

Pr[MX − a ∈ (0, ε)n] ≤ Pr
[
(M̂X)i ∈ (ai, ai + ε) ∀ 1 ≤ i ≤ r

]
(3.8)

By Proposition 3.1, setting η = 1, d = n, and ` = r, with the above observation on the

joint densities, and setting M̂ to be the matrix in the proposition’s statement, we have that

43

the random variable M̂X has density upper-bounded by φr. Since the Cartesian product of

the (ai, ai + ε) intervals has volume εr, the total probability mass of M̂X in this region is

therefore upper-bounded by (φε)r, as desired. Q.E.D.

3.2 RESULTS AND RELATED WORK

Recall, the better-response algorithm (or BRA) consists of repeatedly choosing an arbitrary

player who can unilaterally improve their payoff, and making the improvement, until no

such improvement is possible. The BRA is guaranteed to find a pure Nash equilibrium, but

may take exponentially many improvement steps [110]. Following the Common Framework

outlined in Section 3.1, and extending the lemmas of [31, 32], we study the BRA for finding

Nash equilibria in smoothed network coordination games. We show that when the payoff

values are independently sampled from distributions with density bounded by φ, the runtime

will be polynomial in φ and the input size with probability 1−1/ poly(n). One may interpret

φ as the inverse of the minimum allowed perturbation. Formally, we show the following.

Theorem 3.2. Let G = (V,E) be a game graph for an instance of NetCoordNash, with k×k
payoff matrices, whose entries are independently distributed, continuous, random variables,

with densities fu,v,i,j : [−1, 1] → [0, φ]. Let n := |V |. If G is a complete graph, then

with probability 1 − (nk)−3, all valid executions of the BRA will converge to a PNE in at

most (nkφ)O(k) steps, and the expected maximum number of steps of any valid execution is

polynomial in φk and nk.

If G is arbitrary, all valid executions of the BRA, from all starting points, will converge to

a PNE in at most φ · (nk)O(k log(nk)) steps with probability 1− (nk)−2 over the payoff entries.

Furthermore, the expected maximum number of steps of any valid execution is polynomial

in φ and nk log(nk).

An outline of the proof is given in Section 3.3, and the missing details in the rest of the

Chapter. Observe that in the theorem statement, the randomness is only on the values in

the payoff matrices, and not on the choice of BR moves. These results hold if the BR moves

are chosen adversarially in response payoffs. We distinguish the two halves of the theorem

statement in the following remark:

Remark 3.1. The distinction between complete graphs with all-zero edges, and incomplete

graphs, is important: in the smoothed setting, all present edges must have random payoffs,

which cannot be point masses at 0. Therefore, when the graph is complete, with probability

1, any two players share a nontrivial game-edge. Conversely, when the graph is incomplete,

the players do not share a game edge, and will never be influenced by each others’ decisions.

44

The polynomial running time requires the graph to be complete so that all parameters can

be perturbed. This seems to be unavoidable as all known results on polynomial smoothed

complexity so far, e.g., linear-programming [26], local-max-cut[32], etc., require this.

The above performance guarantees are only (quasi-)polynomial in the input size for k

fixed. We leave it as an open problem to improve this. This can be achieved either by

showing that local-max-bisection has polynomial smoothed complexity (see below), or by

directly tightening the bounds in the proof presented in this chapter.

3.2.1 Related Work

The works most related to ours are [31] and [32], who first analyzed the smoothed com-

plexity of local-max-cut, and [108] who refined the analysis of the latter. As discussed

earlier local-max-cut is a special case of NetCoordNash, therefore techniques of the former

do not directly apply. Independently, [108] also obtained smoothed polynomial algorithms

for local-max-3-cut on complete graphs, and quasi-polynomial algorithms in general for local-

max-k-cut with constant k. Local-max-k-cut naturally reduces to NetCoordNash with k×k
payoff matrices, however we note that our result does not subsume theirs as the reduction

is not smoothness preserving.

Beyond-worst case complexity of NE computation. For Nash equilibrium (NE) com-

putation, the smoothed complexity of two-player games is known to not lie in P unless

RP = PPAD [111], which follows from the hardness of (1/poly)-additive approximation. On

the contrary, for most PLS-complete problems, the natural local-search algorithm often finds

an additive approximate solution efficiently. There is always a “potential function” that the

algorithm improves in each step. Intuitively, until an approximate solution is reached, the

algorithm will improve the associated potential function significantly in every local-search

step.

Towards average case analysis, Bárány, Vempala, and Vetta [25] showed that a game picked

uniformly at random has a NE with support size 2 for both the players with high probability.

The average case complexity of a random potential game was shown to be polynomial in the

number of players and strategies by Durand and Gaujal [112].

3.3 OVERVIEW AND NOTATION

In this section, we give the high-level structure for the proof of Theorem 3.2. The remaining

sections of the chapter provide the missing details. Recall that a profile σ is a PNE if and

45

only if it is a local maximum of the potential Φ defined in equation (3.2), and note that Φ

may only take values in the interval [−n2, n2], since the payoffs are in [−1, 1]. Therefore it

suffices to show that with high probability, Φ will increase significantly in every linear-length

sequence of BR moves. This is formalized in the following theorem.

Theorem 3.3. Let G = (V,E) be a game graph, with random payoff vector A, and σ0 ∈ [k]n

be an arbitrary strategy profile. With probability 1 − (nk)−2 over the values of A, all BR

sequences of length at least 2nk, initiated at any choice of σ0, must have at least one step

in which the potential increases by ε = φ−1(2n2k3)−20k log(nk). If G is a complete graph, then

with probability 1 − (nk)−3, all BR sequences of length at least 2nk, will have at least one

step increasing by ε′ = (20φ2n3k3)−4k−4.

This theorem, along with the above observations, implies that the BRA must terminate in

φ(nk)O(k log(nk)) steps with probability 1− (nk)−2, and if the graph is complete, in (φnk)O(k)

steps with probability 1−(nk)−3. The results in expectation follow from the high-probability

results, as proved in Section 3.6.3. Therefore, Theorem 3.2 follows from Theorem 3.3.

Following the common framework outlined in Section 3.1, we will begin by expressing the

increase in potential as a linear combination of the payoff values, and reduce the proof of

Theorem 3.3 to the application of Lemma 3.1 and a union bound.

Each step of the BRA consists of some player, u, deviating from their previously chosen

strategy to a new σ ∈ [k], which we will denote as the (player,strategy) pair (u, σ). Thus,

an execution of the BRA is fully specified by a sequence of pairs S = (u1, σ1), (u2, σ2), . . . ,

along with an initial strategy vector σ0 ∈ [k]n. The strategy profile at time t is given by

σt := (σt,σ
t−1
−ut). We introduce next the potential-change matrix for a BR sequence, which

allows us to control the value of Φ(σt)− Φ(σt−1) as a function of the payoff values.

Definition 3.1. For any fixed BR sequence S of length `, we define the set of vectors

L(S,σ0) = {λ1, λ2, . . . , λ`}, where λt ∈ {−1, 0, 1}(|E|×k2), for all t. The entries of λt are

indexed by indices of payoff matrix entries, denoted ((v, i)(w, j)). The values of its entries

are chosen as follows:

λt((v, i)(w, j)) =

1 if: ut ∈ {v, w} and σtv = i and σtw = j.

−1 if: ut ∈ {v, w} and σt−1
v = i and σt−1

w = j.

0 otherwise.

(3.9)

That is, every entry signifies if the corresponding payoff value gets added to the total payoff

(+1), removed (−1), or has its status unchanged (0). We term this set of vectors, or

equivalently the matrix whose columns consist of the λt’s, as the potential-change matrix of

a sequence.

46

The arguments S,σ0 will be omitted if they are clear from context. Observe Φ(σt) −
Φ(σt−1) = 〈λt, A〉, where A is the vector of payoff values, so the vector L(S,σ0)·A represents

the sequence of changes in Φ along an execution of the BRA. Theorem 3.3 is then equivalent

to bounding the probability of LA /∈ [0, ε]` for all sequences of length ` ≥ 2nk. We will then

apply Lemma 3.1, as outlined in the common framework. Thus, our goal is to lower-bound

the rank of L(S,σ0), for a worst-case choice of S and σ0, and taking a union bound over

the choice of S and σ0. The right rank bound would imply Theorem 3.3. The task at hand

then is to get the largest possible rank bounds and tight union bounds to get good running

time overall. We introduce here some parameters.

Definition 3.2 (Active, Inactive, Repeating, and Non-Repeating players.). Let S be a BR

sequence, then player u is said to be active if they appear in the sequence, and otherwise,

the player is termed inactive. An active player u is said to be repeating if there exists some

strategy i such that (u, i) appears at least twice in S, or if (u, σ0
u) appears in S at all. An

active player which is not repeating is said to be non-repeating. We introduce the following

notation:

Figure 3.1: Relevant variables for the analysis in this chapter.

p(S) number of active players in S, d(S) number of distinct (u, i) moves in S,
p1(S) # non-repeating players in S, d1(S) distinct moves by non-rep. players,
p2(S) number of repeating players in S, q0(S) number of distinct (u, σ0

u) moves

Observe that p = p1 + p2, k · p ≥ d ≥ p, k · p1 ≥ d1 ≥ p1, and q0 ≤ p2. We will often use

the quantity d(S)− q0(S), which is the number of “new” strategies played by the players.

3.3.1 Union Bounds and Rank Bounds

As discussed above, we wish to take a union bound over all the possible sequences S of

size, say, `. Näıvely, we have kn(nk)` choices of sequence of length ` and initial strategy

profile. However, if p(S)� n, the rank bound cannot exceed d(S) ≤ k · p(S) in our model,

which does not match the union bound. To fix this, we will modify the matrix L in two

different ways.

The two modified matrices will be relevant in the remaining analysis for the cases p1(S) ≥
p2(S) and p2(S) ≥ p1(S), respectively. This case analysis is similar to the proofs in [32, 108].

Unlike these two papers, we need both constructions to reach both bounds, whereas each of

these papers used one of the two constructions for both bounds.

47

Control by rounding. The first matrix construction builds on the work of [32]. While

the construction works for arbitrary graphs, the rank bounds hold only for complete graphs.

Observe that if V0 ⊂ V is the set of inactive players, and u ∈ V is active, then for i

fixed, all ((u, i)(v, σ0
v)) rows of L for v ∈ V0 are identical, modulo flipping a row’s signs.

This is because v’s strategy never changes. Therefore, in the inner product 〈λt, A〉, these

((u, i), (v, σ0
v)) terms are added or subtracted together, and we may simply take a union

bound on an approximation of this value, instead of controlling for strategy choices. This

idea is formalized in Section 3.4.

For p(S) fixed, there are at most (nk)` choices of the BR sequence, kp(S) choices of initial

strategy profiles for the active players, and d(S) − q0(S) different “buckets” of the pay-

offs with 4n/ε choices for the approximate value. Thus, we have a union bound of size

kp(S)(nk)`(4n/ε)d(S)−q0(S). In Section 3.4, we show that, whenever the graph is complete,

L(S,σ0) has rank at least d(S)−q0(S)+d1(S)/2, after we consider a “bucketing” operation.

To bound the probability of success for all BR sequences, we restrict our attention to

critical subsequences, as used in [32, 108]. These are maximal (up to inclusion) continuous

subsequences S ′ satisfying `(S ′) ≥ 2(d(S ′) − q0(S ′)), formally defined in Section 3.4. As

we will show, these must exist, and satisfy `(S ′) = 2(d(S ′) − q0(S ′)), which by definition

is at most 2kp(S). For a fixed choice of p, p1, p2, d, d1, q0, we bound the probability of any

sequence having all improvements between 0 and ε, by (nkφ)`εd1(S)/2 ≤ (nkφ)O(kp(S))εp1(S)/2,

using the above rank bounds and Lemma 3.1. Summing over all choices of parameters only

introduces a polynomial blow-up.

Control by cyclic sums. The second is more intricate, and is loosely based on a construc-

tion in [31]. The bounds proved here hold for arbitrary graphs. The intent is to construct a

new matrix Q whose columns lie in the span of L, which cancels the contributions of inactive

players, but allows us to perform a similar analysis as above.

Suppose the move (u, i) appears twice in S, or (u, σ0
u) appears in S. Let τ0 be the index of

the first occurrence of (u, i) in the BR sequence (τ0 = 0 in the latter case), and let τ1, τ2, . . .

be all subsequent appearances of (u, ·) in the sequence. Suppose τm is the second occurrence

of (u, i) in the BR sequence. Then we let qu,i :=
∑m

j=1 λτj , noting that the τ0 is omitted,

and we show in Section 3.5 that the entries of q corresponding to inactive players are all 0.

Let Q(S,σ0) be the matrix whose columns consist of the q’s. To take a union bound on all

Q matrices, it suffices to fix the initial strategy of only the active players. Furthermore, we

have that L · A ∈ [0, ε]` =⇒ Q · A ∈ [0, `ε]d−d1 , so we may apply Lemma 3.1 on the matrix

Q.

Fixing p(S), there are at most (nk)` choices of the BR sequence, and kp(S) choices of initial

48

strategy profiles for the active players. Thus, we have a union bound of size kp(S)(nk)`. In

Section 3.5, we show that, on any graph, Q(S,σ0) has rank at least p2(S)/2. Thus, for

a fixed choice of p, p1, p2, d, d1, q0, the probability of any sequence having all improvements

being between 0 and ε is then bounded by (nkφ)O(kp(S))(`φε)p2(S)/2, by Lemma 3.1. Summing

over all choices of the fixed parameters only introduces a polynomial blow-up.

Conclusion. We conclude Theorem 3.3 from the above bounds, which we summarize here:

Figure 3.2: Summary of the results proven in this chapter, towards the proof of Theorem 3.3.

Graph Rank Bound Union Bound Probability of Success ∀S

compl. d(S)− q0(S) + d1(S)/2 kp(S)(4n/ε)d(S)−q0(S)(nk)` 1− (nkφ)O(k·p(S))εd1(S)/2

gen. p2(S)/2 kp(S)(nk)` 1− (nk)O(k·p(S))(`φε)p2(S)/2

The result on general graphs uses only the bounds from the cyclical sum construction,

and a lemma of [31] which ensures that any sequence must contain a sub-sequence S ′ such

that p2(S ′) ≥ Ω(p(S ′)/ log(nk)). Applying the above bounds with ε = 1/(nkφ)O(k log(nk))

gives the desired result for general graphs. For complete graphs, we restrict ourselves to

critical blocks as described above, using rounding when p1(S) ≥ p2(S), and cyclic sums

when p2(S) ≥ p1(S). Setting ε = 1/(nkφ)O(k) for both gives the second half of Theorem 3.3.

Along with the details presented in the rest of the chapter, this concludes our proof of

Theorem 3.3, and as a result, Theorem 3.2.

3.3.2 Matrix Notation and Goals

Fix a game graph G = (V,E), and random vector of payoff values A ∈ [−1, 1]|E|k
2
, where,

for all uv ∈ E, A((u, i)(v, j)) is the payoff that players u and v receive in the uv game when

u plays i ∈ [k] and v plays j ∈ [k]. For a sequence of BR moves S = (u1, σ1), . . . , (u`, σ`)

starting at initial strategy profile σ0 ∈ [k]n, the strategy profiles over the sequence are

defined as σt := (σt,σ
t−1
−ut). Recall, L(S,σ0) := {λ1, . . . , λ`}, as defined above.

Recall, we wish to prove that for any sufficiently long sequence, at least one move must

have increased the potential significantly. Thus, we define the following:

Definition 3.3 (Minimum Improvement). For a fixed sequence S and initial state σ0, recall

that the t-th entry of L(S,σ0) · A is the value Φ(σt) − Φ(σt−1). Since A is random, these

values are random, and not necessarily positive. If some entry is negative, then S is not a

49

BR sequence. We define ∆N as the increase in potential of the worst BR sequence. Formally,

∆N = min
S,σ0
‖L(S,σ0) · A‖∞ subject to |S| = N, L(S,σ0) · A ≥ 0 (3.10)

Observe that for N = O(nk), if ∆N = 1/poly(nk, φ), then the running time concluded

in Theorem 3.3 is polynomial, and if ∆N = 1/poly(nk lognk, φ), then the running time is

quasi-polynomial. Thus, Theorem 3.3 is equivalent to showing that

Pr
A

[
∆2nk < φ−1(2n2k3)−20k log(nk)

]
≤ 1

(nk)2
in general (3.11a)

Pr
A

[
∆2nk < (20φ2n3k3)−4k−4

]
≤ 1

(nk)3
for complete game graphs (3.11b)

It remains to give the proof of this result, which we will do by case analysis. We wish to

distinguish between the cases when p1(S) ≤ p2(S), and the converse, following the outline

above. We define ∆N and ∆N to be defined similarly, but requiring that p1(S) ≥ p2(S) and

p1(S) ≤ p2(S), respectively.

3.4 RANK BOUNDS AND UNION BOUNDS VIA ROUNDING, IN COMPLETE
GRAPHS

This section formalizes the outline presented in Section 3.3.1 in the “rounding” construc-

tion, and proves the stated bounds. The cyclic-sum construction is analyzed in the following

section. We begin with the case where the game graph is complete.

We’ll first define the matrix L̃ for the rounded values, then introduce the concept of critical

block, which will allow us to show the desired rank bounds. For this section, we may assume

that the graph is complete. We will use completeness to ensure that between any two nodes,

there is a game edge we may use for rank bounds.

3.4.1 Matrix Construction

Fix a BR sequence S, and let V0 be the set of inactive players, and V1 the set of active

players. Since we are looking to control the rate at which Φ(σt) grows with t, we may

without loss of generality assume Φ(σ0) = 0 by adding a constant shift. Formally, let

Ψ(t) := Φ(σt)− Φ(σ0), which satisfies Ψ(t)−Ψ(t− 1) = Φ(σt)− Φ(σt−1). Further, define

50

Ã((u, σu)(v, σv)) = A((u, σu)(v, σv))− A((u,σ0
u)(v,σ

0
v)). Then

Ψ(t) =
∑
u,v∈V

A((u,σtu)(v,σ
t
v))− A((u,σ0

u)(v,σ
0
v)) (3.12)

=
∑
u,v∈V1

Ã((u,σtu)(v,σ
t
v)) +

∑
w,w′∈V0

Ã((w,σtw)(w′,σtw′)) +
∑
u∈V1

∑
w∈V0

Ã((u,σtu)(w,σ
t
w))

Rounding the effect of inactive players. Now, for w ∈ V0, σtw = σ0
w, so middle terms

on the second line are 0. Furthermore, the rightmost terms are in fact constants, depending

only on σu. Let then C(u, σ) :=
∑

w∈V0 Ã((u, σ)(w,σ0
w)). Then the above sum can be

expressed as

Ψ(t) :=
∑
u,v∈V1

Ã((u,σtu)(v,σ
t
v)) + 0 +

∑
u∈V1

C(u, σtu) (3.13)

Observe also that C(u, σ0
u) = 0, since the Ã terms cancel. Finally, instead of controlling for

Ψ(t) − Ψ(t − 1) exactly, it suffices to control for an approximation thereof, to approximate

the change in Φ.

We round the C values to the nearest multiple of ε, as was first introduced in [32]. Let

C ′(u, σ) be the nearest multiple of ε to C(u, σ). Since C(u, σ) ∈ [−n, n] for all u ∈ V1 and σ ∈
[k], then there are 2n/ε possible choices for C ′(u, σ). Let Ψ′(t) :=

∑
u,v∈V1 Ã((u,σtu)(v,σ

t
v))+∑

u∈V1 C
′(u, σtu), the approximation to Ψ obtained by using C ′ terms instead of C. Since

Ψ(t)−Ψ(t− 1) depends only on two C terms, namely C(u, σtu) and C(u, σt−1
u), we have

|C(u, i)− C ′(u, i)| < ε/2 =⇒
∣∣∣(Ψ(t)−Ψ(t− 1)

)
−
(
Ψ′(t)−Ψ′(t− 1)

)∣∣∣ ≤ ε (3.14)

And therefore Pr[Φ(σt) − Φ(σt−1) ∈ (0, ε)] ≤ Pr[Ψ′(t) − Ψ′(t − 1) ∈ (−ε, 2ε)]. This new

definition of potential Ψ will allow us to reduce the needed union bounds.

Union bound size. Let L̃ be obtained from L where for u ∈ V1, and i ∈ [k], we replace

the set of rows {(u, i)(w, j) : w ∈ V0, j ∈ [k]} with the single row for C(u, i) — and therefore

C ′(u, i). To define L̃, it suffices to control σ0 restricted to the active players, the sequence

S, and the values of the C ′ terms. Recall that C ′(u, σ0
u) = 0. Furthermore, the only

C(u, i) terms which are considered are those for moves (u, i) which appear in the sequence.

Therefore, we only have d(S) terms to control, q0(S) of which are 0, so we get a union bound

of size kp(S)(nk)`(4n/ε)d(S)−q0(S).

51

3.4.2 Critical Subsequences

As discussed in Section 3.3, to get our rank bounds, we will want a sub-sequence S ′ whose

length is proportional to d(S ′)− q0(S ′). To this end, we define critical subsequences below.

These are closely based on the definition of a critical block in [32].

Definition 3.4 (Critical Subsequence). Similar to the values defined in Definition 3.2, for

every contiguous subsequence B of S, let `(B), d(B), and q0(B) be length, number of distinct

pairs, and number of return moves, in B, respectively. Such a subsequence is termed critical

if `(B) ≥ 2
(
d(B)− q0(B)

)
, but for every B′ ⊆ B, `(B′) < 2

(
d(B′)− q0(B′)

)
.

Note that a return move — i.e. q0-type move — for a subsequence B which starts at time

tB is a move (u,σtBu), as opposed to a (u,σ0
u) move. We show that critical subsequences

must exist.

Lemma 3.2. A critical subsequence always exists in any sequence S of length 2nk. Fur-

thermore, if B is a critical subsequence, then `(B) = 2(d(B)− q0(B)).

Proof. As there are at most nk distinct player-strategy pairs possible, the entire sequence S

satisfies the relation `(S) ≥ 2d(S) ≥ 2(d(S)−q0(S)). Conversely, for every subsequence B of

length 1 (i.e. a single move), d(B) = 1, q0(B) = 0⇒ 1 = `(B) < 2(d(B)−q0(B)) = 2. Thus,

it suffices to take an inclusion-minimal subsequence which satisfies `(B) ≥ 2(d(B)− q0(B))

and obtain a critical subsequence.

It remains to show that for B critical `(B) = 2d(B) − 2q0(B). Suppose not, then it is

strictly larger. Let B′ be obtained from B by dropping the last column. Then,

`(B′) = `(B)− 1 ≥ 2d(B)− 2q0(B) + 1− 1 (3.15)

Now, we claim d(B) − q0(B) ≥ d(B′) − q0(B′). Clearly d(B) − 1 ≤ d(B′) ≤ d(B), and

q0(B) − 1 ≤ q0(B′) ≤ q0(B). However, if q0(B′) = q0(B) − 1, then we must also have

d(B′) = d(B)− 1. Thus, in all cases, d(B)− q0(B) ≥ d(B′)− q0(B′). This implies `(B′) ≥
2(d(B′)− q0(B′)), contradicting the criticality of B. Q.E.D.

The tight bound `(B) = 2(d(B) − q0(B)) is key for proving the main rank lemma from

this section, below. We show that critical subsequences have high rank, which by Lemma 3.2

extends to any length-2nk sequence.

We extend the definition of ∆N (Def. 3.3) to include the use of critical sequences.

52

Definition 3.5. We define ∆′(p) to be the minimum total increase due to any critical sub-

sequence with exactly p active players, where the initial strategy profile is chosen arbitrarily.

Formally,

∆′(p) = min
σ0
‖L(S,σ0) · A‖∞ subject to S critical, p(S) = p, L(S,σ0) · A ≥ 0 (3.16)

Similarly, ∆
′
(p) and ∆′(p) represent the same value, with the extra restriction that p1(S) ≥

p2(S) and p1(S) ≤ p2(S), respectively. Observe, ∆′(p) = min{∆′(p), ∆′(p)}.

Since any sequence must have a critical subsequence, ∆N ≥ minNp=1 ∆′(p), we will take a

union bound to show that the probability that ∆N < 1/(nkφ)O(k) is small. This bound is

performed separately for the two cases specified, min{∆′(p) and ∆′(p)}.

3.4.3 Rank Bounds from Separated Blocks

We provide here the main rank bound of this section, which we begin with a definition

Definition 3.6 (Separated Blocks). Fix a BR sequence S, and let P1(S) be the set of non-

repeating active players. For u ∈ P1, let Tu be the set of indices where the moving player

is u. Let T =
⋃
u∈P1

Tu, and denote without loss of generality T = {t1 < t2 < · · · < tm}.
We will show below how the ti’s “separate” the sequence S, since we will be able to control

their ranks separately. To this end, let Si for i = 0, 1, . . . , m be the subsequences of S from

time ti to ti+1 excluding boundaries, respectively, where t0 = 0 and tm+1 = |S|. We say

these Si’s are the separated blocks of S, and denote their collection as S = {S0, S1, . . . , Sm}.
Furthermore, note that |T | = d1(S).

The following lemmas allows us to take advantage of this notion of separated block, to

break up the rank bounds into simpler subproblems.

Lemma 3.3. Assume the game graph is complete, and let S be a BR sequence with at

least one inactive player, and let L = L(S,σ0) = {λ1, λ2, . . . }. Then L contains at least

d1(S) +
∑

S′∈S d(S ′)− q0(S ′) linearly independent vectors.

Proof. Let w be some inactive player, which we have assumed exists. Let T = {t1 <

t2 < · · · < tm} be the endpoints of the separated blocks, as in Definition 3.6 above. For

i = 0, 1, . . . , m, let Di be the set of distinct (player,strategy) moves which occur in Si,

which are not return moves of Si, i.e. (u,σtiu) moves.

For all i, the move at ti must be some non-repeating player of S, which we denote vi, and

call the strategy it moves to as σi, letting v0 be the inactive player w, and σ0 := σ0
w. For

53

all (u, σ) ∈ Di, let τ i(u,σ) be the time of the first occurrence of (u, σ) in the subsequence Si,

and let Hi = {τ i(u,σ) : (u, σ) ∈ Di}. Let H =
⋃|S|−1
i=0 Hi ∪ {t1, . . . , t|S|−1}. For each t ∈ H,

if t = τ i(u,σ) ∈ Hi for some i, u, σ, then associate to Lt the row ((u, σ)(vi, σ
i)). If, instead,

t = ti for some i, then associate to Lt the row ((vi, σ
i)(w, σ0)). Note that this row exists

because the game graph is complete.

Consider the submatrix of L consisting of all columns {λt : t ∈ H}, sorted in “chronologi-

cal” order, and all of their associated rows, in the same order as their respectively associated

columns. We claim that this matrix is upper-triangular, and its diagonal entries are non-

zero. For each column λt, the diagonal entry in the submatrix is the entry for the associated

row, which we have chosen to be nonzero. Furthermore, if t = ti ∈ H, then vi all previous

columns have 0 entries in the ((vi, σ
i)(·, ·)) rows, since vi is non-repeating. Thus, λti is the

first column where the associated row has a nonzero entry. If, instead, t = τ i(u,σ) ∈ Hi, then

the associated row ((u, σ)(vi, σ
i)) must have been 0 up until column λti as described above.

Furthermore, since τ i(u,σ) is the first occurrence of (u, σ 6= σtiu) after time ti, we must have

had the row ((u, σ)(vi, σ
i)) be 0 before the τ i(u,σ)-th column.

These observations imply that our |H| × |H| submatrix, with the given row-ordering,

must be upper-triangular with nonzero diagonal terms. Therefore, it must be full-rank.

Since |Hi| = d(Si) − q0(Si), then |H| = d1(S) +
∑

S′∈S d(S ′) − q0(S ′), and we conclude the

desired bound. Q.E.D.

We also extend this proof to the case of all players active.

Corollary 3.1. Let S be a BR sequence where all players are active, and let L = L(S,σ0).

Then L contains at least
(
1− 1

n

)
(d(S)− q0(S)) linearly independent vectors.

Proof. Consider the above proof method with |T | = 0, and S0 = S. Note that now, H = D0.

It is still correct if some arbitrary player is chosen to be the w player, and all ((u, σ)(v0, σ
0))

terms are replaced with ((u, σ)(w,στ
0
(u,σ))) terms. We must further restrict H not to contain

any moves of player w. Suppose we choose, as our w player, the player which appears the

least number of times in H, then we suffer a
(

1
n

)
-fraction loss in the size of H, concluding

the proof. Q.E.D.

This above lemma and corollary, along with the notion of critical block, will give us our

desired bound.

Lemma 3.4. Assume a complete game graph, and let S be a BR sequence of length 2nk

which has at least one inactive player. Let B be some critical subsequence of S starting at t0,

and let L = L(B,σt0). Then L contains at least 1
2
d1(B)+d(B)− q0(B) linearly independent

vectors.

54

Proof. Since S has an inactive player, then so must B. Therefore, Lemma 3.3 applies.

Recall, Lemma 3.3 shows that L contains at least d1(B) +
∑

S′∈S(B) d(S ′) − q0(S ′) linearly

independent vectors. If p1(B) = d1(B) = 0, then we are done. Otherwise, since B is critical,

then for all S ′ ∈ S(B), `(S ′) < 2(d(S ′)− q0(S ′)). Hence,

rank(L) ≥ d1(B) +
∑

S′∈S(B)

d(S ′)− q0(S ′) > 1
2
d1(B) + 1

2
d1(B) +

∑
S′∈S(B)

1
2
`(S ′) (3.17)

However, `(B) = d1(B) +
∑

S′∈S(B) `(S
′), and so this implies rank(L) ≥ 1

2
d1(B) + 1

2
`(B). By

criticality and Lemma 3.2, `(B) ≥ 2(d(B)− q0(B)), giving us our desired bound. Q.E.D.

This concludes the first rank- and union-bound of Section 3.3.1. Using this, and Lemma 3.1,

we show our first result:

Theorem 3.4. Pr
[

∆
′
(p) ∈ (0, ε)

]
≤
(

(20φ2n3k3)
k
ε1/4
)p
.

Proof. From the above lemmas, it remains to apply Lemma 3.1. For a fixed critical subse-

quence S with p active players, if p1 ≥ p2, then by Lemma 3.4, the improvement of each

step of the approximate potential Ψ along the sequence will lie in (−ε, 2ε) with probability

(3φε)d(S)−q0(S)+p(S)/4. Taking a union bound over all approximated sequences, this event

holds with probability

kp(S)(nk)`(S)(2n/ε)d(S)−q0(S)(3φε)d(S)−q0(S)+p(S)/4 (3.18)

Noting that d(S)−q0(S) ≤ k ·p(S), and by criticality of S, `(S) ≤ 2d(S)−2q0(S) ≤ 2kp(S),

so

Pr
[

∆
′
(p) ∈ (0, ε)

]
≤ kp(S)(nk)`(S)(2n/ε)d(S)−q0(S)(3φε)d(S)−q0(S)+p(S)/4

≤ 20k·p(S)(nkφ)2k·p(S)(nk)k·p(S)εp(S)/4

=
(
(20n3k3φ2)kε1/4

)p(S)
(3.19)

as desired. Q.E.D.

3.5 RANK BOUNDS AND UNION BOUNDS VIA CYCLIC SUMS, FOR GENERAL
GRAPHS

In this subsection, we will prove the second half of the results from Section 3.3.1. Unlike

the rank bounds of the previous section, all statements in this section hold for arbitrary

game graphs.

55

Recall that, for a fixed BR sequence S, we have defined the matrix Q(S,σ0), whose

columns consist of sums of columns of L(S,σ0) = {λ1, λ2, . . . , λ`}. We recall its definition

here: Let (u, i) be a move which appears twice in S — possibly a (u, σ0
u) return move. Let

τ0 be the index of the first occurrence of (u, i) in the BR sequence, setting τ0 = 0 for return

moves. Let τ1, τ2, . . . be the indices of all subsequent moves by player u in the sequence, and

suppose τm is the second occurrence of (u, i) in the BR sequence, or first, if it is a return

move. Define qu,i :=
∑m

j=1 λτj , noting that the τ0 is omitted, and let Q(S,σ0) be the matrix

whose columns consist of the q’s.

We wish to show that Q(S,σ0) does not depend on the strategies of the inactive players.

Intuitively, this holds because we are taking a “cyclic sum” of the moves of a player u, and

therefore we are cancelling out the entering and exiting payoff values. Formally, note that if

player u is moving at time t, λt has only nonzero entries in (u, ·)(·, ·) rows. Furthermore, if

w is inactive, and σ is any strategy played by u, then the (u, σ)(w, σ0
w) row of qu,i is given

by

qu,i
(
(u, σ)(w, σ0

w)
)

=
m∑
j=1

λτj
(
(u, σ)(w, σ0

w)
)

=
m∑
j=1

I[στju = σ]− I[στj−1
u = σ] = 0 (3.20)

Thus, we have that to fully specify Q(S,σ0), it suffices to know S and the initial strategy

profiles of the active players. It remains to show Q(S,σ0) has large rank, as follows.

Lemma 3.5. Fix a BR sequence S and starting configuration σ0. Then Q = Q(S,σ0)

contains at least p2(S)/2 linearly independent vectors.

Proof. We begin by constructing an auxiliary directed graph G′ = (V,E ′), where V is the

set of players, and E ′ will be defined as follows: let (u, σ) be some repeating move. We

cannot have qu,σ be the all-zero vector, as otherwise στ0 = στm , which cannot hold for a BR

sequence. For every player w ∈ V such that q
(
(u, σ)(w, σ′)

)
6= 0 for some σ′ ∈ [k], add the

directed edge (u,w) to E ′.

Let P2 ⊆ V be the set of repeating players, and note that they all have non-zero out-degree.

Consider the following procedure: pick a vertex r1 ∈ P2, and let T1 be the BFS arborescence

rooted at r1 which spans all nodes reachable from r1 in G′. Then delete V (T1) from G′ and

repeat, picking an arbitrary root vertex r2 ∈ P2 \ V (T1), and get the arborescence T2 on

everything reachable from r2. We may continue this until every vertex of P2 is covered by

some arborescence. For each i = 1, 2, . . . , let T 0
i and T 1

i be the set of nodes of Ti which are

of even or odd distance from ri along Ti, respectively. Let P ′i be the larger of V (T 0
i) ∩ P2

and V (T 1
i) ∩ P2, and P ′2 :=

⋃∞
i=1 P

′
i .

56

We must have that |P ′2| ≥ |P2|/2 = p2(S)/2. We wish to show that the collection V :=

{qu,· : u ∈ P ′2} is independent. Every u ∈ P ′2 must have some out-neighbour w. If u was not

a leaf of the arborescence it was selected in, then it must have some out-neighbour along

the arborescence, and we may choose this neighbour. This out-neighbour can not also be

in P ′2. In this case, qu,· will be the only vector from V to contain a non-zero ((u, ·)(w, ·))
entry, since w was not taken in P ′2. If, instead, u was a leaf of its arborescence, then its out-

neighbours must be in previously constructed arborescences. Let w be any such neighbour,

then qw,· can not contain a non-zero ((u, ·)(w, ·)) entry, as otherwise u would have been in the

other arborescence. Therefore, qu,· is the only vector in V to contain a nonzero ((u, ·)(w, ·))
entry. Thus, V must contain a |V| × |V| diagonal submatrix, and therefore has rank at least

|V| ≥ p2(S)/2, as desired. Q.E.D.

Using the above lemma along with the appropriate union bound discounting the inactive

players, we show the following Theorem:

Theorem 3.5. Pr
[
∆′(p) ∈ (0, ε)] ≤

(
2(nk)2kk5/4(nφε)1/4

)p
.

Proof. Fix S, σ0, and let L = L(S,σ0). Let A be the payoff vector of the network co-

ordination game. Let V be a collection of p2(S)/2 independent vectors from Lemma 3.5.

Let q ∈ V and recall q =
∑m

j=1 λtj for some collection of indices t1 < · · · < tm. We have

Pr[
∧m
i=1 〈λti , A〉 ∈ (0, ε)] ≤ Pr[〈q, A〉 ∈ (0,mε)]. Since m ≤ `, taking the collection of all q

vectors and applying Lemma 3.1, we have

Pr
[∧`(S)

t=1 〈λt, A〉 ∈ (0, ε)
]
≤ Pr

[∧
q∈V 〈q, A〉 ∈ (0, `ε)

]
≤ (`φε)p2(S)/2 (3.21)

There are at most kp(S)(nk)`(S) possible collections V . The quantity ∆′(p) assumes we

are in a critical subsequence, which implies `(S) = 2(d(S) − q0(S)) by Lemma 3.2 Since

`(S) = 2(d(S)− q0(S)) ≤ k · p(S), and p2 ≥ p2 =⇒ p2(S) ≥ 1
2
p(S), we have

Pr
[
∆′(p) ∈ (0, ε)] ≤ kp(S)(nk)`(S)(`φε)p2(S)/2

≤ n2k·p(S)k(2k+1)p(S)(2kp)p(S)/4(φε)p(S)/4

≤
(
2(nk)2kk5/4(nφε)1/4

)p(S)
(3.22)

as desired. Q.E.D.

57

3.6 COMBINING THE BOUNDS

This section, using the results above, concludes the proof of Theorem 3.3, which in turn

implies the main result, Theorem 3.2.

3.6.1 Polynomial Smoothed Complexity for Complete Game Graphs

We have shown above that ∆
′
(p) and ∆′(p) have vanishing probability of lying in (0, ε). In

this section, we use these results to show that the BRA will terminate in time polynomial in

nk, k and φ, with high probability, when the game graph is complete. The following lemma

combines our two previous results:

Lemma 3.6. With probability 1 − 1/O(φ2n3k4), every BR sequence of length 2nk must

have an improvement of at least ε = O
(
(φ2n3k3)−4k−4

)
.

Proof. We will perform a case analysis based on the values of p1(S) and p2(S), with cases

for p(S) = n, p(S) < n and p1(S) ≥ p2(S), and p2(S) ≥ p1(S).

If p(S) = n, we apply the rank bound of Corollary 3.1 and take a union bound over all

initial strategy profiles, and all possible sequences to get

Pr[∆′(n) ∈ (0, ε)] ≤ kn(nk)2nk(φε)n−1 ≤
(
k3kn2kφε

)n/
φε (3.23)

This union bound over-counts the number of sequences with p(S) = n, but this isn’t a

problem. Setting ε = φ−1 (n2k3)
−2k

gives Pr[∆′(n) ∈ (0, ε)] ≤
(

1
n2k3

)n−2
.

In the converse case, we combine Theorems 3.4 and 3.5, then take a union bound over

all possible values of p to bound the probability for any sequence of the given length. As

defined previously, ∆′(p) = min{∆′(p), ∆′(p)} and so,

Pr[∆′(p) ∈ (0, ε)] ≤
(
(20φ2n3k3)kε1/4

)p
+
(
2(φε)1/4n2k+1/4k2k+5/4

)p
≤ 2

(
(20φ2n3k3)kε1/4

)p
(3.24)

Since any sequence of length 2nk must contain a critical subsequence, it suffices to set

ε = (20φ2n3k3)
−4k−4

, and taking the union bound over all choices of p, we get

Pr[∆2nk ∈ (0, ε)] ≤
n∑
p=1

(
20φ2n3k4

)−p ≤ 1

(20φ2n3k4)− 1
(3.25)

Combining the two cases of p = n and p < n gives us our desired result. Q.E.D.

58

This concludes the proof of the complete-game-graphs part of Theorem 3.3, noting that

φ ≥ 1
2
. This in turn implies that with probability 1− 1/poly(n, k, φ), any correct implemen-

tation of the BRA will converge to a PNE of the network coordination game in at most

(nkφ)O(k) steps.

3.6.2 Quasipolynomial Smoothed Complexity for General Game Graphs

We now show the quasi-polynomial running time when the game graph G is incomplete,

and thus prove the remaining part of Theorem 3.2. The analysis mostly uses the lemmas

from Section 3.5, paired with the following definition and lemma from [31]:

Definition 3.7. Recall the random variable ∆ from Definition 3.3. Call a sequence of length

` log-repeating if it contains at least `/(5 log(nk)) repeating moves (pairs). We denote as

∆′′(`) the minimum total potential-improvement after any log-repeating BR sequence of

length exactly `.

Lemma 3.7 ([31], Lemma 3.4). Let ∆N and ∆′′(`) be as above. Then ∆5nk := min
1≤`≤5nk

∆′′(`).

The proof of the above lemma shows that any sequence on 5nk pairs must contain some

contiguous sub-sequence which is log-repeating. Thus, for the remainder of the analysis, it

suffices to bound ∆′′(`). Since a sequence captured by ∆′′(`) must have at least `/(5 log(nk))

repeated terms, it must have p2 ≥ `/(5k log(nk)). Therefore, as we have shown in the proof

of Theorem 3.5, we have Pr[∆′′(`) ∈ (0, ε)] ≤ k`(nk)`(`φε)`/10k log(nk). It suffices, then to

simply take the union bound over all possible values of `.

Theorem 3.6. Given a smoothed instance of k-NetCoordNash with an arbitrary initial

strategy profile, then any execution of a BR algorithm where improvements are chosen

arbitrarily will converge to a PNE in at most φ · (nk)O(k log(nk)) steps, with probability 1 −
(nk)−2.

Proof. As discussed above,

Pr[∆′′(`) ∈ (0, ε)] ≤ k`(nk)`(`φε)`/10k log(nk)

≤
(
k2n(5nkφε)1/(10k log(nk))

)`
(` ≤ 5nk)

≤
(
2k3n2(φε)1/(10k log(nk))

)`
. (51/10 ≤ 2) (3.26)

Setting ε = φ−1(2n2k3)−2·10k log(nk), this gives

Pr[∆′′(`) ∈ (0, ε)] ≤
(

1

2n2k3

)`
(3.27)

59

Let ∆5nk be the improvement in potential in any length 5nk BR sequence. Then using

Lemma 3.7, and taking the union bound over all choices of `, we have,

Pr[∆5nk ∈ (0, ε)] ≤
5nk∑
`=1

Pr[∆′′(`) ∈ (0, ε)]

≤
5nk∑
`=1

(2n2k3)−` ≤ (2n2k3)−1

1− (2n2k3)−1
=

1

2n2k3 − 1
≤ 1

(nk)2
(3.28)

Hence, with probability 1 − 1/poly(n, k) (over the draw of payoff vector A), all BR se-

quences of length 5nk will have total improvement at least ε. In that case, any execu-

tion of BR algorithm makes an improvement of at least ε every 5nk moves. Since the

total improvement is at most 2n2, we conclude that the total number of steps is at most

5nk · 2n2/ε = 10n3k(2n2k3)20k log(nk) · φ = φ · (nk)O(k log(nk)), and this occurs with probability

1− 1/poly(n, k). Q.E.D.

This concludes the proof of the arbitrary-graphs part of Theorem 3.3, noting that φ ≥ 1
2
.

This in turn implies that with probability 1− 1/poly(n, k, φ), any correct implementation of

the BRA will converge to a PNE of the network coordination game in at most (nkφ)O(k log(nk))

steps.

This completes our analysis of the smoothed performance of BRA for finding pure Nash

equilibria in network coordination games. In the next section, we show that this result indeed

holds in expectation, and then go on to show a notion of smoothness-preserving reduction

which allows us to prove alternative, conditional, algorithms for this problem.

3.6.3 (Quasi)Polynomial Running time in Expectation

The analysis in the previous section establishes smoothed complexity of network coordi-

nation games with respect to the with high probability notion. Another aspect of smoothed

analysis is to analyze the expected time of completion of the algorithm. Observe that the

expected running time of an algorithm can not be immediately concluded from the high-

probability running time, and this performance will depend on the explicit bounds computed.

In this section, we provide a theorem to obtain expected time results from the with high

probability bounds. The results are presented in a general form to allow application to any

problem in PLS that has a bounded total improvement in potential value. The following

theorem is a generalization of the statement of a result found in [31]. We include the analysis

for completeness.

60

Theorem 3.7. Given a PLS problem with input sizeN , potential function range [−N r1 , N r2],

and a local-search algorithm A to solve it, let d be the number of distinct choices the al-

gorithm has in each step and let Λ be the total size of the search space of the algorithm.

For an instance I drawn at random with maximum density φ with probability at most∑Nβ

q=1(N f(N)(φg
′(N)ε)1/g(N))q that any length-Nβ sequence of improving moves of A results

in total improvement in the potential value at most ε; the algorithm runs in expected time

O(φg
′(N) ·Nβ+r · g(N) ·N f(N)g(N) · ln Λ). Here, f(N) g′(N) and g(N) are functions of N .

Proof. The maximum improvement possible before A terminates is the maximum change in

the potential function value, given by N r2 + N r1 . For any integer t ≥ 1, if the algorithm

requires more than t steps to terminate, then there must exist some subsequence of length

Nβ that results in an improvement in the potential value of less than Nβ(N r2 + N r1)/t ≤
2Nβ+max{r2,r1}/t. We denote r := max{r1, r2}.

We define a random variable T as the number of steps A requires to terminate. Using the

notation ∆(Nβ) to denote the minimum total improvement in a length-Nβ sequence of the

algorithm A, this gives the probability of A running for more than t steps as:

Pr[T ≥ t] ≤ Pr[∆(Nβ) ∈ (0, N r+β/t)] ≤
Nβ∑
q=1

(
N f(N)

(
φg
′(N) · N

β+r

t

)1/g(N)
)q

. (3.29)

We define t = γi, for γ = N f(N)g(N)(φg
′(N)N r+β) = φg

′(N)N f(N)g(N)+β+r, and compute the

probability of T ≥ γi for any integer i:

Pr[T ≥ γi] ≤
Nβ∑
q=1

(
N f(N)

(
φg
′(N) · N

r+β

γi

)1/g(N)
)q

≤
∑∞

q=1

(
1
i

)q/g(N) ≤ g(N)
∑∞

q′=1

(
1
i

)q′ ≤ g(N)
i−1

. (3.30)

We now sum over all values of t, by using that Pr[T ≥ t] ≤ Pr[T ≥ t · dt/γe], and compute

the expected time steps as:

E[T] =
Λ∑
t=1

Pr[T ≥ t] ≤
Λ/γ∑
i=1

γ∑
t=1

Pr[T ≥ (i+ 1)γ] ≤
Λ/γ∑
i=2

g(N)γ

i− 1
= O(g(N) · γ · ln Λ) (3.31)

Thus, replacing the value for γ, the expected runtime is at most

O(φg
′(N)Nβ+rg(N)N f(N)g(N) ln Λ) . (3.32)

Q.E.D.

61

Corollary 3.2. The smoothed expected time for BR to terminate for all network coordina-

tion games is polynomial in (n(k log(nk)), φ).

Proof. From (3.26) in Theorem 3.6, we know that the probability that the minimum im-

provement in a fixed BR sequence of length 5nk is no more than ε is at most

∑5nk
`=1

(
2n2k3(φε)1/(10k log(nk))

)`
. (3.33)

Applying Theorem 3.7, for N = nk and Λ ≤ kn, we get f(N) = O(1), N r+β ≤ N3, g′(N) = 1

and g(N) = O(k log(nk)), and the expected running time is

O(φ(nk)O(1)O(k log(nk))(nk)O(1)·O(k log(nk)) ln(kn)) ≡ O(φnO(k log(nk))). (3.34)

Q.E.D.

Corollary 3.3. For complete graphs, the smoothed expected time for BR to terminate for

network coordination games is polynomial in (nk, φ).

Proof. From (3.23) in Lemma 3.6, for the case of complete graphs when a BR sequence has

all active players, we have Pr[∆(p) ∈ (0, ε)] ≤ (φε)−1
(
k3kn2kφε

)n
which is in turn bounded

by
∑n

i=1

(
k3kn2kφ1/2ε1/2

)i/
φε. Similarly, from (3.24) in Lemma 3.6, the probability that the

minimum improvement in a BR sequence of length 2nk is at most ε, is given by:

Pr[∆(p) ∈ (0, ε)] ≤
∑n

p=1 2
(
(20φ2n3k4)kε1/4

)p
(3.35)

Combining these sums, we get the probability that a BR sequence of length 2nk has

improvement at most ε is:

Pr[∆(p) ∈ (0, ε)] ≤ max

{
n∑
p=1

2
(
(20φ2n3k5)kε1/4

)p
,

n∑
i=1

(
k3kn2kφ1/2ε1/2

)i}

≤
n∑
j=1

(((nk)c1k(φc2kε)1/c3)j, (3.36)

for c1 ≤ 5, c2 ≤ 8 and c3 ≤ 4.

Applying Theorem 3.7, for N = nk, N r+β ≤ N3, and Λ ≤ kn, we get f(N) = O(k),

g′(N) = 8k and g(N) = O(1). The expected running time isO(φ8k·(nk)3·O(1)·(nk)O(k)n ln(k)),

which is polynomial in (nk, φk). Q.E.D.

62

CHAPTER 4: SMOOTHNESS-PRESERVING REDUCTIONS1

This chapter introduces and formally defines a notion of smoothness preserving reductions

for local search problems, and gives two such reductions in the case of Nash equilibrium

computation. The smoothness-preserving reductions refine Karp reductions. An algorithm

is said to be smoothed-efficient if, on adversarially chosen combinatorial information, and

random real-valued inputs, the algorithm runs in time polynomial in the input size and the

degree of perturbation, with high probability.

The idea behind the reductions is to allow a perturbed instance of P to be mapped to a

perturbed instance of Q, preserving sufficient randomness to allow for a smoothed efficient

algorithm for Q to be applied. The output of the algorithm is then mapped back to a

solution for the original P instance.

The following definition formalizes the reduction between search problems. We will as-

sume that these problems have instances I = (D,X) consisting of discrete, or structural,

information D, and continuous, real-valued information X, which is the parameter that is

perturbed in the definition of smoothness. The reduction will map the structural information

just as any Karp reduction would, but is careful to restrict how the real-valued parameters

are transformed.

Definition 4.1 (Strong and Weak Smoothness-Preserving Reductions). A weak (random-

ized) smoothness-preserving reduction from a search problem P to problem Q is defined

by poly-time computable functions f1 and f2, a full-row-rank matrix M with polynomially

bounded entries, a constant η such that 1/η is polynomial in the input size, and a real prob-

ability space Ω ⊆ Rd; such that the following holds: For any I = (D,X) ∈ P and R ∈ Ω,

J = (f1(D), ηM(X ◦ R)) is an instance of Q, such that if σ is a solution to J , then f2(σ)

is a solution to I. Here, ◦ denotes concatenation.

We require that |f1(D)|, the dimension of R, and the size of M , be polynomial in |I|, that

the probability density of the entries of R be polynomial in |I| and the maximum density on

X, and that the entries of R be independently distributed. If M is a diagonal matrix, then

this is a strong smoothness-preserving reduction.

When the reduction is strong, i.e. M is diagonal, the random input to the reduced instance

has independently distributed entries, which are required by most smoothed analysis results,

and so strong reductions easily extend smoothed efficient algorithms. We conjecture that

1This chapter, along with the previous, is based on collaboration with Rucha Kulkarni and Ruta
Mehta [58].

63

for most smoothed analysis, an upper-bound on the joint density of the input values suffices

for efficient performance of the algorithm.

Conversely, weak smoothness-preserving reductions will be useful when reducing to prob-

lems which have smoothed analysis results following the common framework introduced in

Section 3.1. The key is that if the mapping is given by a full-rank linear map with η-integral

coefficients, then we may directly inherit the common framework: namely, if MS is the

change-in potential matrix from the framework, then MS · f(X) is the change in potential

in the reduced problem, and the composition MS ◦ f has the same rank as MS, so long as f

reduces dimension.

Remark 4.1. At first blush, the extra randomness R is superfluous; however, these variables

are introduced to ensure that M has full-rank. Following the common framework, the

result of Proposition 3.1 ensures that if the entries of X and R have bounded density, and

| det(ηM)| ≥ ηd, then the joint distribution on M(X ◦R) has polynomially bounded density.

We give smoothness-preserving reductions from Network-Coordination Nash to the Local

Max Cut problems defined in the following, and take advantage of the common framework

presented above in Section 3.1.

We introduce here two PLS-complete graph cut problems which are relevant to this

writeup, namely Local Max Cut and Local Max Bisection. Both take as input a weighted

graph, and seek to find a cut which has maximal weight under a neighbourhood structure

among cuts.

Definition 4.2 (Local Max Cut and Bisection, [40]). Given a weighted graph G = (V,E),

Local Max Cut refers to the problem of finding a cut V = A ∪ B such that the total weight

of the cut δ(A,B) is maximal up to flipping one node across the cut, namely:

δ(A,B) ≥

δ(A+ u,B − u) ∀ u ∈ B

δ(A− u,B + u) ∀ u ∈ A
(4.1)

The second problem requires more introduction. A balanced cut is a cut V = A ∪B such

that |A| = |B|, and a swap of V = A ∪ B is a balanced cut which is obtained by swapping

a pair of nodes across the cut. From a balanced cut V = A ∪ B, we call V = A′ ∪ B′ the

(unique) greedy swap from V = A ∪ B if it is the swap with the greatest improvement (or

least decrease), breaking ties lexicographically. Now, given a weighted graph G = (V,E),

Local Max Bisection refers to the problem of finding a balanced cut V = A∪B whose value is

greater than that of any balanced cut which can be obtained from A∪B by repeatedly taking

64

(unique) greedy swaps, subject to not re-swapping nodes from a previous swap. Note that

these greedy swaps need not increase the cut value, as long as they are the least decrease.

It remains to outline our reductions to these problems. Formally, if X is the |E|k2-

dimensional vector of payoff values for an n-player network coordination game on the graph

G = (V,E), we map these values to an instance of Local Max Cut on G′ = (V ′, E ′),

by mapping X to the |E ′|-dimensional vector of edge-weights W . The key property, as

highlighted above, is that As highlighted above, we mainly need this to be a full-rank linear

mapping.

We obtain the two following reductions:

Theorem 4.1. NetCoordNash with 2 × 2 payoff matrices admits a weak smoothness-

preserving reduction to the local-max-cut problem. Furthermore, NetCoordNash with k× k
matrices for general k admits a weak smoothness-preserving reduction to the local-max-

bisection problem. For both results, an instance of NetCoordNash with a general or com-

plete game graph reduces to an instance of local-max-cut/bisection on a general or complete

graph, respectively.

Note, the first reduction, together with smoothed efficient algorithms for local-max-cut,

gives alternate smoothed efficient algorithms for the k = 2 instance of Network-Coordination

Nash, which was presented in the previous chapter. In particular, the recent local-max-cut

result of [108] gives an O(n8) algorithm for finding Nash Equilibria when the game graph is

complete, and furthermore, We can improve the exponent on the running time for general

graphs to O(
√

log n) due to [107].

For general k, the smoothed complexity of local-max-bisection is open, and so any conclu-

sion on the complexity of NetCoordNash is conditional. The result is of interest, however,

as it reduces games on n players and k strategies to graphs on kn+ 2 vertices. Therefore, a

smoothed-efficient algorithm for this case would eliminate the exponential dependence on k

in the statements of Theorem 3.2.

4.1 SMOOTHNESS-PRESERVING REDUCTIONS

This section formally proves that strong and weak smoothness-preserving reductions do

indeed allow to translate smoothed analysis results. The results follows almost by definition,

modulo technicalities.

Lemma 4.1. Let Q be a search problem with (quasi-)polynomial smoothed complexity.

Let P be a problem which admits a strong smoothness-preserving reduction to Q, given by

f1, f2, M , as in Definition 4.1. Then P has (quasi)polynomial smoothed complexity.

65

Proof. The algorithm for solving instances of P is as follows:

1. Perform the randomized reduction,

2. Run the smoothed-(quasi-)polynomial-time algorithm for Q on the reduced instance,

3. Compute the solution to the instance of P given the solution to the reduced problem.

By the definition of smoothness-preserving reductions and (quasi-)polynomial smoothed

complexity, step 2. will always correctly solve the reduced instance in finite time, and there-

fore step 3. will output a correct solution to the instance of P .

It remains then to show that the algorithm runs in polynomial time with high probabil-

ity, which we do via Markov’s inequality, to control for the effect of the newly introduced

randomness. Let (D,X) be an arbitrary instance of P where D is fixed, and X is a random

vector whose entries are independently distributed with density bound φ. Let R be a random

vector also independently distributed with density bound φ′ = poly(φ, |D|, |X|). Without

loss of generality, φ′ ≥ φ. Since the reduction is strong, and the matrices are assumed to

have integer entries, and therefore the entry-wise densities of the rescaling M · (X ◦R) also

has densities bounded by φ′.

Let A be the smoothed efficient algorithm for Q. Thus, there exist constants c, c′ > 0

such that on random input (C, Y) with density bound φ′, A runs in time (φ′|C||Y |)c with

probability 1 − 1/|C|c′ . By definition, |f1(D)| ≤ poly(|D|, |X|). We wish to show that

with 1 − 1/poly(|D|, |X|) over the randomness in X and R, the reduced instance given by

C := f1(D) and Y := M · (X ◦ R) will be solved by A in time poly(φ, |D|, |X|), or quasi-

polynomial time. By the assumptions on the performance of A for instances of Q, this holds

by definition, since the entries of M(X ◦R) are independently distributed, and φ′, |C|, and

|Y | are polynomial in φ, |D|, and |X|. Q.E.D.

Corollary 4.1. Let Q be a search problem with (quasi-)polynomial smoothed complex-

ity when the input is arbitrarily distributed with a bound on the joint density as in the

statements of Proposition 3.1 and Lemma 3.1. Let P be a problem which admits a weak

smoothness-preserving reduction to Q, then P has (quasi-)polynomial smoothed complexity.

The proof of this corollary is identical to the above, combined with Proposition 3.1.

Corollary 4.2. Let P be a problem which admits a weak smoothness-preserving reduction

to local-max-cut, then P has quasi-polynomial smoothed complexity. If it admits a weak

reduction to local-max-cut on a complete graph, then it has polynomial smoothed complexity.

Proof. Following the common framework of Section 3.1, the proofs of the local-max-cut

smoothed results from [31, 32] consist of applying Lemma 3.1 directly to the edge weights of

66

uv game payoffs:

(
a b
c d

)
s u

v

t

1
2 (c+ d) +W (u)

1
2 (b+ d) +W (v)

1
2 (a+ b) +Ru

1
2 (a+ c) +W (v)

1
2 (b+ c− a− d)

− 1
2 (b+ c)−W (u)−W (v)

Figure 4.1: An game-gadget in the weak smoothness-preserving reduction from Network-
Coordination Nash on 2× 2 games, to Local Max Cut.

the graph, and finding bounds on the rank of the linear transformation. By Proposition 3.1,

a weak reduction satisfies the conditions for the application of Lemma 3.1, and therefore the

local-max-cut satisfies the conditions of the previous corollary, as desired. Q.E.D.

We note, as discussed in previous sections, that it would also have sufficed for X to

have joint density bounded by φ|X|. Observe that if it were possible to weakly reduce

k-NetCoordNash to local-max-cut, then this would imply a (quasi-)polynomial smoothed

complexity for k-NetCoordNash, where the degree of the polynomial does not depend on k.

Unfortunately, we only achieve a weak reduction to local-max-bisection, which we believe

has similar smoothed complexity to local-max-cut, though this is not as of yet known. We

leave this as an open problem.

4.2 REDUCTION FROM 2-NetCoordNash TO LOCAL-MAX-CUT

In this section, we give our first reduction from 2-NetCoordNash to local-max-cut, and

show it satisfies the conditions of a smoothness-preserving reduction. We begin with an

informal description of the reduction.

Let G = (V,E) be the game graph, with payoff vector A. See Chapter 3 for the formal

definitions of these problems. We will construct a weighted cut graph H = (V ′, E ′) where

V ′ = V ∪ {s, t}, and E ′ is obtained from E by adding su and ut edges for all u ∈ V . We

wish to select edge weights such that (1) every locally maximal cut is an s-t cut, and (2) the

value of the cut (S, T) with s ∈ S and t ∈ T is equal to the total payoff of the game when

σu = 1 if u ∈ S, and 2 if u ∈ T . Thus, changing a player’s strategy is equivalent to flipping

the vertex across the cut, and so solving for a local max cut is equivalent to solving for a

local max of the game’s potential function.

Figure 4.1 gives the edge weights for a small 2-player example which satisfies the above

properties, with the payoff matrix given in the figure. The general construction, which is

specified below, places a copy of this gadget for each of the game-edges in the network game,

67

and sums the edge weights. Observe that this construction indeed has edge weights which

are linear combinations of the payoff values. Furthermore, even if W (u) = W (v) = 0, cut

values are equal to payoff values, and the maximal cuts are s-t cuts. The W (u) and W (v)

values are added to increase the rank of the reduction matrix, which as discussed above, is

the key property of these reductions. We show by induction on the number of players, later

in this section, that the matrix has full rank, which implies that it is a valid reduction.

Observe that the cut graph is complete if and only if the game graph is, as all su and ut

edges are present in the cut graph, and there is a uv edge in the cut graph whenever there

is a uv game.

Formally defined reduction. We give here formally the reduction that was described

above. Let G = (V,E) be a game graph, with payoff vector A ∈ [0.5, 1]4|E|. As the in-

puts are assumed to lie in [−1, 1], this is without loss of generality since we can make this

transformation while preserving all distributional assumptions, and at most quadrupling the

probability density in each coordinate. We will let A((u, i), (v, j)) denote the payoff when

the u player chooses strategy i, and v chooses j. As outlined above, we construct a cut

graph H = (V ∪ {s, t}, E ′), where E ′ consists of the edges E over V , with an additional

su and ut edge for all u ∈ V . We will define the edge weights below, where w(u, v) de-

notes the weight of edge uv ∈ E ′. Let Γ(u) denote the neighbours of u in graph G, and W

be a |V |-dimensional vector of extra randomness, assumed to be uniformly distributed in

[−1,−0.5]|V |. We set:

w(u, v) = 1
2

(
A((u, 1)(v, 2)) + A((u, 2)(v, 1))

− A((u, 1)(v, 1))− A((u, 2)(v, 2))
)

∀u, v ∈ V (4.2a)

w(s, u) =
∑

v:uv∈E

[
1
2

(
A((u, 2)(v, 1)) + A((u, 2)(v, 2))

)
+W (u)

]
∀u ∈ V (4.2b)

w(u, t) =
∑

v:uv∈E

[
1
2

(
A((u, 1)(v, 1)) + A((u, 1)(v, 2))

)
+W (u)

]
∀u ∈ V (4.2c)

w(s, t) = (−1) ·
∑
uv∈E

[
1
2

(
A((u, 1)(v, 2)) + A((u, 2)(v, 1))

)
+W (u) +W (v)

]
(4.2d)

Observe that the above are linear combinations of the input values, and the coefficients

are O(|E|)-sized integer multiples of η = 1
2
.

Lemma 4.2. The above construction satisfies the following conditions:

68

1. Cut values of s-t cuts are equal to the potential function of the associated strategy

profiles,

2. All locally maximal cuts are s-t cuts,

3. The construction is full-rank

Proof. Let (S, T) be a cut such that s ∈ S and t ∈ T . We will do a quick case analysis

for each payoff term. Note first that the W terms get cancelled by the st edge, since they

must appear exactly once for s or t. We say u is “playing i according to the cut” if u ∈ S
when i = 1 or if u ∈ T when i = 2. Suppose u is playing i and v is playing j, then the

A((u, i)(v, j)) term is added with total weight 1 in the su, sv, ut, and vt edges, and if i 6= j,

it is also added and removed in the uv and st edges, respectively, so it appears with total

weight 1. If u is playing i but v is not playing j, then A((u, i)(v, j)) is added with weight
1
2

in the su and ut edges, and it is subtracted with weight 1
2

in uv if i = j, or st if i 6= j.

Finally if u is not playing i and v is not playing j, then the term does not appear if i = j.

Thus, the only terms that appear are the correct ones, and they appear with weight 1.

Condition 1. By inspection, we can see that in the construction of Figure 4.1, the value

of the s-t correctly evaluates to the payoff to both players u and v on the uv game edge.

Furthermore, the edge weights given in the construction above are exactly equal to summing

the gadgets in the figure over every game edge, and therefore, the value of the cut will be

the sum of game edge payoffs, namely, the value of the potential.

Condition 2. To show condition 2, first recall that all entries of W lie in [−1,−0.5], as it

is uniformly distributed in [−1,−0.5]|V |. As observed above, in any s-t cut, the W terms are

cancelled out, and by our assumption on the payoff values, we have cut values between 1
2
|E|

and |E|. Consider any cut (S, T) where s, t ∈ S. Then for every u ∈ T , we are contributing

+2W (u) · |Γ(u)| to the cut from su and ut edges, and at most four A terms for each uv edge

with weight 1
2

each, so the cut value must be non-positive, and switching node t to the other

side will improve the cut value. Therefore, all locally maximal cuts are s-t cuts.

Condition 3. To show condition 3, we explicitly write out the matrix and show it has full

row-rank by induction on the number of players. Let Idn denote the n× n identity matrix,

1n denote the 1× n row of 1’s, γ denote the vector of |Γ(u)| values, and Γ be the diagonal

matrix with diagonal γ. Let Bi ∈ {0, 1}|V |×4|E| denote the payoff-node incidence matrix of

69

G, where the 1’s are in the(u, (u, i)(v, ·)) entries. We have

...

w(u, v)
...
...

w(u, t)
...

w(s, t)
...

w(s, u)
...

=
1

2

−Id⊗ (−1,+1,+1,−1) 0

B1 2Γ

1⊗ (0,−1,−1, 0) −2γ

B2 2Γ

...

A((u, 1)(v, 1))

A((u, 1)(v, 2))

A((u, 2)(v, 1))

A((u, 2)(v, 2))
...
...

W (u)
...

(4.3)

Note that B1 and B2 have disjoint support, and B1 + B2 is an edge-node incidence matrix,

tensored with (1, 1, 1, 1). We will show by induction on |V | that this matrix is full-rank. For

n = 2, the matrix is explicitly

−1 1 1 −1 0 0

1 1 0 0 2 0

1 0 1 0 0 2

0 −1 −1 0 −2 −2

0 0 1 1 2 0

0 1 0 1 0 2

(4.4)

which can be verified to have rank 6. Suppose then that the rank property holds for |V | =
n − 1, and we introduce a new node v. Then the new edges introduced to the matrix,

restricted to the columns for edges with v and W (v), are of the form

−1 +1 +1 −1 0 0 0 0 · · · 0

0 0 0 0 −1 +1 +1 −1 · · · 0
...

...
...

...
...

...
...

...
. . .

...

+1 +1 0 0 +1 +1 0 0 · · · −2γv

0 0 +1 +1 0 0 +1 +1 · · · −2γv

(4.5)

which has full row-rank. Since the entries in the omitted columns are all 0, then we have

a block-upper-triangular matrix where the first diagonal block is the matrix for the graph

70

V \ v, and the second diagonal block is this above matrix. Therefore, by induction, the

matrix has full row rank, as desired. Q.E.D.

4.3 REDUCTION FROM K-NetCoordNash TO LOCAL-MAX-BISECTION

We present in this section the final reduction from k-NetCoordNash to Local-Max-Bisec-

tion, showing the second part of Theorem 4.1. We begin with a description of the reduction.

Let G = (V,E) be the game graph again, and we will construct a weighted cut graph

H = (V ′, E ′). V ′ is given by the set of all (player,strategy) pairs V × [k], with n(k − 2) + 2

extra vertices s0, s1, . . . , sn(k−2), t. The goal is to have all the si’s stay on the same side of

the cut, and act as a “large” s node, while maintaining balanced cuts. E ′ is obtained as

follows: for every node (u, i), we add an {sz, (u, i)} for all z, and a {(u, i), t} edge; for every

u ∈ V and i 6= j, we add a {(u, i), (u, j)} edge, and for every uv ∈ E and i, j ∈ [k], we add

a {(u, i), (v, j)} edge. Finally, for every 0 ≤ z < z′ ≤ n(k − 2), there is an {sz, sz′} edge.

Definition 4.3 (Valid Cuts, Bisections). Call a cut (S, T) valid if sz ∈ S for all z, t ∈ T ,

and S contains exactly one (u, i) node for all u ∈ V . Note that such a cut has exactly

n(k − 1) + 1 nodes on each side, and is therefore a balanced cut, i.e. a bisection.

To each valid bisection is associated the natural strategy profile where σu is given by the

unique (u, i) node in S. We wish to choose edge weights such that (1) all locally maximal

bisections are valid, and (2) the cut value is equal to Φ(σ), which is the potential function

which was introduced in Chapter 3. (1) will be achieved by making the {(u, i), (u, j)} edges

bad, and the {sz, (u, i)} edges good, using the extra randomness available. This respectively

ensures that it is always in our interest to have a small number of (u, ·) nodes in S, but not

none.

As above, we will introduce extra randomness to the edge weights to ensure that M is

full-rank. In this case, we will show M is full rank by arguing that it is upper-triangular

after basic row operations. The cut graph is again complete if and only if the game graph

is, and therefore, we will have shown the second part of Theorem 4.1.

Extra Randomness. We wish to choose edge weights such that, as in the previous re-

duction, (a) the cut value of a valid bisection is equal to Φ(σ(S, T)), (b) all locally maximal

bisections are valid cuts, and (c) the construction is full-rank. As in the previous section,

we assume without loss of generality that the entries of A are supported in [2.5, 3]. Let

• W z(u, i) ∼ U [−3
4
,−1

2
], i.i.d. for all 0 ≤ z ≤ n(k − 2), u ∈ V , and i ∈ [k]. (4.6a)

71

• R(u, ij) ∼ U [−1,−1
2
] i.i.d. for all u ∈ V and i 6= j ∈ [k]. (4.6b)

• Y (u, i) ∼ U [2, 2.5] i.i.d. for all u ∈ V and i ∈ [k]. (4.6c)

• Az0 ∼ U [0, 1
2nk

) i.i.d. for all 0 ≤ z ≤ n(k − 2). (4.6d)

Note that the Az0’s have density 2nk, and all other variables have constant density. Define

A0 :=
∑n(k−2)

z=0 Az0. Let S0 := {s0, . . . , sn(k−2)}, and for any valid cut (S, T), let ψ(S) :=

Φ(σ(S, T)). We will also extend ψ to be defined on invalid cuts. If there is no (u, ·) node

in S, say that σu(S) = 0, and in the definition of ψ(S), let A((u, i)(v, 0)) := Y (u, i) for all

u, v ∈ V and i ∈ [k], and let A((u, 0)(v, 0)) := A0 for all u, v ∈ V . Let δ(S) denote the cut

value of (S, V \ S). We will construct edge weights with the following properties:

(i) For every valid (S, T), δ(S) = ψ(S). (From above) (4.7a)

(ii) For every u ∈ V , and i 6= j ∈ [k], δ(S0 ∪ {(u, i), (u, j)}) = 2R(u, ij). (4.7b)

(iii) For every u ∈ V , i ∈ [k], and 0 ≤ z ≤ n(k − 2), w(sz, (u, i)) = W z(u, i). (4.7c)

Furthermore, we simply assume that for all 0 ≤ z < z′ ≤ n(k− 2), the weight of the szsz′

edge is given by the random variable W (z, z′), which are distributed i.i.d. uniformly along

[−1,−0.5]. The correctness of the reduction will be proved using two lemmas, established

using the following claim.

Claim 4.2. Condition (i) is satisfied if (a) δ(S0 ∪ {(u, i)}) = ψ(S0 ∪ {(u, i)}) for all players

u and 1 ≤ i ≤ k, and (b) w((u, i), (v, j)) = Y (u, i)− Y (v, j)− A((u, i)(v, j))− A0.

Proof. Let S := S0 ∪ {(u1, i1), . . . , (u`, i`)}. We begin by showing the following:

ψ(S) =
[∑̀
j=1

ψ(S0 ∪ {(uj, ij)})
]
− (`− 1)ψ(S0)

−
∑

(u,i),(v,j)∈S
uv∈E

2 [A((u, i)(v, 0)) + A((u, 0)(v, j))− A0 − A((u, i)(v, j))] (4.8)

δ(S) =
[∑̀
j=1

δ(S0 ∪ {(uj, ij)})
]
− (`− 1)δ(S0)−

∑
(u,i),(v,j)∈S

uv∈E

2w((u, i), (v, j)) (4.9)

For (4.8), note first if there is no uv edge in the game graph, then A((u, ·)(v, ·)) does not

appear on either side of the equality, and we may restrict our attention to pairs which form

game edges. Now, for every v and w which do not appear in S, the left-hand-side has

2A((v, 0)(w, 0)), and the right-hand-side has 2(`− (`−1))A0 from the first line. If u appears

72

with strategy i, and v does not appear in S, then the left-hand-side has 2A((u, i)(v, 0)), and

the right-hand-side has 2A((u, i)(v, 0)) from the ψ(S0 ∪ {(u, i)}) term. If u appears with

strategy i, and v appears with strategy j, then the left-hand-side has 2A((u, i)(v, j)), and

the right-hand-side has 2A((u, i)(v, 0)) and 2A((u, 0)(v, j)) from the ψ(S0 ∪ {(u, i)}) and

ψ(S0 ∪ {(v, j)}) terms which are canceled out by the second line, 2(`− 2− (`− 1))A0 terms

from the first line which is canceled out by the second line, and the term 2A((u, i)(v, j))

from the second line. A similar argument shows the validity of (4.9).

Since condition (i) requires that π(S0 ∪ {u, i}) = δ(S0 ∪ {(u, i)}), this is necessary, and

along with δ(S0) = ψ(S0) from (4.12), the above analysis shows it is sufficient. We are

required to set w((u, i)(v, j)) = A((u, i)(v, 0)) + A((u, 0)(v, j))− A0 − A((u, i)(v, j)), which

is equal to Y (u, i) + Y (v, j) − A0 − A((u, i)(v, j)). Observe that this is supported on the

interval [1, 2.5]. Q.E.D.

Lemma 4.3. There exist edge weights w which satisfy conditions (i), (ii), and (iii). More-

over, these are a full-rank, square, integer-valued, linear combinations of the entries of A,

Y (u, i), Az0, R(u, ij), W z(u, i), and W (z, z′).

Proof. We may ignore the rows indexed by szsz′ , as they depend only on the W values, and

these values do not appear anywhere else, so they are independent, and do not affect the

dependence of other rows. Next, we derive edge weights such that the conditions of Claim

4.2 hold, using the following system:

w(sz, (u, i)) = W z(u, i) (by def’n) (4.10)

w((u, i)(v, j)) = Y (u, i) + Y (v, j)− A((u, i)(v, j))− A0 (4.11)

ψ(S0) = δ(S0) =

n(k−2)∑
z=0

w(sz, t) +
∑
u∈V

k∑
i=1

n(k−2)∑
z=0

W z(u, i) (4.12)

=⇒
n(k−2)∑
z=0

w(sz, t) = ψ(S0)−
∑
u∈V

k∑
i=1

n(k−2)∑
z=0

W z(u, i)

∀z we choose : w(sz, t) = ψ(S0)−
∑
u∈V

k∑
i=1

W z(u, i) (4.13)

2R(u, ij) = δ(S0 ∪ {(u, i), (u, j)})

= δ(S0 ∪ {(u, i)}) + δ(S0 ∪ {(u, j)})− δ(S0)− 2w((u, i)(u, j))

=⇒ w((u, i)(u, j)) = 1
2

(
ψ(S0 ∪ {(u, i)}) + ψ(S0 ∪ {(u, j)})− ψ(S0)− 2R(u, i, j)

)
(4.14)

73

ψ(S0 ∪ {(u, i)}) =

δ(S0 ∪ {(u, i)}) =

n(k−2)∑
z=0

w(sz, t) + w((u, i), t) +
∑

(v,j)6=(u,i)

[∑n(k−2)
z=0 W z(v, j) + w((u, i)(v, j))

]

=⇒ w((u, i), t) = ψ(S0 ∪ {(u, i)})−
n(k−2)∑
z=0

w(sz, t)−
∑

(u,i)6=(v,j)

[n(k−2)∑
z=0

W z(v, j) + w((u, i)(v, j))
]

= ψ(S0 ∪ {(u, i)})− ψ(S0) +
∑n(k−2)

z=0 W z(u, i)−
∑

(u,i)6=(v,j) w((u, i)(v, j))

(4.15)

We observe first that (4.15) contains as terms the previous numbered equations. Thus, it suf-

fices to perform simple row-elimination to get w((u, i), t) = ψ(S0∪{u, i})−
∑

v,j

∑
zW

z(v, j).

Now, let G = (V,E) be the underlying game graph, and let d(u) be the degree of u in G.

Then ψ(S0) = 2|E|A0, and ψ(S0 ∪ {(u, i)}) = ψ(S0) + 2d(u)[Y (u, i)−A0]. Finally, we have,

letting Q := n · (k − 2) + 1,

w((u, i)(v, j))
...

w((u, i)(u, j))
...

ŵ((u, i), t)
...

w(sz, t)
...

w(s, (u, i))
...

=

−Id|E|k2 0 ∗ −1|E|k2×Q 0

0 −Idn(k2) ∗ ∗ 0

0 0 2d(u)Idnk ∗ Id⊗ 1

0 0 0 2|E| · IdQ −1⊗ Id

0 0 0 0 Id⊗ 1

Auv(i, j)
...

R(u, ij)
...

Y (u, i)
...

Az0
...

W z(u, i)
...

(4.16)

Where ⊗ denotes the tensor product, namely,

Id⊗ 1 =

1 · · · 1 0 · · · 0 0 · · · 0 · · ·
0 · · · 0 1 · · · 1 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 1 · · · 1 · · ·
...

. . .
...

...
. . .

...
...

. . .
...

. . .

 1⊗ Id =

1 0 · · · 0 1 0 · · · 0 · · ·
0 1 · · · 0 0 1 · · · 0 · · ·
...

...
. . .

...
...

...
. . .

...
. . .

0 0 · · · 1 0 0 · · · 1 · · ·

(4.17)

It is easy to check that the ∗ values are integral, since the ψ values must be even combina-

tions of the A values. Therefore, after the row-operations leading to ŵ((u, i), t) values, the

matrix is upper-triangular, which implies that the system is full-rank, square, and integral,

74

as desired. Q.E.D.

Lemma 4.4. If conditions (i), (ii), and (iii) are satisfied, then all local-max-bisections are

valid cuts, and their associated strategy profiles are Nash equilibria.

Proof. Recall that we have assumed that 0.5 ≤ Auv(i, j) ≤ 1 for all edges uv and for all 1 ≤
i, j ≤ k, that 0 ≤ A0, Y (u, i) < 0.5 for all players u and 1 ≤ i ≤ k (Since A0 =

∑n(k−2)
z=0 Az0,

and the latter is contained in [0, 1
2nk

)), and that −1 ≤ R(u, ij),W z(u, i),W (z, z′) < −0.5 for

all players u, 1 ≤ i < j ≤ k, 0 ≤ z < z′ ≤ n(k − 2).

We will show that from any non-valid cut, there will be a single flip operation towards a

valid cut which improves the total cut value, then argue that they may be paired up into

swap operations. Fix a bisection (S, T), and consider the following cases:

Case I: t ∈ T , and S contains at least half the sz’s, but sz ∈ T for some z

Let sz in T , we argue that δ(S ∪ {sz})− δ(S) > 0. The two cuts may only differ on edges

incident to sz. The positive term includes w(sz, t), W
z(u, i) for all (u, i) /∈ S, and the W (z, z′)

for all sz′ ∈ T , and the negative term includes W z(u, i) for all (u, i) ∈ S and the W (z, z′) for

all sz′ ∈ S. However, we know from (4.13) that w(sz, t) = ψ(S0)−
∑

(u,i) W
z(u, i). Therefore,

we get

δ(S ∪{sz})− δ(S) = 2|E| A0︸︷︷︸
≥0

− 2
∑

(u,i)∈S

W z(u, i) +
∑
z:sz∈T

W (z, z′)−
∑
z:sz∈S

W (z, z′) (4.18)

Now, note that, since these are bisections, |{(u, i) : (u, i) ∈ S}|+|{z′ : sz′ ∈ S}| = n(k−1)+1,

so

−2
∑

(u,i)∈S

W z(u, i)−
∑
z:sz∈S

W (z, z′) ≥ 1
2
(n(k − 1) + 1) (4.19)

and
∑

z:sz∈T W (z, z′) ≥ −1
2
(n(k− 2) + 1), since we have assumed more than half lie in S, so

therefore the above sum is non-negative, and moving sz into S was an improvement.

Case II. t ∈ T and S contains fewer than half the sz’s.

We wish to show that in this case, δ(S ∪ {t}) − δ({S}) ≥ 0. Since there are fewer than
1
2
(n(k − 2) + 1) sz nodes in S, there must be at least 1

2
(nk − 1) (u, i) nodes on the S side.

Without loss of generality, we may assume n or k is even, and so at least half of the (u, i)

nodes are in S. Therefore, it would suffice to show that w(t, (u, i)) < 0, and w(sz, t) ≥ 0,

so t would benefit from moving to the side with fewer sz and more (u, i) nodes. We have

w(sz, t) = ψ(S0) −
∑

v∈V
∑k

i=1 W
z(u, i). Since W z(u, i) ≤ 0, and ψ(S0) = 2|E|k2 · A0 ≥ 0,

75

we have that w(sz, t) ≥ 0. Conversely,

w(t, (u, i)) = ψ(S0 ∪ {(u, i)})− ψ(S0) +
∑n(k−2)

z=0 W z(u, i)−
∑

(u,i)6=(v,j) w((u, i)(v, j))

≤
∑

v:uv∈E

Y (u, i)− 1
2
n(k − 2)− 1

2
− k

∑
v:uv∈E

(1
2

+ 1
2nk

)−
∑
j 6=i

w((u, i)(u, j))

< d(u) · 5
2
− k

2
d(u)− 1

2
n(k − 2)

≤ 0 (4.20)

For k ≥ 3 and n ≥ 2k. This concludes the proof of the claim.

Case III. t ∈ T , S contains at least half of the sz’s, and also (u, i) and (u, j) for some u

and i 6= j. Recall from (4.15) that

w((u, i), t) = ψ(S0 ∪ {(u, i)})− ψ(S0) +
∑n(k−2)

z=0 W z(u, i)−
∑

(u,i)6=(v,j) w((u, i)(v, j))

≥
∑n(k−2)

z=0 W z(u, i)−
∑

(u,i)6=(v,j)w((u, i)(v, j)) (4.21)

Now,

δ(S)−δ(S \ {(u, j)})

= −w((u, i), t) +
∑
sz∈S

W z(u, j)−
∑
sz∈T

W z(u, j)+

+
∑

(v,i)6=(u,j)∈S

w((u, j)(v, i))−
∑

(v,i)∈T

w((u, j)(v, i))

= −2
∑
sz∈T

W z(u, j)− 2
∑

(v,i) 6=(u,j)∈S

w((u, j)(v, i))

≤ 3
4
|S0 ∩ T | − |{(v, i) 6= (u, j) ∈ S : v 6= u}| −

∑
i 6=j:(u,i)∈S

w((u, j)(u, i)) (4.22)

Note that, since the cut is a bisection, we have |{(v, i) 6= (u, j) ∈ S : v 6= u}| = n−1+|S0∩T |,
and also w((u, i)(u, j)) ≥ 0. Therefore the sum overall is ≥ 0 if n ≥ k − 1, as desired.

Therefore, from any non-valid cut, it is always an improvement to (1) ensure that t is

opposite the majority of sz nodes by swapping it with some redundant (u, i) node, which

must exist, (2) ensure that all sz nodes are on the same side by swapping them with redundant

(u, i) nodes, which must exist. If all the sz are on one side, and t on the other, there must be

exactly n nodes of the form (u, i). If some player appears twice, then another player does not

appear, and it is in our interest to swap the redundant node with any node of the missing

player. Entering the node of the missing player into the cut is an improvement because all

Y and A0 values are smaller than all in-game payoffs, with probability 1. Therefore, all

76

locally-maximal bisections are valid.

Note that we have required Az0 to be distributed over the interval [0, 1
2nk

), so the density

bound must be at least 2nk, which is polynomial. Q.E.D.

Claim 4.2, and Lemmas 4.3 and 4.4 prove the correctness of the reduction, thus establishing

the following theorem.

Theorem 4.3. There is a smoothness preserving reduction from k-NetCoordNash to Local-

Max-Bisection. The reduction maps k-NetCoordNash instances defined on complete graphs

to Local-Max-Bisection instances on complete graphs.

77

CHAPTER 5: THE PANDORA’S BOX PROBLEM WITH ORDER
CONSTRAINTS1

In this chapter, we provide algorithms and hardness results for an order-constrained variant

of the Pandora’s box problem, introduced by Weitzman [64]. The Pandora’s box problem

models the problem of choosing one of many random-valued alternatives, when querying

value (i.e. evaluation) has a cost. We introduce constraints on the order in which the values

can be queried, and give computational results depending on the type of order constraints.

Formally, a player is presented with various alternatives modeled by a set of boxes B =

{b1, . . . , bn}, where box bi costs ci to open, and has random payoff Xi, whose distribution is

known, but its value is initially unknown. Opening a box reveals this value, i.e. samples the

distribution. A strategy π for the player is a rule which determines adaptively whether to

terminate the search, and if not, which box to open next. The goal is to choose a strategy

π which maximizes, in expectation, the following objective:

max
i∈S(π)

Xi −
∑
i∈S(π)

ci, (5.1)

where S(π) is the set of boxes opened by strategy π. Only one reward can be kept in the

end, but the player must pay for all the opened boxes.

We enrich the classical Pandora’s Box Problem by adding restrictions on the order in

which boxes can be opened or evaluated, by precedence constraints. Formally, the order

constraints are given as a directed, acyclic graph G = (V,E) where each vertex is labelled

by one of the boxes, V = B, and a box can be opened if at least one of its parents has

been opened, or if it is a source. We show in this chapter that when the order constraint

graph is a rooted tree or forest of rooted trees, then optimal search procedures may be

found. Furthermore, we investigate more general constraints, where we show hardness of

approximation, and give an approximation algorithm in a sepcial case.

In the original work by Weitzman [64], it was shown that despite the broad range of

search strategies available, the solution to the unconstrained problem boils down to a simple

strategy: Each box is assigned a reservation value ζi satisfying the equation E [(Xi − ζi)+] =

ci, where (Xi − ζi)+ := max{Xi − ζi, 0} denotes the positive part of Xi − ζi. ζi is precisely

the value that the player would need to have collected in order to be indifferent between

opening bi or not if it were the last box. The reservation value is used as a proxy for the

value of bi in the exploration procedure. Weitzman showed that the optimal strategy is to

1This chapter is based on collaboration with Federico Fusco, Philip Lazos, and Stefano Leonardi [96].

78

greedily open the boxes in descending order of reservation value, and to stop when there is

no box left or when the maximum reward seen in the past is greater than the reservation

value of the next box. Note that the order of exploration is not adaptive, but the stopping

time is.

5.1 OVERVIEW

In what follows, polynomial time means polynomial in the number n of boxes and the

largest achievable rewardM . This implicitly suggests that the random variables are bounded,

discrete and have support size polynomial in n and M . These assumptions are not restrictive:

extending the techniques of [113], we show in Section 5.6 that a polynomial number of

samples suffices to achieve an ε additive-approximate solution for the Pandora’s Box Problem

with order constraints. Moreover, these bounds are tight for the Tree-Constrained Pandora’s

Box Problem. We further note that this suggests the methods in this paper are robust to

imprecise knowledge of the distribution of the rewards on the boxes.

The Tree-Constrained Pandora’s Box Problem. In Section 5.3, we consider the Tree

case, where we present an optimal strategy with a nice structure analogous to Weitzman’s.

Theorem 5.1 (Restatement of Theorem 5.7). When order constraints are given by a rooted

tree over the boxes, there exists an optimal-in-expectation strategy of the following form:

first, label each box with a “threshold” — an order-aware analog of Weitzman’s reservation

value. Then:

• From the boxes that can be opened next, choose the one with the largest threshold.

• Terminate if the max observed value exceeds this threshold, otherwise open the box

and repeat.

Furthermore, these thresholds can be computed in polynomial time.

Notice that threshold strategies like the one described in the previous Theorem are simple

and intuitive, and enforce the desirable property that the order of the exploration is fixed

up to tie-breaking. Furthermore, it is surprising that an optimal strategy has this form,

since we show below that this need not hold for general constraints. In the Tree-Constrained

Pandora’s Box Problem, the definition of these thresholds addresses the challenges of depth,

and breadth: In considering depth, the value of a box is not only given by its reward and

cost, but also from the possibilities its opening makes accessible. This effect propagates

79

level after level, as even the deepest of the leaves can influence the decision to open the

root. Conversely, in considering breadth, the order in which the boxes are opened matters.

This is the original contribution of Weitzman. In our setting, it is difficult to model and

optimize the interplay between different explored branches of a tree, as distant directions of

exploration must be compared at every time step.

To overcome these difficulties, the first step is to generalize the reservation values used

by Weitzman to the setting where the boxes are constrained to be opened in a fixed order

[b1, b2, . . . , bn]. Notice that these values must take into account the future as well as the

present. Our solution consists in defining the threshold value of the generic box i according

to a random stopping time τ ∗(y, i), which indicates the last box that will be opened playing

optimally given that the player has already found reward y and is in front of box i. We call

this threshold value zi and it relates to the original definition as follows:

E
[
(Xi − ζi)+ − ci

]
= 0 ←→ E

(τ∗(zi,i)max
j=i

Xj − zi
)

+

−
τ∗(zi,i)∑
j=i

cj

 = 0. (5.2)

From these stopping times and threshold values we can infer that certain consecutive chunks

of boxes are essentially treated as large, collective, boxes. We refer to these as macroboxes.

If the algorithm decides to “open” one of those macroboxes, the exploration will either stop

inside of it, captured by the random τ ∗ stopping time, or will make a decision to open the

next one after having exhausted the first. Moreover, these threshold values can be computed

in polynomial time by a dynamic programming procedure.

For a single line, this reasoning may seem straightforward, but this property still holds

when the constraints consist of a union of disjoint parallel lines. A näıve dynamic program

would not be effective, as the state space is exponential in the number of lines. However, the

threshold strategy which uses the reservation values computed for each line independently

is still optimal: the algorithm will always enter the best available macrobox and either

terminate search inside of it, or move on to another one, possibly from a different line.

Surprisingly, the same approach works for trees and forests. Proceeding from leaves to the

root it is possible to linearize the trees and use the definition of reservation value to induce

a threshold strategy which is indeed optimal.

Impossibility and hardness results. Unfortunately, as shown in Section 5.5, this method

does not extend to slightly more general constraint structures. We show that it is NP-hard

to approximate an optimal solution to the problem with certain matroid constraints or more

general order constraints. More precisely we show the following.

80

Theorem 5.2 (Restatement of the results in Section 5.5). Consider the Pandora’s Box

Problem with order constraints when either (i) a matroid constraint is added to the tree

constraint or (ii) the tree constraint is generalized to a DAG. In either case, it is NP-hard

to find a 0.9997-approximately optimal solution, and furthermore, the optimal solution need

not have a fixed order of exploration.

We finally remark that proving hardness of approximation for stochastic problems needs

to address the effects of the randomness on the objective and the search trajectory, and as

such is challenging. Moreover, the structure of the maxS Xi−
∑

S ci objective makes optimal

random solutions difficult to “hide”, in a standard combinatorial sense.

Approximation results. The hardness result above, along with recent work on modified

versions of the Pandora’s Box Problem, such as [114, 115, 116, 117, 118], motivates the

study in Section 5.4 of approximation algorithms for the more general order constraints. Of

the above citations, the ones closest to our setting are [115, 116], where the author reduces

the Pandora’s Box Problem in the presence of downwards-closed constraints to adaptive

maximization of non-negative submodular functions. The key concept in their work is the

adaptivity gap, i.e. the ratio between the best adaptive solution and the best non-adaptive

one for this new problem. We similarly show the following.

Theorem 5.3 (Restatement of Theorem 5.9). Consider the Pandora’s Box Problem with

constraints modeled by some prefix closed family — a generalization of order constraints,

defined in Section 7.1.1. For every adaptive strategy π, there exists a non-adaptive strategy,

i.e. a feasible set S, such that the following holds:

E

[
max
i∈S

Xi −
∑
i∈S

ci

]
≥ 1

2
E
[

max
i∈S(π)

Xi

]
− E

 ∑
i∈S(π)

ci

 (5.3)

A thorough discussion about the choice of benchmark, i.e. fraction of expected reward

minus the entire costs, is presented in Section 5.4.1.

Theorem 5.3 effectively reduces the problem of approximating adaptive strategies to the

problem of selecting optimal non-adaptive sets. It should be noted, however, that in full

generality of matroid constraints or precedence constraints, even this non-adaptive problem

could be intractable. We therefore follow an alternative approach. We show that there exists

a particular adaptive strategy whose performance is better than that of every non-adaptive

set, simultaneously.

81

Theorem 5.4 (Restatement of Theorem 5.11). Consider the Tree-Constrained Pandora’s

Box Problem with some further downwards-closed constraints, given by generalized knapsack

constraints, or any “sufficiently oblivious” matroid constraint (as defined in Section 5.4).

There exist an adaptive strategy π̂ that can be computed efficiently and such that for any

fixed set S, π̂ performs better in expectation than non-adaptively opening S.

5.1.1 Related work.

As discussed above, the starting point for this theory is the seminal work by [64],which

was at the time a generalization of previous results for special cases, namely [119, 120]. In

the following years, the similarity between this problem and the multi-armed bandits setting

was highlighted, introducing the notion of Gittins index to the Pandora’s Box Problem,

(e.g. [121, 122]). Indeed the reservation value of the classical Pandora’s Box Problem is

a version of Gittins index, as shown by [123]. [124], and in particular [125], deal with a

similar problem, the branching bandit process. The branching process resembles the Tree-

Constrained Pandora’s Box Problem, though in that model the process does not terminate

and the revenue is measured as an infinite-horizon discounted sum of payoffs, even if some

finite horizon results are showed. The main difference with our work is that we focus on

maximizing the largest reward minus the exploration costs, an objective function they cannot

capture with their techniques, moreover their solution is defined with an implicit formula

that becomes rapidly cumbersome as a function of the height of the tree. Interestingly

enough they prove the optimality of a threshold strategy which is, in spirit, quite similar to

ours.

[126], borrowing from the language of financial derivatives, introduce the covered call value

of a box, which is the minimum of the reservation value, and its true (random) value. They

show that the expected performance of any search strategy is at most the expected covered

call value of the last kept box. This inequality is tight for any method which ‘exercises in

the money’, i.e. immediately terminates search when the value of an opened box is greater

than its reservation value. This novel point of view on the Pandora’s Box Problem started

a new interest in the problem. [127] investigate the existence of moving threshold strategies

to address more general objective functions in the Pandora’s setting, while [128] and [114]

analyze a setting in which a box can be chosen without paying its cost while retaining its

expected reward.

[115, 116] exploits the notion of surrogate box, an analog of the covered call value, to reduce

the Pandora’s Box Problem in the presence of downwards-closed constraints to adaptive

maximization of nonnegative submodular functions, and bound the adaptivity gap of this

82

problem, i.e. the ratio between the best adaptive solution and the best oblivious one as in

[129] and later [130].

This surrogate box approach does not apply to our case because it requires the exploration

to stop when a box contains a random reward greater than its own reservation price, i.e.

the already mentioned ‘exercises in the money’ property of [126]. This cannot be true

for exploration problem with order constraints, because the intrinsic value of a box in the

exploration process is given not only by its own cost and reward, but also by the opportunities

that its opening provides. Generally speaking the surrogate box techniques works well in

“concave” situations unlike ours, when opening a box decreases the marginal expected value

of further exploration, as for knapsack or matroid constraints.

Recently [117] and [118] studied a connection between the Pandora’s Box Problem and

another well known optimal stopping problem, termed the Prophet Inequalities. In the

same line of research is included the study of the Pandora’s Box Problem with Commitment

[131, 132], where once a box is opened, the algorithm can either choose to keep the reward and

terminate search, or discard the reward and continue, similarly to the Prophet Inequalities

setting. Very recently [133] addressed the Pandora’s Box Problem with correlation between

the rewards of the different boxes, with a particular focus on strategies based on sampling,

more than on the exact knowledge of the underlying distributions.

5.2 MODEL AND PRELIMINARIES.

In this section, we formally present our model, and give preliminaries. Recall, as the

player, we adaptively open a constraint-satisfying set of boxes, paying for each one opened,

while learning the actual value. The final payoff received is the largest value observed. This

is formalized below.

The Pandora’s Box Problem. We are given a set of boxes B = {b1, . . . , bn}, where

bi costs ci to open, and has random payoff Xi, whose distribution is known. The {Xi}ni=1

are independent and need not be identically distributed. We remark that the assumption

of independence is very strong, but is indeed needed in order to obtain constant factor

approximation to the optimal strategy, as recently shown by [133].

A strategy π is a rule which determines, at any integer time t ≥ 0, whether to terminate

the search and, if not, which box to open next. The strategy may depend on the time t, the

values observed in the past, the structure of the problem and some extra randomness. We

use equivalently the terms strategy, rule and policy.

83

Let St(π) denotes the (random) set of boxes that have been opened at or before time t

by strategy π, and let τπ be the (random) stopping time given by the same strategy. We

use the shortcut S(π) to denote Sτπ(π), the final set of opened boxes following strategy π.

Given constraint-set F ⊆ 2B, π is said to be F -feasible if St(π) ∈ F with probability 1, for

all t.

Our goal is to choose a F -feasible policy π∗ which maximizes, in expectation, the following

objective:

E

 max
i∈S(π∗)

Xi −
∑

i∈S(π∗)

ci

 . (5.4)

Such strategies are called optimal.

Order constraints. In this paper, we focus on order constraints, where some boxes are

required to be opened after others. More formally, a (strict) partial ordering “≺” on the

boxes B is given, where bi ≺ bj means that the opening of box bi “unlocks” box bj, allowing

it to be opened. Moreover we assume the existence of a unique root or initial box r such

that @ b ∈ B such that b ≺ r, i.e. it is the least element with respect to ≺. Note that by

definition of (strict) partial ordering on a finite set there exists at least one minimal element

and its uniqueness can be assumed without loss of generality since it is always possible to

add a dummy initial box pointing to all the minimal elements of the ordering.

For the ease of exposition we represent the underlying partial ordering on the boxes via

its (rooted) directed acyclic graph G that we call the precedence graph. From now on we

may refer equivalently to boxes or nodes, i.e. the nodes of the precedence graph where boxes

lie. To be consistent with the notation above, given an ordering with initial element r and

precedence graph G, the constraint-set is:

FG := {S ⊆ B | ∀u ∈ S \ {r}, ∃ b ∈ S, such that b ≺ u} (5.5)

Of special importance are partial orderings whose precedence graph is a tree. In this case

we talk of Tree-Constrained Pandora’s Box Problem. This particular type of constraints

models situations in which there is only one way to go from the root to any node; hence the

only condition for a box to be accessible is that its parent has already been explored.

Formally, given the precedence tree T with root r, the collection of feasible sets FT is:

FT := {S ⊆ B | ∀u ∈ S \ {r}, parent(u) ∈ S} (5.6)

Order constraints may be seen as a special case of the more general prefix-closed con-

84

straints, which simply assert that for any legal sequence of moves, any truncation of this

sequence is also legal. Formally, given a set of boxes B and a set C of possible orders of

exploration, we say that C is prefix closed if for every C ∈ C, every prefix of C is also in C.
Note that the order constraints defined above are a special case of this. Furthermore, inter-

secting any combination of order and downwards closed constraints results in some prefix

closed family.

Threshold strategies and the Pandora’s Rule. Of central importance for our paper is

the concept of threshold strategy. A rule π is said to be a threshold strategy if it pre-computes

a collection of threshold values, and greedily opens the boxes following these values, stopping

when the amount earned is greater than the threshold of all remaining legal moves. Formally,

the strategy is defined by a threshold function z : B → R and works as in Algorithm 5.1.

Algorithm 5.1: Threshold strategy

Data: Distributions of the random rewards, box costs and a threshold function

z : B → R
S0 ← ∅, y ← 0, t← 0

while y < max{z(b)|b ∈ B\St and {b} ∪ St ∈ F} do

Let b̂ ∈ arg max{z(b)|b ∈ B\St and {b} ∪ St ∈ F}, tie-breaking arbitrarily

Open box b̂, observe reward X̂ and pay cost ĉ

St+1 ← St ∪ {b̂}, y ← max{y, X̂}, t← t+ 1

end

Observe that, given some consistent tie-breaking rule, the order of exploration is fixed,

as the next box to consider only depends on the reservation values. We remark that any

threshold function is defined a priori, i.e. it does not depend on the observed rewards, but

only on the costs, the random distributions, and F . This implies that the complexity of

implementing a threshold strategy is strictly related to the complexity of computing the

thresholds. These facts, which follow by definition, are formalized in the following.

Claim 5.5. Let π be a threshold strategy, where ties in the thresholds are solved arbitrarily

but consistently. Then the following hold true:

1. Fixed order: Following strategy π, if Pr[bi opened before bj] > 0 then Pr[bj opened

before bi] = 0, for all i 6= j.

2. Efficiency: If the threshold function z is efficiently computable, then so is π.

85

In addition to being natural, the importance of threshold strategies is showcased by the

fact that the optimal strategy for the Pandora’s Box Problem is indeed of this type. Formally,

given a box b with cost c > 0 and nonnegative random reward X, we define the reservation

value ζ of b as the smallest solution to

E
[
(X − ζ)+

]
= c. (5.7)

It can be shown that if X has finite mean, then the reservation value is well defined. The

threshold strategy using the reservation values as thresholds is termed Pandora’s Rule and

is optimal for the Pandora’s Box Problem.

The power of this strategy is that the reservation value depends only on the single box, al-

lowing each box to be considered separately, leaving the problem dramatically more tractable.

Later we show that threshold strategies are the key to solve optimally also the more com-

plicated Tree-Constrained Pandora’s Box Problem.

Markov Decision Process approach. Before proceeding with the details of the analysis,

we would like to note that the Pandora’s Box Problem with order constraints admits a näıve,

albeit exponential-time solution: it suffices to solve a dynamic program whose states are all

pairs (S, y) where S ⊆ B is a set of boxes, and y ∈ R is the max value observed.

Nevertheless, the the literature on Markov Decision Processes (e.g. [134]) allows us to

assess some properties of optimal strategies: there exists an optimal strategy π∗ which

is a Markovian policy mapping states to actions, i.e. the optimal next box to open is

deterministic function of the state (S, y).

Distributional assumptions. As discussed in the beginning of Section 5.1, it is not

restrictive to assume that the random variables {Xi}i=1,...,n are discrete, bounded above

by M and are supported on s = poly(n,M) values. When we say an algorithm runs in

polynomial time, we mean polynomial in n and M .

Notation. In the following we use interchangeably max(a, b) or a∨ b to denote the largest

between two reals a and b. For the smallest we use min(a, b) or a ∧ b. Moreover, as already

mentioned, (a)+ := max{a, 0}. We use the following simple equality repeatedly: a∨ b− b =

(a− b)+.

86

5.3 OPTIMAL SEARCH ON TREE CONSTRAINTS, NEW PROOF

The following section is a simplification of the proof of the same section in the original

paper. This simpler proof has not been published, and first appears in this thesis. The original

proof may be of interest since it gives a more detailed understanding of the correctness,

whereas this sleeker, shorter proof may obfuscate some intuition.

The work of [126] presents an elegant proof for the optimality of the threshold-based

search order given by Weitzman, in the un-constrained setting. We present it here first

for completeness, and to introduce the concepts required to extend their proof to give the

optimal algorithm in the tree-constrained setting, which we present next.

5.3.1 Proof of Optimality in the Unconstrained Setting

Recall, the reservation value ζi for box i is defined such that E[(Xi − ζi)+] = ci. The

main idea in this simplified proof is to note that discounting the value Xi of the box i to be

capped by ζi is equivalent in expectation to paying cost ci. Formally, E[Xi− ci] = E[Xi∧ ζi].
In context of an execution of Pandora’s search, we can further use this idea to capture,

in expectation, the marginal return from having opened a box. If the largest value seen

in the past is denoted y, then the expected marginal gain from opening box i is given by

E[(Xi − y)+ − ci]; furthermore, so long as y ≤ ζi, this expected marginal return is equal to

E[(Xi ∧ ζi − y)+]. If y > ζi, then by definition the expected marginal return of opening box

i is negative, and it should not be opened.

Following this reasoning, we substitute each box in the analysis by a cost-less, ζ-capped,

copy. In the following, let S be the (random) set of boxes that the algorithm has opened,

let Ai denote the indicator that i ∈ arg maxk∈S Xk, breaking ties so that
∑

iAi = 1, and let

Ii denote the indicator that i ∈ S. We have then that the expected revenue to Pandora is

E[max
i∈S

Xi −
∑

i∈S ci] = E[
∑n

i=1 AiXi − Ii(Xi − ζi)+]

≤ E[
∑n

i=1 Ai(Xi − (Xi − ζi)+)] = E[
∑n

i=1 Ai(Xi ∧ ζi)] (5.8)

Note that the inequality above is tight if and only if Ii(Xi−ζi)+ is nonzero only when Ai = 1.

Thus, the above inequality is tight if we are playing a strategy which

(i) immediately terminates search if it opens a box i and observes Xi ≥ ζi, and

(ii) ensures that we are opening the boxes in decreasing ζi order, so as to not have the first

condition occur for a box other than the arg maxk∈S Xk.

87

It remains to show that Weitzman’s threshold-based strategy is optimal in expectation.

Claim 5.6 ([126]). It is optimal in expectation to follow Algorihm 5.1 with the ζi’s as

thresholds, i.e. to open the boxes in decreasing ζi order, until the largest value seen exceeds

the next largest threshold.

Proof. We note that this strategy satisfies the above two conditions, and therefore the ex-

pected return will be equal to the expected, ζ-capped, maximal box value of the right-

hand-side of (5.8). Furthermore, this strategy ensures that Ai is also the indicator for

arg maxni=1(Xi ∧ ζi) with probability 1, i.e. it maximizes the argument of the expectation in

the bound, and thus we conclude that it is optimal.

To see that the bound is optimized, Let S be the set of opened boxes, and T be the

complement. By definition, we have ζi ≥ ζj for every i ∈ S, j ∈ T , and since we have

stopped searching, we have that maxi∈S Xi ≥ maxj∈T ζj. Therefore, the maximizer for

(Xi ∧ ζi) must be contained in S. Let i∗ = arg mini∈S ζi be the last box opened. We must

have that maxi∈S−i∗ Xi < ζi∗ . If Xi∗ ≥ ζi∗ , then (Xi∗ ∧ ζi∗) maximizes the capped values,

and Ai∗ = 1. If not, then none of the opened Xi’s are capped by their thresholds, and the

capped and un-capped maxima are the same. Q.E.D.

5.3.2 Proof of Optimality for Tree-Constraints

We generalize here the proof method for the tree-constrained setting. Let T be the rooted-

forest graph, we wish to design thresholds for the nodes of T so that Algorithm 5.1 is optimal

in expectation. Analogously to the un-constrained setting, the thresholds will represent a

critical best-seen-value at which we are indifferent between opening or not. However, we

must take descendants into account.

We define the thresholds recursively. Let u ≺ v denote the ancestry-order in T , and

C(u) denote the set of u’s children. If u is a leaf in T , then the threshold z(u) is the usual

Weitzman threshold ζu from the previous section, and let Yu := Xu∧z(u) denote the capped

box value. If instead u is an internal node, we define z(u) and Yu recursively. Let z(u) be

the solution to

E
[((

Xu ∨ max
v∈C(u)

Yv
)
− z(u)

)
+

]
= E

[(
Xu ∨max

v≺u
(Xv ∧ min

v�w≺u
z(w))− z(u)

)
+

]
= cu (5.9)

and define Yu := z(u) ∧ (Xu ∨maxv∈C(u) Y (u)), the capped value of the subtree as a whole.

Note that z(u) is the value in the past for which we are indifferent between optimally

navigating the subtree rooted at u or stopping search.

88

A key observation is to note that, if v is u’s descendant, and z(v) < z(u), then the

threshold z(u) does not “see” the sub-tree rooted at v, in the sense that this sub-tree is

evaluated as zero in (5.9), since we will have Yv < z(u). To this end, we define threholded

subtrees to capture the subset of the subtree rooted at u that is “seen” in the calculation of

z(u).

Definition 5.1. The threholded subtree rooted at r, denoted T (r), is recursively defined as

follows: r ∈ T (r), and for any u ∈ T (r), if v is a child of u, and z(v) ≥ z(r), then v ∈ T (r).

Equivalently, u ∈ T (r) if for all v in the path between r and u along the tree, we have

z(v) ≥ z(r).

Note that the thresholded subtrees form a laminar set family: if u ∈ T (r), then T (u) ⊆
T (r), since z(u) ≥ z(r), and the paths inside T (u) along high-threshold nodes can be ex-

tended to r.

From the above discussion, the threshold z(r) is exactly the threshold at which we are

indifferent between entering T (r), if it were the entire set of boxes. Furthermore, the return

from exploring T (r) is equivalent to Yr in expectation. Note that we can re-define z(r) as

the solution to

E
[(
Xr ∨ max

u∈T (r)
(Xu ∧ min

v∈T (r):u∈Tv
z(v))− z(r)

)
+

]
= cr (5.10)

Theorem 5.7. Algorithm 5.1, following the z(u)’s computed above, is optimal in expecta-

tion, and the thresholds can be computed in polynomial time and space.

Proof. We begin by arguing that the above discussion gives a space-and-time efficient tree-

recursion method for computing the threshold values, so long as expectations can be com-

puted. Since we have argued that the distributions can be assumed to be finitely supported

at the cost of small error, this is feasible.

It remains to show that the choice of thresholds leads to the optimality of the algorithm.

Analogously to (5.8), let S be the set of opened boxes, Iu be the indicator that u ∈ S, Au be

the indicator that u = arg maxv∈S Xv, and Tu the indicator that T (u) contains the arg-max.

Thus, Iu ≥ Tu ≥ Au. We have

E[max
u∈S

Xu −
∑

u∈S cu] = E
[∑

uAuXu − Iu
(
Xu ∨ max

v∈T (u)
(Xv ∧ min

w∈T (u):v∈T (w)
z(w))− z(u)

)
+

]
≤ E

[∑
uAuXu − Tu

(
Xu ∨ max

v∈T (u)
(Xv ∧ min

w∈T (u):v∈T (w)
z(w))− z(u)

)
+

]
(5.11)

Now, let u∗ be the vertex where Au = 1, i.e. the arg-max, and let ` be the depth of T (u∗) in

the laminar set-system of thresholded subtrees. Call r1, r2, . . . , r` = u∗ the roots of these

89

thresholded subtrees, such that T (r1) ⊃ T (r2) ⊃ · · · ⊃ T (r`). Note that the ri’s are exactly

the nodes for which Tri = 1. Thus,

E
[∑

uAuXu − Tu
(
Xu ∨ max

v∈T (u)
(Xv ∧ min

w∈T (u):v∈T (w)
z(w))− z(u)

)
+

]
(5.12)

= E
[
Xi∗ −

∑`
i=1 (Xi∗ ∧ z(ri+1)− z(ri))+

]
= E[Xi∗ ∧ z(r1)] (z(r`+1) :=∞)

Thus, the revenue is upper-bounded by the capped value of the arg-max box, capped by

the outermost thresholded subtree that contains it. We first argue that the above inequality

is tight if and only if our strategy meets two basic conditions, and then that the largest

possible value can be attained exactly, similarly to the unconstrained case. We impose the

following conditions:

(i) If we open box r, then we will open all of T (r) before moving to another subtree.

(ii) If we open box i ∈ T (r), and Xi > z(r), then the only other boxes we open will lie in

T (r).

It suffices to argue that the multiplicand after Ir is zero if r ∈ S but Tr = 0. By (i), if we

open r, and find no Xu > z(r) in T (r), then we will continue to another thresholded subtree,

but we will also have that Xu < z(r) for all u ∈ T (r), and so the multiplicand evaluates

to zero. If instead we find some Xu > z(r), then by (ii), we will terminate search without

leaving T (r), and the arg-max will lie in the subtree, so Tr = 1.

Note that the threshold strategy following the z(u)’s satisfies these two conditions. If we

open box r, then z(r) was the largest available threshold, but now every box in T (r) has

a threshold at least as large. If we find some Xu > z(r), then we will not want to open

any of the boxes available when r was opened. It remains to show that we achieve the

optimal value for the bound. This is argued like in the unconstrained setting, by considering

only the top-level thresholded subtrees (maximal with respect to inclusion in the laminar

set system), and the largest Xi’s contained within them: The largest opened capped-value

must be greater than the largest un-opened threshold, and either all the opened values were

small enough that none are capped, or only the last thresholded subtree opened attains the

threshold. Q.E.D.

5.4 ADAPTIVITY GAPS AND APPROXIMATION BEYOND TREE CONSTRAINTS.

In the previous section, we sought to design exactly optimal policies. As we will see in

Section 5.5, we can not hope to do so for more general constraints, as the problem becomes

90

NP-hard to approximate. For this reason, we seek instead to find approximately optimal

solutions, as presented in Section 5.4.1. Then, in Section 5.4.2, following recent literature on

stochastic probing, e.g. [115, 116, 129, 130], we go through an adaptivity gap route, arguing

that for any adaptive strategy, there exists a non-adaptive strategy — i.e. pre-computing

a fixed set and opening it obliviously — which approximates its performance. Therefore,

the optimal non-adaptive strategy is a good approximation of the optimal adaptive strategy.

However, as our setting is very broad, and captures many of the complexities of stochastic

submodular optimization, it is not likely that an optimal non-adaptive set will be easy to find.

Instead, following an approach similar to [135], in Section 5.4.3, we present a simple adaptive

strategy which performs, in expectation, better than any fixed set, and yields therefore a

good approximation for the optimal adaptive strategy for a large class of Pandora’s Box

Problem with prefix closed constraints.

5.4.1 The approximation benchmark.

As a starting point, notice that the standard notion of approximation — i.e. finding

a solution whose performance is at least a multiplicative factor of the optimal solution in

expectation — is not meaningful in this setting for two reasons. First, any hard example

(e.g. the hardness proof in Theorem 5.13 and its Corollary 5.1) can be modified by adding a

large-cost-no-payoff dummy box at the root of the tree. For the right cost, optimal strategies

would have positive revenue, but approximately optimal strategies would have negative rev-

enue. Second, the classical multiplicative approximation notion would imply an unbounded

adaptivity gap even for very simple problems. For the sake of completeness and to give a

deeper idea of why we need a different definition of approximation, we report in the following

Claim a proof of this fact, loosely based on [116] and the extended version of [115].

Claim 5.8. There exists an instance of the Pandora’s Box Problem for which the ratio

between the expected rewards of the best adaptive policy and the best non-adaptive is

unbounded.

Proof. Proof: Let p > 0, and consider n identical boxes with cost c = 1 − p/2, and reward
1
p2

with probability p2, 0 otherwise. Since c < 1, the adaptive optimal strategy is to open

boxes until you get the reward, which guarantees reward 1
p2

and costs c
p2

in expectation, for

a total expected revenue of 1
p2

(1− c) = 1
2p

We now consider the non-adaptive strategy which opens k boxes. It earns 1
p2

with proba-

bility 1− (1− p2)k and 0 otherwise, and pays ck. Note that (1− p2)k is convex in k, and so

91

1
p2

(1− (1− p2)k) is concave, and thus has non-increasing derivatives. At k = 1
p
, we have

d

dk

[
−ck + 1

p2
(1− (1− p2)k)

]
= −c− (1− p2)k · ln(1− p2)

p2

≤ −c+
−(−p2) + p4

p2
· (1− p2)k if p2 ≤ 1

2
(5.13)

≤ −c+ (1 + p/8)(1− p2)k if p ≤ 1
2

≤ −c+ (1 + p/8)e−p

≤ −(1− p/2) + (1 + p/8)(1− 0.632p) (5.14)

≤ (1
2
− 0.632 + 0.125)p = −0.007p < 0

Where (5.13) holds because ln(1+x) ≥ x−x2 for x ∈ [−1
2
, 0]: at x = 0, ln(1+x) = x−x2 = 0,

and d
dx

ln(1 + x) = 1
1+x
≤ d

dx
x − x2 = 1 − 2x over the domain, by convexity of the former.

(5.14) holds since e−p ≤ 1 − (1 − 1/e)p for p ∈ [0, 1], again by convexity. Hence, the

derivative is negative, and we conclude the optimum is attained on 1 ≤ k < 1/p. However,

(1− p2)k ≥ 1− kp2, so

−ck + 1
p2

(1− (1− p2)k) ≤ −ck + 1
p2
kp2 = (1− c)k (5.15)

Since 1− c = p/2, and k ≤ 1/p, this upper-bounds the total revenue by 1
2
.

Recalling that the adaptive strategy earned on average 1/2p, then the ratio of the two

revenues is 1
p
. Taking p→ 0, this suggests that the adaptivity gap can be arbitrarily large.

We remark that this counterexample works also for the single line constrained case as the

boxes are all equal and the order is irrelevant. Q.E.D.

With this in mind, we need to somehow decouple the two terms of the objective function:

the reward and the sum-of-costs part. We define below a modified notion of approximately

optimal solution, which exploits this idea. Note that similar metrics have been used before, in

works relative to adaptive submodular maximization, such as [136, 137, 138]. This relation is

indeed quite natural since the Pandora’s Box Problem can be cast as an adaptive submodular

optimization problem.

Definition 5.2 (Approximately Optimal Solutions). In this paper we consider a notion of

approximation which considers only a fraction of the reward term of the optimal solution,

while paying similar costs. Formally, given a Pandora’s Box Problem with prefix closed

constraints, a (possibly adaptive) strategy π̂ is a C ∈ (0, 1] approximation if, for any other

92

rule π, it holds that

E

max
i∈S(π̂)

Xi −
∑
i∈S(π̂)

ci

 ≥ C · E
[

max
i∈S(π)

Xi

]
− E

 ∑
i∈S(π)

ci

 . (5.16)

5.4.2 The adaptivity gap.

The previous definition translates into the notion of adaptivity gap we use in the rest of

the paper. The main result is that, differently from Claim 5.8, this adaptivity gap can be

bounded. The proof of this theorem closely follows [130], but it is short, and so we include

it here for completeness.

Theorem 5.9. Consider the Pandora’s Box Problem with constraints modeled by some prefix

closed family, then for every adaptive strategy π, there exists a non-adaptive strategy, i.e. a

feasible set S, such that the following holds:

E

[
max
i∈S

Xi −
∑
i∈S

ci

]
≥ 1

2
E
[

max
i∈S(π)

Xi

]
− E

 ∑
i∈S(π)

ci

 (5.17)

Proof. Proof: The proof is a relatively simple, but clever, idea introduced in the adaptivity

gap upper-bound of [130]. The idea is to show that if we choose a set at random, according

to the distribution induced by S(π∗) from the randomness on the rewards, then this set will

perform well in expectation over both the random set, and the random rewards. It follows

that there must exist some set which performs at least as well as this in expectation.

Formally, we wish to show that if we randomly sample the value of each box twice, choose

optimal boxes adaptively for one of the samples, but measure revenue using the other sam-

ples, we lose only a factor 2 in the expectation of the maxi∈S Xi term. As for the
∑

i∈S ci

term, we are opening the same set, so they cost the same. Note that this considers only

feasible sets S, by definition.

To this end, let X1, . . . , Xn be the random payoff values of the boxes, and let Z1, . . . , Zn

be respectively identically distributed copies of the Xi’s, sampled independently. Fix an

optimal adaptive strategy π, and let π(S, y) ∈ [n] denote the choice of the next box to open

after having opened S, and observing largest value y. Let S(π,X|S, y) be the (random) final

set that π opens when it chooses to terminate, if it starts with set S and total y. We denote

µZ(S, y, y′) := E [(−y′ + max{Zi : i ∈ S(π,X|S, y), i /∈ S})+] (5.18)

93

the expected future gain when playing according to the Xi values starting in state (S, y),

but measuring revenue with the Zi’s from state (S, y′). Note that µX(∅, 0, 0) is the expected

revenue of playing according to the adaptive strategy, and µZ(∅, 0, 0) is the expected revenue

of randomly picking a set according to the Zi’s.

We wish to show µX(S, y, y′) ≤ 2µZ(S, y, y′), by induction on the set S, as it ranges over

all subsets, in decreasing order of cardinality. Note that if (S, y) is such that the policy π

will choose to terminate, then both values are y − y′. Otherwise, fix S, y, and y′, and let

p := π(S, y). We have

µX(S, y, y′) = E [(Xp − y′)+ + µ(S + p, y ∨Xp, y
′ ∨Xp)]

≤ E [((Xp ∨ Zp)− y′)+ + µ(S + p, y ∨Xp, y
′ ∨ (Xp ∨ Zp))]

≤ E [(Xp − y′)+ + (Zp − y′)+ + µ(S + p, y ∨Xp, y
′ ∨ (Xp ∨ Zp))]

= E [2(Zp − y′)+ + µ(S + p, y ∨Xp, y
′ ∨ (Xp ∨ Zp))] (5.19)

Where the first inequality asserts that earning more up front an only help, and the last

equality holds by linearity of expectation and the identical distributions of X and Z. Fur-

thermore,

µZ(S, y, y′) = E [(Zp − y′)+ + µZ(S + p, y ∨Xp, y
′ ∨ Zp)]

≥ E [(Zp − y′)+ + µZ(S + p, y ∨Xp, y
′ ∨ (Xp ∨ Zp))] (5.20)

Since µ(S, y, y′) is non-increasing in y′. By linearity of expectation, and by induction on S,

we get µZ(∅, 0, 0) ≥ 1
2
µX(∅, 0, 0), as desired. Q.E.D.

Remark 5.1. The previous result has a more general field of application. Consider the

problem of maximizing u(S)−
∑

i∈S ci, where u is not simply the max but a general (mono-

tone) submodular function. As [130] gives the proof for that case, Theorem 5.9 extends

nearly as it is to the submodular-minus-sum-of-costs scenario.

5.4.3 Beating non-adaptive.

With this result in hand, it remains to show that we can develop an adaptive strategy

which performs at least as well as every non-adaptive strategy, in expectation. We will take

advantage of the fact that we are working in a tree-constraint, and label the boxes with a

pre-order of the nodes of the tree. We will denote the index of box b as ib. Recall that, by

the properties of a pre-order, we have that for all b, if b has k descendants in the tree, then

94

the descendants of b are exactly those boxes indexed by ib+ 1, ib+ 2, . . . , ib+k. This allows

us to keep track of which boxes can legally be opened if we choose to not open b, since we

may simply jump ahead in the pre-order.

We wish to use this fact to design a simple dynamic program computing the best adaptive

strategy among all which only consider boxes following the pre-order. The pre-order allows

us to use an index in the order to store the tree-constraint information on S, but it remains

to efficiently encode information regarding the matroid constraint. To this end, we define

here a characterization of all constraints with “oblivious feasibility oracles”:

Definition 5.3. A constraint on the feasible sets S of boxes to open is said to have an

oblivious feasibility oracle if it is characterized by a set function D(S) with the following

properties:

1. The cardinality of {D(S) : S ⊆ [n]} is polynomial in n,

2. For any S and u /∈ S, D(S + u) is efficiently computable knowing only D(S) and u,

and

3. For any S, it can be efficiently determined whether S is feasible knowing only D(S).

To illustrate this notion, we take as an example a generalized knapsack constraint, where

every box b is assigned a vector wb ∈ Zd+, and we have a capacity vector m ∈ Zd+. Here d is

a constant. A set S is feasible if
∑

b∈Swb � m, taken componentwise. The function D(S)

is simply
∑

b∈Swb, and we require that the entries of m be polynomial in n.

Note that this generalized knapsack constraint includes, as a special case, knapsack con-

straints, cardinality constraints, and even partition matroids with O(1) partitions.

We will define the function Ψ(i, y,D) recursively below, which denotes the expected rev-

enue if we start at position i in the sequence, having already collected y, with feasibility

oracle value D. As a base case, Ψ = 0 when D(S) = D implies S is not feasible, and Ψ = y

when i = n+ 1. Otherwise, let next(i) denote the first position after i in the pre-order on

the tree such that next(i) is not a descendent of i. Then

Ψ(i, y,D(S)) := max

y

Ψ(next(i), y,D(S))

−ci + E [(Xi − y)+] + E [Ψ(i+ 1, y ∨Xi, D(S + i))]

(5.21)

Since the Xi’s take only polynomially many values, then this function can be computed in

polynomial time, by definition of D. We can also simultaneously compute the associated

adaptive policy π as in Algorithm 5.2 below.

95

Algorithm 5.2: Approximately Optimal Adaptive Strategy

Data: Pre-ordering b1, . . . , bn, Oblivious feasibility oracle D, box costs, and

random payoffs.

for i← n+ 1 to 1 do

for y ∈ Y , D ∈ D do

if D is infeasible then Ψ(i, y,D)← 0;

else if i = n+ 1 then θ(n, y)← Terminate and Ψ(n+ 1, y,D)← y;

else
open← −ci + E [(Xi − y)+] + E [Ψ(i+ 1, y ∨Xi, D(S + i))]

skip← Ψ(next(i), y,D)

Ψ(i, y,D)← max{y,open, skip}
if max{y,open, skip} = y then θ(i− 1, y)← Terminate;

if max{y,open, skip} = open then θ(i− 1, y)← i;

if max{y,open, skip} = skip then θ(i− 1, y)← θ(next(i), y);

end

end

end

Let Y be the set of all possible values attained by all the Xi’s, and D be all possible values

attained by D(S). The θ function returned by the algorithm determines the policy: if we

are in state (S, y), and the max index of an element in S is i, then π(S, y) := θ(i, y).

Claim 5.10. The strategy returned by Algorithm 5.2 is at least as good as any non-adaptive

strategy.

Proof. Proof: This can be seen by induction on the i variable of the dynamic program. Let

S−j := S ∩ {n− j, . . . , n}. We wish to show that

Ψ(n− j, y,D(S \ S−j)) ≥ E
[

max
i∈S−j

Xi − c(S−j)
]

for all y , (5.22)

by induction on j. Note that for j = 0, both values are equal to the revenue of set S.

For j > 0, regardless of whether n − j + 1 ∈ S, Ψ takes the max over including it and

not including it, and by induction, the following Φ term performs better than S−(j−1) in

expectation. Q.E.D.

Combining Claim 5.10 with Theorem 5.9 gives us the following result:

96

Theorem 5.11. For the Tree-Constrained Pandora’s Box Problem augmented with oblivious-

feasibility-oracle matroid constraints, we can efficiently compute a policy π̂ such that ∀π,

E

max
i∈S(π̂)

Xi −
∑
i∈S(π̂)

ci

 ≥ 1
2
E
[

max
i∈S(π)

Xi

]
− E

 ∑
i∈S(π)

ci

 . (5.23)

5.5 IMPOSSIBILITY AND HARDNESS RESULTS.

In this Section, we show the impossibility results outlined in Section 5.2. In Section 5.5.1

we prove that, when the precedence graph is not a tree, there may not exist a threshold-like

optimal strategy. Then, in Section 5.5.2 show the approximation hardness of solving the

Pandora’s Box Problem with both general order constraints and F = FT ∩ IM where T is

a tree and IM is the collection of independence sets of a matroid M.

5.5.1 Suboptimality of threshold strategies.

Surprisingly, the optimality of threshold strategies is a feature only of Tree-Constrained

Pandora’s Box Problem. As soon as we consider the simplest order constraint with a single

root which is no more a tree, as in Figure 5.1(a), we loose the existence of an optimal strategy

based on a fixed ordering of the boxes.

Theorem 5.12. The Pandora’s Box Problem with order constraints need not admit an

optimal threshold strategy, when the constraint graph is not a tree. Moreover the same holds

for constraints FT ∩ IM, where T is a tree and M a matroid.

Proof. Proof: Consider graph (a) in Figure 5.1 with the following parameters:

XA =

2.5 w.p. 1
2

0 w.p. 1
2

, XB = 2, XC =

3 w.p. 1
2

0 w.p. 1
2

, XD =

6 w.p. 1
2

0 w.p. 1
2

,

cA = 0, cB = 1, cC = 1− ε
2
, cD = 0.

(5.24)

For ε ∈ [5
4
, 2] it can be shown that it is optimal to start the exploration of the graph from

A, then, depending on the realization of XA it is optimal to open B (and then D) or to

open C (then D and then possibly B). If we now consider an instance of the Pandora’s Box

Problem with order constraints on FT ∩ IM where IM is all subsets of cardinality 4, and T

is given by (b) in Figure 5.1, with boxes A,B and C and two copies E and F of D, then we

inherit the results from (a). Q.E.D.

97

(a)
A

CB

D

(b)
A

CB

E F

Figure 5.1: The order of optimal adaptive exploration is not fixed

5.5.2 Hardness of approximation.

As previously mentioned, we wish to show that it is NP-hard to approximate an optimal

strategy for general order constraints and F = FT ∩ IM where T is a tree and IM are the

independent sets of a matroid M. Formally, we prove it is NP-hard to design a policy with

approximately optimal rewards, for some constant. Approximation is taken in the sense of

Definition 5.2. We remark that since it is a weaker notion than the standard multiplicative

one, the results of this Section hold also in that case.

Theorem 5.13. It is NP-hard to approximate within 0.9997 the optimal strategy to the

Pandora’s Box Problem with order constraints. It is sufficient for the DAG to have depth 2

and fan-in 3.

Proof. Proof: It is known that it is NP-hard to approximate the minimum vertex cover of

a cubic graph within a factor of ≈ 1.0012 =: 1 + ε0, as shown in [139, 140]. Let G = (V,E)

be a hard-to-approximate instance, and let n := |V |, and m := |E|. Let α be such that the

optimal vertex cover has size αm. Observe, since G is cubic, that m := 3
2
n, and α ≥ 1

3
.

Furthermore, any greedy independent set must have at least 1
3+1

n nodes, which implies that

its complement is a vertex cover of size at most 3
4
n = 1

2
m. Thus, α ∈ [1

3
, 1

2
].

We construct, now, the constraint graph D. The nodes of D will be labelled by V ∪ E,

where the V nodes will be the sources of the DAG, each having cost 1 and reward 0, and the

E nodes will be the sinks of the DAG, each having cost 0 and reward βm with probability
c
m

and 0 otherwise, for constants β, c > 0 which we will choose later. There is an edge

connecting any vertex-box v to each edge-box e such that e in incident to v. Since G is

cubic, this implies that D has depth 2 and fan-in 3, as required in the theorem statement.

Any optimal strategy must take the following form: (1) Fix an ordering on the boxes

labelled by V , (2) Pay to open the next vertex-box in the order, then reveal the ≤ 3 unopened

edge-boxes which it reveals. (3) Repeat until the reward has been collected. Suppose that the

i-th vertex-box we pay for allows us to open 0 ≤ ni ≤ 3 new edge-boxes, and Ni :=
∑i−1

j=1 nj.

98

Then the expected max reward will be βm · (1− (1− c
m

)m), and the expected cost will be

E [# V boxes opened] =
n∑
i=1

Pr opening ≥ i boxes =
n∑
i=1

(1− c
m

)Ni (5.25)

Observe, without loss of generality, ni−1 ≥ ni for all i, as swapping the (i− 1)-st and i-th

boxes will only increase Ni and leave Ni+1 and onwards unchanged, reducing the expected

cost. Thus, in any fixed order, after this swapping, there must exist numbers k3, k2, and k1,

such that

n1 = n2 = · · · = nk3 = 3,

nk3+1 = nk3+2 = · · · = nk3+k2 = 2,

nk3+k2+1 = · · · = nk3+k2+k1 = 1 (5.26)

Note that 3k3 + 2k2 + k1 = m, and that the vertex cover has size k3 + k2 + k1. Setting

r = (1− c
m

), we have that the expected cost becomes

k3∑
i=1

r3i +

k2∑
i=1

r3k3+2i +

k1∑
i=1

r3k3+2k2+i

= r3

1−r3
(
1− r3k3

)
+ r2

1−r2
(
r3k3 − r3k3+2k2

)
+ r

1−r

(
r3k3+2k2 − rm

)
(5.27)

In the remainder of the proof, we will bound the values of k3, k2, and k1, for optimal

and sub-optimal vertex covers, and show that the difference in expected cost is at least a

constant factor of the expected reward. Since it is NP-hard to approximate the vertex cover,

this will imply that is it NP-hard to approximate the optimal strategy for the Pandora’s

Box Problem on D.

Let S∗ be an optimal vertex cover of size αm, and let S ′ be any vertex cover of size

≥ (1 + ε0)αm. Let k∗3, k∗2, and k∗1, be as above for the set S∗, and k′3, k′2, and k′1 be similarly

for S ′. We wish to lower-bound the cost of opening S∗, and upper-bound the cost of opening

S ′, by bounding the possible values of the k∗’s and k′’s obtained by sub- and super-optimal

orderings, respectively. Note that we can trade off k3 + k1 for 2k2 to increase the expected

cost, and vice versa. Since α ≤ 1
2
, then for S∗, it will suffice to assume k∗1 = 0, and increase

k∗3 as α approaches 1
3
. For S ′, it will suffice to assume k′2 = 0. With the constraints on the

99

k∗’s and the k′’s, this givesk∗3 = (1− 2α)m

k∗2 = (3α− 1)m

k′3 = 1
2
(1− (1 + ε0)α)m

k′1 = 1
2
(3(1 + ε0)α− 1)m

(5.28)

Furthermore, in the expected cost expression above, we get

E [cost(S∗)] ≤ r3

1−r3
(
1− r3k∗3

)
+ r2

1−r2
(
r3k∗3 − rm

)
= r3

1−r3 −
r2

1−r2 (rm) + r3k∗3

[
r2

1−r2 −
r3

1−r3

]
(5.29)

E [cost(S ′)] ≥ r3

1−r3

(
1− r3k′3

)
+ r

1−r

(
r3k′3 − rm

)
= r3

1−r3 −
r

1−r (r
m) + r3k′3

[
r

1−r −
r3

1−r3

]
(5.30)

Combining (5.29) and (5.30), the difference ∆ := E [cost(S ′)− cost(S∗)] is at least

∆ ≥ −rm
[

r
1−r −

r2

1−r2

]
− r3

1−r3

(
r3k′3 − r3k∗3

)
+ r

1−rr
3k′3 − r2

1−r2 r
3k∗3

=
(
r3k′3 − r3k∗3

) [
r2

1−r2 −
r3

1−r3

]
+
[

r
1−r2

] (
r3k′3 − rm

)
(5.31)

Recalling the values of k∗3 and k′3 above, expanding r = 1 − c
m

, and first taking MacLaurin

series around “ c
m

”= 0 for the terms in square brackets, then Taylor series for the terms in

round brackets, we have

∆ ≥ (m
6c

+O(1))
(

(1− c
m

)3k′3 − (1− c
m

)3k3∗
)

+ (m
2c

+O(1))
(

(1− c
m

)3k′3 − (1− c
m

)m
)

= m
6c

(
e−3c(1−α−ε0α)/2 − e−3c(1−2α)

)
+ m

2c

(
e−3c(1−α−ε0α)/2 − e−c

)
+O(1)

= m
6c

(
4e−3c(1−α−ε0α)/2 − 3e−c − e−3c(1−2α)

)
+O(1) (5.32)

Setting c = (2ε0)/(3α), and for convenience, denoting A := 1/α, we have

∆ ≥ m
4Aε0

(
4e−ε0(A−1−ε0) − 3e−c − e−3c(1−2α)

)
+O(1) (5.33)

Recalling that A ∈ [2, 3]. For ε0 = 0.0012 as in [139, 140], it can be shown that the

function is non-increasing in A on its domain, and plugging A = 3, we numerically have

∆ ≥ 0.000399 ·m. More generally, taking the second derivative in ε0 suffices to show that

the right hand side is strictly convex in ε0, since A ∈ [2, 3], and its derivative is 0 when

ε0 = 0. This ensures the constant is a positive function of ε0.

It remains to determine the ratio of the difference in expected cost to the expected reward.

100

Recall that we have set the reward to be βm with probability c
m

, and 0 otherwise. Since

it costs 1 to open a box, and we wish to ensure that even when there is a single edge-box

remaining, it is in our interest to open the box, we must set β = 1
c
. Recall, then, that the

expected reward will be

βm · (1− (1− c
m

)m) = m · 1
c
(1− e−c +O(1

m
)) = m+O(1) (5.34)

Thus, an approximation for the Pandora’s Box Problem which additively approximates the

cost within a 1.00039 factor of the revenue implies an approximation algorithm for vertex

cover on cubic graphs within a factor of < 1.0012, which is not possible unless P = NP .

This concludes the proof with a multiplicative constant of 1− 0.00039 < 0.9997 in the sense

of Definition 5.2. Q.E.D.

We argue here that, since the constraint graph G of the previous proof has depth 2 and

fan-in 3, this also implies hardness for tree-and-matroid constraints, FT ∩ I. It suffices to

replace each sink with 3 identical copies (including costs and rewards), assign one to each

parent, and restrict that at most one copy of each is opened. This is exactly a partition

matroid constraint, and the resulting graph is a forest of depth-2 trees, and is equivalent in

terms of exploration costs and rewards to the constraint graph G. We have then proved the

following Corollary.

Corollary 5.1. It is NP-hard to find the optimal strategy to the Pandora’s Box Problem

with order constraints with constraint F = FG ∩ IM where M can be any matroid on B

even if G is restricted to be a tree. It suffices for M to be a partition matroid.

5.6 ROBUSTNESS TO APPROXIMATE DISTRIBUTIONAL INFORMATION, OR
SAMPLE ACCESS

In this section we show how a polynomial number of samples from the random variables

{Xi}ni=1 is enough to approximately solve the Pandora’s Box Problem with any general

prefix-closed constraint. Furthermore we prove that, for the Tree-Constrained Pandora’s

Box Problem, a linear number of samples is enough and that this is tight. These results are

based on the techniques of [113].

We begin by remarking on the assumptions made in Section 5.1. First, we may safely

assume that all variables have bounded support: if not, either there exists Xi with E [Xi] =

∞, and the optimal solution is to go for that box no matter the cost. Conversely we may

truncate the random variable without greatly affecting the problem. For any δ > 0, there

101

must exist a sufficiently large Mδ such that E [maxiXi|Xi ≤Mδ ∀i] ≥ (1 − δ) · E [maxiXi],

and therefore Pr maxiXi > Mδ ≤ δ. Taking δ < n−1, this only affects the problem with

vanishingly small probability, and we may choose δ arbitrarily smaller. Let M denote Mδ

for our choice of δ > 0. Thus, we may replace Xi with the random variable min{Xi,M}.
Now, up to scaling by this factor M — the largest reward achievable — we can assume the

random variables are supported on [0, 1].

At first glance, this M factor may be arbitrarily large. However, if it were the case that e.g.

M1/n > n · E [maxiXi], meaning that a near-totality of the weight of the random variables

occurred in this tail compared to the bounds expected from Markov’s inequality, then it

seems reasonable to treat this quantity as our scale.

5.6.1 The learning procedure.

Following [113], we use the Product empirical revenue maximization (PERM) paradigm:

for any fixed ε > 0, we take an O(ε)-grid of the interval [0, 1], and for sufficiently many

samples, learn the empirical distribution on these grid points. We then compute the optimal

search policy using this empirical distribution. Formally,

• For each box b, let Xε
b be the random variable obtained by rounding down the reward

Xb to the nearest multiple of ε;

• Given N i.i.d. samples of Xε
b , let X̂b be the random variable distributed according to

the empirical distribution;

• Output the strategy π̂ which is optimal with respect to the X̂b’s.

Note that here we do not consider the empirical joint distribution on the whole set of boxes,

because it may not be independent, but we exploit our knowledge on the actual independence

of the Xi and consider each box separately. We are now ready for the main result of the

Section, which follows straightforward by Theorem 1 and 7 in [113].

That this is an ε-approximation is a straightforward application of standard techniques,

and a proof is given in Appendix C2 of [113].

Theorem 5.14 ([113], Theorem 13). For any ε > 0 and δ > 0 the PERM is a 1 + ε

multiplicative approximation of the optimal strategy of a Pandora’s Box Problem with prefix

closed constraints with n boxes, as soon as the number of samples N satisfies

N ≥ C1 · n
3

ε3
log(n

εδ
) (5.35)

for some universal constant C1 > 0.

102

5.6.2 Tree constraints.

We prove here that linearly many samples are sufficient to learn the Tree-Constrained

Pandora’s Box Problem. The n3 term in the previous bound comes from the fact that,

when rewards and costs are bounded in [0, 1], the total performance of a strategy may lie

in the entire interval [−n, 1], requiring the ε value to be normalized by n + 1. Following

[113], we need two ingredient: a concentration result to show that with good probability

an optimal strategy is never going to be “very negative”, and a monotonicity property. We

then conclude the following Theorem, using Lemma 25 from [113].

Theorem 5.15. For the Tree-Constrained Pandora’s Box Problem, it suffices to take

N ≥ C2 · nε2 log2(1
ε
) log(n

ε
) log(n

εδ
) (5.36)

for some universal constant C2.

This latter result is tight up to poly log(n
εδ

) terms: [113] show that it takes at least Ω(n
ε2

)

samples to get the desired degree of accuracy.

Let’s then focus on the first ingredient: concentration. The goal is to show that, for

an optimal algorithm, the performance over time forms a submartingale. Equivalently, one

should only open a box if, in expectation, the revenue is increasing. This is not true at face

value, as it is often necessary to open bad boxes to allow us to move onto better boxes. We

use the notion of thresholded subtrees introduced in Section 5.3.

Claim 5.16. Let Si(π
∗) denote the (random) set obtained by following the optimal policy

π∗ on the thresholded subtree T (r), and define the random variable

Mi := max
`∈Si(π∗)

X` −
∑

`∈Si(π∗)

c`. (5.37)

Then the Mi’s form a submartingale.

Proof. Proof: We must show that for all i ≥ 1,

E [Mi+1|Mi, . . . , M1] ≥Mi. (5.38)

By the discussion in Section 5.3, we have that z(u) remains unchanged for all u ∈ T (r) if we

remove nodes outside T (r). But in this case, Mi+1 is simply the performance of π∗ on the

whole set. By definition of reservation values, we then have that E [Mi+1|Mi] ≥Mi. Q.E.D.

103

Turn now our attention to monotonicity, in particular to the following notion of strong

monotonicity of the problem.

Definition 5.4 (First-Order Stochastic Dominance). Random vectorX ′ stochastically dom-

inates X if, for every component i, and every x ∈ R, we have PrX ′i ≥ x ≥ PrXi ≥ x.

Definition 5.5 (Strong Monotonicity). A problem is strong monotone if for any random

variable X, and any random variable X ′ which dominates X, Letting π∗ be the optimal

policy for the distribution on X, we have that the performance of π∗ over X ′ is at most the

performance over X.

The following is a direct corollary of Appendix C3 in [113], when viewed over the macro-

boxes, as we have a fixed order of exploration, and reservation prices.

Claim 5.17. The Tree-Constrained Pandora’s Box Problem is strongly monotone.

This concludes this Section. We have shown that for vanishingly small approximation

guarantees, it suffices to assume the Xi’s are supported on polynomial in n many values.

104

CHAPTER 6: BINARY PERFORMANCE METRIC ELICITATION FROM
PAIRWISE CLASSIFIER COMPARISONS1

In this Chapter, we give efficient procedures for finding optimal binary classifiers, when

the objective function is not known, but is accessible via a noisy comparison oracle. In this

model, there is an underlying “population” random variable X ∈ Ω, and a random label

Y ∈ {0, 1} which is jointly distributed with X. A binary classifier h is a random variable

which we construct, that is allowed to be jointly distributed with X as well, but must be

independent of Y , when both are conditioned on X.

Formally, let X ∈ X and Y ∈ {0, 1} represent input and output random variables respec-

tively. We denote a classifier by h, and let H = {h : X → [0, 1]} be the set of all classifiers.

We assume the existence of a data generating distribution (X, Y)
i.i.d.∼ D. Let fX be the

marginal density on X given by f , and let η(x) = Pr[Y = 1|X = x] and π = Pr[Y = 1]

represent the conditional and the unconditional probability of the positive class, respectively.

A confusion matrix for a classifier h is denoted by C(h,D) ∈ [0, 1]2×2, comprising true

positives (TP), false positives (FP), false negatives (FN), and true negatives (TN) and is

given by:

C11 = TP (h,D) = Pr[Y = 1, h = 1], C01 = FP (h,D) = Pr[Y = 0, h = 1],

C10 = FN(h,D) = Pr[Y = 1, h = 0], C00 = TN(h,D) = Pr[Y = 0, h = 0]. (6.1)

Clearly,
∑

i,j Cij = 1. We denote the set of all confusion matrices by C = {C(h,D) : h ∈ H}.
In fact, we can reduce dimension by noting that:

FN(h,D) = π − TP (h,D), FP (h,D) = 1− π − TN(h,D). (6.2)

Thus, the set of confusion matrices can be parametrized as C = {(TP (h,D), TN(h,D)) :

h ∈ H}. For clarity, we will suppress the dependence on D in our notation. In addition,

we will subsume the notation h if it is implicit from the context and denote the confusion

matrix by C = (TP, TN). We represent the boundary of the set C by ∂C.

Optimal Classifiers. The goal is to choose an h which is a “good” estimate for Y . The

quality of a classifier is given as a function of its confusion matrix. A classifier h has score

φ(C(h)), where φ : [0, 1]2×2 → R is a function on the confusion matrix, and does not

otherwise depend on h. The binary classification problem requires us to find a φ-maximizing

1This chapter is based on collaboration with Gaurush Hiranandani, Ruta Mehta, and Sanmi Koyejo [98].

105

classifier h. For most “reasonable” objectives, it is not hard to show that the optimal

classifier h must be a deterministic function of X, as this is often a Pareto improvement in

C. Without loss of generality, we assume that φ is a utility, so that larger true positive and

true negative rates values are better.

Problem Definition. In this model, φ is not given, but instead we have access to a

comparison oracle: given two classifiers h, h′, the oracle Γ(h, h′) returns whether or not

φ(h) > φ(h′). However, we assume here that the oracle is noisy, i.e. when |φ(h)−φ(h′)| < εΓ,

the oracle answers randomly. This models evaluating C(h) from samples. Our goal is to,

first, find a classifier h which approximately maximizes φ, and second, approximately learn

φ.

As we can only access φ from pairwise comparisons, this goal is hopeless without further

assumptions. We assume here that φ is a linear fractional function of C(h), i.e. that it

is the ratio of two affine functions of the entries of C(h). This class is broad, and many

performance metrics used in practice lie in this class.

Related Work. This problem can be seen to lie in the field of derivative-free optimization,

see e.g. [141], though our work must develop a robust picture of the search space, due to

our very limited information model. The work nearest to ours is that of [142], who pose a

similar question and develop of theory for searching in their domain, though they do not

give any theoretical performance guarantees. Furthermore, the problem of optimizing and

estimating linear objectives from comparisons has been studied at length, including passive,

or non-adaptive, settings, such as [68, 143, 144], or a more active-learning approach, or

adaptive setting, such as [145, 146]. See [147] for a survey on active learning.

We seek to characterize the space of possible confusion matrices, and reason in confusion-

matrix space, when we are querying classifiers. Note that optimizing allows us to learn the

parameters of φ: Since the level-sets of a linear-fractional function consist of hyperplanes,

all passing through some point outside of the domain, then finding the maximizer and the

minimizer of φ gives you two points on the boundary of the region, and it is possible to

determine their supporting hyperpelanes. Our procedure effectively “binary searches” along

the boundary of the feasible region of confusion matrices — whose shape is determined by

the randomness in Y |X. We show the following:

Theorem 6.1. For binary classification from noisy comparison queries to a linear-fractional

metric, O(log(1
ε
)) queries suffice to estimate φ with error at most O(ε +

√
εΓ). The hidden

constants depend on the Lipschitz constants of φ, and on regularity assumptions on the

106

distribution on (X, Y).

Performance Metrics in Practice. Selecting an appropriate performance metric is cru-

cial to the real-world utility of predictive machine learning. This fundamental importance

may explain the wide variety of performance metrics employed in practice, including accu-

racy and AUC [148] for classification, mean squared error for regression, and normalized

discounted cumulative gain (NDCG) [149] for ranking, among several others. Interestingly,

default metrics are the norm within the academic literature. For instance, applications with

highly imbalanced binary classification problems, such as fraud detection [150], or applica-

tions where real-world costs are asymmetric with respect to predictions [151], often opt for

the Fβ-measure, the Jaccard Similarity Coefficient, and related default metrics which ideally

reflect problem-specific tradeoffs [152].

Our result allows for metric elicitation, i.e. determining the performance metric from

user feedback. This goal is motivated by the principle that the performance metric should

reflect implicit user tradeoffs. This way, the resulting learning models best reflect the user

preferences [151]. Our approach is inspired by a large literature in economics and psychology

on preference elicitation [153, 154, 155, 156] which can be applied to learn user preferences in

a marketplace. In these studies, the goal is to learn from buyers’ purchases at posted prices

– the prices may be posted by the mechanism or may come from data. Since there is no

notion of prices or purchases in metric elicitation for machine learning, standard approaches

from preference elicitation do not apply.

We additionally observe that large families of metrics are best characterized as functions

of the confusion matrix [152, 157, 158]. This includes almost all modern metrics in common

use. Particularly, since most of these common metrics are linear or ratio-of-linear functions

of confusion matrices, this paper focuses on this important setting. As a result, pairwise

classifier comparisons may be conceptually represented by their associated pairwise confusion

matrix comparisons. Despite this apparent simplification, the problem becomes challenging

because one can only query feasible confusion matrices, i.e, confusion matrices for which there

exists a classifier. As we show, our characterization of feasible confusion matrices enables

the design of a simple binary search procedure that identifies the underlying performance

metric. While classifier comparisons may introduce additional noise, our procedure remains

robust, both to noise from classifier estimation and to noise in the pairwise comparisons.

Thus, our work directly results in a practical algorithm.

Comparison Oracles. On its face, metric elicitation simply requires querying a user to

determine quality assigned to classifiers. Unfortunately, direct quality feedback may be

107

ineffective, as humans are often inaccurate when asked to provide absolute preferences [159].

Instead, the user is asked to compare two classifiers and provide an indicator of relative

preference. This is common practice and is applied by many web companies in the form

of A/B testing [160], where the whole population of users acts as an oracle.2 Moreover,

comparisons of classifiers is becoming commonplace for a single expert. In fact, the ability

to compare two classifiers is one of the primary contributions of the field of interpretable

machine learning [161, 162].

6.1 PRELIMINARIES

6.1.1 Types of Performance Metrics

We consider two of the most common families of classification metrics, namely linear and

linear-fractional functions of the confusion matrix (6.1).

Definition 6.1. Linear Performance Metric (LPM): We denote this family by ϕLPM . Given

constants (representing costs or weights) {a11, a01, a10, a00} ∈ R4, we define the metric as:

φ(C) = a11TP + a01FP + a10FN + a00TN = m11TP +m00TN +m0, (6.3)

where m11 = (a11 − a10), m00 = (a00 − a01), and m0 = a10π + a01(1− π).

Example 6.2. Given a loss matrix L ∈ [0, 1]2×2, such that Lij, for i, j ∈ {0, 1}, denotes the

loss incurred on predicting class j when the true class is i (L can be shifted and scaled to

[0, 1]2×2 without changing the learning problem) [158], the performance metric is defined as:

φ(C) =
∑
i,j

(1− Lij)Cij. (6.4)

For example, for the 0-1 loss given by Lij = I(i 6= j), we have φ(C) = TP + TN (0-1

accuracy).

Definition 6.2. Linear-Fractional Performance Metric (LFPM): Given constants (repre-

senting costs or weights) {a11, a01, a10, a00, b11, b01, b10, b00} ∈ R8, we define the metric as:

2In A/B testing, sub-populations of users are shown classifier A vs. classifier B and their responses are
used to determine the overall preference. Interestingly, while each person is shown a sample output from
one of the two classifiers, the entire user population serves as the oracle for comparing classifiers.

108

φ(C) =
a11TP + a01FP + a10FN + a00TN

b11TP + b01FP + b10FN + b00TN
=
p11TP + p00TN + p0

q11TP + q00TN + q0

, (6.5)

where p11 = (a11 − a10), p00 = (a00 − a01), q11 = (b11 − b10), q00 = (b00 − b01), p0 =

a10π + a01(1− π), q0 = b10π + b01(1− π). We denote this family by ϕLFPM .

Example 6.3. ϕLFPM includes the Fβ measure [163] and the Jaccard similarity coefficient

(JAC) [152]:

Fβ =
(1 + β2)TP

TP − TN + β2π + 1− π
, JAC =

TP

1− TN
. (6.6)

6.1.2 Oracle Query

We query the oracle to determine relative preference between two classifiers. The space

of classifiers H is infinite dimensional for Euclidean X , because classifiers are functions, i.e.

they assign a value for each x ∈ X . However, the surjective mapping H → C results in

a reduction from the infinite dimensional classifier space H to the finite dimensional con-

fusion matrix space C. It is clear that the oracle’s preference may depend on factors such

as interpretability and complexity; however, in this paper, we focus on the most common

performance metrics which are functions of the confusion matrix as defined in Section 6.1.1.

Therefore, a comparison query over classifiers boils down to a comparison query over confu-

sion matrices which is formally defined below.

Definition 6.3. Given two classifiers h, h′ (equivalent to confusion matrices C,C ′ respec-

tively), a query to the Oracle (user) is represented by:

Γ(h, h′) = Ω(C,C ′) = I[φ(C) > φ(C ′)] =: I[C � C ′], (6.7)

where Γ : H×H → {0, 1} and Ω : C × C → {0, 1}. This denotes whether h is preferred to

h′ (equivalent to C is preferred to C ′) as measured according to φ.

6.1.3 Bayes Optimal and Inverse Bayes Optimal Classifiers

Given a performance metric φ, the Bayes utility τ is the optimal value of the performance

metric over all classifiers, i.e. τ = suph∈H φ(C(h)) = supC∈C φ(C). The Bayes classifier h is

the classifier that optimizes the performance metric, so h = arg maxh∈H φ(C(h)). Similarly,

109

the Bayes confusion matrix is given by C = arg maxC∈C φ(C). We further define the inverse

Bayes utility τ̃ = infh∈H φ(C(h)) = infC∈C φ(C). The inverse Bayes classifier is given by

h = arg minh∈H φ(C(h)). Similarly, the inverse Bayes confusion matrix is given by C =

arg minC∈C φ(C). Notice that for φ ∈ ϕLPM (6.3), the Bayes classifier predicts the label

which maximizes the expected utility conditioned on the instance. We formalize this below.

Proposition 6.4. ([157]) Let φ ∈ ϕLPM . Then, a classifier h of the form:

h(x) =

{
I[η(x) ≥ m00

m11+m00
], m11 +m00 ≥ 0

I[m00

m11+m00
≥ η(x)], o.w.

}
(6.8)

is a Bayes optimal classifier w.r.t. φ. Further, the inverse Bayes classifier is given by h = 1−h.

Proof. Note, we are maximizing a linear function on a convex set. Consider the following

cases: (a) if m11,m00 ≥ 0, then the maximum is attained on ∂C+, and the proof below

gives the desired result, (b) if m11,m00 < 0, then the maximum is attained on ∂C−, and an

argument identical to the proof below gives the desired result, and (c) otherwise their signs

differ, and the maximum is attained either at (0, 1−π) or (π, 0), as per the discussion below.

Which of the two it is depends on whether |m11| ≥ |m00|, i.e. on the sign of m11 + m00. It

can be verified that in all 4 possible cases, the statement holds, noting that in all 4 cases,

m00/(m11 +m00) is either ≤ 0 or ≥ 1.

We prove below, in lemma 6.1 and its following remark, that h must be of the form I[η(x) ≥
t] for some t. It suffices to find t. Thus, we wish to maximize m11TP (ht) + m00TN(ht).

Now, let Z := η(X) be the random variable obtained by evaluating η at random X. Note,

TP (ht) =

∫
x:η(x)≥t

η(x) dfX =

∫ 1

t

z dfZ (6.9)

Similarly, TN(ht) =
∫ t

0
(1− z) dfZ . Therefore,

∂
∂t

(
m11TP (ht) +m00TN(ht)

)
= −m11tfZ(t) + ·m00(1− t)fZ(t). (6.10)

Thus, the critical point is attained at t = m00/(m11 +m00), as desired. A similar argument

gives the converse result for m11 +m00 < 0. Q.E.D.

110

TN

TP
(π, 0)

(0, 1-π)

(π
2
, 1−π

2
)

φ

mθL θ.25 θ.5 θ.75 θR

TN

TP

¯̀∗
f = ¯̀

`∗f = `

C̄∗ ∇φ∗

C∗

Figure 6.1: (a) Supporting hyperplanes and resulting geometry of C; (b) Sketch of Algorithm 6.1;
(c) Maximizer C

∗
and minimizer C∗ along with the supporting hyperplanes for LFPMs.

6.2 CHARACTERIZING THE SPACE OF CONFUSION MATRICES

Our procedure for metric elicitation will require comparing feasible confusion matrices,

i.e. confusion matrices which can be achieved by classifiers under the population law D.

Thus, it becomes necessary to properly characterize the set C in a way which is useful for

the task of metric elicitation.

Assumption 6.5. We assume g(t) = Pr[η(X) ≥ t] is continuous and strictly decreasing for

t ∈ [0, 1].

This is natural, and is equivalent to standard assumptions [157] that the event η(X) = t

has positive density but zero probability for all t ∈ [0, 1]. This requires X to have no

point mass. The following are some basic properties of the space confusion matrices C. See

Figure 6.1(a) for intuition.

1. For all (TP,TN) ∈ C, 0 ≤ TP ≤ π, and 0 ≤ TN ≤ 1−π: No classifier can out-perform

the best guess from the true distribution, i.e. 0 ≤ Pr[h = Y = 1] ≤ Pr[Y = 1] = π.

The rest is shown similarly.

2. (π, 0) ∈ C and (0, 1 − π) ∈ C: these values are attained when h is identically 1 or 0,

respectively.

3. For all (TP,TN) in C, (π − TP, 1 − π − TN) ∈ C: Let h be such that TP(h) = TP,

TN(h) = TN. Then TP(1− h) = Pr[(1− h) = Y = 1] = Pr[Y = 1]−Pr[h = Y = 1] =

π − TP(h), and a similar argument gives TN(1− h) = 1− π − TN(h).

4. C is convex: Consider any two values (TP1,TN1), (TP2,TN2) ∈ C, attained by h1 and

h2, respectively. Let 0 ≤ λ ≤ 1. Define h′ as h1 with probability λ, and h2 otherwise.

111

Then,

TP(h′) = Pr[h′ = Y = 1]

= Pr[h1 = Y = 1|h = h1] Pr[h = h1] + Pr[h2 = Y = 1|h = h2] Pr[h = h2]

= λTP(h1) + (1− λ)TP(h2) (6.11)

and a similar argument gives the convex combination for TN.

5. C has a supporting hyperplane associated to every normal vector. This follows from

convexity and boundedness.

6. Any supporting hyperplane with positive slope is tangent to C at (0, 1 − π) or (π, 0):

This is true of the bounding region [0, π] × [0, 1 − π] and C contains the points (π, 0)

and (0, 1− π).

In the remainder of this section, we give geometric characterizations of the space of con-

fusion matrices, which will be essential to the correctness of our algorithms.

Lemma 6.1. The boundary of C is exactly the confusion matrices of estimators of the form

λI[η(x) ≥ t]+(1−λ)I[η(x) > t] and λI[η(x) < t]+(1−λ)I[η(x) ≤ t], where I is the indicator

function.

Proof. To prove that the boundary is attained by estimators of these forms, consider solving

the problem under the constraint Pr[h = 1] = c. We have Pr[h = 1] = TP + FP , and

π = Pr[Y = 1] = TP + FN , so we get

TP − TN = c+ π − TP − TN − FP − FN = c+ π − 1 (6.12)

a constant. This effectively partitions C, since all confusion matrices are attained by varying

c from 0 to 1, and no confusion matrix has two values of TP − TN . Furthermore, since

restricting c restricts the search-space to an affine space A, then C ∩A has (by convexity and

boundedness) exactly two endpoints, which are exactly those boundary points of C that are

contained in A. (Unless C ∩ A is a single point, in which case A is a hyperplane tangent to

C at (0, 1− π) or (π, 0), from the above discussion.)

Since the affine space A has positive slope, we claim that the two endpoints are attained

by maximizing or minimizing TP (h) subject to Pr[h = 1] = c. It remains to show that

this happens for estimators of the form hλt+ := λI[η(x) ≥ t] + (1− λ)I[η(x) > t] and hλt− :=

λI[η(x) < t] + (1− λ)I[η(x) ≤ t], respectively.

112

Let h be any estimator, and recall

TP (h) :=

∫
X
η(x) Pr[h = 1|X = x] dfX . (6.13)

It should be clear that under a constraint Pr[h = 1] = c, the optimal choice of h puts all

the weight onto the larger values of η. Let t such that Pr[h0
t+ = 1] ≤ t ≤ Pr[h1

t+ = 1],

and let λ be chosen such that Pr[hλt+ = 1] = c, then hλt+ must maximize TP (h) subject to

Pr[h = 1] = c.

A similar argument show that all TP-minimizing boundary points are attained by the

ht−’s. Q.E.D.

Remark 6.1. Under Assumption 6.5, I[η(x) > t] = I[η(x) ≥ t] and I[η(x) < t] = I[η(x) ≤ t].

Thus, the boundary of C is the confusion matrices of estimators of the form I[η(x) ≥ t] and

I[η(x) ≤ t].

Proposition 6.6. (Properties of C — Figure 6.1(a).) The set of confusion matrices C is

convex, closed, contained in the rectangle [0, π]× [0, 1−π] (bounded), and 180◦ rotationally

symmetric around the center-point (π
2
, 1−π

2
). Furthermore, under Assumption 6.5, (0, 1 −

π) and (π, 0) are the only vertices of C, and C is strictly convex. Thus, any supporting

hyperplane of C is tangent at only one point.

Proof. We argued above that C is convex and bounded. To see that C is closed, note that,

from Lemma 6.1, every boundary point is attained. It remains then to prove that, under

Assumption 6.5 — i.e. g(t) = PrX [η(X) ≥ t] is continuous and continuously invertible —

then C is strictly convex.

To see this, recall every boundary point of C can be attained by a thresholding estimator.

By the discussion in Section 6.2, every boundary point is the optimal classifier for some

linear performance metric, and the vector defining this linear metric is exactly the normal

vector of the supporting hyperplane at the boundary point.

A vertex exists if (and only if) some point is supported by more than one tangent hyper-

plane. This means it is optimal for more than one linear metric. We know from Proposi-

tion 6.4 that optimal classifiers for linear metrics are threshold classifiers. Therefore there

exist more than one threshold classifier with the same confusion matrix, and so there are

multiple values of η which are never attained! This contradicts that g is continuously in-

vertible.

A flat region exists if (and only if) some supporting hyperplane is tangent at multiple

points. This means there exist two threshold classifiers with arbitrarily close threshold

113

values, but confusion matrices that are well-separated. Therefore, there must exist some

value of η which exists with non-zero probability, contradicting the continuity of g. Q.E.D.

For a linear performance metric φ (6.3), Proposition 6.6 guarantees the existence of a

unique Bayes confusion matrix on the boundary ∂C. This is because optimizing a linear

function over a convex set results in the optimal being on the set boundary [164]. Note from

Example 6.2 that any linear function with the same trade-offs for TP and TN is maximized

at the same boundary point regardless of the bias term m0. Thus, different LPMs can be

generated by varying trade-offs m = (m11,m00) such that ‖m‖ = 1 and m0 = 0. Further

notice that ‖m‖ = 1 does not affect the learning problem as discussed in Example 6.2. This

allows us to represent the family of linear metrics ϕLPM by a single parameter θ ∈ [0, 2π]:

ϕLPM = {m = (cos θ, sin θ) : θ ∈ [0, 2π]}. (6.14)

Given m (equivalent to θ), it is straightforward to recover the Bayes classifier using

Proposition 6.4, which further enables us to compute the Bayes confusion matrix Cθ =

Cm = (TPm, TNm) using (6.1). Under Assumption 6.5, the Bayes confusion matrix Cm is

unique; therefore, we have that

〈m, C〉 < 〈m, Cm〉 ∀ C ∈ C, C 6= Cm. (6.15)

Notice the connection between the linear performance metrics and the supporting hyper-

planes. Given m, there exists a supporting hyperplane tangent to C at only Cm defined as

follows:

`m = m11 · tp+m00 · tn− (m11TPm +m00TNm) = 0. (6.16)

It is clear that if m11 and m00 are of opposite sign, then hm is the trivial classifier predicting

either 1 or 0 everywhere. In other words, if the slope of the hyperplane is positive, then it

touches the set C either at (π, 0) or (0, 1− π). When m11,m00 6= 0 and have the same sign,

which means when linear φ is strictly monotonically increasing (or decreasing) in both TP

and TN, then the Bayes confusion matrix is away from these two vertices. We can further

break ∂C into two parts as follows:

Definition 6.4. The Bayes confusion matrices corresponding to m11,m00 ≥ 0 form the

upper boundary, denoted by ∂C+. Similarly, the Bayes confusion matrices corresponding

to m11,m00 < 0 form the lower boundary, denoted by ∂C−. It follows that ∂C+ and ∂C−
correspond to the classifiers of the form I[η(x) ≥ δ] and I[δ ≥ η(x)], respectively, for some

δ ∈ [0, 1] (see Propostion 6.4).

114

6.3 ALGORITHMS

In real-world scenarios, it is reasonable to assume that the metrics are monotonically

increasing in both TP and TN, as we typically prefer metrics which reward correct decisions.

While we first discuss this case, our algorithms also apply to the monotonically decreasing

case as well. It suffices to query two classifiers whose relative performance is trivial to

determine whether the objective is increasing or decreasing, and then the methods presented

in this chapter can be easily modified to search on ∂C− rather than ∂C+.

In addition, we assume an accuracy threshold εΩ > 0, such that the oracle answers correctly

as long as |φ(C)−φ(C ′)| > εΩ. Otherwise, it may provide wrong answers. This means if the

confusion matrices are close as measured by φ, then the responses to the comparison queries

(6.7) can be wrong. We denote as εΩ the oracle’s feedback noise. Later, we will show that

our algorithms are robust enough to work well even with this noisy feedback, but first, we

discuss the behavior of quasiconcave (quasiconvex) performance metrics, which are a much

broader class of metrics than linear and linear-fractional, on the upper (lower) boundary of

the set C. A function is said to be quasiconcave (quasiconvex) if its super-level sets (sub-level

sets) are convex. Formally, f is quasiconcave (quasiconvex) if {x : f(x) ≥ t} ({x : f(x) ≤ t})
is convex for all t. These are monotone re-scalings of concave (convex) functions.

Lemma 6.2. Let ρ+ : [0, 1] → ∂C+ and ρ− : [0, 1] → ∂C− be continuous, bijective,

parametrizations of the upper and lower boundary, respectively. Let φ : C → R be a

quasiconcave function, and ψ : C → R be a quasiconvex function, which are monotone in-

creasing in both TP and TN . Then the composition φ ◦ ρ+ : [0, 1] → R is quasiconcave

(and therefore unimodal) on the interval [0, 1], and ψ ◦ ρ− : [0, 1] → R is quasiconvex (and

therefore unimodal) on the interval [0, 1].

Proof. We will prove the result for φ ◦ ρ+ on ∂C+, and the argument for ψ ◦ ρ− on ∂C+ is

essentially the same. For simplicity, we drop the + symbols in the notation. A function is

quasiconcave if and only if its superlevel sets are convex. Let S be some superlevel set of φ:

since φ is monotone increasing, then x ∈ S =⇒ y ∈ S for all y ≥ x componentwise. We

want to show that for any r < s < t, if ρ(r) ∈ S and ρ(t) ∈ S, then ρ(s) ∈ S. Since ρ is a

continuous bijection, we must have — without loss of generality — TP (ρ(r)) < TP (ρ(s)) <

TP (ρ(t)), and TN(ρ(r)) > TN(ρ(s)) > TN(ρ(t)). (otherwise swap r and t). Since the set is

strictly convex and the image of ρ is ∂C, then ρ(s) must dominate some convex combination

of ρ(r) and ρ(t), so by the convexity of S, ρ(s) ∈ S.

This implies that ρ−1(∂C ∩S) is an interval, and is therefore convex. Thus, the superlevel

sets of φ◦ρ are convex, so it is quasiconcave, as desired. (To see that this implies unimodaltiy,

115

Algorithm 6.1: Quasiconcave Maximization

Data: ε > 0 and oracle Ω.

Initialize θL ← 0, θR ← π
2
;

while |θR − θL| > ε do

1 Set θ.25 ← 3θL+θR
4

, θ.5 ← θL+θR
2

, and θ.75 ← θL+3θR
4

, the quarter interval

boundaries;

2 Set corresponding slopes (m’s) using (6.14).;

3 Obtain hθL ,hθ.25 ,hθ.5 , hθ.75 , hθR using Proposition 6.4;

4 Compute CθL ,Cθ.25 ,Cθ.5 ,Cθ.75 , CθR using (6.1);

5 Query Ω(Cθ.25 , CθL), Ω(Cθ.5 , Cθ.25), Ω(Cθ.75 , Cθ.5), and Ω(CθR , Cθ.75);

// Handle oracle error:

6 if Cθ � Cθ′ ≺ Cθ′′ for consecutive θ < θ′ < θ′′ then replace with

Cθ ≺ Cθ′ ≺ Cθ′′ ;

// Recurse:

if CθL � Cθ.25 then θR ← θ.5;

if CθL ≺ Cθ.25 � Cθ.5 then θR ← θ.5;

if Cθ.25 ≺ Cθ.5 � Cθ.75 then θL ← θ.25 and θR ← θ.75;

if Cθ.5 ≺ Cθ.75 � CθR then θL = θ.5;

if CθR � Cθ.75 then θL = θ.5;

end

return slope m.5 at θ.5 as m; Cθ.5 as C; and line 〈m, (TP,TN)〉 = 〈m, C〉 as `

a function over the real line which has more than one local maximum can not be quasiconcave:

consider the super-level set for some value slightly less than the lowest of the two peaks.)

Q.E.D.

The unimodality of quasiconcave (quasiconvex) metrics on the upper (lower) boundary of

the set C along with the one-dimensional parametrization of m using θ ∈ [0, 2π] (Section

6.2) allows us to devise binary-search-type methods to find the maximizer C, the minimizer

C, and the first order approximation of φ at these points, i.e. the supporting hyperplanes at

C and C.

Maximization on the Upper Boundary. Algorithm 6.1 maximizes quasiconcave met-

rics and finds supporting hyperplanes at the optimum. Since φ is monotonically increasing

in both TP and TN, and C is convex, the maximizer must be on the upper boundary. Hence,

116

we start with the interval [θL = 0, θR = π
2
]. We divide it into four equal parts and set slopes

using (6.14) in lines 1 and 2 (See Figure 6.1(b) for visual intuition). Then, we compute the

Bayes classifiers using Proposition 6.4 and the associated Bayes confusion matrices in lines 3

and 4. We pose four pairwise queries to the oracle in line 5. To handle oracle and finite

sample noise, we re-order the queries if needed, in line 6. In the remaining, we shrink the

search interval by half based on the responses from the oracle. We stop when the search

interval becomes smaller than a given ε > 0 (tolerance). Lastly, we output the slope m,

Bayes confusion matrix C, and the supporting hyperplane ` at that point.

Optimization on the Lower Boundary. We can modify Algorithm 6.1 to minimize

quasiconvex metrics and find supporting hyperplane at the minimum: we modify it by be-

ginning in the range θ ∈ [π, 3
2
π]. Furthermore, we check for C ≺ C ′ whenever Algorithm 6.1

checks for C � C ′, and vice versa. These changes are sufficient to minimize a quasiconvex

metrics. Here, we output the counterparts, i.e. slope m̃, inverse Bayes Confusion matrix C,

and the supporting hyperplane ˜̀ at that point.

We prove below performance guarantees for Algorithm 6.1. We must first make an as-

sumption on the distribution, and prove a lemma.

Assumption 6.7. For quasiconcave φ recall that the Bayes classifier is of the form h =

I[η(x) ≥ δ]. Let δ∗ be the threshold that maximizes φ. We assume there exists k1 > 0 such

that Pr[|η(X) − δ∗| ≤ ε] ≤ k1ε for any ε > 0. Further, we assume there exists k0 > 0 such

that Pr[(δ∗ − η(X)) ∈ [0, ε]] and Pr[(η(X)− δ∗) ∈ [0, ε]] ≥ k0ε for any 0 < ε < 2
k0

√
k1εΩ.

This assumption ensures that near the optimal threshold, the values of η have bounded

density, i.e. they are well spread. As an example, this holds for η logistic, so long as φ has

positive weight on TP and TN, and X has no point-mass.

Theorem 6.8. Given ε, εΩ ≥ 0 and a metric φ that is monotonically increasing in TP and

TN, if it is quasiconcave then Algorithm 6.1 finds an approximate maximizer C. Whether

we use it as-is, or use the above modifications for minimization, the following hold: (i) the

algorithm also returns the supporting hyperplane at that point, (ii) under Assumption 6.7

from the next section, the value of φ at that point is within εΩ + k1ε of the optimal value,

and (iii) the number of queries is O(log 1
ε
).

Proof. (i) is a direct consequence of our representation of the points on the boundary via

their supporting hyperplane. For (ii), by the nature of binary search, we are effectively

narrowing our search interval around some target angle θ0. Furthermore, since the oracle

117

queries are correct unless the φ values are within εΩ, we must have |φ(θ)− φ(θ0)| < εΩ, and

we output θ′ such that |θ0 − θ′| < ε.

Recall, the Bayes classifier due to θ will report positive if cos θ · η(x) ≥ sin θ · (1− η(x)),

and negative otherwise. Now, by Assumption 6.7, a small change in θ, (i.e. a small change

in the threshold value, since cos and sin are Lipschitz) will only affect a small measure of

the space. In other words

|TP (θ0)− TP (θ′)| =
∣∣∣∣∫
x:θ0<η(x)<θ′

η(x) dfX

∣∣∣∣ < k1|θ0 − θ′| < k1ε , (6.17)

since η(x) ≤ 1. A similar result applies to the true negative rate. This allows us to bound

‖C − C ′‖∞, since we are bounding each entry.

Since φ = 〈m, C〉 is linear with ‖m‖ = 1, we have |φ(C)− φ(C ′)| ≤ 1 · ‖C − C ′‖, but

‖C(θ0)− C(θ′)‖∞ ≤ k1|θ0 − θ′| < k1ε . (6.18)

Therefore, |φ(θ)− φ(θ′)| < εΩ + k1ε, as desired.

We needed only, for part (ii), that the interval of possible values be at most ε. This is

obtained by making at least log2(1/ε) rounds of the algorithm, each of which is a constant

number of pairwise queries. From this, we conclude (iii). Q.E.D.

Lemma 6.3. Under our model, no algorithm can find the maximizer in fewer than O(log 1
ε
)

queries.

Proof. For any fixed ε, divide the search space θ into bins of length ε, resulting in
⌈

1
ε

⌉
classifiers. When the only operation allowed is pairwise comparison, the optimal worst case

complexity for finding the maximum is O(log 1
ε
) [165], which is achieved by binary search.

Q.E.D.

Since binary search always tends towards the optimal whenever responses are correct, we

necessarily stop within a confidence interval of the true value. Thus, we can take ε sufficiently

small so that the only error arises when we are in fact querying confusion matrices near the

true optimal confusion matrix. Such details are discussed formally in the next section.

Furthermore, the optimality of binary search in one-dimension given pairwise queries results

in achieving the lower bound of Lemma 6.3.

118

6.3.1 Estimating Confusion Matrices — Sources of Noise

In all the algorithms above, we assumed knowledge of the confusion matrices, and made

implicit assumptions regarding the noisiness of the samples. We seek to quantify these ideas.

We begin by recalling that, as a standard consequence of Chernoff-type bounds [166], sample

estimates of true-positive and true-negative are consistent estimators. Therefore, with high

probability, we can estimate the confusion matrix within any desired sup-norm tolerance,

provided we have sufficient samples. Recall that the oracle Ω(C,C ′) is only accurate so

long as |φ(C) − φ(C ′)| > εΩ. Thus, when comparing two confusion matrices C and C ′, so

long as φ is scaled to be 1-Lipschitz (true for linear and linear-fractional metrics), then if

|φ(C) − φ(C ′)| > εΩ + ε, we can compute sample estimates Ĉ and Ĉ ′ within ε/2, and the

triangle inequality gives |φ(Ĉ)−φ(Ĉ ′)| > (εΩ + ε)−2 · ε/2 = εΩ. Thus, with high probability,

the oracle will accurately report the better of the two. We need the following assumption:

Assumption 6.9. Let η̂n be a sequence of estimates of η. We assume that ‖η− η̂n‖∞
P→ 0.

This assumption is arguably natural, as most estimation is parametric regression, where

the function classes are sufficiently “well behaved”. With this assumption and Assump-

tion 6.7, we can control the error in optimal classifiers from using η̂ rather than η. This

allows us to prove the following lemma which is a key for showing the correctness of Algo-

rithm 6.1.

Lemma 6.4. Let ĥθ be defined similarly as hθ, but w.r.t. the estimated η̂ rather than the

true η. Then for any θ, there exists a θ′ such that TP (ĥθ) ≤ TP (hθ′), TN(ĥθ) ≤ TN(hθ′),

and ‖C(ĥθ) − C(hθ′)‖∞ ≤ ‖η − η̂n‖1. Furthermore, let θ be the parameter θ such that

hθ = arg maxθ φ(hθ). Then ‖C(ĥθ)− C(hθ)‖∞ = O(‖η̂n − η‖∞), where the constants come

from Assumption 6.7.

Proof. Recall the proof of Lemma 6.1: let Pr[hθ = 1] = c, then there must exist some θ′

such that Pr[ĥθ′ = 1] = c. For simplicity of notation, let hθ = I[η ≥ t] and hθ′ = I[η̂ ≥ t′].

Then we have,

TP (hθ)− TP (hθ′)

=

∫
η≥t

η df −
∫
η̂≥t′

η dfX (6.19)

=

∫
η≥t
η̂<t′

η − t dfX +

∫
η≥t
η̂<t′

t dfX −
∫
η<t
η̂≥t′

t dfX +

∫
η<t
η̂≥t′

t− η dfX

119

≤
∫
η≥t
η̂<t′

η − t+ t′ − η̂ dfX + 0 +

∫
η<t
η̂≥t′

η̂ − t′ + t− η dfX

≤ ‖η − η̂‖1 (6.19, cont’d.)

Where the 0 in the third line (and implicitly in the 5th) comes from the fact that the two

regions have the same measure, by assumption on t and t′. This completes the first part of

the statement.

Furthermore, we have assumed (Assumption 6.7) that for hθ = I[η ≥ δ∗], Pr[|η(X)− δ∗| ≤
ε] ≤ k1ε for some k1 and for all ε < εΩ. Now, by Assumption 6.9, we can take n sufficiently

large so that ‖η − η̂n‖∞ < εΩ. Thus, if η(x) ≥ δ∗ + ‖η − η̂n‖∞, we have η̂(x) ≥ δ∗, so

TP (ĥθ∗) =

∫
η̂≥δ∗
η dfX ≥

∫
η≥δ∗
η dfX

≥ TP (hθ∗)− Pr
[
δ∗ ≤ h ≤ δ∗ + ‖η − η̂n‖∞

]
≥ TP (hθ∗)− k1‖η − η̂n‖∞ (6.20)

Similar arguments apply for TN , which gives us the desired result. Q.E.D.

6.4 ELICITING LINEAR PERFORMANCE METRICS

It remains to discuss the elicitation of the performance metric φ. We use ‘ ∗ ’ and ‘ˆ’ to

denote entities corresponding to the oracle’s true metric and the elicited metric, respectively.

Suppose that the oracle’s metric belongs to ϕLPM (Section 6.1.1). Again, without loss of

generality, we may assume ‖m̄‖ = 1 and m̄0 = 0 (Section 6.2). According to Theorem 6.8,

Algorithm 6.1 returns an approximate maximizer and the supporting hyperplane at that

point. Since the performance metric is linear, the slope of the supporting hyperplane is

the elicited performance metric, which is close to the true metric in the sup-norm. Given

Assumption 6.7, we may have the following result.

Lemma 6.5. Let ϕLPM 3 φ∗ = m∗ be the true performance metric. Given any ε >

0, Algorithm 6.1 outputs a performance metric φ̂ = m̂, such that ‖m∗ − m̂‖∞ < ε +
2
k0

√
k1εΩ, where k0 and k1 are the lower bound and upper bound constants, respectively,

from Assumption 6.7.

Proof. Recall, the threshold estimator hδ returns positive if η(x) ≥ δ, and negative otherwise.

Let δ be the threshold which maximizes performance with respect to φ, and C its confusion

120

matrix. Following the framework of the proof of Theorem 6.8, we wish to show that if

|δ′ − δ| > ε, then ‖C(δ′) − C‖∞ >
k20ε

2

4k1
. Suppose, without loss of generality, that δ′ < δ,

and ε > δ − δ′. Recall, from assumption 6.7 that Pr[η(X) ∈ [δ − k0
2k1
ε, δ]] ≤ k0ε/2, but

Pr[η(X) ∈ [δ − ε, δ]] ≥ k0ε, and therefore

Pr
[
η(X) ∈ [δ − ε, δ − k0

2k1
ε]
]
≥ k0ε/2 (6.21)

Denoting φ(C) = 〈m, C〉, and recalling that δ = m00/(m11 + m00), expanding the integral,

we get

φ(δ)− φ(δ′) =

∫
x:δ′≤η(x)≤δ

m00(1− η(x))−m11η(x) dfX

≥ k0
2
|δ − δ′| · k0

2k1
|δ − δ′| = k2

0

4k1

|δ − δ′|2 (6.22)

where the first term is a lower bound on the area where the loss occurred is at least the

amount of the second term. Therefore, if we have |φ(C) − φ(C(δ′))| < εΩ, then we must

have |δ − δ′| < 2
k0

√
k1εΩ. Thus, if we are in a regime where the oracle is mis-reporting

the preference ordering, it must be the case that the thresholds are sufficiently close to the

optimal threshold.

Again, as in the proof of Theorem 6.8, our binary search closes in on a parameter θ′ which

has φ(C(θ′)) within εΩ of the optimum, but from the above discussion, this also implies that

the search interval itself is close to the true value, and thus, the total error in the threshold

is at most ε+ 2
k0

√
k1εΩ. Since δ = m00/(m11 +m00), this bound extends to the cost vector.

Q.E.D.

Since Assumption 6.7 determines that the feasible region is sufficiently well behaved near

the optimum, k0 is not too small relative to
√
k1εΩ, and thus the above bound is good given

that we can never beat the oracle noise εΩ. A solution to this is given in Algorithm 6.2 which

does not rely on Assumption 6.7 and depends only on on the properties of the feasible space.

Its details will be presented in the next section.

6.4.1 Low-error LPM elicitation

Note, Algorithm 6.1 does not provide any guarantees on the output θ, only on φ(θ). One

example of where this breaks is when the region closely resembles that of a polygon. Note

that we have assumed it is strictly convex. In this case, many possible choices of θ have

similar values of φ(Cθ), if the near-polygon has a large region which coincides with a level

121

Algorithm 6.2: Low-error LPM elicitation

Data: ε > 0.

Query Ω(C0, C1);

Initialize: θL ← 0, θR ← π
2
. ; // Thus, C(θL) = C1 and C(θR) = C0.

while ‖Ĉ(θR)− Ĉ(θL)‖∞ > ε do

Set θ ← θL+θR
2

.;

Obtain the hyperplane mθ = (sin θ, cos θ).;

Estimate the confusion matrix of the Bayes optimal classifier h∗mθ
from

Proposition 6.4, and call it Ĉ(θ).;

Query Ω(Ĉ∗(θ), Ĉ∗(θ)), where C = (π, 1− π)− C.;

if C1 � C0 and Ĉ∗(θ) � Ĉ∗(θ) or C1 ≺ C0 and Ĉ∗(θ) ≺ Ĉ∗(θ) then

θL ← θ;

else
Set θR ← θ

end

end

return (m11,m00) normal to the line spanned by Ĉ∗(θ) and Ĉ∗(θ).

set of φ.

We introduce here an error-minimal algorithm which elicits a linear performance metric,

without finding optimal classifiers. Recall, h1 ≡ 1 is the classifier with TP = π, TN = 0

which we denote C1, and h0 ≡ 0 is the classifier with TP = 0 and TN = 1 − π, which

we denote C0. The idea behind the following algorithm is that, to elicit the linear metric

with as much precision as possible, we try and find two classifiers with opposite confusion

matrices which evaluate to the same value, and consider the line spanned by these confusion

matrices as being a level set of φ.

It remains to prove that this minimizes the error for elicitation via estimating level sets,

and analyze the accuracy of the algorithm.

Claim 6.10. Algorithm 6.2 finds the two points in C which are the furthest apart while

being on the same level set of φ.

Proof. Note that since φ is linear, its level sets are hyperplanes. By the 180◦-rotational

symmetry and strict convexity of C, the level set of φ with maximum length is the one

passing through the center point of C. Since we are estimating a linear performance metric

by finding two points on some level set, the best we can do is take exactly these two opposite-

122

angle points. Thus, of all algorithms which estimate φ via finding two points on some level

set, 6.2 must be optimal. Q.E.D.

It remains to quantify the error rate. The remainder of this section gives the proof for the

following theorem:

Theorem 6.11. Let ϕLPM 3 φ∗ = m∗ be the true performance metric. Given any ε > 0,

Algorithm 6.2 outputs a performance metric φ̂ = m̂, such that ‖m∗ − m̂‖∞ < (2ε + εΩ)/w

where 0 < w < 1 is a geometric property denoting ‘width’ of the feasible space C.

Note that the parameter w is not small in practice, unless the feasible space is degenerate

(η constant). To prove this result, we define a parameter w(C) to be the “width” of C,
namely,

w(C) := inf {w ≥ 0 : ∃a, b s.t. ‖a‖2 = 1 and ∀C ∈ C, b ≤ 〈a, C〉 ≤ b+ w} (6.23)

Intuitively, this is the least distance between two parallel hyperplanes which bound C. We

state here a corollary of Höffding’s inequality [167], which we will use in the remainder of

this chapter.

Proposition 6.12. Let (y1, x1, h(x1)), . . . , (yn, xn, h(xn)) be n i.i.d. samples from the joint

distribution on Y , X, and h(X). Then by Höffding’s inequality,

Pr
[∣∣ 1
n

∑n
i=1 I[hi = yi = 1]− TP (h)

∣∣ ≥ ε
]
≤ 2e−2nε2 . (6.24)

The same holds for the analogous estimator on TN.

This proposition follows immediately from Höffding’s bound.

Lemma 6.6. By Proposition 6.12, we can sample sufficiently so that ‖C(hθ)− Ĉ(hθ)‖∞ <

ε/2. Doing so, algorithm 6.2 returns some m with ‖m−m∗‖∞ < (2ε+ εΩ)/w(C), under the

assumption ‖m‖2 = ‖m∗‖2 = 1 and ‖∇φ‖1 = 1.

Proof. Without loss of generality, assume ‖φ‖1 = 1, since everything is scale-invariant.

Since the oracle Ω(C,C ′) returns correct values as long as |φ(C) − φ(C ′)| > εΩ, and we

estimate ‖Ĉ − C‖∞ < ε/2, then, since φ is 1-Lipschitz, Ω(C,C ′) = Ω(Ĉ, Ĉ ′) so long as

|φ(C)− φ(C ′)| > εΩ + ε.

Let C be the point on the boundary that we are searching for. Since the search interval

in θ is narrowed to have measure ε, then the set of possible output confusion matrices is

contained in a sup-norm ball of radius ε. Furthermore, we possibly suffer an extra error

123

ε + εΩ in either direction from mis-reporting. Therefore, the search-space is narrowed to a

sup-norm ball of radius 2ε + εΩ. Since we are taking a normal vector perpendicular to C

with respect to the midpoint of C, we get a confidence interval of size (2ε+ εΩ)/w(C) in the

normal vector, since we must scale up the normal vector. Note that w(C) < 1. Q.E.D.

6.5 ELICITING LINEAR FRACTIONAL PERFORMANCE METRICS

We recall, a linear fraction performance metric (LFPM) is one of the form

φ((TP, TN)) =
p11TP + p00TN + p0

q11TP + q00TN + q0

, (6.25)

as defined in equation (6.5). We assume that p11, p00, q11, and q00 are not simultaneously

zero and φ is bounded over C. As scaling and shifting does not change the linear-fractional

form, without loss of generality, we may take φ(C) ∈ [0, 1] ∀ C ∈ C and both the numerator

and the denominator to be positive.

Assumption 6.13. Let φ ∈ ϕLFPM as defined in (6.5). We assume that p11, p00 ≥ 0,

p11 ≥ q11, p00 ≥ q00, p0 = 0, q0 = (p11 − q11)π + (p00 − q00)(1− π), and p11 + p00 = 1.

Proposition 6.14. If Assumption 6.13 holds, then we may assume without loss of generality

that φ ∈ ϕLFPM is bounded in [0, 1] and simultaneously monotonically increasing in TP and

TN.

Proof. We want φ(C) to be monotonic in TP, TN and bounded. By definition, the numerator

will be non-negative. To show the denominator is non-negative, we have that, by definition

of q0 and π,

q0 = (p11 − q11)π + (p00 − q00)(1− π) ≥ TP (p11 − q11) + TN(p00 − q00) (6.26)

Which implies that the denominator is lower-bounded by p11TP + p00TN ≥ 0. Thus, φ

will be non-negative. Note also that this is exactly the numerator, since p0 = 0, and so

the ratio will be upper-bounded by 1. It remains to show that the function is monotone

non-decreasing. Differentiating φ with respect to TP , we have

∂φ(C)

∂TP
=

p11

q11TP + q00TN + q0

− q11(p11TP + p00TN + p0)

(q11TP + q00TN + q0)2

= 1
(q11TP+q00TN+q0)2

(p11(q11TP + q00TN + q0)− q11(p11TP + p00TN + p0))

= 1
(q11TP+q00TN+q0)2

(p11q00TN − p00q11TN + p11q0 − q11p0) (6.27)

124

Now, by the assumption, p0 = 0, and q0 = π(p11−q11)+(1−π)(p00−q00). But by definition,

(1− π) ≥ TN , and therefore

∂φ(C)

∂TP
≥ 1

(q11TP+q00TN+q0)2
(TN(p11q00 − p00q11) + πp11(p11 − q11) + TNp11(p00 − q00))

= 1
(q11TP+q00TN+q0)2

(p00TN(p11 − q11) + πp11(p11 − q11)) (6.28)

which is a sum of non-negative terms, by the assumption. A similar argument gives the

same for the derivative in TN , and therefore, the function is non-decreasing. Q.E.D.

We claim Assumption 6.13 is reasonable, as it is satisfied by the examples outlined in

(6.6) and Koyejo et al. [157], and furthermore, they allow to reduce the dimension of the

parameter space for the elicitation problem.

In the remainder of this chapter, we give our method for eliciting the LFPM, and its

optimal classifier. The idea is to first obtain hyperplanes at the maximizer on the upper

boundary and at the minimizer on the lower boundary. This gives two systems of nonlinear

equations, both of which have one degree of freedom. The choice of the elicited metric is

the one where the solutions to the two systems match pointwise on a number of confusion

matrices. This is presented formally below.

Suppose that the oracle’s metric φ∗ ∈ ϕLFPM is defined as:

φ∗(C) =
p∗11TP + p∗00TN

q∗11TP + q∗00TN + q∗0
. (6.29)

Let τ ∗ and τ ∗ be the maximum and the minimum value of φ∗ over C respectively, i.e.

τ ∗ ≤ φ∗(C) ≤ τ ∗ for all C ∈ C (6.30)

Under Assumption 6.5, there exists a hyperplane tangent to C at (TP
∗
, TN

∗
) on the upper

boundary ∂C+, denoted as follows:

`
∗
f := {(p∗11 − τ ∗q∗11)TP + (p∗11 − τ ∗q∗11)TN + (−τ ∗q∗0) = 0} (6.31)

Similarly, we denote as follows the tangent hyperplane at (TP ∗, TN∗) on the lower bound-

ary ∂C−:
˜̀∗
f := (p∗11 − τ̃ ∗q∗11)TP + (p∗00 − τ̃ ∗q∗00)TN + (−τ̃ ∗q∗0) = 0, (6.32)

See Figure 6.1(c) for an illustration. Since LFPM are quasiconcave, Algorithm 6.1 returns

a hyperplane ` := m11TP +m00TN − C0 = 0 (via Theorem 6.8), where C0 = m11TP +

125

m00TN . This is equivalent to `
∗
f up to a constant multiple; therefore, the elicited metric is

the solution to the following non-linear system of equations:

p∗11 − τ ∗q∗11 = αm11, p∗00 − τ ∗q∗00 = αm00, −τ ∗q∗0 = −αC0, (6.33)

where α ≥ 0, because LHS and m’s are non-negative. Additionally, we ignore the case

when α = 0, since this would imply a constant φ. Next, we may divide the above equations

by α > 0 on both sides so that all the coefficients p∗’s and q∗’s are factored by α. This does

not change φ∗; therefore, the system of equations becomes:

p′11 − τ ∗q′11 = m11, p′00 − τ ∗q′00 = m00, −τ ∗q′0 = −C0. (6.34)

Notice that none of the sufficient conditions in Assumption 6.13 are changed except

p′11 + p′00 = 1, which was not used in the proof of monotonicity. Since the LFPM is

also quasiconvex, Algorithm 6.1 modified also gives us a hyperplane (via Theorem 6.8)
˜̀ := m11tp+m00tn− C0 = 0, where C0 = m11TP + m00TN . This is equivalent to ˜̀∗

f up

to a constant multiple; therefore, the eliciated metric is also the solution to the following

system of non-linear equations:

p∗11 − τ̃ ∗q∗11 = κm11, p∗00 − τ̃ ∗q∗00 = κm00, −τ̃ ∗q∗0 = −κC0, (6.35)

where κ ≤ 0 since LHS is positive, but m’s are negative. Again, we may assume κ < 0.

By dividing the above equations by −κ on both sides, all the coefficients p∗’s and q∗’s are

factored by −κ. This does not change φ∗; therefore, the system of equations becomes the

following:

p′′11 − τ̃ ∗q′′11 = m11, p′′00 − τ̃ ∗q′′00 = m00, −τ̃ ∗q′′0 = −C0. (6.36)

We can solve the system of equations (6.34) and (6.36) and thus elicit the performance

metric, provided we know p′11 (p′′11) or p′00 (p′′00). The solution to the elicitation task, given

p′11, is discussed below.

Proposition 6.15. Under the sufficient conditions of Assumption 6.13, knowledge of p′11 (or,

p′00) solves the system of equations in (6.34) and elicits the performance metric as follows:

p′00 = 1− p′11, q′0 = C0
P ′

Q′
, q′11 = (p′11 −m11)

P ′

Q′
, q′00 = (p′00 −m00)

P ′

Q′
, (6.37)

126

where P ′ = p′11π + p′00(1− π) and Q′ = P ′ + C0 −m11π −m00(1− π).

Proof. In the following, we denote TP = C11 and TN = C00. Since the linear fractional

matrix is monotonically increasing in C11 and C00, it is maximized at the upper boundary

∂C+. Hence m11 ≥ 0 and m00 ≥ 0. So, after running Algorithm 6.1, we get a hyperplane

such that

p11 − τq11 = αm11, p00 − τq00 = αm00, p0 − τq0 = −α (m11C
∗
11 +m00C

∗
00)︸ ︷︷ ︸

=:C0

. (6.38)

Since p11 − τq11 ≥ 0 and m11 ≥ 0, ⇒ α ≥ 0. As discussed, we avoid the case when α = 0.

Hence, we have that α > 0, and dividing every one of p11, p00, p0, q11, q00, and q0 by α leaves

the problem unchanged. Thus, we wish to solve for

p11 − τq11 = m11, p00 − τq00 = m00, p0 − τq0 = −C0 (6.39)

From the rightmost equation, we have that τ = C0+p0
q0

. Combining with the rest gives

q0p11 − (C0 + p0)q11 = m11q0, q0p00 − (C0 + p0)q00 = m00q0. (6.40)

and

q0 = (p11 − q11)π + (p00 − q00)(1− π) + p0

⇒ q11 =
p00(1− π)− q00(1− π) + p11π − q0 + p0

π
, (6.41)

from which we conclude then

q0 =
(C0 + p0)[p00(1− π) + p11π + p0]

p11π + p00(1− π) + p0 + C0 −m11π −m00(1− π)
,

q00 =
(p00 −m00)[p00(1− π) + p11π + p0]

p11π + p00(1− π) + p0 + C0 −m11π −m00(1− π)
,

q11 =
(p11 −m11)[p00(1− π) + p11π + p0]

p11π + p00(1− π) + p0 + C0 −m11π −m00(1− π)
. (6.42)

Letting P := p00(1− π) + p11π + p0, and Q := P + C0 −m11π −m00(1− π), we have

q0 = (C0 + p0)
P

Q
, q11 = (p11 −m11)

P

Q
, q00 = (p00 −m00)

P

Q
. (6.43)

Now using sufficient conditions, we have p0 = 0. The final solution is the following:

127

Algorithm 6.3: Grid Search for Best Ratio

Data: k,∆.

initialize: σopt ←∞, p′11,opt = p′11 ← 0;

Generate C1, ..., Ck on ∂C+ and ∂C− ; // Boundaries defined in Section 6.2

for p′11 = 0, ∆, 2∆, . . . , 1 do

Compute φ′, φ′′ using Proposition 6.15. Compute array r = [φ
′(C1)

φ′′(C1)
, ..., φ

′(Ck)
φ′′(Ck)

];

Set σ = std(r);

if σ < σopt then σopt ← σ and p′11,opt ← p′11;

end

return p′11,opt, σopt.

q0 = C0
P

Q
, q11 = (p11 −m11)

P

Q
, q00 = (p00 −m00)

P

Q
, (6.44)

where P := p11π + p00(1 − π) and Q := P + C0 − m11π − m00(1 − π). We have taken

p11 + p00 = 1, but the original p′11 + p′00 = 1
α

. Therefore, we learn φ̂(C) such that such that

φ̂(C) = αφ(C). Q.E.D.

System (6.36) can be solved analogously to Proposition 6.15. We can elicit metrics φ′ and

φ′′ such that φ′(C)/α = φ∗(C) = −φ′′(C)/κ provided the true ratio of p′11 to p′00 and p′′11 to

p′′00 are known. Since we can generate many confusion matrices on the boundaries ∂C+ and

∂C−, we can learn an estimate of the true ratio for p′11 to p′00 using the grid search based

Algorithm 6.3. We start with p′11 = 0. Then at each iteration, increase it by ∆, solve both

the systems (6.34) and (6.36), and compute the ratio of φ′ to φ′′ on the set of confusion

matrices. We pick the value of p′11 for which the standard deviation of the ratio is minimum.

These computations are independent of the oracle queries, and thus can be computed offline

in many different ways. One of the simplest ways is grid search, which is sufficient for the

elicitation task. We set the final elicited metric φ̂ = φ′, which is obtained corresponding to

the output of Algorithm 6.3. Thus, φ̂ is a constant multiple of the true metric φ∗.

128

CHAPTER 7: ONLINE REVENUE MAXIMIZATION FOR SERVER
PRICING1

In this chapter, we solve the problem of maxmizing revenue on a single server, with i.i.d.

jobs arriving arriving from an unknown distribution. We reduce the problem to solving a

Markov Decision Process with an exponentially large action space, and show how to reduce

the dimension of the action space to get efficient computation. We restrict ourselves to posted

pricing mechanisms, which simply post prices, and rely on the agents/buyers to determine

what they wish to purchase on the server. This also means that we do not observe the job’s

parameters directly, but only what resources they chose to purchase. We require that at

each time period, the server post prices for each job length starting at the earliest available

time, and we find additive approximations to optimal pricing policies within this family.

In our setting, we assume time is allocated non-preemptively, and therefore the ressources

have strong complementarities. Furthermore, since the supply (server capacity) is limited,

any mechanism trades immediate revenue for future supply. We are considering a “real-time”

model, in the sense that time is progressing as the jobs execute while new jobs arrive, and

more time becomes available to schedule future jobs.

Model, informally. We assume time is discrete. At every time step, an agent arrives on

the server, with a value V , length requirement L, and maximum delay D. For each job, the

triple (V, L,D) is drawn i.i.d. from an underlying, unknown, distribution. The job wishes

to be scheduled for at least L consecutive time slots, no more than D time units after its

arrival, and wishes to pay no more than V . Jobs are assumed to have quasi-linear utility

in money, and so prefer the least-price interval within their constraints. The mechanism

designer never learns the parameters of the job. Instead, a price menu of (length,price)

pairs, and the minimum available delay s, are posted. The job accepts to be scheduled so

long as D ≥ s, and there is some (length,price) pair in the menu of length at least L and

price at most V . We note that the pricing scheme can be dynamic, changing through time.

If, at time epoch t, an agent chooses option (`, π`), then she pays π` and her job will be

allocated to the interval [t + s, t + s + `]. She will choose the option which minimizes π`.

Throughout this paper we assume that the random variables L, V,D are discrete, and have

finite support, unless specified differently.

1This chapter is based on collaboration with Federico Fusco, and Stefano Leonardi, Yishay Mansour, and
Ruta Mehta [98].

129

7.1 OVERVIEW AND MODEL

We solve this problem by modelling the server state as a Markov Chain, and the price

menus, as the action space in the associated Markov Decision Process (MDP), with details

given in Section 7.1.1. Given a price menu (length,price) and a state (minimum available

delay) s at time t, the probability of transition to any other state at time t + 1 is obtained

from the distribution of the job’s parameters. The revenue maximizing pricing strategy can

be efficiently computed via backwards induction, when we can assume that optimal prices

are monotone non-decreasing in length. The details of this are given in Section 7.2. We also

extend, in the final subsections of Section 7.2, the result to the infinite-horizon setting, and

to continuous random variables.

The result required an assumption that the optimal prices were monotone. We show

in Section 7.2.3, that this assumption holds under a distributional assumption, which we

show is satisfied when the jobs’ valuation follows a log-concave distribution, parametrized

by length. Log-concave distributions are also known in some fields as distributions which

have a monotone hazard rate. This monotonicity implies that jobs will truthfully choose

their desired length, rather than buy more time on the server for less money.

We finally investigate, in Section 7.4, the robustness of the pricing strategy. We first

show that a near optimal solution is still obtained when the distribution is known with a

certain degree of uncertainty. We complement this result by analyzing the performance of

the proposed pricing strategy when the distribution is only known from samples collected

through the observations of the agents’ decisions. We provide a truthful posted price ε-

approximate mechanism if the number of samples is polynomial in 1/ε and the size of the

support of the distribution.

7.1.1 Model

Notation. In what follows, the variables t, ` or L, v or V , and d or D are reserved

for describing the parameters of a job that wishes to be scheduled. Respectively, they

represent the arrival time t, required length `, value v, and maximum allowed delay d. The

lowercase variables represent fixed values, whereas the uppercase represent random variables.

Script-uppercase letters L,V ,D represent the supports of the distributions on L, V , and D,

respectively; and the bold-uppercase letters L,V,D represent the maximum values in these

respective sets. Finally, π is reserved for pricing policy, whereas p is reserved for probabilities.

130

Single-Machine, Non-Preemptive, Job Scheduling. A sequence of random jobs wish

to be scheduled on a server, non-preemptively, for a sufficiently low price, within a time

constraint. Formally, at every time step t, a single job with parameters (L, V,D) is drawn

from an underlying distribution Q over the space L × V × D. It wishes to be scheduled for

a price π ≤ V in an interval [a, b] such that a− t ≤ D and b− a ≥ L.

Price Menus. Our goal is to design a take-it-or-leave-it, posted-price mechanism which

maximizes expected revenue. At each time period, the mechanism posts a “price menu”

and an earliest-available-time st, indicating that times t through t + st − 1 have already

been scheduled. (st will henceforth be referred to as the state of the server.) We let S :=

{0, . . . , D + L} to be the set of all possible states. The state of the server at a given time t

is naturally a random variable which depends on the earlier jobs and on the adopted policy

π. As before, we will denote with s or st the fixed value, and with S or St the corresponding

random variable. The price menu will be given by the function π : [T]×S×L → R, i.e., if we

are a time t and the server is in state st, then the prices are set according to πt(st, ·) : L → R.
The reported pair (πt(st, ·), st) is computed by the scheduler’s strategy, which we determine

in this paper. Once this is posted, a job (L, V,D) is then sampled i.i.d. from the underlying

distribution Q.

If V ≥ πt(st, `) for some ` ≥ L, and D ≥ st, then the job accepts the schedule, and

reports the length ` ≥ L which minimize price. Otherwise, the job reports ` = 0 and is

not scheduled. To guarantee truthfulness, it suffices to have πt(s, ·) be monotonically non-

decreasing for every state s: the agent would not want a longer interval since it costs more,

and would not want one of the shorter intervals since they cannot run the job. It should be

clear that the mechanism’s strategy is to always report monotone non-decreasing prices, as

a decrease in the price menu will only cause more utilization of the server, without accruing

more revenue. The main technical challenge in this paper, then, is to show that under some

assumptions, the optimal strategy is monotone non-decreasing, and efficiently computable.

Revenue Objective. Revenue can be measured in either a finite or an infinite discounted

horizon. In the former (finite) case, only T time periods will occur, and we seek to maximize

the expected sum of revenue over these periods. In the infinite-horizon setting, future revenue

is discounted, at an exponentially decaying rate. Formally, revenue at time t is worth a γt

fraction of revenue at time 0, for some fixed γ < 1. See Section 7.3.2. Recall that the

job parameters are drawn independently at random from the underlying distribution, so

the scheduler can only base their “price menu” on the state of the system and the current

time. Thus, the only realistic strategy is to fix a state-and-time-dependent pricing policy

131

π : [T]× S × L → R, “πt(s, `)”, where [T] := {0, 1, . . . , T}.
Let X = {X1 := (1, L1, V1, D1), X2 := (2, L2, V2, D2), X3, . . . } be the random sequence of

jobs arriving, sampled i.i.d. from the underlying distribution. Let π : [T] × S × L → R be

the pricing policy. We denote as Revt(X , π) the revenue earned at time t with policy π and

sequence X . If Xt does not buy, then Revt(X , π) = 0, and otherwise, it is equal to πt(st, Lt).

We denote as CmlRevT the total (cumulative) revenue earned over the T periods. Thus,

CmlRevT (X , π) :=
∑T

t=0 Revt(X , π). (7.1)

We will also need the expected-future-revenue, given a current time and server state, which

we will denote as follows:

Uπ
t (s) = EX≥t

[∑T
i=t Revi(π,X)

∣∣∣St = s
]
, (7.2)

The subscript of the expectation X≥t denotes that we consider only jobs arriving from time

t onward. Our objective is to find the pricing policy π which maximizes Uπ
0 (s = 0). Call

this π∗, and denote the expected revenue under π∗ as U∗t (·).

7.2 BAYES-OPTIMAL STRATEGIES FOR SEVER PRICING, ASSUMING
MONOTONICITY

In this section we seek to compute an optimal monotone pricing policy π : [T]×S×L → R
which maximizes revenue in expectation over T jobs sampled i.i.d. from an underlying known

distribution Q. This is extended to the infinite-horizon, discounted, setting in Section 7.3.2.

We first model the problem of maximizing the revenue in online server pricing as a Markov

Decision Process that admits an efficiently-computable, optimal pricing strategy. The main

contribution of this section is to show that, for a natural assumption on the distribution Q,

the optimal policy is monotone. We recall that this allows us to derive truthful Bayes-optimal

mechanisms.

7.2.1 Markov Decision Processes.

We show that the theory of Markov Decision Processes is well suited to model our problem.

A Markov Decision Process is, in its essence, a Markov Chain whose transition probabilities

depend on the action chosen at each state, and where to each transition is assigned a reward.

A policy is then a function π mapping states to actions. In our setting, the states are the

states of the system outlined in Section 7.1.1 (i.e., the possible delays before the earliest

132

available time on the server), and the actions are the “price menus.” At every state s, a

job of a random length arrives, and with some probability, chooses to be scheduled, given

the choice of prices. The next state is either max{s − 1, 0}, if the job does not choose to

be scheduled (since we have moved forward in time), or s + ` − 1, if a job of length ` is

scheduled, since we have occupied ` more units. The transition probabilities depend on the

distribution of job lengths, and the probability that a job accepts to be scheduled given the

pricing policy (action). Formally,

P[st+1 = st + `− 1] =

P [Lt = `, Vt ≥ πt(st, `), Dt ≥ st + `] if ` ≥ 1

1−
∑

k≥0 P[st+1 = st + k] if ` = 0
(7.3)

(Transitions to state “−1” should be read as transitions to state “0”.) Note that a job of

length `may choose to purchase an interval of length greater than `, which would render these

transition probabilities incorrect. However, this may only happen if the larger interval is more

affordable. It is therefore in the scheduler’s interest to guarantee that πt(s, ·) in monotone

non-decreasing in `, which incentivizes truthfulness, since this increases the amount of server-

time available, without affecting revenue. Thus we restrict ourselves to this case.

It remains to define the transition rewards. They are simply the revenue earned. Formally,

a transition from state st to st + `− 1 incurs a reward of πt(s, `), whereas a transition from

state st to st − 1 incurs 0 reward. We wish to compute a policy π in such a way as to

maximize the expected cumulative revenue, given as the (possibly discounted) sum of all

transition rewards in expectation.

7.2.2 Solving for the Optimal Policy with Distributional Knowledge

In this section, we present a modified MDP whose optimal policies can be efficiently

computed, and show that these policies are optimal for the original MDP. In this section,

we assume that the mechanism designer is given access to the underlying distribution Q.

However, in the following sections, we will show that if the distribution Q is estimated from

samples, then solving for the MDP on this estimated distribution is sufficient to ensure

sufficiently good revenue guarantees.

Since the problem has been modelled as a Markov Decision Process (MDP), we may rely

on the wealth of literature available on MDP solutions, in particular we will leverage the

backwards induction algorithm (BIA) of [168] Section 4.5, presented here as Algorithm 7.1.

We will however need to ensure that this standard algorithm (i) runs efficiently, and (ii)

returns a monotone pricing policy.

133

Algorithm 7.1: Backwards Induction for Finite-Horizon MDP’s [168], section 4.5

Data: MDP with states S, actions A, and rewards R; and a horizon T .
Result: Optimal policy π∗ : [T]× S → A.
begin

Initialize U∗T (s)← 0 for all s ∈ S.
for t from T − 1 to 0, descending do

for s ∈ S do
U∗t (s)← maxa∈A

{∑
s′∈S P[st+1 = s′|s, a]

(
Reward(s→ s′|a) + U∗t+1(s′)

)}
π∗(t, s)← arg maxa∈A

{∑
s′∈S P[st+1 = s′|s, a]

(
Reward(s→

s′|a) + U∗t+1(s′)
)}

end

end
return π

end

Note that past prices do not contribute to future revenue insofar as the current state

remains unchanged. Thus, to compute optimal current prices, we need only know the current

state and expected future revenue. This allows us to use the BIA. The idea is to compute

the optimal time-dependent policy, and the incurred expected reward, for shorter horizons,

then use this to recursively compute the optimal policies for longer horizons.

The total runtime of the BIA is O(T |S||A|), where S and A denote the action and state

spaces, respectively. Note that the dependence on T is unavoidable, since any optimal

policy must be time-dependent. Recall that L and D denote the maximum values that L

and D can take, respectively, and V is the set of possible values that V can take. Denote

K := max{D + L, |V|}. If we define the action space näıvely, we have |S| = D + L ≤ K, and

|A| ≤ KL. Thus, a näıve definition of the MDP bounds the runtime at KO(K), which is far

from efficient. Requiring monotonocity only affects lower-order terms.

Modified MDP. To avoid this exponential dependence, we can be a little more clever

about the definition of the state space: instead of states being the possible server states,

we define our state space as possible (state, length) pairs. Thus, when the MDP is in state

(s, `), the server is in state s, and a job of length ` has been sampled from the distribution.

Our action-space then is simply the possible values of πt(s, `), and the rewards become:

R((s, `)→ (s′, `′)|π) =

πt(s, `) if s′ = s+ `− 1

0 otherwise
, (7.4)

134

Algorithm 7.2: Optimal policy in finite horizon

Data: Distribution Q, L, V, S and horizon T .
Result: Optimal policy π∗ : [T]× S × L→ R.

Initialize U∗T (s)← 0 for all s ∈ S, and u∗T (s, `)← 0 for all s ∈ S, ` ∈ L.
for t from T − 1 to 0, descending do

for s ∈ S do
for ` ∈ L do

u∗t (s, `)← maxµ∈V

{
P[V ≥ µ,D ≥ s|L = `] ×(

µ+ U∗t+1(s+ `− 1)− U∗t+1(s− 1)
)

+ U∗t+1(s− 1)
}

π∗t (s, `)← arg maxµ∈V

{
P[V ≥ µ,D ≥ s|L = `] ×(

µ+ U∗t+1(s+ `− 1)− U∗t+1(s− 1)
)

+ U∗t+1(s− 1)
}

end
U∗t (s)←

∑
`∈L P[L = `]u∗t (s, `).

end

end
return π∗

and the transition probabilities become

P[(s, `)→ (s′, `′)|π] =

P[V ≥ πt(s, `), D ≥ s|L = `]P[L′ = `′] if s′ = s+ `− 1

P[V < πt(s, `) or D < s|L = `]P[L′ = `′] if s′ = s− 1

0 otherwise

.

(7.5)

Therefore, we get |S| = (D+L) ·L ≤ K2, and |A| ≤ K. Thus, the runtime of the algorithm

becomes O(TK3). A full description of the procedure is given as Algorithm 7.2. It remains

to prove that it is correct. We begin by claiming that these two MDPs are equivalent in the

following sense:

Lemma 7.1. For any fixed pricing policy π : [T]× S × L → R,

Uπ
t (s) = EL [uπt (s, L)] ,∀t ∈ T, s ∈ S, (7.6)

where the Uπ
t (·)’s are as in (7.2), and the uπt (·, ·)’s are from the modified MDP.

Proof. The statement is true for t = T since in that case everything is zero. Suppose

EL′
[
uπt+1(s, L′)

]
= Uπ

t+1(s) for all s. For the fixed policy π, we define p`t,s := P[V ≥

135

πt(s, `), D ≥ s|L = `]. Then,

EL [uπt (s, L)] =
∑
`∈L

P[L = `]uπt (s, `)

=
∑
`∈L

P[L = `]
(
πt(s, `)p

`
t,s + p`t,s EL′

[
uπt+1(s+ `− 1, L′)

]
+ (1− p`t,s)EL′

[
uπt+1(s− 1, L′)

])
=
∑
`∈L

P[L = `]
(
πt(s, `)p

`
t,s + p`t,su

π
t+1(s+ `− 1, L′)

+ (1− p`t,s)uπt+1(s− 1, L′)
)

= EX
[
Revt(π,X) + Uπ

t+1(St+1(St,X)) |St = s
]

=: Uπ
t (s) (7.7)

Q.E.D.

This lemma, however, does not suffice on its own, as agents may behave strategically by

over-reporting their length, if the prices are not increasing. This would alter the transition

probabilities, breaking the analysis. We will see that under a mild assumption, this can

not happen, as the optimal policy for non-strategic agents will be monotone, and therefore

truthful.

7.2.3 Monotonicity of the Optimal Pricing Policies

Recall that the solution of the more efficient MDP formulation is only correct if we can

show that it is always monotone without considering the strategic behaviour of agents,

ensuring incentive-compatibility of the optimum.

An optimal monotone strategy cannot be obtained for all the distributions on L, V, and D.

As an example, for any distribution where a job’s value is a deterministic function of their

length, the optimal policy is to price-discriminate by length. If this function is not monotone,

the optimum won’t be either. To this end, we introduce the following assumption, which we

will discuss below, and which will imply monotonicity of the pricing policy.

Assumption 7.1. The quantity P[V≥µ′,D≥s|L=`]
P[V≥µ,D≥s|L=`]

is monotone non-decreasing as ` grows, for

any state s and 0 ≤ µ < µ′ fixed.

This is not a natural, or immediately intuitive assumption. However, we will show that it

is satisfied if the valuation of jobs follows a log-concave distribution which is parametrized

136

by the job’s length, and where the valuation is (informally) positively correlated with this

length. Log-concave distributions are also commonly referred to as distributions possessing

a monotone hazard rate, and it is common practice in economic settings to require this

property of the agent valuations.

Lemma 7.2. Let, V s
` denote the marginal r.v. V conditioned on L = ` and D ≥ s. Let Z

be a continuously-supported random variable, and γs1 ≤ γs2 ≤ · · · ∈ R. If V s
` is distributed

like γs` ·Z, bγs` · Zc, Z+ γs` , or bZ + γs` c, then Assumption 7.1 is satisfied if Z is log-concave,

or if the γ’s are independent of `.

A discussion of log-concave random variables and a proof of this fact is given in Section 7.5.

Many standard (discrete) distributions are (discrete) log-concave random variables, including

the uniform, Gaussian, logistic, exponential, Poisson, binomial, etc. These can be proved

to be log-concave from the discussion in Section 7.5. In the above, the γ terms represent a

notion of spread or shifting, parametrized by the length, indicating some amount of positive

correlation.

It remains to show price monotonicity under the above assumption. First, we begin with

the following, which holds for arbitrary distributions. This ensures that over-selling time on

the server can only hurt the mechanism.

Lemma 7.3. Let U∗t (s) be the expected future revenue earned starting at time t in state

s, for the optimal policy computed by Algorithm 7.2. Then the function s 7→ U∗t (s) is

monotone non-increasing in s for any t fixed.

Proof. The proof is by induction on the time, decreasing. At time t = T , there is no future

revenue and U∗T (s) = 0, so the inductive claim follows trivially. Suppose, now, that the

inductive claim holds at time t+ 1. It suffices to show that this holds for each u∗t (s, `), since

U∗t (s) is simply their expectation. Let π∗t be the optimal pricing policy computed for the

time t by the Algorithm 7.2. Since the function µ 7→ P[V ≥ µ and E], for any event E , is

left-continuous in the variable µ, we may define, for every ` ∈ L and s ∈ S,

µ′s := max
{
µ : P[V ≥ µ,D ≥ s|L = `] ≥ P[V ≥ π∗t (s+ 1, `), D ≥ s+ 1|L = `]

}
(7.8)

We must have µ′ ≥ π∗t (s + 1, `), as µ = π∗t (s + 1, `) is in the set. Now, letting p := P[V ≥

137

π∗t (s+ 1, `), D ≥ s+ 1|L = `], we have

u∗t (s+ 1, `) (7.9)

= p · π∗t (s+ 1, `) + p · U∗t+1(s+ `) + (1− p)U∗t+1(s)

≤ p · π∗t (s+ 1, `) + p · U∗t+1(s+ `− 1) + (1− p)U∗t+1(s− 1) (by induction)

≤ p ·
(
π∗t (s+ 1, `) + U∗t+1(s+ `− 1)− U∗t+1(s− 1)

)
+

+ U∗t+1(s− 1)

≤ P[V ≥ µ′s, D ≥ s] ·
(
µ′s + U∗t+1(s+ `− 1)− U∗t+1(s− 1)

)
+

+ U∗t+1(s− 1)

≤ u∗t (s, `) (subopt. price),

where (x)+ := max{x, 0}. The first inequality holds by the induction hypothesis, the second

is by definition of (·)+, the third by the definition of µ′s, and in the last, from the fact

that µ′s is a (possibly) suboptimal pricing policy for the state s at time t. Note that this

last inequality requires that the 0 value be feasible in the max, which it is, by setting µ′

arbitrarily large. Q.E.D.

We can now conclude

Lemma 7.4. If the distribution on job parameters satisfies the above assumption, then for

all `, s, t, we have π∗t (s, `) ≤ π∗t (s, `+ 1).

Proof. The idea is to show that, for any price µ less than the optimum π∗t (s, `), the difference

in revenue between charging µ and π∗t (s, `) to jobs of length ` is less than the difference in

revenue between the same prices for jobs of length ` + 1. This is achieved by applying the

assumption to recursive definition of future revenue, along with the previous lemma.

Let p`s(µ) := P[V ≥ µ,D ≥ s|L = `], fix s, t, and `, and let µ0 be equal to the optimal

price π∗t (s, `). Observe that µ0 maximizes the expression

p`s(µ)
(
µ+ U∗t+1(s+ `− 1)− U∗t+1(s− 1)

)
+ U∗t+1(s− 1) (7.10)

For simplicity, let ∆` := U∗t+1(s+ `− 1)− U∗t+1(s− 1), and so for any µ 6= µ0,

0 ≤ p`s(µ0)
(
µ0 + ∆`

)
− p`s(µ)

(
µ+ ∆`

)
=
(
p`s(µ0)− p`s(µ)

)(
µ0 + ∆`

)
+ p`s(µ)

(
µ0 − µ

)
(7.11)

Note that, as discussed in the proof of the previous lemma, µ0 + ∆` ≥ 0, as otherwise it

138

would be beneficial to set π∗t (s, `)←∞. The above inequality is then equivalent to

p`s(µ)− p`s(µ0)

p`s(µ)
≤ µ0 − µ
µ0 + ∆`

⇐⇒ p`s(µ0)

p`s(µ)
≥ 1− µ0 − µ

µ0 + ∆`

(7.12)

We wish to show that, if µ ≤ µ0, then as ` increases, the above inequality still holds. This

would imply that the price µ0 =: π∗9(s, `) gives better return than µ for jobs of length `+ 1,

implying that the optimal price must be at least π∗t (s, `), which is our desired goal.

Now, by assumption 7.1, the left-hand-side is non-decreasing in `, so it remains to show

that the right-hand-side is non-increasing in `. The only changing term is ∆`, which by

Lemma 7.3, is non-increasing in `. Since it is in the denominator of a subtracted, non-

negative term, we have our desired result. Q.E.D.

With Lemma 7.4 and the results of Section 7.3, we finally have:

Theorem 7.2. The online server pricing problem admits an optimal monotone pricing

strategy when the variables L, V , and D satisfy Assumption 7.1. Also,

1. In the finite horizon setting, when V is finitely supported, an exact optimum can be

computed in time O(TK3).

2. In the infinite horizon setting, when V is finitely supported, for all ε > 0, an ε-additive-

approximate policy can be computed in time

O
(
K3 logγ

(
ε(1−γ)

V

))
≤ O

(
K3

1−γ ln
(

V
ε(1−γ)

))
(7.13)

3. In the finite horizon setting, when V is continuously supported, for all η > 0, an

ηT -additive-approximate policy can be computed in time O(TK2V/η).

7.3 CONCENTRATION BOUNDS, AND EXTENSIONS

We show in this section that the performance of optimal policies concentrates, and we show

how to extend the results of Section 7.2 to the infinite horizon, and how to approximate the

optimal policy when parameter distributions are continuous.

7.3.1 Concentration Bounds on Revenue for Online Scheduling

In this section, we show that the revenue of arbitrary policies concentrates around their

mean. In particular it holds true for the optimal or approximately optimal strategies de-

139

scribed above. This will also allow us to argue later that, if we have an estimate Q̂ of Q,

then execute Algorithm 7.2 given the distribution Q̂, then the output policy will perform

well with respect to Q, both in expectation, and with high probability. To show this concen-

tration, we will consider the Doob or exposure martingale of the cumulative revenue function,

introduced in Section 7.1.1. Define

Rπ
i := E [CmlRevT (π,X)|X1, . . . , Xi] (7.14)

where the Xi’s are jobs in the sequence X and the expected value is taken with respect to

Xi+1, . . .XT . Thus, Rπ
0 is the expected cumulative revenue, and Rπ

T is the random cumulative

revenue. To formally describe this martingale sequence, we will introduce some notation,

and formalize some previous notation. Recall that X1, X2, . . . is a sequence of jobs sampled

i.i.d. from an underlying distribution Q. Fix a pricing policy π : [T]× S × L → R. Note

that the state at time t is a random variable depending on both the (deterministic) pricing

policy and the (random) X1, . . . ,Xt−1. We denote it St(π,X), or St for short. Formally,

suppose Xt = (Vt, Lt, Dt), then St+1(π,X) = St(π,X)−1 if either Vt < πt(St, Lt) or Dt < St,

and otherwise St+1(π,X) = St(π,X) + Lt − 1. Furthermore, let Revt(π,X) be equal to 0 in

the first case above (the t-th job is not scheduled), and πt(St, Lt) otherwise. Thus, St(π,X)

and Revt(π,X) are functions of the random values X1, . . . , Xt for π fixed. Note that Revt

implicitly depends on St. Let X>i := (Xi+1,Xi+2, . . .) and X≤i := (X1, . . .Xi). Recalling that

CmlRevT (X , π) =
∑T

t=1 Revt(X , π), we have

Rπ
i =

i∑
t=0

Revt(π,X) + EX>i
[∑T

t=i+1 Revt(π,X)
∣∣∣ Si+1(π,X≤i)

]
(7.15a)

=
(∑i

t=0 Revt(π,X≤t)
)

+ Uπ
i+1(Si+1(π,X≤i)) (7.15b)

We wish to show that CmlRev(X , π) concentrates around its mean. Since Rπ
0 is the expected

revenue due to π, and Rπ
T is the (random) revenue observed, it suffices to show |Rπ

0 − Rπ
T |

is small, which we will do by applying Azuma’s inequality, after showing the bounded-

differences property. This gives the following.

Theorem 7.3. Let X be a finite sequence of T jobs sampled i.i.d. from Q, and let π be any

monotone policy. Then, with probability 1− δ,

|CmlRevT (X , π)− EX ′ [CmlRevT (X ′, π)]| ≤ V ·
√

2 log(2/δ)T . (7.16)

in the finite horizon, and in the infinite-horizon-discounted,

140

|CmlRev∞(X , π)− EX ′ [CmlRevT (X ′, π)]| ≤ V ·
√

2 log(2/δ)/(1− γ2). (7.17)

In particular these results hold true for the (approximately) optimal pricing strategies of

Theorem 7.2.

Proof. For the finite horizon, we apply Azuma’s inequality to the martingale Rπ
t . We being

by showing the bounded-differences property. Note that we do not require truthful behaviour

from the jobs, since taking strategic behaviour into account for a non-monotone policy is

equivalent to modifying the distribution over the jobs, and making the distribution state-

dependent, by increasing the length of those jobs who would rather buy a longer interval.

Thus,

∣∣Rπ
t+1 −Rπ

t

∣∣ (7.18)

=
∣∣∣∑t+1

τ=0 Revτ (π,X) + EX>t+1

[∑T
τ=t+2 Revτ (π,X)

∣∣∣ St+2(π,X≤t+1)
]

(7.19)

−
∑t

τ=0 Revτ (π,X)− EX>t
[∑T

τ=t+1 Revτ (π,X)
∣∣∣ St+1(π,X≤t)

] ∣∣∣ (7.20)

=
∣∣Revt+1(π,X)− EXt+1 [Revt+1(π,X)|St+1(π,X≤t)]

∣∣ ≤ V

where the last inequality follows from properties of conditional expectation. With this

property, we can apply Azuma’s, and get

|CmlRevT (X , π)− EX ′ [CmlRevT (X ′, π)]| ≤
√

2 log(2/δ)(T + 1)V2 . (7.21)

For the infinite-horizon-discounted, we observe that equation (7.15) becomes

Rπ
i =

i∑
t=0

γtRevt(π,X) + EX>i
[∑T

t=i+1 γ
tRevt(π,X)

∣∣∣ Si+1(π,X≤i)
]

(7.22)

and thus we get that |Rπ
t −Rπ

t−1| ≤ γtV. Therefore with probability 1− δ,

|Rπ
T −Rπ

0 | ≤
√

2 log(2/δ)
∑T

t=0(γtV)2 = V ·
√

2 log(2/δ)
∑T

t=0(γ2)t (7.23)

Thus, taking the limit as T →∞, we get that with probability 1− δ,

|CmlRev∞(X , π)− EX ′ [CmlRevT (X ′, π)]| ≤ V ·
√

2 log(2/δ)/(1− γ2). (7.24)
Q.E.D.

141

7.3.2 Infinite Discounted Horizon

In this section, we extend the finite-horizon results to compute the optimal policies in

the infinite-horizon-discounted setting. Recall, in this infinite horizon discounted setting, we

seek to maximize the γ-discounted future revenue,

CmlRev∞(X , π) :=
∞∑
t=0

γtRevt(X , π) (7.25)

over the choice of π : N × S × L → R. Algorithm 7.2 does not allow us to immediately

compute a solution for the infinite discounted horizon case. However we can exploit the

discounting factor on the revenues to obtain an approximation of the infinite optimum: it

suffices to consider the truncated problem up to a certain sufficiently large T and solve it

optimally using the algorithm presented above. In fact we have the following Lemma.

Lemma 7.5. For any ε > 0 and T ≥ logγ (ε(1− γ)/V), let π be the pricing policy computed

by the finite-horizon algorithm up to time T . Let π̄ be the time-independent pricing policy

such that π̄(·, ·) := π0(·, ·). Then the expected performance of the optimal policy in the

infinite horizon is within an additive ε of expected performance of π̄.

Proof. Note that in order to compute policy π it is necessary to add the discount factor to

Algorithm 7.2, and to all of the proofs of previous sections. One can verify that all proofs

go through. Let π∗ be the Bayes-optimal infinite-horizon strategy — which is known to be

time-independent — and let π be as in the statement (where we set πt(s, `) = ∞ for all

t > T .) Then, in expectation over times 0 through T , pricing as π yields greater revenue

than following π∗. Conversely, in expectation over all time, pricing as π∗ yields greater

revenue than π. However, after time T , the maximum possible revenue due to any policy is

∑∞
t=T γ

t · V = γT · V ·
(

1
1−γ

)
≤ ε (7.26)

And so the difference in revenue due to following π or π∗ is at most ε, since T is sufficiently

large.

It remains to show that π̄ performs better than π overall. Let πi be the policy which agrees

with π0 for all t ≤ i, then equals πt−i for t > i. Observe that, π1 is optimal in expectation

over the interval [1, T + 1], and is equivalent to π = π0 for the first step. Therefore, π1

performs better than π. Similarly, we can argue πi+1 performs better than πi over the

interval [i, T + i] and equally before, hence performs better overall.

Thus, we have a sequence of policies π = π0, π1, π2, . . . converging to π̄, and whose

expected revenue is monotone non-decreasing along the sequence. Therefore, the expected

142

revenue due to π̄ is greater than that of π, which is an ε additive-approximation to the

optimal policy. Q.E.D.

The approach above is analogous to the classical value iteration technique [168].

(Lemma 7.7, p. 145) Let Q, and Q̂ such that |Q − Q̂| < ε. In the infinite horizon,

|U∗(s)− Û∗(s)| < 2VLε/(1− γ) for all s.

Proof. As in the proof of Lemma 7.5, if T is sufficiently large, we may analyze the first T

time steps as a finite-horizon problem, and the remaining revenue will be negligibly small.

Now, the calculation above can be reproduced with discount terms, to show∣∣∣U∗t (s)− Û∗t (s)
∣∣∣ ≤ supσ′

∣∣∣γU∗t+1(σ′)− γÛ∗t+1(σ′)
∣∣∣+
∑

`∈L 2εV (7.27)

Then, inductively applying this and taking T →∞, we have |U∗0 (s)−Û∗0 (s)| ≤ 2VLε/(1−γ).

Q.E.D.

These results are used to prove the infinite-horizon versions of the various results through-

out the paper, specifically the Theorems 7.2–7.3, and 7.5.

7.3.3 Approximation Algorithm for Continuously Supported Values

In this section, we argue that the optimal policy may be computed within some error when

the distribution over values is continuous, rather than discrete. Note that the algorithms

above assume that the value of the jobs (V) is discretely supported, and the running time

depends on |V|. In this section, we analyze the error incurred by discretizing the space of

possible values, and then computing the optimal policy.

Let η > 0 be some desired small grid size, and suppose we only allow ourselves to set

prices which are multiples of η. We claim that this incurs a small loss on the total revenue.

Define, as in the previous subsections, p`s(µ) := P[V ≥ µ,D ≥ s|L = `]. Further, define

as previously U∗t (s) = EL [u∗t (s, L)], and

u∗t (s, `) := max
µ∈R

[
p`s(µ)

(
µ+ U∗t+1(s+ `− 1)

)
+ (1− p`s(µ))U∗t+1(s− 1)

]
(7.28)

Define U∗t,η(s) and u∗t,η(s, `) similarly, restricting the maximum to choosing µ from multiples

of η.

Lemma 7.6. Let U∗t (·) and U∗t,η(·) be defined as above, then |U∗t (s)−U∗t,η(s)| ≤ (T−t)η ∀s, t.

143

Proof. We will show this by induction on the value of t, decreasing. Assume that |U∗t (s)−
U∗t,η(s)| < ∆t for all t, s, and set ∆T+1 = 0. We wish to inductively bound the value of ∆t.

Now,

u∗t,η(s, `) = max
µ∈η·Z

[
p`s(µ)

(
µ+ U∗t+1,η(s+ `− 1)

)
+ (1− p`s(µ))U∗t+1,η(s− 1)

]
≥ max

µ∈η·Z

[
p`s(µ)

(
µ+ U∗t+1(s+ `− 1)−∆t+1

)
+

+ (1− p`s(µ))U∗t+1(s− 1)−∆t+1

]
= −∆t+1 + max

µ∈η·Z

[
p`s(µ)

(
µ+ U∗t+1(s+ `− 1)− U∗t+1(s− 1)

)
+ U∗t+1(s− 1)

]
(7.29)

Now, let µ∗ be the optimizer of this right hand side over R (where the value would attain

u∗t (s, `)), and µ̂ be µ∗ rounded down to the nearest multiple of η. Then, since p`s(·) is

non-increasing,

p`s(µ̂)
(
µ̂+ U∗t+1(s+ `− 1)− U∗t+1(s− 1)

)
+ U∗t+1(s− 1)

≥ p`s(µ∗)
(
µ∗ − η + U∗t+1(s+ `− 1)− U∗t+1(s− 1)

)
+ U∗t+1(s− 1)

= u∗t (s, `)− η · p`s(µ∗) (7.30)

Thus combining both equations, we get

u∗t,η(s, `) ≤ u∗t (s, `) ≤ u∗t,η(s, `) + η + ∆t+1 (7.31)

From which we conclude, by averaging over `, that ∆t ≤ (T − t)η, as desired. Q.E.D.

Corollary 7.1. Let U∗(·) and U∗∞,η(·) be defined as above, but for the infinite horizon

discounted, then |U∗(s)− U∗∞,η(s)| ≤ η/(1− γ) ∀s.

Proof. As shown in the previous subsection, it suffices to perform the analysis in the finite

horizon, while taking the discount factor into account, then take the limit as T →∞. The

same calculations as above gives

u∗t,η(s, `) ≥ −∆t+1 + max
µ∈ηZ

[
p`s(µ)

(
µ+ γU∗t+1(s+ `− 1)− γU∗t+1(s− 1)

)
+ γU∗t+1(s− 1)

]
≥ u∗t+1(s, `)− η − γ∆t+1 (7.32)

Summing the ∆’s and taking T → ∞, we get u∗∞,η(s, `) ≥ u∗(s, `) − η/(1 − γ) as desired.

Q.E.D.

144

7.4 ROBUSTNESS OF PRICING WITH APPROXIMATE DISTRIBUTIONAL
KNOWLEDGE

In this section, we show that results analogous to Theorems 7.2 and 7.3 may be obtained

even in the case in which we do not have full knowledge of the distribution Q, but only an

estimate Q̂. We then show how to obtain a valid Q̂ from samples.

7.4.1 Robustness of the pricing strategy

Let’s suppose that instead of knowing the exact distribution Q = (D,L, V) of the jobs,

we have only access to some estimate Q̂ = (D̂, L̂, V̂) with the following property, for some

ε > 0:∣∣∣P(L̂ = `, V̂ ≥ v, D̂ ≥ s)− P(L = `, V ≥ v,D ≥ s)
∣∣∣ < ε ∀s ∈ S, ` ∈ L and v ∈ V . (7.33)

For the sake of brevity, we abuse notation and denote the condition in (7.33) as |Q− Q̂| < ε.

Later, we will need to estimate the value P[L = `,¬(V ≥ v,D ≥ s)], given Q̂, that is the

probability that the job has length `, but either cannot afford price v, or cannot be scheduled

s slots in the future. This is equal to P[L = `]− P[L = `, V ≥ v,D ≥ s] .

The left-hand term is equal to P[L = `,V ≥ 0,D ≥ 0], and so we have access to both terms.

The estimation error is additive, so the deviation is at most 2ε.

Denote p`t,s := P[V ≥ πt(s, `), D ≥ s|L = `], and recall

Uπ
t (s) :=

∑
`∈L

P[L = `]
(
p`t,s
(
πt(s, `) + Uπ

t+1(s+ `− 1)
)

+ (1− p`t,s)Uπ
t+1(s− 1)

)
, (7.34)

the expected revenue from time t onwards, conditioning on St = s. Let Ûπ
t (·) be the same as

Uπ
t (·), but where the variables are distributed as Q̂. As before, let U∗t (·) be Uπ

t (·) for π = π∗,

the Bayes-optimal policy returned by Algorithm 7.2, and Û∗t (·) defined similarly but with

respect to Q̂. We will show that Û∗t (·) is a good estimate for U∗t (·).

Lemma 7.7. Let Q, and Q̂ such that |Q− Q̂| < ε.

1. In the finite horizon, |U∗t (s)− Û∗t (s)| < 2(T − t)VLε for all t, s;

2. In the infinite horizon, |U∗(s) − Û∗(s)| < 2VLε/(1 − γ) for all s, where U∗ is the

optimal time independent strategy.

We present here the proof for the finite horizon setting. The result in the infinite horizon

is then concluded from Section 7.3.2.

145

Proof, finite horizon. Let π∗ be the policy computed by Algorithm 7.2 with access to Q. As

in Section 7.2, we denote p`t,s := P[V ≥ π∗t (s, `), D ≥ s|L = `], and P (`) := PX [L = `]. In an

abuse of notation, denote p̂`t,s and P̂ (`) the estimated values of p`t,s and P (`), respectively.

We cannot estimate p`t,s directly with good error bounds, but we will only need the values

P̂ (`)p̂`t,s and P̂ (`)(1− p̂`t,s). Now, substituting these estimates into (7.34), we get:∣∣∣U∗t (s)− Û∗t (s)
∣∣∣

=

∣∣∣∣∑
`∈L

P (`)
(
p`t,sπ

∗
t (s, `) + p`t,sU

∗
t+1(s+ `− 1) + (1− p`t,s)U∗t+1(s− 1)

)
−
∑
`∈L

P̂ (`)
(
p̂`t,sπ

∗
t (s, `) + p̂`t,sÛ

∗
t+1(s+ `− 1) + (1− p̂`t,s)Û∗t+1(s− 1)

)∣∣∣∣ (7.35)

To simplify this expression, we begin by showing a simple claim: Let x, y, x̂, ŷ ∈ R, and let

λ, λ̂ ∈ [0, 1], such that |x− x̂| < δ, |y − ŷ| < δ, and |λ− λ̂| < ε. Then

∣∣(λx+(1− λ)y
)
−
(
λ̂x̂+ (1− λ̂)ŷ

)∣∣
≤
∣∣(λx+ (1− λ)y

)
−
(
λ̂x+ (1− λ̂)y

)∣∣+∣∣(λ̂x+ (1− λ̂)y
)
−
(
λ̂x̂+ (1− λ̂)ŷ

)∣∣
≤ |λ− λ̂| · |x− y|+ λ̂|x− x̂|+ (1− λ̂)|y − ŷ|

≤ ε|x− y|+ δ (7.36)

Now, replacing x and y with
(
π∗t (s, `)+U∗t+1(s+ `− 1)

)
and U∗t+1(s− 1), respectively, and

replacing λ with P (`)p`t,s, we have

∣∣∣U∗t (s)− Û∗t (s)
∣∣∣ ≤∑

`∈L

(
2ε · sup

σ

∣∣π∗t (σ, `) + U∗t+1(σ + `− 1)− U∗t+1(σ − 1)
∣∣+

+ P̂ (`) · sup
σ′

∣∣∣U∗t+1(σ′)− Û∗t+1(σ′)
∣∣∣) (7.37)

However, the argument of the supremum in left-hand term in the summand must be at most

V, since if U∗t+1(σ + `− 1) ≤ U∗t+1(s− 1), it is best to π∗t (σ) = ∞, which makes p`t,s = 0,

putting all the weight on U∗t+1(s− 1). Furthermore, we have shown in Lemma 7.3 that

U∗t+1(s+ `− 1) ≤ U∗t+1(s− 1). Thus, we get∣∣∣U∗t (s)− Û∗t (s)
∣∣∣ ≤ supσ′

∣∣∣U∗t+1(σ′)− Û∗t+1(σ′)
∣∣∣+
∑

`∈L 2εV (7.38)

146

Inductively applying this gives
∣∣∣U∗t (s)− Û∗t (s)

∣∣∣ ≤ 2(T − t)LVε as desired. Q.E.D.

7.4.2 Learning the Underlying Distribution from Samples

As discussed above, we show here how to compute a Q̂ from samples of Q, such that

|Q− Q̂| is small with high probability. In particular we present a sampling procedure which

respects the rules of the pricing server mechanism. When a job arrives, we only learn its

length, and only if it agrees to be scheduled. Thus, we are not given full samples of Q,

complicating the learning procedure. Thanks to the previous section, we know that a policy

which is optimal with respect to Q̂ will be close-to-optimal with respect to Q.

We remark, however, that the power of the results of the previous section is not exhausted

by this application: one may apply directly the robustness results to specific problems in

which the Q̂ is subject to (small) noise or an approximate distribution is already known from

other sources.

Let X = {(L1, V1, D1), . . . , (Ln, Vn, Dn), } be an i.i.d. sample of n jobs from the underlying

distribution Q. Note that the expectation of an indicator is the probability of the indicated

event. Fix a length `, a state s, and a value v. As a consequence of Höffding’s inequality,

with probability 1− δ,∣∣∣ 1
n

∑n
k=1 I[Lk = `, Vk ≥ v,Dk ≥ s]− P[L = `, V ≥ v,D ≥ s]

∣∣∣ ≤√ log(2/δ)
2n

(7.39)

Sampling Procedure. We wish to estimate the value P[L = `, V ≥ v,D ≥ s] for all

choices of `, v, and s. Fixing v and s, we may repeatedly post prices πt(s, `) = v and declare

that the earliest available time is s, then record (i) which job accepts to be scheduled, and

(ii) the length of each scheduled job. Let ε > 0 and n ≥ log(2/δ)/(2ε2), then by (7.39), the

sample-average of each value will have error at most ε with probability 1 − δ, for any one

choice of (`, v, s).

Repeating this process for all ≤ K2 choices of v ∈ V and s ∈ S gives us estimates for

each. Now, if we want to have the estimate hold over all choices of `, v, s, it suffices to

take the union bound over all ≤ K3 values (incl. `), and scaling accordingly. If we take

n ≥ 3 log(2K/δ)/(2ε2) samples for each of the ≤ K2 choices of v and s, then simultaneously

for all `, v, and s, the quantity in (7.39) is at most ε. So we have obtained the “|Q− Q̂| < ε”

condition. It should be noted that, for this sampling procedure, if a job of length ` is

scheduled, we must possibly wait at most ` times units before taking the next sample to

clear the buffer. This blows up the sampling time by a factor of O(L). The following result

follows immediately from Lemma 7.7 and Höffding’s inequality for the right choice of n.

147

Lemma 7.8. Let n, Q, and Q̂, be as above. In the finite horizon, for all ε > 0, if n ≥
6TK4 log(2K/δ)/ε2, we have that with probability 1− δ, |U∗t (s)− Û∗t (s)| < ε for all t, s. In

the infinite horizon, if n ≥ 6K4 log(2K/δ)/((1− γ)ε2), we have that with probability 1− δ,
|U∗(s)− Û∗(s)| < ε for all s.

7.4.3 Performance of the Computed Policy

We use here the result of the previous sections to analyze the performance of the policy

output by Algorithm 7.2 after the learning procedure. By the estimation of revenue, the

best policy in estimated-expectation is near-optimal in expectation. Since revenues from

arbitrary policies concentrate, we get near-optimal revenue in hindsight.

Formally, for ε > 0, Lemma 7.8 gives us that if the sample-distribution Q̂ is computed on n ≥
6TK4 log(2K/δ)/ε2 samples, then with probability 1−δ over the samples, |U∗t (s)−Û∗t (s)| ≤ ε.

Note that U∗t=0(s = 0) is exactly the expected cumulative revenue of the optimal policy. For

clarity of notation, denote

ECRevT (π|Q) := EX∼Q [CmlRevT (X , π)] (7.40)

We have shown that for sufficient samples, |ECRevT (π∗|Q)−ECRevT (π∗|Q̂)| < ε, with prob-

ability 1− δ. This observation allows us to then conclude

Theorem 7.4 (Finite Horizon). Let Q be the underlying distribution over jobs. Let ε > 0,

and n ≥ 24TK4 log(8K/δ)/ε2. Then in time O(TK3 + nL), we may compute a policy π̂

which is monotone in length, and therefore incentive compatible, such that for any policy π,

with probability (1− δ),

CmlRevT (X , π̂) ≥ CmlRevT (X , π)− 2V
√

2 log(8/δ)(T + 1)− ε (7.41)

Furthermore, if the distribution over values V is continuous rather than discrete, we may

compute in time O(TK2V/η + nL) a monotone policy π̂ such that for any policy π, with

probability 1− δ,

CmlRevT (X , π̂) ≥ CmlRevT (X , π)− 2V
√

2 log(8/δ)(T + 1)− ε− ηT (7.42)

Proof. We have chosen n ≥ 6TK4 log(2K/(δ/4))/(ε/2)2. Let π∗ be the optimal policy for

the true distribution Q. By Theorem 7.3, we have |CmlRevT (X , π) − ECRevT (π|Q)| <
V
√

2 log(8/δ)(T + 1) with probability 1−δ/4 for both π and π̂. Furthermore, by Lemma 7.8,

148

|ECRevT (π|Q)−ECRevT (π|Q̂)| < ε/2 with probability 1−δ/4, for both π = π̂ and π∗. This is

because from the point of view of π̂, Q̂ is the true distribution, and Q is the estimate. Taking

the union bound over all four events above, and recalling that π̂ maximizes ECRevT (π|Q̂),

and π∗ maximizes ECRevT (π|Q), we get the following with probability 1− δ:

CmlRevT (X , π̂) ≥ ECRevT (π̂|Q)− V
√

2 log(8/δ)(T + 1) (concentration)

≥ ECRevT (π̂|Q̂)− V
√

2 log(8/δ)(T + 1)− ε/2 (sample error)

≥ ECRevT (π∗|Q̂)− V
√

2 log(8/δ)(T + 1)− ε/2 (optimality)

≥ ECRevT (π∗|Q)− V
√

2 log(8/δ)(T + 1)− ε (sample error)

≥ ECRevT (π|Q)− V
√

2 log(8/δ)(T + 1)− ε (optimality)

≥ CmlRevT (X , π)− 2V
√

2 log(8/δ)(T + 1)− ε (concentration) (7.43)

as desired.

When V is continuously distributed, choose prices which are multiples of η between 0 and

V, as is outlined in Section 7.3.3. Q.E.D.

For what concerns the γ-discounted infinite horizon case, we have the following

Theorem 7.5 (Infinite Horizon, Discounted). Let Q be the underlying distribution over

jobs. Let ε > 0, and n ≥ 24K4 log(8K/δ)
ε2(1−γ)

. Then we may compute a policy π̂ in time

O
(

K3

1−γ ln
(

V
ε(1−γ)

)
+ nL

)
, which is monotone, and thus incentive compatible, such that for

any policy π, with probability (1− δ),

CmlRev∞(X , π̂) ≥ CmlRev∞(X , π)− 2V
√

2 log(8/δ)/(1− γ2)− 2ε (7.44)

Furthermore, if the distribution over values V is continuous rather than discrete, we may

compute in time O
(

K2V/η
1−γ ln

(
V

ε(1−γ)

)
+ nL

)
a monotone policy π̂ such that for any π, with

probability 1− δ,

CmlRev∞(X , π̂) ≥ CmlRev∞(X , π)− 2V
√

2 log(8/δ)/(1− γ2)− 2ε− η/(1− γ) (7.45)

As above, this policy π̂ is computed by learning Q̂ from n samples as in Section 7.4.2,

then running the modified Algorithm 7.2 for the estimated distribution as in Section 7.3.2.

In case V is continuously distributed, we restrict ourselves to prices which are multiples of

η between 0 and V. The details of the proof are in Section 7.3.

We recall that all these results need the distribution assumption from Section 7.2.3.

149

7.5 LOG-CONCAVE DISTRIBUTIONS

In Section 7.2.3, we sought to show that if the value of a random job has a log-concave

distribution, then the optimal policy will be monotone. We present here a discussion of

log-concavity, both for continuous and discrete random variables, and give the proof of the

monotonicity of the prices.

Formally, a function f : R → R is log-concave if for any x and y, and for any 0 ≤ θ ≤ 1,

lg f(θx+(1−θ)y) ≥ θ lg f(x)+(1−θ) lg f(y). Equivalently, f(θx+(1−θ)y) ≥ f(x)θf(y)1−θ.

For a discretely supported f : Z→ R, we replace this condition with f(x)2 ≥ f(x−1)f(x+1),

emulating the continuous definition with θ = 1
2
. We further require that the support of f be

“connected”.

Definition 7.1. A continuous random variable X with density function f is said to be log-

concave if f is log-concave. A discrete random variable Y with probability mass function p

is said to be log-concave if p is discretely log-concave.

A well-known fact is that log-concave random variables also have log-concave cumulative

density/mass functions. We present here a quick proof of this fact, for completeness.

Claim 7.6. If X is a log-concave continuous r.v., then P[X ≤ x], and P[X ≥ x] are log-

concave functions of x. If Y is a log-concave discrete r.v. supported on N, then P[Y ≤ y]

and P[Y ≥ y] are discretely log-concave functions of y.

Proof. The continuous case is well-documented in the literature. See for example [169].

For the discrete case, observe first that since a mass function is non-negative, and we have

assumed contiguous support, the function must be single-peaked, i.e. quasi-concave, as any

local minimum would contradict the definition. Furthermore, the definition of log-concavity

is equivalent to py
py−1
≥ py+1

py
. Repeatedly applying this, and rearranging, we get

pypy+k ≥ py−1py+k+1 ∀y, k ∈ Z, k ≥ 0 . (7.46)

It remains to show that P (y) :=
∑y
−∞ pk is log-concave. We have

P (y)P (y) = P (y − 1)P (y) +

y∑
−∞

pkpy

≥ P (y − 1)P (y) +

y∑
−∞

pk−1py+1 = P (y − 1)P (y + 1) (7.47)

as desired. The same technique applies for the upper-sum. Q.E.D.

150

This will allow us to then conclude:

(Lemma 7.2, p.137) Let, V s
` denote the marginal r.v. V conditioned on L = ` and

D ≥ s. Let Z be a continuously-supported random variable, and γs1 ≤ γs2 ≤ · · · ∈ R. If V s
` is

distributed like γs` ·Z, bγs` · Zc, Z + γs` , or bZ + γs` c, then Assumption 7.1 is satisfied if Z is

log-concave, or if the γ’s are independent of `.

Proof. First, observe that

P[V ≥ µ,D ≥ s|L = `] = P[V ≥ µ|D ≥ s, L = `] · P[D ≥ s|L = `] . (7.48)

and since we are taking ratios for s fixed, we can replace the joint cumulatives on V and D

in the assumption, with the marginals on just V .

Now, if the γ’s are independent of `, then the ratio remains unchanged as ` changes,

satisfying Assumption 7.1. Otherwise, we begin by analyzing the distributions given by γs`Z

and Z + γs` . Let F̄ (x) := P[Z ≥ x], noting that P[V s
` ≥ µ] = F̄ (µ/γs`) and F̄ (µ − γs`), for

the two cases, respectively. Note that we wish to show P[V s
` ≥ µ′]/P[V s

` ≥ µ] is increasing,

which is equivalent to log(P[V s
` ≥ µ′])− log(P[V s

` ≥ µ]) increasing.

For V s
` ∼ Z + γs` , observe that for x′ > x and γ′ > γ, we have

log F̄ (x− γ)− log F̄ (x′ − γ) ≥ log F̄ (x− γ′)− log F̄ (x′ − γ′) (7.49)

since log F̄ is a non-increasing and concave function, by assumption. Also

log F̄ (x/γ)− log F̄ (x′/γ) ≥ log F̄ (x/γ′)− log F̄ (x/γ′ + (x′ − x)/γ)

≥ log F̄ (x/γ′)− log F̄ (x′/γ′) (7.50)

where the first inequality is the same as the previous equation, as the second is by mono-

tonicity. Thus we have done the continuous case.

For V s
` ∼ bZ + γs` c, we note that bZ + γc ≥ x if Z + γ ≥ dxe. So the probability is

F̄ (dxe − γ). Similarly, for V s
` ∼ bγs` · Zc, P bγZc ≥ x is F̄ (dxe /γ). Thus, if we assume that

x and x′ are integers, the calculations above go through, as desired. Q.E.D.

We present a final fact that justifies the use of bZc-type random variables:

Lemma 7.9. If Y is a discrete log-concave random variable, then there exists a continuous

log-concave Z such that Y ∼ bZc.

151

Proof. Let P : Z→ [0, 1] be the right-hand cumulative mass function for Y . Then, it suffices

to have P[Z ≥ n] = P (n) for all integers n. Let φ : R→ R be the piecewise-linear function

such that φ(−∞) → 0, φ(∞) → −∞, and φ(n) = log(P (n)) for all n. Since log(P) is a

discretely concave and non-increasing function, φ must be concave and non-increasing. We

can then set Z to be the random variable whose density is given by − d
dx

exp(φ(x)). Q.E.D.

152

CHAPTER 8: EXTERIOR-POINT METHODS FOR FAIRLY ALLOCATING
CHORES1

In this chapter, we extend the recent characterization of competitive equilibria of [87] in

the setting of mixed manna to give efficient algorithms for finding approximately-competitive

equilibria in the setting of bads, i.e. when all agents have negative utility for all bundles.

8.1 PRELIMINARIES

In this model, n agents are being allocated bundles from a collection of m chores/bads.

There exists 1 unit of each chore, and we wish to distribute them among the agents. Let xij

denote the amount of chore j that agent i is allocated, we want∑
i

xij = 1 for all j , xij ≥ 0 for all i, j . (8.1)

The agents have dis-utilities — i.e. negative utilities — for the chores. The dis-utility

for agent i is given by the function di(xi), where xi := (xi1, . . . , xim). We assume the dis-

utilities are non-negative, i.e. di(xi) ≥ 0 for all feasible xi. We further assume that they are

1-homogeneous and sub-additive, i.e.

di(a · xi) = a · di(xi) , di(xi + x̂i) ≤ di(xi) + di(x̂i) (8.2)

Note that these two conditions together imply convexity as well, which is natural, as positive

utility is often assumed to be concave.

If di is a linear function, we denote the vector di such that di(xi) = 〈di,xi〉. We denote

as dij the dis-utility to agent i for each unit of chore j. Furthermore, let D be the n × nm
block-diagonal matrix whose blocks are given by the di’s. If x = x1 · · ·xn denotes the total

allocation vector, then Dx is the n-dimensional vector of dis-utility values for the n players.

In the following, we define a notion of multiplicatively-approximate equilibrium, which

agrees with the definition of competitive equilibrium presented in [87] when γ = 1.

Definition 8.1. An allocation x = (x1, . . . ,xn) is γ-approximately competitive if there exists

linear rewards for each unit chore p = (p1, . . . , pm), and payouts π1, . . . , πn such that

〈i〉 Every chore is exactly fully allocated, i.e. (8.1) holds,

1This chapter is the result of as-yet unpublished collaboration with Ruta Mehta. The results of this
chapter are being extended in collaboration with Bhaskar Ray Chaudhury and Ruta Mehta, but these
extensions will not be included in this thesis, as they are not completed at the time of writing.

153

〈ii〉 All payouts are approximately equal, i.e. 〈p,xi〉 = πi for all i, and πi ≤ γπj for all i

and j,

〈iii〉 Every agent receives an optimal allocation subject to payment, i.e. di(xi) ≤ di(x̂i) for

all x̂i ∈ Rm
≥0 such that 〈p, x̂i〉 ≥ πi,

〈iv〉 The allocation is Pareto-optimal.

〈v〉 Any x̂i ∈ Rm
≥0 such that 〈p, x̂i〉 ≥ πi with di(x̂i) ≤ di(x) has 〈p, x̂i〉 = πi, i.e.

xi maximizes payout subject to being a min-disutility allocation within the payment

constraint,

〈vi〉 No agent envies another agent’s γ-rescaled allocation, i.e. di(xi) ≤ γdi(xi′), for every

i, i′.

〈vii〉 For every agent i, di(xi) ≤ γdi(
1
n
1).

It is a folklore result that the last conditions in the above definition can be concluded

by combining conditions 〈i〉, 〈ii〉, and 〈iii〉, when γ = 1. We give a brief proof here for

completeness, since the definition of approximate equilibria is novel.

Claim 8.1. If conditions 〈i〉, 〈ii〉, and 〈iii〉 hold, then we can conclude the remaining state-

ments above.

Proof. 〈iv〉: Suppose the allocation is not Pareto-optimal, let x be the allocation, and x′

be a Pareto-improvement where some agent, say i, strictly decreases their disutility. Then

x′i must pay strictly less than xi, as otherwise, we would contradict 〈iii〉. However, taking

the sum of this inequality over every agent, we see that the sum of prices paid by all agents

must strictly be higher in x′ than in x, but prices are linear, and in both cases, the sum of

prices must be 〈p,1〉, a contradiction.

〈v〉: Suppose not, and there is an allocation x̂i with pay-out greater than πi, which has

disutility at most di(xi), the reference allocation. Then, rescaling x̂i to pay exactly πi

contradicts 〈iii〉.
〈vi〉: Fix an allocation x which satisfies the conditions, and fix players i and i′. By 〈ii〉,
〈p,xi〉 ≤ 〈p, γxi′〉. Thus, by 〈iii〉, di(xi) ≤ di(γxi′), and we conclude the statement by

homogeneity.

〈vii〉: Payouts are additive, and so the sum of the allocations to each player will be 1 and

has pay-out
∑n

k=1 πk. Since for any agents i, k, πi ≤ γπi, then this sum is at most γ · n · πi,
and therefore by 〈iii〉, agent i must prefer their allocation to (γ/n) · 1. Q.E.D.

[87] show that these conditions hold if and only if the utility profile is a critical point for

the Nash welfare on the boundary of the feasible region. Formally:

154

Theorem 8.2 ([87]). Let F be the feasible space of allocations, i.e. the set of points such

that (8.1) holds, and letD be the set of feasible disutility profiles, i.e.
{

(d1(x1), . . . , dn(xn))
∣∣

x ∈ F
}

. For some d ∈ Rn, denote the Nash social welfare as NSW(d) :=
∏n

i=1 di. Then

d can be achieved by a competitive equilibrium if and only if the following conditions all

hold: a) d ∈ D, b) NSW(d) > 0, and c) d satisfies the KKT conditions for the problem

of minimizing NSW on D. Equivalently, d is on the lower-boundary of D, but not on the

boundary of Rn
≥0, and the gradient ∇NSW(d) is parallel to some supporting hyperplane for

D at the point d.

We extend their theorem to show that if we are approximately KKT, then we satisfy the

conditions of Definition 8.1.

8.2 APPROXIMATE KKT SUFFICES

In this section, we define the notion of approximate KKT, and prove that it gives approx-

imately-competitive equilibria. We will repeatedly use the element-wise inverse of a vector,

and so we define the following notation: For any two n-dimensional vectors x = (x1, . . . , xn)

and y = (y1, . . . , yn), we denote

x/y := (x1/y1, . . . , xn/yn) . (8.3)

We begin by making the simplifying step of considering the logarithm of the Nash social

welfare. Note that the gradient for the NSW and its logarithm are proportional, i.e.

∇NSW(d) = (1/d) · NSW(d) ∝ (1/d) = ∇(log NSW)(d) (8.4)

where 1/d is the component-wise inverse of d. Thus, the above theorem holds if we replace

the Nash social welfare function with its logarithm. To this end, denote

L(d) := log(NSW(d)) =
n∑
i=1

log(di) . (8.5)

And observe that ∇L(d) = 1/d. Thus, a point satisfies the KKT conditions for minimizing

L on D if it is on D’s boundary, and {y | (1/d)>y ≥ n} is a supporting hyperplane for D.

Definition 8.2 (Approximate KKT). We say a point d is a γ-approximate KKT point for the

minimization problem on D if d ∈ D, there exists a vector a ∈ Rn such that γ−1 ≤ aidi ≤ γ

for all i, and D ⊆ {y | a>y ≥ 〈a,d〉}.

155

Informally, each entry of a is a γ-approximation of 1/d, the gradient of L, and a is a

supporting hyperplane for conv(D). (We will show that there is a convex set C such that

∂C ⊆ D ⊆ C, and so supporting hyperplane is well-defined.)

We show the following, which directly emulates the proof of [87], with this notion of

approximate KKT.

Corollary 8.1. Let d be a γ-approximate KKT point for the problem of minimizing L on D,

and di > 0 for all i. Then any allocation which has dis-utility profile d is a γ2-approximate

competitive equilibrium, as in Definition 8.1.

Proof. As mentioned, this proof follows similarly the arguments presented in [87]. Denote

d(x) to be the vector of di(xi)’s. Recall, we have let F be the feasible space of allocations,

i.e. the set of points such that (8.1) holds, and let D be the set of feasible dis-utility profiles,

i.e. {(d1(x1), . . . , dn(xn)) | x ∈ F}.
Let z be any allocation in F such that d(z) is the disutility profile of the approximate

KKT point. Now, the set Sλ := {x ∈ Rnm | 〈a,d(x)〉 ≤ λ} is closed, convex, and non-empty

for all λ > 0, and it does not intersect F for any λ < 〈a,d〉. Denote S∗ := S〈a,d〉. We can

conclude then that S∗ is only tangent to F , since the di’s are continuous, but z ∈ F ∩ S∗.
Thus, there exists a half-space Hc := {x | 〈c,x〉 ≥ b} which separates the two sets, i.e.

F ⊆ Hc, and S∗ ⊆ cl(H{
c). Note that we must have 〈c, z〉 = b. Define pj := mini cij, and let

p := (p1, . . . , pm). We can now show that we satisfy the necessary conditions of Claim 8.1,

i.e. the first conditions of Definition 8.1.

Condition 〈i〉 of Definition 8.1. This holds by definition, since z ∈ F .

Condition 〈ii〉 of Definition 8.1. We wish to show that all pay-outs are approximately

equal to each other. Since pj ≤ cij for all i, j, we have that Hp := {x |
∑

ij pjxij ≥ b} is

a subset of Hc, and so we can conclude that 〈a,d(z)〉 ≤ 〈a,d(x)〉 for all x ∈ Hp, since c

separates S from Hp, by definition of c and S∗. Since a is a non-negative vector, this implies

that z has less dis-utility than any x ∈ Hp.

Suppose that 〈p, zi〉 < γ−2 〈p, zi′〉. Then we could replace the allocation as follows:

Construct ẑ by setting ẑi = 1
2
zi, and ẑi′ =

(
1 + 〈p,zi〉

2〈p,zi′ 〉

)
zi′ . Notice that b =

∑
i,j pjzij =∑

i,j pj ẑij, since the payment subtracted from agent i is equal to the payment added to agent

156

i′, and so ẑ ∈ Hp. By z’s minimiality in Hp, we must have 〈a,d(ẑ)〉 ≥ 〈a,d(z)〉. However,

〈a,d(ẑ)〉 − 〈a,d(z)〉 = −1
2
aidi(zi) + 〈p,zi〉

2〈p,zi′ 〉
ai′di′(zi′)

≤ −1
2
γ−1 + 〈p,zi〉

2〈p,zi′ 〉
· γ

< −1
2
γ−1 + 1

2
γ−1 = 0 (8.6)

which is a contradiction. The first inequality is due to the definition of γ-approximate KKT,

and the claim that d(z) = d from the statement.

Condition 〈iii〉 of Definition 8.1. We have that∑
i,j

pjzij =(a)

∑
j

pj =(b)

∑
j

min
i
cij =(c) min

x∈F
〈c,x〉 =(d) b , (8.7)

where (a) is by the feasibility of z, i.e. that every chore is allocated exactly one unit, (b) is

by definition of p, and (c) is by the optimality in c of assigning each chore fully to the agent

that has the smallest cij value for it, and (d) is by assumption on c.

Now, suppose condition 〈iii〉 is not satisfied, i.e. ∃xi for some player i such that 〈p,xi〉 ≥
〈p, zi〉, and di(zi) > di(xi). If we set z′ := z1 ◦ · · · ◦ zi−1 ◦ xi ◦ zi+1 ◦ · · · ◦ zn, we will have

〈a,d(z)〉 > 〈a,d(z′)〉. However, z′ ∈ Hp, which contradicts z’s minimality in Hc ⊇ Hp.

Q.E.D.

This concludes the proof of approximately competitive equilibria supported by approx-

imately KKT points. The rest of this writeup consists of an algorithm for finding such

disutility profiles. We show first that, when dis-utilities are linear, the above proof is con-

structive, and the necessary values can be found efficiently.

Corollary 8.2. Let d be a γ-approximate KKT point for the problem of minimizing L on

D, and suppose agent dis-utilities are linear. Let the matrix D be as in the introduction.

Then we can efficiently find a γ2-approximate competitive equilibrium.

Proof. Notice that in the proof of the above result, it suffices to find the separating hy-

perplane {x | 〈c,x〉 ≥ b} between the sets S∗ and F , and a point z which lies in their

intersection. The rest of the proof of the result derives from the knowledge of these values.

Now, when disutilities are linear, we have that d(x) = Dx, and 〈a,d(x)〉 =
〈
a>D,x

〉
.

Therefore, the set

Sλ := {x ∈ Rnm | 〈a,d(x)〉 ≤ λ} (8.8)

157

is exactly the half-space given by {x |
〈
a>D,x

〉
≤ λ}, and we may use c = D>a. We can

find z by minimizing
〈
a>D,x

〉
on the polytope F , by linear programming methods. Q.E.D.

8.3 ALGORITHM, AND CONVERGENCE GUARANTEES

We wish to show that approximate KKT points can be efficiently found. Observe that

we could have tried gradient descent for L or even NSW, with projection on the constraint

set conv(D), since any limit point would satisfy the KKT conditions. Unfortunately, the

gradient drives towards points with at least one zero coordinate, which are not meaningful.

Instead, the idea will be to perform a gradient-ascending procedure, on the outside of the

feasible region, until we settle on a stable point. Due to the nature of the objective function,

we alternate between finding supporting hyperplanes, and finding NSW-maximizing points

on these hyperplanes, until we find a point whose gradient is approximately in line with the

supporting hyperplane.

In what follows, define RelDist(x,y) :=
∑

i |log(xi/yi)|. Notice that if RelDist(x,y) ≤ ε,

then (1 + ε)−1 ≤ xi/yi ≤ (1 + ε) for all i, since log(1 + a) ≤ a for all a > −1. We will find a

point which is a (1 + ε)-approximate KKT point following Algorithm 8.1.

Correctness. We begin by proving here that the algorithm truly returns an approximate

KKT point, and we will later show that it will terminate efficiently.

We must first discuss the requirement that step 2 return the nearest point. Note that when

cast in allocation space, we seek to find a point x ∈ F that minimizes
∑n

i=1(di(x)− (dk)i)
2.

Since the di’s are convex functions, this is a convex objective, that we are minimizing on a

polytope defined by O(m) linear constraints. It is therefore not unreasonable that this could

be solved exactly. When the di’s are linear, this can in fact be solved exactly by noticing

that the KKT conditions for the problem form a linear feasibility problem [170]. Thus, we

assume that we are given black-box access to this nearest point, in the general case.

We now show that in both stopping conditions, we return an approximate KKT point.

Lemma 8.1. Algorithm 8.1 returns a (1 + ε)-approximate KKT point for minimizing L on

D.

Proof. We argue later in Claim 8.3 that
〈
ak,y

〉
≥ n can be well-defined as a supporting

hyperplane for the set D. Now, suppose the algorithm terminates and returns on line 3.

Recall that if RelDist(x,y) < ε, then (1 + ε)−1 ≤ xi/yi ≤ 1 + ε for all i. Thus, by definition

of dk+1 as the inverse of ak, we have that ak is a (1 + ε)-approximation of the gradient of

158

Algorithm 8.1: Finding Approximate KKT

1 Let d0 be any infeasible, strictly positive, disutility profile, near 0;
for k = 0, 1, 2, . . . do

2 Set dk∗ to be the nearest dominating point in D to dk, i.e.

arg min
{
‖y − dk‖2

2

∣∣ y ∈ D, y ≥ dk} (8.9)

Set ak ← (dk∗ − dk), the direction from dk to D;

Rescale ak so that
〈
ak,dk∗

〉
= n;

3 if RelDist(dk+1,dk∗) < ε then return (dk∗,a
k));

4 Set dk+1 ← 1/ak ;

end

L at dk, and is a supporting hyperplane passing through dk∗, satisftying the conditions of

Definition 8.2. Q.E.D.

Efficiency. We wish to argue that (a) the log-NSW L is always increasing throughout

Algorithm 8.1, and (b) it will terminate in few iterations. We will first show (a) below, then

bounding the rate at which it is advancing the objective, to conclude (b). We must however

begin with a technical claim.

Claim 8.3. For all k ≥ 0, the point dk has strictly positive coordinates, lies outside D, and

is dominated by some point in D.

Proof. We first argue that D’s lower-hull is convex. Note that F is convex, and we have

assumed that the di’s are convex functions. Therefore, for any 0 < λ < 1, we have di(λxi +

(1 − λ)x̂i) ≤ λdi(xi) + (1 − λ)di(x̂i). Thus, the vector d(λx + (1 − λ)x̂) is dominated by

λd(x) + (1 − λ)d(x̂). We conclude therefore that the minkowski sum D + R≥0 is a convex

set.

We also note that D contains every rescaled basis vector: For every player i, we can

feasibly allocate all chores to i, and so di(1) · ei is contained in D. Furthemore, for any

allocation x ∈ F , each agent has disutility less than di(1), by sub-additivity. Finally, if

D+R≥0 has a supporting hyperplane 〈a,x〉 ≥ b, where a has a 0 component, then we must

have b ≤ 0, as otherwise we would exclude the basis vector for that component.

Now, we prove the statement, by induction on k. It is ensured for k = 0 by construction.

Suppose dk has strictly positive coordinates, does not lie in D, and there is some y ∈ D such

that y ≥ dk, coordinate-wise. By the above discussion, (dk)i ≤ (y)i ≤ di(1) for all i, and

159

so any hyperplane separating dk from D + R≥0 must be positively oriented, as otherwise, it

could not separate dk from the basis vectors.

Now, since dk∗ is the closest point in D to dk, it will also be the closest point in D+R≥0 to

dk, and the vector between them, namely ak, must be orthogonal to the boundary of D at

dk∗. Thus,
〈
ak,y

〉
≥ n is a supporting hyperplane for D+R≥0. By the above discussion, this

implies that ak is a strictly positive vector, and therefore that dk+1 is also strictly positive.

Since
〈
ak,y

〉
≥ n is supporting for D, and

〈
ak,dk+1

〉
= n, then dk+1 is also not contained

in D and dominated by it. As desired. Q.E.D.

Claim 8.4. Steps 2. and 4. always increase the Nash social welfare.

Proof. Step 2 is moving in a positive direction, and the log-NSW is monotone in each

coordinate, so this will always be an improvement. We prove that Step 4 is an improvement

by showing that dk+1 is the maximizing point on the hyperplane
〈
ak,y

〉
= n. In fact, since

log-NSW is a concave function, it is maxmized on this hyperplane when ∇L is proportional

to ak, i.e. when aki = c/di for some c > 0, for all i. Since we need
〈
ak,d

〉
= n, it suffices

to set c = 1. Thus, dk+1 is the L-maximizing point on the supporting hyperplane which

contains dk∗, and so this move is an L-improvement. Q.E.D.

Lemma 8.2. If Algorithm 8.1 does not return at step 3, then the logarithm of the Nash

social welfare increases by at least 1
16

(ε/n)2

Proof. We wish to show that if RelDist(dk+1,dk∗) > ε, then L(dk+1) − L(dk∗) is large. Let

A = diag(ak), and note that 〈1, Ad〉 =
〈
ak,d

〉
, and furthermore, Adk+1 = 1. Let ∆ =

Adk∗ − 1, and notice that

〈1,∆〉 =
〈
1, A(dk∗ − dk+1)

〉
= 0 (8.10)

Note that dk∗ = (1+∆)/ak, where we take the quotient componentwise. With dk+1 = 1/ak,

this gives RelDist(dk∗,d
k+1) = RelDist((1 + ∆),1). Thus, we have

∑n
i=1 |log(1 + ∆i)| > ε.

We also get

L(dk+1)− L(dk∗) =
n∑
i=1

log(1/aki)− log((1 + ∆i)/a
k
i) = −

n∑
i=1

log(1 + ∆i) . (8.11)

Define:

F (a) :=

1
4
a2 if − 1 < a ≤ 1

1
2
a− 1

4
if a ≥ 1

+∞ otherwise

(8.12)

160

At a = 0, we have that −a+F (a) = 0 = log(1 +a) and d
da

(−a+F (a)) = −1 = d
da

(− log(1 +

a)). By comparing derivatives for the other values of a > −1, we can show that − log(1+a) ≥
−a+ F (a) for all a. Thus,

L(dk+1)− L(dk∗) = −
n∑
i=1

log(1 + ∆i) ≥
n∑
i=1

−∆i +
n∑
i=1

F (∆i) =
n∑
i=1

F (∆i) (8.13)

Now, since we have
∑n

i=1 |log(1 + ∆i)| > ε, there must be some i such that | log(1+∆i)| >
ε/n. If ∆i > 0, then ∆i ≥ log(1 + ∆i) ≥ ε/n. Conversely, if ∆i < 0, we being by noting that

for |a| < 0.5, we have − log(1 + a) ≤ −a+ a2 for reasons similar to the above. Thus, we get

ε/n < − log(1 + ∆i) ≤ −∆i + ∆2
i (8.14)

We must have ∆i > −1, since the argument can’t be negative, so we have 2|∆i| > ∆2
i −∆i >

ε/n, or ∆i < −1
2
ε/n. Noting that F (a) ≥ 0 for all a, we can then conclude

L(dk+1)− L(dk∗) ≥
∑

i F (∆i) ≥ maxi F (∆i) ≥ 1
16
ε2/n2 (8.15)

as desired. Q.E.D.

Corollary 8.3. Suppose di(xi) ≤M for every agent i, at every feasible x. Then the above

procedure finds a (1+ε)-approximate competitive equilibrium in O(n2/ε2 ·(n logM−L(d0)))

iterations.

Proof. If we can bound the range of the log-NSW, then the above lemma will suffice. By

assumption, we have that for any feasible x, L(d(x)) ≤ n logM . Since each round of the

above algorithm that doesn’t terminate increases the log-NSW by at least 2
9
(ε/n)2, then the

total number of rounds possible is at most

16 · n
2

ε2
· (n log(M)− L(d0)) (8.16)

as desired. Q.E.D.

Note that when disutilities are linear, we can bound M by maxi
∑m

j=1 dij, and assuming

dij > δ for all i and j, then any feasible dis-utility profile must assign disutility at least mδ/n

to one player, and so an allocation x such that d(x) = 1
2
(mδ/n)1 can not be feasible. Such

an x can be constructed by assigning a small fraction of any of the items to each player,

and therefore it is a valid starting position for the algorithm, and the total running time will

therefore be bounded by O
(
n3(log(M) + log(n/δm)/ε2

)
.

161

CHAPTER 9: CONCLUSIONS AND FUTURE DIRECTIONS

9.1 SMOOTHED ANALYSIS FOR NASH EQUILIBRIUM COMPUTATION

The Smoothed Complexity of 2-Player Nash. In the first part of this thesis, we

considered the smoothed analysis of Nash equilibrium computation. In the classic setting

of 2-player, normal-form games with n × n payoff matrices, it was known that when pay-

off values are O(1), then no smoothed-efficient algorithm would exist for poly(1/n)-sized

perturbations under standard complexity assumptions, as it implies efficient algorithms for

PPAD-complete problems. We showed in Chapter 2 that under these same assumptions,

there exists a constant ε > 0 such that no smoothed-efficient algorithm would exist for ε-

sized perturbations, settling a conjecture of [35]. In a classic result, [25] show that when the

entries are fully random — or equivalently, when randomness is Ω(1)-sized and payoffs are

0 — then equilibria are small and can be found by exhaustive search. Along with our work,

this leaves the large-noise regime as an open problem: When payoffs are poly(1/n), and noise

is Ω(1), do the results of [25] extend? Furthermore, does there exist δ > 0 constant such that

when payoffs lie in [0, δ], and perturbations are Ω(1), equilibria can be found efficiently?

Smoothed Efficient Algorithms for PLS. In Chapter 3, we gave smoothed-efficient

algorithms for finding pure Nash equilibria in network coordination games, establishing the

commonality of the framework introduced in Section 3.1. For n-player, m-edge, network

coordination games, with k×k edge-games, we showed that pure equilibria could be found in

time respectively polynomial and quasi-polynomial in nk, when game graphs were complete,

or not complete. We leave as an open question whether the exponential dependence on k

can be improved, and note that the reduction to local-max-bisection is one possible method

for this.

The common framework of Section 3.1 had, prior to our work, been used to prove multiple

results on the smoothed complexity of finding a locally maximal cut in a graph [31, 32, 107,

108]. In Chapter 4 to give a first smoothness-preserving reduction between problems. We

show that if a problem can be reduced by a linear transformation to any problem whose

smoothed-efficiency is proven via the common framework, then it inherits this proof, and

also admits smoothed-efficient algorithms.

It is a natural question to ask whether other PLS-complete problems can be analyzed in

this way. In a brief collaboration with Karthik Chandrasekaran, we have shown that the anal-

ysis for local max cut extends almost exactly to Local Max Cut for 3-regular hypergraphs.

162

Though this problem seems of tangential interest, it was one of the first PLS-complete prob-

lems, and may be a good candidate for reductions. It is, therefore, also worth asking whether

other problems admit smoothness-preserving reductions to local max cut.

9.2 DECISION THEORY PROBLEMS AND PRICING PROBLEMS

The Pandora’s Box Problem with Order Constraints. In Chapter 5, we considered

the classical Pandora’s box problem of Weitzman [64], and added order constraints. These

constraints are modelled as a DAG over the boxes, where a box can be opened if one of its

parents has been opened. In the case when the constrain graph formed a forest of rooted

trees, we showed the optimal order was fixed a priori, and the optimal strategy could be

efficiently computed. When the constraint graph was a general DAG, we showed that the

optimal search order may not be fixed in advance, and that optimal adaptive policies are

NP-hard to approximate.

This presents many future directions of work, chief among which is asking what happens in

the more natural order constraint model where all parents of a node must be opened before

it can be. In this model, it is not known whether the optimal order of search is fixed or not,

and it is not known whether optimal strategies can be efficiently found, or approximated.

Further questions include any of the generalizations of the model and objective function

found in the literature [116, 127, 133, 171, 172], or refining the analyses of Chapter 5 to

improve the constant of approximation-hardness.

Optimal Binary Classifier Search from Pairwise Comparisons. In Chapter 6, we

showed how to efficiently find optimal binary classifiers, when the objective function is not

known to the algorithm, but instead we have access to a noisy comparison oracle. Naturally,

one may ask whether the results can be extended to k-ary classifiers. This was the subject

of follow-up work [95]. It may also be interesting to ask whether the results can be extended

to more general classes of objective functions.

Optimal Server Pricing for Revenue Maximization. In Chapter 7, we studied the

problem of pricing time on a single server to maximize revenue. We reduced the problem to

solving a Markov decision process, and give natural assumptions under which the decision

process can be optimally determined efficiently. The model restricted the attention to a

single-server setting with one job arriving per time step. Future directions of work would

extend this model to a many-server setting, with multiple jobs arriving at a time. The naive,

exponential Markov chain would not greatly grow in size, but it would require showing that

163

the simplifications which lead to polynomial-time performance will extend in these settings,

and that the optimal solution remains monotone.

Competitive Equilibria for Bads with Almost Equal Income. Finally, in Chapter 8,

we gave an efficient algorithm to find a fair and efficient allocation of chores to agents, in

an approximately-competitive equilibrium. This algorithm uses a recent characterization

by [87] of competitive equilibria in the language of convex optimization, and finds points

which approximately satisfy the constraints. The results are only explicit in the linear

setting, and require exact solutions to convex optimization problems. A more robust result

would extend the methods to show that approximately-competitive equilibria can be found

when all steps of the algorithm are only given approximately.

164

REFERENCES

[1] R. B. Myerson, Game Theory: Analysis of Conflict. Harvard University Press, 1997.

[2] C. H. Papadimitriou, “On the complexity of the parity argument and other inefficient
proofs of existence,” Journal of Computer and system Sciences, vol. 48, no. 3, pp.
498–532, 1994.

[3] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The complexity of com-
puting a nash equilibrium,” SIAM Journal on Computing, vol. 39, no. 1, pp. 195–259,
2009.

[4] X. Chen, X. Deng, and S.-H. Teng, “Settling the complexity of computing two-player
Nash equilibria,” J. ACM, vol. 56, no. 3, pp. 14:1–14:57, 5 2009. [Online]. Available:
http://doi.acm.org/10.1145/1516512.1516516

[5] J. Von Neumann and O. Morgenstern, Theory of games and economic behavior, 2nd
rev. Princeton University Press, 1947.

[6] T. Roughgarden et al., “Complexity theory, game theory, and economics: The bar-
bados lectures,” Foundations and Trends® in Theoretical Computer Science, vol. 14,
no. 3–4, pp. 222–407, 2020.

[7] J. F. Nash, “Equilibrium points in n-person games,” Proceedings of the national
academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.

[8] C. E. Lemke and J. T. Howson, Jr, “Equilibrium points of bimatrix games,” Journal of
the Society for Industrial and Applied Mathematics, vol. 12, no. 2, pp. 413–423, 1964.

[9] R. J. Lipton, E. Markakis, and A. Mehta, “Playing large games using
simple strategies,” in Proceedings of the 4th ACM Conference on Electronic
Commerce, ser. EC ’03. New York, NY, USA: ACM, 2003. [Online]. Available:
http://doi.acm.org/10.1145/779928.779933 pp. 36–41.

[10] A. Rubinstein, “Settling the complexity of computing approximate two-player Nash
equilibria,” SIGecom Exch., vol. 15, no. 2, pp. 45–49, 2 2017. [Online]. Available:
http://doi.acm.org/10.1145/3055589.3055596

[11] S. Barman, “Approximating nash equilibria and dense subgraphs via an approximate
version of carathéodory’s theorem,” SIAM J. Comput., vol. 47, no. 3, pp. 960–981,
2018. [Online]. Available: https://doi.org/10.1137/15M1050574

[12] R. Kannan and T. Theobald, “Games of fixed rank: A hierarchy of bimatrix games,”
Economic Theory, vol. 42, no. 1, pp. 157–173, 2010.

165

http://doi.acm.org/10.1145/1516512.1516516
http://doi.acm.org/10.1145/779928.779933
http://doi.acm.org/10.1145/3055589.3055596
https://doi.org/10.1137/15M1050574

[13] B. Adsul, J. Garg, R. Mehta, and M. Sohoni, “Rank-1 bimatrix games: a homeo-
morphism and a polynomial time algorithm,” in Proceedings of the forty-third annual
ACM symposium on Theory of computing, 2011, pp. 195–204.

[14] N. Alon, T. Lee, A. Shraibman, and S. S. Vempala, “The approximate rank of a
matrix and its algorithmic applications: approximate rank,” in Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, 2013.
[Online]. Available: https://doi.org/10.1145/2488608.2488694 pp. 675–684.

[15] C. Daskalakis and C. H. Papadimitriou, “Approximate nash equilibria in anonymous
games,” J. Econ. Theory, vol. 156, pp. 207–245, 2015. [Online]. Available:
https://doi.org/10.1016/j.jet.2014.02.002

[16] Y. Cheng, I. Diakonikolas, and A. Stewart, “Playing anonymous games using simple
strategies,” in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
2017. [Online]. Available: https://doi.org/10.1137/1.9781611974782.40 pp. 616–631.

[17] E. Elkind, L. A. Goldberg, and P. W. Goldberg, “Nash equilibria in graphical games
on trees revisited,” in Proceedings 7th ACM Conference on Electronic Commerce
(EC-2006), Ann Arbor, Michigan, USA, June 11-15, 2006, 2006. [Online]. Available:
https://doi.org/10.1145/1134707.1134719 pp. 100–109.

[18] S. Barman, K. Ligett, and G. Piliouras, “Approximating nash equilibria in tree
polymatrix games,” in Algorithmic Game Theory - 8th International Symposium,
SAGT 2015, Saarbrücken, Germany, September 28-30, 2015, Proceedings, 2015.
[Online]. Available: https://doi.org/10.1007/978-3-662-48433-3 22 pp. 285–296.

[19] L. E. Ortiz and M. T. Irfan, “FPTAS for mixed-strategy nash equilibria in
tree graphical games and their generalizations,” CoRR, vol. abs/1602.05237, 2016.
[Online]. Available: http://arxiv.org/abs/1602.05237

[20] X. Chen, X. Deng, and S.-H. Teng, “Sparse games are hard,” in International Work-
shop on Internet and Network Economics. Springer, 2006, pp. 262–273.

[21] Z. Liu and Y. Sheng, “On the approximation of nash equilibria in sparse win-lose
games,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[22] R. Mehta, “Constant rank bimatrix games are ppad-hard,” in Proceedings of the forty-
sixth annual ACM symposium on Theory of computing, 2014, pp. 545–554.

[23] X. Chen, D. Durfee, and A. Orfanou, “On the complexity of nash equilibria in
anonymous games,” in Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, 2015.
[Online]. Available: http://doi.acm.org/10.1145/2746539.2746571 pp. 381–390.

[24] A. Deligkas, J. Fearnley, and R. Savani, “Tree polymatrix games are ppad-hard,”
CoRR, vol. abs/2002.12119, 2020. [Online]. Available: https://arxiv.org/abs/2002.
12119

166

https://doi.org/10.1145/2488608.2488694
https://doi.org/10.1016/j.jet.2014.02.002
https://doi.org/10.1137/1.9781611974782.40
https://doi.org/10.1145/1134707.1134719
https://doi.org/10.1007/978-3-662-48433-3_22
http://arxiv.org/abs/1602.05237
http://doi.acm.org/10.1145/2746539.2746571
https://arxiv.org/abs/2002.12119
https://arxiv.org/abs/2002.12119

[25] I. Bárány, S. Vempala, and A. Vetta, “Nash equilibria in random games,” Random
Structures and Algorithms, vol. 31, no. 4, pp. 391–405, 12 2007. [Online]. Available:
http://dx.doi.org/10.1002/rsa.v31:4

[26] D. A. Spielman and S.-H. Teng, “Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time,” J. ACM, vol. 51, no. 3, pp. 385–463, 5
2004. [Online]. Available: http://doi.acm.org/10.1145/990308.990310

[27] V. Klee and G. J. Minty, “How good is the simplex algorithm,” Inequalities, vol. 3,
no. 3, pp. 159–175, 1972.

[28] M. Englert, H. Röglin, and B. Vöcking, “Worst case and probabilistic analysis of the
2-opt algorithm for the tsp,” Algorithmica, vol. 68, no. 1, pp. 190–264, 2014.

[29] D. Arthur, B. Manthey, and H. Röglin, “Smoothed analysis of the k-means method,”
Journal of the ACM (JACM), vol. 58, no. 5, pp. 1–31, 2011.

[30] A. Andoni and R. Krauthgamer, “The smoothed complexity of edit distance,” ACM
Transactions on Algorithms (TALG), vol. 8, no. 4, pp. 1–25, 2012.

[31] M. Etscheid and H. Röglin, “Smoothed analysis of local search for the maximum-cut
problem,” ACM Transactions on Algorithms (TALG), vol. 13, no. 2, 2017.

[32] O. Angel, S. Bubeck, Y. Peres, and F. Wei, “Local max-cut in smoothed polynomial
time,” in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing. ACM, 2017, pp. 429–437.

[33] H. Röglin and B. Vöcking, “Smoothed analysis of integer programming,” Mathematical
programming, vol. 110, no. 1, pp. 21–56, 2007.

[34] R. Beier and B. Vöcking, “Typical properties of winners and losers [0.2ex] in discrete
optimization,” SIAM Journal on Computing, vol. 35, no. 4, pp. 855–881, 2006.
[Online]. Available: https://doi.org/10.1137/S0097539705447268

[35] D. A. Spielman and S.-H. Teng, “Smoothed analysis of algorithms and heuristics,”
London Mathematical Society Lecture Note Series, vol. 1, no. 331, pp. 274–342, 2006.

[36] D. A. Spielman and S.-H. Teng, “Smoothed analysis: an attempt to explain the be-
havior of algorithms in practice,” Communications of the ACM, vol. 52, no. 10, pp.
76–84, 2009.

[37] B. Manthey and H. Röglin, “Smoothed analysis: analysis of algorithms beyond worst
case,” it-Information Technology Methoden und innovative Anwendungen der Infor-
matik und Informationstechnik, vol. 53, no. 6, pp. 280–286, 2011.

[38] M.-F. Balcan and M. Braverman, “Nash equilibria in perturbation-stable games,” The-
ory of Computing, vol. 13, no. 1, pp. 1–31, 2017.

167

http://dx.doi.org/10.1002/rsa.v31:4
http://doi.acm.org/10.1145/990308.990310
https://doi.org/10.1137/S0097539705447268

[39] D. Monderer and L. S. Shapley, “Potential games,” Games and economic behavior,
vol. 14, no. 1, pp. 124–143, 1996.

[40] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, “How easy is local search?”
Journal of Computer and System Sciences, vol. 37, no. 1, pp. 79 – 100, 1988. [Online].
Available: http://www.sciencedirect.com/science/article/pii/0022000088900463

[41] A. A. Schäffer and M. Yannakakis, “Simple local search problems that are hard to
solve,” SIAM J. Comput., vol. 20, no. 1, pp. 56–87, 2 1991. [Online]. Available:
http://dx.doi.org/10.1137/0220004

[42] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi, “The
relative complexity of NP search problems,” Journal of Computer and System
Sciences, vol. 57, no. 1, pp. 3 – 19, 1998. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0022000098915756

[43] N. Bitansky, O. Paneth, and A. Rosen, “On the cryptographic hardness of finding a
Nash equilibrium,” in 2015 IEEE 56th Annual Symposium on Foundations of Com-
puter Science, 10 2015, pp. 1480–1498.

[44] B. Codenotti, S. De Rossi, and M. Pagan, “An experimental analysis of Lemke-Howson
algorithm,” 2008, arXiv preprint arXiv:0811.3247.

[45] A. Deligkas, J. Fearnley, T. P. Igwe, and R. Savani, “An empirical study on computing
equilibria in polymatrix games,” in Proceedings of the 2016 International Conference
on Autonomous Agents & Multiagent Systems, ser. AAMAS ’16. Richland, SC:
International Foundation for Autonomous Agents and Multiagent Systems, 2016.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2936924.2936955 pp. 186–195.

[46] R. Savani and B. von Stengel, “Exponentially many steps for finding a Nash equilib-
rium in a bimatrix game,” in IEEE Annual Symposium on Foundations of Computer
Science, 2004, pp. 258–267.

[47] R. Arava, “Social network analysis using coordination games,” arXiv preprint
arXiv:1708.09570, 2017.

[48] A. Montanari and A. Saberi, “The spread of innovations in social networks,” Proceed-
ings of the National Academy of Sciences, vol. 107, no. 47, pp. 20 196–20 201, 2010.

[49] D. Kasthurirathna, M. Piraveenan, and M. Harré, “Influence of topology in the evo-
lution of coordination in complex networks under information diffusion constraints,”
The European Physical Journal B, vol. 87, no. 1, p. 3, 2014.

[50] M. J. Smith, “The existence, uniqueness and stability of traffic equilibria,” Transporta-
tion Research Part B: Methodological, vol. 13, no. 4, pp. 295–304, 1979.

[51] T. Roughgarden, “Routing games,” pp. 461–486, 2007.

168

http://www.sciencedirect.com/science/article/pii/0022000088900463
http://dx.doi.org/10.1137/0220004
http://www.sciencedirect.com/science/article/pii/S0022000098915756
http://www.sciencedirect.com/science/article/pii/S0022000098915756
http://dl.acm.org/citation.cfm?id=2936924.2936955

[52] T. Harks, M. Hoefer, M. Klimm, and A. Skopalik, “Computing pure Nash and strong
equilibria in bottleneck congestion games,” Mathematical Programming, vol. 141, no. 1,
pp. 193–215, 2013.

[53] J. Broere, V. Buskens, J. Weesie, and H. Stoof, “Network effects on coordination in
asymmetric games,” Scientific reports, vol. 7, no. 1, p. 17016, 2017.

[54] G. Ellison, “Learning, local interaction, and coordination,” Econometrica: Journal of
the Econometric Society, pp. 1047–1071, 1993.

[55] S. Choi, D. Gale, S. Kariv, and T. Palfrey, “Network architecture, salience and coor-
dination,” Games and Economic Behavior, vol. 73, no. 1, pp. 76–90, 2011.

[56] E. Anshelevich, A. Dasgupta, E. Tardos, and T. Wexler, “Near-optimal network de-
sign with selfish agents,” in Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing. ACM, 2003, pp. 511–520.

[57] Y. Cai and C. Daskalakis, “On minmax theorems for multiplayer games,” in Pro-
ceedings of the twenty-second annual ACM-SIAM symposium on Discrete algorithms.
SIAM, 2011, pp. 217–234.

[58] S. Boodaghians, R. Kulkarni, and R. Mehta, “Smoothed efficient algorithms and reduc-
tions for network coordination games,” in 11th Innovations in Theoretical Computer
Science Conference (ITCS 2020), 2020.

[59] K. R. MacCrimmon, “Descriptive and normative implications of the decision-theory
postulates,” in Risk and uncertainty. Springer, 1968, pp. 3–32.

[60] K. Steele and H. O. Stefánsson, “Decision Theory,” in The Stanford Encyclopedia of
Philosophy, Winter 2020 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford
University, 2020.

[61] M. Gardner, “New mathematical diversions from scientific american,” Simon and Shus-
ter, 1966.

[62] T. S. Ferguson, “Who solved the secretary problem?” Statistical science, vol. 4, no. 3,
pp. 282–289, 1989.

[63] M. O. Jackson, “Mechanism theory,” Available at SSRN 2542983, 2014.

[64] M. L. Weitzman, “Optimal search for the best alternative,” Econometrica: Journal of
the Econometric Society, pp. 641–654, 1979.

[65] I. Steinwart, “How to compare different loss functions and their risks,” Constructive
Approximation, vol. 26, no. 2, pp. 225–287, 2007.

[66] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for
classification tasks,” Information processing & management, vol. 45, no. 4, pp. 427–
437, 2009.

169

[67] F. Janssen and J. Furnkranz, “On meta-learning rule learning heuristics,” in ICDM.
IEEE, 2007, pp. 529–534.

[68] M. Peyrard, T. Botschen, and I. Gurevych, “Learning to score system summaries for
better content selection evaluation.” in Proceedings of the Workshop on New Frontiers
in Summarization, 2017, pp. 74–84.

[69] R. Caruana and A. Niculescu-Mizil, “Data mining in metric space: an empirical anal-
ysis of supervised learning performance criteria,” in ACM SIGKDD. ACM, 2004, pp.
69–78.

[70] C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental comparison of per-
formance measures for classification,” Pattern Recognition Letters, vol. 30, no. 1, pp.
27–38, 2009.

[71] X. Tang, X. Li, and Z. Fu, “Budget-constraint stochastic task sched. on heterogeneous
cloud systems,” Concurrency and Comp.: Practice and Experience, vol. 29, no. 19,
2017.

[72] M. Babaioff, Y. Mansour, N. Nisan, G. Noti, C. Curino, N. Ganapathy, I. Menache,
O. Reingold, M. Tennenholtz, and E. Timnat, “Era: A framework for economic re-
source allocation for the cloud,” in Proceedings of the 26th WWW Companion, 2017,
pp. 635–642.

[73] S. Chawla, N. R. Devanur, A. E. Holroyd, A. R. Karlin, J. B. Martin, and B. Sivan,
“Stability of service under time-of-use pricing,” in Procs. of the 49th Annual ACM
SIGACT Symp. on Theory of Computing. ACM, 2017, pp. 184–197.

[74] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. Naor, and J. Yaniv, “Truthful
online scheduling with commitments,” in EC, 2015.

[75] N. Jain, I. Menache, J. Naor, and J. Yaniv, “A truthful mechanism for value-based
scheduling in cloud computing,” Theory of Computing Systems, vol. 54, pp. 388–406,
2013.

[76] T. Sandholm and A. Gilpin, Sequences of Take-It-or-Leave-It Offers: Near-Optimal
Auctions Without Full Valuation Revelation. Springer, 2004, pp. 73–91.

[77] L. Blumrosen and T. Holenstein, “Posted prices vs. negotiations: an asymptotic anal-
ysis,” in Proceedings of the 9th EC. ACM, 2008, pp. 49–49.

[78] S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan, “Multi-parameter mechanism
design and sequential posted pricing,” in Proc’s of the 42nd STOC. ACM, 2010.

[79] R. Kleinberg and S. M. Weinberg, “Matroid prophet inequalities,” in Proceedings of
the 44th STOC. ACM, 2012, pp. 123–136.

[80] P. Dütting and R. Kleinberg, “Polymatroid prophet inequalities,” in Proceedings of
the 23rd Annual European Symposium on Algorithms (ESA), 2015, pp. 437–449.

170

[81] M. Feldman, N. Gravin, and B. Lucier, “Combinatorial auctions via posted prices,” in
Proceedings of the 26th SODA. ACM-SIAM, 2015, pp. 123–135.

[82] H. Steinhaus, “Sur la division pragmatique,” Econometrica: Journal of the Economet-
ric Society, pp. 315–319, 1949.

[83] R. Abebe, “Cake cutting: Equitable simple allocations of heterogeneous goods,” 2014.

[84] K. J. Arrow et al., “An extension of the basic theorems of classical welfare economics,”
in Proceedings of the second Berkeley symposium on mathematical statistics and prob-
ability. The Regents of the University of California, 1951.

[85] E. Eisenberg and D. Gale, “Consensus of subjective probabilities: The pari-mutuel
method,” The Annals of Mathematical Statistics, vol. 30, no. 1, pp. 165–168, 1959.

[86] E. Eisenberg, “Aggregation of utility functions,” Management Science, vol. 7, no. 4,
pp. 337–350, 1961.

[87] A. Bogomolnaia, H. Moulin, F. Sandomirskiy, and E. Yanovskaya, “Competitive divi-
sion of a mixed manna,” ECONOMETRICA, pp. 1847–1871, 2017.

[88] N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V. Vazirani, “Market equi-
librium via a primal-dual-type algorithm,” in The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002. Proceedings. IEEE, 2002, pp. 389–395.

[89] R. Duan, J. Garg, and K. Mehlhorn, “An improved combinatorial polynomial algo-
rithm for the linear arrow-debreu market,” in Proceedings of the twenty-seventh annual
ACM-SIAM symposium on discrete algorithms. SIAM, 2016, pp. 90–106.

[90] J. Garg and L. A. Végh, “A strongly polynomial algorithm for linear exchange mar-
kets,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, 2019, pp. 54–65.

[91] S. Brânzei and F. Sandomirskiy, “Algorithms for competitive division of chores,” arXiv
preprint arXiv:1907.01766, 2019.

[92] J. Garg and P. McGlaughlin, “Computing competitive equilibria with mixed manna,”
in Proceedings of the 19th International Conference on Autonomous Agents and Mul-
tiAgent Systems, 2020, pp. 420–428.

[93] B. R. Chaudhury, J. Garg, P. McGlaughlin, and R. Mehta, “Competitive allocation
of a mixed manna,” in Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2021, pp. 1405–1424.

[94] X. Deng and Y. Du, “The computation of approximate competitive equilibrium is
ppad-hard,” Information Processing Letters, vol. 108, no. 6, pp. 369–373, 2008.

171

[95] G. Hiranandani, S. Boodaghians, R. Mehta, and O. O. Koyejo, “Multiclass perfor-
mance metric elicitation,” in Advances in Neural Information Processing Systems,
2019, pp. 9351–9360.

[96] S. Boodaghians, F. Fusco, P. Lazos, and S. Leonardi, “Pandora’s box problem with
order constraints,” in Submitted to EC 2020, 2020.

[97] S. Boodaghians, J. Brakensiek, S. Hopkins, and A. Rubinstein, “Smoothed complexity
of 2-player nash equilibria,” in Submitted to FOCS 2020, 2020.

[98] S. Boodaghians, F. Fusco, S. Leonardi, Y. Mansour, and R. Mehta, “Online revenue
maximization for server pricing,” in IJCAI 2020, 2020.

[99] D. P. Roberts, “Nash equilibria of cauchy-random zero-sum and coordination matrix
games,” International Journal of Game Theory, vol. 34, no. 2, pp. 167–184, 2006.

[100] J. Jonasson, “On the optimal strategy in a random game,” Electronic Communications
in Probability, vol. 9, pp. 132–139, 2004.

[101] P. Erdös, “On a lemma of littlewood and offord,” Bulletin of the American Mathemat-
ical Society, vol. 51, no. 12, pp. 898–902, 1945.

[102] D. Dzindzalieta, “Tight bernoulli tail probability bounds,” Ph.D. dissertation, Vilnius
University, 2014.

[103] R. B. Ash, Information Theory. Dover Publications, Inc., 1990.

[104] R. Vershynin, High-dimensional probability: An introduction with applications in data
science. Cambridge university press, 2018, vol. 47.

[105] M. J. Wainwright, High-dimensional statistics: A non-asymptotic viewpoint. Cam-
bridge University Press, 2019, vol. 48.

[106] M. Rudelson and R. Vershynin, “Small ball probabilities for linear images of high-
dimensional distributions,” International Mathematics Research Notices, vol. 2015,
no. 19, pp. 9594–9617, 2015.

[107] X. Chen, C. Guo, E.-V. Vlatakis-Gkaragkounis, M. Yannakakis, and X. Zhang,
“Smoothed complexity of local max-cut and binary max-csp,” arXiv preprint
arXiv:1911.10381, 2019.

[108] A. Bibak, C. Carlson, and K. Chandrasekaran, “Improving the smoothed complexity
of flip for max cut problems,” in Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2019, pp. 897–916.

[109] H. Röglin, “The complexity of nash equilibria, local optima, and pareto-optimal solu-
tions,” Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-
Westfälischen Technischen Hochschule, 2008.

172

[110] A. Haken and M. Luby, “Steepest descent can take exponential time for symmetric
connection networks,” Complex Systems, vol. 2, no. 2, pp. 191–196, 1988.

[111] X. Chen, X. Deng, and S.-H. Teng, “Computing Nash equilibria: Approximation and
smoothed complexity,” in 2006 47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’06), 10 2006, pp. 603–612.

[112] S. Durand and B. Gaujal, “Complexity and optimality of the best response algorithm
in random potential games,” in Algorithmic Game Theory, M. Gairing and R. Savani,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 40–51.

[113] C. Guo, Z. Huang, Z. G. Tang, and X. Zhang, “Generalizing complex hypotheses on
product distributions: Auctions, prophet inequalities, and pandora’s problem,” CoRR,
vol. abs/1911.11936, 2019.

[114] H. Beyhaghi and R. Kleinberg, “Pandora’s problem with nonobligatory inspection,”
in EC. ACM, 2019, pp. 131–132.

[115] S. Singla, “The price of information in combinatorial optimization,” in SODA. SIAM,
2018, pp. 2523–2532.

[116] S. Singla, “Combinatorial optimization under uncertainty: Probing and stopping-time
algorithms,” Ph.D. dissertation, PhD thesis, Carnegie Mellon University, 2018.

[117] J. M. Kleinberg and R. Kleinberg, “Delegated search approximates efficient search,”
in EC. ACM, 2018, pp. 287–302.

[118] H. Esfandiari, M. T. Hajiaghayi, B. Lucier, and M. Mitzenmacher, “Online pandora’s
boxes and bandits,” in AAAI. AAAI Press, 2019, pp. 1885–1892.

[119] J. B. Kadane, H. A. Simon et al., “Optimal strategies for a class of constrained se-
quential problems,” The Annals of Statistics, vol. 5, no. 2, pp. 237–255, 1977.

[120] J. B. Kadane, “Quiz show problems,” Journal of Mathematical Analysis and Applica-
tions, vol. 27, no. 3, pp. 609–623, 1969.

[121] R. Weber et al., “On the gittins index for multiarmed bandits,” The Ann. Appl.
Probab., vol. 2, no. 4, pp. 1024–1033, 1992.

[122] E. Frostig and G. Weiss, “Four proofs of gittins’ multiarmed bandit theorem,” Annals
OR, vol. 241, no. 1-2, pp. 127–165, 2016.

[123] I. Dumitriu, P. Tetali, and P. Winkler, “On playing golf with two balls,” SIAM J.
Discret. Math., vol. 16, no. 4, pp. 604–615, 2003.

[124] G. Weiss, “Branching bandit processes,” Probab. in the Eng. and Info. Sciences, vol. 2,
no. 3, pp. 269–278, 1988.

[125] G. Keller and A. Oldale, “Branching bandits: a sequential search process with corre-
lated pay-offs,” J. Econ. Theory, vol. 113, no. 2, pp. 302–315, 2003.

173

[126] R. D. Kleinberg, B. Waggoner, and E. G. Weyl, “Descending price optimally coordi-
nates search,” in EC. ACM, 2016, pp. 23–24.

[127] W. Olszewski and R. Weber, “A more general pandora rule?” J. Econ. Theory, vol.
160, pp. 429–437, 2015.

[128] L. Doval, “Whether or not to open pandora’s box,” J. Econ. Theory, vol. 175, pp.
127–158, 2018.

[129] A. Gupta, V. Nagarajan, and S. Singla, “Adaptivity gaps for stochastic probing: Sub-
modular and XOS functions,” in SODA. SIAM, 2017, pp. 1688–1702.

[130] D. Bradac, S. Singla, and G. Zuzic, “(near) optimal adaptivity gaps for stochastic
multi-value probing,” in APPROX-RANDOM, ser. LIPIcs, vol. 145. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019, pp. 49:1–49:21.

[131] H. Fu, J. Li, and P. Xu, “A PTAS for a class of stochastic dynamic programs,” in
ICALP, ser. LIPIcs, vol. 107. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018, pp. 56:1–56:14.

[132] D. Segev and S. Singla, “Efficient approximation schemes for stochastic probing and
prophet problems,” CoRR, vol. abs/2007.13121, 2020.

[133] S. Chawla, E. Gergatsouli, Y. Teng, C. Tzamos, and R. Zhang, “Pandora’s box with
correlations: Learning and approximation,” To appear in FOCS 2020. Preprint on
arXiv, vol. abs/1911.01632, 2019.

[134] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming, ser. Wiley Series in Probability and Statistics. Wiley, 1994.

[135] A. Anagnostopoulos, I. R. Cohen, S. Leonardi, and J. Lacki, “Stochastic graph ex-
ploration,” in ICALP, ser. LIPIcs, vol. 132. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019, pp. 136:1–136:14.

[136] M. Feldman, “Guess free maximization of submodular and linear sums,” in WADS,
ser. Lecture Notes in Computer Science, vol. 11646. Springer, 2019, pp. 380–394.

[137] C. Harshaw, M. Feldman, J. Ward, and A. Karbasi, “Submodular maximization be-
yond non-negativity: Guarantees, fast algorithms, and applications,” in ICML, ser.
Proceedings of Machine Learning Research, vol. 97. PMLR, 2019, pp. 2634–2643.

[138] M. Sviridenko, J. Vondrák, and J. Ward, “Optimal approximation for submodular and
supermodular optimization with bounded curvature,” Math. Oper. Res., vol. 42, no. 4,
pp. 1197–1218, 2017.

[139] A. E. F. Clementi and L. Trevisan, “Improved non-approximability results for mini-
mum vertex cover with density constraints,” Theor. Comput. Sci., vol. 225, no. 1-2,
pp. 113–128, 1999.

174

[140] C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation, and complex-
ity classes,” J. Comput. Syst. Sci., vol. 43, no. 3, pp. 425–440, 1991.

[141] K. G. Jamieson, R. Nowak, and B. Recht, “Query complexity of derivative-free op-
timization,” in Advances in Neural Information Processing Systems, 2012, pp. 2672–
2680.

[142] L. Qian, J. Gao, and H. Jagadish, “Learning user preferences by adaptive pairwise
comparison,” Proceedings of the VLDB Endowment, vol. 8, no. 11, pp. 1322–1333,
2015.

[143] R. Herbrich, “Large margin rank boundaries for ordinal regression,” in Advances in
large margin classifiers. The MIT Press, 2000, pp. 115–132.

[144] T. Joachims, “Optimizing search engines using clickthrough data,” in Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, 2002, pp. 133–142.

[145] K. G. Jamieson and R. Nowak, “Active ranking using pairwise comparisons,” in Ad-
vances in Neural Information Processing Systems, 2011, pp. 2240–2248.

[146] D. M. Kane, S. Lovett, S. Moran, and J. Zhang, “Active classification with comparison
queries,” in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 2017, pp. 355–366.

[147] B. Settles, “Active learning literature survey,” University of Wisconsin-Madison De-
partment of Computer Sciences, Tech. Rep., 2009.

[148] C. Cortes and M. Mohri, “AUC optimization vs. error rate minimization,” in NIPS,
2004, pp. 313–320.

[149] H. Valizadegan, R. Jin, R. Zhang, and J. Mao, “Learning to rank by optimizing NDCG
measure,” in NIPS, 2009, pp. 1883–1891.

[150] C. Drummond and R. C. Holte, “Severe class imbalance: Why better algorithms aren’t
the answer,” in ECML. Springer, 2005, pp. 539–546.

[151] I. Steinwart, “How to compare different loss functions and their risks,” Constructive
Approximation, vol. 26, no. 2, pp. 225–287, 2007.

[152] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for
classification tasks,” Information Processing & Management, vol. 45, no. 4, pp. 427–
437, 2009.

[153] P. A. Samuelson, “A note on the pure theory of consumer’s behaviour,” Economica,
vol. 5, no. 17, pp. 61–71, 1938.

[154] A. Mas-Colell, “The recoverability of consumers’ preferences from market demand
behavior,” Econometrica: Journal of the Econometric Society, pp. 1409–1430, 1977.

175

[155] H. R. Varian, “Revealed preference. in samuelsonian economics and the 21st century
by m. szenberg and l. ramrattand and a. a. gottesman (editors),” in In Samuelsonian
Economics and the 21st Century, M. Szenberg, L. Ramrattand, and A. A. Gottesman,
Eds. Oxford University Press, 2005, pp. 99–115.

[156] D. Braziunas and C. Boutilier, “Minimax regret based elicitation of generalized addi-
tive utilities.” in UAI, 2007, pp. 25–32.

[157] O. O. Koyejo, N. Natarajan, P. K. Ravikumar, and I. S. Dhillon, “Consistent binary
classification with generalized performance metrics,” in NIPS, 2014, pp. 2744–2752.

[158] H. Narasimhan, H. Ramaswamy, A. Saha, and S. Agarwal, “Consistent multiclass
algorithms for complex performance measures,” in ICML, 2015, pp. 2398–2407.

[159] B. Qian, X. Wang, F. Wang, H. Li, J. Ye, and I. Davidson, “Active learning from
relative queries.” in IJCAI, 2013, pp. 1614–1620.

[160] G. Tamburrelli and A. Margara, “Towards automated A/B testing,” in International
Symposium on Search Based Software Engineering. Springer, 2014, pp. 184–198.

[161] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?: Explaining the
predictions of any classifier,” in ACM SIGKDD. ACM, 2016, pp. 1135–1144.

[162] F. Doshi-Velez and B. Kim, “Towards A Rigorous Science of Interpretable Machine
Learning,” ArXiv e-prints:1702.08608, 2017.

[163] N. Ye, K. M. A. Chai, W. S. Lee, and H. L. Chieu, “Optimizing f-measure: A tale of
two approaches,” CoRR, vol. abs/1206.4625, 2012.

[164] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

[165] T. H. Cormen, Introduction to algorithms. MIT press, 2009.

[166] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A nonasymptotic
theory of independence. Oxford university press, 2013.

[167] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” in The
Collected Works of Wassily Hoeffding. Springer, 1994, pp. 409–426.

[168] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming (Wiley Series in Probability and Statistics). Wiley-Interscience, 2005.

[169] M. Bagnoli and T. Bergstrom, “Log-concave probability and its applications,” Eco-
nomic theory, vol. 26, no. 2, pp. 445–469, 2005.

[170] P. Wolfe, “Finding the nearest point in a polytope,” Mathematical Programming,
vol. 11, no. 1, pp. 128–149, 1976.

176

[171] A. Gotovos, A. Karbasi, and A. Krause, “Non-monotone adaptive submodular maxi-
mization,” in IJCAI. AAAI Press, 2015, pp. 1996–2003.

[172] G. Amanatidis, F. Fusco, P. Lazos, S. Leonardi, and R. Reiffenhäuser, “Fast adaptive
non-monotone submodular maximization subject to a knapsack constraint,” CoRR,
vol. abs/2007.05014, 2020.

177

	CHAPTER 1 Introduction
	Games, Equilibria, and Smoothed Analysis
	Nash Equilibria
	Bilinear Notation for 2-Player Games
	Nash Equilibrium Computation and the class PPAD
	Beyond the Worst Case: Smoothed Analysis
	Potential Games, the class PLS, and Network Coordination Games
	Smoothness-Preserving Reductions.

	Decision Theory and Optimal Pricing
	Decision Problems
	Optimal Pricing

	Outline of Thesis and Notation
	Notation
	Acknowledgements

	CHAPTER 2 Smoothed Complexity of 2-Player Nash Equilibria
	Overview
	An Anti-Concentration Lemma
	Bounding the Support Size of Equilibria
	Bounding the Norm of Equilibria
	The Reduction, and Proof of Main Theorem
	The symmetric case
	General X

	CHAPTER 3 Smoothed Efficient Algorithms for Network Coordination Games
	A Common Framework
	An Anti-Concentration Bound

	Results and Related Work
	Related Work

	Overview and Notation
	Union Bounds and Rank Bounds
	Matrix Notation and Goals

	Rank Bounds and Union Bounds via Rounding, in Complete Graphs
	Matrix Construction
	Critical Subsequences
	Rank Bounds from Separated Blocks

	Rank Bounds and Union Bounds via Cyclic Sums, for General Graphs
	Combining the Bounds
	Polynomial Smoothed Complexity for Complete Game Graphs
	Quasipolynomial Smoothed Complexity for General Game Graphs
	(Quasi)Polynomial Running time in Expectation

	CHAPTER 4 Smoothness-Preserving Reductions
	Smoothness-Preserving Reductions
	Reduction from 2-NetCoordNash to Local-Max-Cut
	Reduction from k-NetCoordNash to Local-Max-Bisection

	CHAPTER 5 The Pandora's Box Problem with Order Constraints
	Overview
	Related work.

	Model and Preliminaries.
	Optimal Search on Tree Constraints, New Proof
	Proof of Optimality in the Unconstrained Setting
	Proof of Optimality for Tree-Constraints

	Adaptivity Gaps and Approximation Beyond Tree Constraints.
	The approximation benchmark.
	The adaptivity gap.
	Beating non-adaptive.

	Impossibility and Hardness Results.
	Suboptimality of threshold strategies.
	Hardness of approximation.

	Robustness to Approximate Distributional Information, or Sample Access
	The learning procedure.
	Tree constraints.

	CHAPTER 6 Binary Performance Metric Elicitation from Pairwise Classifier Comparisons
	Preliminaries
	Types of Performance Metrics
	Oracle Query
	Bayes Optimal and Inverse Bayes Optimal Classifiers

	Characterizing the Space of Confusion Matrices
	Algorithms
	Estimating Confusion Matrices — Sources of Noise

	Eliciting Linear Performance Metrics
	Low-error LPM elicitation

	Eliciting Linear Fractional Performance Metrics

	CHAPTER 7 Online Revenue Maximization for Server Pricing
	Overview and Model
	Model

	Bayes-Optimal Strategies for Sever Pricing, Assuming Monotonicity
	Markov Decision Processes.
	Solving for the Optimal Policy with Distributional Knowledge
	Monotonicity of the Optimal Pricing Policies

	Concentration Bounds, and Extensions
	Concentration Bounds on Revenue for Online Scheduling
	Infinite Discounted Horizon
	Approximation Algorithm for Continuously Supported Values

	Robustness of Pricing with Approximate Distributional Knowledge
	Robustness of the pricing strategy
	Learning the Underlying Distribution from Samples
	Performance of the Computed Policy

	Log-Concave Distributions

	CHAPTER 8 Exterior-Point Methods for Fairly Allocating Chores
	Preliminaries
	Approximate KKT Suffices
	Algorithm, and Convergence Guarantees

	CHAPTER 9 Conclusions and Future Directions
	Smoothed Analysis for Nash Equilibrium Computation
	Decision Theory Problems and Pricing Problems

	REFERENCES

