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Abstract

Relativistic jets have been observed to originate from the centers of many galaxies. It

is likely that the jets are powered by spinning supermassive black holes via a dynamical

interaction between magnetic fields close to the hole and the warped spacetime predicted

by general relativity. This dissertation describes a series of projects aimed at understanding

and identifying signatures of the physical quantities relevant to the black hole–jet connection

in both observational and theoretical contexts.

I start with a review of astrophysical black hole accretion systems and the radiative

physics that governs the generation of electromagnetic signals from hot leptons near the hole.

I then describe the numerical tools I use to simulate the accretion and generate synthetic

images and spectra, paying particular attention to my contributions and extensions to the

code. Next, I discuss my contribution to the theoretical analysis of the first event-horizon-

scale black hole accretion flow images, which were produced by the Event Horizon Telescope.

The remainder of the dissertation covers projects designed to support a theory-based

guide for the next generation of electromagnetic black hole observation in the context of

the jet–hole connection. I begin by describing two projects focused on understanding the

composition of the jet near the hole. The first project studies mass entrainment through

the jet–disk boundary layer as a mechanism to feed the jet at small scales. The second

project studies electron–positron drizzle pair creation due to the background radiation field

produced by the hot accretion flow. I conclude with a discussion of black hole glimmer, a

novel universal signature of black hole spin that can be measured from high-resolution black

hole movies and used to determine the orientation and magnitude of a black hole’s angular

momentum vector.
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models (i = 17◦ for a∗ > 0 and 163◦ for a∗ ≤ 0) with different Rhigh and
a∗, from the Themis (red, left), and GENA (green, right) pipelines. The
white dot and vertical black bar correspond respectively to the median and
region between the 25th and 75th percentiles for both pipelines combined.
The blue and pink horizontal bands show the range of M/D and mass at
D = 16.9 mpc estimated from the gas dynamical model (Walsh et al., 2013)
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4.1 Top: April 11 fiducial polarimetric image of M87 from EHTC VII. The gray
scale encodes the total intensity, and ticks illustrate the degree and direction
of linear polarization. The tick color indicates the amplitude of the fractional
linear polarization, the tick length is proportional to |P| ≡

√
Q2 + U2, and

the tick direction indicates the EVPA, or electric-vector linear polarization
angle. Polarization ticks are displayed only in regions where I > 10% Imax

and |P| > 20%|P|max. Bottom: Polarimetric images of M87 taken on different
days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 Left grid: examples of the electric vector position angle for periodic polariza-
tion fields plotted along a ring of unit radius, along with corresponding βm
values for −4 ≤ m ≤ 4. Polarization fields are chosen to produce positive real
values of βm, which correspond to vertical electric vector position angle at the
top of the image. Right grid: Same as left, but showing only the rotationally
symmetric m = 2 mode with four phases in β2. . . . . . . . . . . . . . . . . 123

4.3 Comparison of linear polarimetric decomposition of example MAD and SANE
images consistent with observational criteria and approximately equal total
flux. The decomposition is applied within the annulus stretching from the
blurred rex-fit ring diameter to twice its half-width in each direction, cen-
tered at the rex-fit ring center. Color shows unpolarized Stokes I intensity
normalized to unity and ticks show EVPA. Images are shown with and with-
out a 20 µas blurring kernel applied to all Stokes grids. White circles show
the blurring kernel; the blue circle shows the outer edge of the rex annulus,
while the inner edge extends to zero. Both images are of M87-like simulations
with a 6.2 × 109 M� central black hole of spin a∗ = 0.94, viewed at 17◦ in-
clination to the black hole spin axis, and with identical models for electron
temperature. In figures, EVPA tick marks are shown where both fractional
polarization exceeds 1% and Stokes I intensity exceeds 10% of its maximum
value. The MAD snapshot is dominated by power in the m = 2 mode. Both
blurring and integrating over larger scales impose coherence, decreasing power
in higher modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 Visibility amplitudes |Ĩ| and |P̃ |, and 1
2
∠(P̃ ) for three example images. The

top row presents a 40µas diameter boxcar ring of width 1µas blurred by a 5
µas Gaussian kernel. The bottom two correspond to the GRMHD examples
presented in Figure 4.3. EHT 2017 baseline coverage from April 11 is over-
laid. Rotational symmetry in the EVPA transfers to the visibility domain,
but rotates by 90◦ on short baselines due to the factor of −β2 = i found in
Equation 4.12. Visibility amplitudes are normalized and shown in linear scale. 127

4.5 Complex βm coefficients with −4 ≤ m ≤ 4 for the fiducial ray tracing param-
eters of the GRMHD library after blurring with a 20 µas beam. Coefficients
are normalized by the Stokes I annular flux after integrating over a region set
by the rex-fit radius and width ρrex±wrex. Models that are not self-consistent
or that are ruled out by prior observational constraints are labeled as failing. 129

4.6 Stacked histogram of β2 coefficient magnitudes shown for MAD and SANE
models that are physically consistent with observational criteria. No passing
SANE model has |β2| > 0.20. . . . . . . . . . . . . . . . . . . . . . . . . . . 130
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4.7 Distribution of the complex β2 coefficient (left) and stacked histogram of the
phase of β2 (right) colored by spin values. Complex coefficients are shown for
all models, whereas phases are shown only for passing models. The phase of
the β2 coefficient reflects increasingly radial EVPA at high spins. As shown
in the MAD β2 distribution, magnetic field symmetries in left handed flows
correspond to right-handed EVPA maps and corresponding β2 phases. . . . 131

4.8 Autocorrelation function for several βm coefficients for an example MAD
model and an example SANE model. In these models, MAD correlation times
are longer than SANE correlation times. SANE correlation times may not be
resolved by the image cadence. . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.9 Allowed parameter space in number density and dimensionless electron tem-
perature (ne,Θe) (red region) for the simplistic one-zone model described in
subsection 4.7.1 for three constant values of βe = 8πnemec

2Θe/B
2. We re-

quire that the optical depth τI < 1 (green region), the Faraday optical depth
τρV > 2π (blue region), and the total flux density 0.2 < Fν < 1.2 Jy (black
region). Contours of constant magnetic field strength are denoted by labeled
dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.10 a) Numerical calculations of the polarization configuration generated by an or-
biting emission region in the shape of a torus at 8rg in three imposed magnetic
field geometries and viewed at i = 163 deg (with material orbiting clockwise
on the sky). The orbital angular momentum vector is pointing away from
the observer and to the east (to the left). Total intensity is shown in the
background with higher brightness temperature regions shown as lighter in
color. In the foreground, the observed EVPA direction is shown with white
ticks, with the tick length proportional to the polarized flux. b) Analytic
calculations of the polarization configuration from a thin ring of magnetized
fluid at 8rg inclined by 163 deg to the observer in the same magnetic field
geometries as in a). While the distribution of emitting material is different in
the two models, both the sense of asymmetry in the brightness distributions
and the polarization patterns match those from the numerical calculations.
c) Schematic cartoons showing the emitting frame wave-vector k, magnetic
field direction ~B, and polarization vector ~P = k̂ × ~B for each case. In the
bottom right panel, k̂′ denotes the approximate light bending contribution to
the wave-vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
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4.11 Sample snapshot false color images and polarization maps for a subset of the
models in the EHT M87 simulation image library at their native resolution
(top three rows) and blurred with a 20µas circular Gaussian beam (bottom
three rows). The inclination angle for all images is either 17 deg (for negative
a∗ models) or 163 (for positive a∗ model) deg, with the black hole spin vector
pointing to the left and away from the observer. The tick length is proportional
to the polarized flux, saturated at 0.5 of the maximum value in each panel.
Here models with Rlow = 1 are shown. In general, the EVPA pattern is
predominantly azimuthal for MAD models (e.g., MAD a∗ = 0 Rhigh = 1)
and radial for SANE models (e.g. SANE a∗ = 0.94 Rhigh = 1), although the
SANE a = 0 models in particular are exceptions to this trend. All models
show scrambling in the polarization structure on small scales from internal
Faraday rotation, with more pronounced scrambling in models with cooler
electrons (larger Rhigh parameter). . . . . . . . . . . . . . . . . . . . . . . . . 153

4.12 Left: a sample polarization map from the image library at original resolution,
taken from the MAD a∗ = 0.5 (Rlow = 10, Rhigh = 80) model. Middle and
right: the same map but convolved with a 10µas and 20µas FWHM circular
Gaussian beam, respectively. The position angle of the black hole spin in all
frames is PA = +90 deg and the inclination angle is i = 158 deg, meaning that
the black hole spin points left and away from the observer. The lower panels
show the same model but calculated with ρV = 0 (no Faraday rotation). When
Faraday rotation is excluded, the EVPA pattern is more coherent, resulting
in much larger values of |m|net and 〈|m|〉. There is also a net rotation of the
EVPA pattern between the two cases, by ' 80 deg in the phase of β2. . . . . 155

4.13 Left: distribution of image-averaged fractional polarization 〈|m|〉 over the M87
library images blurred with a 20µas beam. The measured range from recon-
structed polarimetric images of M87 is shown in dashed lines. Right: 〈|m|〉
as a function of the intensity-weighted Faraday depth across each image for
library images blurred with the same 20µas circular Gaussian beam. The
Faraday depth is calculated as the intensity-weighted sum of |ρV | integrated
along each ray and increases monotonically with increasing Rhigh for fixed val-
ues of the other parameters. A large Faraday depth corresponds to scrambling
of the polarization map, which decreases the coherence length of the EVPA
(Jiménez-Rosales & Dexter, 2018). Increased scrambling results in stronger
depolarization at the scale of the EHT beam and lower values of 〈|m|〉. . . . 157

4.14 Distributions of image-integrated net linear (left) and circular (right) polar-
ization fractions for all EHT M87 library images. The dashed lines show
the allowed range inferred from EHT image reconstructions (for |m|net) and
ALMA–only data (for |v|net). . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.15 Distributions of β2 amplitude (left) and phase (right) for EHT M87 library
images blurred with a 20µas beam. The measured ranges from reconstructed
images of M87 are shown as dashed lines. . . . . . . . . . . . . . . . . . . . . 159
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4.16 Results of the simultaneous (left) and joint (right) scoring methods for com-
paring GRMHDmodels to M87 observables. The simultaneous scoring method
shows the total number of viable images for each image library model after
summing over Rhigh. Out of a total of 73 passing images, only 2 are from
a SANE model. All passing images are from models with Rhigh ≥ 20. The
right panel shows the joint likelihood of each library model after summing
over Rhigh. In this method, Rlow = 10 MAD models are preferred and SANE
a∗ = +0.94, Rhigh = 10 models are also allowed. . . . . . . . . . . . . . . . . 160

4.17 Average mass accretion rate (left) and jet power (right) for viable GRMHD
models of M87 identified by selecting on total intensity data and jet power
(blue), and when including polarimetric constraints from simultaneous scoring
(red). We estimate a mass accretion rate of Ṁ ' (4 − 16) × 10−4M� yr−1,
resulting in a radiative efficiency ε . 1% (cf. EHTC V). The jet powers
produced by our models are ∼ 1042 − 1043 erg s−1, and the jet efficiencies are
' 5− 80%. Compared to EHTC V, the range of jet powers remains the same
while the mass accretion rate is better constrained. . . . . . . . . . . . . . . 167

4.18 Absolute value of rotation measure (RM) versus net linear polarization |m|net

for a subset of our EHT GRMHD library models explored in more detail
in Ricarte et al. (2020). Closed symbols represent positive RM while open
symbols represent negative RM, revealing significant time variability across
the 2500 GM/c3 spanned by these snapshots. In grey, we plot our allowed
region of |m|net and bracket the range of core RM inferred from contempora-
neous ALMA-only observations, 2 − 100 × 104 rad m−2 (Goddi et al., 2021).
The dashed horizontal line demarcates the RM at which an EVPA rotation
by π radians would have been observed between the 212 and 230GHz fre-
quency range used in the ALMA-only measurements, 1.05 × 107 rad m−2.
Despite large Faraday depths, a large fraction of these snapshots exhibit RMs
consistent with simultaneous ALMA-only constraints. RM and |m|net are
anti-correlated, since larger Faraday depths lead to greater scrambling of the
intrinsic polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.19 Amplitude (left) and phase (right) of β2 as a function of time for three viable
GRMHD library models identified here (points, all with Rlow = 10) com-
pared to ranges measured from EHT2017 M87 data (gray shaded region).
The dashed lines show the median values for each model. The retrograde
spin model predicts higher β2 amplitude in future observations. In the high
prograde spin model, the median β2 phase is closer to zero than the observed
range in 2017. Changes in both quantities occur on timescales of weeks to
months, and should be apparent in future EHT data sets. . . . . . . . . . . . 174
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5.1 Initial distribution of plasma and magnetic field for representative retrograde
SANE (left) and MAD (right) simulations. Both black holes have a∗ = −0.94.
The initial plasma density and magnetic field are axisymmetric. The central
black hole is plotted at the center left of each panel. Color encodes log10 of
plasma density. Magnetic field lines, which are purely poloidal, are overplotted
in black. Notice that the domain of the MAD is 10x larger than the SANE
simulation domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.2 Logarithmic plots over three decades of density in the poloidal plane for a∗ =
−0.5 MAD and SANE models. Each image shows time- and azimuth-averaged
density (left panels) and time slices at azimuth φ = 0 (right panels). The
density is particularly variable in the MAD models, where the time slice is
not well approximated by the average state. The density is less variable in
the SANE models, where the time slice and average state are comparatively
similar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.3 Azimuthal slice from an individual time slice of the a∗ = 0.94 retrograde
MAD simulation. Left panel: log density of plasma near the black hole.
Center panel: log internal energy of the plasma u = ρT . Right panel: plasma
magnetization σ = b2/ρ. The high σ, low-density conical regions around the
poles are the jet funnel. The disk is the low σ, high-density region near the
midplane. The intermediate region between the funnel and the disk with
σ ≈ 1 is the corona. The disordered accretion near the horizon is accentuated
by streams of infalling plasma that are characteristic of MAD flows. . . . . 193

5.4 Tracer particle position for the MAD a∗ = −0.94 model, projected onto the
equatorial plane. Particle color varies linearly with local rest-mass density.
The event horizon is a gray sphere. The inner region of the accretion flow
is chaotic and characterized by plasma streams that break off the main disk
at large radius. Plasma streams experience large magnetic torques (uφ may
change sign) as they plunge toward the horizon. . . . . . . . . . . . . . . . 195

5.5 Interaction between disk and jet magnetic field lines. Magnetic field lines
that intersect the disk at small radii are shown for two sequential time slices
of the plasma evolution. Field lines are sampled according to magnetization
in the midplane. The colored surface shows the logarithm over two decades
of density in the midplane of the simulation, and the event horizon is plotted
as a black circle in the center of the plane. Left panel: the same time slice
as shown in Figure 5.4, rotated 45◦ counterclockwise. Magnetic field lines
emanating from the high-density region toward the left of the figure trace an
accretion stream and are disk dominated. Magnetic field lines that wind the
opposite direction make up a flux tube and are being pulled clockwise with
the hole as it spins. The two sets of field lines are about to collide. Right
panel: same simulation approximately 50 GM/c3 later. Disk-threading and
funnel-threading magnetic field lines have interacted, and a much stronger
flux tube passes through the midplane in the low-density region to the right
of the hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
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5.6 Distribution of matter in the angular momentum and radial velocity vs. radius
( uφ− r and vr− r) planes for the four fiducial simulations. The vertical gray
line marks the ISCO. The color scale is linear and shows the distribution of
matter at each radius. In the SANE models the plasma lies on a well defined
curve associated with Keplerian rotation as it accretes. In the MAD models
plasma is perturbed away from the disk even before it enters the plunging
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.7 Time slice of a MAD, a∗ = −0.94 model. Brightness shows plasma density,
color saturation encodes value of uφ, and flow lines describe the poloidal mo-
tion of the plasma. The jet–disk boundary is visible as the surface where
uφ changes sign. Eddies tend to form at the jet–disk boundary as infalling,
positive uφ matter interacts with outflowing, negative uφ matter. The sign of
uφ in the funnel is set by the sign of black hole spin. . . . . . . . . . . . . . 199

5.8 Density-weighted poloidal profile of uφ for each of the four fiducial models after
time and azimuthal averaging. The black circle at the origin marks the extent
of the event horizon. All simulations have a similar structure: a parabolic jet
(boundary defined by uφ = 0) and a peak in uφ away from the pole. . . . . 200

5.9 Profile of uφ vs. elevation at r = 2, 5, 10, and 20 GM/c2 for each of the
models in Figure 5.8. Notice that uφ < 0 implies angular momentum aligned
with the black hole. The average uφ of plasma at small radii is smaller in
MAD models than SANE models. The latitude of the shear layer within
which uφ changes sign increases with radius, corresponding to a narrowing
jet. The (average) shear layer is wider for MAD models because their jet–disk
boundaries fluctuate over a wider range in latitude. As matter flows out in
the jet, magnetic torques increase uφ. . . . . . . . . . . . . . . . . . . . . . 201

5.10 Histogram showing when tracer particles are entrained into the jet over a
brief interval in the MAD a∗ = −0.94 model. Entrainment is conservatively
defined to only include particles that begin in the disk region and end at
large radius with positive vr. This definition discounts particles that spend
time in the mixing region but ultimately fall onto the hole. In this MAD
model and by these criteria, entrainment is evidently a stochastic process
that is characterized by periods of increased entrainment corresponding to
times when instabilities form and break at horizon scales. . . . . . . . . . . 202

5.11 Logarithm over two decades of density on r ≈ 1.5M slices for the MAD
a∗ = −0.94 model at five times separated by ∆t = 25M . Matter in the jet
near the poles flows clockwise from above (left on the page), and matter in the
midplane flows counterclockwise (right on the page). The boundary between
the funnel and the midplane results in the development of an unstable shear
layer. A Kelvin–Helmholtz roll develops in the shear layer over the sequence
of panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
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5.12 Left panels: log over two decades of density in the θ − φ plane for shells at
r = 1.5, 3, and 40GM/c2. Right panels: same shells as left showing logarithm
over two decades of uφ with uφ > 0 blue and red otherwise. These plots are
from the central time slice of Figure 5.11, for the MAD a∗ = −0.94 model.
The flow becomes increasingly chaotic at smaller radii; however, the shear
layer between the disk and funnel persists, and the funnel region consistently
has uφ < 0, indicating corotation with the hole. . . . . . . . . . . . . . . . . 204

5.13 Time-averaged flow of tracer particles through the r−uφ state space. The gray
hatched region at the left of the figure lies within the horizon. The background
shows a false-color representation of the average speed of the particles through
the two-dimensional state space and helps to visually differentiate the disk
(region A), disk wind (region B), and jet (region C). The density of white
lines is proportional to the density of particles in state space; for the purposes
of visualization, the density is capped for regions in the disk that have large
density. Average particle flow follows the thin white lines. As particles are
entrained in the jet they cross uφ = 0 and are then torqued and accelerate
outwards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.1 The test problem geometry comprises two isotropic emitters separated by
a distance 2L. The pair production rate density ṅ±(x) is evaluated as a
function of distance x along the perpendicular bisector of the two sources.
The angle between two incident photons at a point x along the bisector is
θ = 2 arctan(L/x) ≈ 2L/x for x/L� 1. . . . . . . . . . . . . . . . . . . . . . 218

6.2 Monochromatic emitter test problem for Ns ≈ 106. Upper panel: numerical
(red hashes) and analytic (black line) pair production rate densities for two
monochromatic, isotropic emitters with source separation 2L, evaluated as a
function of radius in the plane normal to and bisecting the line connecting the
emitters. Lower panel: fractional difference between numerical and analytic
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.3 Code convergence. Averaged fractional difference between numerical and
analytic pair production rate densities for the two-point, monochromatic,
isotropic emitter problem as a function of number of field samples generated.
The error scales ∝ N

1/2
s as expected. . . . . . . . . . . . . . . . . . . . . . . 220

6.4 Radial dependence of pair production rate density vs. source spectrum index.
Here, α is the index of the source radiation spectrum Lν ∼ να, and the slope
d ln ṅ±/d lnx describes the asymptotic radial power law dependence of the
pair production rate density versus distance x from the source. The numerical
results are plotted against and agree with the analytic estimate. . . . . . . . 221

6.5 Time series of pair production rate and luminosity. Top: rest-mass pair drizzle
luminosity divided by BZ jet power. Bottom: numerically calculated bolomet-
ric luminosity vs. time. Over our range of models, time variability increases
with ṁ because the increasingly important Compton contribution scales more
favorably than the bremsstrahlung one. . . . . . . . . . . . . . . . . . . . . 227
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6.6 Pair production rate density (Model C). Numerically evaluated, time-averaged
pair production rate density ṅ± as a function of position over domain for model
C after vertical symmetrization over the disk midplane. Horizontal axis shows
radial coordinate and vertical axis shows height above midplane. Solid colors
correspond to log10(ṅ±). Dashed red lines track contours in numerical value
and solid black lines represent contours of model with fit parameters. . . . . 229

6.7 SANE a∗ = 0.5 and a∗ = 0.94 models in the ṁ,m8 plane. The red hash
marks show regions where the ratio of Goldreich–Julian density to the rad-
GRMHD number density is below unity. In the unhatched region, the MHD
approximation is not self-consistent. . . . . . . . . . . . . . . . . . . . . . . 232

6.8 Ratio of available charge to Goldreich–Julian density (Equation (6.33)) for
Models C and E (a∗ = 0.5,m8 = 1 with ṁ = 1.1 × 10−5 and 1.3 × 10−7

respectively). Black contours are evenly spaced in the log of the ratio. The
black circle is the event horizon. Evidently the ratio is well above unity in the
disk in both models, while the ratio in model E in the jet is far below unity
and the MHD approximation is not self-consistent. Although pair cascades
are not included in our model, they would appear difficult to initiate anywhere
in model C, but they may be likely to occur in the jet region of model E. . . 233

7.1 Left panel: five selected resonant orbits for a spin a∗ = 4/5 hole. Right panel:
trajectory of bound orbits for the same a∗ = 4/5 hole plotted in the θ–φ plane.
The resonant orbits in the left panel are colored in the right panel. Here, ∆φ
for each orbit corresponds to the φ displacement after one complete latitudinal
cycle, i.e., when the trajectory ends on the plot. The spread in ∆φ across the
different orbits increases with the spin a∗. . . . . . . . . . . . . . . . . . . . 245

7.2 Left column: size and shape of critical curve on image for (top) black holes
with different spin viewed edge-on or (bottom) black holes with a∗ = 15/16
viewed at different inclinations. The top-level panel shows how the angle ϕ is
measured counterclockwise from the positive x-axis. Right column: mapping
between points along the critical curve ϕ and the Boyer-Lindquist radius of
the probed bound orbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

7.3 Echo delay times due to resonant orbits as a function of black hole spin.
As spin increases, the number of accessible short-time-delay echoes increases.
Color encodes the location of the echo on the critical curve. Only perfect
resonances are shown in this plot. . . . . . . . . . . . . . . . . . . . . . . . 252
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7.4 Echo response produced by a short-lived, Keplerian hotspot (r0 = 2.8 M,
σr = 0.5 M, σt = 1 M) for black holes with different spins and for observers
at different inclinations. Color encodes the time-dependent intensity of light
as a function of angle along the critical curve ϕ ∈ (0, 2π). The bar above
each panel shows the range of radii corresponding to bound orbits (black)
and the set of visible bound orbits (red). Top row: the variation in the
response as a function of black hole spin. The spread in echo delays between
the prograde orbit (ϕ = π) and the retrograde orbit (ϕ = 0, 2π) increases as
spin is increased. Bottom row: the echo response for the same a∗ = 15/16
hole but observed at different inclinations. As inclination increases, the set
of visible bound orbits increases, so more echoes become visible. Since the
Φ = 0 orbit is not closed for a∗ = 15/16, the i = 0◦ echo blips drift through
ϕ. An animation showing the evolution of the echo response as a function of
spin and inclination is available online. . . . . . . . . . . . . . . . . . . . . . 254

7.5 Effect of hotspot position and size on echo response. Left column: position
and size of hotspot (on Keplerian orbit with σt = 1 M) in space around a
black hole (black circle) with a∗ = 15/16. The gray shaded crescents mark
the region containing the bound orbits. Central column: echoes produced
by the hotspot (as in Figure 7.4). Right column: autocorrelation of echoes.
Blue ⊗’s denote pure glimmer echoes, and orange ⊗’s correspond to midplane
echoes. Midplane echoes are excited in the first three rows. When the hotspot
is raised above the midplane in the bottom panel, the supplemental echoes no
longer peak at 1

2
the fundamental glimmer period. In contrast, the glimmer

echoes are universal; if a given ϕ exhibits any echoes, it will exhibit echoes
at the blue ⊗’s. Since the hotspot in the fourth panel does not intersect the
(equatorial) prograde and retrograde orbits, it does not excite echoes along
those ϕ. An animation showing how the echoes and autocorrelation change
as a function of hotspot size and position is available online. . . . . . . . . . 256

7.6 Quadrant-based light curve decomposition for a hotspot at r0 = 3 M and
σr = 0.8 Mwith a flat emissivity profile versus frequency orbiting around black
holes with a∗ = 1/4, 15/16, and 31/32. The full light curve (black dashed line)
is divided into four image quadrants: retrograde-centered ϕ ∈ (π/4,−π/4)
(blue), prograde-centered (green) ϕ ∈ (3π/4, 5π/4), and two remaining (red)
regions. The prograde orbit echoes are strongest because they have the small-
est Lyapunov exponents. The initial transient to t ≈ 60 GM/c3 is produced
during the time that the hotspot is active and orbiting the hole. . . . . . . 258
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Chapter 1

Introduction

After observing Io for several years, Giovanni Domenico Cassini and Ole Rømer used the

varying time delay between subsequent eclipses of the Jovian moon to infer the finite speed

of light in 1676. Years later, near the end of the eighteenth century, John Michell and Pierre

Laplace independently postulated the existence of dark stars, whose gravitational escape

velocities would exceed the proposed speed of light, rendering them invisible. Studying

optics and color, Huygens (1690) proposed the first mathematical wave model for light, but

it received little support compared to the corpuscular theory of light often attributed to René

Descartes and championed by Isaac Newton. Success of the Huygens wave model hinged on

the existence of a so-called luminiferous æther that would serve as a medium through which

the wave could propagate. Forward nearly two centuries, James Clerk Maxwell invoked the

æther to model Michael Faraday’s magnetic lines of force and ultimately developed his theory

of electromagnetism (Maxwell, 1865).

The acceptance of dark stars diminished as the particle theory of light was supplanted by

the theory of massless electromagnetic waves. But in the decades leading up to the twentieth

century, a series of increasingly detailed experiments seemed to refute the existence of the

theory’s requisite æther. Historically, the æther had been invoked as an absolute reference

frame, and as it fell out of favor, an apparent paradox in Maxwell’s theory grew more dire:

an observer will measure the speed of receding light as constant, irrespective of their own

motion. So what would you see if you rode on a light beam?

Albert Einstein addressed this question with his special theory of relativity (Einstein,

1905), where he presented a framework of Lorentz invariance in which speed-through-space
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could be traded for speed-through-time to allow both the observer-measured speed of light

to be constant and the laws of physics to hold regardless of the observer’s motion. Over the

following decade, Einstein extended his framework to treat gravitation, culminating in his

general theory of relativity (Einstein, 1916), in which gravity was no longer an instantaneous

attractive force but rather the natural byproduct of curvature in a combined spacetime.

General relativity (GR) is written in the language of differential geometry. The curvature

properties of the spacetime manifold are described by the metric tensor—a mathematical

object that takes two vectors as input and outputs a scalar from which one can synthesize

angles and distances. The metric tensor describes spacetime; GR defines how to construct

the metric tensor via the Einstein field equations, which connect distributions of matter and

energy to curvature. It is with this knowledge that we begin our journey.

1.1 Black holes

It is conventional to represent a spacetime metric by its line element ds, which describes an

infinitesimal displacement

ds2 ≡ g(dx, dx) = gµν dxµ dxν . (1.1)

Here, the Greek indices in the right-most term have been used to write the expression in

general coordinates xµ, gµν are the components of the covariant metric, and dxµ are the

differentials for the coordinates. I use the mostly pluses convention for the metric signature

(− + ++) and write in units where Newton’s gravitational constant and the speed of light

are unity, G = c = 1, unless otherwise specified.

The first exact solution to the Einstein field equations was derived by a professor at

Göttingen, Schwarzschild (1916), during his time as German a soldier on the Russian front

in World War I. Schwarzschild’s solution describes spacetime around a non-spinning point
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mass M . The Schwarzschild line element is

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (1.2)

where we have used a coordinate chart in which t is time, r is radius, θ is colatitude (or

polar angle), and φ is azimuthal angle.

At r = 0, the coefficient of dt2 in Equation 1.2 diverges and the curvature of spacetime

becomes infinite. At r = 2M ≡ reh, however, the apparent divergence of the line element

is an artifact of our coordinate choice: Lemaître (1933) showed it could be removed by re-

expressing the metric in a different coordinate system. Yet reh is still interesting, since the

radial and temporal components of the metric change sign at this radius, and the region of

spacetime within r = reh is thus causally disconnected from its complement. Practically,

the reh surface acts as both a one-way membrane and an edge to the visible universe. This

boundary of no return is known as an event horizon (Finkelstein, 1958). We shall call an

object that has an event horizon a black hole.

Extensions to the Schwarzschild metric followed. The metric for a charged point mass

was found by Reissner (1916). Several decades later, a solution for a point mass with angular

momentum was found by Kerr (1963), and Newman et al. (1965) found a solution for a point

mass with both charge and angular momentum. Although Israel (1967, 1968) showed that the

two non-rotating solutions were the only zero-angular-momentum black hole solutions, the

uniqueness of the spinning solutions was found to be subject to several physically reasonable

assumptions (see Carter (1979) for a review).

Astrophysical black holes are unlikely to have gravitationally significant charge,1 but they
1The comparative strength of the electromagnetic force compared to gravity suggests a rapid charge-

neutralization timescale, with the oppositely charged particles being sourced by either the local environment
or electron–positron pairs produced by the black hole’s electromagnetic field (see, e.g., Blandford & Znajek
1977).
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may spin. The Kerr line element, which describes the uncharged spinning case, is

ds2 =−
(

1− 2Mr

Σ

)
dt2 − 4Mra sin2 θ

Σ
dt dφ+

Σ

∆
dr2 + Σdθ2

+

(
r2 + a2 +

2Mra2

Σ
sin2 θ

)
sin2 θdφ2, (1.3)

where the black hole angular momentum is written in terms of its (not dimensionless) spin

parameter a ≡ J/M , Σ ≡ r2 +a2 cos2 θ, and ∆ ≡ r2−2Mr+a2, and where we have used the

coordinates described by Boyer & Lindquist (1967, hereafter BL), which are a generalization

of Schwarzschild coordinates.

The Kerr metric has two radii at which the dr2 coefficient in the line element is singular

reh,± = M

(
1±

√
1− (a/M)2

)
. (1.4)

The outer horizon reh,+ is the analogue of the Schwarzschild event horizon in that it acts as

a one-way membrane. Mathematically, the inner horizon is an (unstable) Cauchy horizon,

within which geodesics may return to the same event and the foundations of causality fail.

The physical spacetime singularity of the Kerr solution lies in the θ = π/2 midplane at

r = 0. Unlike in Schwarzschild, we find by integrating area over the r = 0 surface that r = 0

corresponds to the finite areal radius rareal =
√
r2 + a2 = a. By transforming to so-called

Kerr–Schild Cartesian coordinates, with

x = (r cosφ+ a sinφ) sin θ, (1.5)

y = (r sinφ+ a cosφ) sin θ, (1.6)

z = r cos θ, (1.7)

we see that the singularity takes the form of a ring at z = 0 with x2 + y2 = r2 + a2 = a2.

We can find the “rotation” of spacetime near the black hole by taking the ratio of two

metric components: in the Kerr metric, an inertial reference frame rotates with angular
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velocity

Ω = − gtφ
gφφ

. (1.8)

Evidently, the black hole drags spacetime with it as it spins. This rotational frame dragging,

also known as the Lense & Thirring (1918) effect, has an interesting consequence in that it

allows spin energy to be extracted from the black hole.

Frame dragging causes objects near a spinning black hole to appear to rotate from the

perspective of a far-away observer—equivalently, if an object near a spinning black hole is

to appear stationary to an observer at infinity, it must orbit the hole. The frame dragging

effect is amplified at smaller radii and higher spins. The boundary beyond which objects

must move faster than the speed of light in order to appear stationary is known as the

ergosurface, within which lies the ergoregion (Ruffini & Wheeler, 1971). Although objects

that enter the ergoregion are forced to corotate with the hole, they may ultimately escape its

influence, since the ergoregion extends beyond the event horizon. Penrose & Floyd (1971)

showed that a careful arrangement of matter could lead the dynamical spacetime to siphon

angular momentum away from the hole and energize the escaping matter.

1.2 Black holes in nature

The first observational evidence for black holes came with the discovery of extragalactic

quasars. Appearing at first to be merely faint, quasi-stellar objects, quasars were found in

fact to be incredibly powerful. By identifying the optical counterpart of the radio source

known as 3C273, Schmidt (1963) measured its redshift and used its distance to compute a

bolometric luminosity, finding that the object was orders of magnitude more luminous than

some galaxies. Subsequent measurements confirmed the result and found evidence of other,

similar objects (e.g., Greenstein 1963; Matthews & Sandage 1963; Oke 1963; Hazard et al.

1963; Greenstein 1963; Greenstein & Matthews 1963; Greenstein & Schmidt 1964; Webster
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& Murdin 1972). It was soon proposed that quasars could be powered by the accretion of

matter onto supermassive black holes that were in excess of millions or billions of times the

mass of our sun M� (Salpeter, 1964; Hoyle, 1966; Woltjer, 1966; Hoyle & Burbidge, 1966;

Lynden-Bell, 1969; Soltan, 1982; Rees, 1984). Supermassive black holes are now thought to

reside at the centers of almost all galaxies (see, e.g., Kormendy & Richstone 1995).

Observations of X-ray sources provide evidence for a class of smaller, stellar-mass black

holes. The first case was provided by Cygnus X-1, an X-ray source in the constellation

Cygnus that was discovered during a sub-orbital rocket flight (Bowyer et al., 1965). Optical

observations of Cygnus X-1 revealed a variable blue supergiant with a hidden companion in

a binary system. By measuring the velocity of the supergiant, the mass of its companion

was estimated to be too large for a neutron star (see originally Bolton 1972; Webster &

Murdin 1972 and the most recent mass estimate ≈ 21 M� from Miller-Jones et al. 2021).

The black hole companion theory provided an opportune explanation of the X-ray emission

as the product of mass accretion from the supergiant onto the hole. Binary star systems are

common, and every galaxy may contain tens to hundreds of millions of stellar-mass black

holes (see Remillard & McClintock 2006 for a review).

The Milky Way is likely filled with stellar-mass black holes, but the nearest supermassive

black hole candidate lies at its center. The object was first noticed when Balick & Brown

(1974) identified a strong, compact radio source near the constellation Sagittarius.2 The

radio source became known as Sagittarius A following the naming convention, and Brown

(1982) labeled the exciting compact feature Sgr A* (read Sagittarius A-star). It is difficult

to observe Sgr A* in the optical- and ultraviolet-wavelengths because of the large column

of gas and dust along the line of sight through the galactic plane. Nevertheless, its rela-

tive closeness has encouraged numerous observational campaigns across the electromagnetic

spectrum from the radio to γ ray (e.g., Goldwurm et al. 1994; Merck et al. 1996; Falcke
2Lynden-Bell & Rees (1971) had predicted the existence of a supermassive black hole at the center of our

galaxy several years earlier.
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et al. 1998; Genzel & Eckart 1999; Cotera et al. 1999; Genzel et al. 2003; Baganoff et al.

2003; An et al. 2005; Schödel et al. 2007; Bower et al. 2015; Liu et al. 2016b,a; Schödel et al.

2011; Witzel et al. 2012; Neilsen et al. 2013). The radio spectrum is almost flat and peaks at

millimeter wavelengths. Flares in the X-ray tend to occur simultaneously with near-infrared

(NIR) flares, and the variability timescale of certain flaring events constrains the size of the

variable emitting region to be of order the radius of the black hole event horizon (see, e.g.,

Dodds-Eden et al. 2009)

General interest in Sgr A* and its closeness to Earth have inspired detailed study of its

neighborhood. Early measurements of stellar and gas emission lines suggested the presence

of a ∼ million-solar-mass object within the compact radio source (Wollman et al., 1977; Lacy

et al., 1980, 1982; Haller, 1992; Genzel et al., 1996). Technological advances, including adap-

tive optics (see Beckers 1993), have enabled precise tracking of stellar orbits and gas motion

at micro-arcsecond scales. Models of this motion agree with the emission line measurements

and are consistent with the presence of a localized mass ≈ 4 × 106 M� at a distance ≈ 8.3

kpc (see, e.g., Schödel et al. 2002; Ghez et al. 2004, 2008; Gillessen et al. 2012, 2017; Gravity

Collaboration 2017). Its small size and rapid variability strongly suggest that Sgr A* is a

supermassive black hole. Recent high-precision astrometry measurements of stellar orbits

near Sgr A* show evidence of a perihelion precession consistent with the prediction of a black

hole in GR (Gravity Collaboration et al., 2020a).

By balancing an object’s inward gravitational pull on nearby matter with an outward

radiation pressure, the characteristic luminosity associated with an object of mass M can

be determined. If the surrounding matter comprises ionized hydrogen, then the so-called

Eddington luminosity is

LEdd =
4πGMmpc

σT
, (1.9)

where mp is the mass of a proton and σT is the Thomson cross section (see, e.g., Rybicki
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& Lightman 1979). Compared to its Eddington luminosity, Sgr A* is incredibly dim (.

10−6 LEdd, see Narayan et al. 1998 and references within). Sgr A* thus belongs to a class

of low-luminosity active galactic nuclei (LLAGN). Sgr A*’s large mass and close proximity

establish its unique position as the largest known object of its class as measured by angular

extent on the sky.

The nearby giant elliptical galaxy Messier 87 (also known as Virgo A or NGC 4486)

hosts an LLAGN with a radio flux comparable to that of the Sgr A* source, but its claim

to fame was its relativistic jet. Curtis (1918) described the galaxy3 as “[e]xceedingly bright”

with “[a] curious straight ray . . . apparently connected with the nucleus by a thin line of

matter.” After measuring the polarization properties of the ray, Baade & Minkowski (1954)

theorized that the emission was produced by electrons moving at relativistic speeds and were

the first to identify the feature as an astrophysical relativistic jet. Observations at increasing

frequencies have found that the jet structure persists into the bright radio core of the galaxy

at sub-parsec scales (e.g., Palmer et al. 1967; Reid et al. 1982; Junor et al. 1999; Kovalev

et al. 2007; Ly et al. 2007; Asada & Nakamura 2012). Kinematic modeling and long-term

monitoring have established that the inclination angle between the jet axis and the line of

sight is ≈ 20◦ (e.g., Heinz & Begelman 1997; Mertens et al. 2016; Walker et al. 2018) and

that the kinetic energy within the jet is within the range 1042 − 1045 erg s−1 (e.g., Owen

et al. 2000; Stawarz et al. 2006; de Gasperin et al. 2012).

Studies of the M87 host galaxy infer the existence of a central supermassive black hole.

By fitting dynamical models of star clusters to observed radial velocity profiles and velocity

dispersions, Sargent et al. (1978) deduced that ≈ 5× 109 M� of mass must be concentrated

in the center of M87 and noted the possibility that the mass was due to a supermassive black

hole. Recent stellar dynamics measurements refined the mass estimate to ≈ 6.2 × 109 M�

3The existence of distinct galaxies beyond our own was conjectured hundreds of years ago, but the idea
did not gain widespread acceptance until the 20th century. Accordingly, Messier (1781) classified M87 as a
“Nebula without star.”
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(Gebhardt et al., 2011), although they are in disagreement with the ≈ 3.5×109 M� estimate

from models of gas dynamics near the core (Walsh et al., 2013). High resolution imaging

and modeling by the Event Horizon Telescope (EHT) collaboration produce mass estimates

that agree with the stellar dynamics figure at ≈ 6.5 × 109 M� (Event Horizon Telescope

Collaboration et al., 2019a). The M87 and Sgr A* black hole candidates are the two largest

known black holes on the sky, and in a cosmic coincidence, the ratio between their masses

is nearly the ratio between their distances from Earth.

1.3 Accretion and the black hole–jet connection

The M87 jet is not unique. In fact, it appears that astrophysical relativistic jets are common,

and they seem to be launched by active galactic nuclei (see Blandford et al. 2019 for a review).

Where does their energy come from? Evidently the engines must be capable of sustained

power output over at least thousands or millions of years. In M87, the apparent co-location of

the jet base and the putative central supermassive black hole suggests a possible connection

between the two. We begin with a review of accretion theory to explore the possibility that

the black hole drives the jet.

Although black holes capture everything that passes through their event horizons, black

hole accretion systems are among nature’s most efficient mechanisms for turning mass into

energy. The conversion is an implicit consequence of disk accretion. As matter falls toward a

massive object from infinity, its gravitational potential energy transforms to kinetic energy;

if the matter is to follow a nearly circular path to the black hole, it must liberate some of this

kinetic energy in order to maintain the correct velocity at each radius. In the astrophysical

context, black hole accretion flows are composed of ionized plasma from stellar winds, gas

clouds, &c. In these gaseous flows, local interactions may convert the kinetic energy into

thermal energy (e.g., via viscous dissipation, turbulent cascades, and shocks). The gas heats,

and the accretion disk glows.
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In addition to liberating kinetic energy, angular momentum must be transported outward

in order for accretion to proceed, since the angular momentum of matter in a circular orbit

increases with radius. Shakura & Sunyaev (1973), and Novikov & Thorne (1973) in the rel-

ativistic case, proposed that viscosity could be responsible for angular momentum transport

and derived the first analytic disk models from this prescription (see also Pringle & Rees

1972). The disks in these models have high radiative efficiencies and cool to a geometrically

thin state. If the disks cannot cool quickly enough, they are said to be advection-dominated

accretion flows (ADAF, also see radiatively inefficient accretion flow RIAF, Ichimaru 1977;

Rees et al. 1982; Narayan & Yi 1994, 1995a; Abramowicz et al. 1995). In an ADAF/RIAF,

the disk remains hot as the energy is carried with the flow and ultimately lost through the

event horizon. ADAFs are geometrically thick and have luminosities that are small compared

to LEdd.

The details of the angular momentum transport were not well understood until the redis-

covery of the magneto-rotational instability (MRI, Balbus & Hawley 1991), in which mag-

netic field lines connecting plasma at different radii in a differentially rotating flow torque

smaller (larger) radii to slower (faster) speeds. The onset of the MRI was shown to foster

the development of turbulence in shearing box simulations (e.g., Hawley et al. 1995; Balbus

& Hawley 1998). Evidently, magnetic fields may play an important role in enabling disk

accretion.

In the astrophysical black hole accretion scenario, the conductivity of the accreting plasma

is high. Alfvén (1942) showed that in the limit of infinite conductivity, magnetic field lines

are “frozen in” the plasma—any plasma motion perpendicular to the direction of the field

lines would generate infinite eddy currents and is thus disallowed. What, then, happens as

magnetic field lines are advected toward the event horizon?

If the accretion flow revolves about the hole as it falls, then the magnetic field lines will

wind around the spin axis of the system. When the black hole is spinning, Blandford & Zna-

jek (1977, BZ) showed that the ergoregion would drive an extra torque on the field lines in a
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process that extracts the spin energy of the hole and converts it into an outward electromag-

netic Poynting flux jet aligned along the angular momentum axis. BZ jet power scales like

the square of both the black hole spin and the magnetic flux on the horizon. Numerical fluid

simulations of black hole accretion flows have been shown to produce electromagnetic jets

that are consistent with the BZ model (see, e.g., McKinney & Gammie 2004; Tchekhovskoy

et al. 2011).

1.4 Direct observations of black holes

Although there is myriad evidence supporting the existence of black holes, recent technolog-

ical advances have enabled significant strides in observational techniques. The past six years

have seen a rapid increase in measurement precision and fidelity, allowing us to investigate

black holes directly.

One method for direct detection relies not on light but gravity. When massive objects

accelerate through space, GR predicts they will produce a disturbance in the underlying

spacetime in the form of gravitational waves (Einstein 1916 and see also Poincaré 1906).

When two compact objects merge, the spacetime disturbance is great, and an abundance

of gravitational waves will be produced. Although deviations from the precise periodicity

of pulsars signals has been cited as evidence of gravitational waves for decades (Hulse &

Taylor 1975 and see, e.g., Hobbs et al. 2010), the first direct detection of a gravitational

wave was made by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in

2015 (Abbott et al., 2016a). Since the initial detection, LIGO has observed multiple black

hole mergers and neutron star mergers, enabling precise tests of GR (Abbott et al., 2016b,

2017, 2019a). LIGO results indicate that stellar mass black hole mergers are frequent, at a

rate of 10− 100 Gpc−3 yr−1 (Abbott et al., 2019b).

The angular resolution of a telescope is proportional to the ratio of its observing wave-

length λ to its size d, so the relatively small angular size of black holes makes it a challenge
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to image them directly. Using a mass of 4×106 M� at a distance of 8000 pc for the putative

Sgr A* black hole, we find that one gravitational radius GM/c2 subtends ≈ 5 µas on the sky.

Gravitational lensing deflects the geodesic paths of light near a black hole, causing some light

rays to fall onto the event horizon. The boundary between the geodesics that are captured

by the hole and those that escape sets a characteristic black hole “shadow” radius on the

image. The shadow radius =
√

27GM/c2 if the black hole has no angular momentum; it

is slightly smaller otherwise (see, e.g., Hilbert 1917; Darwin 1959; Bardeen 1973; Luminet

1979; Ohanian 1987; Takahashi 2004). The diameter of Sgr A*’s shadow is ≈ 50 µas. At

λ = 1.3 mm, the angular resolution of a telescope the size of the earth is ≈ 25 µas, putting

shadow-scale imaging of both Sgr A* and M87 just within reach.4

The Event Horizon Telescope is a heterogeneous global network of millimeter and sub-

millimeter observatories that uses very long baseline interferometry (VLBI) techniques to

reconstruct high resolution images of radio sources (Doeleman et al., 2009). VLBI techniques

have been used for decades (see Kellermann & Moran 2001 for a review) and operate on the

principle of correlating signals and timing data recorded at different observatories in order

to perform interferometry.

An interferometer produces data in the form of “complex visibilities,” i.e., the correlation

between the electromagnetic field measured at a pair of observatories. Each visibility is

defined at a baseline, which is determined by the projected distance and orientation of the

station-to-station separation as measured on the u − v plane perpendicular to the line of

sight. The visibilities are the Fourier transform of the image intensity distribution, so longer

baselines provide higher resolutions. Because radio telescopes do not cover the Earth, the

Event Horizon Telescope only populates the limited portion of the u− v plane swept out by

pairs of participating telescopes as the Earth rotates over the course of the observation.

The process of translating the sparse Fourier data into an image is known as image re-
4As noted above, the absolute size of a black hole scales linearly with its mass M , and its angular size

thus goes like the ratio between its mass and distance D. Since M87 and Sgr A* have approximately equal
M/D, they are approximately the same size on the sky.
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construction. The EHT collaboration used both the conventional CLEAN method (Högbom

1974; Clark 1980; the EHT uses DIFMAP, Shepherd 1997) and the newer regularized max-

imum likelihood technique (eht-imaging, Chael et al. 2016, 2018b, and SMILI, Akiyama

et al. 2017a,b) to perform image reconstruction. Validation of the image reconstruction pro-

cedure is described in Event Horizon Telescope Collaboration et al. (2019d). The first EHT

results in total intensity (Event Horizon Telescope Collaboration et al., 2019a,b,c,d,e,f) and

linear polarization (Event Horizon Telescope Collaboration et al., 2021a,b) showed consis-

tency between the source image and the predicted image of a black hole in GR. They also

produced model constraints on black hole mass, accretion rate, spin, and the local strength

of the magnetic field near the event horizon.

The GRAVITY instrument is another interferometer comprising the four telescopes of the

Very Large Telescope operated by the European Space Agency in Chile. GRAVITY operates

in the NIR band between λ ≈ 2− 2.4 µm, giving it a spatial imaging resolution of ≈ 4 mas.

GRAVITY also has the ability to perform astrometry measurements of positions and motion

with a precision on the order of tens of µas (Gravity Collaboration, 2017). The GRAVITY

collaboration identified circular motion at 30− 50µas scales during NIR observations of Sgr

A* in its flaring state over the course of an hour. The measurements were consistent with

the idea that the flare could be due to a hot spot orbiting the hole at a very high viewing

angle between 140− 160◦, (Gravity Collaboration et al., 2018). GRAVITY measurements of

linear polarization were also used to infer the structure and strength of magnetic fields near

the event horizon (Gravity Collaboration et al., 2020b).

1.5 Dissertation outline

The projects described in this dissertation are motivated by the goal of probing the connec-

tion between black holes and relativistic jets via observation. Recent and continuing advances

in technology have enabled high-precision horizon-scale imaging of black hole accretion flows.
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Current and next generation observations may be able to validate the theory that relativistic

jets like the one in M87 are powered by supermassive black holes via the Blandford–Znajek

mechanism, but obtaining unambiguous evidence requires a thorough understanding of the

observational signatures of black hole spin and horizon-scale magnetic field structure. My

dissertation covers both my contributions to the observational analysis of the M87 black hole

performed by the Event Horizon Telescope collaboration as well as my predictive modeling of

astrophysical processes near the hole, including studies of the horizon-scale jet composition

and a novel universal signature of black hole spin.

I begin in Chapter 2 with a review of accretion systems and radiative physics in the

astrophysical context. I then describe the numerical codes I use to generate fluid simulations

and synthesize electromagnetic observables. This description includes a review of the iharm,

ipole, and igrmonty codes and focuses on the science-enabling modifications I have made to

the code bases. I conclude with a brief example of simulation data products and a discussion

of in-progress and near-future ways to improve the simulation pipeline.

Chapter 3 describes my contributions to the global Event Horizon Telescope collaboration

effort to provide a theoretical interpretation of the initial 2019 total intensity image of the

M87 black hole, which produced bounds on the mass and spin orientation of the putative

supermassive black hole. Chapter 4 continues discussion of my work with members of the

EHT collaboration and begins with a description of the development, testing, and validation

of a new polarimetric observable—the PWP β metric—that can be used to constrain the

magnetic field structure near the black hole event horizon. It concludes with an overview of

the 2021 EHT analysis of linear polarized image data from the M87 source.

The last part of my dissertation is more theory-based and begins in Chapter 5 with

a discussion of matter entrainment at the jet–disk boundary region between the accretion

flow and the outflowing relativistic jet, which reaches down to horizon scales near the black

hole. In this chapter, I show that the boundary layer is episodically unstable to the magnetic

Kelvin–Helmholtz instability. Using numerical simulations, I find evidence of the instability’s
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operation and show that the mass entrainment rate from the disk to the jet may reach ≈ 1%

the accretion rate through the event horizon.

In Chapter 6, I continue consideration of mass within the jet, this time focusing on

the electron–positron pairs that may be produced by photon–photon interactions from the

∼ 1 MeV component of the background radiation field. I find that the charge density sourced

by this drizzle pair production process may be high enough to short out unscreened electric

fields and prevent the pair cascade process from operating in the jet. The composition of

the radiating leptons in the jet has observational consequences, especially in the context of

circular polarization measurements.

Finally, in Chapter 7, I describe my novel universal black hole angular momentum observ-

able, black hole glimmer, which comprises a position-dependent autocorrelation signature in

black hole movies. I provide a detailed analytic description of black hole glimmer, which

is due to the geometric structure of nearly bound photon orbits near spinning black holes,

and I finish with several example measurements and a demonstration of how the glimmer

signature is independent of the properties of the emitting plasma.
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Chapter 2

Simulating electromagnetic black hole
observables

In this chapter, I discuss the procedure I use to generate synthetic electromagnetic observ-

ables of supermassive black hole accretion systems. After a brief motivating introduction, I

present a theoretical background describing the target accretion systems, radiative physics,

and the equations that our numerical tools solve. I then survey the details of the three codes I

use most often in my work, paying particular attention to modifications and science-enabling

enhancements that I have made to them. After the code description, I outline my contribu-

tion to the simulation library used by the Event Horizon Telescope collaboration analysis of

M87 and provide several example figures that demonstrate details of the simulation pipeline.

I end with a discussion of limitations and future directions for the simulation pipeline.

2.1 Introduction

The Event Horizon Telescope (EHT) is a globe-spanning network of millimeter wavelength

observatories that is capable of imaging nearby supermassive black holes at event-horizon

scale resolutions. In 2019, the EHT published the first total intensity images of horizon-scale

emission from the center of the giant elliptical galaxy Messier 87 (Event Horizon Telescope

Collaboration et al., 2019a,b,c,d,e,f, hereafter EHTC I–VI), and in 2021, they published

linear polarization data on the same source (Event Horizon Telescope Collaboration et al.,

2021a,b, hereafter EHTC VII–VIII). Data from observations of the galactic center, Sgr A*,

are expected soon. Improvements to the EHT including extra interferometric baselines,

Parts of this chapter are in preparation for submission to The Astrophysical Journal Supplement Series.
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increased sensitivities, and support for measurements at new frequencies indicate that more

detailed measurements lie on the horizon.

The EHT analysis relies in part on a library of synthetic observations. This library

comprises a large set of numerical simulations of magnetized, relativistic black hole accretion

flow models and accompanying polarized ray-traced simulated images and spectral energy

distributions. Synthetic observations serve two primary functions: they can be used to

validate image reconstruction procedures, and they can be used in the forward modeling

pipelines that compare and contrast the observational and synthetic data to infer the physical

parameters of the system.

General relativistic magnetohydrodynamics (GRMHD) simulations are a mainstay in

analysis of black hole accretion flows (e.g., Gammie et al. 2003; Mignone et al. 2007; Del Zanna

et al. 2007; Narayan et al. 2012; Sądowski et al. 2013b; White et al. 2016; Porth et al. 2017;

Liska et al. 2018), and many general relativistic ray-tracing codes have been developed for

both imaging (Noble et al., 2007; Psaltis & Johannsen, 2012; Chan et al., 2013, 2018; Mości-

brodzka & Gammie, 2018; Dexter et al., 2020) and the generation of spectra (Dolence et al.,

2009; Mościbrodzka et al., 2009; Dolence et al., 2012; Zhang et al., 2019; Mościbrodzka,

2020).

In this chapter, I describe the modeling pipeline PATOKA, which was used for the Illinois

contribution of fluid accretion models, images, and spectra to the EHT library. I here de-

scribe differences between the published code descriptions and the versions of code that were

used in generating the library. In Section 2.2, I provide a brief summary of the theoretical

underpinnings of the accretion model and radiative physics. In Section 2.3, I review the de-

tails of the numerical codes used to perform the simulations and ray tracing. In Section 2.4,

I present some results that were generated with the pipeline. Numerical details are described

in Sections 2.6 and 2.7. I end with a discussion of future directions in Section 2.5.
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2.2 Theoretical background

We begin with a brief overview of the theoretical considerations associated with library

generation. We cover the parameters of the black hole accretion model and review the

equations governing radiative transfer in hot astrophysical plasmas.

2.2.1 Black hole accretion

The supermassive black holes at the center of M87 and the galactic center (Sgr A*) are

associated with compact radio sources (Doeleman et al., 2008; Fish et al., 2011) and serve as

the primary targets for the EHT. M87 and Sgr A* are low luminosity active galactic nuclei

(see Greene & Ho 2007; Yuan & Narayan 2014 for reviews), so the accretion onto their

central black holes is expected to proceed at a low rate ṁ ≡ Ṁ/ṀEdd < 10−3 and therefore

be radiatively inefficient (RIAF; Ichimaru 1977; Narayan & Yi 1994, 1995b; Quataert &

Narayan 1999; Yuan et al. 2003). In RIAF models, the gravitational energy of the flow,

which must be shed during accretion, is either advected across the event horizon or lost

in mechanical outflows. RIAFs comprise geometrically thick disks of relativistically hot,

magnetized plasma (Rees et al., 1982; Narayan & Yi, 1995b; Narayan et al., 1995; Yuan &

Narayan, 2014; Reynolds et al., 1996; Yuan et al., 2002; Di Matteo et al., 2003). Advection-

dominated accretion flows are typically collisionless, and since the electrons and ions are

subject to different heating mechanisms, the flows are likely two-temperature (see Shapiro

et al. 1976; Mahadevan & Quataert 1997; Quataert 1998; Ressler et al. 2015). M87 also

supports a FR-I type relativistic jet that extends to kiloparsec scales and has an estimated

jet power of ≈ 1042− 1044 erg/s (Stawarz et al., 2006; de Gasperin et al., 2012; Prieto et al.,

2016).

Although analytic models are useful in understanding the broad dynamics of accretion

physics (see especially the early models of Novikov & Thorne 1973; Shakura & Sunyaev

1973), the nonlinearity of the magnetohydrodynamics equations fosters the development of
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shocks and turbulence that make a pure analytic treatment infeasible.1 Since a large part

of the millimeter emission produced in a RIAF flow is likely produced near the horizon

(e.g., Mościbrodzka et al. 2009), a full general relativistic treatment of the system may be

necessary to adequately recover the detailed features of the model.

Numerical, general relativistic magnetohydrodynamics (GRMHD) simulations serve as a

more practical method for studying the plasma dynamics in detail. GRMHD simulations

evolve the distribution of plasma and electromagnetic energy through time and produce a

time series description of the plasma state. Global GRMHD simulations have been widely

used to study RIAF accretion and have been shown to reproduce the jet powers of the

Blandford & Znajek (1977) model (e.g., Koide et al. 1999; De Villiers & Hawley 2003;

Gammie et al. 2003; McKinney & Gammie 2004; Narayan et al. 2012).

At low accretion rates, radiative cooling is negligible (see, e.g., Dibi et al. 2012; Ryan

et al. 2017) and the evolution of the fluid is invariant under rescalings of both the metric

length GM/c2 and the mass density. Ideal GRMHD simulations thus only introduce the

following physical parameters: the angular momentum of the system and the magnetic flux

near the event horizon.

Angular momenta and tilted disks

The angular momentum of the central black hole J is often expressed in terms of the di-

mensionless black hole spin parameter a∗ ≡ Jc/GM2. The orientation of the accretion flow

near the black hole is not necessarily set by the boundary processes that supply the system

with plasma, and the angular momentum vectors of the black hole and the accretion flow

may be misaligned with the black hole spin. The angular separation between the two axes

is called tilt. Although there are plausible scenarios that produce accretion flows with zero

tilt, there is at present no way of rejecting models with strong or even maximal (180 degree,
1The magnetorotational instability of Balbus & Hawley (1991) may play a crucial role in facilitating

the angular momentum transport necessary for accretion in steady disks, whose horizon-scale flows are not
choked, cf. MAD flows in §2.2.1.
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i.e., retrograde) tilt.

Systems with non-zero tilt may have clear observational signatures. Fragile & Blaes

(2008); Dexter & Fragile (2013) found that tilted accretion flows could produce a two-arm

shock that would significantly alter the morphology of radio images and the shape of the

spectrum. Some simulations suggest tilted disks ultimately align with the central black hole

via an analogue of the Bardeen & Petterson (1975) effect (McKinney et al., 2013; Liska et al.,

2018).

In our galaxy, there is strong evidence that the central supermassive Sgr A* was recently

in an active period of higher accretion (Totani, 2006; Ponti et al., 2013), and other obser-

vational studies and simulations report evidence of clumpiness within a few parsecs of Sgr

A* in the circumnuclear disk (Montero-Castaño et al., 2009; Blank et al., 2016). Ressler

et al. (2018, 2020a,b) simulated mass feeding in the Galactic Center via magnetized stellar

winds and found that a wide variety of different initial configurations led to the development

of similar non-disk-like accretion flows with strongly poloidal horizon-scale magnetic field

configurations. Evidently, the angular momentum of the boundary condition that supplies

the inner accretion flow with mass is likely to be variable on galactic timescales (e.g. Cuadra

et al., 2006).

More generally, a non-trivial time-dependent boundary feeding condition is not unlikely

since there is a large discrepancy between the long timescale that governs changes to proper-

ties of black hole and the shorter ones on which the local environment of the black hole (i.e.,

the environment that governs the its feeding) changes. Thus, the bulk angular momentum of

the accreting matter (far from the horizon) may exhibit a time-dependent tilt with respect

to the spin angular momentum of the central black hole.

Time-dependent tilt misalignments have been invoked to explain the wobble observed

in some relativistic jets (see Natarajan & Armitage, 1999). These arguments find extra

support in the analysis of episodic jet variations and spectral analyses of the broad Fe line

(e.g., Hjellming & Rupen, 1995; Rout et al., 2020). Theoretical studies that consider the
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initial spin distribution of supermassive black holes (De Luca et al., 2019) and simulate

black hole growth via accretion and mergers in hierarchical galaxy formation models also

often favor random alignment between the black holes and their disks (see, e.g., Volonteri

et al., 2005).

The prograde/retrograde dichotomy has also been used to explain differences between

radio-loud and radio-quiet active galactic nuclei sources (Garofalo 2009; Garofalo et al. 2010,

but see Tchekhovskoy & McKinney 2012). Some observational studies have claimed detection

of retrograde accretion systems: Morningstar et al. (2014), Chen et al. (2016), and Mikhailov

et al. (2018) presented criteria for classifying systems as retrograde and singled out several

known systems based on emission models and low estimated Eddington ratios.

Magnetic flux

The accreting plasma carries magnetic field lines with it as it falls onto the central black hole.

If the sign of the magnetic flux is constant over time, then the field lines will accumulate

and increase the magnetic pressure near the hole, eventually saturating when the magnetic

pressure is large enough to counterbalance the inward ram pressure of the accretion flow.

The amount of magnetic flux threading the event horizon thus qualitatively divides accretion

flows into two categories: the magnetically arrested disk (MAD) state (Bisnovatyi-Kogan

& Ruzmaikin, 1974; Igumenshchev et al., 2003; Narayan et al., 2003), in which magnetic

pressure is large and the magnetic field is dynamically important, and the alternate standard

and normal evolution (SANE) state (Narayan et al., 2012; Sądowski et al., 2013a).

Quantitatively, the magnetic flux through the horizon is measured in terms of an integral

over a hemisphere at the event horizon

ΦBH =
1

2

∫

r=reh

∣∣?F rt
∣∣√−g dθdφ, (2.1)

but it is conventionally written as φ, a quantity normalized by the mass accretion rate of
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the system Ṁ

φ ≡ ΦBH√
Ṁr2

gc
, (2.2)

where rg ≡ GM/c2 is the gravitational radius of the hole. In the conventional rational-

ized Lorentz–Heaviside units used in GRMHD simulations, φ saturates at φc ≈ 15 (see

Tchekhovskoy et al. 2011 and Porth et al. 2019).2

MAD accretion is choppy and tends to proceed in isolated, thin plasma streams that

begin far from the hole, and MAD flows are often punctuated by violent magnetic bubble

eruption events that release excess trapped magnetic flux. Although flux ejection events

are fully understood, they may be contextualized in terms of a magnetic Rayleigh–Taylor

interaction between the disk and the hole (Marshall et al., 2018).

Simulations suggest that the MAD vs. SANE dichotomy is observationally encoded in

signatures of polarization, variability, and the details of the jet–disk connection. Recent data

and analysis from the EHT suggest that M87 accretion is MAD (EHTC V; EHTC VIII).

Electron temperature and radiative effects

GRMHD simulations typically treat the accreting plasma as a single, thermal fluid and

track only the internal energy (or temperature) of the bulk plasma. Conventional methods

for determining the electron temperature typically involve setting Te from the local fluid

parameters, such as the internal energy of the fluid and the local plasma β ratio of gas

pressure to magnetic pressure β ≡ Pgas/Pmag (e.g., Goldston et al. 2005; Mościbrodzka

et al. 2009; Shcherbakov et al. 2012; Mościbrodzka et al. 2014; Mościbrodzka & Falcke 2013;

Mościbrodzka et al. 2016—see Anantua et al. 2020b for a comparison of several different

models).
2In Lorentz–Heaviside units, the vacuum permittivity and permeability are ε0 = µ0 = 1 like in Gaussian

units, but the strength of the electric and magnetic fields (and the reciprocal of the fundamental charge)
differ from Gaussian units by a factor of

√
4π. In Gaussian units, φc = 50.
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GRMHD simulations that recover the turbulent dynamics of a flow often rely on implicit

large eddy simulations (ILES; see Boris 1990; Boris et al. 1992), wherein it is assumed that

numerical dissipation at the smallest numerical resolutions emulates the effects of physics

at scales smaller than the grid-scale. Ressler et al. (2015); Sądowski et al. (2017) described

methods to track this numerical dissipation in relativistic magnetohydrodynamics simula-

tions. Given a model for sub-grid electron heating, the dissipated energy can be distributed

into the plasma ions and electrons and therefore used as a heating model to independently

track and evolve the electron temperature of the fluid. Several such kinetic plasma physics

models have been proposed (Howes, 2010; Rowan et al., 2017; Werner et al., 2018; Kawazura

et al., 2019; Zhdankin et al., 2019).

At low accretion rates Ṁ , radiative losses are too slow to materially alter the internal en-

ergy of the flow (see, e.g., Sharma et al. 2007; Dibi et al. 2012), so pure GRMHD simulations

sufficiently recover the dynamics. As Ṁ approaches 10−5 of the Eddington rate, however,

it becomes important to include synchrotron emission and Compton upscattering and to

include the contribution of the radiation stress–energy tensor through the use of radiation–

GRMHD schemes, like KORAL (Sądowski et al. 2013b, implementing a gray M1-closure scheme

for the radiation), ebhlight (Ryan et al. 2015, 2019, using a full Monte Carlo treatment

of the radiation field), or MOCMC (Ryan & Dolence 2020, using an adaptively refined Monte

Carlo treatment of the radiation field). The transitory regime in which radiation becomes

important has also been studied by, e.g., Fragile & Meier (2009); Wu et al. (2016); Sądowski

& Gaspari (2017); Sądowski et al. (2017); Ryan et al. (2017).

2.2.2 Radiative transfer

230 GHz simulated images of radiatively inefficient accretion flows near supermassive black

holes are dominated by a distinct ring-like feature with large brightness temperature. In

simulations, the location of the ring is broadly consistent with the critical curve boundary

within which all geodesics both pass through the camera plane and terminate on the black
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hole event horizon. Geodesics close to but outside of the critical curve are still lensed near

the hole. The set of all geodesics that are lensed enough to complete n complete half-orbits

around the hole defines the nth photon subring (Johnson et al., 2020); as n → ∞, the

subrings approach the critical curve. Each subring corresponds to a delayed, demagnified

image of the universe.

In astrophysical scenarios, the images are dominated by emission produced near the black

hole. Summing of the self-similar demagnified subring images produces a sharp, narrowing

feature in intensity whose peak converges to the critical curve in the limit that the optical

depth of the system is negligible. The feature seen in the composite image is known as the

“photon ring” of the black hole (Bardeen, 1973; Luminet, 1979; Gralla & Lupsasca, 2020;

Johnson et al., 2020), and the region it encircles is the so-called black hole shadow. The

location of the critical curve is controlled by properties of the underlying spacetime geometry.

Various strategies to constrain the properties of the spacetime by measuring the critical curve

via the shape of the photon ring or due to autocorrelations and subring image delays have

been proposed (e.g., Falcke et al. 2000; Takahashi 2004; Bambi & Freese 2009; Hioki & Maeda

2009; Amarilla et al. 2010; Amarilla & Eiroa 2013; Tsukamoto et al. 2014; Younsi et al. 2016;

Mizuno et al. 2018; Johnson et al. 2020; Medeiros et al. 2020; Olivares et al. 2020; Wielgus

et al. 2020; Wong 2021; Hadar et al. 2021; Chesler et al. 2021).

Particle trajectories in curved spacetimes are determined by the geodesic equations

dxα

dλ
= pα (2.3)

dpα

dλ
= −Γλαβp

αpβ, (2.4)

where Γ is a Christoffel symbol, λ is an affine parameter, and where for a photon the

momentum pα → kα, the photon wavevector. Notice that the frequency ν of the photon as

measured in a frame with four velocity uα is given by ν = −kαuα. The intensity of the light

changes along the geodesics according to its interaction with the local matter in four ways:
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emission can increase the intensity of the light, scattering into the geodesic can increase the

intensity of light, the intensity can decrease either due to absorption or scattering out of the

geodesic (collectively called extinction), and the local plasma properties can mix polarization

modes

dI = dIem + dIsc + dIext + dImix. (2.5)

Here, the extinction term depends on the local intensity of the incoming light

dIext = −βextI ds (2.6)

and an extinction coefficient βext, which depends on the local plasma parameters and is a

function of the angle the light ray makes with the magnetic field in the plasma.

Polarization

In the supermassive black hole accretion systems targeted by the EHT, the observed 230

GHz radiation is due primarily to synchrotron radiation, which is produced when electrons

in the accreting plasma are accelerated by magnetic fields (see, e.g., Yuan & Narayan 2014).

The local orientation of the magnetic field sets a preferred direction for the electromagnetic

radiation, and thus synchrotron emission is, in general, polarized according to the structure

of the magnetic field.

The full description of the polarized state of the light is often written in terms of the

specific intensities of the Stokes parameters Iν , Qν , Uν , Vν . Here, Iν is the familiar total

specific intensity of the light; Qν and Uν represent the linearly polarized intensities; and

Vν represents the circularly polarized one. Not all of the light must be polarized, so I2
ν ≥
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Q2
ν + U2

ν + V 2
ν . In this representation,3 the electric vector position angle (EVPA) χ is

χ =
1

2
arctan

U

Q
. (2.7)

Physically, χ describes the angle the electric field oscillations make with respect to some

fiducial coordinate system, and the factor of one-half is due to the π-fold symmetry in

describing this orientation.

As polarized light travels through a magnetized plasma, two effects cause χ to rotate.

The first is due to parallel transport of the polarization vector in the curved geometry. The

magnitude of this effect is a pure function of the underlying spacetime (see Gelles et al.

2021a for a discussion). The second rotation is due to the so-called Faraday effect: in a

magnetized plasma, the dielectric constant is a tensorial quantity, so components of the

light with different polarizations propagate at different speeds. This magnetically induced

birefringence produces a characteristic Faraday rotation of χ that is a function of the plasma

properties along the line of sight

∆χ =
1

2

∫
dl ρV (2.8)

≈ 1

ν2

e3

2πm2
ec

2

∫
dl nefrel(Θe)B||, (2.9)

where ρV is the Faraday rotation coefficient.4 In the second line, we have substituted a

high-frequency expression for ρV for the < ultra-relativistic case; here, B|| is the component

of the magnetic field along the line of sight, and frel ≈ log Θe/2Θe for the relativistic Θe � 1

case and ≈ 1 otherwise (e.g., Rybicki & Lightman 1979; Quataert & Gruzinov 2000, see also

Shcherbakov 2008 for a discussion). Evidently the observed polarization pattern is related
3We use the International Astronomical Union convention (see Hamaker & Bregman 1996) in which

positive Q is oriented North–South (vertically) and positive U is oriented along the NorthEast–SouthWest
direction (top left to bottom right). In this convention, EVPA is measured East of North, i.e., counter-
clockwise from vertical on the sky.

4The factor of 1/2 is the same as in Equation 2.7. This can be seen by differentiating Equation 2.7 and
substituting in the derivatives of Q and U from Equation 2.10 in the case of no emission, absorption, or
circular polarization.
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to the structure of the magnetic field in the accretion flow in a complicated way.

The full description of the polarized intensities can be evolved by solving the polarized

radiative transfer equation along the length of the geodesic. In order to produce millimeter

radio polarized images, we need only treat the emission and absorption processes, since scat-

tering contributes negligibly at the relevant frequencies and plasma parameters. Expanding

Equation 2.5 for emission, absorption, and mixing, the nonrelativistic, polarized radiative

transfer equation is

d

ds




Iν

Qν

Uν

Vν




=




jν,I

jν,Q

jν,U

jν,V



−




αν,I αν,Q αν,U αν,V

αν,Q αν,I ρν,V −ρν,U
αν,U −ρν,V αν,I ρν,Q

αν,V ρν, U −ρν,Q αν,I







Iν

Qν

Uν

Vν



, (2.10)

where the emissivities jν , absorptivities αν , and rotativities ρν are frame-dependent quantities

(see Landi Degl’Innocenti & Landi Degl’Innocenti 1985).

To generalize away from frame-dependence, Broderick & Blandford (2004) described a

method to write the transport equation in terms of quantities that account for rotations of

the observer frame along the line of sight. To provide a manifestly covariant description,

Gammie & Leung (2012) produced an alternative formulation of the polarized transport

equation in terms of a Hermitian coherency tensor Nαβ, which can be related to the Stokes

parameters by the Pauli matrices. The polarized radiative transfer equation can then be

written in a manifestly covariant form

kµ∇µN
αβ = Jαβ +HαβγδNγδ, (2.11)

where∇µ is the covariant derivative along the geodesic, Jαβ is an emissivity tensor, andHαβγδ

is a tensor that accounts for absorption and rotation. Using this description to solve the

polarized transport equation amounts to evaluating the nonrelativistic emissivities, absorp-
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tivities, and rotativities in any convenient frame, constructing Jαβ and Hαβγδ, and solving

Equation 2.11. In practice, it is often easiest to construct Jαβ and Hαβγδ in the tetrad basis

defined by the fluid four-velocity, the photon wavevector, and the orientation of the local

magnetic field.

In some cases, we may solve an approximate form of the radiative transfer equation that

does not account for polarization,

d

ds

(
Iν
ν3

)
=

(
jν
ν2

)
− (ν αν,I)

(
Iν
ν3

)
. (2.12)

(Here we have expressed all quantities in their relativistically invariant forms.) This ap-

proximation is sometimes called unpolarized transport even though it accounts for the total

intensity of the light rather than only the unpolarized component.

Scattering

Photons undergo (inverse) Compton scattering as they travel through the plasma in the

accretion flow. The inverse Compton scattering events allow the relativistic (high energy)

electrons in the accretion flow to upscatter photons in the radiation field to higher energies. In

our context, upscattering happens more frequently than downscattering. Collectively, these

scattering events affect the spectrum of the accretion flow as observed at a large distance;

this process is known as Comptonization. The importance of Comptonization can be gauged

by the so-called Compton y parameter

y = Nscatterings × (energy gained per scattering) (2.13)

' max
(
τe, τ

2
e

)
×
(
4Θe + 16Θ2

e

)
, (2.14)

where the optical depth to a scattering event within a system of size l is

τe ≈ neσT l. (2.15)
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In Equation 2.14, we have written the approximate expression for y that covers relativistic

energies (see Zdziarski 1985).

The number density rate of interactions between two species of particles can be written

ṅint = n1n2 〈σ12v12〉 , (2.16)

where n1 and n2 are the two species’ number densities, σ12 is their interaction cross section,

and v12 is their relative velocity. In flat space, the rate of interaction between a photon with

wavevector kµ and massive particles in a distribution function dnm/d
3p is

ṅint =

∫
d3p

dnm
d3p

−kµpµ
kt

σmγ c (2.17)

= nmσh c. (2.18)

In the second line, we define a “hot cross section” (see Appendix III of Canfield et al. 1987)

σh ≡
∫

d3p
dn

d3p
(1− µmβm)σmγ c, (2.19)

where we have rewritten the dot product in terms of the particle speed in the plasma frame

βm and the cosine of the angle between the particle momentum and the photon momentum

µm, both evaluated in a convenient frame.

Given an electron distribution function, the scattering process amounts to (1) probabilis-

tically picking an electron from the distribution function according to the hot cross sections

so that the incoming photon can scatter off of it and (2) probabilistically scattering the pho-

ton to a new wavevector (energy + direction) according to the Klein–Nishina cross section

of the chosen electron. Here, the Klein–Nishina cross section is

σKN = σT
3

4ε2

(
2 +

ε2 (1 + ε)

(1 + 2ε)2 +
ε2 − 2ε− 2

2ε
log (1 + 2ε)

)
, (2.20)
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where σT is the Thompson cross section and the energy of the photon in the electron rest

frame is ε = −pµkµ/m2
e.

2.2.3 Connecting GRMHD and GRRT

We produce the above-described image and spectrum electromagnetic observables from the

fluid simulations (which output a description of the fluid state) by performing radiative

transfer calculations. In order to use the GRMHD output, we must carefully treat several

points.

Scaling and orienting GRMHD output

Unlike in GRMHD, the equations of radiative transfer are not scale invariant, so the numer-

ical fluid data must be translated into physical units in order to perform the ray tracing.

The use of GRRT introduces two scales: a length scale and a density scale. The length

scale L determines the absolute size of the accretion system and is often written in terms

of the mass of the central black hole L = GM/c2. The length scale sets the characteristic

timescale, T = L /c = GM/c3.

The density scale M provides units to the fluid rest-mass density, internal energy, and

magnetic field strength while respecting the constraint that magnetization σ = b2/ρ and

plasma β are independent of the choice of units, i.e., ρ → M ρ, b2 → M b2, and u → Mu.

The density scale is chosen so that the simulated images match two observational constraints:

the image-integrated flux must be correct and the extent of the compact flux region must be

reasonable. The latter constraint amounts to ensuring that the accretion flow is ∼ optically

thin at 230 GHz. When possible, the resultant mass-accretion rate is compared to the

predictions of single-zone models (see EHTC V; EHTC VIII) and observational estimates of

Ṁ from rotation measure.

Finally, the accretion flow must be oriented properly with respect to the camera location

on Earth. This amounts to choosing two of the three Euler angles: an inclination angle i
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between the spin axis of the system and the elevation of the camera, and a position angle

for the camera (the orientation that the projected spin axis makes on the image plane). The

third angle is unnecessary because of the axisymmetry of the accretion flow. The inclination

and position angle are free parameters in general, although large-scale information about the

system, such as the orientation of a jet, may provide extra hints about how to proceed.

Assigning electron temperatures

Although our GRMHD simulations often make the approximation that the plasma is thermal

and described by a single temperature, we account for the likely collisionless nature of the flow

by allowing electron temperatures to deviate from the ion temperatures. When not using the

entropy tracking procedure of Ressler et al. (2015), we assign electron temperatures according

to the prescription of Mościbrodzka et al. (2016, see also Mościbrodzka et al. 2017; Event

Horizon Telescope Collaboration et al. 2019e), wherein the ion-to-electron temperature ratio

is determined by the local plasma β. This prescription is motivated by the idea that heating

may be stronger in a strongly magnetized plasma (e.g., Quataert 1998; Quataert & Gruzinov

1999).

As in Mościbrodzka et al. (2016), the temperature ratio is parameterized by Rlow, Rhigh,

and βcrit, with

R ≡ Ti/Te =
Rlow +Rhighβ̃

2

1 + β̃2
, (2.21)

where β̃ ≡ β/βcrit.

To recover the electron temperature from the total fluid energy, we partition the fluid

energy into two components associated with the electrons and with the ions.5 Assuming an
5Some codes instead set the ion temperature equal to the fluid temperature, which over-counts the energy

in the system.
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ideal gas equation of state, the energies associated with the ions and electrons will be

ui = (γ̂i − 1)−1nikTi (2.22)

ue = (γ̂e − 1)−1nekTe, (2.23)

where γ̂i and γ̂e are the adiabatic indices of the ions and electrons respectively. The ion and

electron number densities are related to the total mass density by

ne = yρ/mp (2.24)

ni = zρ/mp, (2.25)

where y and z are the number of electrons and nucleons per unionized atom, respectively.6

The electron temperature is thus

Te =
mpu (γ̂e − 1) (γ̂i − 1)

kρ ((γ̂i − 1) y + (γ̂e − 1)Rz)
. (2.26)

We typically assume that the ions in the plasma are nonrelativistic, so γ̂i = 5/3, and

that the electrons are relativistic, so γ̂e = 4/3. Since we assign electron temperatures after

the fact, we assume that each of γ̂i, γ̂e, and γ̂ is both constant and fixed across the entire

simulation domain. This treatment is not entirely self-consistent, since the adiabatic index

of the total fluid should change depending on local contributions from the ion and electron

fluid components (see Sądowski et al. 2017 for a self-consistent treatment).

Approximations and pathologies

GRMHD schemes are not robust in regions with high magnetization σ � 1 or where plasma

β � 1. In order to ensure numerical stability, σ and β are computed in each cell of the

simulation domain for each time step, and mass or internal energy is injected into simulation
6Notice that y and z are not the conventional Y and Z mass fractions.

32



zones to ensure that neither σ and 1/β exceed some preset ceilings. The values of the ceilings

are typically varied across different trial-run simulations to ensure that they have minimal

impact on the dynamical evolution of the flow.

In black hole accretion simulations, the ceilings are generally triggered in the highly

magnetized jet funnel regions near the poles, where we expect ρ � 1. Although we do not

trust the fluid thermodynamics in regions where the ceilings are activated, we do expect that

the true plasma densities in the jet region will be low enough that no appreciable emission

is produced. We therefore zero all emission that would be produced in any regions where

σ > 1. We also zero emission within a few degrees of the poles, since some treatments of the

polar boundary condition may cause σ to artificially drop below 1 there. The effect of the

σ cutoff is considered in the detailed analyses (see, e.g., Chael et al. 2019; EHTC VIII) and

briefly in § 2.6.

2.3 Code detail

We now describe the PATOKA pipeline (see Figure 2.1), in which simulated observables are

generated by ray tracing snapshots produced from numerical GRMHD simulations of the

black hole accretion flows. These two stages, GRMHD and GRRT, are separated for com-

putational efficiency, since GRMHD simulations are costly and multiple radiation models

can be applied to a single fluid snapshot without rerunning the fluid simulation. We now

describe the details of the three codes we use and place a particular emphasis on differences

between the versions we use and the code as described upon release. All of the codes used in

the PATOKA pipeline compute metric derivatives numerically and therefore support arbitrary

metrics through redefinition of the metric line element.
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Figure 2.1: An oil field in Marion County, Illinois. PATOKA is named in reference to the
Patoka Oil Terminal, which serves major pipelines in the second district of the Petroleum
Administration for Defense Districts. Image credit: Arthur Rothstein / Farm Security Ad-
ministration Office Of War Information.

2.3.1 General relativistic magnetohydrodynamics

We use the iharm code (Gammie et al. 2003; Noble et al. 2006, 2009) to integrate the

equations of ideal GRMHD. Porth et al. (2019) provides a comparison of contemporary

GRMHD codes in the context of SANE accretion flows. iharm is a conservative second-order

explicit shock-capturing finite-volume code for arbitrary stationary spacetimes, a descendant

of harm2d (J. Dolence, priv. communication), and based on the harm scheme of Gammie et al.

(2003). The code is publicly available.7 Validation and scaling tests are described in Gammie

et al. (2003) and show second-order convergence on a suite of test problems.

The governing equations of ideal GRMHD take the form of a system of hyperbolic partial

differential equations. In conservative form and written in a coordinate basis, the equations
7https://github.com/afd-illinois/iharm3d
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are

∂t
(√−gρut

)
= −∂i

(√−gρui
)
, (2.27)

∂t
(√−gT tν

)
= −∂i

(√−gT iν
)

+
√−gT κλΓλνκ, (2.28)

∂t
(√−gBi

)
= −∂j

[√−g
(
bjui − biuj

)]
, (2.29)

∂i
(√−gBi

)
= 0, (2.30)

where the plasma is defined by its rest mass density ρ0, its four-velocity uµ, and bµ is the

magnetic field four-vector following McKinney & Gammie (2004). Here, g ≡ det(gµν) is

the determinant of the covariant metric, Γ is a Christoffel symbol, and i and j denote

spatial coordinates. In Equations 2.29 and 2.30, we leverage the ideal MHD condition8

uµF
µν = 0 to express the electromagnetic field tensor F µν in terms of Bi ≡ ?F it for notational

simplicity. The stress–energy tensor T µν contains contributions from both the fluid and the

electromagnetic field

T µν =
(
ρ+ u+ P + bλbλ

)
uµuν +

(
P +

bλbλ
2

)
gµν − bµbν , (2.31)

where u is the internal energy of the fluid and the fluid pressure P is related to its internal

energy through a constant adiabatic index γ̂ with P = (γ̂ − 1)u.

The equations are solved over a logically Cartesian, three-dimensional grid in arbitrary

coordinates. Eight primitive variables,9 ρ, u, V i, and Bi, are stored at the center of each

grid zone and evolved forward across Kerr–Schild time steps. Fluxes are computed using the

local Lax–Friedrichs method (Rusanov, 1962), and the divergence constraint of Equation 2.30

is enforced using the Flux–CT scheme described in Tóth (2000, see also Balsara & Spicer

1999). The fifth-order WENO5 scheme (Jiang & Shu, 1996) is typically used for spatial

reconstruction. The code is parallelized across contiguous domain chunks using MPI (Forum,
8In general, the electric field in the frame of the plasma is Eµ = uνF

µν . In ideal MHD, the infinite
conductivity of the plasma allows charges to reposition themselves quickly enough so that Eµ = 0.

9Eight variables are saved for basic, ideal GRMHD. Extra variables may be tracked in extensions.
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1994) and within each chunk using OpenMP (Dagum & Menon, 1998). iharm imposes a

constant floor on plasma β and a geometric floor on ρ. It also imposes ceilings on σ, Θe,

the fluid velocity measured with respect to the coordinate frame, and optionally the fluid

entropy Pgas/ρ
γ̂.

Simulations are typically run in augmented versions of the horizon-penetrating modified

Kerr–Schild (MKS) coordinates introduced in Gammie et al. (2003). In MKS, the three

spatial coordinates x1, x2, x3 are direct functions of radius, latitude, and azimuth respectively.

The inner radial boundary of the simulation is chosen to ensure that & 5 zones lie within the

event horizon. The outer edge of the boundary is chosen so that the torus lies comfortably

within the simulation domain. We use outflow boundary conditions along the two radial

boundaries, a periodic boundary condition in the azimuthal direction, and a pseudo-reflecting

boundary condition at the two latitudinal poles that mirrors the x2 elevational components

of the magnetic field and fluid velocity across the one-dimensional border.

iharm supports the subgrid electron heating method of Ressler et al. (2015) to track nu-

merical dissipation and consistently heat electrons with some fraction of the total dissipated

energy according to a prescription that is often motivated by kinetic studies of magnetic

reconnection, turbulent heating, shock heating, or Ohmic heating. When the electron ther-

modynamics module is active, the code outputs two extra variables—functions of the total

fluid entropy and the electron entropy—in addition to the base eight primitive variables

listed above.

We initialize the fluid sector of our accretion disk simulations with a Fishbone & Moncrief

(1976, hereafter FM) torus. We seed the initial condition with a small random perturbation

in u away from equilibrium in order to set off the magneto-rotational instability (Balbus &

Hawley, 1991) and begin accretion onto the hole.10 We parameterize the FM torus by its

inner edge at r = rin and the radius of the maximum pressure at r = rmax.
10An unperturbed torus is also unstable to the Papaloizou & Pringle (1984) instability.
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We simulate both SANE and MAD accretion flows. Although the steady state magnetic

flux is not trivially related to the initial conditions of the simulation, we implement config-

urations that have been identified in previous work and shown to produce either SANE and

MAD flows. Mechanically, the initial condition for the magnetic field is determined from

a prescribed, axisymmetric electromagnetic vector potential Aφ(r, φ), which is computed at

simulation zone corners.

SANE disks are generated from

Aφ = max

[
ρ

ρmax

− 0.2, 0

]
, (2.32)

where ρmax is the maximum initial plasma density. MAD disks are generated from

Aφ = max

[
ρ

ρmax

(
r

r0

sin θ

)3

e−r/400 − 0.2, 0

]
, (2.33)

where r0 is chosen to be the inner boundary of the simulation domain. This prescription

concentrates the initial magnetic field toward the inner edge of the disk and forces it to taper

at large r. (See Figure 5.1 and the surrounding discussion for examples.)

2.3.2 Ray-tracing images

ipole (Mościbrodzka & Gammie, 2018) is a publicly available GRRT code for covariant

polarized radiative transfer and is a descendant of the unpolarized image code ibothros

(Noble et al., 2007). ipole produces a rectangular polarimetric image defined by a field

of view (width in GM/c2, or translated to µas in the context of EHT sources), distance

from the black hole (dsource), and orientation with respect to the black hole spin axis and

midplane (inclination and position angle). Each pixel reports the specific intensities for the

Stokes parameters Iν , Qν , Uν , Vν at the pixel center as well as the total optical and Faraday

depths along the pixel-centered geodesic.

ipole is an observer-to-emitter code, meaning that only geodesics that intersect a pre-
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defined pinhole camera (observer) are considered. The camera is defined by a particular

coordinate xµc and an orthonormal tetrad specified by the normal observer velocity,11 a ra-

dially directed wavevector, and the black hole spin axis. The pinhole camera defines an

image with pixels that all intersect xµc and are regularly spaced in angle as measured in the

tetrad frame. This prescription ensures that the central pixel corresponds to a geodesic with

impact parameter zero. The geodesic for each pixel is integrated backwards toward the black

hole (i.e., the emitting matter) until it leaves the simulation domain. The radiative transfer

equation is then solved forwards toward the camera.

ipole solves Equation 2.11 in two independent stages. In the first stage, it numerically

integrates and parallel-transports the coherency tensor Nαβ along the geodesic. In the sec-

ond stage, it projects Nαβ into a Stokes vector S = (I,Q, U, V ) in a local fluid tetrad,12

evaluates transfer coefficients in that tetrad, and uses an analytic solution to update S be-

fore translating it back to Nαβ for the next step. The analytic solution ensures numerical

stability when the plasma has large optical or Faraday depths, since the geodesic step size

is not determined by the local plasma properties. The above approach is coordinate agnos-

tic, since all geometric factors are computed numerically from the metric. A comparison of

contemporary unpolarized GRRT codes is available in Gold et al. (2020).

The Illinois version of ipole, which is used in the PATOKA pipeline, implements several

new features and differs from the originally published version in several ways, which we

describe below. Both the originally published version of ipole and the Illinois version are

publicly available.13 ipole converges at second order.
11Earlier camera prescriptions defined the camera in the frame with uµ ∝ (1, 0, 0, 0).
12Because we treat synchrotron radiation, it is convenient to construct the tetrad from the fluid uµ, the

geodesic wavevector kµ, and the local magnetic field orientation bµ.
13The version of ipole described in this document can be found at https://github.com/afd-illinois/

ipole as version 1.4.
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Tracking the emission source

Since we aim to connect observables to the underlying fluid and black hole physics, it is useful

to be able to study where the emission is produced. In order to compute what fraction of

the emission produced by a given volume will contribute to an image, it is necessary to

specify the location of the observer, since the emission coefficients depend on the photon

wavevectors kµ through the local sampling frequency ν = −kµuµ and the pitch angle =

arccos (kµb
µ). Furthermore, strong lensing allows multiple geodesics to sample the same

region of space; since each geodesic has its own kµ, a bijective mapping between points in

space and emissivities does not exist.

Moreover, not all emitted light makes it to the observer. Light emitted near the event

horizon may fall into the hole, and the optical depth of the plasma between emission and

the observer will cause some light to be absorbed. It is straightforward to compute what

fraction of light makes it to the observer at infinity for the Stokes I total intensity by saving

the values computed at each geodesic step when solving the approximate radiative transfer

equation Equation 2.12.

We save the local optical depth and the local contribution to the intensity dI at each

step when solving the radiative transfer equation along the geodesic. After the full geodesic

has been traced, the absorptivity to any point along the geodesic can be computed as the

exponential of the total optical depth. The product of the local intensity contribution with

the absorption is computed per geodesic step and saved in an array representing the sim-

ulation domain. The process is validated after the complete image has been generated by

summing the flux contributed by each zone and comparing to the final total image flux.

Subring decomposition

Synthetic images of RIAF GRMHD simulations display a clear ring-like structure. This

structure is identified with the photon ring produced as strong lensing allows light paths to

wind around the black hole multiple times (see, e.g., Johnson et al. 2020). In aggregate,
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the composition of the subrings produces a quasi-exponentially divergence in brightness

temperature that is limited in part by the optical depth of the plasma.

Observable signatures of the photon ring structure have been probed by analytic work

(e.g., Gralla & Lupsasca 2020; Himwich et al. 2020; Vincent et al. 2021), but the detailed

structure of the observable photon ring may be heavily influenced by the structure of the

emitting plasma. We have included a subring decomposition routine in ipole that allows

the code to produce separate images for each subring. The subring structure is particularly

evident when the emission exhibits a non-trivial latitudinal structure, e.g., if the emission is

concentrated near the midplane and each subring contribution can be easily separated from

its neighbors.

Geodesics that pass close to the hole experience strong lensing and may undergo latitudi-

nal oscillations—this effect is most obvious for bound orbits, which circle the hole indefinitely

and undergo periodic oscillations as they sweep through a range of latitudes. Each event

xµ along a geodesic can be assigned an orbit-number n, corresponding to the number of

latitudinal turning points θ± between the event and the observer. This value can be directly

tracked and saved during the backward geodesic integration.

In order to synthesize the nth
target subring image, the emission coefficients jI,Q,U,V are zeroed

during the forward radiative transfer integration in regions of the geodesic with n 6= ntarget.

It is important to include parallel transport as well as absorption and rotation in regions

with n 6= ntarget, since although the subring image comprises only photons that were emitted

along the corresponding geodesic segment, we must account for how the photons interact

with matter and spacetime as they propagate to the observer.

Differences from the original version

We have slightly modified ipole from the originally published version in several ways:

1. ipole has been modified to read fluid snapshot files with arbitrary logical coordinate

systems through the use of the simcoords module. Using simcoords, ipole performs
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all ray-tracing in exponential Kerr–Schild (eKS) coordinates and uses an interpolated

grid map between eKS coordinates and the input snapshot coordinates. In order to

make use of the simcoords module, a fluid snapshot need only describe the location of

each grid zone in Kerr–Schild coordinates and provide the velocity and magnetic-field

vectors with Kerr–Schild components.

2. Several different methods for treating the σ magnetization cutoff have been imple-

mented. The default version treats σ as an interpolated scalar and simply zeros the

transfer coefficients in regions with σ > σcutoff by setting the number density of elec-

trons ne = 0. Alternative methods include gradually suppressing ne according to a

sigmoidal function of σ or zeroing ne on a per-zone basis according to zone-centered

values of σ. The choice of cutoff procedure may introduce image artifacts—see § 2.6

for more detail.

3. When evaluating fluid parameters along geodesics, we interpolate the scalars ne, u/ρ,

magnetic field strength as well as the six primitive variables that describe the fluid ve-

locity and magnetic field orientation. This procedure ensures that temperatures, which

are derived from u/ρ remain reasonable and that the interpolation scheme does not

lower the magnetic field strength in regions where the magnetic field oscillates wildly,

like near the jet–disk boundary. Then, by constructing uµ and bµ from the primitives,

we can ensure uµuµ = −1 and uµbµ = 0. We have observed that interpolating the

four-vector components directly tends to produce ≥ O(1) deviations from these cri-

teria within ≈ 2 GM/c2 of the event horizon. Deviations have been observed to be

catastrophic in some cases when the simcoords module is used.

2.3.3 Producing spectra

igrmonty (Dolence et al., 2009) is a Monte Carlo radiative transport code designed to gen-

erate spectra from GRMHD fluid simulation snapshot files of optically thin ionized plasmas.
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It accounts for the full angle- and frequency-dependence of emission and absorption, and it

treats single Compton scattering exactly. igrmonty is an emitter-to-observer code, meaning

it simulates emission at all frequencies and angles across the entire domain. This procedure

is slower than the observer-to-emitter procedure, but it more cleanly and easily accounts

for probabilistic scattering into the light of sight. The observer-agnostic treatment naturally

produces the full spectrum νLν as a function of elevation and azimuth around the black hole.

igrmonty tracks a Monte Carlo sample of the radiation field in the form of superphotons.

A superphoton with weight w is a packet of w � 1 photons, where each photon has the

same position xµ and wavevector kµ. Superphotons are created across the computational

domain according to the local emissivity of the plasma. In order to emit a target number

Ntarget of superphotons over the full simulation domain, the bolometric luminosity due to

emission is precomputed for each zone and used to determine what fraction of the Ntarget total

superphotons should be emitted per zone. This heuristic can produce a noisy signal when

the fluid simulation resolution is increased if there is non-trivial structure in the accretion

flow, thus higher fluid resolutions typically require a larger number of superphotons during

the spectrum-generation step.

To optimize signal in the spectrum, the weight factor w is conventionally chosen per

frequency according to the heuristic that each logarithmic bin in energy space should contain

approximately the same number of superphotons—note that we deviate slightly from this

procedure when including bremsstrahlung emission. Since it is impossible to predetermine

how many superphotons survive extinction on their journeys to the observer, we estimate how

the pre-computed weight factors should be set by assuming that all emitted photons escape to

infinity. We also neglect factors like redshift, scattering, and the ultimate angular dependence

of the spectrum. When a new superphoton is created, its frequency is chosen according to

rejection sampling and the rest of its wavevector is initialized in a local orthonormal tetrad

according to the pitch-angle-dependent emissivity prescription. Each superphoton saves its

initial position; this information can be used to infer properties of the emission region.
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After emission, the optical depths to both absorption and scattering are computed as the

superphotons propagate along their geodesics. Absorption is accounted for by decreasing

the weight w of the superphoton packet, which is directly proportional to the intensity of

the radiation packet.

igrmonty treats scattering in a probabilistic sense: a superphoton will scatter with some

probability at each step along its geodesic; if it scatters, the wavevector of the scattered su-

perphoton is evaluated in a local orthonormal tetrad and determined probabilistically from

the differential electron scattering cross section. In order to boost the signal in the Compton-

upscattered component of the spectrum, igrmonty uses a variant of the bias method intro-

duced in Kahn (1950). Although the likelihood p that a full superphoton will scatter may

be small in the optically thin plasmas we consider, the bias procedure enables a fraction

1/b of a fiducial superphoton to scatter with probability bp. If the superphoton scatters, its

weight is decreased to 1− 1/b and a new superphoton representing the scattered component

is created with weight 1/b.

igrmonty is publicly available,14 converges at second order in geodesic integration, and

converges like
√
Ns in the number of Monte Carlo radiation field samples. The PATOKA

version of igrmonty only solves the approximate (unpolarized) radiative transfer equation,

but recently Mościbrodzka (2020) introduced the RADPOL scheme, which accounts for fully

polarized synchrotron emission, absorption, Faraday rotation and conversion, and Compton

scattering.

Scattering bias factor

It is difficult to determine how the bias should be set before running the simulation. If it is

too low, too few superphotons will scatter and the Compton contribution to the spectrum

will be unusably noisy. If it is too high, the code could reach a “supercritical” state, in

which superphotons produced through scattering also undergo scattering events and the
14https://github.com/afd-illinois/igrmonty
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total number of superphotons diverges. Ideally, the bias should be set so that the number

of superphotons created through scattering is commensurate with the number emitted. In

all cases, the bias factor must be ≥ 1.

The bias parameter is typically scaled per zone by a trial bias factor that is set by the

square of the local electron temperature Θ2
e to improve resolution in the scattering events

with higher energies compared to the average. This trial bias is multiplied by a global

tuning factor btuning, which scales the scattering rate across the entire simulation. igrmonty

begins each run with a low resolution “bias tuning” step, during which btuning is varied until

the ratio between the number of superphotons created through scattering and the number

created through emission is approximately unity. The ratio is tracked in situ during the

tuning runs, and the evaluation is halted if the ratio exceeds a large number to ensure the

supercritical state can be preempted.

Bremsstrahlung

Yarza et al. (2020) found that bremsstrahlung emission may dominate the high-energy

(& 512 keV) component of the spectrum in radiative simulations of SANE accretion flows as

Ṁ is increased. In relativistic plasmas, both electron–electron and electron–ion bremsstrahlung

contribute to the total emissivity; igrmonty supports several contemporary prescriptions for

both emissivities (see the Appendix of Yarza et al. 2020 for a comparison of the prescrip-

tions). Since synchrotron and bremsstrahlung emission may be simultaneously non-zero,

each emitted superphoton is assigned a bremsstrahlung fraction value between zero and one.

This value is saved when the spectrum is recorded and can be used to determine how much

emission should be associated with which emission process.

Bremsstrahlung emission dominates direct synchrotron at higher frequencies where the

optical depth of the plasma is low. A naive application of the superphoton weight assign-

ment scheme described above may thus preferentially improve signal in the bremsstrahlung

component of the spectrum. This can be addressed by either: modifying the weighting proce-
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dure to independently generate weights for the lower frequency synchrotron emission and the

higher frequency bremsstrahlung emission; or independently generating spectrum from the

synchrotron- and bremsstrahlung-emission components and adding them together. Comp-

ton scattering is typically unimportant for bremsstrahlung emission, so the bremsstrahlung

calculation may be performed with scattering turned off.

Arbitrary electron distribution functions

igrmonty relies on the full electron distribution function both when computing the Compton

scattering cross section and during the scattering procedure when choosing an electron of

which to scatter. The version of the code published in Dolence et al. (2009) implemented

a semi-analytic treatment of the cross section and scattering sampling routines; here, we

instead use an analytic expression only for the distribution function itself and numerically

evaluate the cross section. We use the rejection sampling technique to sample the distribution

rather than rely on an inversion of the distribution function. Because this procedure relies

only on a prescription for the distribution function, it is quite general and supports any

isotropic distribution that can be written down as a function of local fluid parameters.

2.4 Sample data products

We now present example data products from each part of the PATOKA pipeline. The data we

show here were generated for the EHT M87 simulation library that was used for validation

in EHTC IV; EHTC VII and for analysis in EHTC V; EHTC VI; EHTC VIII.

2.4.1 GRMHD models

The GRMHD library generated by PATOKA for the EHT M87 analysis included two parts.

The first part comprised ten “canonical” simulations spanning the MAD and SANE accretion
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states and five spins a∗ = −15/16,−1/2, 0,+1/2,+15/16.15 Hereafter, we write 1/2 and

15/16 as 0.5 and 0.94 to be consistent with the EHT paper sequence. The second part

was composed of several dozen ancillary simulations used to the initial condition, disk size,

adiabatic index, and simulation resolution. Each of the models generated for the library was

evolved until at least t = 104 GM/c3, during which time its accretion flow is believed to reach

a statistical steady state within r ≤ 10 − 20 GM/c2. GRMHD fluid snapshots were saved

every 5 GM/c3, corresponding to ≈ 43 hours for a black hole with mass ≈ 6.2× 109 M�.

We only produced simulations with purely corotating (aligned) or counter-rotating (anti-

aligned) accretion flows, since varying disk tilt adds another dimension to the parameter

space and is thus prohibitively expensive. We only produced SANE simulations with φ ≈ 1,

although initial conditions that produce both φ � 1 and 1 . φ . φc accretion states are

known. The fluid was assumed to have a uniform constant adiabatic index for each simulation

γ̂, although the value of γ̂ was varied between different simulations.

Each simulation was run on a three-dimensional regular grid defined in the horizon-

penetrating FMKS coordinates, which concentrate resolution toward the midplane and away

from the jet at small radius (see § 2.7). We found that evolving a large disk over a long

time could cause an initially SANE accretion flow to go MAD, so we chose to initialize the

canonical SANEs with smaller accretion disks, allowing us to use smaller simulation domains

and lower absolute resolutions.

Figure 2.2 shows snapshots of the plasma rest-mass density ρ and magnetization σ over

the course of evolution of an intermediate-spin a∗ = 0.5 MAD simulation. The initial condi-

tion with a large Fishbone–Moncrief torus and an ordered, looping magnetic field, progres-

sively gives way to a turbulent accretion flow with a low-density high-magnetization funnel

containing a strong, ordered magnetic field. The qualitative difference between the MAD and

SANE accretion morphologies is shown in Figure 2.3. The MAD simulation is punctuated

by magnetic bubbles corresponding to flux ejection events.
15Here, negative values of spin imply that the angular momentum of the hole and the disk are anti-parallel,

i.e., a “retrograde” disk.
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Figure 2.2: GRMHD simulation of a MAD accretion flow at a∗ = 0.5. Top panels show
rest-frame plasma density at three different times over the course of the simulation; the line
integral convolution technique is used to represent the motion of the plasma. The bottom
panels show magnetization with overplotted field lines at the same times as the top panels.
The black hole event horizon is plotted as a dark circle. As the simulation evolves, the flow
becomes increasingly turbulent and a high-magnetization jet region opens around the poles.
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Figure 2.3: Comparison of density, plasma β, and magnetization σ in the midplane of MAD
and SANE simulations with intermediate spin a∗ = 0.5. In the MAD simulation, the accre-
tion proceeds in thin strands, contrasting the steady but turbulent disk-like SANE accretion
mode. The evacuated regions in the MAD simulation with low β and high σ are magnetic
bubbles produced during the flux ejection events that episodically recur when an excess of
magnetic flux has been trapped on the event horizon.
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2.4.2 Electromagnetic observables

The GRMHD simulations were post-processed to generate images and spectra using ipole

and igrmonty. In total, over 120000 images were generated for the canonical M87 total

intensity and polarization analyses, and over 3 million were generated for supporting analy-

ses, including resolution and field-of-view studies, explorations of the analyses robustness to

changes in numerical parameters like geodesic step size, and machine learning projects. The

full set of radiative transport model parameters is described below.

For the images produced for the EHT M87 sequence and discussed here, we assume

that the accreting plasma is composed of pure ionized hydrogen, so that y = z = 1 in

Equation 2.26. We fixed βcrit = 1 and allowed the two parameters in Equation 2.21 to

vary between rlow = 1, 10 and rhigh = 1, 10, 20, 40, 80, 160. See Event Horizon Telescope

Collaboration et al. (2019e) and Event Horizon Telescope Collaboration et al. (2021b) for a

discussion of the motivation behind these choices.

The library discussed here was generated to compare against observations of M87, so it

was generated using physical parameters that would target that system. The inclination

angle i was chosen to be consistent with the orientation of the M87 jet at large scales,

i ≈ 17◦ (Hada et al., 2017; Kim et al., 2018; Walker et al., 2018), so we produced a library

with inclinations ranging over multiple inclinations i = 7, 12, 17, 22, 27 degrees relative to

the line of sight. We do not know a priori whether the black hole spin axis is directed

toward or away from us. An exploratory survey of the library showed that it was necessary

to orient the black hole spin vector away from Earth in order to reproduce both the image

brightness asymmetry and the position angle of the large scale jet (Event Horizon Telescope

Collaboration et al., 2019e). The position angle of the spin axis can be reoriented during

analysis by rotating both the image and the per-pixel EVPA.

In order to perform radiative transfer, the GRMHD simulation mass density was scaled

to physical units by requiring that the simulated compact flux at 230 GHz was consistent

with a contemporaneous target flux drawn from observations (see Event Horizon Telescope

49



0

10

20

30

40
ṁ
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Figure 2.4: Time series of flux variables from the MAD a∗ = 0.5 simulation. Top panel: mass
accretion rate in arbitrary code units versus time. Center panel: dimensionless magnetic flux
φ versus time. Bottom panel: Light curves at ν = 230 GHz for rlow = 1 and different rhigh

values. The light curves have been scaled to match a 1 Jy target flux over the last 5000GM/c3

of the simulation. The first half of the simulation is dominated by a transient from the torus
initial condition. Notice that stability in ṁ and φ does not necessarily equate to stability in
the 1.3 mm flux.

Collaboration et al. 2019d for more detail on identifying the target flux). The relationship

between the scaling factor M and total flux Ftot is a complicated function of the details

of the accretion flow, but it tends to be monotonic near the target value, so identifying

the appropriate scaling factor corresponds to a simple root-finding procedure. Since the

fitting procedure is expensive, the flux is typically fit using the approximate total intensity

solution over a regular subsample of the snapshots at low resolution. The quality of the fit is

substantiated when the high resolution data are generated. After identifying the value of M

required to produce the target flux, every snapshot from each GRMHD model is typically

imaged, producing a sequence with a 5 GM/c3 cadence.

The result of running the flux-fitting procedure is shown in Figure 2.4 for the canonical
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Figure 2.5: Example polarimetric images of MAD a∗ = 0.5 simulation produced by ipole
with (bottom) and without (top) blurring to 15 µas Gaussian beam. Panels show total
intensity, linear polarization fraction, electric vector position angle (EVPA), and circular
polarization fraction. Blurring decreases the observed linear polarization fraction in regions
where EVPA is rapidly varying.

MAD a∗ = 0.5 GRMHD simulation with rlow = 1 and i = 17◦. The unscaled mass accretion

rate of the system ṁ and the dimensionless magnetic flux parameter φ are also plotted for

comparison. Here, the light curves have been fit so that the average 230 GHz flux matches

1 Jy over the last 5000 GM/c3 of the simulation.

Figure 2.5 shows an example synthetic image from the MAD a∗ = 0.5 model with rlow = 1

and rhigh = 40 at i = 17◦. Each pixel contains the full polarimetric Stokes I,Q, U, V specific

intensities, which can be processed to provide information about the linear polarization

fraction LP =
√
Q2 + U2/I, EVPA χ, and circular polarization fraction CP = V/I. Blurring

is performed by convolving the Stokes intensities with a Gaussian beam.

Figure 2.6 shows the result of the ring decomposition procedure used to isolate the differ-

ent subrings in a ray-traced image (see, e.g., Figure 3 of Johnson et al. 2020 for cross sections

of a similar decomposition). Each next subring is exponentially demagnified compared to

the last one; the image resolution and increasing optical depth of the source limit how many

subrings contribute to the composite image.

ipole can be used to track the source of the observed flux, as seen in Figure 2.7. All
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Figure 2.6: Decomposition of the total intensity into first three subrings for a snapshot from
the high spin a∗ = 0.94 MAD model with rlow = 1, rhigh = 10, and i = 17◦. The intensity
produced in the n = 0, n = 1, and n = 2 subrings are shown in the right three panels, and
the location of the critical curve is plotted as a dashed line in green. The left panel shows a
composite image produced by adding the n = 0 subring in red, n = 1 subring in blue, and
n = 2 subring in green.

MAD simulations tend to show the same characteristic fragmentary emission structure, which

corresponds to the disjoint accretion (see, e.g., the top left panel of Figure 2.3). Much

of the emission in the MAD case is thus produced in the hot, chaotic region of the flow

near the horizon. SANE emission is comparatively more structured. Changing the electron

temperature model in the SANE simulations can have drastic effects by heating up the jet

funnel and shifting emission out of the disk.

Running igrmonty is significantly more computationally expensive than running ipole,

so it is infeasible to generate spectra for every fluid snapshot across every radiation model.

The two spectrum constraints considered in the EHT analysis were the overall radiative effi-

ciency of the flow and a boolean determination if the simulation X-ray flux was consistently

too high. At minimum, we generate ten spectra per radiation model, but we checked that

producing a denser sampling of spectra in time does not change the statistical result. Fig-

ure 2.8 shows example spectra produced from one MAD and one SANE snapshot at rlow = 1

and across different values of rhigh.
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Figure 2.7: Location of emission around high spin black holes with a∗ = 0.94. Top: three-
dimensional render of emission source with color and transparency determined by the total
emission produced within that region of space. Bottom: the same data as above after
summing across the azimuthal dimension φ. The left column is a typical representation of
emission from a MAD simulation; emission tracks the fragmentary plasma. The right two
columns represent emission from the same SANE simulation snapshot but with different
electron temperature prescriptions. Larger values of rhigh shift the emission from the turbu-
lent but steady disk into the funnel region. All simulations have rlow = 1 and are imaged at
i = 17◦. The total flux produced by each simulation is the same, so the color scales show
the relative concentration of emission in the azimuthal sum.
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Figure 2.8: Example spectra for MAD (left) and SANE (right) snapshots at low inclination
in an rlow = 1 model. The spectra for rhigh = 1, 10, 40, 160 are included. All data points are
taken from the simultaneous multi-wavelength measurement campaign performed coincident
with the 2017 EHT observations of M87 and reported in The EHT MWL Science Working
Group et al. (2021).

2.5 Future directions

We now briefly discuss future directions as well as improvements and modifications that can

be made to the PATOKA pipeline.

2.5.1 Radiative transfer model

ipole produces images calculated at a single frequency, which neglects the observing band-

width of the instrument. Extensions to the ray-tracing code could allow for synthesis of finite

bandwidth observations; however, this approximation has been found to be inconsequential

in the context of the M87 library.

Our treatment generally assumes that the electron distribution function is thermal, i.e.,

that it is well described by a Maxwell–Jüttner distribution. This assumption enters through

definition of the transfer coefficients, which are calculated from the underlying distribution

function (see, e.g., Shcherbakov 2008; Pandya et al. 2016, 2018). The introduction of non-

thermal electrons can change both the spectral shape and the image morphology (e.g., Özel
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et al. 2000; Yuan et al. 2003; Broderick & Loeb 2009; Chael et al. 2017; Mao et al. 2017;

Davelaar et al. 2018).

GRMHD simulations produce snapshots of the fluid at different, discrete Kerr–Schild

times. The data we present were generated under the fast light approximation, where only

a single snapshot is used to generate an image or spectrum. This approximation is invalid if

the fluid evolves on timescales shorter than the simulation light-crossing time or if one wishes

to simulate various time-dependent phenomena, like light echoes from flares or glimmer (e.g.,

Broderick & Loeb 2005; Moriyama & Mineshige 2015; Wong 2021; Hadar et al. 2021).

The alternative slow light method relies on a high fluid snapshot cadence, has large data

storage requirements, and has a high throughput cost, which is associated with ray tracing

through different time slices. Although not presented here, several slow light simulations

were generated to confirm that the fast light approximation does not seriously affect the

library results.

2.5.2 Radiative effects

The pipeline we have described used ideal GRMHD to generate the fluid simulations; we

have assumed that M87 can be described by models in which radiative cooling is negligible

so that it does not affect the dynamics of the plasma. This assumption was probed in Event

Horizon Telescope Collaboration et al. (2019e), but it is likely that a full radiative treatment

of the fluid simulation will be required in future analyses.

The M87 jet funnel may be populated by electron–positron pairs, produced either via

cascades (e.g., Beskin et al. 1992; Levinson & Rieger 2011; Broderick & Tchekhovskoy 2015;

Hirotani & Pu 2016) or drizzle (Mościbrodzka et al., 2011; Laurent & Titarchuk, 2018;

Kimura & Toma, 2020; Wong et al., 2021b). Ideal GRMHD cannot produce unscreened

electric fields and therefore cannot track pair cascades. Computing the cross sections for

pair drizzle often requires a high resolution sample of the radiation field, so it is expensive

to track in situ in GRMHD simulations and is often evaluated in a post-processing step.
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Future study is warranted to investigate the signatures of pair plasma emission and whether

or not pairs can populate the jet.

2.5.3 The accretion model

The library presented in Section 2.4 is not comprehensive. A more dense sampling of spin

may enable a better understanding of how spin affects observables, particularly as spin

approaches its maximal value a∗ = ±1. The transitory regime in which the magnetic flux

increases from the comfortably SANE state toward the MAD state has been explored, but

no dense parameter survey yet exists. The tilted-disk scenario merits further attention and

study, even though it increases the size of the parameter space.

A detailed study of the convergence properties of GRMHD simulations both with respect

to spatial resolution and simulation duration would be valuable, as would a systematic

survey of how the initial conditions affect the statistical properties of the fluid evolution and

electromagnetic observables.

2.6 Interpolation and the σ cutoff in detail

GRMHD codes are unable to robustly model fluid evolution in regions with high magnetiza-

tion, so they often rely on limiting (“flooring”) procedures to ensure the numerical stability

of the algorithm. The flooring procedures introduce extra, artificial mass and energy, so they

must be accounted for when performing ray tracing to generate electromagnetic observables.

The standard procedure involves masking each fluid snapshot according to a threshold mag-

netization value σcut. One would hope that the choice of σcut does not materially affect the

simulated observables, but it has been observed to alter the morphology of images, especially

in simulations of hot MAD flows (see, e.g., Chael et al. 2018a).

Unfortunately, depending on the interpolation algorithm used to reconstruct fluid vari-

ables at non-zone-centered locations, the use of a σ mask may also introduce a ridge feature
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Figure 2.9: Comparison of log-scaled total intensity image using zone-based vs. interpolated-
σ cutoffs. The cutoff is implemented by zeroing the electron number density in both panels.
The sharp edges are due to interpolation artifacts due to how linear interpolation deals with
rapidly varying quantities on a nearly-regular grid. Notice that ridges are still present in the
interpolated-σ cutoff image; they are particularly visible near the bottom of the image.

in simulated images that is due to the resolution of the underlying fluid snapshot. Figure 2.9

shows severe (left) and minor (right) examples of the effect. The left panel shows the former

default piecewise constant interpolation scheme for σ that zeroed the zone-centered electron

number density and introduces sharp boundaries in the image at low intensities. The right

panel shows the same image but when σ is (tri-)linearly interpolated and the mask is applied

directly to the emissivity at each geodesic step.

Even in the right panel, ridges can still be seen near the bottom of the image. This is due

to the linear interpolation scheme, which produces values with discontinuous first derivative

at zone centers. In multiple dimensions, the interpolation artifacts are particularly clear:

Figure 2.10 shows the interpolated values of a smoothly varying scalar that has been sampled

only at zone centers. When the interpolated value is used to mask the transfer coefficients

along the geodesics (shown in white in the image), then neighboring geodesics may have

noticeably different path lengths.
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Figure 2.10: Path of five neighboring geodesics (white lines) plotted over bilinearly inter-
polated magnetization σ (color, rapidly varying rainbow color scale). The σ = 1 surface is
denoted with a solid black line, and zone boundaries are denoted by the dotted black lines.
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value of σ at all other points is reconstructed using bilinear interpolation. The interpolation
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produce ridges even when the value of σ is determined from an interpolated value.
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2.7 FMKS coordinates in detail

Funky modified Kerr–Schild (FMKS) coordinates xµ = (x0, x1, x2, x3) are an extension to the

modified Kerr–Schild (MKS) coordinates introduced in Gammie et al. (2003). Positive inte-

ger superscripts in this section should be interpreted as indices, not exponents. MKS coordi-

nates are themselves a modification of the horizon-penetrating Kerr–Schild xµ = (t, r, θ, φ).

Modifications were chosen to both reduce computational cost and increase effective resolu-

tion by concentrating zones in regions of the domain where more interesting physics occurs

(like the midplane and near the horizon at small radii) and derefining unnecessary small

zones. Each of FMKS, MKS, and KS is axisymmetric in φ.

Both MKS and FMKS coordinates use an exponential radial coordinate x1 ≡ log(r),
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which increases the number of zones at small radii where both the relevant dynamical

timescale is shorter and it is more important to recover the detailed dynamics of the flow.

FMKS makes two modifications to the elevation coordinate x2. The first reproduces MKS

and increases the number of zones near the midplane by introducing a sinusoidally varying

dependence of ∆(x2) on θ, as

θg ≡ πx2 +
1

2
(1− h) sin

(
2πx2

)
, (2.34)

where h is the midplane “finification” parameter, which we set to h = 0.3.

FMKS also introduces a cylindrification in θ whereby zones that are near the poles but

are at small radii have larger elevational extent. This choice is meant to increase the required

numerical time step, which is set by the minimum of the signal-crossing time over all zones.

The signal-crossing time in zones near the funnel often approaches the speed of light, and

thus this fact combined with the structure of spherical geometry (which keeps the number

of azimuthal zones constant regardless of θ) results in many small zones with fast signal

crossing times. Thus, through cylindrification, we increase the size of the smallest zones and

similarly gain an increase in time step. The cylindrification is achieved by defining

θj = N
(
2x2 − 1

)
(

1 +

(
2x2 − 1

B (1 + α)1/α

)α)
+ π/2, (2.35)

where α and B are parameters and where

N =
π

2

(
1 +

B−α

1 + α

)−1

(2.36)

is a normalization term. Finally, the Kerr–Schild colatitudinal coordinate is

θ = θg + exp
[
−s∆x1

]
(θj − θg) (2.37)
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where ∆x1 = x1−log [rin] measures the FMKS distance from the inner edge of the simulation.

In our simulations, we take s = 0.5, B = 0.82, and α = 14.

We do not believe that the above coordinate definition is analytically invertible for xµ(xµ),

so a nonlinear root-finding step may be required to find the FMKS coordinates for a KS event,

e.g., when setting the camera position during ray tracing.
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Chapter 3

Interpreting M87: Total intensity

In 2017, the Event Horizon Telescope (EHT) observed the compact radio source at the center

of the elliptical galaxy M87 at 1.3 mm with extremely high angular resolution. In this chapter,

I discuss my contribution to the theoretical analysis of the asymmetric ring that is visible

in the 2017 EHT data. I discuss the construction of a large library of GRMHD simulation

models and synthetic images and how the library was compared against observed visibilities.

The model consistency shows that the observed asymmetric ring and shadow are consistent

with earlier predictions of strong gravitational lensing of synchrotron emission from a hot

plasma orbiting near the black hole event horizon in a background Kerr spacetime. The ring

radius and ring asymmetry depend on black hole mass and spin orientation, respectively,

and both are therefore expected to be stable when observed in future EHT campaigns. If

the black hole spin and M87’s large scale jet are aligned, then the black hole spin vector is

pointed away from Earth. I discuss how models of non-spinning black holes are inconsistent

with the observations because they do not produce sufficiently powerful jets. At the same

time, in those models that produce a sufficiently powerful jet, the latter is shown to be

powered through a Blandford–Znajek-like mechanism.

3.1 Introduction

In 1918, the galaxy Messier 87 (M87) was observed by Curtis and found to have “a curious

straight ray ... apparently connected with the nucleus by a thin line of matter” (Curtis,

This chapter has been adapted from work with collaborators in the Event Horizon Telescope collaboration
that was published as ApJL, Volume 875, Issue 1, L5., 2019.
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1918). Curtis’s ray is now known to be a jet, extending from sub-pc to several kpc scales,

and can be observed across the electromagnetic spectrum, from the radio through γ-rays.

Very Long Baseline Interferometry (VLBI) observations that zoom in on the nucleus, probing

progressively smaller angular scales at progressively higher frequencies up to 86 GHz by

Global mm-VLBI array (GMVA) (e.g., Hada et al., 2016; Walker et al., 2018; Boccardi et al.,

2017; Kim et al., 2018), have revealed that the jet emerges from a central core. Models of

the stellar velocity distribution imply a mass for the central core M ≈ 6.2 × 109M� at a

distance of 16.9 mpc (Gebhardt et al., 2011); models of arcsecond-scale emission lines from

ionized gas imply a mass that is lower by about a factor of two (Walsh et al., 2013).

The conventional model for the central object in M87 is a black hole surrounded by a

geometrically thick, optically thin, disk accretion flow (e.g., Ichimaru, 1977; Rees et al., 1982;

Narayan & Yi, 1994, 1995b; Reynolds et al., 1996). The radiative power of the accretion

flow ultimately derives from the gravitational binding energy of the inflowing plasma. There

is no consensus model for jet launching, but the two main scenarios are that the jet is a

magnetically dominated flow that is ultimately powered by tapping the rotational energy

of the black hole (Blandford & Znajek, 1977) and that the jet is a magnetically collimated

wind from the surrounding accretion disk (Blandford & Payne, 1982; Lynden-Bell, 2006).

VLBI observations of M87 at frequencies ≥ 230 GHz with the Event Horizon Tele-

scope (EHT) resolve angular scales of tens of µas, comparable to that of the event horizon

(Doeleman et al., 2012; Akiyama et al., 2015; Event Horizon Telescope Collaboration et al.,

2019a,b,c, hereafter EHTC I, II, and III). They therefore have the power to probe the nature

of the central object and to test models for jet launching. In addition, EHT observations

can constrain the key physical parameters of the system, including the black hole mass and

spin, accretion rate, and magnetic flux trapped by accreting plasma in the black hole.

In this paper we adopt the working hypothesis that the central object is a black hole

described by the Kerr metric, with mass M and dimensionless spin a∗, −1 < a∗ < 1.

Here a∗ ≡ Jc/GM2, where J , G, and c are, respectively, the black hole angular momentum,
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gravitational constant, and speed of light. In our convention, a∗ < 0 implies that the angular

momentum of the accretion flow and that of the black hole are anti-aligned. Using general

relativistic magnetohydrodynamic (GRMHD) models for the accretion flow and synthetic

images of these simulations produced by general relativistic radiative transfer calculations,

we test whether the results of the 2017 EHT observing campaign (hereafter EHT2017) are

consistent with the black hole hypothesis.

This paper is organized as follows. In Section 3.2 we review salient features of the

observations and provide order-of-magnitude estimates for the physical conditions in the

source. In Section 3.3 we describe the numerical models. In Section 3.4 we outline our

procedure for comparing the models to the data in a way that accounts for model variability.

In Section 3.5 we show that many of the models cannot be rejected based on EHT data alone.

In Section 3.6 we combine EHT data with other constraints on the radiative efficiency, X-

ray luminosity, and jet power and show that the latter constraint eliminates all a∗ = 0

models. Section 3.7 provides a detailed report of the simulation results and implementation

choices. In Section 3.8 we discuss limitations of our models. In Section 3.9 we summarize

our results and discuss how further analysis of existing EHT data, future EHT data, and

multiwavelength companion observations will sharpen constraints on the models.

3.2 Estimates

Event Horizon Telescope Collaboration et al. (2019d) (hereafter EHTC V) presented images

generated from EHT2017 data (for details on the array, 2017 observing campaign, correlation,

and calibration see EHTC II; EHTC III). A representative image is reproduced in the left

panel of Figure 3.1.

Four features of the image in the left panel of Figure 3.1 play an important role in our

analysis: (1) the ringlike geometry, (2) the peak brightness temperature, (3) the total flux

density, and (4) the asymmetry of the ring. We now consider each in turn.
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Figure 3.1: Left: An EHT2017 image of M87 from EHTC IV (see their Figure 15). Center:
a simulated image based on a GRMHD model. Right: the model image convolved with a
20µas FWHM Gaussian beam. Although the most evident features of the model and data
are similar, fine features in the model are not resolved by EHT.

(1) The compact source shows a bright ring with a central dark area without significant

extended components. This bears a remarkable similarity to the long-predicted structure for

optically thin emission from a hot plasma surrounding a black hole (Falcke et al., 2000). The

central hole surrounded by a bright ring arises because of strong gravitational lensing (e.g.,

Hilbert, 1917; Bardeen et al., 1972; Luminet, 1979). The so-called “photon ring” corresponds

to lines of sight that pass close to (unstable) photon orbits (see Teo, 2003), linger near the

photon orbit, and therefore have a long path length through the emitting plasma. These lines

of sight will appear comparatively bright if the emitting plasma is optically thin. The central

flux depression is the so-called black hole “shadow” (Falcke et al., 2000), and corresponds to

lines of sight that terminate on the event horizon. The shadow could be seen in contrast

to surrounding emission from the accretion flow or lensed counter-jet in M87 (Broderick &

Loeb, 2009).

The photon ring is nearly circular for all black hole spins and all inclinations of the black

hole spin axis to the line of sight (e.g., Johannsen & Psaltis, 2010). For a a∗ = 0 black hole
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of mass M and distance D, the photon ring angular radius on the sky is

θp ≡
√

27GM

c2D
(3.1)

= 18.8

(
M

6.2× 109M�

)(
D

16.9 mpc

)−1

µas,

where we have scaled to the most likely mass from Gebhardt et al. (2011) and a distance

of 16.9 mpc (Blakeslee et al., 2009; Bird et al., 2010; Cantiello et al., 2018, see also Event

Horizon Telescope Collaboration et al. (2019f), hereafter EHTC VI). The photon ring angular

radius for other inclinations and values of a∗ differs by at most 13% from equation (3.1),

and most of this variation occurs at 1 − |a∗| � 1 (e.g., Takahashi, 2004; Younsi et al.,

2016). Evidently the angular radius of the observed photon ring is approximately ∼ 20µas

(Fig. 3.1 and EHTC VI), which is close to the prediction of the black hole model given in

equation (3.1).

(2) The observed peak brightness temperature of the ring in Figure 3.1 is Tb,pk ∼ 6×109 K,

consistent with past EHT mm-VLBI measurements at frequencies ≥ 230 GHz (Doeleman

et al., 2012; Akiyama et al., 2015), and GMVA 3 mm-VLBI measurements of the core region

(Kim et al., 2018). Expressed in electron rest-mass (me) units, Θb,pk ≡ kBTb,pk/(mec
2) ' 1,

where kB is Boltzmann’s constant. The true peak brightness temperature of the source is

higher if the ring is unresolved by EHT, as is the case for the model image in the center

panel of Figure 3.1.

The 1.3 mm emission from M87 shown in Figure 3.1 is expected to be generated by the

synchrotron process (see Yuan & Narayan, 2014, and references therein) and thus depends

on the electron distribution function (hereafter eDF). If the emitting plasma has a thermal

eDF then it is characterized by an electron temperature Te ≥ Tb, or Θe ≡ kBTe/(mec
2) > 1,

since Θe > Θb,pk if the ring is unresolved or if the ring is optically thin.

Is the observed brightness temperature consistent with what one would expect from

phenomenological models of the source? Radiatively inefficient accretion flow models of M87
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(Reynolds et al., 1996; Di Matteo et al., 2003) produce mm emission in a geometrically

thick donut of plasma around the black hole. The emitting plasma is collisionless: Coulomb

scattering is weak at these low densities and high temperatures. Therefore the electron

and ion temperatures need not be the same (e.g., Spitzer, 1962). In radiatively inefficient

accretion flow models, the ion temperature is slightly less than the ion virial temperature,

Ti ∼ 0.3Ti,vir = 0.3mpc
2rg/(3kBr) (3.2)

= 1.1× 1012(rg/r) K,

where rg ≡ GM/c2 is gravitational radius, r is the Boyer-Lindquist or Kerr–Schild radius, and

mp is the proton mass. Most models have electron temperature Te < Ti because of electron

cooling and preferential heating of the ions by turbulent dissipation (e.g., Yuan & Narayan,

2014; Mościbrodzka et al., 2016). If the emission arises at ∼ 5 rg, then Θe ' 37(Te/Ti),

which is consistent with the observed Θb,pk if the source is unresolved or optically thin.

(3) The total flux density in the image at 1.3 mm is ' 0.5 Jy. With a few assumptions

we can use this to estimate the electron number density ne and magnetic field strength B in

the source. We adopt a simple, spherical, one-zone model for the source with radius r ' 5 rg,

pressure nikTi + nekTe = βpB
2/(8π) with βp ≡ pgas/pmag ∼ 1, Ti ' 3Te, and temperature

θe ' 10θb,pk consistent with the discussion in (2), above. Setting ne = ni (i.e., assuming a

fully ionized hydrogen plasma), the values of B and ne required to produce the observed flux

density can be found by solving a nonlinear equation (assuming an average angle between

the field and line of sight, 60◦). The solution can be approximated as a power-law:

ne = 2.9× 104

(
r

5 rg

)−1.3

β0.62
p × (3.3)

(
Ti

3Te

)−0.47(
θe

10θb,pk

)−2.4

cm−3
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B = 4.9

(
r

5 rg

)−0.63

β−0.19
p × (3.4)

(
Ti

3Te

)0.14(
θe

10θb,pk

)−0.71

G

assumingM = 6.2×109M� andD = 16.9 mpc, and using the approximate thermal emissivity

of Leung et al. (2011). Then the synchrotron optical depth at 1.3 mm is ∼ 0.2. One can now

estimate an accretion rate from (3.3) using

Ṁ = 4πr2ρvr

∼ 4π(5rg)2 nemp (c/
√

5)

∼ 2.7× 10−3M� yr−1 (3.5)

assuming spherical symmetry. The Eddington accretion rate is

ṀEdd =
LEdd

εc2
=

2.2

ε

(
M

109M�

)
M� yr−1, (3.6)

where LEdd ≡ 4πGMcmp/σT is the Eddington luminosity (σT is Thomson cross section).

Setting the efficiency ε = 0.1 and M = 6.2 × 109M�, we find that ṀEdd = 137M� yr−1, so

Ṁ/ṀEdd ∼ 2.0 × 10−5. This estimate is similar to but slightly larger than the upper limit

inferred from the 230 GHz linear polarization properties of M87 (Kuo et al., 2014).

(4) The ring is brighter in the South than the North. This can be explained by a

combination of motion in the source and Doppler beaming. As a simple example we consider

a luminous, optically thin ring rotating with speed v and with angular momentum vector

inclined at a viewing angle i > 0◦ to the line of sight. Then the approaching side of the ring

is Doppler boosted, and the receding side is Doppler dimmed, producing a surface brightness

contrast of order unity if v is relativistic. The approaching side of the large scale jet in M87 is

oriented West-NorthWest (position angle PA ≈ 288◦; in EHTC VI this is called PAFJ), or to

the right and slightly up in the image. Walker et al. (2018) estimate that the angle between
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the approaching jet and the line of sight is 17◦. If the emission is produced by a rotating ring

with angular momentum vector oriented along the jet axis, then the plasma in the South is

approaching us and the plasma in the North is receding. This implies a clockwise circulation

of the plasma in the source, as projected onto the plane of the sky. This sense of rotation is

consistent with the sense of rotation in ionized gas at arcsecond scales (Harms et al., 1994;

Walsh et al., 2013). Notice that the asymmetry of the ring is consistent with the asymmetry

inferred from 43 GHz observations of the brightness ratio between the North and South sides

of the jet and counter-jet (Walker et al., 2018).

All of these estimates present a picture of the source that is remarkably consistent with

the expectations of the black hole model and with existing GRMHD models (e.g., Dexter

et al., 2012; Mościbrodzka et al., 2016). They even suggest a sense of rotation of gas close

to the black hole. A quantitative comparison with GRMHD models can reveal more.

3.3 The models

Consistent with the discussion in Section 3.2, we now adopt the working hypothesis that

M87 contains a turbulent, magnetized accretion flow surrounding a Kerr black hole. To

test this hypothesis quantitatively against the EHT2017 data we have generated a Simula-

tion Library of three-dimensional time-dependent ideal GRMHD models. To generate this

computationally expensive library efficiently and with independent checks on the results we

used several different codes that evolved matching initial conditions using the equations of

ideal GRMHD. The codes used include BHAC (Porth et al., 2017), H-AMR (Liska et al., 2018;

Chatterjee et al., 2019), iharm (Gammie et al., 2003), and KORAL (Sądowski et al., 2013b,

2014). A comparison of these and other GRMHD codes can be found in Porth et al. (2019),

which shows that the differences between integrations of a standard accretion model with

different codes is smaller than the fluctuations in individual simulations.

From the Simulation Library we have generated a large Image Library of synthetic images.
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Snapshots of the GRMHD evolutions were produced using the general relativistic ray-tracing

(GRRT) schemes ipole (Mościbrodzka & Gammie, 2018), RAPTOR (Bronzwaer et al., 2018),

and BHOSS (Younsi et al., 2020). A comparison of these and other GRRT codes can be found

in Gold et al. (2020).

In the GRMHD models the bulk of the 1.3 mm emission is produced within . 10 rg of the

black hole, where the models can reach a statistically steady state. It is therefore possible

to compute predictive radiative models for this compact component of the source without

accurately representing the accretion flow at all radii.

We note that the current state-of-the-art models for M87 are radiation-GRMHD models

that include radiative feedback and electron-ion thermodynamics (Ryan et al., 2018; Chael

et al., 2019). These models are too computationally expensive for a wide survey of parameter

space, so in this paper we only consider nonradiative GRMHD models with a parameterized

treatment of the electron thermodynamics.

3.3.1 Simulation library

All GRMHD simulations are initialized with a weakly magnetized torus of plasma orbiting

in the equatorial plane of the black hole (e.g., Gammie et al., 2003; De Villiers et al., 2003;

McKinney & Blandford, 2009; Porth et al., 2017). We do not consider tilted models, in

which the accretion flow angular momentum is misaligned with the black hole spin. The

limitations of this approach are discussed in Section 3.8.

The initial torus is driven to a turbulent state by instabilities, including the magnetorota-

tional instability (MRI, see e.g., Balbus & Hawley, 1991). In all cases, the outcome contains

a moderately magnetized midplane with orbital frequency comparable to the Keplerian or-

bital frequency, a corona with gas to magnetic pressure ratio βp ≡ pgas/pmag ∼ 1, and a

strongly magnetized region over both poles of the black hole with B2/ρc2 � 1. We refer to

the strongly magnetized region as the funnel, and the boundary between the funnel and the

corona as the funnel wall (De Villiers et al., 2005; Hawley & Krolik, 2006). All models in
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the library are evolved from t = 0 to t = 104 rgc
−1.

The simulation outcome depends on the initial magnetic field strength and geometry

insofar as these affect the magnetic flux through the disk, as discussed below. Once the sim-

ulation is initiated, the disk transitions to a turbulent state and loses memory of most other

details of the initial conditions. This relaxed turbulent state is found inside a characteristic

radius that grows over the course of the simulation. To be confident that we are imaging

only those regions that have relaxed, we draw snapshots for comparison with the data from

5× 103 < t/rgc
−1 < 104.

Untilted GRMHD models have two key physical parameters. The first is the magnitude of

the black hole spin a∗, −1 < a∗ < 1. The second parameter is the absolute magnetic flux ΦBH

crossing one hemisphere of the event horizon (see Tchekhovskoy et al., 2011; Porth et al., 2019,

for a definition). It is convenient to recast ΦBH in dimensionless form φ ≡ ΦBH

(
Ṁrg

2c
)−1/2

.

The magnetic flux φ is nonzero because magnetic field is advected into the event horizon

by the accretion flow and sustained by currents in the surrounding plasma. At φ > φmax ∼

15, 1 numerical simulations show that the accumulated magnetic flux erupts, pushes aside the

accretion flow, and escapes (Tchekhovskoy et al., 2011; McKinney et al., 2012). Models with

φ ∼ 1 are conventionally referred to as SANE (standard and normal evolution; Narayan et al.,

2012) models; models with φ ∼ φmax are conventionally referred to as MAD (magnetically

arrested disk; Igumenshchev et al., 2003; Narayan et al., 2003) models.

The Simulation Library contains SANE models with a∗ = −0.94, −0.5, 0, 0.5, 0.75,

0.88, 0.94, 0.97, and 0.98, and MAD models with a∗ = −0.94, −0.5, 0, 0.5, 0.75, and

0.94. The Simulation Library occupies 23 TB of disk space and contains a total of 43

GRMHD simulations, with some repeated at multiple resolutions across multiple codes to

check consistency (see Porth et al., 2019).

1In Heaviside units, where a factor of
√

4π is absorbed into the definition of B, φmax ' 15. In the
Gaussian units used in some earlier papers, φmax ' 50.
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3.3.2 Image library generation

To produce model images from the simulations for comparison with EHT observations, we

use GRRT to generate a large number of synthetic images and derived VLBI data products.

To make the synthetic images we need to specify: (1) the magnetic field, velocity field, and

density as a function of position and time; (2) the emission and absorption coefficients as a

function of position and time; (3) the inclination angle between the accretion flow angular

momentum vector and the line of sight i, the position angle PA, the black hole mass M , and

the distance D to the observer. In the following we discuss each input in turn. The reader

who is only interested in a high-level description of the Image Library may skip ahead to

Section 3.3.3.

(1) GRMHD models provide the absolute velocity field of the plasma flow. Nonradiative

GRMHD evolutions are invariant, however, under a rescaling of the density by a factor M .

In particular, they are invariant under ρ → M ρ, field strength B → M 1/2B, and internal

energy u→Mu (the Alfvén speed B/ρ1/2 and sound speed ∝
√
u/ρ are invariant). That is,

there is no intrinsic mass scale in a nonradiative model as long as the mass of the accretion

flow is negligible in comparison toM .2 We use this freedom to adjust M so that the average

image from a GRMHD model has 1.3 mm flux density ≈ 0.5 Jy (see EHTC IV). Once M is

set, the density, internal energy, and magnetic field are fully specified.

The mass unit M determines Ṁ . In our ensemble of models Ṁ ranges from 2×10−7ṀEdd

to 4×10−4ṀEdd. Accretion rates vary by model category. The mean accretion rate for MAD

models is ∼ 10−6ṀEdd. For SANE models with a∗ > 0 it is ∼ 5× 10−5ṀEdd; and for a∗ < 0

it is ∼ 2× 10−4ṀEdd.

(2) The observed radio spectral energy distributions (SEDs) and the polarization char-

acteristics of the source make clear that the 1.3 mm emission is synchrotron radiation, as

is typical for active galactic nuclei (AGN). Synchrotron absorption and emission coefficients
2For a black hole accreting at the Eddington rate, the ratio of the accreting mass onto a black hole to

black hole mass is ∼ 10−22(M/M�); in our models mass accretion rate is far below the Eddington rate.
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depend on the eDF. In what follows, we adopt a relativistic, thermal model for the eDF

(a Maxwell–Jüttner distribution; Jüttner, 1911; Rezzolla & Zanotti, 2013). We discuss the

limitations of this approach in Section 3.8.

All of our models of M87 are in a sufficiently low density, high temperature regime that

the plasma is collisionless (see Ryan et al. 2018 for a discussion of Coulomb coupling in

M87). Te therefore likely does not equal the temperature provided by the simulations. We

set Te using the GRMHD density ρ, internal energy density u, and plasma βp using a simple

model:

Te =
2mpu

3kρ(2 +R)
, (3.7)

where we have assumed that the plasma is composed of hydrogen, that the ions are nonrel-

ativistic, and the electrons are relativistic. Here R ≡ Ti/Te and

R = Rhigh

β2
p

1 + β2
p

+
1

1 + β2
p

. (3.8)

This prescription has one parameter, Rhigh, and sets Te ' Ti in low βp regions and Te '

Ti/Rhigh in the midplane of the disk. It is adapted from Mościbrodzka et al. (2016) and mo-

tivated by models for electron heating in a turbulent, collisionless plasma that preferentially

heats the ions for βp & 1 (e.g., Howes, 2010; Kawazura et al., 2019).

(3) We must specify the observer inclination i, the orientation of the observer through

the position angle PA, the black hole mass M , and the distance D to the source. Non-

EHT constraints on i, PA, and M are considered below; we have generated images at i =

12, 17, 22, 158, 163, and 168◦ and a few at i = 148◦. The position angle can be changed by

rotating the image. All features of the models that we have examined, including Ṁ , are

insensitive to small changes in i. The image morphology does depend on whether i is greater

than or less than 90◦, as we will show below.

The model images are generated with a 160 × 160µas field of view and 1µas pixels,

which are small compared to the ∼ 20µas nominal resolution of EHT2017. Our analysis is
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Figure 3.2: Time-averaged 1.3 mm images generated by five SANE GRMHD simulations with
varying spin (a∗ = −0.94 to a∗ = +0.97 from left to right) and Rhigh (Rhigh = 1 to Rhigh = 160
from top to bottom; increasing Rhigh corresponds to decreasing electron temperature). The
colormap is linear. All models are imaged at i = 163◦. The jet that is approaching us is on
the right (West) in all the images. The black hole spin vector projected onto the plane of
the sky is marked with an arrow and aligned in the East-West direction. When the arrow is
pointing left the black hole rotates in a clockwise direction and when the arrow is pointing
right the black hole rotates in a counterclockwise direction. The field-of-view for each model
image is 80µas (half of that used for the image libraries) with resolution equal to 1µas/pixel
(20 times finer than the nominal resolution of EHT2017, and the same employed in the
library images.)

insensitive to changes in the field of view and the pixel scale.

For M we use the most likely value from the stellar absorption-line work, 6.2 × 109M�

(Gebhardt et al., 2011). For the distance D we use 16.9 mpc, which is very close to that

employed in EHTC VI. The ratio GM/(c2D) = 3.62µas (hereafter M/D) determines the

angular scale of the images. We have also generated images with M = 3.5 × 109M� and

confirmed that the results are not predetermined by the input black hole mass.
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Figure 3.3: Same as in Fig. 3.2 but for selected MAD models.

3.3.3 Image library summary

The Image Library contains of order 60000 images. We generate images from 100 − 500

distinct output files from each of the GRMHD models at each of Rhigh = 1, 10, 20, 40, 80, and

160. In comparing to the data, we adjust the PA by rotation and the total flux and angular

scale of the image by rescaling images from the standard parameters in the Image Library

(see Fig. 29 in EHTC VI). Tests indicate that comparisons with the data are insensitive to

the rescaling procedure unless the angular scaling factor or flux scaling factor is large.3 We

find that the data comparison results are also insensitive to image resolution.4

A representative set of time-averaged images from the Image Library are shown in Fig-
3In particular the distribution of best-fit M/D, which is defined in Section 3.4, have mean and standard

deviation of M/D = 3.552 ± 0.605µas when the images are made with an input M/D = 3.62µas, and
3.564 ± 0.537µas when the images are made with an input M/D = 2.01µas. We have also checked images
made with an input 1.3 mm flux ranging from 0.1 to 1.5Jy and find relative changes in M/D and PA of less
than 1%.

4Doubling the image resolution changes the mean best-fit M/D by 7 nano-arcsec and the best-fit PA by
∼ 0.3◦.
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ures 3.2 and 3.3. From these figures it is clear that varying the parameters a∗, φ, and Rhigh

can change the width and asymmetry of the photon ring and introduce additional structures

exterior and interior to the photon ring.

The location of the emitting plasma is shown in Figure 3.5, which shows a map of time-

and azimuth-averaged emission regions for four representative a∗ > 0 models. For SANE

models, if Rhigh is low (high), emission is concentrated more in the disk (funnel wall), and

the bright section of the ring is dominated by the disk (funnel wall)5.

Figures 3.2 and 3.3 show that for both MAD and SANE models the bright section of

the ring, which is generated by Doppler beaming, shifts from the top for negative spin, to a

nearly symmetric ring at a∗ = 0, to the bottom for a∗ > 0 (except the SANE Rhigh = 1 case,

where the bright section is always at the bottom when i > 90◦). That is, the location of the

peak flux in the ring is controlled by the black hole spin: it always lies roughly ninety degrees

counterclockwise from the projection of the spin vector on the sky. Some of the ring emission

originates in the funnel wall at r . 8 rg. The rotation of plasma in the funnel wall is in the

same sense as plasma in the funnel, which is controlled by dragging of magnetic field lines

by the black hole. The funnel wall thus rotates opposite the accretion flow if a∗ < 0. This

effect is discussed in Wong et al. (2021a). The resulting relationships between disk angular

momentum, black hole angular momentum, and observed ring asymmetry are illustrated in

Figure 3.4.

The time-averaged MAD images are almost independent of Rhigh and depend mainly

on a∗. In MAD models much of the emission arises in regions with βp ∼ 1 where Rhigh

has little influence over the electron temperature, so the insensitivity to Rhigh is natural (see

Figure 3.5). In SANE models emission arises at βp ∼ 10, so the time-averaged SANE images,

by contrast, depend strongly on Rhigh. In low Rhigh SANE models, extended emission outside

the photon ring, arising near the equatorial plane, is evident at Rhigh = 1. In large Rhigh

SANE models the inner ring emission arises from the funnel wall and once again the image
5In GRMHD models the jet core is effectively empty and the density is set by numerical “floors.” In our

radiative transfer calculations, emission from regions with B2/ρ > 1 is explicitly set to zero.
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looks like a thin ring (see Figure 3.5).

approaching jet

accretion flow
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Figure 3.4: Illustration of the effect of black hole and disk angular momentum on ring
asymmetry. The asymmetry is produced primarily by Doppler beaming: the bright region
corresponds to the approaching side. In GRMHD models that fit the data comparatively
well, the asymmetry arises in emission generated in the funnel wall. The sense of rotation
of both the jet and funnel wall are controlled by the black hole spin. If the black hole spin
axis is aligned with the large scale jet, which points to the right, then the asymmetry implies
that the black hole spin is pointing away from Earth (rotation of the black hole is clockwise
as viewed from Earth). The blue ribbon arrow shows the sense of disk rotation, and the
black ribbon arrow shows black hole spin. Inclination i is defined as the angle between the
disk angular momentum vector and the line of sight.

Figure 3.6 shows an example image, set of visibility amplitudes, and closure phases

from one of the simulations. An animation of the figure over a 5000 rgc
−1 ≈ 5 yr interval

is available in the online version of Event Horizon Telescope Collaboration et al. (2019e).

Turbulence in the simulations produces large fluctuations in the images, which produce

changes in visibility amplitudes and closure phases that are large compared to measurement

errors. The fluctuations are central to our procedure for comparing models with the data,
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Figure 3.5: Binned location of the point of origin for all photons that make up an image,
summed over azimuth, and averaged over all snapshots from the simulation. The colormap
is linear. The event horizon is indicated by the solid white semicircle and the black hole
spin axis is along the figure vertical axis. This set of four images shows MAD and SANE
models with Rhigh = 10 and 160, all with a∗ = 0.94. The region between the dashed curves
is the locus of existence of (unstable) photon orbits (Teo, 2003). The green cross marks
the location of the ISCO in the equatorial plane. In these images the line of sight (marked
by an arrow) is located below the midplane and makes a 163◦ angle with the disk angular
momentum, which coincides with the spin axis of the black hole.

described briefly below and in detail in EHTC VI.

The timescale between different simulation images is 50 rgc
−1 ' 18 days, which is long

compared to EHT2017 observing campaign. The images are highly correlated on timescales

less than the innermost stable circular orbit (ISCO) orbital period, which for a∗ = 0 is

' 15 rgc
−1 ' 5 days, i.e., comparable to the duration of the EHT2017 campaign. If drawn
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Figure 3.6: Single frame from the accompanying animation. This shows the visibility ampli-
tudes (top), closure phases plotted by Euclidean distance in 6 dimensional space (middle),
and associated model images at full resolution (lower left) and convolved with the EHT2017
beam (lower right). Data from April 6th high-band are also shown in the top two plots.

from one of our models, we would expect the EHT2017 data to look like a single snapshot

(Figure 3.6) rather than their time averages (Figures 3.2 and 3.3).
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3.4 Comparing models with the data

Each model in the Simulation Library has two dimensionless parameters: black hole spin a∗

and magnetic flux φ. Imaging the model from each simulation adds five new parameters:

Rhigh, i, PA, M , and D, which we set to 16.9 mpc. After fixing these parameters we draw

snapshots from the time evolution at a cadence of 10 to 50 rgc
−1. We then compare these

snapshots to the data.

The simplest comparison computes the χ2
ν (reduced chi square) distance between the data

and a snapshot. In the course of computing χ2
ν we vary the image scale M/D, flux density

Fν , position angle PA, and the gain at each VLBI station in order to give each image every

opportunity to fit the data. The best-fit parameters (M/D,Fν ,PA) for each snapshot are

found by two pipelines independently: the Themis pipeline using a Markov chain Monte

Carlo (MCMC) method (Broderick et al., 2020), and the GENA pipeline using an evolutionary

algorithm for multidimensional minimization (see Fromm et al. 2019 and §4 of EHTC VI

for details). The best-fit parameters contain information about the source, and we use the

distribution of best-fit parameters to test the model by asking whether they are consistent

with existing measurements of M/D and estimates of the jet PA on larger scales.

The χ2
ν comparison alone does not provide a sharp test of the models. Fluctuations in

the underlying GRMHD model, combined with the high signal-to-noise ratio for EHT2017

data, imply that individual snapshots are highly unlikely to provide a formally acceptable fit

with χ2
ν ' 1. This is borne out in practice with the minimum χ2

ν = 1.79 over the entire set

of the more than 60000 individual images in the Image Library. Nevertheless, it is possible

to test if the χ2
ν from the fit to the data is consistent with the underlying model, using

“Average Image Scoring” with Themis (Themis-AIS), as described in detail in Appendix F

of EHTC VI. Themis-AIS measures a χ2
ν distance (on the space of visibility amplitudes and

closure phases) between a trial image and the data. In practice we use the average of the

images from a given model as the trial image (hence Themis-AIS), but other choices are

possible. We compute the χ2
ν distance between the trial image and synthetic data produced
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from each snapshot. The model can then be tested by asking whether the data’s χ2
ν is likely

to have been drawn from the model’s distribution of χ2
ν . In particular, we can assign a

probability p that the data is drawn from a specific model’s distribution.

In this paper we focus on comparisons with a single dataset, the 2017 April 6 high-band

data (EHTC III). The eight EHT2017 datasets, spanning four days with two bands on each

day, are highly correlated. The 2017 April 6th dataset has the largest number of scans, 284

detections in 25 scans (see EHTC III) and is therefore expected to be the most constraining.6

3.5 Model constraints: EHT2017 alone

The resolved ringlike structure obtained from the EHT2017 data provides an estimate of

M/D (discussed in detail in EHTC VI) and the jet PA from the immediate environment of

the central black hole. As a first test of the models we can ask whether these are consistent

with what is known from other mass measurements and from the orientation of the large

scale jet.

Figure 3.7 shows the distributions of best-fit values of M/D for a subset of the models

for which spectra and jet power estimates are available (see below). The three lines show

the M/D distribution for all snapshots (dotted lines), the best fit 10% of snapshots (dashed

lines), and the best fit 1% of snapshots (solid lines) within each model. Evidently, as better

fits are required, the distribution narrows and peaks close to M/D ∼ 3.6µas with a width of

about 0.5µas.

The distribution of M/D for the best fit < 10% of snapshots is qualitatively similar if

we include only MAD or SANE models, only models produced by individual codes (BHAC,

H-AMR, iharm, or KORAL), or only individual spins. Since the thrust of this paper is to test

the models, we simply note that Figure 3.7 indicates that the models are broadly consistent

with earlier mass estimates (see EHTC VI for a detailed discussion), although this did not

have to be the case.
6EHTC I and EHTC IV focus instead on the April 11 dataset.
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Figure 3.7: Distribution of M/D obtained by fitting Image Library snapshots to the April 6
data, in µas, measured independently using the (left) Themis and (right) GENA pipelines
with qualitatively similar results. Smooth lines were drawn with a Gaussian kernel density
estimator. The three lines show (solid) the best-fit 1% within each model; (dashed) the best-
fit 10% within each model; (dotted) all model images. The vertical lines show M/D = 2.04
(dashed) and 3.62µas (solid), corresponding to M = 3.5 and 6.2× 109M�. The distribution
uses a subset of models for which spectra and jet power estimates are available (see Section
3.6). Only images with a∗ > 0 , i > 90◦ and a∗ < 0 , i < 90◦ (see also left panel of figure
3.4) are considered.

We can go further and ask if any of the individual models favor large or small masses.

Figure 3.8 shows the distributions of best-fit values of M/D for each model (different a∗,

Rhigh, and magnetic flux). Most individual models favorM/D close to 3.6µas. The exceptions

are a∗ ≤ 0 SANE models with Rhigh = 1, which produce the bump in the M/D distribution

near 2µas. In these models, the emission is produced at comparatively large radius in the

disk (see Figure 3.2) because the inner edge of the disk (the ISCO) is at large radius in

a counterrotating disk around a black hole with |a∗| ∼ 1. For these models, the fitting

procedure identifies EHT2017’s ring with this outer ring, which forces the photon ring, and

therefore M/D, to be small. As we will show later, these models can be rejected because

they produce weak jets that are inconsistent with existing jet power estimates (see Section

3.6.3).

Figure 3.8 also shows that M/D increases with a∗ for SANE models. This is due to the

appearance of a secondary inner ring inside the main photon ring. The former is associated

with emission produced along the wall of the approaching jet. Since the emission is produced

in front of the black hole lensing is weak and it appears at small angular scale. The inner
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ring is absent in MAD models (see Figure 3.3), where the bulk of the emission comes from

the midplane at all values of Rhigh (Figure 3.5).
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Figure 3.8: Distributions of M/D and black hole mass with D = 16.9 mpc reconstructed
from the best-fit 10% of images for MAD (left panel) and SANE (right panel) models (i = 17◦

for a∗ > 0 and 163◦ for a∗ ≤ 0) with different Rhigh and a∗, from the Themis (red, left), and
GENA (green, right) pipelines. The white dot and vertical black bar correspond respectively to
the median and region between the 25th and 75th percentiles for both pipelines combined.
The blue and pink horizontal bands show the range of M/D and mass at D = 16.9 mpc
estimated from the gas dynamical model (Walsh et al., 2013) and stellar dynamical model
(Gebhardt et al., 2011), respectively. Constraints on the models based on average image
scoring (Themis-AIS) are discussed below. Constraints based on radiative efficiency, X-ray
luminosity, and jet power are discussed in Section 3.6.

We now ask whether the position angle of the jet is consistent with the orientation of
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the jet measured at other wavelengths. On large (∼ mas) scales the extended jet component

has a PA of approximately 288◦ (e.g., Walker et al., 2018). On smaller (∼ 100µas) scales

the apparent opening angle of the jet is large (e.g., Kim et al., 2018) and the PA is therefore

more difficult to measure. Also notice that the jet PA may be time dependent (e.g., Walker

et al., 2018; Hada et al., 2017). In our model images the jet is relatively dim at 1.3 mm, and

is not easily seen with a linear colormap. The model jet axis is, nonetheless, well defined:

jets emerge perpendicular to the disk.
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Figure 3.9: Top: Distribution of best fit PA (in degree) scored by the Themis (left) and
GENA (right) pipelines for models with black hole spin vector pointing away from Earth
(i > 90◦ for a∗ > 0 or i < 90◦ for a∗ < 0). Bottom: Images with black hole spin vector
pointing towards Earth (i < 90◦ for a∗ > 0 or i > 90◦ for a∗ < 0). Smooth lines were drawn
with a wrapped Gaussian kernel density estimator. The three lines show (1) all images in
the sample (dotted line); (2) the best-fit 10% of images within each model (dashed line);
and (3) the best-fit 1% of images in each model (solid line). For reference, the vertical line
shows the position angle PA ∼ 288◦ of the large scale (mas) jet Walker et al. (2018), with
the grey area from (288− 10)◦ to (288 + 10)◦ indicating the observed PA variation.

Figure 3.9 shows the distribution of best fit PA over the same sample of snapshots from

the Image Library used in Figure 3.7. We divide the snapshots into two groups. The first
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group has the black hole spin pointed away from us (i > 90◦ and a∗ > 0, or i < 90◦ and

a∗ < 0). The spin-away model PA distributions are shown in the top two panels. The second

group has the black hole spin pointed toward us (i > 90 and a∗ < 0 or i > 90◦ and a∗ < 0).

These spin-toward model PA distributions are shown in the bottom two panels. The large

scale jet orientation lies on the shoulder of the spin-away distribution (the distribution can be

approximated as a Gaussian with, for Themis (GENA) mean 209 (203)◦ and σPA = 54 (55)◦;

the large-scale jet PA lies 1.5σPA from the mean) and is therefore consistent with the spin-

away models. On the other hand, the large scale jet orientation lies off the shoulder of the

spin-toward distribution and is inconsistent with the spin-toward models. Evidently models

in which the black hole spin is pointing away from us are strongly favored.

The width of the spin-away and spin-toward distributions arises naturally in the models

from brightness fluctuations in the ring. The distributions are relatively insensitive if split

into MAD and SANE categories, although for MAD the averaged PA is 〈PA〉 = 219◦,

σPA = 46◦, while for SANE 〈PA〉 = 195◦ and σPA = 58◦. The a∗ = 0 and a∗ > 0 models

have similar distributions. Again, EHT2017 data strongly favor one sense of black hole spin:

either |a∗| is small, or the spin vector is pointed away from us. If the fluctuations are such

that the fitted PA for each epoch of observations is drawn from a Gaussian with σPA ' 55◦

then a second epoch will be able to identify the true orientation with accuracy σPA/
√

2 ' 40◦

and the N-th epoch with accuracy σPA/
√
N . If the fitted PA were drawn from a Gaussian of

width σPA = 54◦ about PA = 288◦, as would be expected in a model in which the large-scale

jet is aligned normal to the disk, then future epochs have a > 90% chance of seeing the peak

brightness counterclockwise from its position in EHT2017.

Finally, we can test the models by asking if they are consistent with the data according

to Themis-AIS, as introduced in Section 3.4. Themis-AIS produces a probability p that

the χ2
ν distance between the data and the average of the model images is drawn from the

same distribution as the χ2
ν distance between synthetic data created from the model images

and the average of the model images. Table 3.1 takes these p values and categorizes them by
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Flux a∗ 〈p〉 Nmodel MIN(p) MAX(p)
SANE -0.94 0.33 24 0.01 0.88
SANE -0.5 0.19 24 0.01 0.73
SANE 0 0.23 24 0.01 0.92
SANE 0.5 0.51 30 0.02 0.97
SANE 0.75 0.74 6 0.48 0.98
SANE 0.88 0.65 6 0.26 0.94
SANE 0.94 0.49 24 0.01 0.92
SANE 0.97 0.12 6 0.06 0.40
MAD -0.94 0.01 18 0.01 0.04
MAD -0.5 0.75 18 0.34 0.98
MAD 0 0.22 18 0.01 0.62
MAD 0.5 0.17 18 0.02 0.54
MAD 0.75 0.28 18 0.01 0.72
MAD 0.94 0.21 18 0.02 0.50

Table 3.1: Summary results of average image scoring (Themis-AIS) procedure introduced
in Section 3.4. 〈p〉 reports the mean p value for the aggregated models, Nmodel is the number
of aggregated models, MIN(p) and MAX(p) are the minimum and maximum p values among
the set of aggregated models.

magnetic flux and by spin, aggregating (averaging) results from different codes, Rhigh, and

i. Evidently, most of the models are formally consistent with the data by this test.

One group of models, however, is rejected by Themis-AIS: MADmodels with a∗ = −0.94.

On average this group has p = 0.01, and all models within this group have p ≤ 0.04.

Snapshots from MAD models with a∗ = −0.94 exhibit the highest morphological variability

in our ensemble in the sense that the emission breaks up into transient bright clumps. These

models are rejected by Themis-AIS because none of the snapshots are as similar to the

average image as the data is. In other words, it is unlikely that EHT2017 would have

captured a a∗ = −0.94 MAD model in a configuration as unperturbed as the data seem to

be.

The remainder of the model categories contain at least some models that are consis-

tent with the data according to the average image scoring test—most models are variable

and the associated snapshots lie far from the average image. These snapshots are formally

inconsistent with the data, but their distance from the average image is consistent with
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what is expected from the models. Given the uncertainties in the model and our lack of

knowledge of the source prior to EHT2017, it is remarkable that so many of the models are

acceptable. This is likely because the source structure is dominated by the photon ring,

which is produced by gravitational lensing and therefore relatively insensitive to the details

of the accretion flow and jet physics. We can further narrow the range of acceptable models,

however, using additional constraints.

3.6 Model constraints: EHT2017 combined with other

constraints

We can apply three additional arguments to further constrain the source model. (1) The

model must be close to radiative equilibrium. (2) The model must be consistent with the

observed broad-band SED; in particular, it must not overproduce X-rays. (3) The model

must produce a sufficiently powerful jet to match the measurements of the jet kinetic energy

at large scales. Our discussions in this Section are based on simulation data that is provided

in full detail in § 3.7.

3.6.1 Radiative equilibrium

The model must be close to radiative equilibrium. The GRMHD models in the Simulation

Library do not include radiative cooling nor do they include a detailed prescription for

particle energization. In nature, the accretion flow and jet are expected to be cooled and

heated by a combination of synchrotron and Compton cooling, turbulent dissipation, and

Coulomb heating, which transfers energy from the hot ions to the cooler electrons. In our

suite of simulations the parameter Rhigh can be thought of as a proxy for the sum of these

processes. In a fully self-consistent treatment, some models would rapidly cool and settle

to a lower electron temperature (see Mościbrodzka et al., 2011; Ryan et al., 2018; Chael

et al., 2019). We crudely test for this by calculating the radiative efficiency ε ≡ Lbol/(Ṁc2),
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where Lbol is the bolometric luminosity. If it is larger than the radiative efficiency of a thin,

radiatively efficient disk,7 which depends only on a∗ (Novikov & Thorne, 1973), then we

reject the model as physically inconsistent.

We calculate Lbol with the Monte Carlo code igrmonty (Dolence et al., 2009), which incor-

porates synchrotron emission, absorption, Compton scattering at all orders, and bremsstrahlung.

It assumes the same, thermal eDF used in generating the Image Library. We calculate Lbol

for 20% of the snapshots to minimize computational cost. We then average over snapshots to

find 〈Lbol〉. The mass accretion rate Ṁ is likewise computed for each snapshot and averaged

over time. We reject models with ε larger than the classical thin disk model—see Table 3.3

in § 3.7 for a list of the ε for many of the models. All but two of the radiatively inconsistent

models are MADs with a∗ ≥ 0 and Rhigh = 1. Eliminating all MAD models with a∗ ≥ 0 and

Rhigh = 1 does not change any of our earlier conclusions.

3.6.2 X-ray constraints

As part of the EHT2017 campaign, we simultaneously observed M87 with the Chandra X-

ray observatory and the Nuclear Spectroscopic Telescope Array (NuSTAR). The best fit to

simultaneous Chandra and NuSTAR observations on April 12 and 14 implies a 2 − 10 keV

luminosity of LXobs = 4.4 ± 0.1 × 1040 erg sec−1. We used the SEDs generated from the

simulations while calculating Lbol to reject models that consistently overproduce X-rays;

specifically, we reject models with logLXobs < log〈LX〉 − 2σ(logLX). We do not reject

underluminous models since the X-rays could in principle be produced by direct synchrotron

emission from non-thermal electrons or by other unresolved sources. Notice that LX is highly

variable in all models so the X-ray observations only reject a few models. Table 3.3 in § 3.7

shows 〈LX〉 as well as upper and lower limits for a set of models that is distributed uniformly

across the parameter space.
7The thin disk radiative efficiency is 0.038 for a∗ = −1, 0.057 for a∗ = 0, and 0.42 for a∗ = 1. See

equations (2.12) and (2.21) of Bardeen et al. (1972); the efficiency is 1−E/µp, where µp is the rest mass of
the particle. The rejected model list is identical if instead one simply rejects all models with ε > 0.2.
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The X-ray flux in our models is produced by inverse Compton scattering of synchrotron

photons. The X-ray flux is an increasing function of τTT 2
e where τT is a characteristic

Thomson optical depth (τT ∼ 10−5), and the characteristic amplification factor for photon

energies is ∝ T 2
e because the X-ray band is dominated by singly scattered photons interacting

with relativistic electrons (we include all scattering orders in the Monte Carlo calculation).

Increasing Rhigh at fixed Fν(230 GHz) tends to increase Ṁ (and therefore τT ) and decrease

Te. The increase in Te dominates in our ensemble of models and so models with small Rhigh

have larger LX, while models with large Rhigh have smaller LX. The effect is not strictly

monotonic, however, because of noise in our sampling process and the highly variable nature

of the X-ray emission.

The overluminous models are mostly SANE models with Rhigh ≤ 20. The model with

highest 〈LX〉 = 4.2× 1042 erg sec−1 is a SANE, a∗ = 0, Rhigh = 10 model. The corresponding

model with Rhigh = 1 has 〈LX〉 = 2.1× 1041 erg sec−1, and the difference between these two

indicates the level of variability and the sensitivity of the average to the brightest snapshot.

The upshot of application of the LX constraints is that LX is sensitive to Rhigh. Very low

values of Rhigh are disfavored. LX thus most directly constrains the electron temperature

model.

3.6.3 Jet power

Estimates of M87’s jet power (Pjet) have been reviewed in Reynolds et al. (1996); Li et al.

(2009); de Gasperin et al. (2012); Broderick et al. (2015); Prieto et al. (2016). The estimates

range from 1042 to 1045 erg sec−1. This wide range is a consequence of both physical uncer-

tainties in the models used to estimate Pjet and the wide range in length- and time- scales

probed by the observations. Some estimates may sample a different epoch and thus provide

little information on the state of the central engine during EHT2017. Nevertheless, observa-

tions of HST-1 yield Pjet ∼ 1044 erg sec−1 (e.g. Stawarz et al., 2006). HST-1 is within ∼ 70 pc

of the central engine and, taking account of relativistic time foreshortening, may be sampling
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the central engine Pjet over the last few decades. Furthermore, the 1.3mm lightcurve of M87

as observed by SMA shows . 50% variability over decade timescales (Bower et al., 2015).

Based on these considerations it seems reasonable to adopt a very conservative lower limit

on jet power ≡ Pjet,min = 1042 erg sec−1.

To apply this constraint we must define and measure Pjet in our models. Our procedure

is discussed in detail in § 3.7. In brief, we measure the total energy flux in outflowing regions

over the polar caps of the black hole in which the energy per unit rest mass exceeds 2.2c2,

which corresponds to βγ = 1, where β ≡ v/c and γ is Lorentz factor. The effect of changing

this cutoff is also discussed in § 3.7. Because the cutoff is somewhat arbitrary, we also

calculate Pout by including the energy flux in all outflowing regions over the polar caps of

the black hole; that is, it includes the energy flux in any wide angle, low-velocity wind. Pout

represents a maximal definition of jet power. Table 3.3 in § 3.7 shows Pjet as well as a total

outflow power Pout.

The constraint Pjet > Pjet,min = 1042 erg sec−1 rejects all a∗ = 0 models. This conclusion

is not sensitive to the definition of Pjet: all a∗ = 0 models also have total outflow power

Pout < 1042 erg sec−1. The most powerful a∗ = 0 model is a MAD model with Rhigh = 160,

which has Pout = 3.7×1041 erg sec−1 and Pjet consistent with 0. We conclude that our a∗ = 0

models are ruled out.

It is unlikely that the a∗ = 0 models can be saved by changing the eDF as there is

no evidence from the GRMHD simulations that these models are capable of producing a

relativistic outflow with βγ > 1. Suppose, however, that we are willing to identify the

nonrelativistic outflow, whose power is measured by Pout, with the jet. Can Pout be raised to

meet our conservative threshold on jet power? Here the answer is yes, in principle, and this

can be done by changing the eDF. The eDF and Pout are coupled because Pout is determined

by Ṁ , and Ṁ is adjusted to produce the observed compact mm flux. The relationship

between Ṁ and mm flux depends on the eDF. If the eDF is altered to produce mm photons

less efficiently (for example, by lowering Te in a thermal model) then Ṁ and therefore Pout
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increase. A typical non-thermal eDF, by contrast, is likely to produce mm photons with

greater efficiency by shifting electrons out of the thermal core and into a non-thermal tail.

It will therefore lower Ṁ and thus Pout. A thermal eDF with lower Te could have higher

Pout, as is evident in the large Rhigh SANE models in Table 3.3. There are observational

and theoretical lower limits on Te, however, including a lower limit provided by the observed

brightness temperature. As Te decreases, ne and B both increase. This has implications for

the source linear polarization (Mościbrodzka et al., 2017; Jiménez-Rosales & Dexter, 2018)

and is explored in Chapter 4. As Te declines and ne and ni increase, there is also an increase

in energy transfer from ions to electrons by Coulomb coupling, and this sets a floor on Te.

The requirement that Pjet > Pjet,min eliminates many models other than the a∗ = 0

models. All SANE models with |a∗| = 0.5 fail to produce jets with the required minimum

power. Indeed, they also fail the less restrictive condition Pout > Pjet,min, so this conclusion

is insensitive to the definition of the jet. We conclude that among the SANE models, only

high spin models survive.

At this point it is worth revisiting the SANE, Rhigh = 1, a∗ = −0.94 model that favored

a low black hole mass in Section 3.5. These models are not rejected by a naive application of

the Pjet > Pjet,min criterion, but they are marginal. Notice that we needed to assume a mass,

however, in applying the this criterion. We have consistently assumed M = 6.2× 109M�. If

we use the M ∼ 3× 109M� implied by the best-fit M/D then Ṁ drops by a factor of two,

Pjet drops below the threshold, and the model is rejected.

The lower limit on jet power Pjet,min = 1042 erg sec−1 is conservative and the true jet

power is likely higher. If we increased Pjet,min to 3×1042 erg sec−1, the only surviving models

would have |a∗| = 0.94 and Rhigh ≥ 10. This conclusion is also not sensitive to the definition

of the jet power: applying the same cut to Pout adds only a single model with |a∗| < 0.94, the

Rhigh = 160, a∗ = 0.5 MAD model. All the remainder have a∗ = 0.94. Interestingly, the most

powerful jets in our ensemble of models are produced by SANE, a∗ = −0.94, Rhigh = 160

models, with Pjet ' 1043 erg sec−1.
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Estimates for Pjet extend to 1045 erg sec−1, but in our ensemble of models the maximum

Pjet ∼ 1043 erg sec−1. Possible explanations include: (1) Pjet is variable and the estimates

probe the central engine power at earlier epochs (discussed above), (2) the Pjet estimates

are too large, or (3) the models are in error. How might our models be modified to produce

a larger Pjet? For a given magnetic field configuration the jet power scales with Ṁc2. To

increase Pjet, then, one must reduce the mm flux per accreted nucleon so that at fixed mm

flux density Ṁ increases.8 Lowering Te in a thermal model is unlikely to work because lower

Te implies higher synchrotron optical depth, which increases the ring width. We have done a

limited series of experiments that suggest that even a modest decrease in Te would produce

a broad ring that is inconsistent with EHT2017 (Event Horizon Telescope Collaboration

et al., 2019f). What is required, then, is a nonthermal (or multi-temperature) model with

a large population of cold electrons that are invisible at mm wavelength (for a thermal

subpopulation, Θe,cold < 1), and a population of higher energy electrons that produces the

observed mm flux (see Falcke & Biermann, 1995).

The Pjet in our models is dominated by Poynting flux in the force-free region around the

axis (the “funnel”), as in the Blandford & Znajek (1977) force-free magnetosphere model.

The energy flux is concentrated along the walls of the funnel.9 Tchekhovskoy et al. (2011)

provided an expression for the energy flux in the funnel, the so-called Blandford–Znajek

power PBZ, which becomes, in our units,

PBZ = 2.8 f(a∗)

(
φ

15

)2

Ṁc2

= 2.2× 1043 f(a∗)

(
φ

15

)2

×
(

Ṁ

10−6ṀEdd

)(
M

6.2× 109M�

)
erg sec−1 (3.9)

8The compact mm flux density could be a factor of 2 larger than our assumed 0.5Jy. That would raise
Pjet by slightly less than a factor of 2.

9The total energy flux inside a cone of opening angle θ0 is proportional to sin4 θ0 in the Blandford &
Znajek (1977) monopole model if the field strength is fixed, and sin2 θ0 if the magnetic flux is fixed.
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where f(a∗) ≈ a2
∗(1 +

√
1− a2

∗)
−2 (a good approximation for a∗ < 0.95) and ṀEdd =

137M� yr−1 for M = 6.2 × 109M�. This expression was developed for models with a thin

disk in the equatorial plane. PBZ is lower for models where the force-free region is excluded

by a thicker disk around the equatorial plane. Clearly PBZ is comparable to observational

estimates of Pjet.

In our models (see Table 3.3) Pjet follows the above scaling relation but with a smaller

coefficient. The ratio of coefficients is model dependent and varies from 0.15 to 0.83. This

is likely because the force-free region is restricted to a cone around the poles of the black

hole and the width of the cone varies by model. Indeed, the coefficient is larger for MAD

than for SANE models, which is consistent with this idea since MAD models have a wide

funnel and SANE models have a narrow funnel. This also suggests that future comparison

of synthetic 43 and 86 GHz images from our models with lower frequency VLBI data may

further constrain the magnetic flux on the black hole.

The connection between the Poynting flux in the funnel and black hole spin has been

discussed for some time in the simulation literature, beginning with McKinney & Gammie

(2004, see also McKinney 2006; McKinney & Narayan 2007). The structure of the funnel

magnetic field can be time-averaged and shown to match the analytic solution of Blandford

& Znajek (1977). Furthermore, the energy flux density can be time-averaged and traced

back to the event horizon. Is the energy contained in black hole spin sufficient to drive the

observed jet over the jet lifetime? The spindown timescale is τ = (M −Mirr)c
2/Pjet where

Mirr ≡ M((1 +
√

1− a2
∗)/2)1/2 is the irreducible mass of the black hole. For the a∗ = 0.94

MAD model with Rhigh = 160, τ = 7.3 × 1012 yr, which is long compared to a Hubble time

(∼1010 yr). Indeed, the spindown time for all models is long compared to the Hubble time.

We conclude that for models that have sufficiently powerful jets and that are consistent

with EHT2017, Pjet is driven by extraction of black hole spin energy through the Blandford–

Znajek process.
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3.6.4 Constraint summary

We have applied constraints from Average Image Scoring, a radiative self-consistency con-

straint, a constraint on maximum X-ray luminosity, and a constraint on minimum jet power.

Which models survive? Here we consider only models for which we have calculated LX and

Lbol and for which i = 163◦ (for a∗ ≥ 0) or i = 17◦ (for a∗ < 0). Table 3.2 summarizes the

results. The first three columns give the model parameters. The next four columns show the

result of application of each constraint: Themis-AIS (here broken out by individual model

rather than groups of models), radiative efficiency (ε < εthin disk), LX , and Pjet.

The final column gives the logical AND of the previous four columns and allows a model

to pass only if it passes all tests. Evidently most of the SANE models fail, with the exception

of some a∗ = −0.94 models and one large Rhigh model with a∗ = 0.94. A much larger fraction

of the MAD models pass, although a∗ = 0 models all fail because of inadequate jet power.

MAD models with small Rhigh also fail. It is the jet power constraint that rejects the largest

number of models.

3.7 Simulation results and the βγ jet cut

Below we provide a table of simulation results for models with a standard inclination of

17◦ between the approaching jet and the line of sight. In the notation of this paper this

corresponds to i = 17◦ for a∗ < 0 or i = 163◦ for a∗ ≥ 0. The table shows models for which

we were able to calculate Lbol and LX. When M is needed to calculate, e.g., Pjet, we assume

M = 6.2× 109M�.

The first, third, and fourth columns in the table identify the model parameters: SANE

or MAD based on dimensionless flux, a∗, and Rhigh. Once these parameters are specified,

an average value of Ṁ for the model, which is shown in the last column, can be found

from the requirement that the average flux density of 1.3 mm emission is ∼ 0.5 Jy (see

EHTC IV). This Ṁ is shown in units of the Eddington accretion rate ṀEdd = 137M� yr−1.
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Flux a∗ Rhigh AIS ε LX Pjet Result

SANE −0.94 1 Fail Pass Pass Pass Fail

SANE −0.94 10 Pass Pass Pass Pass Pass

SANE −0.94 20 Pass Pass Pass Pass Pass

SANE −0.94 40 Pass Pass Pass Pass Pass

SANE −0.94 80 Pass Pass Pass Pass Pass

SANE −0.94 160 Fail Pass Pass Pass Fail

SANE −0.5 1 Pass Pass Fail Fail Fail

SANE −0.5 10 Pass Pass Fail Fail Fail

SANE −0.5 20 Pass Pass Pass Fail Fail

SANE −0.5 40 Pass Pass Pass Fail Fail

SANE −0.5 80 Fail Pass Pass Fail Fail

SANE −0.5 160 Pass Pass Pass Fail Fail

SANE 0 1 Pass Pass Pass Fail Fail

SANE 0 10 Pass Pass Pass Fail Fail

SANE 0 20 Pass Pass Fail Fail Fail

SANE 0 40 Pass Pass Pass Fail Fail

SANE 0 80 Pass Pass Pass Fail Fail

SANE 0 160 Pass Pass Pass Fail Fail

SANE +0.5 1 Pass Pass Pass Fail Fail

SANE +0.5 10 Pass Pass Pass Fail Fail

SANE +0.5 20 Pass Pass Pass Fail Fail

SANE +0.5 40 Pass Pass Pass Fail Fail

SANE +0.5 80 Pass Pass Pass Fail Fail

SANE +0.5 160 Pass Pass Pass Fail Fail

SANE +0.94 1 Pass Fail Pass Fail Fail

SANE +0.94 10 Pass Fail Pass Fail Fail

Table 3.2 continued . . .
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Flux a∗ Rhigh AIS ε LX Pjet Result

SANE +0.94 20 Pass Pass Pass Fail Fail

SANE +0.94 40 Pass Pass Pass Fail Fail

SANE +0.94 80 Pass Pass Pass Fail Fail

SANE +0.94 160 Pass Pass Pass Pass Pass

MAD −0.94 1 Fail Fail Pass Pass Fail

MAD −0.94 10 Fail Pass Pass Pass Fail

MAD −0.94 20 Fail Pass Pass Pass Fail

MAD −0.94 40 Fail Pass Pass Pass Fail

MAD −0.94 80 Fail Pass Pass Pass Fail

MAD −0.94 160 Fail Pass Pass Pass Fail

MAD −0.5 1 Pass Fail Pass Fail Fail

MAD −0.5 10 Pass Pass Pass Fail Fail

MAD −0.5 20 Pass Pass Pass Fail Fail

MAD −0.5 40 Pass Pass Pass Fail Fail

MAD −0.5 80 Pass Pass Pass Pass Pass

MAD −0.5 160 Pass Pass Pass Pass Pass

MAD 0 1 Pass Fail Pass Fail Fail

MAD 0 10 Pass Pass Pass Fail Fail

MAD 0 20 Pass Pass Pass Fail Fail

MAD 0 40 Pass Pass Pass Fail Fail

MAD 0 80 Pass Pass Pass Fail Fail

MAD 0 160 Pass Pass Pass Fail Fail

MAD +0.5 1 Pass Fail Pass Fail Fail

MAD +0.5 10 Pass Pass Pass Fail Fail

MAD +0.5 20 Pass Pass Pass Pass Pass

MAD +0.5 40 Pass Pass Pass Pass Pass

MAD +0.5 80 Pass Pass Pass Pass Pass

Table 3.2 continued . . .
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Flux a∗ Rhigh AIS ε LX Pjet Result

MAD +0.5 160 Pass Pass Pass Pass Pass

MAD +0.94 1 Pass Fail Fail Pass Fail

MAD +0.94 10 Pass Fail Pass Pass Fail

MAD +0.94 20 Pass Pass Pass Pass Pass

MAD +0.94 40 Pass Pass Pass Pass Pass

MAD +0.94 80 Pass Pass Pass Pass Pass

MAD +0.94 160 Pass Pass Pass Pass Pass

Table 3.2: Rejection Table. Average image scoring (Themis-AIS) rejects models

if p ≤ 0.01 (see §3.4 and Table 3.1). ε is radiative efficiency—models are rejected

if ε is larger than the corresponding thin disk efficiency (see §3.6.1). Models are

rejected base on the X-ray luminosity cut if LX〉10−2σ (see §3.6.2). The Pjet jet

power constraint rejects models if Pjet ≤ 1042 erg sec−1 (see §3.6.3).

The measured average dimensionless magnetic flux φ is shown in the second column. Notice

that φ is determined solely from the GRMHD simulation and is independent of the mass

scaling M and the massM used to fix the flux density. It is also independent of the electron

thermodynamics (Rhigh).

The fifth column shows the radiative efficiency, which is the bolometric luminosity Lbol

over Ṁc2. Here Lbol was found from a relativistic Monte Carlo radiative transport model

that includes synchrotron emission, Compton scattering (all orders), and bremsstrahlung.

The Monte Carlo calculation makes no approximations in treating the Compton scattering

(see Dolence et al., 2009). Bremsstrahlung is negligible in all models.

The sixth column shows predicted X-ray luminosity LX in the 2 − 10 keV band. This

was calculated using the same relativistic Monte Carlo radiative transport model as for Lbol.

There are three numbers in this column: the average 〈LX〉 (left) of the 20 sample spectra used

in the calculation, and a maximum and minimum value. The maximum and minimum are
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obtained by taking the standard deviation σ(log10 LX) and setting the maximum (minimum)

to 10+2σ〈LX〉 (10−2σ〈LX〉).

The seventh column shows the jet power

Pjet ≡
∫

βγ>(βγ)cut

dθ
1

∆t

∫
dtdφ

√−g (−T rt − ρur) . (3.10)

The integral is evaluated at r = 40 rg for SANE models and r = 100 rg for MAD models.

These radii were chosen because they are close to the outer boundary of the computational

domain. Here ∆t is the duration of the time-average, −T rt is a component of the stress–

energy tensor representing outward radial energy flux, g is the determinant of the (covariant)

metric, ρ is the rest-mass density, and ur is the radial component of the four-velocity. Here

we use Kerr–Schild t, r, θ, φ for clarity; in practice the integral is evaluated in simulation

coordinates. The quantity in parentheses is the outward energy flux with the rest-mass energy

flux subtracted off. The θ integral is done after time averaging and azimuthal integration

over the region where

(βγ)2 ≡
(−T rt
ρur

)2

− 1 > (βγ)2
cut. (3.11)

Here βγ would be the radial four-velocity as r →∞ if the flow were steady and all internal

magnetic and internal energy were converted to kinetic energy. In Table 3.3, we use (βγ)2
cut =

1 to define the jet. This is equivalent to restricting the jet to regions where the total energy

per unit rest mass (including the rest-mass energy) exceeds
√

5c2 ' 2.2c2.

The ninth column shows the total outflow power Pout, defined using the same integral

as in equation 3.10, but with the θ integral carried out over the entire region around the

poles where there is steady outflow (and θ < 1, although the result is insensitive to this

condition). Pout thus includes both the narrow, fast, relativistic jet and any wide-angle,

slow, nonrelativistic outflow. It is the maximal Pjet under any definition of jet power.

Finally, the tenth column shows the ratio of the electromagnetic to total energy flux in

the jet. In most cases this number is close to 1, i.e., the jet is Poynting dominated. This
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measurement is sensitive to the numerical treatment of low density regions in the jet where

the jet can be artificially loaded with plasma by numerical floors in the GRMHD evolution.

More accurate treatment of the funnel would raise values in this column.

Our choice of (βγ)2
cut, and therefore Pjet, is somewhat arbitrary. To probe the sensitivity

of Pjet to (βγ)2
cut, Figure 3.10 shows the ratio Pjet/Pout (which is determined by the GRMHD

model and is thus independent of the electron thermodynamics, i.e., Rhigh) as a function of

(βγ)2
cut.
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Figure 3.10: Ratio Pjet/Pout as a function of the outflow velocity cutoff parameter βγcut.
Evidently, as the cut is decreased, so that the maximum asymptotic speed of the jet flow is
decreased, an increasing fraction of Pout is classified as Pjet. Our nominal cutoff is βγ = 1,
which corresponds to β ≡ vr/c = 1/

√
2. Using this definition, Pjet for a∗ = 0 models is small

because the energy flux in the relativistic outflow is small.

The eighth and tenth columns show the jet and outflow efficiency. This is determined

by the GRMHD evolution, i.e., it is independent of electron thermodynamics (Rhigh). It is

> 0.1 only for MAD models with a∗ ≥ 0.5.

The eleventh column shows the fraction of Pjet in Poynting flux. This fraction is large

for all models, and meaningless for the a∗ = 0 models which have Pjet that is so small that

it is difficult to measure accurately.

The problem of defining Pjet and Pout has been discussed extensively in the literature (see
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especially Narayan et al., 2012; Yuan et al., 2015), where alternative definitions based on

unbound regions in addition to the jet have been used. Some definitions use the on a fluid

Bernoulli parameter Be ≡ −ut(ρ+ u+ p)/ρ− 1 while others use µ (the ratio of energy flux

to rest mass flux), which is directly related to our βγ.
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Flux φ a∗ Rhigh Lbol/
(
Ṁ c2

)
LX [cgs] Pjet [cgs] Pjet/

(
Ṁ c2

)
Pout [cgs] Pout/

(
Ṁ c2

)
Pjet,em/Pjet Ṁ/ṀEdd

SANE 1.02 -0.94 1 1.27× 10−2 3.18<49.55
>0.20 × 1041 1.16× 1042 5.34× 10−3 1.19× 1042 5.48× 10−3 0.84 2.77× 10−5

SANE 1.02 -0.94 10 1.6× 10−3 9.62<64.42
>1.44 × 1040 4.94× 1042 5.34× 10−3 5.07× 1042 5.48× 10−3 0.84 1.19× 10−4

SANE 1.02 -0.94 20 6.09× 10−4 3.26<11.86
>0.90 × 1040 5.8× 1042 5.34× 10−3 5.96× 1042 5.48× 10−3 0.84 1.39× 10−4

SANE 1.02 -0.94 40 2.45× 10−4 8.89<50.53
>1.56 × 1039 7.02× 1042 5.34× 10−3 7.21× 1042 5.48× 10−3 0.84 1.69× 10−4

SANE 1.02 -0.94 80 1.33× 10−4 2.65<18.26
>0.39 × 1039 8.89× 1042 5.34× 10−3 9.13× 1042 5.48× 10−3 0.84 2.13× 10−4

SANE 1.02 -0.94 160 7.12× 10−5 6.36<55.27
>0.73 × 1038 1.2× 1043 5.34× 10−3 1.23× 1043 5.48× 10−3 0.84 2.87× 10−4

SANE 1.11 -0.5 1 1.62× 10−2 1.97<3.94
>0.98 × 1041 2.62× 1040 1.86× 10−4 3.84× 1040 2.72× 10−4 0.88 1.81× 10−5

SANE 1.11 -0.5 10 2.17× 10−3 1.94<5.40
>0.69 × 1041 1.95× 1041 1.86× 10−4 2.85× 1041 2.72× 10−4 0.88 1.34× 10−4

SANE 1.11 -0.5 20 6.69× 10−4 3.72<7.72
>1.80 × 1040 2.26× 1041 1.86× 10−4 3.31× 1041 2.72× 10−4 0.88 1.56× 10−4

SANE 1.11 -0.5 40 2.47× 10−4 9.44<13.37
>6.67 × 1039 2.62× 1041 1.86× 10−4 3.83× 1041 2.72× 10−4 0.88 1.81× 10−4

SANE 1.11 -0.5 80 1.26× 10−4 1.23<4.58
>0.33 × 1039 3.2× 1041 1.86× 10−4 4.68× 1041 2.72× 10−4 0.88 2.21× 10−4

SANE 1.11 -0.5 160 7.86× 10−5 3.72<16.68
>0.83 × 1038 4.21× 1041 1.86× 10−4 6.16× 1041 2.72× 10−4 0.88 2.9× 10−4

SANE 0.99 0 1 3.17× 10−2 2.08<194.22
>0.02 × 1041 2.24× 1036 4.4× 10−8 5.22× 1039 1.03× 10−4 1.01 6.5× 10−6

SANE 0.99 0 10 1.88× 10−2 4.2<425.40
>0.04 × 1042 4.38× 1037 4.4× 10−8 1.02× 1041 1.03× 10−4 1.01 1.27× 10−4

SANE 0.99 0 20 5.83× 10−3 1.57<39.69
>0.06 × 1042 8.02× 1037 4.4× 10−8 1.87× 1041 1.03× 10−4 1.01 2.33× 10−4

SANE 0.99 0 40 7.8× 10−4 8.92<41.45
>1.92 × 1040 9.16× 1037 4.4× 10−8 2.14× 1041 1.03× 10−4 1.01 2.66× 10−4

SANE 0.99 0 80 1.69× 10−4 2.5<19.17
>0.33 × 1039 1.03× 1038 4.4× 10−8 2.41× 1041 1.03× 10−4 1.01 3× 10−4

SANE 0.99 0 160 1.08× 10−4 3.44<13.32
>0.89 × 1038 1.23× 1038 4.4× 10−8 2.87× 1041 1.03× 10−4 1.01 3.57× 10−4

SANE 1.10 0.5 1 4.97× 10−2 5.5<34.41
>0.88 × 1040 2.57× 1039 1.63× 10−4 9.19× 1039 5.86× 10−4 0.88 2.01× 10−6

SANE 1.10 0.5 10 5.98× 10−3 4.73<88.59
>0.25 × 1040 1.91× 1040 1.64× 10−4 6.84× 1040 5.86× 10−4 0.88 1.5× 10−5

SANE 1.10 0.5 20 3.33× 10−3 3.83<49.18
>0.30 × 1040 4.09× 1040 1.64× 10−4 1.47× 1041 5.86× 10−4 0.88 3.2× 10−5

SANE 1.10 0.5 40 1.74× 10−3 2.52<22.73
>0.28 × 1040 8.02× 1040 1.64× 10−4 2.87× 1041 5.86× 10−4 0.88 6.28× 10−5

SANE 1.10 0.5 80 6.95× 10−4 7.84<91.92
>0.67 × 1039 1.27× 1041 1.64× 10−4 4.55× 1041 5.86× 10−4 0.88 9.95× 10−5

SANE 1.10 0.5 160 2.78× 10−4 1.37<22.85
>0.08 × 1039 1.69× 1041 1.63× 10−4 6.06× 1041 5.86× 10−4 0.88 1.33× 10−4

SANE 1.64 0.94 1 1.4 2.38<359.03
>0.02 × 1041 2.2× 1040 7.76× 10−3 3.38× 1040 1.19× 10−2 0.82 3.63× 10−7

SANE 1.64 0.94 10 2.7× 10−1 2.79<508.99
>0.02 × 1041 1.4× 1041 7.76× 10−3 2.15× 1041 1.19× 10−2 0.82 2.31× 10−6

Table 3.3 continued . . .
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Flux φ a∗ Rhigh Lbol/
(
Ṁ c2

)
LX [cgs] Pjet [cgs] Pjet/

(
Ṁ c2

)
Pout [cgs] Pout/

(
Ṁ c2

)
Pjet,em/Pjet Ṁ/ṀEdd

SANE 1.64 0.94 20 1.74× 10−1 5.75<1685.98
>0.02 × 1041 3.22× 1041 7.76× 10−3 4.94× 1041 1.19× 10−2 0.82 5.31× 10−6

SANE 1.64 0.94 40 7.2× 10−2 4.71<2490.36
>0.01 × 1041 5.97× 1041 7.76× 10−3 9.17× 1041 1.19× 10−2 0.82 9.84× 10−6

SANE 1.64 0.94 80 2.38× 10−2 1.42<860.83
>0.00 × 1041 8.87× 1041 7.76× 10−3 1.36× 1042 1.19× 10−2 0.82 1.46× 10−5

SANE 1.64 0.94 160 8.45× 10−3 3.22<1687.88
>0.01 × 1040 1.23× 1042 7.76× 10−3 1.89× 1042 1.19× 10−2 0.82 2.03× 10−5

MAD 8.04 -0.94 1 7.61× 10−1 2.12<17.74
>0.25 × 1041 1.36× 1042 2.09× 10−1 1.6× 1042 2.46× 10−1 0.75 8.32× 10−7

MAD 8.04 -0.94 10 7.54× 10−2 5.76<68.06
>0.49 × 1040 1.97× 1042 2.09× 10−1 2.32× 1042 2.46× 10−1 0.75 1.21× 10−6

MAD 8.04 -0.94 20 3.76× 10−2 2.27<29.09
>0.18 × 1040 2.38× 1042 2.09× 10−1 2.8× 1042 2.46× 10−1 0.75 1.46× 10−6

MAD 8.04 -0.94 40 2.07× 10−2 6.18<77.36
>0.49 × 1039 3× 1042 2.09× 10−1 3.54× 1042 2.46× 10−1 0.75 1.84× 10−6

MAD 8.04 -0.94 80 1.17× 10−2 1.32<26.36
>0.07 × 1039 3.99× 1042 2.09× 10−1 4.71× 1042 2.46× 10−1 0.75 2.45× 10−6

MAD 8.04 -0.94 160 6.52× 10−3 2.57<46.76
>0.14 × 1038 5.7× 1042 2.09× 10−1 6.73× 1042 2.46× 10−1 0.75 3.5× 10−6

MAD 12.25 -0.5 1 2.96× 10−1 1.39<11.56
>0.17 × 1041 3.43× 1041 4.91× 10−2 6.04× 1041 8.64× 10−2 0.82 8.95× 10−7

MAD 12.25 -0.5 10 4.53× 10−2 2.43<19.86
>0.30 × 1040 5.31× 1041 4.92× 10−2 9.33× 1041 8.64× 10−2 0.82 1.38× 10−6

MAD 12.25 -0.5 20 2.67× 10−2 8.18<77.51
>0.86 × 1039 6.45× 1041 4.92× 10−2 1.13× 1042 8.64× 10−2 0.82 1.68× 10−6

MAD 12.25 -0.5 40 1.69× 10−2 2.17<22.33
>0.21 × 1039 8.07× 1041 4.92× 10−2 1.42× 1042 8.64× 10−2 0.82 2.1× 10−6

MAD 12.25 -0.5 80 1.07× 10−2 4.87<50.76
>0.47 × 1038 1.05× 1042 4.92× 10−2 1.85× 1042 8.64× 10−2 0.82 2.74× 10−6

MAD 12.25 -0.5 160 6.43× 10−3 1.09<7.06
>0.17 × 1038 1.46× 1042 4.92× 10−2 2.57× 1042 8.64× 10−2 0.82 3.81× 10−6

MAD 15.44 0 1 2.67× 10−1 1.22<14.60
>0.10 × 1041 0.0 0.0 8.39× 1040 1.51× 10−2 0.00 7.12× 10−7

MAD 15.44 0 10 4.53× 10−2 1.86<31.55
>0.11 × 1040 0.0 0.0 1.39× 1041 1.51× 10−2 0.00 1.18× 10−6

MAD 15.44 0 20 2.81× 10−2 5.98<101.81
>0.35 × 1039 0.0 0.0 1.71× 1041 1.51× 10−2 0.00 1.46× 10−6

MAD 15.44 0 40 1.85× 10−2 1.63<27.75
>0.10 × 1039 0.0 0.0 2.15× 1041 1.51× 10−2 0.00 1.82× 10−6

MAD 15.44 0 80 1.21× 10−2 3.51<61.34
>0.20 × 1038 0.0 0.0 2.77× 1041 1.51× 10−2 0.00 2.35× 10−6

MAD 15.44 0 160 7.63× 10−3 8.06<80.62
>0.81 × 1037 0.0 0.0 3.73× 1041 1.51× 10−2 0.00 3.17× 10−6

MAD 15.95 0.5 1 5.45× 10−1 1.57<11.98
>0.21 × 1041 4.64× 1041 1.16× 10−1 6.74× 1041 1.69× 10−1 0.85 5.11× 10−7

MAD 15.95 0.5 10 9.45× 10−2 2.71<36.30
>0.20 × 1040 8.07× 1041 1.16× 10−1 1.17× 1042 1.69× 10−1 0.85 8.89× 10−7

MAD 15.95 0.5 20 5.54× 10−2 9.67<126.69
>0.74 × 1039 1.02× 1042 1.16× 10−1 1.49× 1042 1.69× 10−1 0.85 1.13× 10−6

MAD 15.95 0.5 40 3.5× 10−2 3.3<39.01
>0.28 × 1039 1.32× 1042 1.16× 10−1 1.92× 1042 1.69× 10−1 0.85 1.45× 10−6

Table 3.3 continued . . .
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Flux φ a∗ Rhigh Lbol/
(
Ṁ c2

)
LX [cgs] Pjet [cgs] Pjet/

(
Ṁ c2

)
Pout [cgs] Pout/

(
Ṁ c2

)
Pjet,em/Pjet Ṁ/ṀEdd

MAD 15.95 0.5 80 2.22× 10−2 8<91.84
>0.70 × 1038 1.74× 1042 1.16× 10−1 2.52× 1042 1.69× 10−1 0.85 1.92× 10−6

MAD 15.95 0.5 160 1.35× 10−2 1.79<8.44
>0.38 × 1038 2.38× 1042 1.16× 10−1 3.46× 1042 1.69× 10−1 0.85 2.62× 10−6

MAD 12.78 0.94 1 3.65 5.19<43.60
>0.62 × 1041 1.97× 1042 8.23× 10−1 2.29× 1042 9.55× 10−1 0.80 3.07× 10−7

MAD 12.78 0.94 10 3.68× 10−1 1.3<13.22
>0.13 × 1041 3.04× 1042 8.23× 10−1 3.52× 1042 9.55× 10−1 0.80 4.73× 10−7

MAD 12.78 0.94 20 1.79× 10−1 5<56.22
>0.44 × 1040 3.73× 1042 8.23× 10−1 4.33× 1042 9.55× 10−1 0.80 5.81× 10−7

MAD 12.78 0.94 40 9.43× 10−2 1.54<22.13
>0.11 × 1040 4.74× 1042 8.23× 10−1 5.5× 1042 9.55× 10−1 0.80 7.38× 10−7

MAD 12.78 0.94 80 5.19× 10−2 3.74<80.85
>0.17 × 1039 6.26× 1042 8.23× 10−1 7.27× 1042 9.55× 10−1 0.80 9.75× 10−7

MAD 12.78 0.94 160 2.82× 10−2 6.97<186.48
>0.26 × 1038 8.75× 1042 8.23× 10−1 1.02× 1043 9.55× 10−1 0.80 1.36× 10−6

Table 3.3: Summary of EHT model comparison metrics for total intensity analysis in Event Horizon

Telescope Collaboration et al. (2019e).
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3.8 Discussion

We have interpreted the EHT2017 data using a limited library of models with attendant

limitations. Many of the limitations stem from the GRMHD model, which treats the plasma

as an ideal fluid governed by equations that encode conservation laws for particle number,

momentum, and energy. The eDF, in particular, is described by a number density and

temperature, rather than a full distribution function, and the electron temperature Te is

assumed to be a function of the local ion temperature and plasma βp. Furthermore, all

models assume a Kerr black hole spacetime, although there are alternatives. Here we consider

some of the model limitations and possible extensions.

3.8.1 Radiative effects

Some post-processed GRMHD simulations that are consistent with EHT data and the 1.3 mm

flux density have unphysically large radiative efficiencies (see Section 3.6). This implies the

radiative cooling timescale is comparable to or less than the advection timescale. As a

consequence, including radiative cooling in simulations may be necessary to recover self-

consistent models (see Mościbrodzka et al., 2011; Dibi et al., 2012). In our models we use

a single parameter Rhigh to adjust Te and account for all effects that might influence the

electron energy density. How good is this approximation?

The importance of radiative cooling can be assessed using newly developed, state-of-the-

art general relativistic radiation GRMHD codes. Sądowski et al. (2013b, see also Sądowski

et al. 2014; McKinney et al. 2014; Sądowski et al. 2017) applied the M1 closure (Levermore,

1984), which treats the radiation as a relativistic fluid. Ryan et al. (2015) introduced a

Monte Carlo radiation GRMHD method, allowing for full frequency dependent radiation

transport. Models for turbulent dissipation into the electrons and ions, as well as heating

and cooling physics that sets the temperature ratio Ti/Te, have been added to GRMHD and

radiative GRMHD codes and used in simulations of Sgr A* (Ressler et al., 2015, 2017; Chael
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et al., 2018a) and M87 (Ryan et al., 2018; Chael et al., 2019). While the radiative cooling

and Coulomb coupling physics in these simulations is well understood, the particle heating

process, especially the relative heating rates of ions and electrons, remains uncertain.

Radiation GRMHD models are computationally expensive and do not have the same

scaling freedom as the GRMHD models, so they need to be repeatedly re-run with different

initial conditions until they produce the correct 1.3 mm flux density. It is therefore im-

practical to survey the parameter space using radiation GRMHD at the present time. It is

possible, however, to check individual GRMHD models against existing radiation GRMHD

models of M87 (Ryan et al., 2018; Chael et al., 2019).

The SANE radiation GRMHD models of Ryan et al. (2018) with a∗ = 0.94 and M =

6× 109M� can be compared to GRMHD SANE a∗ = 0.94 models at various values of Rhigh.

The radiative models have Ṁ/ṀEdd = 5.2 × 10−6 and Pjet = 5.1 × 1041 erg sec−1. The

GRMHD models in this work have, for 1 ≤ Rhigh ≤ 160, 0.36×10−6 ≤ Ṁ/ṀEdd ≤ 20×10−6

and 0.22 ≤ Pjet/(1041 erg sec−1) ≤ 12 (Table 3.3). Evidently the mass accretion rates and

jet powers in the GRMHD models span a wide range that depends on Rhigh, but when we

choose Rhigh = 10 − 20 they are similar to what is found in the radiative GRMHD model

when using the turbulent electron heating model (Howes, 2010).

We have also directly compared the Te distribution in the emitting region and found that

the radiation GRMHD model is quite close to the Rhigh = 10 model. The resulting images

are qualitatively similar, with an asymmetric photon ring that is brighter in the South and

a weak inner ring associated with the funnel wall emission as in Figure 3.2. The radiation

GRMHD SANE model, like the vast majority of our nonradiative GRMHD SANE models,

would be ruled out by the condition Pjet > 1042 erg sec−1.

The MAD radiation GRMHD models of Chael et al. (2019) with a∗ = 0.94 and M =

6.2×109M� can be compared to GRMHD MAD a∗ = 0.94 models at various values of Rhigh.

Chael et al. (2019) uses two dissipation models: the Howes (2010, hereafter H10) model of

heating from a Landau-damped turbulent cascade, and the Rowan et al. (2017, hereafter
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R17) model of heating based on simulations of trans-relativistic magnetic reconnection. The

(H10, R17) models have Ṁ/ṀEdd = (3.6, 2.3) × 10−6 and Pjet = (6.6, 13) × 1042 erg sec−1.

The GRMHD models have, for 1 ≤ Rhigh ≤ 160, 0.13 × 10−6 ≤ Ṁ/ṀEdd ≤ 1.4 × 10−6 and

2.3 ≤ Pjet/(1042 erg sec−1) ≤ 8.8 (Table 3.3). In the radiation GRMHD MAD models, Ṁ

lies in the middle of the range spanned by the nonradiative GRMHD models and jet power

lies at the upper end of the range spanned by the nonradiative GRMHD models. The Te

distributions in the radiative and nonradiative MAD models differ: the mode of the radiation

GRMHD model Te distribution is about a factor of 3 below the mode of the Te distribution in

the Rhigh = 20 GRMHD model, and the GRMHD model has many more zones at Θe ∼ 100

that contribute to the final image than the radiation GRMHD models. This difference is a

consequence of the Rhigh model for Te: in MAD models almost all the emission emerges at

βp . 1, so Rhigh, which changes Te in the βp > 1 region, offers little control over Te in the

emission region. Nevertheless the jet power and accretion rates are similar in the radiative

and nonradiative MAD models, and the time-averaged radiative and non-radiative images

are qualitatively indistinguishable. This suggests that the image is determined mainly by

the spacetime geometry and is insensitive to the details of the plasma evolution.

This review of radiative effects is encouraging but incomplete: it only considers a lim-

ited selection of models and a narrow set of observational constraints. Future studies of

time-dependence and polarization are likely to sharpen the contrast between radiative and

nonradiative models.

3.8.2 Non-thermal electrons

Throughout this work we have considered only a thermal eDF. While a thermal eDF can

account for the observed emission at mm wavelengths in M87 (e.g., Prieto et al., 2016;

Mościbrodzka et al., 2016; Ryan et al., 2018; Chael et al., 2019), eDFs that include a non-

thermal tail can also explain the observed SED (Broderick & Loeb, 2009; Yu et al., 2010;

Dexter et al., 2012; Li et al., 2016; Davelaar et al., 2018).
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The role of non-thermal electrons (and positrons) in producing the observed compact

emission is not a settled question, and it cannot be settled in this first investigation of

EHT2017 models; however, there are constraints. The number density, mean velocity, and

energy density of the eDF are fixed or limited by the GRMHD models. In addition, the eDF

cannot on average sustain features that would be erased by kinetic instabilities on timescales

short compared to rgc
−1. Some non-thermal eDFs increase Fν/Ṁ in comparison to a thermal

eDF, implying lower values of Ṁ than quoted above (Ball et al., 2018; Davelaar et al., 2019).

These lower values of Ṁ can slightly change the source morphology, e.g., by decreasing the

visibility of the approaching jet (e.g., Dexter et al., 2012).

One can evaluate the influence of non-thermal eDFs in several ways. For example, it

is possible to study simplified, phenomenological models. Emission features due to the

cooling of non-thermal electrons may then reveal how and where the non-thermal electrons

are produced (Pu et al., 2017). The effect of non-thermal eDFs can also be studied by

post-processing of ideal GRMHD models if one assumes that the electrons have a fixed,

parameterized form such as a power-law distribution (Dexter et al., 2012) or a κ-distribution

(Davelaar et al., 2018). These parameterized models produce SEDs that agree with radio

to near-infrared data but they are approximations to the underlying physics and do not

resolve the microscopic processes that accelerate particles. One can also include dissipative

processes explicitly in the GRMHD models, including scalar resistivity (Palenzuela et al.,

2009; Dionysopoulou et al., 2013; Del Zanna et al., 2016; Qian et al., 2016; Ripperda et al.,

2019), heat fluxes and viscosities (pressure anisotropies Chandra et al., 2015; Ressler et al.,

2015; Foucart et al., 2017), and particle acceleration (e.g., Chael et al., 2017). Ultimately

special and general relativistic particle-in-cell codes (Watson & Nishikawa, 2010; Levinson

& Cerutti, 2018; Chen et al., 2018; Parfrey et al., 2019) will enable direct investigations of

kinetic processes.
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3.8.3 Other models and analysis limitations

We have used a number of other approximations in generating our models. Among the most

serious are:

(1) Fast Light approximation. A GRMHD simulation produces a set of dump files contain-

ing the model state at a single global (Kerr–Schild) coordinate time. Because the dynamical

time is only slightly longer than the light-crossing time, one in principle needs to trace rays

through a range of coordinate times, i.e., by interpolation between multiple closely spaced

dump files. This is difficult in practice because a high cadence of output files is required,

limiting the speed of the GRMHD simulations and requiring prohibitively large data storage.

In addition, the cost of ray tracing through multiple output files is high. Because of this,

we adopt the commonly used fast light approximation in which GRMHD variables are read

from a single dump file and held steady during the ray tracing. Including light travel time

delays produces minor changes to the small-scale image structure and to light curves (e.g.,

Dexter et al., 2010; Bronzwaer et al., 2018; Younsi et al., 2016), although it is essential for

the study of variability on the light-crossing timescale.

(2) Untilted Disks. We have assumed that the disk angular momentum vector and black

hole spin vector are (anti-)aligned. There is no reason for the angular momentum vector

of the accretion flow on large scales to align with the black hole spin vector, and there is

abundant evidence for misaligned disks in AGN (e.g., Miyoshi et al., 1995). How might disk

tilt affect our results? Tilting the disk by as little as ∼ 15◦ is enough to set up a standing,

two-armed spiral shock close to the ISCO (Fragile & Blaes, 2008). This shock directly affects

the morphology of mm wavelength images, especially at low inclination, in models of Sgr

A* (Dexter & Fragile, 2013, , especially Figure 5), producing an obvious two-armed spiral

pattern on the sky. If this structure were also present in images of tilted models of M87 then

it is possible that even a modest tilt could be ruled out.

If modest tilt is present in M87 it is unlikely to affect our conclusion regarding the sign

of black hole spin. That conclusion depends on emission from funnel wall plasma in counter-
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rotating (a∗ < 0) disks. The funnel wall plasma is loaded onto funnel plasma field lines by

local instabilities at the wall and then rotates with the funnel and therefore the black hole

(Wong et al., 2021a). The funnel wall is already unsteady, fluctuating by tens of degrees in

azimuth and in time, so a modest tilt seems unlikely to dramatically alter the funnel wall

structure.

Is there observational evidence for tilt in M87? In numerical studies of tilted disks the

jet emerges perpendicular to the disk Liska et al. (2018), and tilted disks are expected to

precess. One might then expect that a tilted source would produce a jet that exhibits

periodic variations, or periodic changes in jet direction with distance from the source, as

seen in other sources. There is little evidence of this in M87 (see Park et al., 2019, for a

discussion of possible misaligned structure in the jet). Indeed, Walker et al. (2018) sees at

most small displacements of the jet with time and distance from the source at mas scales.

In sum, there is therefore little observational motivation for considering tilted disk models.

Tilted disk models of M87 are an interesting area for future study. It is possible that

the inner disk may align with the black hole via a thick-disk variant of the Bardeen &

Petterson (1975) effect. Existing tilted thick disk GRMHD simulations (e.g., Fragile et al.,

2007; Shiokawa, 2013; McKinney et al., 2013; Liska et al., 2018) show some evidence for

alignment and precession, but understanding of the precession and alignment timescales is

incomplete. It will be challenging to extend the Image Library to include a survey of tilted

disk models, however, since with tilted disks there are two new parameters: the two angles

that describe the orientation of the outer disk with respect to the black hole spin vector and

the line of sight.

(3) Pair Production. In some models of M87 the mm emission is dominated by electron-

positron pairs within the funnel, even close to the horizon scale (see Beskin et al., 1992; Moś-

cibrodzka et al., 2011; Broderick & Tchekhovskoy, 2015; Levinson & Rieger, 2011; Hirotani

& Pu, 2016; Wong et al., 2021b). The pairs are produced from the background radiation

field or from a pair cascade process following particle acceleration by unscreened electric
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fields, which we cannot evaluate using ideal GRMHD models. We leave it to future work to

assess whether these models can plausibly suppress emission from the disk and funnel wall,

and simultaneously produce a sufficiently powerful jet.

(4) Numerical Treatment of Low Density Regions. Virtually all MHD simulations, in-

cluding ours, use a “floor” procedure that resets the density if it falls below a minimum value.

If this is not done then truncation error accumulates dramatically in the low density regions

and the solution is corrupted. If the volume where floors are activated contains only a small

fraction of the simulation mass, momentum, and energy then most aspects of the solution

are unaffected by this procedure (e.g. McKinney & Gammie, 2004).

The simulation-reported temperature of the plasma is no longer reliable in regions where

the floors are activated. Since floors are commonly activated in regions with B2/ρ > 1, we

universally cut off emission in those regions. In models where floors are only activated in the

funnel (e.g., most SANE models), the resulting images are insensitive to the choice of cutoff

B2/ρ. In MAD models the regions of low and high density are mixed because lightly loaded

magnetic field lines that are trapped in the hole bubbles outward through the disk. In this

case emission at ν > 230GHz can be sensitive to the choice of cutoff B2/ρ Chael et al. (2019).

The sense of the effect is that greater cutoff B2/ρ implies more emission at high frequency.

Our use of a cutoff B2/ρ = 1 is therefore likely to underestimate mm emission and therefore

overestimate Ṁ and Pjet. Accurate treatment of the dynamics and thermodynamics of low

density regions and especially sharp boundaries between low and high density regions is a

fundamental numerical problem in black hole accretion flow modeling that merits further

attention.

3.9 Conclusion

In this paper we have made a first attempt at understanding the physical implications of a

single, high quality EHT dataset for M87. We have compared the data to a library of mock
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images produced from GRMHD simulations by GRRT calculations. The library covers a

parameter space that is substantially larger than earlier model surveys. The results of this

comparison are consistent with the hypothesis that the compact 1.3 mm emission in M87

arises within a few rg of a Kerr black hole and that the ringlike structure of the image is

generated by strong gravitational lensing and Doppler beaming. The models predict that

the asymmetry of the image depends on the sense of black hole spin. If the models are

sufficiently representative, then the spin vector of the black hole in M87 points away from

Earth (the black hole spins clockwise on the sky). The models also predict that there is a

strong energy flux directed away from the poles of the black hole and that this energy flux

is electromagnetically dominated. If the models are correct then the central engine for the

M87 jet is powered by the electromagnetic extraction of free energy associated with black

hole spin via the Blandford–Znajek process.

In our models, M87’s compact mm emission is generated by the synchrotron mechanism.

Our ability to make physical inferences based on the models is therefore intimately tied to

the quality of our understanding of the eDF. We have used a thermal model with a single free

parameter that adjusts the ratio of ion to electron temperature in regions with plasma βp > 1

(i.e., regions where magnetic pressure is less than gas pressure). This simple model does not

span the range of possible plasma behavior. The theory of high temperature, collisionless

plasmas must be better understood if this core physical uncertainty of sub-Eddington black

hole accretion is to be eliminated. At present our understanding is inadequate, and alter-

native eDF models occupy a large, difficult-to-explore parameter space with the potential

to surprise. Despite these uncertainties many of the models produce images with similar

morphology that is consistent with EHT2017 data. This suggests that the image shape is

controlled mainly by gravitational lensing and the spacetime geometry rather than details

of the plasma physics.

Although the EHT2017 images are consistent with the vast majority of our models,

parts of the parameter space can be rejected on physical grounds or by comparison with
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contemporaneous data at other wavelengths. We reject some models because, even though

all models are variable, some models are too variable to be consistent with the data. We

can also reject models based on a radiative efficiency cut (the models are not self-consistent

and would cool quickly if radiative effects were included), an X-ray luminosity cut using

contemporaneous Chandra and NuSTAR data, and on a jet power cut. The requirement

that the jet power exceed a conservative lower limit of 1042 erg sec−1 turns out to eliminate

many models, including all models with a∗ = 0.

We have examined the astrophysical implications of only a subset of EHT2017 data;

much remains to be done, and there are significant opportunities for further constraining

the models. EHT2017 data includes tracks from four separate days of observing; each day

is 2.8 rgc
−1 (see EHTC IV). This timescale is short compared to the decorrelation timescale

of simulated images, which is ∼ 50 rgc
−1, and smaller than the light crossing time of the

source plasma. Analysis techniques that use short-timescale variations in the data will need

to be developed and are likely to recover new, more stringent constraints on the model from

the EHT2017 dataset. Comparison of model polarization maps of the source with EHT2017

data sharply limit the space of allowed models (Mościbrodzka et al., 2017) and are considered

in Chapter 4. Finally, in this work the only multiwavelength companion data we consider

are X-ray observations. Simultaneous data are available at many other wavelengths, from

the radio to the gamma-rays. These data are likely to further limit the range of acceptable

models and guide the implementation of predictive electron physics models.

We have also not yet considered how the physical properties of the jet are constrained

by lower frequency VLBI observations, which constrain jet kinematics (Mertens et al., 2016;

Hada et al., 2017; Britzen et al., 2017; Walker et al., 2018; Kim et al., 2018), the jet width

profile (Asada & Nakamura, 2012; Hada et al., 2013; Nakamura et al., 2018), the total jet

power at kilo-parsec scale (Owen et al., 2000; Stawarz et al., 2006), the jet power (e.g., Kino

et al., 2014, 2015), the core shift (Hada et al., 2011), and the symmetric limb-brightening

structure (Takahashi et al., 2018; Kim et al., 2018). The jet width profile is potentially very
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interesting because it depends on the magnetic flux φ: the jet internal magnetic pressure

∝ φ2. We therefore expect (and see in our numerical simulations; see Figure 3.5) that MAD

jets are wider at the base than SANE jets.

A second epoch of observations (& 50 rgc
−1 ∼ 2 weeks after EHT2017, when the models

suggest that source structure will decorrelate) will increase the power of the average image

analysis to reject models. The EHT2017 data were able to reject one entire category of models

with confidence: high magnetic flux (MAD), retrograde, high spin models. Other categories

of models, such as the low magnetic flux, high spin models, are assigned comparatively

low probabilities by the average image scoring scheme. Data taken later, more than a

decorrelation time after EHT2017 (model decorrelation times are of order two weeks), will

provide an independent realization of the source. The probabilities attached to individual

models by average image scoring will then multiply. For example, a model with probability

0.05 that is assigned probability 0.05 in comparison to a second epoch of observation would

then have probability 0.052 = 2.5 × 10−3, and would be strongly disfavored by the average

image scoring criterion (see Section 3.4).

Future EHT 345 GHz campaigns (EHTC II) will provide excellent constraints, particu-

larly on the width of the ring. The optical depth on every line of sight through the source is

expected to decrease (the drop is model and location dependent). In our models this makes

the ring narrower, better defined, easier to measure accurately from VLBI data, and less

dependent on details of the source plasma model.

Certain features of the model are geometric and should be present in future EHT obser-

vations. The photon ring is a persistent feature of the model related to the mass and distance

to the black hole. It should be present in the next EHT campaign unless there is a dramatic

change in Ṁ , which would be evident in the SED. The asymmetry in the photon ring is

also a persistent feature of the model because, we have argued, it is controlled by the black

hole spin. The asymmetry should therefore remain in the southern half of the ring for the

next EHT campaign, unless there is a dramatic tilt of the inner accretion flow. If the small

113



scale and large scale jet are aligned, then EHT2017 saw the brightest region at unusually

small PA, and future campaigns are likely (but not certain) to see the peak brightness shift

further to the West. Future 230 GHz EHT campaigns (EHTC II) will thus sharply test the

GRMHD source models.

Together with complementary studies that are presently targeting either the supermassive

black-hole candidate at the Galactic Center (Eckart & Genzel, 1997; Ghez et al., 1998; Abuter

et al., 2018; Gravity Collaboration et al., 2018) or stellar-mass binary black holes whose

gravitational-wave emission is recorded by the LIGO and Virgo detectors (Abbott et al.,

2016a), the results provided here are consistent with the existence of astrophysical black

holes. More importantly, they clearly indicate that their phenomenology, despite being

observed on mass scales that differ by eight orders of magnitude, follows very closely the

one predicted by general relativity. This demonstrates the complementarity of experiments

studying black holes on all scales, promising much improved tests of gravity in its most

extreme regimes.
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Chapter 4

Interpreting M87: Linear polarization

In April 2017, the Event Horizon Telescope observed the shadow of the supermassive black

hole at the core of the elliptical galaxy Messier 87 at 230 GHz. This chapter covers my

contributions to the EHT analysis of linear polarization data from the observation. At the

beginning of the chapter, I describe, motivate, and test a modal image decomposition proce-

dure that can be used to quantitatively differentiate between the SANE and MAD accretion

states using data from the linear polarization field of the image. Moving on to real-world lin-

ear polarization data of the M87 source, I describe a comparison between theoretical models

and the observed polarization metrics produced by the EHT and ALMA. The observational

polarization data appear to be scrambled on scales smaller than the EHT beam, implying the

potential importance of Faraday rotation effects. Through a quantitative comparison with

a large library of simulated polarimetric images from GRMHD simulations, it is seem that

several physical models can explain critical features of the polarimetric EHT observations

while producing the observed jet power from M87. All consistent GRMHD models are of

MAD flows, where magnetic fields near the event horizon are dynamically important.

4.1 Introduction

The Event Horizon Telescope (EHT) collaboration recently published total intensity images

of event-horizon scale emission around the supermassive black hole in the core of the Messier

This chapter has been adapted from work with D. C. M. Palumbo, B. S. Prather, and collaborators in
the Event Horizon collaboration that was published as ApJ Volume 894, Issue 2, id.156, 2020 and ApJL,
Volume 910, Issue 1, id.L13 2021.
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87 galaxy (hereafter the black hole is called M87, Event Horizon Telescope Collaboration

et al. 2019a,b,c,d, hereafter EHTC I; EHTC II; EHTC III; EHTC IV). The data reveal a

42± 3µas diameter ring-like structure broadly consistent with the shadow of a black hole as

predicted by Einstein’s Theory of General Relativity (Event Horizon Telescope Collaboration

et al. 2019e,f, hereafter EHTC V; EHTC VI). The brightness temperature of the ring at

230GHz (& 1010 K) is naturally explained by synchrotron emission from relativistic electrons

gyrating around magnetic field lines. The ring brightness asymmetry results from light

bending and Doppler beaming due to relativistic rotation of the matter around the black

hole.

The M87 galaxy is best known for launching a kpc-scale FR-I type relativistic jet, whose

kinetic power is estimated to be ∼ 1042−44 erg s−1 (e.g., Stawarz et al. 2006, de Gasperin et al.

2012). The structure of the relativistic jet has been resolved and studied in great detail at

multiple wavelengths from radio to X-rays (e.g., Di Matteo et al. 2003; Harris et al. 2009;

Walker et al. 2018; Kim et al. 2018). It is not yet understood exactly how the jet is formed

and connected to the central object.

The published EHT image of M87 together with multi-wavelength observations are con-

sistent with the picture that the supermassive black hole in M87 is surrounded by a relativis-

tically hot, magnetized plasma (Rees et al., 1982; Narayan & Yi, 1995a; Narayan et al., 1995;

Yuan & Narayan, 2014; Reynolds et al., 1996; Yuan et al., 2002; Di Matteo et al., 2003).

However, it is not clear whether the compact ring emission is produced by the plasma that

is inflowing (in a thick accretion flow), outflowing (at the jet base or in a wind), or both.

Furthermore, the total intensity EHT observations could not constrain the structure of mag-

netic fields in the observed emission region. Additional information is needed to constrain

the detailed physical scenario in M87.

Event Horizon Telescope Collaboration et al. (2021a) (hereafter EHTC VII) reported

new polarimetric EHT2017 observations of M87, which are reproduced in Figure 4.1. These

images reveal that a significant fraction of the ring emission is linearly polarized, as expected
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for synchrotron radiation. The EHT polarimetric measurements are consistent with unre-

solved observations of the radio core at the same frequency with the SMA (Kuo et al., 2014)

and ALMA (Goddi et al., 2021). They also provide a detailed view of the polarized emission

region on event-horizon scales near the black hole.

Polarized synchrotron radiation traces the underlying magnetic field configuration and

magnetized plasma properties along the line of sight (Bromley et al., 2001; Broderick &

Loeb, 2009; Mościbrodzka et al., 2017). The polarimetric measurements allow us to carry

out new quantitative tests of horizon scale scenarios for accretion and jet launching around

the M87 black hole. In this paper we present our interpretation of the EHTC VII resolved

polarimetric images of the ring in M87.

We begin with an introduction to image linear polarization structure in Section 4.2.

In Section 4.3 we motivate and define a decomposition procedure for linear polarization

data in black hole images. In Section 4.4 we apply the decomposition to a large set of

simulated images and detail observed statistical trends, and we discuss model limitations for

the decomposition in Section 4.5.

We then report polarimetric constraints from M87 EHT2017 as well as supplemental

observations in Section 4.6. In Section 4.7 we present one-zone estimates of the properties of

the synchrotron emitting plasma. Since the M87 core occupies the trans-relativistic regime,

we realize a full calculation of polarized radiative transfer using numerical simulations; in

Section 4.8, we describe the numerical simulation procedure used to produce accretion flow

simulations that can be compared to the observables. In Section 4.9 we show that a limited

subset of the simulation parameter space is consistent with the observables, and show that the

favored simulations feature dynamically important magnetic fields. Section 4.10 provides an

itemized report of model theory metrics. We discuss limitations of our models in Section 4.11

and discuss how future EHT observations can further constrain the magnetic field structure

and plasma properties near the supermassive black hole’s event horizon in Section 4.12.
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M87*       April 11, 2017
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Fractional Polarization |m|

Figure 4.1: Top: April 11 fiducial polarimetric image of M87 from EHTC VII. The gray scale
encodes the total intensity, and ticks illustrate the degree and direction of linear polarization.
The tick color indicates the amplitude of the fractional linear polarization, the tick length is
proportional to |P| ≡

√
Q2 + U2, and the tick direction indicates the EVPA, or electric-vector

linear polarization angle. Polarization ticks are displayed only in regions where I > 10% Imax

and |P| > 20%|P|max. Bottom: Polarimetric images of M87 taken on different days.
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4.2 Azimuthal structure in black hole images

The accreting material around the M87 supermassive black hole is typically modeled as a

radiatively inefficient accretion flow forming a geometrically thick disk of infalling plasma

(Ichimaru, 1977; Rees et al., 1982; Narayan & Yi, 1994, 1995b; Reynolds et al., 1996). At

M87-like mass and accretion rates, radiation at the 230 GHz EHT operational frequency is

dominated by synchrotron emission (see, e.g., Yuan & Narayan, 2014). In the synchrotron

process, electrons are confined to move in helical orbits about magnetic field lines. This

motion sets a characteristic orientation for the electromagnetic fields that are produced and

results in a polarization perpendicular to the orientation of the magnetic field lines. In the

limit of weak internal Faraday rotation, the observed linear polarization can be used to probe

the structure of the local magnetic field.

Accretion flows can be divided into two qualitatively different states according to the

properties of their steady-state magnetic fields. In the magnetically arrested disk (MAD)

state, the magnetic pressure in the disk near the horizon is large enough to counterbalance

the inward ram pressure of the flow (Ichimaru, 1977; Igumenshchev et al., 2003; Narayan

et al., 2003). MAD flows are characterized by energetic, quick, violent accretion events and

often have higher accretion efficiencies compared to their standard and normal evolution

(SANE) counterparts. Since the structure and strength of the magnetic field at the horizon

parameterizes the black hole accretion flow state space, linear polarization data may be an

efficient discriminator among the underlying models.

Prior work has linked linear polarization fraction and rotation measure in emission from

accretion flows to magnetic field structure in simulations of M87 (Broderick & Loeb, 2009;

Mościbrodzka et al., 2017). We present a framework for evaluating rotational coherence in

the linear polarimetric fields of arbitrary images and use this framework to provide a focused

analysis of nearly face-on accretion flow images in a simulated library of M87-like images. We

generate a discriminator between the MAD and SANE accretion states and identify trends

in the coefficients with respect to black hole spin. The differences in polarization structure
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across the image library support a path to inference of the magnetic field structure that may

be applicable to EHT polarimetry of M87.

4.3 Decomposition of linear polarization

Images of face-on black hole accretion disks exhibit a ring-like structure that aligns with the

symmetry axis of the Kerr spacetime. Although this symmetry persists in the magnitude of

polarized intensities, the map of the electric vector position angle (EVPA) depends strongly

on the orientation and strength of magnetic fields in the flow. The higher magnetic field

strengths present in MADs may lead to increased azimuthal symmetry in EVPA, motivating

a symmetry-based decomposition of linearly polarized images to distinguish MAD and SANE

states. We describe our method below.

4.3.1 Decomposition definition

For our analysis, we take advantage of the inherent ring-like structure present in black hole

images at low inclination by working in polar coordinates (ρ, ϕ), where the radial distance

ρ is measured from the image center and the azimuthal angle ϕ is measured east of north

on the sky. We express the linear polarization on the image in terms of the complex-

valued polarization field P (ρ, ϕ) ≡ Q(ρ, ϕ) + iU(ρ, ϕ), where Q and U are the usual Stokes

intensities. The corresponding EVPA χ is measured east of north on the sky and can be

written in terms of the complex phase of the polarization field ∠(P ):

χ =
1

2
arctan

U

Q
=

1

2
∠(P ). (4.1)

We project each image onto a set of basis functions defined in the polarization domain as

Pm(ϕ) ≡ eimϕ to pick out particular modes of azimuthal symmetry. While orthogonal, our

basis functions are not complete over the polarimetric image domain because they cannot

reproduce radial structure and do not contain absolute polarized flux information without
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an accompanying Stokes I image. This is intentional: rather than merely reproduce the

polarization map, we wish our decomposition coefficients to be a measure of coherent polar-

ization for particular azimuthal angular dependencies about the image center. Furthermore,

because fiducial model images exhibit a sharp ring-like structure, condensing the data along

the radial dimension is not expected to lead to significant information loss.

We define the decomposition coefficient βm to be the scalar product between the basis

image and the P image, restricted to an annulus:

βm =
1

Iann

ρmax∫

ρmin

2π∫

0

P (ρ, ϕ)P ∗m(ϕ) ρ dϕ dρ

=
1

Iann

ρmax∫

ρmin

2π∫

0

P (ρ, ϕ) e−imϕ ρ dϕ dρ, (4.2)

Iann =

ρmax∫

ρmin

2π∫

0

I(ρ, ϕ) ρ dϕ dρ . (4.3)

We have normalized by Iann, the total Stokes I flux in the annulus, and we use ρmin and ρmax

to set the radial extent of the annulus.

For each image, we identify the image center and the radial extent of the annulus accord-

ing to the ring extractor (rex) procedure described in detail in Section 9 of EHTC IV. rex

identifies the ring center as the point that is most equidistant from peak emission along 360

azimuthal slices. The ring width is taken to be the mean full width of half-maximum of the

emissivity evaluated along each azimuthal angle from the central point.

For this analysis, we take ρmax − ρmin to be twice the ring width reported by the rex-fit

ring profile. For GRMHD snapshots blurred to nominal imaging resolutions, this choice

ensures that the decomposition coefficients are well-behaved under perturbations to annulus

shape and position. Because the nominal image resolution sets the minimum feature size,

the area integral will necessarily include at least two distinct resolution elements along any
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given radius thereby enabling a meaningful and consistent measure of radial coherence in

the polarized image.

Each βm coefficient is a dimensionless complex number with magnitude corresponding

to the amount of coherent power in the mth mode and with phase corresponding to the

average pointwise rotation of the image polarization relative to a fiducial EVPA orientation

which we define to be vertical along the ϕ = 0 image axis. The process can also be thought

of as an inner product between the basis functions of Figure 4.2 or as a radially averaged

azimuthal Fourier transform of the complex polarization field where the βm coefficients are

Fourier coefficients corresponding to the integral Fourier modes.

If the jet in M87 is aligned with the spin axis of the central black hole as is believed, then

our viewing angle to the accretion system should be small (see, e.g., Wang & Zhou, 2009;

Mertens et al., 2016; Walker et al., 2018). In such nearly face-on systems, the m = 2 mode is

of particular interest because of the expected axisymmetric structure in horizon-scale images.

We present a few trivial examples of ring-valued linear polarization fields corresponding to

−4 ≤ m ≤ 4 periodic modes with different phases in Figure 4.2. Note that the β2 coefficient

projects out a polarimetric symmetry akin to the E and B modes typically used in studies

of polarization in the cosmic microwave background (e.g., Kamionkowski & Kovetz, 2016).

In this formalism, the real part of the β2 coefficient corresponds to E and the imaginary part

corresponds to B.

In Figure 4.3, we provide an example of the decomposition applied to images of models

that pass EHTC V observational criteria. This example illustrates two strong features of

the decomposition. First, blurring increases coherence in polarimetric structure and reduces

power in modes with higher |m|. Second, the m = 2 rotationally symmetric mode can

be dominant in both MAD and SANE model snapshots, though in this case, the MAD

snapshot has a much larger m = 2 coefficient. Furthermore, the complex phase of the

β2 component ∠(β2) encodes the dominant direction of the EVPA spiral. In this MAD

snapshot, ∠(β2) ∼ −π/2, corresponding to the EVPA in the bottom right of Figure 4.2,
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P = e−4iϕ

β−4 = 1

P = e−3iϕ

β−3 = 1

P = e−2iϕ

β−2 = 1

P = e−iϕ

β−1 = 1
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β0 = 1

P = eiϕ

β1 = 1

P = e2iϕ

β2 = 1

P = e3iϕ

β3 = 1

P = e4iϕ

β4 = 1

P = e2iϕ

β2 = 1

P = −e2iϕ

β2 = −1

P = ie2iϕ

β2 = i

P = −ie2iϕ

β2 = −i

N

E W

S

Figure 4.2: Left grid: examples of the electric vector position angle for periodic polarization
fields plotted along a ring of unit radius, along with corresponding βm values for −4 ≤ m ≤ 4.
Polarization fields are chosen to produce positive real values of βm, which correspond to
vertical electric vector position angle at the top of the image. Right grid: Same as left, but
showing only the rotationally symmetric m = 2 mode with four phases in β2.

while the SANE snapshot has ∠(β2) ∼ 0, corresponding to a radially directed EVPA.

4.3.2 Interferometric signatures of rotationally symmetric

polarization

An interferometer measures visibilities Ĩ(u, ψ) of an image I(ρ, ϕ) according to (see, e.g.,

Thompson et al., 2017)

Ĩ(u, ψ) =

∫∫
I(ρ, ϕ) e−i2πρu cos(ψ−ϕ) ρ dρ dϕ, (4.4)

where u and ψ give the location of the interferometric baseline when projected onto the

image plane perpendicular to the line of sight. Here, u is the magnitude of the baseline

vector and ψ is measured east of the positive uy axis. This definition holds for all Stokes

parameters. We adopt the notation Ĩ, Q̃, and Ũ for the visibilities associated with Stokes
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Figure 4.3: Comparison of linear polarimetric decomposition of example MAD and SANE
images consistent with observational criteria and approximately equal total flux. The de-
composition is applied within the annulus stretching from the blurred rex-fit ring diameter
to twice its half-width in each direction, centered at the rex-fit ring center. Color shows
unpolarized Stokes I intensity normalized to unity and ticks show EVPA. Images are shown
with and without a 20 µas blurring kernel applied to all Stokes grids. White circles show
the blurring kernel; the blue circle shows the outer edge of the rex annulus, while the inner
edge extends to zero. Both images are of M87-like simulations with a 6.2× 109 M� central
black hole of spin a∗ = 0.94, viewed at 17◦ inclination to the black hole spin axis, and with
identical models for electron temperature. In figures, EVPA tick marks are shown where
both fractional polarization exceeds 1% and Stokes I intensity exceeds 10% of its maximum
value. The MAD snapshot is dominated by power in the m = 2 mode. Both blurring and
integrating over larger scales impose coherence, decreasing power in higher modes.

I, Q, and U respectively. The linear polarization visibilities P̃ are then Q̃ + iŨ and have

interferometric EVPA given by 1
2
∠(P̃ ).

We now identify the P̃ signatures corresponding to azimuthal symmetry in P . Con-

sider the simple case of a rotationally symmetric Stokes I image with constant fractional
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polarization p. If the polarization evolves azimuthally according to a single mode m, then

I(ρ, ϕ) ≡ I(ρ), (4.5)

P (ρ, ϕ) ≡ pI(ρ)eimϕ, (4.6)

so P (ρ, ϕ) is separable in ρ and ϕ. The polarized visibilities can then be written

P̃ (u, ψ) = p

∞∫

0

I(ρ)




2π∫

0

eimϕe−i2πρu cos(ψ−ϕ) dϕ


 ρ dρ . (4.7)

The integral in ϕ produces Bessel functions of the first kind Jm and leaves the azimuthal

structure intact up to a phase dependence that is determined by m and the sign of Jm

2π∫

0

eimϕe−i2πρu cos(ψ−ϕ) dϕ = 2πi−mJm(2πuρ)eimψ. (4.8)

Because what remains of Equation 4.7 is an integral in ρ, the angular dependence on eimψ will

be present in the visibility domain and thus dependence on the image angle ϕ is imprinted

on the Fourier domain angle ψ.

The image of a thin ring polarized according to the rotationally symmetric m = 2 mode

is particularly relevant to our analysis. We can fix the EVPA of the m = 2 mode by setting

the phase of β2. One model of a thin polarized ring with diameter d in the image plane is

described by Johnson et al. (2020) as

I(ρ, ϕ) =
1

πd
δ

(
ρ− d

2

)
, (4.9)

P (ρ, ϕ) = β2 p
1

πd
δ

(
ρ− d

2

)
ei2ϕ. (4.10)
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The corresponding visibilities are then

Ĩ(u, ψ) = J0(πdu), (4.11)

P̃ (u, ψ) = −β2pJ2(πdu) ei2ψ. (4.12)

Evidently, the signature of them = 2 polarization mode is two-fold in P̃ , comprising both the

J2 Bessel function and the ei2ψ azimuthal dependence in the Fourier domain. Each signature

is readily identifiable in synthetic data.

Figure 4.4 illustrates these interferometric polarized signatures for three model images:

an analytic ring of diameter 40µas whose profile is built from a 1µas rotated boxcar blurred

by a 5µas Gaussian, and the MAD and SANE snapshots shown in Figure 4.3. The MAD

model shows interferometric signatures similar to those of the β2 = −i right-handed spiral.

Figure 4.4 also shows the overplotted baseline coverage of M87 provided by the 2017

EHT array. Even though the array only provided a sparse sampling of the Fourier plane, we

expect that data at the current EHT resolution will still be sensitive to the salient differences

in EVPA structure between MAD and SANE models.

4.4 Image library parameter discrimination

By applying the decomposition described in Section 4.3 to ensembles of simulated images

and obtaining representative coefficient distributions, we can identify how changing the phys-

ical parameters of the black hole accretion system affects the values of the decomposition

coefficients. This analysis provides a new domain which might be used to inform parame-

ter extraction efforts. Here, we apply our decomposition to a set of images generated with

M87-like parameters. We present the resulting coefficient distributions and then focus on

the m = 2 coefficient which appears to provide the strongest discriminating power.
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Figure 4.4: Visibility amplitudes |Ĩ| and |P̃ |, and 1
2
∠(P̃ ) for three example images. The top

row presents a 40µas diameter boxcar ring of width 1µas blurred by a 5 µas Gaussian kernel.
The bottom two correspond to the GRMHD examples presented in Figure 4.3. EHT 2017
baseline coverage from April 11 is overlaid. Rotational symmetry in the EVPA transfers to
the visibility domain, but rotates by 90◦ on short baselines due to the factor of −β2 = i
found in Equation 4.12. Visibility amplitudes are normalized and shown in linear scale.

4.4.1 Image library description

As a part of the analysis effort presented in EHTC V, high-resolution GRMHD simulations

of MAD and SANE accretion disks with dimensionless black hole spins a∗ ≡ Jc/GM2 rang-

ing between −0.95 < a∗ < 0.99 were generated. Here, J is the angular momentum of the

black hole, and negative values of a∗ correspond to anti-parallel black hole and disk angular

momentum vectors. Each GRMHD simulation was used to generate a set of ≥ 100 polari-

metric images evenly spaced in time via general relativistic ray tracing. The ray tracing

calculation was performed using the fast light approximation and assumed pure synchrotron
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emission and absorption from a thermal electron distribution. As part of the analysis, a set

of observational constraints and self-consistency checks was applied to each model. A full

description of the library and cuts applied to the models was presented in Chapter 3.

We restrict our analysis to images of black holes with mass 6.2 × 109M� and average

compact flux densities Fν(230 GHz) = 0.5 Jy. Each image is generated at an inclination

of 17◦ relative to the angular momentum axis of the black hole in accordance with large-

scale estimates of jet inclination (see, e.g., Walker et al., 2018) and in order to produce the

characteristic Stokes I brightness asymmetry on the correct side of the image. We take

images from both MAD and SANE models with dimensionless spins ±0.94,±0.5, and 0

with six different electron temperature prescriptions. Our fiducial image set is split evenly

among each of the image parameters and includes 3000 each of MAD and SANE images. Of

these, 1300 MAD and 600 SANE images pass the observation and consistency checks. The

GRMHD simulations we consider were generated with iharm (Gammie et al., 2003) and the

radiative transfer calculation was performed by ipole (Mościbrodzka & Gammie, 2018).

4.4.2 Parameter discrimination results

We apply the decomposition described in Section 4.3 to each image in the library to compute

βm coefficients for −10 ≤ m ≤ 10. Each image is first blurred by a 20 µas Gaussian kernel.

The 20 µas size corresponds to slightly less than the nominal beam of the EHT array; EHT

imaging algorithms routinely reconstruct images with super-resolution finer than this scale

(see EHTC IV; Chael et al., 2016; Kuramochi et al., 2018; Palumbo et al., 2019). We then

simultaneously center the image and measure a ring profile using rex. Finally, we measure

coefficients of the blurred images and examine distributions of the βm coefficients for MAD

and SANE simulations.

Figure 4.5 shows the distribution of the |m| ≤ 4 coefficients across the selected library

images organized by MAD or SANE as well as whether the snapshot belongs to a model that

passed the consistency checks. These checks include comparisons to previous observations
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Figure 4.5: Complex βm coefficients with −4 ≤ m ≤ 4 for the fiducial ray tracing parameters
of the GRMHD library after blurring with a 20 µas beam. Coefficients are normalized by
the Stokes I annular flux after integrating over a region set by the rex-fit radius and width
ρrex ± wrex. Models that are not self-consistent or that are ruled out by prior observational
constraints are labeled as failing.

as well as a self-consistency verification that the numerical models do not produce too much

radiation to have been accurately simulated by non-radiative GRMHD. Though the m = 1

andm = 3 modes appear to segregate the MAD and SANE distributions, the largest apparent

separation arises in the m = 2 mode at the bottom left in the figure.
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A small subset (less than 10%) of SANE snapshots exhibit well-ordered polarization fields

with even larger β2 magnitudes than MAD models. These snapshots correspond to prograde

spin SANE models in which the ion and electron temperatures are set equal. This choice

results in a shift of emission outwards beyond the inner accretion flow and thus EVPA likely

traces the magnetic field structure of the disk proper in these models. The original EHT

analysis uniformly rejected these models.

The distribution of β2 magnitudes in Figure 4.6 suggests that discrimination between

MAD and SANE is tractable even if the EVPA is arbitrarily rotated. If an image presents

a large β2, it is invariably either a MAD or a failing SANE.

0.0 0.1 0.2 0.3 0.4
|β2|

0

50

100

150

200

250

N
u

m
b

er
of

Im
ag

es

Passing MADs

Passing SANEs

Figure 4.6: Stacked histogram of β2 coefficient magnitudes shown for MAD and SANE
models that are physically consistent with observational criteria. No passing SANE model
has |β2| > 0.20.

The phase angle of the β2 coefficient trends with the magnitude of the black hole spin

a∗. As can be seen in Figure 4.7, increasing |a∗| correlates with decreasing ∠(β2) and thus

a more radially directed EVPA. A coherent external Faraday screen would uniformly rotate
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the EVPA map. If the properties of the screen are unknown, constraining spin becomes more

challenging.
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Figure 4.7: Distribution of the complex β2 coefficient (left) and stacked histogram of the
phase of β2 (right) colored by spin values. Complex coefficients are shown for all models,
whereas phases are shown only for passing models. The phase of the β2 coefficient reflects
increasingly radial EVPA at high spins. As shown in the MAD β2 distribution, magnetic field
symmetries in left handed flows correspond to right-handed EVPA maps and corresponding
β2 phases.

The systematically negative phase of the β2 coefficients is due to an imaging choice. In

order to reproduce the ring asymmetry present in the EHT observation, the emitting fluid

must be moving clockwise about the hole. This sets a preferred orientation for the black

hole angular momentum vector and consequently also the magnetic field. Since EVPA traces

magnetic field orientation, this choice preferences right-handed EVPA fields.

4.5 Limitations of the β decomposition model

We have described and validated a decomposition of the linear polarization field into coeffi-

cients βm that quantify ordered symmetries in the image plane. The β2 coefficient quantita-

tively identifies rotationally symmetric polarized image structure. The structural sensitivity

of the decomposition provides additional constraints beyond measurements of the fractional

polarization.
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Although it is possible to analytically recover the position of the ring center in simulated

images of black holes, we are limited to algorithmic centering procedures for analyses of real

data. A polarimetric image of a centered ring with unit flux density given by P (ϕ) = ei(2ϕ+δ),

as in Figure 4.2, will have |β2| = 1. In ideal cases, rex can correctly identify the image center,

enabling accurate computation of the decomposition coefficients. In more general cases, the

turbulence in the underlying plasma flow can drastically affect the apparent shape and

structure of the observed ring. These discrepancies along with effects due to undersampling

in the image domain can result in the rex procedure inaccurately identifying the true image

center. In orders of the absolute centering error b divided by the ring diameter, b/d, the

magnitude of the β2 coefficient goes like |β2| ≈ 1 − 4 (b/d)2. For rings of finite width

w, the correction term gains a factor of log (w/d). Note, however, that interferometric

visibility amplitudes are invariant under centroid shifts, so the structures in Figure 4.4 persist

regardless of image centering choices (Thompson et al., 2017).

The EHT Stokes I analysis found full image correlation times to be of order 50 M, or

approximately two weeks for M87. In contrast, we find that coherence in the m = 2 mode

can be significantly longer. Over the full image library, m = 2 correlation times ranged from

50 M to nearly 1000 M. The increased coherence results primarily from the blurring and

averaging procedures built into the coefficient calculation. Decoherence in the full images is

generally driven by hot, isolated fluid features that evolve over a dynamical time. Because

these features are localized in azimuth, they do not appear as time dependent features in

the m = 2 coefficient and thus β2 retains coherence on longer timescales.

We also found that MAD correlation times are characteristically longer than SANE ones.

This is reasonable: because the orientation of the EVPA is connected to the magnetic field

structure and because magnetic fields are both stronger and more structured in MAD disks,

EVPA orientation should be steadier in MAD disks. Our computation of correlation times

is limited by image cadence, and because our cadence is at times of order the calculated

coherence time, we have not attempted to provide a more detailed quantification of the
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difference between SANEs and MADs by this measure. Figure 4.8 shows the autocorrelation

function for both a selected MAD and a selected SANE model. In the case of M87, we expect

that images taken at intervals of a year or greater should provide independent realizations

of the source and thus improve the statistical accuracy of any probability-based parameter

discrimination.
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Figure 4.8: Autocorrelation function for several βm coefficients for an example MAD model
and an example SANE model. In these models, MAD correlation times are longer than SANE
correlation times. SANE correlation times may not be resolved by the image cadence.

The image library used for this analysis was generated using the fast light approximation

in which it is assumed that the time it takes for light to travel through the computational

domain is small compared to the timescales on which the fluid properties change. Our

analysis is largely insensitive to this choice, especially because the inclination at which we

view M87 orients the lines of sight perpendicular to the bulk motion of fluid features.

Aside from the question of fast versus slow light, the values of the decomposition coef-

ficients are geometrically dependent on the orientation at which we view M87. The nearly
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face-on view of M87 leads to an inherent symmetry which begets the relative strength of the

m = 2 mode. Were the same analysis applied to images of black holes viewed edge on at

large inclination, the symmetry would be broken. The difference between fast and slow light

analyses might also be more pronounced in analyses of black holes viewed closer to edge-on.

Although our analysis was performed entirely within the image domain, images from

observations are reconstructions from data products that live in the Fourier plane. Because

assumptions about image structure affect the reconstruction procedure (for a review, see

EHTC IV), an analysis of polarimetric imaging output based on synthetic data would help

ensure that neither (1) imaging choices nor (2) systematic errors due to baseline coverage nor

(3) problems in leakage calibration should dominate the signatures of rotational symmetry

we have identified.

4.6 Polarimetric observations

4.6.1 Conventions in observations and models

Throughout this paper we use the following definitions and conventions for polarimetric

quantities, following the IAU definitions of the Stokes parameters (I,Q,U ,V) (Hamaker &

Bregman, 1996; Smirnov, 2011). The complex linear polarization field P is

P = Q+ iU . (4.13)

Then, the electric vector position angle (EVPA) is defined as

EVPA ≡ 1

2
arg(P). (4.14)

The EVPA is measured East of North (counter-clockwise from an arrow pointing up) on

the sky. Positive Q is aligned with the North–South direction and negative Q with the

East–West direction. Positive U is at a +45 deg angle with respect to the positive Q axis
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(in the NE–SW direction). Positive Stokes V indicates right-handed circular polarization,

meaning in our convention that the electric field vector of the incoming electromagnetic wave

is rotating counter-clockwise as seen by the observer. In the synchrotron radiation models

we consider, a positive value of emitted Stokes V is associated with an angle θB between the

wavevector kµ and magnetic field bµ as measured in the frame of the emitting plasma in the

range θB ∈ [0, 0.5π]. Negative V corresponds to θB ∈ [0.5π, π].

The linear and circular polarization fractions at a point in the image are defined as

|m| ≡ |P|I , (4.15)

|v| ≡ |V|I . (4.16)

We also define the rotation measure between two wavelengths λ1 and λ2

RM ≡ EVPA(λ1)− EVPA(λ2)

λ2
1 − λ2

2

. (4.17)

Unresolved observations measure the net (image-integrated) polarization fractions,

|m|net =

√
(
∑

iQi)
2 + (

∑
i Ui)

2

∑
i Ii

, (4.18)

vnet =

∑
i Vi∑
i Ii

, (4.19)

where the sums are over all pixels i in the resolved image. In addition to the signed circular

polarization fraction vnet, we also frequently consider the absolute value |vnet|, since circular

polarization measurements of the M87 core at 230 GHz do not constrain its sign (Goddi

et al., 2021).

In describing the resolved linear polarization in EHT images, we define the image-average
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linear polarization fraction, weighted by the total intensity of each image pixel, as

〈|m|〉 =

∑
i

√
Q2
i + U2

i∑
i Ii

. (4.20)

Note that 〈|m|〉 depends on the imaging resolution (beam size), while |m|net is the usual

unresolved linear polarization fraction and does not depend on resolution.

4.6.2 Unresolved polarization and rotation measure measurements

towards M87’s core from ALMA

As part of the EHT2017 observation campaign, we obtained ALMA array measurements of

the unresolved, net ∼230GHz polarimetric properties of M87’s core and jet on April 5, 6,

10, and 11 (hereafter these observations are referred to as ALMA–only observations). These

results, along with details on the observations and data calibration, are presented in Goddi

et al. (2021); we summarize them here in Table 4.1. From the ALMA-only data, the net

linear polarization fraction (Equation 4.18) of the core is |m|net ' 2.7%. The data also

provide an upper limit on the net circular polarization fraction (Equation 4.19) of the core

of |v|net . 0.3%, with a magnitude and sign that vary over the four observed epochs. Goddi

et al. (2021) also measured an EVPA that varies with wavelength across the ALMA band;

the slope of EVPA with wavelength is consistent with EVPA ∝ λ2, as expected for Faraday

rotation. The inferred rotation measure (Equation 4.17) is time variable and changes sign

between April 5 and 11, with a maximum magnitude |RM| ' 1.5× 105 radm−2.

The ALMA-only measurements include extended ∼arcsecond scale structures that are

entirely resolved out of the EHT maps of M87’s core region. As a result, the total 230GHz

flux density of M87 measured by ALMA alone is a factor of ' 2 larger than that captured

by the resolved EHT images (see also EHTC IV).
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Day F |m|net |v|net RM
(Jy) (%) (%) (105 rad m−2)

April 5 1.28± 0.13 2.42± .03 ≤ 0.2 (0.6± 0.3)
April 6 1.31± 0.13 2.16± .03 ≤ 0.3 (1.5± 0.3)
April 10 1.33± 0.13 2.73± .03 ≤ 0.3 (−0.2± 0.2)
April 11 1.34± 0.13 2.71± .03 ≤ 0.4 (−0.4± 0.2)

Table 4.1: ALMA–only measurements of M87’s unresolved polarization properties at ν = 221
GHz (Goddi et al., 2021).

4.6.3 Spatially resolved linear polarization of M87’s core in

EHT2017 data

The resolved polarimetric images of the M87 core reported in EHTC VII display robust fea-

tures between different image reconstruction algorithms and across four days of observations

(April 5, 6, 10 and 11 of 2017). At 20µas resolution, the images consistently show a region

of highest linear polarized intensity in the south-west portion of the ring, with a fractional

linear polarization |m| . 30 % at its maximum. The image-average linear polarization frac-

tion takes on values 5.7% ≤ 〈|m|〉 ≤ 10.7% across the different observation days and image

reconstruction techniques. The range of the image-integrated net polarization fraction is

1.0% ≤ |m|net ≤ 3.7% (see EHTC VII, Table 2). Because polarized emission outside the

EHT field-of-view but inside the ALMA-only core is unconstrained, we adopt the EHT |m|net

range when evaluating models rather than the ALMA-only values.

On all four observing days, the EHT images reveal a characteristic azimuthal pattern of

the EVPA angle around the emission ring. To quantify this pattern across the image, we use

the PWP method to decompose P = Q+iU into azimuthal modes with complex coefficients

βm as described earlier in this chapter and in Palumbo et al. 2020. For a polarization field

in the image plane given in polar coordinates (ρ, ϕ), the βm coefficients are

βm =
1

Iann

ρmax∫

ρmin

2π∫

0

P(ρ, ϕ) e−imϕ ρ dϕ dρ, (4.21)
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where Iann is the Stokes I flux density contained inside the annulus set by the limiting radii

ρmin and ρmax. We take ρmin = 0 and ρmax to be large enough to include the entire EHT

image.

Within the library of polarized images from GRMHD simulations produced for EHTC V,

PWP found that the m = 2 coefficient, β2, was the most discriminating in identifying the

underlying magnetized accretion model. The phase of β2 maps well onto the qualitative

behavior expected of polarization maps with idealized magnetic field configurations. In our

convention, radial EVPA patterns have positive real β2 (∠β2 = 0 deg), azimuthal EVPA pat-

terns have negative real β2 (∠β2 = 180 deg), and left (right) handed spiral patterns have

positive (negative) pure imaginary β2 (∠β2 = 90 deg and −90 deg, respectively). The mea-

sured range of the complex β2 coefficient across the different image reconstruction methods

and observing days reported in EHTC VII, Table 2 is: 0.04 ≤ |β2| ≤ 0.07 for the amplitude,

and −163 deg ≤ arg[β2] ≤ −129 deg for the phase.

Trends in β2 metric computed across the GRMHD image library (Section 4.8) can be ob-

tained in the visibility domain using only E- and B- mode measurements taken on EHT2017

baselines, as long as the visibilities are accurately phase calibrated (see Appendix A of

EHTC VIII). Since accurate phase calibration of EHT data is non-trivial and requires fully

modeling the polarized source structure, we use image domain comparisons to the recon-

structions presented in EHTC VII for the constraints applied in the rest of this paper.

As in total intensity, both the unresolved and resolved polarimetric properties of the

230GHz M87 image changed over the week between April 5 and April 11. Notably, the

integrated EVPA in the EHT image changes by ≈ 30−40 deg (while the ALMA-only EVPA

changes by . 10 deg). We will not interpret this variability further in this work, although

Section 4.11 provides a broad overview of expectations for time variability in viable models.

The observational ranges of the key parameters we use in comparing theoretical models to

data in Section 4.9—namely |m|net, |v|net, 〈|m|〉, and β2 amplitude and phase—are summa-

rized in Table 4.2.
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Table 4.2: Parameter ranges for the quantities used in scoring theoretical models in this
paper.

Parameter Min Max
|m|net 1.0% 3.7 %
|v|net 0 0.6 %
〈|m|〉 5.7 % 10.7 %
|β2| 0.04 0.07
∠β2 −163 deg −129 deg

Note – The ranges for |m|net, 〈|m|〉, and β2 were taken from EHTC VII Table 2. These
ranges represent the minimum −1σ error bound and maximum +1σ error bound across five
different image reconstruction methods, and incorporate both statistical uncertainty in the
polarimetric image reconstruction and systematic uncertainty in the assumptions made by
different reconstruction algorithms. The upper limit on |v|net was taken as ' 2× the value
from Goddi et al. (2021).

4.6.4 External and internal Faraday rotation

Faraday rotation in a uniform plasma with rotation measure RM rotates the EVPA away

from its intrinsic value EVPA0 according to Equation 4.17. The change in EVPA from its

intrinsic value at 230GHz (λ ' 1.3 mm) is:

∆EVPA ' 9.7

(
RM

105 rad m−2

)
deg . (4.22)

Polarized light rays passing through a uniform medium are subject to the same RM.

The net source polarization angle is then coherently rotated away from its intrinsic value

without any depolarization. This scenario of external Faraday rotation has been used to infer

the mass accretion rate for sources where an RM is measured or constrained (e.g., Bower

et al. 2003; Marrone et al. 2006, 2007; Kuo et al. 2014), by assuming that the observed

radiation passes through the bulk of the accretion flow. Since relativistic electrons suppress

the Faraday rotation coefficient as ∝ 1/T 2
e (e.g., Jones & Hardee, 1979), these models assume

the RM is produced outside the emission region at the radius where Θe = kTe/mec
2 = 1,

usually r ∼ 100 rg (where rg = GM/c2 is the gravitational radius).

However, in accreting systems like M87, it is unclear whether this external Faraday
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rotation model is a good approximation. As we estimate below, one zone emission models

of M87 predict substantial RM within the emission region itself at radii r . 5 rg. At its low

viewing inclination, it is also unclear whether the observed polarized radiation emitted near

the horizon passes through any cool, high density infalling gas. Therefore, internal Faraday

rotation, which can depolarize the emission as well as rotate the EVPA (Burn, 1966), is also

an important effect to consider.

The observed ' 15% linear polarization of the ring at the EHT scale of ∼ 20µas is much

lower than the intrinsic synchrotron polarization fraction & 70% expected locally. This could

result from synchrotron self-absorption of the emitted radiation, but one-zone estimates and

theoretical models (e.g., EHTC V, and references therein) suggest that the system at 230

GHz is most likely optically thin. It is more likely that the observed depolarization of the

resolved emission could be the result of polarization structure that is scrambled at resolutions

finer than the EHT beam. Turbulent magnetic fields and Faraday rotation internal to the

emission region could produce this scrambling. In Section 4.8.3 we show that turbulence

in GRMHD models alone is insufficient to produce this level of depolarization. Significant

internal Faraday rotation of polarization vectors on different rays by different amounts can

produce a sufficiently scrambled image that is depolarized when spatially averaged over a

telescope resolution element/beam (e.g., Burn, 1966; Agol, 2000; Quataert & Gruzinov, 2000;

Beckert & Falcke, 2002; Ruszkowski & Begelman, 2002; Ballantyne et al., 2007).

From the simultaneous ALMA-only M87 observations, the RM implied by changes in the

EVPA across the ALMA band is |RM| . 1.5 × 105 rad m−2. These values are consistent

with, but much more constraining than, the range determined from past SMA observations

(Kuo et al. 2014). The ALMA-only EVPA difference varies by order unity in magnitude

and sign over the observing campaign and includes a large flux contribution from extended

emission not captured by EHT2017 imaging (EHTC IV). Using a two-component model,

Goddi et al. (2021) shows that the rotation measure toward the core emission in the EHT

field-of-view is uncertain and can exceed the rotation measure computed from all of the
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ALMA-only data including emission that is resolved out by the EHT, with values as large

as |RM | . 106 rad m−2. Because of this uncertainty, we do not use the observed rotation

measure as an observational constraint in our analysis. We account for uncertainty related to

the observed time variability by using reconstructed polarized EHT images from both April

5 and 11 to define the acceptable ranges Table 4.2 of the observational parameters used to

score theoretical models in Section 4.9.

4.7 Estimates

In this section, we take a first look at the importance of internal Faraday rotation and mag-

netic field structure in determining the characteristics of the 230 GHz EHT image. In §4.7.1,

we obtain order-of-magnitude estimates of the plasma properties in M87 by interpreting the

observed depolarization as entirely due to the effect of internal Faraday rotation on small

scales. In Section 4.7.2 we explore the effects of different idealized magnetic field configura-

tions on the observed polarization pattern from plasma orbiting a black hole in the absence

of Faraday effects.

4.7.1 Parameter estimates from one-zone models

Based on a one-zone isothermal sphere model, EHTC V derived order-of-magnitude estimates

of the plasma number density ne and magnetic field strength B in the emitting region around

M87. Constrained by the Stokes I image brightness, size, and total flux density, they found

ne ' 2.9× 104 cm−3, (4.23)

B ' 4.9 G. (4.24)

In this model, the emission radius was assumed to be r ' 5rg, and the electron temperature

was assumed to be Te = 6.25 × 1010 K, based on the observed brightness temperature of
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the EHT image. This temperature corresponds to Θe = kTe/mec
2 = 10.5, so the emitting

electrons have moderately relativistic mean Lorentz factors γ̄ ≈ Θe/3 = 3.5. The angle

between the magnetic field and line-of-sight is set at θ = π/3. This model ignores several

physical effects that are included in more sophisticated models and simulations and which

are necessary to fully describe the emission from M87. The plasma is considered to be at

rest and so there is no Doppler (de)boosting of the emitted intensity from relativistic flow

velocities. Redshift from the gravitational potential of the black hole is also not included.

Given ne, B and Te, we can estimate the strength of the Faraday rotation effect at

230GHz quantified by the optical depth to Faraday rotation τρV :

τρV = r × ρV ' 5.2

(
r

5rg

)
, (4.25)

where ρV is the Faraday rotation coefficient (e.g., Jones & Hardee, 1979). For emission

entirely behind an external Faraday screen, τρV is related to the rotation measure RM via

τρV = 2RMλ2, which follows from the radiative transfer equations for spherical Stokes pa-

rameters in the absence of other effects (see, e.g., Appendix A of Mościbrodzka et al., 2017)

and the fact that ρV ∝ λ2.

Our estimated τρV indicates that Faraday rotation internal to the emission region is an

important effect and could thus explain the depolarization observed in M87. Faraday effects

are even more important for the case of polarized light emitted by relativistic electrons

that travel through a dense, colder accretion flow (e.g., Mościbrodzka et al., 2017; Ricarte

et al., 2020). In addition, for the same parameters, Faraday conversion of linear to circular

polarization may also be important (τρQ ' 0.5), while self-absorption is weak (τI ' 0.05).

Requiring an internal Faraday optical depth τρV > 2π (large enough to produce significant

depolarization) provides an additional constraint on one-zone models independent of those

used in EHTC V, which fixed the electron temperature at an assumed value. Assuming τρV >

2π allows us to break the degeneracy between magnetic field strength, electron temperature,

and plasma number density.
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Figure 4.9: Allowed parameter space in number density and dimensionless electron temper-
ature (ne,Θe) (red region) for the simplistic one-zone model described in subsection 4.7.1
for three constant values of βe = 8πnemec

2Θe/B
2. We require that the optical depth τI < 1

(green region), the Faraday optical depth τρV > 2π (blue region), and the total flux density
0.2 < Fν < 1.2 Jy (black region). Contours of constant magnetic field strength are denoted
by labeled dashed lines.

Hence, we consider the same model as in EHTC V at several different values of βe =

8πnekTe/B
2, constrained by the requirement that the Faraday optical depth τρV > 2π. To

be consistent with the 230GHz EHT data, we also require that the observed image have a

total flux Fν between 0.2 and 1.2 Jy, and that the model has a maximum total intensity

optical depth τI < 1. Figure 4.9 shows what constraints these requirements put on the

electron number density ne and the dimensionless electron temperature Θe at three different

values of βe. For values of 0.01 < βe < 100, the electron temperature in this simple model is

constrained to lie in a mildly relativistic regime 2 . Θe . 20 (1010 < Te < 1.2×1011 K), and

the magnetic field strength is 1 . B . 30 G. The number density of the emitting electrons

depends more sensitively on the assumed value of βe, taking on values between 104 cm−3 and

107 cm−3.

The one-zone model estimates suggest that both the total intensity and polarized emission

can be produced in a mildly relativistic plasma in a magnetic field of relatively low strength

B . 30 G. For higher values of B, the electron temperature would be too small to explain the

observed maximum brightness temperature (' 1010 K) in the M87 EHT image (EHTC IV).

Very high values ofB are independently disfavored by the small degree of circular polarization
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|v|net . 1% seen in M87. For B ' 100 G, the ratio of the Stokes V emissivity to the Stokes I

emissivity jV /jI ' 1%. For B ' 103 G, jV /jI ' 10%, for all temperatures > 1010 K. We also

note that magnetic fields of B & 5 G are sufficient to produce jet powers of Pjet & 1042 erg s−1

(e.g., EHTC V) via the Blandford & Znajek (1977) process.

4.7.2 EVPA pattern and field geometry

To demonstrate how the intrinsic magnetic field structure in the emission region influences

the observed polarization pattern, we present the polarization configurations from three ide-

alized magnetic field geometries around a black hole—a purely toroidal field, a purely radial

field, and a purely vertical field—as seen by a distant observer. In Figure 4.10 we show

polarimetric images from these simple field configurations computed with two methods: a

numerical model of an optically thin emission region around the black hole (top row of

Figure 4.10), and an analytic treatment of the parallel transport of the polarization vector

that is originally perpendicular to the magnetic field (Narayan et al. 2021, middle row of

Figure 4.10). We show the polarization maps from both methods for the three idealized mag-

netic field configurations viewed at an inclination angle of i = 163 deg. Both the analytical

and numerical calculations assume a zero spin black hole (Schwarzschild metric), though we

have found that the main features of these polarization patterns are insensitive to spin.

In the top row of Figure 4.10 we show the result of numerical calculations performed

with the general relativistic ray tracing code grtrans (Dexter & Agol, 2009; Dexter, 2016) of

polarized emission from an optically and Faraday thin compact emission region, or “hotspot”,

in Keplerian orbit around a black hole in the equatorial plane. The hotspot has a radial

extent of 3rg and moves in an imposed and idealized magnetic field geometry in a circular

orbit at a radius of 8rg (following Gravity Collaboration et al., 2018, 2020b). We construct

a phenomenological model of a torus of emitting, rotating plasma by studying the time-

averaged polarized emission images from one revolution of this hotspot around the black

hole. We have verified that a semi-analytic implementation (Broderick & Loeb, 2006) of a
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Figure 4.10: a) Numerical calculations of the polarization configuration generated by an
orbiting emission region in the shape of a torus at 8rg in three imposed magnetic field
geometries and viewed at i = 163 deg (with material orbiting clockwise on the sky). The
orbital angular momentum vector is pointing away from the observer and to the east (to the
left). Total intensity is shown in the background with higher brightness temperature regions
shown as lighter in color. In the foreground, the observed EVPA direction is shown with
white ticks, with the tick length proportional to the polarized flux. b) Analytic calculations of
the polarization configuration from a thin ring of magnetized fluid at 8rg inclined by 163 deg
to the observer in the same magnetic field geometries as in a). While the distribution of
emitting material is different in the two models, both the sense of asymmetry in the brightness
distributions and the polarization patterns match those from the numerical calculations. c)
Schematic cartoons showing the emitting frame wave-vector k, magnetic field direction ~B,
and polarization vector ~P = k̂ × ~B for each case. In the bottom right panel, k̂′ denotes the
approximate light bending contribution to the wave-vector.
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hot accretion flow model (Yuan et al., 2003) also produces consistent polarization patterns

when using the same field geometry.

In the second row of Figure 4.10, we compare these numerical results to results from

an analytic calculation of the observed polarization pattern generated by the emission of

polarized light on a thin ring of radius 8rg in the equatorial plane. In this model (Narayan

et al., 2021), the polarization vectors are emitted perpendicular to the imposed magnetic field

geometry in the fluid rest frame; they are transformed on their way to the observer using

an approximate, but analytic treatment of the effects of light bending, parallel transport,

and Doppler beaming. This calculation includes radial inflow as well as rotation in the

velocity field; the models shown use purely toroidal motion (clockwise on the sky) with the

same idealized magnetic field geometries as in the numerical case. The models match the

asymmetric brightness distributions and polarization patterns of the numerical calculations.

In particular, both models produce a consistent helical EVPA pattern in the case of a vertical

magnetic field.

The linear polarization direction P̄ of synchrotron radiation in the emitted frame is per-

pendicular to the wave-vector k̂ and the magnetic field vector B̄. We define the toroidal

magnetic field as consisting only of magnetic field components in the azimuthal direction,

while the poloidal magnetic field consists of the remainder, including both radial and vertical

components. In a purely toroidal field case, the EVPA pattern shows a radial EVPA pattern

(left column in Figure 4.10). Purely radial magnetic fields (middle column) give a comple-

mentary result; the polarization has a toroidal configuration, similar to a 90 deg rotation of

the linear polarization ticks from the toroidal case.

In a vertical magnetic field (right column in Figure 4.10), we might expect that P̄ should

be vertical (North-South) everywhere since a vertical B̄ is tilted East-West for this viewing

geometry. We might also expect that P̄ ' 0 when the black hole is viewed close to face

on, since k̂||B̄. Instead, the linearly polarized emission from a purely vertical field shows a

twisting pattern that wraps around the black hole. This twist results from light bending in
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the emitting region near the black hole, which provides a radial contribution k̂′ to the emitted

wave-vector k̂ that initially points away from the black hole (see the schematic cartoon in the

bottom right panel of Figure 4.10). As a result, close to the black hole, the total wave-vector

k̂emit = k̂ + k̂′ and the magnetic field B̄ are no longer parallel, and the polarization is non-

zero. In addition, the relativistic motion of the emitting material (aberration) breaks the

North-South symmetry from a pure vertical field and gives the twisting pattern a handedness

corresponding to the orbital direction. The EVPA patterns in these images do not show a

strong dependence on the black hole spin.

In a rotating flow, weak magnetic fields are sheared into a predominantly toroidal con-

figuration (e.g., Hirose et al., 2004). In the absence of other effects (e.g., external Faraday

rotation), the observed azimuthal EVPA pattern suggests the presence of dynamically impor-

tant magnetic fields in the emission region, which can retain a significant poloidal component

in the presence of rotation.

In the next sections, we compare numerical simulations of the accretion flow and jet-

launching region in M87 with different field configurations to the EHT2017 data to better

constrain the magnetic field structure.

4.8 M87 model images from GRMHD simulations

The low resolved fractional linear polarization observed by the EHT contradicts the results

from an idealized magnetic field structure with no disorder. For typical parameters of the

230 GHz emission region, Faraday rotation and conversion are expected to be important.

Magnetic field structure, plasma dynamics and turbulence, and radiative transfer effects in-

cluding Faraday rotation can be realized in images from three-dimensional general relativistic

magnetohydrodynamic (3D GRMHD) simulations of magnetized accretion flows. We use 3D

GRMHD simulations (described in Section 4.8.1) in combination with polarized general rel-

ativistic radiative transfer (GRRT) models (described in Section 4.8.2) to model polarized

147



images of M87. In Section 4.8.3, we describe trends of the key observables (|m|net, |v|net,

〈|m|〉, and β2) in our GRMHD polarimetric image library.

4.8.1 GRMHD model description

The simulation library generated for the analysis of the EHT2017 total intensity data in

EHTC V consists of a set of 3D GRMHD simulations that were post-processed to generate

simulated black hole images via GRRT. For simulations using black holes with non-zero

angular momentum, we only considered accretion flows in which the angular momentum of

the flow and the hole were aligned (parallel or anti-parallel). Since the equations of non-

radiating1 GRMHD are scale invariant, each fluid simulation was thus fully parameterized by

two values describing the angular momentum of the black hole and the relative importance

of the magnetic flux near the horizon of the accretion system.

The black hole angular momentum J is expressed in terms of the dimensionless black hole

spin parameter a∗ ≡ Jc/GM2. In this paper, we consider simulations run with the iharm

code (Gammie et al., 2003; Noble et al., 2006) with a∗ = −0.94, −0.5, 0, 0.5, and 0.94, where

positive (negative) spin implies alignment (anti-alignment) between the accretion disk and

the black hole angular momentum. Several studies of “tilted” disks have been conducted (e.g.

Fragile et al., 2007; McKinney et al., 2013; Morales Teixeira et al., 2014; Liska et al., 2018;

White et al., 2019; Chatterjee et al., 2020). As there does not yet exist a full library of

tilted disk simulations spanning a range of spins and the computational cost associated

with generating such a library is high, we limit our analysis to the aligned and anti-aligned

simulations considered in EHTC V.

The strength of the magnetic flux near the horizon qualitatively divides accretion flow

solutions into two categories: the Magnetically Arrested Disk (MAD) state (e.g., Bisnovatyi-

Kogan & Ruzmaikin, 1974; Igumenshchev et al., 2003; Narayan et al., 2003) in which the
1We assume that M87 is well described by models in which radiative cooling is negligible so that it does

not affect the dynamics of the plasma and model images of M87 can be generated using post-processing
radiative transfer models.
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magnetic flux near the horizon saturates and significantly affects the dynamics of the flow,

and the contrasting Standard and Normal Evolution (SANE) state (e.g., Gammie et al., 2003;

De Villiers & Hawley, 2003; Narayan et al., 2012). The relative importance of magnetic flux

in a simulation is quantitatively described by the dimensionless quantity:

φ ≡ ΦBH

(
Ṁr2

gc
)−1/2

, (4.26)

where ΦBH is the magnitude of the magnetic flux crossing one hemisphere of the event horizon

(see Tchekhovskoy et al., 2011; Porth et al., 2019) and Ṁ is the mass accretion rate through

the event horizon. The flux saturates at values of φ & 50, at which point the flow becomes

MAD. The SANE simulations we consider have lower values of φ ≈ 5.2 Accreted material

supplied at large scales could in principle supply any value of net vertical flux. Here, we

do not explore cases with small or zero net vertical flux ΦBH . 1. We also do not consider

values in the relatively narrow intermediate range 5 . ΦBH . 50.

The SANE simulations we consider were run on a grid resolution of 288×128×128, with

a fluid adiabatic index γ = 4/3, and an outer simulation domain of rout = 50 rg. The MAD

simulations had a grid resolution of 384 × 192 × 192, an adiabatic index γ = 13/9, and an

outer simulation domain of rout = 103 rg. The simulations were carried out in the FMKS set

of coordinates described in §2.7, which concentrate resolution near the midplane and away

from the pole at small radii.

4.8.2 Ray-traced polarimetric images from GRMHD simulations

Unlike the equations of GRMHD, the equations of radiative transfer are not scale invariant,

so we must introduce a length scale and a mass/density scale when we ray-trace images

from the numerical fluid data. The length (and time) scale is set by the mass of the black
2Note that the MAD threshold φ & 50 is given in Gaussian units where [Φ] = G cm2. If the field strength

is given in the Lorentz–Heaviside units typically used in simulations (BLH = BG/
√

4π), the MAD threshold
on the dimensionless flux φ ∼ 15.
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hole, assumed to be MBH = 6.2× 109M� in accordance with the value used to generate the

EHTC V simulation library. For our models, we also adopt the D = 16.9 Mpc distance to

M87 used in EHTC V. The density scale of the accreting plasma (equal to the scale of the

magnetic pressure) is chosen so that on average the simulated images reproduce the observed

230GHz compact flux density, Fν ' 0.5 Jy.

Images were generated from the set of simulations over several values of the polar incli-

nation angle i that were chosen to be broadly consistent with observational estimates of the

inclination angle of the M87 jet (e.g., Walker et al., 2018). The position angle on the sky

can be changed after image generation by rotating both the image and the Stokes Q and U

components appropriately. Each image has a 320×320 pixel resolution over a 160µas field

of view, where each pixel contains full Stokes I,Q,U ,V intensities.

In GRMHD simulations, we make the approximation that the plasma is thermal, i.e., that

the electrons and ions are described by a Maxwell–Jüttner distribution function (Jüttner,

1911). However, the plasma around M87 and in other hot accretion flows is most likely

collisionless, with electrons and protons that are unable to equilibrate their temperatures (e.g.

Shapiro et al., 1976; Ichimaru, 1977). We mimic collisionless plasma properties in producing

images from the GRMHD simulations by allowing the electron temperature Te to deviate

from the proton temperature Ti. The simulations used in this work only track the total

internal energy density ugas, not the distinct electron and ion temperatures. We set Te after

running the simulation according to local plasma parameters following the parameterization

introduced by Mościbrodzka et al. (2016, see also EHTC V). The ratio between the ion and

electron temperatures R is determined by the local plasma β = pgas/pmag, where pgas =

(γ − 1)ugas, and pmag = B2/8π. The temperature ratio is then taken to be

R =
Ti
Te

= Rhigh
β2

1 + β2
+Rlow

1

1 + β2
, (4.27)

where Rhigh (Rlow) are the free parameters of the model and give the approximately constant
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temperature ratio at high (low) β. This approach allows us to associate the electron heating

with magnetic properties of plasma.

In calculating the electron temperature, we further assume that the plasma is composed

purely of ionized Hydrogen, that the ions are nonrelativistic with an adiabatic index γp = 5/3,

and that the electrons are relativistic with γe = 4/3.

We note that this procedure is not entirely self-consistent, since the γ of the combined

electron-ion fluid will change depending on the relative pressure contributions of electrons

and protons while we assume it is fixed throughout the simulation domain. See Sądowski

et al. (2017) for an alternative, self-consistent approach.

In this paper, we consider a library of 72000 simulated images composed of sets of 200

realizations of the same accretion system described by a fixed set of heating/observation

parameters. Each set of 200 images is drawn from output files spaced by 25− 50 rg/c from

the set of ten GRMHD simulations spanning five spin values in both MAD and SANE field

configurations. The inclination angle for each image is set to one of either i = 12, 17, 22 deg

(retrograde models, a∗ < 0) or i = 158, 163, 168 deg (prograde models, a∗ ≥ 0), according to

the parity that is required to orient the brightest portion of the ring in the southern part of

the image while ensuring the position angle of the approaching jet is consistent with large

scale observations.

We use electron heating parameters Rlow = 1, 10 and Rhigh = 1, 10, 20, 40, 80, or 160

in Equation 4.27. EHTC V only considered models with Rlow = 1. Larger values of Rlow

correspond to lower electron-to-proton temperature ratios in the low β regions (e.g., the

jet funnel). This choice is physically motivated for M87, where radiative cooling of the

electrons may keep Te < Ti even in magnetized regions where electron heating is efficient

(e.g., Mościbrodzka et al., 2011; Ryan et al., 2018; Chael et al., 2019). Lower electron

temperatures in Rlow = 10 models increase the Faraday rotation depth and can result in

increased depolarization in parts of the image.

GRMHD simulations produce a highly magnetized jet funnel above the black hole’s poles
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away from the accretion disk. In the funnel, where the plasma magnetization parameter

σ � 1, our numerical methods typically fail to accurately evolve the plasma internal energy.

In the image library, we cut off all emission in regions where σ > 1 to ensure that we limit the

emitting region to plasma whose internal energy is safely evolved without numerical artifacts

(as in EHTC V). We tested the importance of a σ > 1 electron population by generating a

supplementary set of images from all models with a cut at σ = 10 and found that it did not

change the overall distribution of the derived metrics we use for model scoring in Section 4.9.

Each set of 200 model images with the same parameters in the image library requires a

unique density scaling factor that is determined by matching the average flux density from

the model to the observed compact flux density of M87 measured by the EHT. Hence, the

mass accretion rates, radiative efficiencies, and jet powers will differ between two models

even if they are derived from the same underlying simulation (e.g., if Rhigh, Rlow, or i is

changed). The additional models discussed in Section 4.11, which explore the effects of

different σ cutoff values and the inclusion non-thermal electrons, also require unique mass

scaling factors.

All of the polarimetric images that we analyze in this paper were generated using the

ipole code (Mościbrodzka & Gammie, 2018). A comparison of contemporary GRRT codes

can be found in Gold et al. (2020). A preliminary comparison of contemporary polarized

transfer codes show consistency at the fraction of 1% in all Stokes parameters. All calculated

images in this work ignore light travel time delays through the emission region (they adopt

the so-called “fast light” approach) and are calculated at a single frequency ν = 230 GHz,

neglecting the finite observing bandwidth of the EHT. We confirm that neither of these

effects are important for models of interest for M87.

4.8.3 Sample GRMHD model images and polarization maps

We show images and polarization maps for a subset of library models in Figure 4.11. In

general, since the horizon scale magnetic fields in MAD models are strong enough not to
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Figure 4.11: Sample snapshot false color images and polarization maps for a subset of the
models in the EHT M87 simulation image library at their native resolution (top three rows)
and blurred with a 20µas circular Gaussian beam (bottom three rows). The inclination angle
for all images is either 17 deg (for negative a∗ models) or 163 (for positive a∗ model) deg,
with the black hole spin vector pointing to the left and away from the observer. The tick
length is proportional to the polarized flux, saturated at 0.5 of the maximum value in each
panel. Here models with Rlow = 1 are shown. In general, the EVPA pattern is predominantly
azimuthal for MAD models (e.g., MAD a∗ = 0 Rhigh = 1) and radial for SANE models (e.g.
SANE a∗ = 0.94 Rhigh = 1), although the SANE a = 0 models in particular are exceptions
to this trend. All models show scrambling in the polarization structure on small scales from
internal Faraday rotation, with more pronounced scrambling in models with cooler electrons
(larger Rhigh parameter).
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be advected with the accretion flow, they are more likely to have a significant poloidal

component and produce azimuthal EVPA patterns (Figure 4.10). In contrast, SANE models

tend to show more radial EVPA patterns. Some MAD a∗ = 0.94 and SANE a∗ = 0 images

are notable exceptions to this trend. These trends are also apparent in the distributions of

the β2 phase across the full image library we consider later in Figure 4.15.

The GRMHD models at their native resolution include notable disorder in the EVPA

structure, resulting from both magnetic turbulence and Faraday rotation. Models with

larger Rhigh have lower electron temperatures and higher Faraday rotation depths, resulting

in the most disordered polarization maps. Many of the EVPA patterns seen in the images

that have been blurred with a 20 µas Gaussian kernel resemble those from the idealized

magnetic field models in Figure 4.10, indicating that the net EVPA pattern after blurring

may trace the intrinsic magnetic field structure.

In Figure 4.12 we show a sample polarization map at full resolution compared to the

same map blurred with circular Gaussian kernels of 10µas and 20µas FWHM. From tests

with synthetic data, blurring (convolving with a circular Gaussian kernel) provides a reason-

able approximation to image reconstruction from the EHT data at a comparable resolution

(EHTC VII). The resolved average fractional polarization in the blurred images 〈|m|〉 traces

the degree of order in the intrinsic polarization map. In the blurred images, disordered po-

larized structure on small scales produces beam depolarization. The degree of depolarization

decreases with increasing spatial resolution (decreasing beam size).

The bottom row of Figure 4.12 shows the same unblurred and blurred polarization maps,

but calculated without the effect of Faraday rotation (ρV = 0). Those images show more co-

herent EVPA structure, with much larger |m|net and, particularly when blurred, much larger

〈|m|〉. Evidently, for this particular model, the depolarization visible in the corresponding

upper panels is due to Faraday rotation internal to the emission region. In addition, the

net EVPA pattern shifts by a significant amount. The change in β2 by ' 80 deg would

correspond to an apparent RM of ' −4 × 105 rad m−2. Our GRRT calculations include all
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Figure 4.12: Left: a sample polarization map from the image library at original resolution,
taken from the MAD a∗ = 0.5 (Rlow = 10, Rhigh = 80) model. Middle and right: the same
map but convolved with a 10µas and 20µas FWHM circular Gaussian beam, respectively.
The position angle of the black hole spin in all frames is PA = +90 deg and the inclination
angle is i = 158 deg, meaning that the black hole spin points left and away from the observer.
The lower panels show the same model but calculated with ρV = 0 (no Faraday rotation).
When Faraday rotation is excluded, the EVPA pattern is more coherent, resulting in much
larger values of |m|net and 〈|m|〉. There is also a net rotation of the EVPA pattern between
the two cases, by ' 80 deg in the phase of β2.
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Faraday rotation occurring inside the GRMHD simulation domain (rout = 50− 100 rg), both

external and internal to the 230GHz emission region. The observables considered here, for

the low viewing inclination of M87, do not depend strongly on that outer radius, as long as

it is at r & 40 rg. We cannot rule out the presence of additional Faraday rotating material

at larger radii & 100 rg, and its effects are not included in our models.

4.8.4 GRMHD model theory metrics

We compute the polarimetric observables (|m|net, |v|net, 〈|m|〉, β2) described in Section 4.6.3

from model images blurred with a circular Gaussian kernel with a FWHM of 20µas in order

to compare them to the ranges measured from EHT and ALMA-only data. Both 〈|m|〉 and

β2 depend on the resolution and hence the size of the Gaussian blurring kernel. Notice also

that the value of β2 also depends on the choice of the image center. When comparing with the

range inferred from the EHT image reconstructions (which have been centered by aligning

them to the centered, fiducial total intensity images), we do not shift the library images before

computing βm coefficients. Figure 4.13 (right panel) shows the resolved average polarization

fraction 〈|m|〉 as a function of their image averaged Faraday rotation depth, 〈τρV 〉. At

small 〈τρV 〉, the average polarization fraction is 〈|m|〉 ' 20 − 50%. Intrinsic disorder in

the magnetic field structure due to turbulence is generally insufficient to produce the low

observed image average polarization fraction in EHT2017 M87 data (5.7% ≤ 〈|m|〉 ≤ 10.7%).

This is especially evident for the SANE models with prograde black hole spin, which have

the highest resolved polarization fractions. At large 〈τρV 〉, strong scrambling from internal

Faraday rotation typically results in small predicted polarization fractions of < 5% at the

scale of the EHT beam.

The clear exception to this trend are some SANE retrograde models (a∗ = −0.9375 for

large Rhigh), which show 〈|m|〉 ' 10 − 20% despite their large τρV & 103. In these models,

most of the observed polarized flux originates in the forward jet, while most of the computed

Faraday depth is accumulated near the midplane. Photons that travel from the forward jet
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Figure 4.13: Left: distribution of image-averaged fractional polarization 〈|m|〉 over the M87
library images blurred with a 20µas beam. The measured range from reconstructed polari-
metric images of M87 is shown in dashed lines. Right: 〈|m|〉 as a function of the intensity-
weighted Faraday depth across each image for library images blurred with the same 20µas
circular Gaussian beam. The Faraday depth is calculated as the intensity-weighted sum of
|ρV | integrated along each ray and increases monotonically with increasing Rhigh for fixed
values of the other parameters. A large Faraday depth corresponds to scrambling of the
polarization map, which decreases the coherence length of the EVPA (Jiménez-Rosales &
Dexter, 2018). Increased scrambling results in stronger depolarization at the scale of the
EHT beam and lower values of 〈|m|〉.

to the observer do not encounter the large Faraday depth. For similar reasons, the inferred

RM can be much lower than implied by their large values of integrated τρV .

Distributions of all observables are shown in Figure 4.13 (〈|m|〉, left panel), Figure 4.14

(|m|net and |v|net), and Figure 4.15 (|β2| and ∠β2). SANE models tend to have a lower inte-

grated polarization fraction and larger circular polarization fraction than M87 at 230GHz.

In many cases this is a result of very large Faraday rotation internal to the emission region.

MAD models tend to have larger net linear polarization fraction than observed in M87. The

resolved average fractional polarization produces similar trends. Most SANE models with

prograde spin are too scrambled and most MAD models are too ordered compared to the

reconstructed polarization maps of M87. Full distributions for all models, including their

dependence on Rhigh, Rlow, and a∗, are discussed in § 4.10.
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Figure 4.14: Distributions of image-integrated net linear (left) and circular (right) polariza-
tion fractions for all EHT M87 library images. The dashed lines show the allowed range
inferred from EHT image reconstructions (for |m|net) and ALMA–only data (for |v|net).

4.9 Model evaluation

4.9.1 Model constraints from polarimetry

To evaluate whether a given GRMHD model is consistent with the EHT observations re-

ported in EHTC VII, we require images from the model to satisfy constraints on the four

parameters derived from the reconstructed EHT images and ALMA-only measurements pre-

sented in Table 4.2 and summarized again here.

1. The image-integrated net linear polarization |m|net is in the measured range from the

EHT image reconstructions: 1% ≤ |m|net ≤ 3.7%.

2. The image-integrated net circular polarization |v|net satisfies an upper limit from ALMA-

only measurements reported in Goddi et al. (2021): |v|net ≤ 0.6%.

3. The image-averaged linear polarization 〈|m|〉 is in the measured range from the EHT

image reconstructions at 20µas scale resolution: 5.7% ≤ |m|net ≤ 10.7%.

4. The amplitude and phase of the complex β2 coefficient quantifying coherent azimuthal

structure fall in the measured range: 0.04 ≤ |β2| ≤ 0.07 and −163◦ ≤ arg[β2] ≤ −129◦.
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Figure 4.15: Distributions of β2 amplitude (left) and phase (right) for EHT M87 library
images blurred with a 20µas beam. The measured ranges from reconstructed images of M87
are shown as dashed lines.

We use 72000 library images (from Section 4.8) with 200 time snapshots per model at

three inclination angles, six values of Rhigh = 1, 10, 20, 40, 80, 160, two values of Rlow = 1,

10, five values of a∗ = −0.9375, −0.5, 0, +0.5, +0.9375, and realized with both MAD and

SANE magnetic field configurations.

In comparing models to observables, the β2 metric is the most constraining. Only 790

snapshot images out of 72000 considered fall in the range of those reconstructed in both β2

amplitude and phase, compared to 11, 526 snapshots for both |m|net and |v|net and 7, 727 for

the resolved image-average linear polarization fraction 〈|m|〉.

Below we explore two quantitative methods for scoring models, either by requiring that

at least one single snapshot image from a model simultaneously passes all constraints (simul-

taneous scoring, Section 4.9.2) or that each observational constraint is satisfied by at least

one snapshot image from a given model (joint scoring, Section 4.9.3).

4.9.2 Simultaneous snapshot model scoring

In the simultaneous scoring procedure, we rule out models where none of the 600 snapshot

images (200 time samples at 3 inclination angles) can simultaneously satisfy the constraints

on all of the polarimetric observables. Only 73/72000 snapshot images across 15/120 models
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Figure 4.16: Results of the simultaneous (left) and joint (right) scoring methods for com-
paring GRMHD models to M87 observables. The simultaneous scoring method shows the
total number of viable images for each image library model after summing over Rhigh. Out
of a total of 73 passing images, only 2 are from a SANE model. All passing images are from
models with Rhigh ≥ 20. The right panel shows the joint likelihood of each library model
after summing over Rhigh. In this method, Rlow = 10 MAD models are preferred and SANE
a∗ = +0.94, Rhigh = 10 models are also allowed.

simultaneously pass all of the constraints. Of those, all but 2 viable snapshot images come

from a MAD model. The only models with more than 5 passing images are MAD a∗ = 0

Rlow = 1 Rhigh = 160 and MAD a∗ = −0.5 Rlow = 1 Rhigh = 80, 160.

Visually, images that pass the simultaneous scoring procedure show good qualitative

agreement with the primary features of the EHT image in Figure 4.1. In contrast, the

snapshots from the ruled-out models tend to be too polarized, too depolarized, or too radial

in their EVPA pattern. There is variation within individual snapshots in each of the models,

but the systematic differences over the 5 observables we consider enables us to effectively

constrain the models overall. The left panel of Figure 4.16 shows the total number of images

that pass simultaneous scoring as a function of model, summing over the six Rhigh values.
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4.9.3 Joint distribution model scoring

In the alternative joint scoring procedure, we use the measured distributions of the data

metrics to ask whether the observed value of each metric for M87 is consistent with being

drawn from the distribution seen in the GRMHD simulations. To do this, we measure χ2

values for the five metrics xj ∈ {|m|net, |v|net, 〈|m|〉, |β2|,∠β2} for all snapshots k from a given

model as

χ2
j,k =

(xj,k − x̄j)2

σ2
j

, (4.28)

where xj,k are the values of a scoring metric xj for each of the 600 snapshots k from a given

model, x̄j is the mean of those values for the model, and σj is taken as one half of the

observed data range from Table 4.2. Note that the scoring results of this method do not

depend on the choice of σj. We then calculate an analogous χ2
j,data value for the midpoint

of the measured range from Table 4.2. A likelihood value Lj of the data being drawn from

the model distribution is defined as the fraction of images with χ2
j,k > χ2

j,data. The joint

likelihood of each model is the product L = ΠjLj of those for the 5 metrics xj.

To produce a non-zero likelihood L in this method, at least one snapshot from a model

must lie further from its mean than the data value does. That can be a different snapshot for

each metric, which makes this method more lenient than the simultaneous scoring method.

We also note that snapshots are allowed to have the wrong sign of the difference with their

mean, due to the definition of χ2 and our use of the mean of the model snapshots themselves.

In practice, this makes little difference in the results.

In this method, we consider models viable whose joint likelihood is > 1% of the maximum

found from any model. The right panel of Figure 4.16 shows the resulting joint likelihoods

summed over Rhigh.
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4.9.4 Comparison of scoring results

The results of both scoring procedures are summarized in Figure 4.16, summed over Rhigh.

Both scoring methods prefer MAD models to SANE models, with most of the passing models

coming from the MAD a∗ = 0 and a∗ = ±0.5 simulations.

The main difference between the two scoring procedures is that joint scoring prefers

Rlow = 10 models, while Rlow = 1 is preferred by simultaneous scoring. SANE models with

a∗ = 0.94, Rlow = 1, 10, and Rhigh = 10 are ruled out by simultaneous scoring, but score

fairly well in joint scoring. For the favored MAD models, when Rlow = 1, there are more

images which simultaneously satisfy all constraints, but when Rlow = 10, the distributions

generally stay closer to the observed data ranges and are thus favored by the joint scoring

method. Due to differences between simultaneous and joint scoring results, we consider the

inferred parameters of Rlow, Rhigh, and a∗ from passing models to be less robust than the

overall trend that MAD models are favored in both scoring methods.

The simultaneous scoring method has the advantages of conceptual simplicity, and it

accounts for correlations between the scoring metrics since it applies each constraint simul-

taneously. Simultaneous scoring is more strict and rules out more models than joint scoring,

but it may be more limited by the finite number of images generated per model. The joint

scoring procedure has the advantage of being more conservative in disfavoring models, but

assumes the observational constraints are independent in calculating a joint likelihood. In-

stead, they are correlated (in particular |m|net, 〈|m|〉, and |β2| all show correlations).

The number of images in each model that passes each constraint individually (used in

joint scoring) or simultaneously (used in simultaneous scoring) can be found in Appendix D

of Event Horizon Telescope Collaboration et al. (2021b).

4.9.5 Combined EHTC V and current polarimetric constraints

EHTC V presented constraints on the GRMHD simulation models based on fits to the EHT

total intensity data, model self-consistency (requiring a radiative efficiency less than that of
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a thin accretion disk at the same black hole spin), and M87’s measured jet power (requiring a

simulation to produce a jet power consistent with a conservative lower limit of that from M87,

> 1042 erg s−1). Those constraints ruled out MAD a∗ = −0.94 models (from failing to satisfy

the EHT image morphology), SANE models with a∗ = −0.5, and all models with a∗ = 0

(from failing to produce enough jet power). Here we retain only the jet power constraint,

which is the most constraining and straightforward to apply to the expanded image library

considered in this work.

Relativistic jets launched in GRMHD simulations (defined here as in EHTC V, with a

cutoff of βγ > 1) are fully consistent with being produced via the Blandford–Znajek process

(e.g., McKinney & Gammie, 2004; McKinney, 2006). As a result, a∗ = 0 models have small

or zero jet power, Pjet, and are rejected by this constraint. These models can still produce

significant total outflow powers (Pout in EHTC V) in a mildly relativistic jet or wind. Many

other models with low values of Rhigh or moderate black hole spin are also ruled out by the

jet power constraint. Combining the simultaneous scoring polarimetric constraints with the

jet power constraint results in 15 remaining viable models: all MADs and all spanning the

full range of non-zero a∗ explored. This conclusion does not depend on the choice of the

simultaneous or joint model scoring procedure.

4.10 Distributions of theory metrics for each model

Prograde, SANE models show rapidly decreasing |m|net with increasing Rhigh and are sig-

nificantly depolarized when Rhigh > 10. This behavior was previously demonstrated by

Mościbrodzka et al. (2017). The accretion flow electron temperature decreases with increas-

ing Rhigh, increasing the strength of Faraday rotation while also concentrating the emission

at high latitudes behind the black hole (see also EHTC V). The emission is then depolarized

when traveling through the Faraday-thick midplane plasma.

Retrograde SANE models, however, show nearly the opposite behavior, with depolariza-
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tion maximized for Rhigh = 1. At larger values of Rhigh, linearly polarized emission appears

on the near side of the midplane, producing coherent linear polarization structure that is

not Faraday-depolarized.

MAD models at all spins show a mild degree of depolarization with increasing Rhigh. The

accretion flow electron temperature remains high even for large values of Rhigh, since much

of the plasma has β ' 1.

Similar qualitative behavior is seen in 〈|m|〉 and the amplitude of β2. However, those

quantities show less time variability (narrower distributions) than is seen in |m|net. As a

result, observed ranges of those values are more constraining. In particular, the MAD models

show consistent offsets where 〈|m|〉 and |β2| are lower for Rlow = 10 than Rlow = 1 models.

Some spin dependence is also apparent, with high prograde spin usually corresponding to

the highest degrees of ordered polarization.

When the β2 amplitude is not strongly suppressed (e.g., by Faraday rotation), the β2

phase distributions are related to intrinsic magnetic field structure (e.g., Figure 4.10 and

Palumbo et al. 2020). Prograde spin, Rhigh = 1 SANE models and retrograde spin, large

Rhigh SANE models both show radial EVPA patterns, resulting in β2 phase distributions

near zero. MAD models show spin-dependent β2 phase distributions for low values of Rhigh,

ranging from spiral patterns (arg β2 ' −90 deg) for retrograde spin to more radial patterns at

high prograde spin. The patterns are relatively constant functions of Rhigh and Rlow, although

with some shift of MAD prograde distributions to twistier EVPA patterns, particularly for

Rlow = 10.

4.11 Discussion

The resolved EHT2017 linear polarization map of M87 shows a predominantly azimuthal

linear polarization (EVPA) pattern and relatively low fractional polarization of . 20% on

20µas scales. We interpret the low fractional polarization as the result of Faraday rotation
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internal to the emission region, which acts to rotate, scramble, and depolarize the resolved

polarized emission. Adopting this constraint in a one zone model, we estimate typical values

of particle density ne, magnetic field strength B, and electron temperature Te. In semi-

analytic emission models with externally imposed, idealized magnetic field configurations,

azimuthally dominated EVPA patterns are produced by poloidal (radial and/or vertical)

magnetic field components. To fully capture the complicated combined effects from magnetic

field structure, turbulence, relativity, and Faraday rotation on polarimetric images of M87,

we turn to radiative transfer calculations from GRMHD simulations.

We compared a large image library of emission models from GRMHD simulations with

metrics designed to capture these salient features of the data. The combined constraints of a

predominantly azimuthal EVPA pattern and a low but non-zero fractional polarization are

inconsistent with most SANE GRMHD models with weaker horizon scale magnetic fields.

Some MAD models with relatively cold electrons, realized in our library by larger values of

Rhigh and/or Rlow, remain consistent with the data. Here we discuss the implications of our

results, and limitations in our set of theoretical models that may impact our interpretation.

4.11.1 Near horizon plasma and magnetic field properties in

passing models

Both our one-zone and GRMHD models find similar plasma conditions in the 230 GHz

emission region, driven by the requirements of weak 230GHz absorption and strong 230GHz

Faraday rotation. In viable GRMHD models, we find average, intensity-weighted plasma

properties in the emission region of ne ∼ 104−5 cm−3, B ' 7− 30 G, and θe ∼ 8− 60. These

are in good agreement with our one zone estimates (Section 4.7.1). We have also calculated

the intensity-weighted values of the absorption and Faraday optical depth, τI and τρV , over

snapshots that simultaneously satisfy all our observational constraints. The median values

are τI ' 0.1 and τρV ' 50. All of our viable images have τρV > 2π, while 2 out of 73 have

τI & 1, consistent with our assumptions in Section 4.7.1 that the plasma Faraday depth is
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large while the Stokes I optical depth is small.

By quantitatively evaluating a large library of images based on GRMHD models (Sec-

tion 4.9), we identify 25 out of 120 models that remain viable after applying constraints

based only on EHT and ALMA-only polarimetric observations. Additionally applying a cut

on jet power of Pjet > 1042 erg s−1 (EHTC V) rules out the five viable SANE models and all

a∗ = 0 models. The precise number and identity of the viable models depends mildly on

the chosen scoring procedure and on the Gaussian blurring kernel size applied to the EHT

image reconstructions and library simulated images. The overall preference for MAD over

SANE models is found from both the simultaneous and joint scoring procedures, as well as

other variants. After applying the jet power constraint, no viable SANE models remain for

any of the scoring methods we explored.

MAD models are associated with dynamically important magnetic fields. The significant

poloidal components of those fields can produce a predominantly azimuthal polarization

pattern (Figure 4.11), similar to those seen in idealized models with prescribed poloidal

magnetic fields (Figure 4.10). Strong Faraday effects complicate a direct interpretation of the

observed EHT polarization map in terms of those idealized models. Still, our more detailed

comparison favoring MADs suggests the presence of dynamically important magnetic fields

in the emission region on event-horizon scales.

In Figure 4.17 we present mass accretion rate and jet power distributions both for

the viable models identified in EHTC V and when adopting the new constraints from

polarimetry. Polarimetric constraints break degeneracies present in the single epoch to-

tal intensity data, allowing us to estimate a mass accretion rate onto the black hole of

Ṁ ' (4− 16)× 10−4M� yr−1. This corresponds to ṁ = Ṁ/ṀEdd ' (3− 12)× 10−6, where

ṀEdd is the Eddington accretion rate.3 The measured radiative efficiency ε = L/Ṁc2 (where

L is the bolometric luminosity) of the passing models is relatively high for a hot accretion

3The Eddington rate is defined as ṀEdd = LEdd/εEddc
2, where LEdd = 4πGMmpc/σT is the Eddington

luminosity and we adopt an efficiency factor εEdd = 0.1. Note that this assumed efficiency factor εEdd is
distinct from the reported radiative efficiency ε = L/Ṁc2 measured from the simulations.
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Figure 4.17: Average mass accretion rate (left) and jet power (right) for viable GRMHD
models of M87 identified by selecting on total intensity data and jet power (blue), and when
including polarimetric constraints from simultaneous scoring (red). We estimate a mass
accretion rate of Ṁ ' (4− 16)× 10−4M� yr−1, resulting in a radiative efficiency ε . 1% (cf.
EHTC V). The jet powers produced by our models are ∼ 1042 − 1043 erg s−1, and the jet
efficiencies are ' 5− 80%. Compared to EHTC V, the range of jet powers remains the same
while the mass accretion rate is better constrained.

flow model: ε . 1%. These models have jet powers of Pjet ' 1042−43 erg s−1.

The mass accretion rate found here is much lower than the Bondi rate calculated from

Chandra observations (Di Matteo et al., 2003, see also Russell et al. 2015) and higher than

that found from hybrid disk+jet models of the M87 SED (Prieto et al., 2016). Our inferred

jet powers of . 1043 erg s−1 are at the lower end of the observed range. In particular, the

jet power measured at the location of HST-1 is ∼ 1043−44 erg s−1 (Stawarz et al., 2006), and

LOFAR observations suggest a jet power of ∼ 1044 erg s−1 was necessary within the last

∼million years to inflate the observed radio lobes on scales of ∼ 80 kpc (de Gasperin et al.,

2012).

Measurements of the accretion rate and the radiative efficiency can begin to constrain

the microphysical plasma processes that heat electrons in M87, for example by inferring the

fraction of the dissipated energy in the system that heats electrons, δe. In axisymmetric, self-

similar, hot accretion flow models, a system with Ṁ ∼ 10−5ṀEdd and a radiative efficiency

ε . 1% has a value of δe in the range 0.1− 0.5 (see Figure 2 of Yuan & Narayan 2014). This
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range is consistent with the range produced by simulations of turbulence and reconnection

in the β ∼ 1 regime (e.g., Rowan et al., 2017; Werner et al., 2018; Kawazura et al., 2019).

Future studies using simulations with self-consistent electron heating and radiative cooling

(Section 4.11.3) can better constrain δe and its dependence on local plasma parameters

throughout the accretion flow and jet-launching region.

We have assumed that all effects responsible for the appearance of the EHT polarized

image of M87 are captured within the relatively small GRMHD simulation spatial domain,

. 102−3rg. Goddi et al. (2021) developed a two-component model for the ALMA and image-

integrated EHT data where each component is Faraday rotated by a different screen. The

model demonstrates that the rotation measure of the compact component is unconstrained

by the ALMA measurements alone, since the ALMA measurements are also sensitive to the

Faraday rotation properties of the larger-scale component. In addition, the observed time

variability in ALMA data (e.g., the RM sign change) can be explained by the observed EVPA

variation of the compact core seen by the EHT. To produce the observed variability requires

an RM of ≈ −6× 105 rad m−2. The ALMA data do not constrain the location or nature of

this Faraday screen, except that it must be relatively close to the compact core, r . 105 rg.

For our favored plasma parameters for M87, we expect substantial Faraday rotation

measure internal to the emission region itself, τρV & 2π, consistent with that measured from

viable GRMHD images. In a model of uniform, external Faraday rotation this Faraday

depth at 230 GHz would correspond to an RM of . 106 rad m−2. Figure 4.18 (and in more

detail Appendix B of Event Horizon Telescope Collaboration et al. (2021b)) shows that the

apparent RMs measured from our GRMHD images span a wide range, often comparable to or

larger than that implied from the Goddi et al. (2021) two-component model (. 106 rad m−2).

For the low inclination angle of M87, the apparent RM measured from GRMHD images is

not a good tracer of the mass accretion rate (Mościbrodzka et al., 2017) and originates

close to the emission region, well within the simulation domain (Ricarte et al. 2020 and

Appendix B of Event Horizon Telescope Collaboration et al. 2021b). The RM inferred from
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Figure 4.18: Absolute value of rotation measure (RM) versus net linear polarization |m|net

for a subset of our EHT GRMHD library models explored in more detail in Ricarte et al.
(2020). Closed symbols represent positive RM while open symbols represent negative RM,
revealing significant time variability across the 2500 GM/c3 spanned by these snapshots. In
grey, we plot our allowed region of |m|net and bracket the range of core RM inferred from
contemporaneous ALMA-only observations, 2−100×104 rad m−2 (Goddi et al., 2021). The
dashed horizontal line demarcates the RM at which an EVPA rotation by π radians would
have been observed between the 212 and 230GHz frequency range used in the ALMA-only
measurements, 1.05 × 107 rad m−2. Despite large Faraday depths, a large fraction of these
snapshots exhibit RMs consistent with simultaneous ALMA-only constraints. RM and |m|net

are anti-correlated, since larger Faraday depths lead to greater scrambling of the intrinsic
polarization.

low-inclination GRMHD models of M87 can also vary rapidly and change signs (Ricarte

et al., 2020), as seen in the ALMA-only data. As a result, the RM inferred from the two-

component model in Goddi et al. (2021) is apparently consistent with the intrinsic properties

of the GRMHDmodels studied here, without invoking an additional, external Faraday screen.

At the same time, we cannot rule out that such an external screen could be present. Future

EHT observations with wider frequency spacing can directly measure the resolved RM of

the core and address this uncertainty.
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Magnetic reconnection, MHD turbulence and collective plasma modes in collisionless hot

accretion flows likely result in non-thermal particle acceleration. A provisional survey of

the influence that a power law (i.e., non-thermal) electron distribution function has on the

model scoring result can be found in Section 6.2 of Event Horizon Telescope Collaboration

et al. (2021b). In brief, it is found that using a hybrid thermal-plus-powerlaw distribution

function tends not to affect the structure of the EVPA map (β2 amplitude and phase), but

it may change the image-integrated and resolved linear polarization fractions. More realistic

particle acceleration scenarios could be considered using resistive GRMHD simulations (e.g.,

Ripperda et al. 2019).

The above summary assumes that the mass accretion rate for the non-thermal models is

∼ the rate found in the thermal ones. If instead we compare the models at fixed flux density,

the mass accretion rate of the hybrid model must be decreased. Generalizing the distribution

function therefore introduces order unity uncertainties in the inferred mass accretion rate,

radiative efficiency, and jet power. The changes in the polarimetric observables in a given

snapshot are also larger at fixed flux density. For example, the full analysis, which appears

in EHTC VIII, found that in the MAD a∗ = −0.5 model, the |m|net increases from 4.7% to

6% when adding non-thermal electrons.

4.11.2 Coherently polarized forward jet emission

As noted above, some SANE retrograde model images in the library show coherently po-

larized features even when the Faraday depth through the entire emission region is large.

The observed polarized flux in those cases originates on the near side of the midplane and

is not scrambled from Faraday rotation along the line of sight. A similar effect might be

possible if non-thermal electrons could be accelerated efficiently in the low-density, strongly

magnetized funnel region in front of the black hole.

It is beyond the scope of this paper to evaluate whether or how such a model might be real-

ized physically, e.g., if some process could fill the funnel with high-energy electrons efficiently
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enough to produce the observed 230GHz luminosity from the funnel alone. EHTC VIII per-

formed a cursory analysis of a single snapshot from a prograde a∗ = 0.94 by assigning a

non-thermal energy density unth = αumag wherever the magnetization σ > 1, where α = 0.02

was the fraction of the magnetic energy density that is put into non-thermal particles (a

pure power law distribution with γmin = 100 and p = 3).

In the purely thermal case, Faraday rotation depolarizes the emission at the EHT beam

scale, producing low fractional polarization across the image that is inconsistent with EHT

observations of M87. Adding power law electrons in the funnel produces coherent linearly

polarized emission. If unth ∝ the magnetic energy density, the power law emission is con-

centrated close to the black hole and lensed into a ring (Dexter et al., 2012). The weak

forward jet component is strongly polarized but lies inside the observed ring, and it is thus

potentially inconsistent with the EHT total intensity and polarimetric image. Although the

augmented model was found to be consistent with constraints on the net and image-average

linear polarization fraction, it is inconsistent with the observed β2 phase of the M87 image.

In the example, the plasma was assumed to be composed of protons and electrons rather

than e+/e− pairs. The latter are presumably more likely to form in the funnel (Mościbrodzka

et al., 2011; Levinson & Cerutti, 2018; Chen et al., 2018; Crinquand et al., 2020; Wong et al.,

2021b; Anantua et al., 2020a) and have different circular polarization properties. Future

observations that constrain the resolved circular polarization structure might discriminate

between pair and electron–ion plasmas in the emitting region. At longer wavelengths and

larger scales, the limb-brightened jet structure of M87 (e.g., Walker et al., 2018) also suggests

that the radiating electrons are not concentrated inside the funnel as modeled here.

4.11.3 Radiative models

Our GRMHD images use the parameterization of Mościbrodzka et al. (2016) to model the

different electron and ion temperatures. The functional form of the temperature ratio, Equa-

tion 4.27, captures the general behavior seen in many simulations of electron heating in tur-
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bulent or reconnecting collisionless plasmas; namely, the electron heating is more efficient

(and thus the temperature ratio closer to unity) when β < 1 (e.g., Howes, 2010; Rowan

et al., 2017). However, the actual distribution of Te in a hot accretion flow reflects the

balance of heating, cooling, and advection of hot electrons throughout the system. Even

if the dissipation sets the initial electron temperature locally following Equation 4.27, the

final temperature ratio can be different as electrons are advected and cool over time. Fur-

thermore, the GRMHD simulations in the library considered here do not include radiative

cooling. Our passing models for M87 favor a radiative efficiency of ε ∼ 1%, however, and we

may begin to worry if cooling is dynamically important in M87.

To assess these uncertainties, it will be useful to compare the results in this work with

results from simulations performed with radiative GRMHD code. These codes typically use

either the M1 closure method (e.g., Sądowski et al., 2013b; McKinney et al., 2014; Sądowski

& Gaspari, 2017) or a Monte Carlo approach (e.g., Ryan et al., 2015; Ryan & Dolence, 2020)

to track radiation and its interactions with the plasma near the black hole. In addition to

the effects of cooling on the total gas, these codes can also evolve the electron temperature

under the influence of cooling and different prescriptions for the uncertain electron heating

physics (e.g., Ressler et al., 2015, 2017; Chael et al., 2018a; Ryan et al., 2018; Chael et al.,

2019; Dexter et al., 2020).

We have checked the trends observed in the simulation library against the radiation

GRMHD models of M87 presented in Ryan et al. (2018) (SANE) and Chael et al. (2019)

(MAD). In both sets of simulations, the distribution of the Te/Ti on average qualitatively

tracks the Rhigh prescription (Mościbrodzka et al., 2016), with values of effective Rhigh ∼

10 − 20. We find similar effective Rhigh values even when the underlying electron heating

prescriptions are quite different, as in the reconnection and turbulence-heated models used

in Chael et al. (2019). In both cases, radiative cooling lowers the electron temperature in

the funnel region so that the temperature ratio in the funnel Rlow > 1.
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4.12 Predictions

We have identified a subset of a large parameter space of GRMHD models that is consistent

with constraints derived from current EHT total intensity and polarimetric observations of

M87. The models that pass our constraints on the polarimetric structure and jet power

from M87 are all magnetically arrested (MAD) accretion flows. Here we make predictions

for testing our interpretation with future observations.

4.12.1 Repeated observations

Repeated EHT observations of M87 at 230 GHz will continue to constrain the model parame-

ter space. Figure 4.19 shows the time evolution of β2 amplitude and phase for 200 snapshots

of 3 viable library models: MAD a∗ = −0.5, Rlow = 10, Rhigh = 20; MAD a∗ = +0.5,

Rlow = 10, Rhigh = 80; and MAD a∗ = +0.94, Rlow = 10, Rhigh = 80. The observer in-

clination in these models was 17 deg or 163 deg for the retrograde and prograde models,

respectively.

Both quantities show variations on timescales from days to months. The phase and

amplitude of β2 should change over the course of a week of observations. In EHTC VII, we

observe changes in the the β2 amplitude and phase over the week of observations in 2017,

and use the results from two epochs to define our acceptable parameter ranges. Figure 4.19

suggests that occasionally the observed changes in β2 on ∼week timescales can be much more

dramatic than we observe in 2017, with variations in β2 phase of 90 deg on short timescales

for some models.

The scatter in both quantities on longer & month timescales is much larger than the

uncertainty range derived from the EHT2017 measurements. If our passing GRMHD models

accurately describe the 230GHz emitting region in M87, future EHT observations should

detect variability in the polarization structure. According to current models, the time-

averaged β2 amplitude and 〈|m|〉 should remain similar to the current values for prograde
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Figure 4.19: Amplitude (left) and phase (right) of β2 as a function of time for three viable
GRMHD library models identified here (points, all with Rlow = 10) compared to ranges
measured from EHT2017 M87 data (gray shaded region). The dashed lines show the median
values for each model. The retrograde spin model predicts higher β2 amplitude in future
observations. In the high prograde spin model, the median β2 phase is closer to zero than the
observed range in 2017. Changes in both quantities occur on timescales of weeks to months,
and should be apparent in future EHT data sets.

spin models and tend toward larger values for retrograde spin models. For high prograde

spin (or many SANE models), the β2 phase should on average be closer to zero than we

observe in 2017.

4.12.2 Future observations at 260 and 345 GHz

In selecting models, we have focused on metrics corresponding to salient features of the data.

We have not attempted to compare models in detail to specific features of the reconstructed

polarimetric images, most notably the apparently depolarized bright patch in the eastern

part of the image. We do note that such depolarized features occur in many of our library

images, particularly in MAD models with Rlow = 10. If the eastern patch in the 2017

image is depolarized due to Faraday rotation, it may be possible to tell with future higher

frequency observations. In addition to internal Faraday rotation, the sense of the EVPA

pattern may also be subject to a net, coherent rotation due to external Faraday rotation. At

higher frequency, Faraday rotation is suppressed and EHT observations will see the intrinsic
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magnetic field pattern more clearly.

The full analysis in EHTC VIII presents a preliminary study of the library image polar-

ization metrics at higher frequencies and found that |m|net and 〈|m|〉 are expected to increase

with frequency while the net circular polarization |v|net remains small and nearly constant. In

the preliminary test models, the EVPA pattern did not change significantly with frequency,

suggesting that the net EVPA pattern is due to magnetic field structure rather than coherent

Faraday rotation. This hypothesis can be tested with future multi-frequency observations.

4.13 Conclusions

The EHT has produced resolved polarized intensity maps in the near-horizon region around

the supermassive black hole in M87. Taken together with image-integrated data from si-

multaneous observations with ALMA, these images constrain the space of accretion flow

and jet models used to interpret the EHT total intensity image with broad implications for

jet launching near a black hole event horizon. Here we summarize the main results of the

analysis.

• We interpret the depolarization seen in EHT images as the result of beam depolar-

ization due to Faraday rotation internal to the emission region (τρV ∼ 50). In the

context of one-zone models and combined with the size and brightness temperature of

the total intensity image, we estimate an average emission region plasma density of

ne ∼ 104−7 cm−3, magnetic field strength of B ∼ (1− 30) G, and Te = (1− 12)× 1010

K.

• The net EVPA pattern of the M87 polarization maps is predominantly azimuthal. In

the context of semi-analytic models with imposed, idealized magnetic field geometry,

such a pattern can be reproduced using a significant component of poloidal (radial

and/or vertical) magnetic field. The presence of such magnetic fields in a rotating fluid

would imply that the magnetic fields are dynamically important. However, significant
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Faraday rotation may be present, and it is not clear whether the observed EVPA

pattern can be interpreted in terms of magnetic field structure alone.

• To capture the effects of realistic magnetic field structure, plasma conditions, and

Faraday rotation and conversion, we have compared salient observables to a large

library of simulated polarimetric black hole images. Our comparison metrics include net

circular polarization, net and image-averaged linear polarization, and the β2 coefficient

of Palumbo et al. (2020). We find that β2 is the most constraining metric.

• The model scoring procedures disfavor most models from the GRMHD image library

from polarimetric observations alone. Many weakly magnetized (SANE) models are too

depolarized or show an EVPA pattern that is too radial. Many strongly magnetized

(MAD) models are too coherently polarized. The polarization fraction is generally

set by the Faraday rotation depth close to the emission region. MAD models more

frequently produce azimuthal EVPA patterns, as expected for magnetic field structures

that include a significant poloidal field component. Combined with a conservative lower

limit on the jet power of M87, only strongly magnetized (MAD) models remain viable.

We use those remaining models to estimate the mass accretion rate onto the central

supermassive black hole to be Ṁ = (4 − 16) × 10−4M� yr−1. The average plasma

parameters found from GRMHD images are in good agreement with those inferred

from one zone models.

• The favored models show time variability in the polarization metrics we have consid-

ered. The median values found at several epochs should be sufficiently well measured

to distinguish between the current retrograde and prograde spin models. At higher

frequencies of 260 and 345 GHz, weaker Faraday effects should result in an increased

degree of polarization. Continued imaging with the EHT and advances in radiative

and non-thermal theoretical models will further constrain the electron distribution and

magnetic field structure in the jet-launching region.
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Chapter 5

Mass entrainment at the jet–disk
boundary

Magnetic fields lines are trapped in black hole event horizons by accreting plasma. If the

trapped field lines are lightly loaded with plasma, then their motion is controlled by their

footpoints on the horizon and thus by the spin of the black hole. In this chapter, I investigate

the boundary layer between the lightly loaded field lines near the pole and a dense, equatorial

accretion flow. I present an analytic model for aligned prograde and retrograde accretion

systems and argue that there is significant shear across this “jet–disk boundary” at most radii

for all black hole spins. The analytic model predicts the strongest shear in the retrograde

aligned accretion scenario, so I use numerical simulations of retrograde accretion to show

instability of the jet–disk boundary in that case. I find that the mixing layer episodically

loads plasma onto trapped field lines where it is heated, forced to rotate with the hole, and

permitted to escape outward into the jet. By using Lagrangian tracer particles to follow the

flow of matter through a particular simulation, I find that the time-averaged mass-loading

rate is ∼ 1% the accretion rate through the event horizon.

5.1 Introduction

According to Alfvén’s theorem, magnetic fields lines are frozen into highly conducting plas-

mas and are advected with the plasmas as they move under the influence of external forces.

This freeze-in effect operates near black holes when the accreting plasma falls onto the hole,

and thus it is natural for a black hole to have field lines that thread its event horizon. If

This chapter is lightly adapted from G. N. Wong, et al., ApJ, in press.
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the horizon-threading field lines are open and lightly loaded with plasma so that the local

magnetization1 is much larger than unity

σ ≡ B2

ρc2
� 1 (5.1)

in the region close to the horizon, then their motion is controlled by gravity, and they are

forced to rotate if the black hole has nonzero spin.

Forced rotation of field lines was first studied by (Blandford & Znajek, 1977, hereafter BZ)

who solved a force-free magnetosphere model in the limit that the black hole dimensionless

spin a∗ ≡ Jc/(GM2) � 1 (here J ≡ spin angular momentum and M ≡ mass). BZ found

that the field behaves as if it were anchored in a star rotating with frequency

ΩF ≡
1

2
ΩH =

a∗
8

c3

GM
+O(a3

∗). (5.2)

Here, ΩH the rotation frequency of the event horizon. Field line rotation produces an

outward-directed energy current at the horizon. In the force-free limit this is known as

the BZ effect, whereas if the field lines are more heavily loaded it is also sometimes called

the magnetohydrodynamic (MHD) Penrose process (Takahashi et al., 1990). The BZ effect

is a favored mechanism for powering extragalactic radio jets.

In recent decades, numerical general relativistic magnetohydrodynamics (GRMHD) sim-

ulations have been used to study black hole accretion and the BZ mechanism (see Davis

& Tchekhovskoy (2020) and Komissarov & Porth (2021) for reviews). In GRMHD models

with a trapped magnetic flux Φ, a low-density region forms around an axis parallel to the

accretion flow angular momentum vector as plasma falls down the field lines into the hole or

is expelled to larger radius. This low-density region, with σ � 1, contains horizon-threading

field lines moving with rotation frequency ΩF and an associated, outward-directed energy
1Here, B is the strength of the magnetic field, ρ is the rest-mass density of the plasma, and c is the speed

of light. In this paper, we use Lorentz–Heaviside units for electromagnetic quantities.
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current (Poynting flux; McKinney & Gammie, 2004). In what follows we will refer to this

region as the jet. It is difficult for numerical codes to robustly evolve parts of the simulation

domain with low density and high σ, like in the jet, so semi-analytic magnetosphere models

are often invoked to study these regions (see, e.g., Ogihara et al., 2021).

The jet is bounded by an accretion flow that pins magnetic flux in the hole. We will

refer to the accretion flow as a disk, although it may have sub-Keplerian rotation. At the

boundary layer between the jet and the disk, the density contrast is large. The plasma

velocity can also change dramatically, with maximal shear occurring when the black hole

and disk rotate in opposite directions (a retrograde disk).

The jet–disk boundary layer has large shear and strong currents. It can suffer instabilities

that lead to mass loading onto the jet’s open field lines. It may also be an important particle

acceleration site (see the reviews of Ostrowski, 1999; Rieger, 2019, for particle acceleration in

relativistic shear layers). This paper considers the jet–disk boundary layer in the relativistic

regime, within ∼ 20 GM/c2 of the event horizon.

In Section 5.2 we provide simple estimates for shear at the jet–disk boundary layer. In

Section 5.3 we describe the GRMHD simulations we use to study the jet–disk boundary layer,

and in Section 5.4, we explore the dynamics of the boundary layer by using tracer particles

to both analyze the flow of matter through state space and investigate mass loading into

the jet. Along the way we discuss the disk structure for retrograde accretion. In Section 5.5

we consider model limitations, convergence, and possible extensions. Section 5.6 provides a

summary and a guide to the main results.

5.2 Scaling and estimates

We now define the physical parameters that describe accretion systems, identify their ranges

for the systems we consider, and provide an analytic estimate for flow dynamics at the

jet–disk boundary layer.
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5.2.1 Parameters

We consider radiatively inefficient accretion flows (RIAFs; Reynolds et al. 1996) where ra-

diative cooling is negligible, motivated by Event Horizon Telescope (EHT) observations of

M87* and Sgr A*, which have accretion rates ṁ ≡ Ṁ/ṀEdd � 1 (ṀEdd is the Eddington

accretion rate) and are therefore near or in this regime. RIAFs are geometrically thick disks,

with ratio of scale height H to local radius R of order 1.

In general, the angular momentum of accreting matter far from the horizon may be

tilted with respect to the black hole’s spin angular momentum. Although there are plausible

scenarios that produce zero tilt, there is at present no way of rejecting models with strong

or even maximal (180◦) tilt. In this paper we restrict attention to systems where the orbital

angular momentum of the accreting plasma is parallel or anti-parallel to the black hole

spin vector (prograde or zero tilt and retrograde or maximal tilt, respectively). Disks with

intermediate tilt are a subject of ongoing study (Fragile et al., 2007; McKinney et al., 2013;

Morales Teixeira et al., 2014; Liska et al., 2018; White et al., 2019).

In addition to a∗, ṁ, and tilt, black hole accretion flows are characterized by Φ, the

trapped magnetic flux measured through the contour formed by the black hole’s equator.

Accretion of flux with a consistent sign eventually increases |Φ| until the accumulated mag-

netic flux is large enough that magnetic pressure B2 ∼ (Φ/(GM/c2)2)2 balances accretion

ram pressure ρc2. Since Ṁ ∼ ρc(GM/c2)2, when the dimensionless flux φ ≡ Φ/
√
G2M2Ṁ/c3

approaches a critical value φc ∼ 15 (Tchekhovskoy et al. 2011, but we use the normalization

of Porth et al. 2019), the field can push aside infalling plasma and escape.

The unstable equilibrium with φ ∼ φc is known as a magnetically arrested disk (MAD;

see Bisnovatyi-Kogan & Ruzmaikin, 1974; Igumenshchev et al., 2003; Narayan et al., 2003),

in contrast to accretion flows with φ� φc, which are said to follow standard and normal evo-

lution (SANE; see Narayan et al., 2012; Sądowski et al., 2013a). Notice that φ is determined

by the nonlinear evolution of the flow and is not trivially related to the initial conditions,

although initial conditions have been identified that lead to SANE or MAD outcomes over
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finite integration times. We will consider both SANE and MAD accretion flows.

5.2.2 Shear at the jet–disk boundary

Changes in velocity across the jet–disk boundary may drive Kelvin-Helmholtz instability.

What is the expected velocity difference? The jet and disk are unsteady and strongly nonax-

isymmetric in the numerical GRMHD models that motivate this calculation. In the interest

of producing a model that can be studied analytically, we nevertheless treat the system as

axisymmetric and steady, and because this is already a drastic approximation, we use a

nonrelativistic fluid model for simplicity.

The jet can be idealized as a steady flow anchored in an object rotating with angular

velocity ΩF . For a steady, axisymmetric, nonrelativistic MHD wind with plasma angular

velocity Ω and generalized specific angular momentum L, angular velocity changes with

cylindrical radius R like

Ω = ΩF
1

1 +M2
A

+
L

R2

M2
A

1 +M2
A

(5.3)

(e.g., Ogilvie, 2016), where M2
A ≡ v2

p/v
2
A is the Alfvén Mach number, defined as the ratio

of the poloidal plasma velocity to the Alfvén velocity vA = B/
√
ρ. Since σ � 1, evidently

vA ' c.

Particles flow inward at the horizon and outward at large radius, and therefore a steady

state can be achieved only if plasma is loaded onto field lines at intermediate radius. We

assume this occurs, perhaps through turbulent diffusion or through pair production (in

numerical GRMHD models plasma is added via numerical floors; see Wong et al. 2021b for

a study of drizzle pair production in this region), and that there is a stagnation point at

r ∼ few × GM/c2 between an inner, inflow Alfvén point (M2
A = 1) and an outer, outflow

Alfvén point. The outer Alfvén point is close to the light cylinder rl sin θ = c/ΩF .

Equation 5.3 implies that for M2
A � 1, Ω ∼ ΩF , and for M2

A � 1 the specific angular

momentum of the wind is conserved. Inside of the light cylinder, in the limit that a∗ � 1,
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rotation is controlled by the rotation frequency of the hole ΩH , like ΩF ≈ ΩH/2 ≈ a∗/8, so

Ω ≈





ΩH

2
r < rl

2c2

ΩH

1

(r sin θ)2
r > rl

(5.4)

The jet–disk boundary is at θJD, so the outer light cylinder radius is rl = (8/a∗)(GM/c2)/(sin θJD)+

O(a∗). Taking sin θJD ' 1/
√

2, then rl ' (11/a)(GM/c2).

The disk rotates with approximately constant angular velocity Ω = sΩK on spherical

surfaces; here, ΩK = (GM)1/2r−3/2 is the Keplerian angular velocity and 0 < s < 1 measures

how sub-Keplerian the accretion flow is. Numerical simulations suggest s . 1/2 for MADs

and ∼ 1 for SANEs.

The toroidal component of the velocity difference across the jet–disk boundary is thus

∆vφ ' r sin θJD(ΩF − sΩK). (5.5)

Without a model for flow along the field lines it is not possible to constrain the other

components of the velocity difference. For retrograde accretion with a∗ < 0, the two angular

frequencies in Equation 5.5 have the same sign and the magnitude of the velocity jump is

at least of order the orbital speed. The velocity difference is approximately c at r = rl. For

prograde accretion with a∗ > 0, the shear vanishes at r = 4(s/a∗)2/3(GM/c2), and as in the

retrograde case, the velocity difference is ∼ c at r = rl.

5.2.3 Stability of the jet–disk boundary

The jet–disk boundary is associated with sharp changes in density and magnetic field. The

jet contains a laminar σ > 1 plasma, analogous to a pulsar wind, that rotates with the black

hole. The disk contains a turbulent Pgas/B
2 ∼ 1 plasma whose angular momentum need not

be related to the spin of the central hole. The relative orientation of the shear, jet magnetic

field, and disk magnetic field may vary as turbulence in the disk produces varying conditions
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at the boundary.

Is the jet–disk boundary linearly stable? If we model the boundary layer as an infinitely

thin current-vortex sheet, then we expect to capture the main features of the linear theory;

finite thickness H tends to suppress instability for modes with wavelengths smaller than

or of order H, and the fastest growth is at wavelengths ∼ H. The current-vortex sheet

can be subject to Kelvin–Helmholtz instability (KHI) as well as the plasmoid instability

(Loureiro et al. 2007). High-resolution axisymmetric models of black hole accretion flows

(Ripperda et al. 2020; Nathanail et al. 2020) see evidence for plasmoid instability at the jet–

disk boundary, but we do not, perhaps due to inadequate resolution. We therefore focus on

KHI. It is well known that magnetic fields weaken the KHI because they resist corrugation

of the vortex sheet. Do magnetic fields stabilize the jet–disk boundary?

A general linear theory of the plane-parallel, relativistic, ideal current-vortex sheet does

not exist. Osmanov et al. (2008) consider the special case where magnetic field is oriented

parallel to the velocity shear and the density, pressure, and field strength are continuous

across the sheet. They do not consider the large density contrast that is an important

feature of the jet–disk boundary problem.

The linear theory of the plane-parallel, compressible, nonrelativistic, ideal current-vortex

sheet is better understood. The general (arbitrary field orientation on either side of the

sheet) incompressible case was considered by AXFORD (1960); Shivamoggi (1981) considers

aligned and transverse fields; Sen (1964) and Fejer (1964) consider a general, arbitrarily

oriented field on either side of the sheet. The stability of a finite-width layer has been

considered in a well-known analysis by Miura & Pritchett (1982), but an analytic dispersion

relation is not available. Since the general, nonrelativistic problem is relatively tractable we

provide a brief discussion and use it to obtain a qualitative understanding of stability of the

jet–disk boundary.

Consider a plane-parallel, nonrelativistic, current-vortex sheet. The flow velocity and

magnetic field are constant away from the sheet, which we position at z = 0. Let i = J
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denote the low-density (jet) side and i = D the high-density (disk) side. In equilibrium, vAz

vanishes and total pressure is continuous across z = 0.

Now consider a perturbation of the form f(z) exp(ikxx+ ikyy+ iωt) with f(z) = exp(κz),

where κ is in general complex. The general dispersion relation is

λJmD + λDmJ = 0 (5.6)

λi = ρi
[
(ω − k · vi)2 − (vAi · k)2] (5.7)

mi =

√
k2 +

(ω − k · vi)4

csi2(vAi · k)2 − cs2
i (ω − k · vi)2 (5.8)

(Sen, 1964; Fejer, 1964). Here, cs ≡ sound speed, c2
m ≡ v2

A + c2
s is the magnetosonic speed,

and v is the plasma velocity. The exponential factor κ can be mi or −mi (see Equation 5.8)

depending on the boundary condition and whether z > 0 or z < 0.

The general dispersion relation cannot be solved analytically. In the case of interest to

us, however, ρJ � ρD, csD ∼ vAD, and csJ ∼ csD. Furthermore, physics provides a hint to

the mathematical solution: the field in the jet is stiff (the Alfvén speed is large due to the

low density), motivating us to look for instability in modes with k ·vAJ = 0. This is enough

to make analytic progress. Taking ρJ/ρD ∼ ε2 � 1 and assuming that k · vAD ∼ ε, we can

solve the dispersion relation to lowest order in ε. The relevant mode has

ω2 = (k · vAD)2 − ρJ
ρD

[k · (vJ − vD)]2, (5.9)

which suggests that the current-vortex sheet is unstable when k · vAD is sufficiently small,

which we have confirmed by numerically solving the full dispersion relation.

In Equation (5.9) the nonrelativistic current-vortex sheet is unstable for small ρJ . This is

precisely the limit where one might worry about relativistic corrections: if B2
J/ρJ > 1, then

the inertia of the jet is dominated by the magnetic field. In a fully relativistic analysis (Y. Du

et al., in preparation), the current-vortex sheet has a near-identical dispersion relation in the
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limit ρJ → 0, except that ρJ/ρD in the above dispersion relation is replaced by B2
J/ρD.

Evidently the current-vortex sheet is not generically unstable at large density contrast:

a particular configuration of magnetic fields is needed for instability. The disk contains a

turbulent magnetic field that is constantly changing strength and orientation, while the jet

has a steadier field. This suggests a picture in which turbulent mixing driven by the KHI is

episodic and occurs when jet and disk magnetic fields are aligned or anti-aligned. Mixing as

a result of nonlinear development of the KHI will then only occur when there exist modes

with growth times that are small compared to the correlation time of the turbulent eddies.

5.2.4 Dissipation at the jet–disk boundary

The jet–disk boundary would appear to be a fertile setting for particle acceleration: particles

that cross the boundary from the disk plasma frame to the jet plasma frame gain energy

in a process akin to Fermi acceleration. This has been investigated by, e.g., Berezhko &

Krymskii (1981); Jokipii & Morfill (1990); Ostrowski (1990) (see Rieger 2019 for a review),

usually in the context of extragalactic radio jets that are kiloparsecs from the central source.

Sironi et al. (2021) performed 2D particle-in-cell simulations of the shear layer between

a relativistic, magnetically dominated electron–positron jet and a weakly magnetized ion–

electron plasma and showed that the nonlinear evolution of Kelvin–Helmholtz instabilities

leads to magnetic reconnection, which can in turn drive particle acceleration. The formation

of magnetic islands at the jet–disk boundary (see, e.g., Nathanail et al., 2020; Ripperda et al.,

2020) can also lead to particle acceleration; this process has been extensively investigated in

kinetic simulations of current sheets.

To schematically address this question, we adopt a turbulent resistivity model for dissipa-

tion in the jet–disk boundary with magnetic diffusivity η ' αW ∆v, where α is the inverse

of the magnetic Reynolds number, the width of the boundary layer is W ∼ fR (f < 1;

here, R ≡ cylindrical radius) and ∆v ∼ c, so that η ' αfcR. Next, we assume that the

boundary is steady, axisymmetric, and follows R = R0(z/z0)β, with the jet intersecting the
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horizon at (R0, z0). We assume that the magnetic flux in the jet Φ ' πBR2 is approximately

independent of R and thus take B ' Φ(z/z0)−2β/(πR0
2).

If the magnetic field in the disk is similar in magnitude to that in the jet but randomly

oriented, the dissipation rate per unit volume in the boundary layer is Λ ∼ αB2(c/(fR)),

and the total dissipated power per unit height z is independent of f :

dP

dz
=

1

π
αc

Φ2

R3
0

(
z

z0

)−3β
(

1 + β2R
2
0

z2
0

(
z

z0

)−2+2β
)1/2

. (5.10)

Notice that this scales asymptotically as z−1−2β for β ≥ 1, so nearly all dissipation occurs

close to the black hole. Integrating over z, the dissipated power is

P =
αc5Φ2

π(GM)2
F (β, z0/R0), (5.11)

where F is a dimensionless function of order unity. The power differs only by a factor of a2
∗/α

from the Blandford–Znajek power (e.g., Tchekhovskoy et al. 2011). To sum up: a fraction

∼ α/a2
∗ of the jet power can be dissipated in the jet–disk boundary close to the black hole;

this provides additional motivation for a numerical study.

5.3 Simulating black hole accretion

We now study the jet–disk boundary layer using GRMHD simulations.

5.3.1 Numerical setup

We integrate the equations of GRMHD using the iharm code, a descendant of the second

order conservative shock capturing scheme HARM (Gammie et al., 2003). Written in a
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coordinate basis, the governing equations of GRMHD are

∂t
(√−gρ0u

t
)

= −∂i
(√−gρ0u

i
)
, (5.12)

∂t
(√−gT tν

)
= −∂i

(√−gT iν
)

+
√−gT κλΓλνκ, (5.13)

∂t
(√−gBi

)
= −∂j

[√−g
(
bjui − biuj

)]
, (5.14)

∂i
(√−gBi

)
= 0, (5.15)

where the plasma is defined by its rest-mass density ρ0, its four velocity uµ, and bµ is the

magnetic field four-vector following McKinney & Gammie (2004). Here, g ≡ det(gµν) is the

determinant of the covariant metric, Γ is a Christoffel symbol, and i and j denote spatial

coordinates. In Equations 5.14 and 5.15, we express components of the electromagnetic field

tensor F µν as Bi ≡ ?F it for notational simplicity. The stress–energy tensor T µν contains

contributions from both the fluid and the electromagnetic field:

T µν =
(
ρ0 + u+ P + bλbλ

)
uµuν

+

(
P +

bλbλ
2

)
gµν − bµbν , (5.16)

where u is the internal energy of the fluid and the fluid pressure P is related to its inter-

nal energy through an adiabatic index γ̂ with P ≡ (γ̂ − 1)u. The iharm code has been

extensively tested and converges at second order on smooth flows (Gammie et al., 2003). A

comparison of contemporary GRMHD codes can be found in Porth et al. (2019).

Our model has several limitations. First, we treat the accreting plasma as a nonradiating

ideal fluid of protons and electrons. We do not consider effects due to anisotropy and

conduction (Sharma et al. (2006); Johnson & Quataert (2007), but see Foucart et al. (2017)

for an evaluation of the limits of this approximation). We also neglect radiation. This

approximation may be inappropriate in systems with high mass accretion rates, like M87

(Dibi et al., 2012; Ryan et al., 2017), but it is sensible in systems with low ṁ like Sgr A*
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(but see Yoon et al. 2020, who show a different result under the assumption that the ions

and electrons are perfectly coupled). The equations of nonradiative GRMHD are invariant

under rescalings of both length and density, and so our numerical results can be scaled to

the desired M and Ṁ .

The iharm code evolves plasma on a logically Cartesian grid. For these simulations, we

use FMKS coordinates, which are a modified version of the conventional horizon-penetrating

Kerr–Schild (KS) coordinates. We use outflow boundary conditions for the radial direction,

and we use a reflecting boundary condition at poles that mirrors the elevation components

of the magnetic field and fluid velocity across the one-dimensional border.

We have added a passive tracer particle capability to iharm to track mass loading into the

jet. Each tracer particle is introduced with probability proportional to the coordinate particle

density
√−gρut, where ρ is the rest-mass density, g is the determinant of the covariant metric,

and ut is the time component of the four velocity. Initial positions are uniformly distributed

in the coordinate basis in each zone. Particles are advected with the fluid according to

dxi

dt
=
ui

ut
(5.17)

where xi are the spatial components of the tracer particle’s position and uµ is the fluid four

velocity.

The computational cost of evolving the tracer particles alongside the fluid scales linearly

with the number of particles; we use ≈ 225 particles, and this noticeably increases simulation

cost. We therefore use completed GRMHD simulations to identify an epoch of interest,

restart the fluid simulation at the beginning of the epoch, initialize the particles, and re-

evolve the fluid to the end of the epoch.

The iharm code has several limitations. It is not robust when σ � 1 (e.g. in the strong

cylindrical explosion test in Komissarov, 1999) or when the ratio of the gas pressure to the

magnetic pressure β ≡ 2Pgas/B
2 � 1. Numerical stability is ensured by imposing artificial
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ceilings on σ and 1/β in each zone at each time step, which are enforced by resetting the

density or internal energy density to a floor value that depends on position but not on time.

This has a minimal effect on the flow (as can be checked by varying the ceilings), but it does

inject matter into the nearly evacuated funnel region, where σ is large and β is small.

The fluid sector is initialized with a perturbed Fishbone–Moncrief torus solution (Fish-

bone & Moncrief, 1976), which is parameterized by the inner disk edge radius rin and

pressure maximum radius rmax. The thermal energy is perturbed to seed the instabilities

that jump start accretion (including the magnetorotational instability). The SANE mod-

els have rin = 6 M and rmax = 12 M in a domain that extends from within the horizon

to rout = 50 M . The MAD models have rin = 20 M and rmax = 41M in a domain that

extends to rout = 1000M . Our MAD disks are larger than our SANE disks. Figure 5.1

shows the initial conditions for plasma and magnetic field in representative SANE and MAD

simulations.
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Figure 5.1: Initial distribution of plasma and magnetic field for representative retrograde
SANE (left) and MAD (right) simulations. Both black holes have a∗ = −0.94. The initial
plasma density and magnetic field are axisymmetric. The central black hole is plotted at
the center left of each panel. Color encodes log10 of plasma density. Magnetic field lines,
which are purely poloidal, are overplotted in black. Notice that the domain of the MAD is
10x larger than the SANE simulation domain.
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The initial magnetic field is described by the toroidal component of the vector four-

potential Aφ(r, θ). For SANE disks

Aφ = max

[
ρ

ρmax

− 0.2, 0

]
, (5.18)

where ρmax is the maximum initial plasma density. For MAD disks the initial field is con-

centrated toward the inner edge of the disk and forced to taper at large r according to

Aφ = max

[
ρ

ρmax

(
r

r0

sin θ

)3

e−r/400 − 0.2, 0

]
, (5.19)

where r0 is chosen to be the inner boundary of the simulation domain (B. R. Ryan, priv. com-

munication).

5.3.2 Simulations

Table 5.1 provides a summary of the models we consider. Our simulations are similar to

the retrograde ones generated for the EHT simulation library in EHTC V, except that: our

simulations are evolved twice as long to mitigate natural stochasticity in matter entrainment;

and a subset of our simulations are rerun at multiple resolutions.

We focus on six retrograde simulations with a∗ = −0.5 or −0.94. By convention, negative

spins means that the black hole spin is anti-parallel to the angular momentum of the accretion

flow (i.e. tilt is 180◦). For each spin, we consider MAD and SANE models. We set the

magnetic flux (and thus MAD or SANE state) by varying the field structure in the initial

conditions.

Each simulation was run for at least 20,000 GM/c3 and has an initial transient phase

during which the initial torus relaxes, and magnetic winding and a combination of the

Rayleigh–Taylor and Kelvin–Helmholtz instabilities operates. The transient phase is followed

at each radius by a turbulent quasi-equilibrium, with equilibrium radius, defined as the

largest radius where dṀ/dr ' 0, increasing as req ∼ t2/3 (see, e.g., Penna et al. 2010; Dexter
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ID Flux a∗ rin rmax rout Resolution Notes
Sa-0.5 SANE −0.5 6 12 50 288x128x128 medium disk
Sa-0.94 SANE −0.94 6 12 50 288x128x128 medium disk
Ma-0.5 MAD −0.5 20 41 1000 384x192x192 large disk
Ma-0.94_192 MAD −0.94 20 41 1000 192x96x96 large disk
Ma-0.94_288 MAD −0.94 20 41 1000 288x128x128 large disk
Ma-0.94 MAD −0.94 20 41 1000 384x192x192 see note†
Ma-0.94_448 MAD −0.94 20 41 1000 448x224x224 large disk

Table 5.1: GRMHD Simulation Parameters. Retrograde GRMHD fluid simulations param-
eters. Flux labels the relative strength of the magnetic flux at the horizon, a∗ describes the
spin of the black hole, rin and rmax are parameters for the initial Fishbone–Moncrief torus,
rout is the outer edge of the simulation domain, resolution gives the Nr × Nθ × Nφ number
of grid zones in the simulation. † Multiple realizations of the 384x192x192 MAD a∗ = −0.94
large disk simulations were run. Part of one realization included tracer particles.

et al. 2020 for a discussion). Beyond req, the flow is strongly dependent on initial conditions,

so we consider information only from r < req. GRMHD models may be in equilibrium at

large radii near the poles if there are strong outflows and the outflow structure is independent

of the structure of the surrounding unequilibrated disk.

Our MAD simulations are run with bulk fluid adiabatic index Γ = 13/9, and our SANE

simulations are run with Γ = 4/3 to be in agreement with EHTC V and Porth et al. (2019).

5.4 Results

We begin by discussing characteristic differences between MAD and SANE accretion flows

before considering each of our simulations in detail. We explore the properties of fluid flow

at small radii and within the jet, and then we relate outbursts in the MAD flows to magnetic

flux ejection events. We explore qualitative features of the jet–disk boundary layer, including

the development of Kelvin–Helmholtz instability. Finally, we use tracer particles to study

mass entrainment across the jet–disk boundary layer.
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Figure 5.2: Logarithmic plots over three decades of density in the poloidal plane for a∗ =
−0.5 MAD and SANE models. Each image shows time- and azimuth-averaged density (left
panels) and time slices at azimuth φ = 0 (right panels). The density is particularly variable
in the MAD models, where the time slice is not well approximated by the average state.
The density is less variable in the SANE models, where the time slice and average state are
comparatively similar.

5.4.1 Overview

It is convenient to divide low-luminosity black hole accretion flows into three regions: (1)

the matter-dominated disk of plasma near the midplane, which on average flows inward, (2)

the magnetically dominated, polar Poynting jet, and (3) the virial temperature intermediate
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region, which contains the jet–disk boundary layer and the corona (here defined as the region

with β ∼ 1). In a region extending from the event horizon out to somewhat beyond the

innermost stable circular orbit (ISCO), the inflow plunges supersonically onto the hole and

fluctuates strongly. Notice that the jet we consider here (at horizon scales) is dynamically

distinct from the jet at large radius.
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Figure 5.3: Azimuthal slice from an individual time slice of the a∗ = 0.94 retrograde MAD
simulation. Left panel: log density of plasma near the black hole. Center panel: log internal
energy of the plasma u = ρT . Right panel: plasma magnetization σ = b2/ρ. The high
σ, low-density conical regions around the poles are the jet funnel. The disk is the low σ,
high-density region near the midplane. The intermediate region between the funnel and the
disk with σ ≈ 1 is the corona. The disordered accretion near the horizon is accentuated by
streams of infalling plasma that are characteristic of MAD flows.

SANE and MAD accretion flows exhibit qualitatively different behavior. SANE models

are relatively tame: plasma falls uniformly from the ISCO to the event horizon, the boundary

of the accretion disk remains well defined, and the time-averaged accretion state is a fair

approximation of an individual time slice. In contrast, MAD accretion is choppy and tends

to proceed in isolated, thin plasma streams that begin far from the hole and plunge onto

it. MAD accretion is punctuated by violent eruptions that release excess trapped magnetic
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flux. Although the flux ejection events are not understood in detail, their structure suggests

a Rayleigh-Taylor interaction between the disk and hole (see, e.g., Marshall et al., 2018).

For MAD flows, the time average is often not a good approximation to a single time slice.

These differences are particularly apparent in Figure 5.2, which shows log density for sample

SANE and MAD models and compares the time-averaged solution (left) to representative

time slices (right). In SANE models it is easy to separate the high-density disk from the

low-density jet region. In contrast, in MAD models, identifying the location of the jet–disk

boundary is a challenge.

In Figure 5.3, we show a typical time slice on a poloidal slice of an a∗ = −0.94 MAD

model, where the strength of the magnetic flux near the horizon prevents steady disk accre-

tion. Here, accretion occurs when plasma streams break from the bulk disk at large radius

and plunge onto the hole. These streams are not confined to the midplane as they fall. Fig-

ure 5.4 shows the projected locations of tracer particles in the same MAD a∗ = −0.94 flow

of Figure 5.3 but viewed from above. The color of each particle corresponds to the linear

density of particles in a three-dimensional voxel of space centered at the particle and is used

to visualize the complicated vertical structure of the flow. The figure shows one accretion

stream connecting the disk and the hole in the bottom right, and the launch of two new

streams in the upper right.

5.4.2 Counterrotation and the disk

As the black hole rotates, trapped magnetic field lines wind around the polar axis and

produce a Poynting jet via the BZ mechanism. In the jet–disk boundary layer, however, the

jet field lines (that rotate with the hole) are mixed with disk field lines (that rotate against

the hole in retrograde models). This interaction leads to an exchange of angular momentum

via magnetic and fluid stresses. Some of the infalling plasma then acquires negative uφ, i.e.,

its specific angular momentum aligns with the black hole spin.

Exchange of angular momentum in the jet–disk boundary layer is more noticeable in
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Figure 5.4: Tracer particle position for the MAD a∗ = −0.94 model, projected onto the
equatorial plane. Particle color varies linearly with local rest-mass density. The event horizon
is a gray sphere. The inner region of the accretion flow is chaotic and characterized by
plasma streams that break off the main disk at large radius. Plasma streams experience
large magnetic torques (uφ may change sign) as they plunge toward the horizon.

MAD models, where accretion occurs in streams and where the magnetic field tends to

be stronger. In MAD models, the inhomogeneous flow magnifies the effects of magnetic

torques, since some equator-crossing field lines are lightly loaded (in contrast to SANE

models, in which the equator-crossing field lines pass through a dense disk). Moreover, the

more concentrated magnetic flux tubes in the MAD models can result in stronger torques
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(see Porth et al., 2021): when matter in the accretion stream with uφ > 0 interacts with a

flux tube with uφ < 0, the plasma is rapidly braked and its angular momentum is reversed.

Figure 5.5 shows an example of this interaction as counterrotating field lines collide with the

corotating field lines near the horizon. During these events, the front edge of an accretion

stream commonly erodes and accelerates radially outwards.

Figure 5.5: Interaction between disk and jet magnetic field lines. Magnetic field lines
that intersect the disk at small radii are shown for two sequential time slices of the plasma
evolution. Field lines are sampled according to magnetization in the midplane. The colored
surface shows the logarithm over two decades of density in the midplane of the simulation,
and the event horizon is plotted as a black circle in the center of the plane. Left panel:
the same time slice as shown in Figure 5.4, rotated 45◦ counterclockwise. Magnetic field
lines emanating from the high-density region toward the left of the figure trace an accretion
stream and are disk dominated. Magnetic field lines that wind the opposite direction make
up a flux tube and are being pulled clockwise with the hole as it spins. The two sets of
field lines are about to collide. Right panel: same simulation approximately 50 GM/c3

later. Disk-threading and funnel-threading magnetic field lines have interacted, and a much
stronger flux tube passes through the midplane in the low-density region to the right of the
hole.

The stronger angular momentum transfer in MAD flows produces more disorder in the

inner region of the accretion flows. This difference between MAD and SANE models can be

seen in Figure 5.6, which plots the time-integrated distributions of rest mass over uφ, r and

vr, r. The infalling matter accelerates within the plunging region (close to the ISCO) in both
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MAD and SANE flows, but the widths of the distribution of uφ and vr at a given radius differ

sharply: the MAD models have larger width because they experience larger fluctuations.
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Figure 5.6: Distribution of matter in the angular momentum and radial velocity vs. radius
( uφ − r and vr − r) planes for the four fiducial simulations. The vertical gray line marks
the ISCO. The color scale is linear and shows the distribution of matter at each radius. In
the SANE models the plasma lies on a well defined curve associated with Keplerian rotation
as it accretes. In the MAD models plasma is perturbed away from the disk even before it
enters the plunging region.
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ID a b
Sa-0.5 0.22 1.8
Sa-0.94 0.18 1.8
Ma-0.5 0.07 2
Ma-0.94 0.1 2

Table 5.2: Funnel wall (uφ = 0 surface) fit parameters. Best fit parameters of the z = Axb

model for the location of the zero angular momentum surface in the GRMHD models.

5.4.3 Jet wall shape

In general, it is challenging to identify the jet–disk boundary since there is no clear criterion

that distinguishes matter in the jet from matter in the disk (although proxy surfaces derived

from magnetization or the Bernoulli parameter have been used in the past). Nevertheless,

it is straightforward to find the surface where uφ = 0. Since uφ has a definite sign in the jet,

this surface may be a reasonable tracer of the boundary.

Figure 5.7 shows an azimuthal time slice of plasma density and angular momentum in the

MAD a∗ = −0.94 simulation and overplots the flow of the plasma. The lines change color

at the uφ = 0 surface, which broadly separates outgoing matter from infalling matter. The

extended jet–disk boundary is turbulent and mixes mass, angular momentum, and energy

between the two regions. Figure 5.8 plots time- and azimuth-averaged uφ for each of six

models. We fit the uφ = 0 surface (within r < 30GM/c2) to z = axb and plot it as a dashed

line. Recall that the boundary produced from the (φ, t)-averaged data may not be a good

approximation to the boundary at fixed φ, t, especially for MAD models. The parameters

for the fit are reported in Table 5.2.

In Figure 5.9 we plot 〈uφ〉, where the brackets indicate an average over time and azimuth

versus elevation at four radii in each of the simulations. In MAD flows, we see that the

average uφ of matter in the midplane at θ = π/2 decreases with radius; this makes sense

since horizon-scale accretion flow is much choppier in MADs. The average uφ of the plasma

tends to increase with radius in both the disk and in the funnel. The point where uφ changes

sign corresponds to the location of the jet–disk boundary layer and roughly tracks the shape
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Figure 5.7: Time slice of a MAD, a∗ = −0.94 model. Brightness shows plasma density, color
saturation encodes value of uφ, and flow lines describe the poloidal motion of the plasma.
The jet–disk boundary is visible as the surface where uφ changes sign. Eddies tend to form
at the jet–disk boundary as infalling, positive uφ matter interacts with outflowing, negative
uφ matter. The sign of uφ in the funnel is set by the sign of black hole spin.

of the jet. In our SANE simulations, the boundary layer is resolved by & 16 zones at all

radii, and the jet spans approximately 10 zones at r = 20GM/c2 and approximately 40

zones at r = 2GM/c2. The boundary layer in our MAD simulations spans approximately

& 30 zones at all radii, and the jet is resolved by between 20 and 60 zones at r = 20GM/c2
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Figure 5.8: Density-weighted poloidal profile of uφ for each of the four fiducial models
after time and azimuthal averaging. The black circle at the origin marks the extent of the
event horizon. All simulations have a similar structure: a parabolic jet (boundary defined
by uφ = 0) and a peak in uφ away from the pole.

and r = 2GM/c2 respectively.

5.4.4 Mass entrainment

The shear layer at the jet–disk boundary is episodically unstable in our models. As insta-

bilities develop, plasma from the disk is transported across the boundary, reverses direction,

and is entrained into the jet. We use tracer particles to study mass entrainment and track

matter that passes through the mixing region. The computational cost of tracking tracer
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Figure 5.9: Profile of uφ vs. elevation at r = 2, 5, 10, and 20 GM/c2 for each of the models
in Figure 5.8. Notice that uφ < 0 implies angular momentum aligned with the black hole.
The average uφ of plasma at small radii is smaller in MAD models than SANE models. The
latitude of the shear layer within which uφ changes sign increases with radius, corresponding
to a narrowing jet. The (average) shear layer is wider for MAD models because their jet–disk
boundaries fluctuate over a wider range in latitude. As matter flows out in the jet, magnetic
torques increase uφ.

particles in the global flow over the course of the entire simulation makes a full study pro-

hibitively expensive. We instead perform a single high-resolution, high-cadence study that

focuses on the evolution of approximately 3.2× 106 particles within the inner region of the

accretion flow over a 500GM/c3 interval. We chose to consider a range of time in the MAD
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a∗ = −0.94 model because it corresponded to an active period when multiple KHI knots are

easily identifiable.

Entrained particles satisfy two criteria: they begin with vr < 0 and uφ > 0, and they

leave the simulation at the outer boundary with uφ < 0. In the mixing layer tracer particles

may repeatedly transition between the disk and jet; we define entrainment to have happened

for a tracer particle when its uφ and vr change sign for the last time. Because this definition

of entrainment depends on the worldline of a fluid parcel, it is not immediately analogous to

any quantity that can be directly computed from the raw fluid data.
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Figure 5.10: Histogram showing when tracer particles are entrained into the jet over a brief
interval in the MAD a∗ = −0.94 model. Entrainment is conservatively defined to only
include particles that begin in the disk region and end at large radius with positive vr. This
definition discounts particles that spend time in the mixing region but ultimately fall onto
the hole. In this MAD model and by these criteria, entrainment is evidently a stochastic
process that is characterized by periods of increased entrainment corresponding to times
when instabilities form and break at horizon scales.

Figure 5.10 shows the computed mass entrainment rate over time. We find that entrain-

ment events occur in bursts lasting ∼ 100GM/c3. Mass loading occurs at an average rate

∼ 10−2 Ṁ . Note that our definition produces a measurement that does not count mass that

has been injected by the numerical floor prescription in the funnel: the tracer particles are

initialized once, so the application of floors during the subsequent evolution does not increase

the number of the tracer particles. We discard the beginning epoch of tracer data to avoid

including the floors’ effect on the transient tracer particle initial condition.
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Figure 5.11: Logarithm over two decades of density on r ≈ 1.5M slices for the MAD
a∗ = −0.94 model at five times separated by ∆t = 25M . Matter in the jet near the poles flows
clockwise from above (left on the page), and matter in the midplane flows counterclockwise
(right on the page). The boundary between the funnel and the midplane results in the
development of an unstable shear layer. A Kelvin–Helmholtz roll develops in the shear layer
over the sequence of panels.

In both SANE and MAD models, mass entrainment is driven by instabilities in the

boundary between the accreting plasma and the matter in the jet. Figure 5.11 plots log

plasma density on shells of constant radius over time and shows the development of an

instability: as the high-density midplane disk region moves to the right, it interacts with the

low density funnel plasma moving to the left and forms Kelvin–Helmholtz rolls. Figure 5.12

plots density and specific angular momentum in the central frame of Figure 5.11 in the θ−φ

plane at three different radii. Evidently, the KH roll is well resolved.

We observe that Kelvin–Helmholtz rolls develop in all simulations regardless of the ac-

cretion flow parameters; however, it is especially apparent in the MAD flows, which have

a more turbulent boundary layer. Mass entrainment thus proceeds in part through the

Kelvin–Helmholtz instability at the jet–disk boundary. Still, the full structure of the jet–

disk boundary layer is complicated, and braked accretion streams near the event horizon

also contribute to mass loading.

We also use the tracer particles to visualize the flow of matter through phase space.

Figure 5.13 shows the time-averaged flow of tracer particles in the radius vs. specific angular

momentum plane. Plasma density is represented by the density and thickness of the white

flow lines. Color denotes particle speed in phase space and helps differentiate between the

disk/plunging region and the jet.
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Figure 5.12: Left panels: log over two decades of density in the θ − φ plane for shells
at r = 1.5, 3, and 40GM/c2. Right panels: same shells as left showing logarithm over two
decades of uφ with uφ > 0 blue and red otherwise. These plots are from the central time slice
of Figure 5.11, for the MAD a∗ = −0.94 model. The flow becomes increasingly chaotic at
smaller radii; however, the shear layer between the disk and funnel persists, and the funnel
region consistently has uφ < 0, indicating corotation with the hole.

The flow at r < 20 can be divided into the three triangular regions shown in Figure 5.13.

Region A contains particles that are falling toward the event horizon and gradually losing

angular momentum. It contains the plunging region (where the figure is brightest), the disk,

and the characteristic MAD accretion streams seen in Figure 5.4. Region B is the disk wind.

Region C is the jet. Particles enter the jet from Region A, are torqued until their angular

momentum has the same sign as the black hole, and then are accelerated outward. Particles
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Figure 5.13: Time-averaged flow of tracer particles through the r−uφ state space. The gray
hatched region at the left of the figure lies within the horizon. The background shows a
false-color representation of the average speed of the particles through the two-dimensional
state space and helps to visually differentiate the disk (region A), disk wind (region B), and
jet (region C). The density of white lines is proportional to the density of particles in state
space; for the purposes of visualization, the density is capped for regions in the disk that have
large density. Average particle flow follows the thin white lines. As particles are entrained
in the jet they cross uφ = 0 and are then torqued and accelerate outwards.

gain angular momentum as they accelerate away from the hole, as expected in a sub-Alfvénic

wind.

5.5 Discussion

We have studied a set of retrograde MAD and SANE black hole accretion models. We found

that the angular momentum of plasma in both the jet and parts of the jet–disk boundary

layer is aligned with the spin of the hole. We also found that the boundary layer region, in

which uφ transitions between its value in the midplane and its value in the jet, was wider in

the MAD models than in SANE models. This is unsurprising, since MAD flows tend to be

more chaotic near the horizon where much of the jet–disk interaction occurs, so the time-
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averaged boundary location is spread out. The existence of a shear layer is not restricted

to retrograde models, as noted in §5.2.2, but we have focused on retrograde models because

the shear is strongest there.

As noted in §5.4.4, the jet–disk boundary is sufficiently resolved to see the development of

Kelvin–Helmholtz rolls; this strongly suggests that numerical diffusion does not control the

entrainment rate. Nevertheless increasing the simulation resolution may expose new struc-

tures, such as the plasmoids seen in recent high-resolution axisymmetric models (Nathanail

et al., 2020; Ripperda et al., 2020).

To assess the effect of resolution we studied five different realizations of a MAD a∗ =

−0.94 model at four resolutions: one at 192 radial zones, one at 288, two at 384, and

one at 448 (resolution in other coordinates is scaled proportionately). We include multiple

realizations at the same resolution to assess the error bars on measurements associated with

turbulent fluctuations. We consider convergence in two time-averaged quantities: the profiles

of uφ presented in Figure 5.9 and the total mass in the jet near the hole as measured from

the GRMHD.

The time-averaged specific angular momentum profile 〈uφ〉 (r, θ) is remarkably consistent

across all resolutions everywhere except in the zones adjacent to the polar boundary, where

we do not necessarily expect agreement because of our treatment of the boundary condition.

In the shear region, the profiles are consistent to 5% and exhibit no discernible trend with

resolution.

We compute the total mass in the jet near the hole by integrating the GRMHD density

variable within a volume V

Mj(t) ≡
∫

V

ρ
√−g dr dθ dφ, (5.20)

where we have chosen V to be the region with uφ < 0 and vr > 0 at 2 < r < r∗ = 20.

Note that Mj(t) has contributions from both mass entrainment and numerical floors. The
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time-dependent variation in the entrainment rate (see Figure 5.10), causesMj(t) to fluctuate,

so evaluations of the time-averaged 〈Mj(t)〉t are subject to noise. We find that Mj(t) has a

correlation time ≈ 200GM/c3 in the MAD, a∗ = −0.94 model. The full model duration is

20, 000GM/c3, but the first 5, 000GM/c3 is an unequilibrated transient, so we have N ∼ 80

independent samples over the full model; therefore, we expect fractional errors of order

N−1/2 ∼ 10%. We find that 〈Mj(t)〉 = 140, 130, 160, and 130 for simulations with radial

resolution 192, 288, 384, and 448 respectively, which is consistent with the expected error.

We also note that the widths of the jet and boundary-layer regions (in zones) reported in

§5.4.3 scales linearly with the simulation resolution.

There may be additional mixing processes that occur on unresolved scales, so the con-

sistency of Mj across resolutions does not prove that we have accurately accounted for mass

mixing between the jet and disk. Future convergence studies should probe not only longer

timescales to reduce the fluctuation noise but also higher resolution.

We also note that since the equilibration time increases with radius, the long-term average

jet–disk interaction may be poorly represented at large radii where the disk is still strongly

dependent on initial conditions. We have chosen to overstep this issue by only reporting fits

and statistics from equilibrated parts of our simulations. Chatterjee et al. (2019) also studied

mass loading in their study of black hole jet launching. They performed multiple long-time,

large-scale (rmax & 105 GM/c2) 2D GRMHD simulations and found that additional mass

entrainment occurred at large radii. As noted above, the details of the jet–disk interaction

at such large radii may be influenced by the choice of initial condition.

5.6 Conclusion

We have studied a set of three-dimensional GRMHD simulations of retrograde SANE and

MAD black hole accretion disks at a∗ = −0.5 and −0.94, with a focus on the jet–disk

boundary near the horizon. We have found that:
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1. Plasma in the jet rotates with the hole and not the disk. This generates a jet–disk

boundary with strong currents and vorticity.

2. In MAD models, accretion occurs through narrow plasma streams near the horizon.

These streams erode as they interact with the counterrotating jet and load the jet with

plasma.

3. In both MAD and SANE models, disk plasma is entrained into the jet in well-resolved

Kelvin–Helmholtz rolls.

4. The entrainment rate is ∼ 0.01 Ṁ for the MAD, a∗ = −0.94 model that we study in

detail.

5. The entrainment rate and boundary-layer structure are insensitive to resolution over

the range in resolution we are able to study.

6. In retrograde MAD models accretion near the horizon fluctuates strongly: individual

time slices do not look like time- and azimuth-averaged data. Relatedly, the jet in MAD

models wobbles significantly. The fluctuations produce a complicated, time-variable interface

between the jet and disk.

This study has considered a limited range of models and could be extended by compar-

ing a broader range of black hole spins and tilts between the hole and the accretion flow.

Understanding the behavior of jet plasma and the jet–disk boundary layer may be crucial in

developing a robust model of the connection between black hole spin and motion in the jet,

which can now be resolved in time and space by the EHT.
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Chapter 6

Drizzle pair production in black hole jets

Electron–positron pair creation near sub-Eddington accretion rate black holes is believed to

be dominated by the Breit–Wheeler process (photon–photon collisions). The interacting high

energy photons are produced when unscreened electric fields accelerate leptons either in co-

herent, macroscopic gaps or in incoherent structures embedded in the turbulent plasma flow.

The latter type of acceleration results in a drizzle of pair production sourced by photons from

the background radiation field whose energies are near the pair-production threshold. In this

chapter, radiation GRMHD simulations are used to extend an earlier study of pair drizzle by

Mościbrodzka et al. (2011). This study focuses on low-magnetization (SANE) accretion onto

supermassive Kerr black holes and considers radiation due to synchrotron, bremsstrahlung,

and Compton upscattering. In these simulations, pair drizzle in M87 is sufficient to keep the

magnetospheric charge density orders of magnitude above the Goldreich–Julian density, and

pair production peaks along the jet–disk boundary.

6.1 Introduction

The Event Horizon Telescope (EHT) recently published the first resolved images of plasma

surrounding the M87 black hole at 1.3mm (Event Horizon Telescope Collaboration et al.,

2019a,d). Although these images and anticipated future results carry information about

physical conditions in the accreting plasma, an accurate model of the emission source—the

radiating leptons—must be obtained in order to extract the information (see Event Horizon

This chapter is lightly adapted from G. N. Wong, B. R. Ryan, and C. F. Gammie, ApJ, Volume 907,
Issue 2, id.73.
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Telescope Collaboration et al., 2019e). The subset of the radiating leptons that originates as

electron–positron pairs is of particular interest (see Svensson & Zdziarski 1989 for a review),

and with this goal in mind, we consider a nearly ab initio model of pair production in low

accretion rate (highly sub-Eddington) systems like M87 (see Broderick & Tchekhovskoy,

2015; Hirotani, 1989).

Models of pair production around low accretion rate black holes require a population

of high-energy leptons that can Compton upscatter the low frequency background photons

produced by the hot plasma. The upscattered high-energy photons produce electron–positron

pairs through interactions with the fiducial low-energy background photons via the Breit &

Wheeler (1934) process when the center-of-momentum energy of the interacting photons

exceeds the rest-mass energy of an electron–positron pair ∼ 1 MeV.

High-energy leptons can be produced in a variety of ways. Gap models envisage coherent

regions with E · B 6= 0 that accelerate the leptons and initiate pair cascades (see, e.g.,

Beskin et al. 1992; Hirotani & Okamoto 1998; Ford et al. 2018; Levinson & Cerutti 2018;

Chen et al. 2018; Parfrey et al. 2019; Chen & Yuan 2020). In gap models, the high-energy

photons typically have energies that are orders of magnitude above the MeV threshold.

In contrast, drizzle models predict that the native high-energy component of the electron

distribution throughout the near-horizon plasma will produce a steady, smooth background

of ∼ MeV photons that interact with each other and pair produce (see Mościbrodzka et al.

2011, hereafter M11, and also Levinson & Cerutti 2018). Although gap and drizzle models

may appear distinct, they can be thought of as end members of a continuum in which the

structures that accelerate the leptons range from coherent, steady, and large scale (gap) to

incoherent, transient, and small scale (drizzle).

In this paper we revisit the drizzle model of M11, which estimated pair production rates

based on nonradiative general relativistic magnetohydrodynamics (GRMHD) accretion sim-

ulations. We extend the M11 estimate using radiative GRMHD (radGRMHD) accretion

simulations produced with the ebhlight code (Ryan et al., 2015, 2019). ebhlight inde-
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pendently tracks the ion and electron temperatures (Ressler et al., 2015; Ryan et al., 2017)

and implements a more thorough treatment of electron thermodynamics that explicitly in-

cludes both a model to partition dissipation between electrons and ions and a treatment

of ion–electron energy exchange through Coulomb scattering (Ressler et al., 2015). More-

over, ebhlight accurately accounts for radiative cooling by solving the radiation transport

equation with a Monte Carlo method, which can be important to the plasma dynamics as

accretion rates increase. Furthermore, in contrast to the M11 model, our pair production

calculation includes photons produced by bremsstrahlung emission, which are unimportant

for the thermal evolution of the fluid at the accretion rates we consider but may play an

important role in drizzle pair production due to their characteristic high frequencies (Yarza

et al., 2020). These extensions improve the accuracy of the pair production rate evaluation,

especially at high accretion rates.

It is computationally expensive both to produce radGRMHD simulations and to generate

well-resolved samples of the radiation field, so we evaluate pair drizzle for a targeted set of

axisymmetric models. We consider two black hole spins a∗ ≡ Jc/GM2 = 0.5 and 0.94 (here

J and M are the angular momentum and mass of the black hole, respectively) over a range

of mass accretion rates ṁ ≡ Ṁ/ṀEdd
1 corresponding to geometrically thick, optically thin,

weakly radiative accretion flows in the low magnetic flux “standard and normal evolution”

(SANE) accretion state.2

The paper is organized as follows. Section 2 reviews the governing equations of rad-

GRMHD, and Section 3 describes the pair production model and its implementation. In

Section 4, we discuss the expected spatial dependence of drizzle pair production. Section 5

presents the results of our numerical simulations. We discuss physical implications and model

limitations in Section 6, and we provide a summary in Section 7.
1Here, ṀEdd ≡ LEdd/

(
η c2
)
where η = 0.1 is the nominal accretion efficiency, and the Eddington lumi-

nosity LEdd ≡ 4πGMmpc/σT
2SANE in contrast to “magnetically arrested disk” (MAD) models, which have magnetic flux through the

event horizon Φ satisfying φ ≡ Φ/(Ṁr2gc)
1/2 ' 15; here rg = GM/c2.
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6.2 Plasma model

We consider prograde black hole accretion, in which the orbital angular momentum of the

plasma is aligned with the spin of the central black hole. Our models have accretion rates

ṁ ≤ 10−5. We find that these accretion rates are low enough for the plasma to be ∼

collisionless (i.e., the Coulomb scattering mean free path for electrons and ions is large

compared to GM/c2) but high enough that radiative cooling may influence the electron

temperature. Hereafter, we set GM = c = me = 1 and occasionally restore cgs units for

clarity. We model the plasma using radiative general relativistic radGRMHD.

In a coordinate basis, the governing equations of radGRMHD are

∂t
(√−gρ0u

t
)

= −∂i
(√−gρ0u

i
)
, (6.1)

∂t
(√−gT tν

)
= ∂i

(√−gT iν
)

+
√−gT κλΓλνκ

−√−gRµ
ν;µ, (6.2)

∂t
(√−gBi

)
= ∂j

[√−g
(
bjui − biuj

)]
, (6.3)

∂i
(√−gBi

)
= 0, (6.4)

where the plasma is defined by its rest-mass density ρ0, its four velocity uµ, and bµ is the

magnetic field four vector following McKinney & Gammie (2004). Here, g ≡ det(gµν) is the

determinant of the covariant metric, Γ is a Christoffel symbol, and i and j denote spatial

coordinates. In Equations 6.3 and 6.4, we express components of the electromagnetic field

tensor F µν as Bi ≡ ?F it for notational simplicity.

The stress-energy tensor T µν contains contributions from both the fluid and the electro-

magnetic field:

T µν =
(
ρ0 + u+ P + bλbλ

)
uµuν

+

(
P +

bλbλ
2

)
gµν − bµbν , (6.5)
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where u is the internal energy of the fluid and the fluid pressure P is related to its internal

energy through an adiabatic index γ̂ with P ≡ (γ̂ − 1)u (see, e.g., Gammie et al. 2003;

McKinney & Gammie 2004).

The radiation stress tensor is

Rα
β =

∫
d3p√−gptp

αpβ

(
Iν
h4ν3

)
, (6.6)

where pα is the four-momentum of a photon, ν is the frequency of the photon, Iν is specific

intensity, and h is Planck’s constant. Photons obey the equations of radiative transfer

equations as they move through the plasma:

dxα

dλ
= kα, (6.7)

dkα

dλ
= −Γλαβk

αkβ, (6.8)

D

dλ

(
Iν
ν3

)
=
ην(Te)

ν2
− Iνχν(Te)

ν2
. (6.9)

Here, ην is the local emissivity of the plasma, and χν encodes the total (scattering and

absorption) opacity due to thermal synchrotron processes and Compton scattering.

We consider a two-temperature plasma composed of electrons and ions. The extra degree

of freedom is closed through an independent electron energy equation as in Ressler et al.

(2015):

ργ̂e

γ̂e − 1
uµ∂µκe = feQH +QC(Te, Tp)− uνRµ

ν;µ, (6.10)

where γ̂e is the adiabatic index of the electrons, fe is the fraction of the volumetric dissipation

rate QH that goes into electrons (taken from the Howes 2010 model), and QC is volumetric

heating or cooling due to Coulomb scattering (Stepney & Guilbert, 1983).
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6.2.1 Two-temperature radGRMHD

We solve the governing equations using the ehblight code (Ryan et al., 2017). In ebhlight,

the radiation stress-energy tensor is co-evolved with the fluid and is computed at each step

from Monte Carlo samples of the radiation field, which are evolved according to the scheme

introduced in grmonty (Dolence et al., 2009). ebhlight also independently tracks the proton

and electron temperatures according to a two-temperature model where the electron entropy

is evolved as in Ressler et al. (2015).

6.3 Pair production

Pair drizzle in low accretion rate systems is weak, so the radiation field can be treated as

independent of pair production. The pair production rate can thus be evaluated in a post-

processing step after the fluid evolution has been completed. We will show below that this

approximation is self-consistent.

6.3.1 Comparison of contributing interactions

The pair production rate density is

ṅ± = n1 n2 〈σ12 v〉 (6.11)

where n1 and n2 are the number densities of the two interacting species, σ12 is their interaction

cross section, v is their relative velocity, and the angle brackets indicate an average over state

variables.

In our radiative electron–ion plasma, pair-producing interactions can occur between elec-

trons (e), ions (p), and photons (γ). The pair production cross sections are (Phinney, 1983;
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Stepney & Guilbert, 1983; Zdziarski, 1985; Krolik, 1999)

σpp ∼ σee ∼ σep ∼ ασpγ ∼ ασeγ ∼ α2σγγ, (6.12)

where α ≈ 1/137 is the fine-structure constant. Which process dominates depends on the

details of the radiation field and plasma density. We can estimate ne using ebhlight sim-

ulations for guidance and assuming a pure hydrogen plasma; we can also estimate nγ by

analyzing the simulated radiation field and counting only photons with energy > mec
2.

Then in the low density jet region near the spin axis of the black hole, we find that

nγ/ne = nγ/np > 1 > α.3 The γγ process therefore dominates pair production.

6.3.2 Basic equations

The pair production rate density due to the γγ process (counting pairs and not individual

particles) is

ṅ± ≡
1√−g

dN±
d3x dt

=
1

2

∫
d3k√−g

d3k′√−g
dNγ

d3x d3k

dNγ

d3x d3k′
ε2

k0k′0
σγγ c, (6.13)

where dNγ/d
3x d3k is the photon distribution function, the factor of 1/2 prevents double

counting of interacting photons, and the center-of-momentum energy ε and cross section σγγ

are

ε2 = −kµk
′µ

2
, (6.14)

σγγ =
3σT
8ε6

[(
2ε4 + 2ε2 − 1

)
cosh−1 ε−

(
ε3 + ε

)√
ε2 − 1

]
, (6.15)

3ebhlight can resolve only a limited density contrast, so the density is artificially increased in the jet via
numerical “floors.” The numerical electron density is therefore an upper limit on the physical density.
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where σT is the Thomson cross section (see Breit & Wheeler, 1934). Note that the phase

space volume element d3x d3k is only invariant if the integration is over the components of

the covariant wave four vector, i.e., d3k ≡ dk1 dk2 dk3.

The photon distribution function (i.e., the radiation field) is generated by the same syn-

chrotron emission and absorption plus Compton scattering physics of the radGRMHDmodel;

however, for the pair computation we include an additional model for bremsstrahlung emis-

sion (bremsstrahlung absorption is negligible). We note that bremsstrahlung is energetically

subdominant everywhere in our models, but it may be an important source of high-energy

(and therefore pair-producing) photons. We adopt the piecewise bremsstrahlung emissivity

of Straub et al. (2012) (see also Yarza et al., 2020).

6.3.3 Numerical implementation of pair production

In radGRMHD, the plasma evolution depends on the radiation stress-energy tensor, which is

an integral over the entire photon distribution function. In contrast, the γγ pair production

rate is a double integral over the photon distribution function and is dominated by a small

range of energies around the pair production threshold. The pair production rate calculation

therefore requires a more accurate estimate of the photon distribution function than does the

plasma evolution. This is the main numerical motivation for evaluating the pair production

in post-processing.

Our procedure is as follows. We generate a detailed sample of the radiation field using

a Monte Carlo step that re-simulates the radiative transport and includes bremsstrahlung

emission.4 In this scheme, each radiation field sample i is assigned a weight wi equal to

the number of physical photons in the sample multiplied by a constant that is inversely

proportional to photon sampling cadence. Given a list of radiation field samples within a
4We use a “fast-light” approximation, which neglects the light-crossing time and allows us to avoid coupling

snapshots of the plasma state taken at different coordinate times.
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cell of coordinate volume ∆3x,

ṅ± ≈
1

2

∑

i,j

wi√−g∆3x

wj√−g∆3x

ε2

k0
i k

0
j

σγγ c, (6.16)

where the Latin indices label radiation field samples in that cell.

Although Equation (6.16) can be summed pairwise over all n samples, it is more efficient

to sample the sum over a subset of m < n2 pairs (i, j). We set an upper limit on the number

of pairs to consider and use reservoir sampling to obtain an unbiased subset from the full

list. In the limit that the m is large, the error in Equation (6.16) exhibits the usual m−1/2

Monte Carlo scaling.

6.3.4 Test Problems

We now consider two tests to verify our method. Both tests comprise two steady, isotropic,

pointlike photon sources in flat space separated by a distance 2L. For each case, we measure

the pair production rate along the perpendicular bisector of the line connecting the two

sources (see Figure 6.1).

Monochromatic point sources

In the first test, each point source is monochromatic, and the pair production rate can be

evaluated analytically (see Mościbrodzka et al. 2011; the test is provided here as a consistency

check). The center of mass energy ε is

ε2 = −kµk
′µ

2
=
k0k′0 (1− cos θ)

2
, (6.17)

and
dNγ

d3x
=
Ṅγ sin2 (θ/2)

4πL2c
, (6.18)
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emitter

emitter

L

x θ

Figure 6.1: The test problem geometry comprises two isotropic emitters separated by a
distance 2L. The pair production rate density ṅ±(x) is evaluated as a function of distance x
along the perpendicular bisector of the two sources. The angle between two incident photons
at a point x along the bisector is θ = 2 arctan(L/x) ≈ 2L/x for x/L� 1.

where Ṅγ is the rate of isotropic photon production in the frame of the emitters. Then

ṅ±(θ) =

(
Ṅγ sin2 θ

4πL2c

)2

(1− cos θ)σγγ(ε) c. (6.19)

Figure 6.2 compares ṅ±(x) computed analytic versus numerically in the upper panel and

shows the fractional difference between the two evaluations in the lower panel. Figure 6.3

shows the fractional difference between the domain-averaged numerical values and the an-

alytic expression as a function of Ns, the number of samples of the radiation field. As

expected, the error scales as N−1/2
s .
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ṅ
)/

ṅ

Figure 6.2: Monochromatic emitter test problem for Ns ≈ 106. Upper panel: numerical
(red hashes) and analytic (black line) pair production rate densities for two monochromatic,
isotropic emitters with source separation 2L, evaluated as a function of radius in the plane
normal to and bisecting the line connecting the emitters. Lower panel: fractional difference
between numerical and analytic values.

Power law spectrum point sources

In the second problem, we endow each point source with a power law spectrum with index

α and cutoff frequencies νmin � νe and νmax � νe, where νe ≡ mec
2/h. In particular,

Lν =





L0

νe

(
ν
νe

)α
νmin < ν < νmax

0 otherwise.
(6.20)

The pair production cross section peaks for ε ∼ 1, and so the dominant contribution

from photons with νmin � νe will be through their interactions with high energy photons at

frequencies ν = νe/νmin, provided α is not too large (otherwise most pair production is by

photons with ν ∼ νmax). In the astrophysical settings of interest to us, νe/νmin � νmax/νe,
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Figure 6.3: Code convergence. Averaged fractional difference between numerical and analytic
pair production rate densities for the two-point, monochromatic, isotropic emitter problem
as a function of number of field samples generated. The error scales ∝ N

1/2
s as expected.

so we can neglect the dependence of ṅ± on νmin.

Analytic evaluation of the pair production rate density for this test is difficult because

the pair production cross section depends on energy in a nontrivial way, but the asymptotic

scaling with x is easy to compute. At each θ = 2 arctan(L/x) ≈ 2L/x for x � L, the

dominant contribution to the rate integral is at ε ∼ 1 or ν ∼ (ν2
e/ν

′)(4x2/(L2)). The product

of the distribution functions thus scales as x−4+2α because of the relationship between ν and

ν ′ and k0k′0 ∼ νν ′ ∼ x2, implying5 that

ṅ± ∼ x−6+2α. (6.21)

The radial dependence of the pair production rate is therefore a nontrivial function of the
5Rigorously: take the cross section to be a δ function in ε and integrate over ν.
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source spectral index measured at pair-producing energies. Figure 6.4 compares the numer-

ically evaluated pair production rate density to the analytic estimate.

2.0 1.5 1.0 0.5 0.0 0.5 1.0

α

10

9

8

7

6

5

4

d
ln
ṅ
±
/d

ln
x

−6 +2α

numerical data

Figure 6.4: Radial dependence of pair production rate density vs. source spectrum index.
Here, α is the index of the source radiation spectrum Lν ∼ να, and the slope d ln ṅ±/d lnx
describes the asymptotic radial power law dependence of the pair production rate density
versus distance x from the source. The numerical results are plotted against and agree with
the analytic estimate.

6.3.5 Goldreich–Julian charge density

There may be regions in a black hole magnetosphere where the charge density is insufficient

to screen electric fields in the frame of the plasma and thus where the ideal MHD condition is

violated. In these regions, the unscreened electric field can accelerate electrons and positrons

to sufficiently high energies that they produce photons above the pair production threshold.

Once this new generation of electron–positron pairs is produced, they themselves are acceler-

ated in the unscreened electric field. This process can repeat over multiple generations, and
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ultimately, the pair cascade will continue until enough charge has been produced to short

out the potential (see, e.g., Sturrock 1971; Ruderman & Sutherland 1975 and Beskin et al.

1992 in the context of black holes).

The minimum charge density required to screen electric fields is known as the Goldreich–

Julian charge density nGJ (Goldreich & Julian, 1969). In covariant language, a charge density

ρq is given by ρq = −uµjµ, where jµ is the four current and uµ is the four velocity of the

frame in which the charge density is measured; ρq is thus a frame-dependent quantity. The

four current is always given by Maxwell’s equations jµ = F µν
;ν (notice that the covariant

derivative includes time derivatives).6 Goldreich and Julian’s calculation is done in flat

space, and the charge density is measured in the nonrotating frame. In our case, the choice

of frame is less obvious. If the magnetosphere solution can be described by ideal MHD,

then the uniquely sensible choice of frame is the fluid frame. In the Blandford–Znajek (BZ;

Blandford & Znajek 1977) solution, however, there is no unique four-velocity associated

with the force-free solution. Instead, we evaluate the charge density—which we will call the

Goldreich–Julian density—in the normal observer frame:

nGJe = −nµjµ. (6.22)

In the normal observer frame uµ = nµ ∝ (1, 0, 0, 0) and using jµ as the four current of the

BZ split monopole solution,

nGJ ≈
(
a∗Brc2

4πGMe

)
(1 + 2/x)1/2 cos θ

x3
, (6.23)

where x ≡ r/L, L ≡ GM/c2 and Br is now the radial component of the magnetic field at

x = 1 in spherical Kerr-Schild coordinates (see Mościbrodzka et al., 2011).
6When calculating jµ from a GRMHD simulation, we first construct Fµν from the four-velocity uµ, the

magnetic induction four-vector bµ, and the ideal MHD condition Fµνuν = 0 according to Fµν = εµναβuαbβ ,
where εµναβ is the Levi–Civita tensor. The four current can then be computed from the inhomogeneous
Maxwell equations, jµ = Fµν ;ν . We use a finite-difference method across neighboring simulation locations
and time slices to evaluate the derivative.
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Assuming that the magnetic pressure ∼ the gas pressure and that both are of order

ρc2, then for Br ≈ 104
√
ṁ/m8, where m8 ≡ M/ (108M�). The charge number density for

a∗ = 0.94 is

nGJ ' 2.0× 10−1 ṁ1/2m
−3/2
8 cm−3. (6.24)

Notice that the charge density does not necessarily vanish in MHD, since E = 0 does

not imply ∇ · E 6= 0. Nevertheless, the MHD solution cannot be self-consistent where

n < nGJ (= −uµjµ/e), since Maxwell’s equations cannot be satisfied. Also note that if

n � nGJ , then it is not clear how to produce macroscopic regions with unscreened electric

fields (gaps) in MHD unless there is an unresolved process that drives the number density

toward zero. Finally, note that our ideal MHD simulations can never represent macroscopic

regions where E ·B 6= 0, so they are incapable of recovering the dynamics of gaps and pair

cascades.

6.4 Spatial distribution of pair production

We now provide a simple geometric treatment to motivate the function form of the drizzle

pair production rate density due to each component of the background radiation spectrum.

In the following section, we will use the numerical results to fit the model parameters.

In general, the drizzle pair production rate density may be a function of time and space,

and it can depend on model parameters like black hole spin. Because of symmetries in the

spacetime, however, we expect the mean rate density to be independent of time and azimuth.

The density of pair-producing photons is

nγ = nγ,synch + nγ,Compt + nγ,brems, (6.25)

where the terms represent photons produced by direct synchrotron emission, Compton scat-

tering, and direct bremsstrahlung emission respectively. In our models, scattered bremsstrahlung
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photons and direct synchrotron photons are both negligible near the pair-production thresh-

old.

Since nγ,Compt and nγ,brems have different spatial distributions, we neglect the nγ,Comptnγ,brems

cross term, which is negligible compared to n2
γ,Compt and n2

γ,brems over the bulk of the domain.

We thus approximate the total drizzle pair production rate density as a sum of two indepen-

dent terms due to self-interaction of Compton and bremsstrahlung photons, respectively,

ṅ±(r, µ) ≈ ṅ±,Compt + ṅ±,brems. (6.26)

6.4.1 Compton contribution

The pair production rate density is a strongly decreasing function of distance from the

photon source. Compton upscattered pair-producing photons come from regions of high

electron temperature, and so the Compton contribution is likely to correlate strongly with

regions of peak electron temperature, which exist both in the jet–disk boundary layer (see

the Wong et al. 2021a companion paper for a study of the jet–disk boundary layer) and close

to the event horizon. Thus, the Compton contribution may be written as

ṅ±,Compt(r, µ) = A
( r
L
)−α (

e−µ
2/2σ2

+

B
(
e−(µ−µf)

2
/2σ2

f + e−(µ+µf)
2
/2σ2

f

))
(6.27)

where A is an overall normalization with dimensions of rate density, B describes the relative

importance of the jet–disk boundary versus the midplane, µ ≡ cos θ, σ and σf describe the

scale heights of pair production in the disk and the boundary layer, respectively, and µf is

the location of the boundary layer. Following M11, we parameterize

µf
2 =

r + a

r + b
. (6.28)
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This model has seven parameters, A, α,B, σ, σf , a, and b; however, we will find that the last

four parameters can be fixed.

6.4.2 Bremsstrahlung contribution

Bremsstrahlung photons near the pair-production threshold are emitted primarily in regions

where the dimensionless electron temperature Θe ≡ kBTe/mec
2 & 1/2 (here kB is Boltz-

mann’s constant). In our models, this region extends out to approximately r = 10 GM/c2 ≡

rcrit and corresponds physically to the domain in which viscous heating, electron cooling, and

Coulomb cooling are in approximate balance. Because bremsstrahlung emissivity depends

only on ni, ne, and Θe, the geometry of the bremsstrahlung-driven region of pair production

varies little from model to model.

Foresight from the numerical simulations and the presence of a radial cutoff at rcrit suggest

that

ṅ±,brems(r, µ) =

C ζ2

ζ2 + µ2





( r
L
)−κ1

r < rcrit
( r
L
)−κ2

rκ2−κ1crit rcrit ≤ r,
(6.29)

where ζ parameterizes the dependence of the distribution on elevation µ. This model has

five parameters, C, κ1, κ2, rcrit, and ζ. We find that fixing ζ = 0.4 globally does not affect

the quality of the fit.

The characteristics of the fluid and radiation field determine κ1. The bremsstrahlung

spectrum just above its peak follows a power law according to the behavior of Θe in the

domain of emission, with α ≈ −1. Using Equation (6.21), we therefore expect κ2 = 6+2×1 =

8.
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Model a∗ m8 ṁ Lbol/LEdd εrad L±/ (LBZΓj) lc notes
A5 0.5 33 2.2× 10−5 4.7× 10−6 0.021 1.0× 10−5 0.1 ∼M87
A9 0.94 33 8.2× 10−6 1.5× 10−6 0.018 3.9× 10−6 0.03 ∼M87
B5 0.5 62 9.2× 10−6 7.1× 10−7 7.7× 10−3 6.0× 10−7 0.02 ∼M87
B9 0.94 62 5.2× 10−6 5.6× 10−7 1.1× 10−3 6.7× 10−7 0.01 ∼M87
C 0.5 1 1.1× 10−5 7.1× 10−7 6.5× 10−3 1.8× 10−7 0.02 —
D 0.5 1 1.0× 10−6 1.3× 10−8 1.3× 10−3 4.6× 10−9 3× 10−4 —
E 0.5 1 1.3× 10−7 2.9× 10−10 2.2× 10−4 2.7× 10−15 7× 10−6 —
F 0.5 1 1.2× 10−8 4.2× 10−12 3.5× 10−5 3.4× 10−18 1× 10−7 —

Table 6.1: Time-Averaged RadGRMHD Model Parameters. From left to right: model name,
dimensionless black hole spin parameter a∗, m8 ≡ black hole mass in units of 108M�, ṁ ≡
black hole accretion rate in units of Eddington mass accretion rate ṀEdd = 2.22m8 M� yr−1,
time-averaged ratio of bolometric luminosity to Eddington luminosity, time-averaged radia-
tive efficiency εrad = Lbol Ṁ

−1c−2, ratio of rest-mass pair luminosity to BZ luminosity, and
compactness parameter (related to efficiency of pair production, see Section 6.6.4 and Equa-
tion 6.37). The values reported in this table include the bremsstrahlung contribution and
thus differ from previous results.

6.5 Numerical results

We now describe the results of our numerical pair drizzle simulations and provide fits for the

model parameters described in § 6.4.

6.5.1 Simulation parameters

We consider the eight SANE radGRMHD models listed in Table 6.1. The first four models

have M87-like parameters (Ryan et al., 2018) with varying spin and mass. The second four

models increase ṁ at fixed mass and spin until radiative cooling becomes important (Ryan

et al., 2017).

The initial conditions for the fluid were produced by axisymmetrizing three-dimensional

nonradiative GRMHD models, which are less computationally expensive to evolve. In map-

ping from three to two dimensions, the no-monopoles constraint was enforced by computing

Bi from an axisymmetrized vector potential calculated from the original GRMHD simula-

tions.

All fluid calculations were carried out in the modified Kerr-Schild (MKS) coordinates of
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McKinney & Gammie (2004) with h = 0.3. The inner boundary was located within the

event horizon, and the outer boundary was set at r = 200GM/c2. The simulations were run

at a resolution of 388 radial zones by 256 elevation zones.

6.5.2 Simulation outcomes
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Figure 6.5: Time series of pair production rate and luminosity. Top: rest-mass pair drizzle
luminosity divided by BZ jet power. Bottom: numerically calculated bolometric luminosity
vs. time. Over our range of models, time variability increases with ṁ because the increasingly
important Compton contribution scales more favorably than the bremsstrahlung one.

In our models the cumulative pair production rate fluctuates over four orders of magni-

tude, with both the domain-integrated and position-dependent pair production rates varying

on timescales as short as the fluid dump cadence 5M . Following the discussion in Sec-

tion 6.4.1, we find that the time- and azimuth-averaged ṅ±,Compt peaks in the midplane and

in hotspot regions (characterized by high Θe) that lie within the jet–disk boundary layer.
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The structure and locations of the hotspot regions are highly variable.

The pair drizzle luminosity is

L± ≡ 2mec
2 Ṅ± Γjet, (6.30)

where Γjet is the bulk Lorentz factor at large r and the domain-integrated pair production

rate is Ṅ± ≡
∫ √−g d3x ṅ±. Figure 6.5 shows the time variability in both the pair driz-

zle luminosity and the background bolometric luminosity. Although both quantities exhibit

variations, fluctuations in the former occur on shorter timescales and with greater amplitude.

These variations are primarily caused by transient hotspot regions associated with plasmoids

that form within the jet–disk boundary layer and travel across the domain. For models in

which bremsstrahlung is the primary source of photons near the pair production thresh-

old, variability is decreased. This is particularly evident in model F. For models in which

Compton upscattering is the primary source of photons near the pair production threshold,

time variability decreases as Ṅ± increases. This is unsurprising, since increasing the pair

production rate requires a larger fraction of the domain to be in a steadily pair-producing

regime.

In fitting the time- and azimuth-averaged pair production rate, we must fit the location

of the boundary layer. Various techniques for defining and tracking the extent of the jet have

been explored in the literature (e.g., Narayan et al. 2012; Yuan et al. 2015; Mościbrodzka

et al. 2016). We find that fitting the location of the jet–disk boundary for each model is not

justified by the improvement in fit to the pair production rate, and we simply fix a = 1/2L

and b = 3L in Equation (6.28). Similarly we use σ = 0.5 and σf = 0.1 in Equation (6.27)

for all models.

The parameters are likely to depend on magnetization, but we cannot evaluate this

dependence because we consider only SANE models. The parameters may also depend on

numerical resolution and the dimensionality of the model, which we also cannot evaluate with
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Figure 6.6: Pair production rate density (Model C). Numerically evaluated, time-averaged
pair production rate density ṅ± as a function of position over domain for model C after
vertical symmetrization over the disk midplane. Horizontal axis shows radial coordinate and
vertical axis shows height above midplane. Solid colors correspond to log10(ṅ±). Dashed
red lines track contours in numerical value and solid black lines represent contours of model
with fit parameters.

the existing model set. It is possible, for example, that the peak in the jet–disk boundary

layer could increase as resolution increases and dissipation is concentrated in a narrower

region within the boundary.

Figure 6.6 shows the time-and-azimuth averaged pair production rate for model B with

fitting function contours overplotted. The fit is more accurate for inner regions of the disk

where the ṅ± is large, but the fit works well even at larger radius.
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In the low-ṁ regime, we find

A(m8, ṁ) ≈ 5.7× 1030 ṁ5.8 m−1.4
8 (6.31a)

B(m8, ṁ) ≈ 5.4× 10−4 ṁ−4/5 (6.31b)

C(m8, ṁ) ≈ 1.9× 1015 ṁ4 m−2
8 (6.31c)

α ≈ 4.9 ṁ−0.04 (6.31d)

κ1 ≈ 2 (6.31e)

κ2 ≈ 8. (6.31f)

Again in the low-ṁ regime, the total pair creation rate, integrated over the entire simulation

domain, is well fit by

Ṅ±(m8, ṁ) = 3.4× 1064 ṁ5 m1.5
8 . (6.32)

Pairs are born with a broad spectrum of energies. The Lorentz factor of each lepton γFF

as measured in the plasma fluid frame uµ can be computed from the pµ of the interacting

photons since momentum is conserved. In the jet, the average pair is created with γFF ≈ 10.

This result is consistent with that of M11.

6.6 Discussion

We have modeled drizzle pair production in simulations of SANE (low magnetic flux) black

hole accretion flows in the mildly radiatively efficient regime and for select models corre-

sponding to M87. The accretion simulations we consider model electron thermodynamics

and radiative processes. Our models differ from M11 in several respects. First, electron

heating is treated using the Howes (2010) model for dissipation at the bottom of a turbulent

cascade. This model partitions dissipation approximately equally between electrons and ions

when B2/(8π) & Pgas and preferentially heats the ions otherwise. Second, Coulomb coupling

between ions and electrons is included. This transfers energy from ions to cooler electrons
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and is a significant source of electron heating near the midplane at small radius (Ryan et al.,

2017). Third, we self-consistently treat the transfer of momentum and energy between the

plasma and the radiation field using the ebhlight code (Ryan et al., 2019). Finally, we

consider bremsstrahlung emission when estimating the pair production rate (but not in the

radGRMHD simulation, where it is energetically subdominant). Since bremsstrahlung pro-

duces a large population of photons with hν ∼ kT ∼ 10mec
2, it can be important for pair

production.

Our results largely agree with the analysis presented in M11. Still, there are interesting

new questions we can answer. First: motivated by a new understanding of M87 based on the

EHT 2017 results, is M87 likely to have a charge-starved magnetosphere? Second, are there

differences in the geometry of pair production between state-of-the-art models and M11’s

more simplified treatment of electron thermodynamics?

6.6.1 Drizzle versus gaps

Pair drizzle can prevent the black hole magnetosphere from becoming charge starved and

thereby forestall the opening of gaps and the generation of pair cascades. To see this, we

compare the total number of available charges from both pairs and plasma navail ≡ n± + npl

to the Goldreich–Julian charge density drawn from Equation (6.24), which uses the normal

observer frame in its calculation. Using the characteristic time T ≡ L/c, we set n± ≈ ṅ±T .

At r = 2GM/c2 and along the pole at θ = 0 (where navail is small since npl is negligible), the

ratio is

navail

nGJ

≈ 4.4× 1017 ṁ7/2 m
3/2
8 ×

(
1 + 1.1× 1012 ṁ6/5 + 9.9× 1014 ṁ2

)
. (6.33)

The terms in parentheses correspond to pair production by bremsstrahlung, Comptonized

photons from the jet–disk boundary, and Comptonized photons from the midplane. Evi-
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dently for 10−10 < ṁ < 10−4 the Comptonized boundary photons dominate; for ṁ & 10−7

the midplane photons dominate bremsstrahlung; and the midplane becomes increasingly

important as ṁ increases. The midplane may be more important than the boundary as

ṁ & 10−3.7, but that extrapolates beyond the range of validity of our models.
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Figure 6.7: SANE a∗ = 0.5 and a∗ = 0.94 models in the ṁ,m8 plane. The red hash marks
show regions where the ratio of Goldreich–Julian density to the radGRMHD number density
is below unity. In the unhatched region, the MHD approximation is not self-consistent.

In regions where navail/nGJ < 1, the MHD approximation is not self-consistent. It seems

likely that the outcome is a pair cascade (although this is not computable in our model)

that increases navail by drawing on the free energy of the electromagnetic field and the

radiation field until navail/nGJ ∼ 1. Figure 6.7 shows where in parameter space, according to

Equation (6.33), the MHD approximation is not self-consistent. Figure 6.8 maps navail/nGJ

in the poloidal plane for models C and E.
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Figure 6.8: Ratio of available charge to Goldreich–Julian density (Equation (6.33)) for
Models C and E (a∗ = 0.5,m8 = 1 with ṁ = 1.1× 10−5 and 1.3× 10−7 respectively). Black
contours are evenly spaced in the log of the ratio. The black circle is the event horizon.
Evidently the ratio is well above unity in the disk in both models, while the ratio in model
E in the jet is far below unity and the MHD approximation is not self-consistent. Although
pair cascades are not included in our model, they would appear difficult to initiate anywhere
in model C, but they may be likely to occur in the jet region of model E.

6.6.2 Drizzle pair production power

As a black hole spins, it drags spacetime and the magnetic field lines near the horizon with it.

These field lines produce an outward Poynting energy flux as they wind around the pole, via

the BZ mechanism (Blandford & Znajek, 1977). The BZ mechanism is a favored explanation
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for the source of black hole jet power. The BZ luminosity is given by

LBZ ≡
∫

µ2>µ2f

T rt
EM

√−g dθ dφ, (6.34)

where T rt
EM

= b2urut − brbt is the radial energy flux for the electromagnetic component of

the stress-energy tensor. We find that the numerically computed values of LBZ for our

simulations match the fit given by Equation (36) of M11,

LBZ ≈ 8× 1045
(

1−
√

1− a2
∗

)2

ṁm8 erg s−1, (6.35)

when a∗ = 0.5.7

We now ask what fraction of the jet power can be accounted for by drizzle pairs. Using

Equations (6.30) and (6.32),

L±
LBZΓjet

≈ 3.8× 1014 ṁ4m
1/2
8 . (6.36)

Scaling Equation (6.35) to M87 using EHT results (Event Horizon Telescope Collaboration

et al., 2019e) and assuming that a∗ ' 0.5, ṁ ' 10−5, and m = 6.5 × 109, then L± '

3 × 1036 Γjet. In order for the drizzle pair luminosity to be comparable to M87’s X-ray

luminosity ≈ 1042 erg sec−1, the typical pair would have to be born with an exceedingly high

Lorentz factor Γjet > 106. Thus, although drizzle-produced pairs may become important

at ṁ ∼ 10−4 Eddington (suggested by Equation (6.36), but outside our model space), they

account for a small fraction of total BZ power.
7Perturbative calculations of the BZ luminosity (to higher orders in the hole frequency) have been com-

puted and compared to numerical simulation by, e.g., Tanabe & Nagataki (2008) and Tchekhovskoy et al.
(2010). Tchekhovskoy et al. (2011) provided a generalized formula similar to the one given by M11 that
also accounts for different magnetic fluxes near the horizon and thus treats both SANE and MAD accretion
states.
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6.6.3 Variability and the radiation model

Our fits for ṅ± and Ṅ± represent the time- and azimuth-averaged behavior of the background

γγ pair production process. In contrast, the instantaneous ṅ± does not peak along the entire

boundary layer at once, but rather inside isolated island-like structures or plasmoids. The

plasmoids are elongated in the radial direction, extend several M in width, and tend to

travel along the boundary and evolve on timescales comparable with the dynamical time (see

Nathanail et al. 2020 and Ripperda et al. 2020 for a discussion of plasmoids in nonradiative

models). The plasmoid evolution depends strongly on the model parameters and the electron

thermodynamics.

The highly variable plasmoid emission is dominated by Comptonized synchrotron photons

rather than bremsstrahlung, which is generated mainly in the midplane at large radius and is

relatively steady. Thus, in general, the high variability we observe in the domain-integrated

pair production rate Ṅ± is due to the rapid evolution of the plasmoids.

The scaling relations provided above have a limited range of validity. For ṁ & 10−5,

radiative cooling is strong enough to qualitatively change the electron temperature distribu-

tion and thus the distribution of pair-producing photons. We are currently unable to explore

this behavior because of the increasing computational intractability of running Monte Carlo

radGRMHD simulations as optical depths to photon scattering increase and cooling times

decrease relative to the light-crossing time of the domain.

6.6.4 Limitations and self-consistency

Because our model only considers pair production in a post-processing step, it cannot account

for any back-reaction of drizzle pairs on the radiation field or underlying fluid dynamics. To

check the self-consistency of this approximation, we can estimate the compactness parameter

lc ≡
Lγ
L

σT
mec3

, (6.37)
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which is proportional to the optical depth to pair production. When lc � 1, pair production

cannot be treated as a perturbative process. In our models lc ranges from 10−7 to 10−1 (see

Table 6.1), so our treatment is self-consistent.

We assume that the electron distribution is purely thermal; however, since the plasma is

collisionless everywhere in all our models (the Coulomb scattering mean free path is large

compared to GM/c2), the plasma need not fully relax to a thermal distribution. Moreover

there is evidence for nonthermal electrons in both observations of low ṁ accreting black holes

(e.g., near-IR emission in the case of Sgr A*) and in simulations of collisionless, turbulent

plasmas (e.g., Kunz et al., 2016). The presence of nonthermal electrons in a high-energy tail

can result not only in higher-energy synchrotron photons, but also in an increase in Compton

scattering events that increase photon energies to above the pair-producing threshold.

Our models used the Howes (2010) prescription for heating due to dissipation, in which

the electron heating is driven by a Landau-damped turbulent cascade process. Other pre-

scriptions (e.g., Rowan et al., 2017; Werner et al., 2018; Kawazura et al., 2019) would nat-

urally produce a different electron temperature distribution. Because the pair luminosity

depends strongly on electron temperature, modifications to the electron thermodynamics

could significantly alter our results in ways that are difficult to assess without rerunning the

radGRMHD models.

We computed pair production rates in post-processing using the fast-light approximation,

in which it is assumed that the fluid does not change appreciably over the time it takes for

light to travel across the simulation domain. It is possible but computationally expensive

to dispense with this approximation (slow light). Performing a full slow light calculation

would undoubtedly alter the pair production rate density on small length- and time-scales,

but notice that the total radiative energy budget is conserved in both fast- and slow-light

treatments, and so unless the fast-light approximation dramatically changes 〈n2
γ〉/〈nγ〉2, the

time-averaged pair production rate should not change significantly.

Finally, our models were limited to moderate resolution and two dimensions because of

236



the computational expense of running full radGRMHD simulations. Increasing resolution

and especially performing simulations in three dimensions could change the profile of the jet–

disk boundary layer and alter the dynamics of the plasmoid hotspots that develop within

it. Since drizzle pair production peaks near the hotspots and is strongly dependent on the

plasma temperature, the structure of ṅ± may change significantly with increased resolution

or in the case of fully three-dimensional simulations.

6.7 Conclusion

We have modeled pair production due to the collision of photons in the background radiation

field (here referred to as drizzle pair production) for sub-Eddington black hole accretion

systems in the SANE state. Our plasma model is based on radGRMHD simulations using

the ebhlight code (Ryan et al., 2017, 2018), which evolves the plasma and the full energy-

dependent photon distribution. The radGRMHD evolution includes synchrotron emission,

absorption, and Compton scattering. It also separately evolves ion and electron internal

energies and explicitly accounts for dissipation using the electron heating prescription of

Howes (2010). We post-processed the fluid data using Monte Carlo radiation transport to

track pair production due to photon–photon collisions. In the post-processing we included

bremsstrahlung emission, which is a potentially important source of photons near the pair

production threshold.

Our approach closely follows M11 and extends it in several ways. We use energetically self-

consistent radGRMHD models rather than nonradiative GRMHD models. We incorporate a

dissipation model rather than fixing the ion-to-electron temperature ratio. We study multiple

black hole spins (a∗ = 0.5 and 0.94). Finally, we include bremsstrahlung emission, which is

non-negligible at frequencies near the pair-production threshold.

Our key findings are:

1. The importance of cooling increases as accretion rate increases. This leads to a
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shallower dependence of the source-integrated pair production rate on ṁ than in M11.

2. The spatial distribution of pair production peaks within the jet–disk boundary, in

contrast to M11. This is because electron temperature peaks in the boundary layer, and

drizzle pair production closely follows the electron temperature profile. These results are

summarized by Equations (6.27), (6.29), and (6.32), with the parameter values reported in

Equation (6.31).

3. The pair production rate density can be divided into spatially distinct bremsstrahlung

and Comptonized synchrotron components. The bremsstrahlung component is compara-

tively steady and lies in the midplane, outside the midplane Comptonized component. The

bremsstrahlung component is weaker than the Comptonized component for all models con-

sidered here.

4. The Comptonized component from the midplane becomes comparatively larger as ṁ

increases, but it is dominated by the boundary layer Comptonized component for all models

considered in this paper.

5. The drizzle pair production rate is time variable, with the difference between sub-

sequent samples occasionally approaching four orders of magnitude. These variations are

dominated by fluctuations in the synchrotron and Compton components of the background

radiation field within the jet–disk boundary.

6. We confirm the finding of M11 that the drizzle process (in M87-like SANE models)

produces a background pair density that is far above the Goldreich–Julian density. This

suggests that it will be difficult to open gaps absent some dynamical process that is not

incorporated in our models.

7. We confirm the finding of M11 that drizzle pair production in Sgr A*-like SANE models

is too feeble to keep the pair density above the Goldreich–Julian density. In GRMHD models
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the expected BZ power is

∼ 2.8 a2
∗(φ/15)2Ṁc2 = 1.6× 1038 a2

∗(φ/15)2(Ṁ/(10−9M�yr−1) erg sec−1 (6.38)

. The difficulty in firmly identifying a jet with comparable power suggests it is not present.

Parfrey et al. (2019) PIC-based magnetosphere model suggests that this is not due to a

fundamental change in the BZ power for charge-starved magnetospheres.

In future work we plan to explore drizzle pair production in MAD models where the

increased electron temperatures and magnetic field strengths provide a more favorable en-

vironment for high-energy photons production. We also plan to extend the calculations to

three dimensions, which will provide the opportunity to study transient behavior associated

with the characteristic nonaxisymmetry of MAD models.
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Chapter 7

Black hole glimmer

Gravitational lensing near a black hole is strong enough that light rays can circle the event

horizon multiple times. Photons emitted in multiple directions at a single event, perhaps

because of localized, impulsive heating of accreting plasma, may take multiple paths to a

distant observer. In the Kerr geometry, each path is associated with a distinct light travel

time and a distinct arrival location in the image plane, producing what I call black hole

glimmer. This glimmer sequence of arrival times and locations uniquely encodes the mass

and spin of the black hole and can be understood completely in terms of properties of bound

photon orbits, separating it from the details of the accretion model and the messy gas-

trophysics. In this chapter, I provide a geometrically motivated treatment of Kerr glimmer

and evaluate it numerically for simple hotspot models to show that glimmer can be measured

in a finite-resolution observation.

7.1 Introduction

Spinning supermassive black holes likely power relativistic jets via the Blandford–Znajek

mechanism (Blandford & Znajek 1977, although see Blandford & Payne 1982 and Lynden-

Bell 2006 for alternative jet-power mechanisms). To probe the spin–jet connection through

observation, it is necessary to understand the properties of spacetime near the hole and to

have an accurate model of the accreting plasma around the hole. If spacetime is described

by the Kerr metric, then its properties are uniquely determined by the mass and angular

This chapter is lightly adapted from G. N. Wong, ApJ, Volume 909, Issue 2, id.217.
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momentum of the central black hole.

Many spin measurement methods propose measuring the size of the accretion disk, the

qualities of the disk oscillations, or the deviation in line profiles due to black hole spin (e.g.,

Hanawa, 1989; Kojima, 1991; Laor, 1991; Kato, 2001; Miller, 2007). These measurement

techniques rely on an accurate understanding of the accretion flow and are therefore subject

to uncertainties in the plasma physics model. The 2017 Event Horizon Telescope observation

of the black hole at the center of the galaxy M87 provided the first direct horizon-scale

observation of a black hole (Event Horizon Telescope Collaboration et al., 2019a); however,

its ability to constrain the spin of the hole is also limited by the modeling uncertainties.

Strong gravitational lensing allows photons to travel along bound orbits that circle black

holes (see Claudel et al. 2001 for a treatment of bound photon surfaces in arbitrary space-

times). In the Kerr metric, the properties of these orbits are determined solely by the

spacetime geometry, i.e., by the mass and angular momentum of the black hole, in the case

of the vacuum metric. In the image plane, the asymptotically bound orbits produce a char-

acteristic critical curve, whose size and shape are also set by the spacetime geometry. Since

the critical curve is determined solely by the spacetime, it is independent of the accretion

model; thus it provides a consistent signature that directly probes the hole’s properties.

Although the critical curve is not necessarily observable, it is often traced by a high-

intensity photon ring that is produced as nearly bound orbits steadily sample the high-

emissivity region near the hole (see Gralla & Lupsasca 2020 for a discussion of some dif-

ferences between the signatures of the curve and ring, especially in the case of midplane

emission). Measurement strategies to infer bounds on spin from the shape of the ring or

curve have been proposed in the past (e.g., Falcke et al., 2000; Takahashi, 2004; Bambi &

Freese, 2009; Hioki & Maeda, 2009; Younsi et al., 2016; Johnson et al., 2020). Related pro-

posals have suggested testing the hypothesis that spacetime is Kerr by looking for deviations

in the shape of the curve (e.g., Amarilla et al., 2010; Tsukamoto et al., 2014; Amarilla &

Eiroa, 2013; Mizuno et al., 2018; Medeiros et al., 2020; Olivares et al., 2020; Wielgus et al.,
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2020).

The bound orbits allow light near a black hole to orbit it multiple times before escaping

to an observer. Since emitters can radiate in multiple directions simultaneously, two rays

produced by the same source may orbit the hole a different number of times. Light signals

from subsequent orbitings will be separated by a time delay set by the length of a complete

winding around the hole. These delays will cause the source to echo in the image plane. Since

the echo period is a function of path length, it is intrinsically tied to the underlying bound

orbits and can be measured to infer spin. Constraining spin by measuring dominant echoes

has been considered in the past (e.g., Broderick & Loeb, 2005; Moriyama & Mineshige, 2015;

Saida, 2017; Thompson, 2019; Moriyama et al., 2019; Gralla & Lupsasca, 2020).

In detail, the Kerr geometry produces a rich spectrum of echo time delays associated

with resonant bound orbits. These resonant echo delays are closely related to the black hole

quasinormal-mode spectrum in the eikonal limit (see Yang et al., 2012), which has been

studied in the context of gravitational-wave ringdown and measuring mass and spin (e.g.,

Berti et al., 2006; Buonanno et al., 2007; Berti et al., 2007).

Each echo maps to a distinct arrival location in the image plane; taken together, the set

of echoes produces a characteristic black hole glimmer that encodes the mass and spin of the

hole. Since the mechanism that produces these echoes is driven purely by the spacetime,

the black hole glimmer signature is separable from the source emission model. If glimmer

can be measured precisely, it is possible to test the Kerr hypothesis and infer the black hole

mass and spin, even without a detailed understanding of the emission source. We provide

a geometrically motivated treatment of Kerr glimmer and demonstrate that the glimmer

signature of a hotspot can be measured even in a finite-resolution observation.

This paper is structured as follows. In Section 7.2, we review the salient features of the

Kerr geometry in the context of bound orbits, and in Section 7.3 we describe the static ob-

servable image due to the bound orbits. We describe and explore the Kerr glimmer signature

in Section 7.4, and we give a brief discussion and example measurement in Section 7.5. We
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summarize in Section 7.6.

7.2 Kerr geometry and bound orbits

Black holes (in vacuum) in general relativity are described by their mass, angular momen-

tum, and charge, although it is unlikely that supermassive black holes with a dynamically

important charge exist in nature. Charge-neutral holes with nonzero angular momentum

are described by the Kerr metric. We use geometrized units with G = c = 1 and write

angular momentum J in terms of the conventional dimensionless spin parameter a∗ ≡ J/M2

where M is the mass of the hole. Hereafter, we set M = 1. In Boyer–Lindquist coordinates

xµ = (t, r, θ, φ), the Kerr line element is (Bardeen et al., 1972)

ds2 =−
(

1− 2r

Σ

)
dt2 − 4 a∗r sin2 θ

Σ
dt dφ+

Σ

∆
dr2

+ Σ dθ2 +
(r2 + a2

∗)
2 −∆a2

∗ sin2 θ

Σ
sin2 θ dφ2 (7.1)

with

Σ ≡ r2 + a2
∗ cos2 θ, ∆ ≡ r2 − 2r + a2

∗ . (7.2)

The Kerr geometry admits a set of spherical bound orbits—orbits with fixed radial

coordinate—for both massive and massless particles near black holes. The set of all spherical

massless/photon orbits is known as the photon shell (Johnson et al., 2020). The observa-

tional consequences of the photon shell on black hole images have been studied both in the

context of nonspinning holes (see especially Luminet, 1979) and the more general spinning

Kerr hole (e.g., Bardeen, 1973). One of the first full treatments of spherical photon orbits

in Kerr was presented by Teo (2003), who also provided a convenient categorization of the

types of such orbits. In this section, we review several key features of the bound photon

orbits. § 7.7 details the results described in this section. We do not consider black holes
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with extremal spin.

For a given spin, the set of all bound spherical photon orbits can be parameterized by

the radii of the orbits. These radii lie continuously in the range r− ≤ r ≤ r+, where

r± = 2

(
1 + cos

(
2

3
cos−1±a∗

))
. (7.3)

Only the two extremal orbits at r± are confined to the midplane. The prograde orbit at

r = r− revolves around the hole in the same direction as its spin, and the retrograde orbit

revolves opposite the spin at r = r+. The other orbits at intermediate radii oscillate between

symmetric minimum and maximum latitudes θ±.

For holes with nonzero spin, the latitudinal oscillation period is different from the az-

imuthal φ period, so after a full φ orbit around the hole (φ→ φ+ 2π), the geodesic will not

return to the same θ coordinate. The magnitude of the precession can be written in terms

of the deviation in φ from one latitudinal cycle to the next. In the case of no precession, ∆φ

would be 2π. In general, it is given by

∆φ = 4

θ+∫

0

dφ

dθ
dθ

=
4√
−u2
−

(
2r − a∗Φ

∆
K

(
u2

+

u2
−

)
+

Φ

a∗
Π

(
u2

+,
u2

+

u2
−

))
, (7.4)

where K and Π are complete elliptic integrals1 of the first and third kinds, the roots of the

latitudinal potential are

u2
± ≡

a2
∗ −Q− Φ2 ±

√
(Q+ Φ2 − a2

∗)
2 + 4a2

∗Q

2a2
∗

, (7.5)

1We use the square of the elliptic modulus as the parameter for all elliptic integrals in this work.
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(a) Resonant orbits in 3d
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(b) Bound orbit trajectories

Figure 7.1: Left panel: five selected resonant orbits for a spin a∗ = 4/5 hole. Right panel:
trajectory of bound orbits for the same a∗ = 4/5 hole plotted in the θ–φ plane. The resonant
orbits in the left panel are colored in the right panel. Here, ∆φ for each orbit corresponds
to the φ displacement after one complete latitudinal cycle, i.e., when the trajectory ends on
the plot. The spread in ∆φ across the different orbits increases with the spin a∗.

and the constants of motion Φ(r) and Q(r) are given by

Φ = −r
3 − 3r2 + a2

∗r + a2
∗

a∗ (r − 1)
(7.6)

Q = −r
3 (r3 − 6r2 + 9r − 4a2

∗)

a2
∗ (r − 1)2 . (7.7)

Figure 7.1 plots the trajectory of bound orbits in the θ–φ plane and illustrates this precession

effect, where one complete latitudinal cycle does not correspond to an azimuthal displacement

of 2π. The spread in ∆φ increases with a∗.

By studying ∆φ, we can identify which orbits are also closed—which geodesics return

to their original positions and orientations. Closed (resonant) orbits correspond to the case

that ∆φ/2π is a rational number = p/q in simplest form. Infinitely many closed orbits exist,

but orbits with small p, q are the most interesting here, since they have the shortest path

lengths. Figure 7.1 shows the trajectories of several closed orbits both in three dimensions
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and as projected on the latitude–azimuth plane.

We also compute the time delay for one complete latitudinal cycle of the orbit,

∆t = 4

θ+∫

0

dt

dθ
dθ

=
(r2 + a2

∗)
2 − 2a∗Φr − a2

∗∆

a∗∆
√
−u2
−

K

(
u2

+

u2
−

)

− 4a∗

√
−u2
−

[
K

(
u2

+

u2
−

)
− E

(
u2

+

u2
−

)]
, (7.8)

where E is the complete elliptic integral of the second kind. In the case of closed orbits, the

time delay to complete a full cycle is a function of the number of latitudinal oscillations per

complete cycle:

∆T = q ∆t 2π/∆φ. (7.9)

7.3 The image of the photon shell

We now consider the signature of the photon shell as seen by an observer far away from

the hole. Since the orbits comprising the shell are unstable, photons whose paths deviate

slightly from the precise trajectories described above will either fall onto the hole or escape

to infinity, where they can be captured by an observer. The exponential instability can be

described in terms of how the deviation δr between a geodesic’s radial position and the radial

position of the corresponding bound orbit increases (or decreases) after nφ azimuthal cycles

around the hole,

δr(nφ) = exp (±γφnφ) δr(0). (7.10)
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This equation defines the Lyapunov exponent γφ, which is given by

γφ =
2π

∆φ
2γθ (7.11)

where γθ is taken to be consistent with Johnson et al. (2020) and governs the deviation after

one latitudinal θ half-cycle (from midplane to extremum back to midplane),

γθ =
4

a∗
√
−u2
−

√
r2 − r∆

(r − 1)2K

(
u2

+

u2
−

)
. (7.12)

This Lyapunov exponent, the time delay of Equation 7.4, and the azimuthal period of Equa-

tion 7.8 characterize strong lensing by Kerr black holes (Gralla & Lupsasca, 2020).

Rather than consider the source-to-observer model, in which we start with all geodesics

that are emitted from a source and select only those that make it to the observer, it is

convenient to switch to the observer-to-source model, where we begin with the set of all

geodesics that intersect the image plane. For a camera at infinite distance, all photons

incident on the camera arrive parallel to each other.

Following Bardeen (1973), we parameterize geodesics that intersect the image plane ac-

cording to their impact parameters x and y (α and β in Bardeen). By convention, the y-axis

is aligned with the projection of the black hole spin axis on the image. It is sometimes more

convenient to work with polar coordinates on the image ρ =
√
x2 + y2 and ϕ = arctan y/x

(see the top left panel of Figure 7.2).

Geodesics at large impact parameter (far from the image center) remain far from the

hole and barely feel its influence. As the impact parameter decreases, however, the geodesics

become increasingly bent, and eventually they wrap around the hole and undergo latitudinal

oscillations. The set of impact parameters for all geodesics that undergo a fixed number of

oscillations defines a subring on the image.

Nested subrings produce demagnified images of space. The magnification is given by the

image area of the subring and scales according to the Lyapunov treatment above. If most
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Figure 7.2: Left column: size and shape of critical curve on image for (top) black holes with
different spin viewed edge-on or (bottom) black holes with a∗ = 15/16 viewed at different
inclinations. The top-level panel shows how the angle ϕ is measured counterclockwise from
the positive x-axis. Right column: mapping between points along the critical curve ϕ and
the Boyer-Lindquist radius of the probed bound orbit.

of the emission is produced near the black hole, then it will be sampled n times in the nth

subring, so the ratio of flux (area-integrated intensity over the subring on the image) between

the n and n+ 1 subrings will be given by

Fn
Fn+1

≈ e−γ(n−1) − e−γn
e−γn − e−γ(n+1)

= eγ. (7.13)
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In the limit that n goes to infinity, geodesics wrap around the hole infinitely many times

and are effectively trapped by the bound orbits described above. The set of all impact

parameters with n → ∞ defines the critical curve on the image. The region within the

critical curve is sometimes called the black hole shadow.

Points on the critical curve correspond to different bound orbits—different radii—within

the photon shell, so the path of the curve can be parameterized by r (see Bardeen 1973 and

also Johannsen 2013):

x = − Φ

sin i
(7.14)

y = ±
√
Q+ a2

∗ cos2 i− Φ2 cot2 i. (7.15)

The shape of the critical curve is thus a function of two parameters: the spin of the hole

and the viewing inclination angle i. Figure 7.2 shows the shape of the critical curve both for

black holes with different spins (top) and for the same hole observed at different inclinations

(bottom). It also shows the mapping between points along the critical curve (parameterized

by ϕ) and the bound orbits they correspond to (parameterized by r). The orientation of the

curve is determined by the projection of the black hole spin axis on the image plane.

The spin of the hole determines which radii support bound orbits. Varying the inclination

angle limits the set of bound orbits that are visible to the observer (for example, purely

equatorial orbits are not accessible to a top-down observer). The set of accessible radii

decreases from the full range given by Equation 7.3 at i = 90◦ to the the single radius

corresponding to Φ = 0 at i = 0◦ (for more detail, see § 7.7 and especially Equation 7.35).

7.4 The Kerr glimmer signature

Although messy gas dynamics determine the larger image features, the photon shell produces

a separable, unique signature in the image domain. This signature is independent of the gas

dynamics model, so it provides a direct way to measure the properties of the underlying black
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hole. The presence of an infinite number of subrings on the image means that an (optically

thin) emission source will be imaged an infinite number of times, albeit with exponentially

decreasing flux from one instance to the next. The image in the nth subring comes from

light that has gone around the hole n times, and each subring image will echo with a period

equal to the total light travel time around the hole.

The aggregate signature produced by an emission source depends on the characteristics

of the source, but we can provide an initial analysis by making two remarks in the context

of a simplified model. First, since different positions along the critical curve correspond to

different bound orbits and path lengths, the delay between subsequent imagings will be a

function of position on the curve.

Second, if the source emission is localized in space, then an orbit that probes the source

must return to the same localized area in order for an echo to be excited along that geodesic.

Since bound orbits precess, a geodesic that passes through a fiducial source may take many

revolutions around the hole before it passes through the source again. Since flux decreases

exponentially with nφ, the precession can render some orbits practically echoless. The latter

criterion is the most restrictive and is relaxed in the second model we present.

In practice, the echo response function to an individual emission event is complicated,

since it depends on the size and duration of the source. The details are complicated further

by the initial transient response, which is determined by source size, duration, and position.

Rather than attempt a full treatment of the emission variability near the hole, we consider

simplified hotspot models. In Section 7.5, we argue that the hotspot model is not restrictive,

especially in the limit of an optically thin source.

Each hotspot is taken to be a transient, isolated Gaussian blob with a time- and position-

dependent emissivity,

j(t, ~r) ∝ Ψ(t) exp
(
−δr2/2σ2

r

)
exp

(
−δt2/2σ2

t

)
, (7.16)
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where δr is the distance to a point on a Keplerian orbit at radius r0, t0 ≡ t − δt sets the

time when the hotspot is brightest, σr and σt describe the width of the hotspot in space and

time, and where Ψ(t) is a bump function in time

Ψ(t) =





exp

(
1

δt2 − σ2
t

)
|δt| < σt

0 otherwise,

(7.17)

which forces a smooth decay to zero emissivity.

7.4.1 Point-source emission

We start by considering the response produced by a unidirectional point-source emitter as

measured along the critical curve. Since echoes occur when geodesics sample the same

emission source multiple times, then in the limit as σr → 0, the only universal echoes that

occur at a fixed ϕ must come from closed bound orbits, since closed orbits are the only

ones that return to the exact same point while following the exact same heading. Other

(nonclosed) geodesics will either miss the emitter, not arrive at the correct observer location,

or pass through the emitter with a different heading and thus accrue no new intensity. The

potential for an arbitrary emission source to be imaged but not produce a trivial echo is

what differentiates Kerr from Schwarzschild, since all spherical orbits in Schwarzschild are

closed.

Even though an infinite number of closed orbits exist, only orbits with short path lengths

will produce observable echoes since the sensitivity required to detect echoes from multiple

turnings increases exponentially with the number of turnings according to the Lyapunov

treatment summarized by Equation 7.13. Thus, for a given spin, there is a limited number

of fixed, position-dependent observable echo time delays. Notice that although the signal

from echoes with longer delays is more attenuated, the overall magnitude of the dimming

may decrease as spin is increased.
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Figure 7.3: Echo delay times due to resonant orbits as a function of black hole spin. As
spin increases, the number of accessible short-time-delay echoes increases. Color encodes the
location of the echo on the critical curve. Only perfect resonances are shown in this plot.

Figure 7.3 plots the allowed echo delays due to closed orbits as a function of spin. Because

each delay is due to a particular bound orbit, it maps to a distinct position along the critical

curve. The allowed delays in the figure are colored according to the angle ϕ along the

critical curve where they appear. The time delays for the prograde and retrograde orbits are

always accessible, since they lie within the equatorial plane and thus always pass through the

same points. The closed orbits can be computed by identifying which radii in Equation 7.4

correspond to (the reciprocals of) the first few levels of a Stern–Brocot tree. The nontrivial

radial structure of the Kerr spacetime means that the time delay for a geodesic that circles

the hole twice before closing will not be twice the delay for a geodesic that only circles it

once, so the higher-order resonances are not perfect multiples of the lower-order ones.

Thus far, we have considered unidirectional emitters. If this restriction is removed, new

echoes with different periods may be produced when a geodesic intersects itself along a dif-
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ferent heading. For example, closed orbits with an even-to-odd ratio between the number of

azimuthal and latitudinal cycles will return to the same point (with mirrored latitudinal head-

ing) after having completed only half of the full closed path. Echoes due to self-intersections

off of the midplane (see Figure 7.1 for examples) will lead to more complicated, composite

delay structures that repeat with the same fundamental periodicity of the closed orbits. We

return to this point in our discussion of hotspot position.

7.4.2 Finite-width sources

Real-world emission sources have nonzero width. In the context of glimmer, increasing the

width of an emission sources softens the condition that a geodesic must return to the same

point in (θ, φ) space for an echo to be produced, since geodesics will resample the fiducial

source feature as long as the deviations in their positions are smaller than the size of the

feature. These more permissive conditions broaden the set of accessible time delays and

allow a wider range of ϕ to clearly echo.

The echo response can be visualized by plotting the intensity of light observed at different

angular positions along the critical curve as a function of time. Black holes with different

spins and observers at different inclinations will see echoes produced by bound orbits at

different radii. Figure 7.4 shows how changing the spin or inclination affects the echo response

produced by a Keplerian hotspot with r0 = 2.8 M, σr = 0.5 M, and σt = 1 M. For each echo

response, the radii that admit bound orbits (determined by spin) are identified by a black

line, and the subset of radii with visible bound orbits (determined by inclination) is denoted

by a red bar.

The top row of Figure 7.4 shows how the echo response changes as the angular momentum

of the central black hole increases. As seen in Figure 7.3, the difference between the echo

delays for the prograde (ϕ = π) and retrograde (ϕ = 0, 2π) orbits increases as spin increases.

The bottom row of Figure 7.4 shows the effect of varying inclination for a black hole with

fixed spin a∗ = 15/16. At the top-down i = 0◦ inclination, every point along the critical
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curve corresponds to an orbit at the same Φ = 0 radius (see Equation 7.35), so the echo

delay period is constant around the curve. Notice that for a∗ = 15/16, the Φ = 0 orbit is

not closed, so the echo blips drift around the curve. As inclination increases to i = 90◦, the

full set of bound orbits becomes visible.
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Figure 7.4: Echo response produced by a short-lived, Keplerian hotspot (r0 = 2.8 M,
σr = 0.5 M, σt = 1 M) for black holes with different spins and for observers at different
inclinations. Color encodes the time-dependent intensity of light as a function of angle
along the critical curve ϕ ∈ (0, 2π). The bar above each panel shows the range of radii
corresponding to bound orbits (black) and the set of visible bound orbits (red). Top row:
the variation in the response as a function of black hole spin. The spread in echo delays
between the prograde orbit (ϕ = π) and the retrograde orbit (ϕ = 0, 2π) increases as spin
is increased. Bottom row: the echo response for the same a∗ = 15/16 hole but observed at
different inclinations. As inclination increases, the set of visible bound orbits increases, so
more echoes become visible. Since the Φ = 0 orbit is not closed for a∗ = 15/16, the i = 0◦

echo blips drift through ϕ. An animation showing the evolution of the echo response as a
function of spin and inclination is available online.

The glimmer signature comprises a mapping between echo delay periods and positions
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along the critical curve. Since this mapping is due solely to the spacetime geometry, it is

independent of emission details like hotspot position, shape, and size. In contrast, the details

of the full echo response, such as the relative strengths or phase offsets of echoes at different

ϕ, are influenced by the characteristics of the hotspot.

Figure 7.5 shows the echo responses produced by different hotspots. In addition to

plotting the echo response (as in Figure 7.4), Figure 7.5 also shows the autocorrelation

of the measured signal as a function of ϕ. Since the autocorrelation function computes

relative delays, it intrinsically separates the echo periods from phase offsets around the ring.

The glimmer signature naturally lives in this autocorrelation space; the glimmer mapping

is plotted in the figure as a set of blue ⊗’s. Half-period echoes, which can be excited by

emission in the midplane, are marked as orange ⊗’s.

The subset of echoes that are excited is determined by the set of bound orbits that the

source intersects. As the source size increases, the ϕ width of each response blip increases

as nearly closed orbits begin to resample the source. When the hotspot is in the midplane,

it excites the half-period echoes. As the hotspot moves away from the midplane, the auto-

correlation response drifts away from the orange ⊗’s. Also, as the hotspot moves from the

midplane to low inclination, it intersects fewer bound orbits (e.g., consider the fact that the

prograde and retrograde orbits lie entirely within the midplane). Thus, in addition to pro-

ducing responses with more complicated delay structures, hotspots off the midplane cannot

excite the full spectrum of glimmer echoes.

While the echoes described by glimmer are always excited, geodesic self-intersection ex-

cites supplemental echoes based on source features. If the majority of the flux in an obser-

vation is produced by a single, transient hotspot, then the additional echo structure may

provide a means to infer details about the hotspot. In contrast, if the source emission is ex-

tended, diffuse, and stochastic, the supplemental echoes will be washed out by the universal

glimmer signature.
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Figure 7.5: Effect of hotspot position and size on echo response. Left column: position
and size of hotspot (on Keplerian orbit with σt = 1 M) in space around a black hole (black
circle) with a∗ = 15/16. The gray shaded crescents mark the region containing the bound
orbits. Central column: echoes produced by the hotspot (as in Figure 7.4). Right column:
autocorrelation of echoes. Blue ⊗’s denote pure glimmer echoes, and orange ⊗’s correspond
to midplane echoes. Midplane echoes are excited in the first three rows. When the hotspot
is raised above the midplane in the bottom panel, the supplemental echoes no longer peak at
1
2
the fundamental glimmer period. In contrast, the glimmer echoes are universal; if a given

ϕ exhibits any echoes, it will exhibit echoes at the blue ⊗’s. Since the hotspot in the fourth
panel does not intersect the (equatorial) prograde and retrograde orbits, it does not excite
echoes along those ϕ. An animation showing how the echoes and autocorrelation change as
a function of hotspot size and position is available online.
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7.5 Discussion

We have described black hole glimmer, a position- and time-dependent effect in black hole

images that is due to bound and closed photon orbits. The set of echo periods and arrival

locations that comprise glimmer uniquely encodes the properties of the spacetime and pro-

vides a direct way to measure black hole mass and angular momentum. Since the universal

glimmer signature is determined only by the underlying geometry, it is separable from astro-

physical and plasma uncertainties in the emission model. We now briefly present a simulated

glimmer measurement at finite resolution, discuss the generality of the hotspot model, and

consider extensions to our analysis.

7.5.1 Measuring glimmer with finite resolution

Recently, Hadar et al. (2021) discussed the potential of performing a measurement of auto-

correlations for a nearly top-down black hole with a thin surface emissivity in the midplane,

and Chesler et al. (2021) treated the potential of performing a measurement of coherent au-

tocorrelations in a similar context. The clearest glimmer signatures are encoded in the time-

and position-dependent intensities along the critical curve, but performing a measurement

with sufficient resolution to resolve the detailed spatial dependence may be technologically

impractical. Although evaluating the feasibility of a detailed measurement of glimmer is

beyond the scope of this paper, we now perform a simple example glimmer measurement

from a simulated low-resolution observation.

Even with limited resolution, the echo structure can be probed by comparing the light

curves produced by different regions in an image. Figure 7.6 shows the light curves measured

in different regions of an angular image decomposition as seen by an observer at i = 90◦.

The different panels show the decomposition for a numerically simulated hotspot (r0 = 3 M,

σr = 0.8 M, and σT = 20 M) on a Keplerian orbit in the midplane around three different

black holes with spins a∗ = 1/4, 15/16, and 31/32. After the initial transient decays, the
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Figure 7.6: Quadrant-based light curve decomposition for a hotspot at r0 = 3 M and
σr = 0.8 M with a flat emissivity profile versus frequency orbiting around black holes with
a∗ = 1/4, 15/16, and 31/32. The full light curve (black dashed line) is divided into four
image quadrants: retrograde-centered ϕ ∈ (π/4,−π/4) (blue), prograde-centered (green)
ϕ ∈ (3π/4, 5π/4), and two remaining (red) regions. The prograde orbit echoes are strongest
because they have the smallest Lyapunov exponents. The initial transient to t ≈ 60 GM/c3

is produced during the time that the hotspot is active and orbiting the hole.

unresolved (total) light-curve signal is dominated by the prograde echo period, but since the

different light curves correspond to different parts of the image—and thus cover different

arcs along the critical curve—they echo with different periods.

As Figure 7.6 shows, it may be possible to resolve different echo periods among the

different light curves. Even if the precise time delay between peaks in a single light curve
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is not measurable, the spread in delays could be used to bound the spin and mass of the

system. A rough comparison of the delay periods could also be performed to bound the

orientation of the curve and infer the orientation of the spin axis of the hole on the sky.

7.5.2 Hotspot model generality

We evaluated the glimmer signature produced by a transient hotspot in a Keplerian orbit

around a black hole; however, this toy emission model may not be representative of typical

astrophysical scenarios. Real-world emitters likely follow more complicated trajectories, and

changing the velocity of the emitting material can contribute to effective source anisotropy

via relativistic beaming effects. As the relative amplitudes of the signals emitted in different

directions change, the relative amplitude of echo signatures at different ϕ will change as

well. Additionally, real emission sources may comprise diffuse structures that are not well

approximated by localized hotspot-like emission.

Nevertheless, our model approximation is not restrictive because any realistic source

can be decomposed into a set of localized, transient emission features. In the limit of zero

optical depth, the echo signatures produced by different hotspots can be added linearly,

with each component weighted by the relative strength of the underlying emission feature.

Thus, although the emission structure can influence the relative intensity of the echoes, the

position-dependent delay spectrum is universal.

If the emission source is localized, then it may be possible to constrain the vertical

location of the emission by subtracting the glimmer echoes from the full observed echo

(autocorrelation) spectrum. We note, however, that the transient signatures produced by

direct emission have much higher flux relative to the echoes and are therefore likely to provide

a much more efficient means of inferring source structure.

It may also be possible to measure the glimmer produced by an emitter far from the hole,

e.g., especially in the case of a stellar mass black hole. If a coherent light source is located

directly behind the hole relative to the observer, then the light paths between the source
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and the observer will undergo the same lensing effects as they pass the hole.

7.5.3 Limitations and extensions

In our treatment, we assumed that the emission was independent of frequency; in sources with

nontrivial frequency dependence, redshift effects can change the intensity of light received

at different ϕ around the critical curve and thus may influence the sensitivity required for

a measurement. If the emission spectrum has a characteristic frequency, then it may be

possible to decompose an unresolved light curve and measure glimmer by comparing the

dominant echo periods of different components of the spectrum. Since each bound orbit

follows a different latitudinal profile, different orbits can intersect the source at different

angles relative to the source motion. Frequency shift is controlled by this angle, so different

orbits (and thus different echo periods) will peak with different characteristic frequencies.

We also neglected the effect of optical depth, which decreases the strength of high-order

echoes compared to the analytic Lyapunov treatment. Since optical depth is a function of

wavelength, it may be desirable to observe at frequencies where the optical depth of the

plasma is minimal.

More broadly, our treatment neglected the initial transient (which is a strong function

of the position, shape, and dynamics of the source). An analysis of general relativistic

magnetohydrodynamics simulations may be required to study the detailed complexities of a

true observation; an analytic treatment of correlations must faithfully reproduce the spatial

structure of the emission source, since source position determines which echoes are excited.

7.6 Summary

We have described black hole glimmer, a position- and time-dependent echoing in black

hole images that is due to bound and closed photon orbits. The set of echo periods and

arrival locations that comprise glimmer uniquely encodes the properties of the spacetime and
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provides a robust, independent probe of black hole mass and angular momentum. Glimmer

makes precise predictions that could be used to directly test the Kerr hypothesis. Since

glimmer is determined only by the underlying geometry, its signature is separable from

astrophysical and plasma uncertainties in the emission model. We have used numerical

simulations to demonstrate that the glimmer signature may be observable even in a limited-

resolution measurement.

7.7 Kerr equations of motion in detail

The Kerr metric is cyclic in the t and φ coordinates, so it has two killing fields, ∂t and

∂φ. These correspond to the conserved conjugate momenta pt and pφ that are canonically

associated with (negative) energy at infinity and angular momentum about the spin axis of

the hole. Carter (1968) identified a third conserved quantity Q that is associated with a

second-order killing tensor field and is physically related to the θ velocity of a particle as it

passes through the midplane.

For a test particle with four-momentum pµ, the three conserved quantities (7.18)–(7.20)

along with the particle’s mass, −µ2 = pµpµ, uniquely determine the geodesics in the Kerr

spacetime:

Q = p2
θ + cos2 θ

(
a2
∗
(
µ2 − p2

t

)
+ p2

φ/ sin2 θ
)

(7.18)

Ẽ ≡ −pt (7.19)

Lz ≡ pφ (7.20)

Photons follow null geodesics xµ(λ), where λ is an affine parameter such that uµ = ẋµ ≡

dxµ/dλ and uµuµ = 0. The equations of motion for null geodesics around a black hole are

scale invariant with respect to the mass of the hole and can be written as a one-parameter
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set of ordinary differential equations (Carter, 1968; Bardeen et al., 1972):

∆Σṫ =
((
r2 + a2

∗
)2 −∆a2

∗ sin2 θ
)
Ẽ − 2ra∗Lz (7.21)

Σ2ṙ2 = Ẽ2r4 +
(
a2
∗E

2 − L2
z −Q

)
r2+

2

((
a∗Ẽ − Lz

)2

+Q
)
r − a2

∗Q (7.22)

Σ2θ̇2 = Q−
(
L2
z/ sin2 θ − Ẽ2a2

∗

)
cos2 θ (7.23)

∆Σφ̇ = 2ra∗Ẽ + (Σ− 2r)Lz/ sin2 θ. (7.24)

Since photons are massless and their paths are independent of their energies Ẽ, it is

convenient to normalize both Lz and Q by Ẽ to define new constants of motion Φ and

Q. These two constants can be written in terms of the orbit radius r and are often used to

parameterize the bound orbits around a hole of a given spin (see the equivalent Equations 7.6

and 7.7).

Φ ≡ Lz/Ẽ = −r
3 − 3r2 + a2

∗r + a2
∗

a∗ (r − 1)
(7.25)

Q ≡ Q/Ẽ2 = −r
3 (r3 − 6r2 + 9r − 4a2

∗)

a2
∗ (r − 1)2 . (7.26)

By definition, spherical orbits lie at fixed, unchanging radii, ṙ = r̈ = 0. By solving

Equation 7.22 for these two conditions and rejecting nonphysical solutions (see Teo 2003 for

more detail), we reproduce Equation 7.3 and find that spherical orbits must lie between

r± = 2

(
1 + cos

(
2

3
cos−1±a∗

))
. (7.27)

It is convenient to introduce a new variable for the latitudinal coordinate θ. Substituting

(7.25) and (7.26) and writing u ≡ cos θ, Equation 7.23 can be written as a fourth order
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Figure 7.7: Left panel: Composite synthetic black hole image rendered on uniform grid
composed by summing all subpixels within lowest-resolution image grid pixels. Center panel:
Degree of refinement in region near the critical curve; full panel corresponds to white frame
in left panel. Right panel: Pixel-centered intensities shown for pixel at all refinement levels,
showing exponentially shrinking self-similar subring structure; full panel area corresponds to
black frame in center panel.

polynomial in u:

Σ2θ̇2 = Q−
(
Φ2/ sin2 θ − a2

∗
)

cos2 θ (7.28)

Σ2u̇2 = Q−
(
Q+ Φ2 − a2

∗
)
u2 − a2

∗u
4 (7.29)

= −a2
∗
(
u2 − u2

+

) (
u2 − u2

−
)
. (7.30)

The roots of the above expression are given by (see also Equation 7.5)

u2
± ≡

a2
∗ −Q− Φ2 ±

√
(Q+ Φ2 − a2

∗)
2 + 4a2

∗Q

2a2
∗

. (7.31)

In terms of u, the two other equations of motion are

ṫ =
(a2
∗ + r2)

2 − a2
∗∆ (1− u2)− 2a∗Φr

∆Σ
(7.32)

φ̇ =
2a∗r + Φ (r2 + a2

∗u
2 − 2r) (1− u2)

−1

∆Σ
. (7.33)

To compute the ∆φ azimuthal precession identified in §7.2, we integrate dφ/du over four
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quarter cycles,

∆φ = 4

θ+∫

0

dφ

dθ
dθ = 4

u+∫

0

dφ

du
du

=
4√
−u2
−

(
2r − a∗Φ

∆
K

(
u2

+

u2
−

)
+

Φ

a∗
Π

(
u2

+,
u2

+

u2
−

))
. (7.34)

Here, we have written the answer in terms of complete elliptic integrals by expressing du in

terms of the product written in Equation 7.30. The ∆t integral reported in Equation 7.8 is

solved in the same way.

For a∗ 6= 0, the ratio ∆φ/2π cannot be one; thus, a complete azimuthal cycle will not

correspond to a complete latitude cycle. The sign of ∆φ corresponds to the net displacement

of the orbit (as either prograde or retrograde) and mirrors the sign of Φ. The radius of the

polar orbit, which has Φ = 0, is given by (e.g., Teo, 2003)

r = 1 + 2

√
1− 1

3
a2
∗ cos

(
1

3
arccos

1− a2
∗(

1− 1
3
a2
∗
)3/2

)
. (7.35)

7.8 Numerical image generation details

The ray traced results presented in this paper were produced using a custom version of

the ipole code (Mościbrodzka & Gammie, 2018). Most observer-to-emitter codes like ipole

solve the radiation transport equations along a single geodesic per resolution element (pixel).

This approach is reasonable when the difference between neighboring geodesic trajectories

is small (such as when the pixels are small or when the geodesics do not pass close to the

photon sphere). Since we study the neighborhood of the critical curve, we must resolve the

differences between geodesics as they begin to wind around the hole. Thus, in our case,

the pixel-centered method with a fixed grid fails, since the widths of the subrings decrease

exponentially. We deal with this issue by adaptively concentrating resolution elements near

the critical curve.
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The modified code first identifies the geodesics that have the longest path lengths relative

to their neighbors and then constructs a connected set of pixels (the set containing the

identified geodesics) to refine. Each pixel is refined into a 3x3 set of pixels centered around

the original geodesic. The process is repeated until a stopping criterion is met. Figure 7.7

shows the image produced by ray tracing on a grid with eight refinement levels, a schematic

of refinement levels near the critical curve, and the multiple self-similar subrings produced

by each of the imaged turnings.

265



Chapter 8

Outlook

‘‘ . . . I seem to have been only like a boy playing on

the sea-shore, and diverting myself in now and

then finding a smoother pebble or a prettier shell

than ordinary, whilst the great ocean of truth lay

all undiscovered before me.”

Isaac Newton

In his inaugural lecture at the Cavendish Laboratory in 1871, James Clerk Maxwell cau-

tioned against scientific hubris, noting that “the history of science shews that even during

that phase of her progress in which she devotes herself to improving the accuracy of the

numerical measurement of quantities with which she has long been familiar, she is prepar-

ing the materials for the subjugation of new regions.” Indeed, a few years later, Maxwell

published his transformative Treatise on Electricity and Magnetism, and the theoretical and

experimental advances made in the following decades would significantly reshape our under-

standing of the physical world. Addressing the slight exceptions to the contemporary “laws

of nature” led to the development of entirely new fields like relativity, quantum mechanics

and its descendants, and cosmology.

We are now entering an exciting epoch of precision black hole astrophysics. The last

decade has witnessed an explosion of new science-enabling measurements from gravitational

waves to high resolution imaging and astrometry. These advances let us study black holes

with extreme precision down to horizon scales, where strong gravity reigns supreme. Even if

we do not uncover exotic new physics, we are still poised to address myriad questions about

astrophysical plasma physics, accretion theory, and general relativity. This dissertation has
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expatiated on a series of analysis- and theory-based projects that use the first generation

of observational data to study black hole accretion apropos of the connection between su-

permassive black holes and relativistic jets, but the ongoing observational experiments with

increased imaging capabilities, improved sensitivity, and support for multi-frequency mea-

surements provide an immediate, clear extension to my work.

In the coming years, theory will play an important role in guiding the next generation of

experiments. High resolution measurements of the photon ring impel the establishment of

long, space-bound baselines and are highly desired for their ability to both constrain the spin

of the black hole and act as a new high-precision test of general relativity at a causal edge

of the universe. Uncertainties in the microphysical details of the plasma thermodynamics,

especially in the jet region, motivate observations that produce detailed, sensitive measure-

ments of circular polarization. As observations and our understanding of black hole accretion

improve, we may develop methods to perform black hole tomography and reconstruct a full

three-dimensional map of the plasma near the hole.

Still, there is much work to be done on the analysis front. The parameter-discrimination

task is particularly challenging, since a wide variety of black hole accretion models produce

similar images. Machine learning methods have been shown to be capable of differentiating

between different accretion models (van der Gucht et al., 2020; Lin et al., 2020), although

the robustness of the results is yet poorly understood. Efforts to understand the utility of

machine learning methods in the direct VLBI data domain are underway, as are tests of the

algorithms’ abilities to classify images from simulations run with parameters that it had not

been exposed to during training.

Other universal parameter inference methods, like measuring black hole glimmer and

the shape of the photon ring, are still new and relatively unexplored. Beyond glimmer,

theoretical advances have been made in characterizing autocorrelations in Kerr (Hadar et al.,

2021; Chesler et al., 2021), but there are no immediate studies of the signatures in theories

that deviate from general relativity, and no rigorous explorations of measurement feasibility
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have been performed. Gralla et al. (2020) investigated ring shape measurements using toy

models of emission, but the signatures produced in the real world from a thick, turbulent

flow may differ dramatically from the analytic model. Addressing this question will likely

require high resolution fluid simulations as well as high resolution images, perhaps generated

using an adaptive ray-tracing code (e.g., Gelles et al. 2021b).

The simulation front remains open as well. Since tilted disks can produce dramatically

different image morphologies (see the considerations in Fragile et al. 2007; Dexter & Fragile

2013), it would be interesting to see the results of a full parameter survey that sweeps over

tilt in addition to the spin and magnetic flux on the hole. Radiative simulations lie on the

horizon as well—algorithmic advances (e.g., Ryan & Dolence 2020) and the proliferation of

GPUs as a computational tool suggest that large scale parameter surveys of both SANE and

MAD accretion disks, possibly even with tilt, may be feasible in the near future.

The jet composition question is also far from settled. Although drizzle pair production

seems to disallow pair cascades in M87, a wide swath of parameter space has yet to be con-

sidered. A more general treatment of pair production would account for the drizzle process,

perhaps performed in situ during a radiation simulation, as well as the pairs produced during

cascades. Although cascades cannot be launched from regular ideal GRMHD simulations, a

subgrid model for gaps (e.g., Parfrey et al. 2019) based on violations of the Goldreich–Julian

conditions on the local charge density could provide a reasonable first attempt on the way to

full hybrid kinetic–GRMHD simulations. Future treatment of the pair production problem

might also aim to represent the positron–electron pair plasma as a separate fluid.

The future of Michell and Laplace’s dark stars is bright.
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