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Abstract

In this dissertation we study arithmetic Ramsey type problems and inverse problems, in
various settings. This work consists of two parts.

In Part I, we study arithmetic Ramsey type problems over abelian groups. This part
consists of three chapters. In Chapter 2, using hypergraph containers, we study the rainbow
Erdés—Rothschild problem for sum-free sets. This is joint work with Cheng, Li, Wang, and
Zhou. In Chapters 3 and 4, we study the avoidance density for (k,¢)-sum-free sets. The
upper bound constructions are given in Chapter 3, answering a question asked by Bajnok.
We also improved the lower bound for infinitely many (%, ) in both chapters, and a special
case of the sum-free conjecture is verified in Chapter 4. These two chapters are based on
joint work with Wu.

In Part II, we study inverse problems over nonabelian topological groups. Preliminaries
to topological groups are given in Chapter 5. In Chapter 6, we first obtain classifications of
connected groups and sets which satisfy the equality in Kemperman’s inequality, answering
a question asked by Kemperman in 1964. When the ambient group is compact, we also get
a near equality version of the above result with a sharp exponent bound, which confirms
conjectures by Griesmer and by Tao. A measure expansion gap result for simple Lie groups
is also presented. This chapter is based on joint work with Tran. In Chapter 7, we study the
small measure expansion problem in noncompact locally compact groups. The question that
whether there is a Brunn—Minkowski inequality was asked by Henstock and Macbeath in
1953. We obtain such an inequality and prove it is sharp for a large class of groups (including

real linear algebraic groups, Nash groups, semisimple Lie groups with finite center, solvable
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Lie groups, etc), answering questions by Hrushovski and by Tao. This chapter is based on
joint work with Tran and Zhang.

This dissertation is based on the following papers and preprints: [41, 108, 107] (Part I),
and [105, 106] (Part II).
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Symbols and Notation

the empty set

the set of natural numbers

7 the set of integers

R? the d dimensional Euclidean space
T (R/Z)4

C the complex field

Fy finite field of order p™

F; F,\ {0}

Z/pZ the cyclic group of order p

R the hyperreal field

N/ the hyperinteger ring

K|[x] the polynomial ring over a field K
[n] forne N, [n] :=[1,n|NZ

log logarithm base 2

V(G) the vertex set of a (hyper)graph G
u(G) V(@)

E(Q) the edge set of a (hyper)graph G
e(G@) |E(G)

G the identity component of a group GG
G,G], GM the derived subgroup of G



G*) for k£ € N, the k-th derived subgroup of GG

Ng(v), N(v) the neighborhood of a vertex v in a graph G

GOH the Cartesian product of two graphs G and H

H=G H is isomorphic to G as topological groups

H<«G H is a normal subgroup of G

N xH the semidirect product of N and H

idg the identity element of a group G

I the Mobius function

ha the left Haar measure on a locally compact group G

va the right Haar measure on a locally compact group G

dg(v), d(v) the degree of a vertex v in a graph ¢

d(A) the upper density of a set A

i(G) the minimum degree of a graph G

A(G) the maximum degree of a graph G

Ag the modular function of a locally compact group G

C.(G) the space of compactly supported continuous functions over G
14 the characteristic function of a set A

e(6) o2t

en(0) e N

ex(n, H) the maximum number of edges in an n vertex graph that contains no

subgraph isomorphic to H

exXpg, €xXp the exponential map from a Lie algebra g to a Lie group G
]? the Fourier coefficient of a function f
f=0(9) f < Cg for some constant C'

f<g, g=0(f) f=0(g)
f=<g, f=06(9) [f<gandg<f
f=o(g) lim,, 00 f(n)/g(n) =0

x1



lim, e f(n)/g(n) = 1

the complete graph on n vertices

the complete bipartite graph with parts of size s and ¢
the cycle on n vertices

the path on n vertices

the sumset of X and YV, ie, {x +y:2€ X,y €Y}

for k£ € N, the k-fold sumset of X

dilation of X with factor k, i.e., {kx : 2z € X}

the productset of X and Y, ie., {zy:z € X,y € Y}.
for k € N, the k-fold productset of X

the inverse set of X, i.e.,, {z7!': 2 € X}

{P(z,y) : x € X,y € Y} for some bivarite polynomial P
the symmetric difference of two sets X and Y

the center of a group G

the smallest subgroup generated by X

the closure of a set U

topological group R>? with multiplication as the group operation

the real general linear group of degree n, i.e., the group containing n x n
real invertible matrices

the real special linear group of degree n, i.e., the group containing n X n
real matrices with determinant 1

the real special orthogonal group of degree n, i.e., the group containing
n x n real orthogonal matrices with determinant 1

xii



Chapter 1

Introduction

This thesis is a fusion of my research papers and preprints [41, 105, 106, 107, 108]. They
share a common theme considering problems over some algebraic or geometric structures
with certain extremal flavor, including Ramsey-type problems and inverse problems.

In this introduction, I would like to present some background of arithmetic Ramsey
problems and inverse problems briefly, and why it might be interesting to explore these
problems. Afterward, I will go into a more detailed description of the structure of this thesis

and the main results in each chapter.

1.1 Background

The following questions arise naturally in many areas of mathematics: Let S be a certain
structure (for examples, complete graphs, groups, fields), and let P be a property. How big
must some substructure S’ of S be to guarantee that the property P holds in S’? What can
be said about the structures of S’ when the property P holds or nearly holds in it?

The first type of problem refers to Ramsey problem, or arithmetic Ramsey problem
when S has some arithmetic constraints. The second problem asks about the structural
characterizations of the substructures when they have maximal (or nearly maximal) size

and do not have property P; this type of problems are known as inverse problems.



1.1.1 Arithmetic Ramsey theorems

Let us begin the story with Ramsey-type theorems. The celebrated Ramsey Theorem [145]
asserts that any finitely colored sufficiently large complete graph will contain a large mono-
chromatic complete subgraph. This result created a new species of mathematical result —
the Ramsey type theorems, and also represented the discovery of a new phenomenon in
mathematics that “complete disorder is impossible”.

One of the first arithmetic Ramsey results was van der Waerden’s Theorem [165]: given
any finite coloring of integers, one of the color classes must contain arbitrarily long arithmetic
progressions. Van der Waerden’s orginal proof is beautiful and elegant, but only offers poor
quantitative bounds for the appearance of the first arithmetic progression of a given length.
Erdés and Turén [63] then made a couple of conjectures to pursue this quantitative question
further.

The first major progress of the conjectures was by Roth [148], who applied the Hardy—
Littlewood circle method together with the density increment argument to establish Roth’s

Theorem:

Theorem 1.1 (Roth’s Theorem). If A C [N] contains no nontrivial three term progressions,

then |A] < ﬁ.

On the other direction, Behrend [11] constructed a subset of [N] of size Ne O0(ViogN)
that contains no nontrivial three term arithmetic progressions. Quantitative improvements
of Roth’s theorem were later obtained by a series of important papers by Bourgain [29],
by Sanders [152], by Bloom [20], by Bloom and Sisask [21], and by Schoen [155]. A recent
breakthrough by Bloom and Sisask [22] shows that any subset of [N] of size N/(log N)!*¢
contain a three term arithmetic progression. This confirms the first nontrivial case of the
well-known Erd6s sum of reciprocals conjecture.

For longer arithmetic progressions, using purely combinatorial techniques, Szemerédi

established the celebrated Szemerédi’s Theorem [158], which asserts that any dense subset



of integers contain an arbitrarily long arithmetic progression. This confirms a conjecture by
Erdos and Turan mentioned earlier in the section. One of the new ingredients in Szemerédi’s
proof was later formulated as Szemerédi’s regularity lemma, and has became one of the most
important tools in extremal combinatorics.

Szemerédi’s proof required van der Waerden’s Theorem, so it did not give any improved
quantitative bound on that theorem. Thus, after Szemerédi proved his theorem, math-
ematicians were seeking to understand, reprove, and improve upon Szemerédi’s Theorem
in other ways. Furstenberg insightfully observed that Szemerédi’s Theorem is equivalent
to a multiple recurrence theorem for measure-preserving systems, and then he was able to
prove Szemerédi’s Theorem using ergodic theory [70]. Mathematicians then realized this new
method is very powerful, and could be used to prove some other arithmetic Ramsey-type
results, for instance the density Hales—Jewett Theorem [71], and the polynomial Szemerédi
Theorem [14].

In parallel to these ergodic theory developments, the graph removal lemma, a break-
through in graph theory was obtained Ruzsa and Szemerédi [149] by using the regularity
lemma. They also observed that the triangle removal lemma implies Roth’s Theorem (with
worse quantitative bounds). This motivated the program for finding satisfactory analogue
of the regularity lemma and the counting lemma for hypergraphs, and to prove Szemerédi’s
Theorem using purely graph theoretical techniques. These results were eventually proved
by Gowers [75], and independently by Nagle, Rédl, Schacht and Skokan [141, 146].

The Fourier analytic approach, the method firstly used by Roth for the case of three term
progressions, was finally revisited by Gowers [74]. In the proof, he introduced a new notion of
uniformity, now known as the Gowers uniformity norms, which has many other applications
and has became a standard tool in arithmetic combinatorics. It is worth noting that the
Fourier analytic approach by Gowers obtained remarkably strong quantitative bounds on

Szemerédi’s Theorem:

Theorem 1.2 (Gowers). If A C [N] contains no nontrivial k-term progressions, then there

3



~ N
is ¢, > 0 such that |A] < TogTog N -

Szemerédi’s Theorem studies the size of the largest subset of integers that avoids long
arithmetic progressions. Although this result is possibly the most famous arithmetic Ramsey-
type theorem, many other Ramsey-type problems considering avoiding patterns other than
arithmetic progressions or inside other ambient structures are also well-studied. In this
thesis, we will mainly focus on Schur triples, and more generally, (k, £)-sums, under different

settings. These results are included in Chapters 2, 3 and 4.

1.1.2 Inverse theorems

In an inverse problem, we usually begin with the sumsets (or product sets) and try to deduce
information about the structure of underlying sets. For instance, suppose the ambient group
is Z, then for any nonempty set A C Z, one can easily see that |[A+ A| > 2|A| —1. Freiman’s

Theorem gives us the additive structure of A when we know that |A + A| is small:

Theorem 1.3 (Freiman’s Theorem, qualitative form). Let A C Z be nonempty. Suppose
|A + Al < K|A| for some constant K, then A is contained in a generalized arithmetic

progression of dimension at most d(K) and length at most f(K)|A|.

Freiman’s Theorem was later generalized to arbitrary abelian groups by Green and
Ruzsa [80]. In their theorem, a similar conclusion still holds by replacing generalized arith-
metic progression by coset progression. Generalized arithmetic progressions, and more ge-
nerally, coset progressions, can be seen as a subgroup “up to a constant error” (in fact, they
are approrimate groups). Thus, intuitively, these results informally tell us, for a subset of
an abelian group, if it has small cardinality expansion (that is |A + A|/|A] is small), then it
should look like a “subgroup” of the ambient abelian group.

The famous sum-product theorem, proved by Erdés and Szemerédi [62], asserts that
a subset of a field cannot have small sumset expansion and small product set expansion

simultaneously. This suggests that finite subsets of a one-dimensional space have expansion
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behavior under binary operations unless the situation is “controlled” by a single abelian
group. This can also be seen from the celebrated Elekes-Rényai Theorem [58]: A nontrivial
bivarite polynomial P(z,y) exhibits small expansion (that is |P(A, A)|/|A| is small), it must
exploit the underlying additive structure or multiplicative structure of the field (a more
precised structural result was recently obtained by [104]).

For possibly nonabelian groups, Gromov’s theorem on groups of polynomial growth [83]
tells us that if A is finite, and there is a polynomial P such that |A"| < P(n) for every
n € N2 then (A) is virtually nilpotent. This result suggests that the small expansion
property in nonabelian groups will also give us some structural information for the ambient
group. This phenomenon can be also seen from a recently breakthrough by Breuillard,

Green, and Tao [36]:

Theorem 1.4 (Breuillard-Green—Tao, simple form). If A C G is a finite K-approzimate

group, then there is a KW -approzimate group A’ C A*, such that:
(i) A is covered by L(K) left cosets of A’;
(i) (A") has a d-nilpotent subgroup of finite indez, with d < log K.

Here, A is a K-approzimate group means A = A~ and A? can be covered by K left
cosets of A. It is clear that being a K-approximate group is a stronger condition than
having small cardinality expansions (for instance, if A is a singleton union a subgroup, while
|A%]/|A| is at most 4, |A3|/|A| can be arbitrarily large), a result by Tao [159] shows that
a small expansion set is essentially an approximate group (by removing some elements).
The Breuillard-Green—Tao Theorem can be seen as a spiritual generalization of Freiman’s
theorem in nonabelian groups, and Gromov’s theorem for approximate groups. Their proof
was built upon earlier work of Hrushovski [102] and employ tools from model theory.

The structures of “small expansion sets” are also well studied for some other notion of
size. In this thesis, we will mainly focus on the case when the ambient group is a locally

compact group G equipped with a Haar measure u, and our set A C G is a measurable



set with finite positive measure. In this context, by small expansion, or small measure
expansion, we mean that p(A?)/u(A) is small. We are interested in how A and G behave
when we know that A has small measure expansion in G. For more background about small

measure expansion sets, we refer to Section 6.1.1.

1.2 Overview of the thesis

In this section we give a brief chapter-by-chapter overview of this work.

Integer colorings with forbidden rainbow sums

The Erdos—Rothschild extension for sum-free sets has been recently pursued by Liu, Shar-
ifzadeh and Staden [124] for subsets of the integers, and Han and Jiménez [87] for finite
abelian groups. More specifically, they investigated the extremal configurations which max-
imize the number of sum-free r-colorings, where each of the color classes is a sum-free set,
for small r. The characterization of extremal sets for r > 3 remains widely open.

We consider a rainbow variant of the Erdés—Rothschild problem for sum-free sets on
integers. For a set A C [n], an r-coloring of A is rainbow sum-free if it contains no rain-
bow ordered triple (a,b,c¢) with a < b < ¢ and a + b = ¢. For an integer r > 1 and a
set A C [n], we write g(A,r) for the number of rainbow sum free r-colorings of A and de-
fine g(n,r) := maxacp g(A,7). A set A C [n] is rainbow r-estremal if g(A,r) = g(n,r).
When r € {1,2}, it is easy to see that the only extremal set is the interval [n]. For
more colors, the problem becomes considerably more complicated. For odd n, we de-
fine I; = {%,%—l—l,...,n— 1,n}. For even n, we define I, = {% — 1,%,...,71},

I3 = {%, s+1,... ,n}. We first made the following conjecture.

Conjecture 1.5. Let n,r be positive integers and r > 3.

(i) Forr =3, the interval [n] is the unique rainbow r-extremal set.



(ii) For odd n and r = 4, the interval [n] is the unique rainbow r-extremal set.
(iii) For odd n and r > 5, the set I is the unique rainbow r-extremal set.
(iv) For even n and r <7, the set Iy is the unique rainbow r-extremal set.

(v) For even n and r > 8, the set I3 is the unique rainbow r-extremal set.

We resolved Conjecture 1.5 for » = 3 and r > 8 when n is sufficiently large. For4 <r <7,

we asymptotically determine the logarithm of g(n,r):
Theorem 1.6. For 4 <r < 7 and all positive integers n, we have g(n,r) = ri"/21+e()

Like the Gallai coloring problem, we also provide a sharp bound on the number of rainbow
sum free r-colorings of [n], and this determines its typical structure: we showed that for every
integer r > 3, almost all rainbow sum free r-colorings of [n] are 2-colorings. The proof relies

on the hypergraph container method, and some ad-hoc stability analysis of sum-free sets.

Avoidance density for (k,/)-sum-free sets

In 1965, Erdds [59] asked the following question: Given a set of positive integers of cardinality
N, what is the size of the maximal sum-free subset of it? A set is called sum-free, if for every
three elements x,y, z we have x +y # z. For every pair of distinct positive integers (k, ), a
set A is (k, £)-sum-free if for every k + ¢ elements x1, ..., xg, Y1, ...,y in A, we always have
Zf:l T 7 Z§:1 Yj-

In a recent breakthrough, Eberhard, Green, and Manners [57] showed that the size of
the maximal sum-free subset of a set of size N is at most (1/3 + o(1))N. The upper bound
for (k,¢)-sum-free sets was asked by Bajnok recently. The case for (1, k)-sum-free sets was
resolved by Eberhard [56]. With Wu [108], we determined the avoidance density for all

(k, £)-sum-free sets. More precisely, let

M(kj)(N) = AiCIII\]f>0 M(kyg) (A) where M(k’g)<A) = Iglgi( |S|
|A|l=N S is (k,£)-sum-free



In Chapter 3, we showed that M, (N) < k%z + o(N).
A more interesting problem is to consider the lower bound on M ¢ (NN). For the sum-free

case (i.e. (k,0) = (2,1)), the following conjecture is well-known:

Conjecture 1.7. There is a function w(N) — oo as N — oo, such that

N
M(QJ)(N) > E + W(N)

The current best bound in this direction is obtained by Bourgain [28] using Fourier
analytic argument, where he showed that M 1y(N) > (IV +2)/3.

One can also ask an analogue question for (k,¢)-sum-free set, that whether there is a
function w(N) — oo as N — oo, such that M »(N) > N/(k + £) + w(N). The case when
(k,¢) = (3,1) is confirmed by Bourgain [28]. In the same chapter, by generalizing Bourgain’s

argument, we confirm this conjecture for some other infinite families of (k, ¢):
Theorem 1.8. Let k, ¢ be two positive integers and k > €. Then the following hold:

(i) suppose k = 5l. Then
N log N

M N) > 1.1
(0 )_k+€+cloglog]\7’ (1.1)

where ¢ > 0 is an absolute constant that only depends on k, (.

(i) for every set A of N positive integers, for every positive even integer u, there is an odd

integer v < u such that if k = (u+v)l/(u —v), then

N log N
> +c 5
k+¢ loglog N

M0 (A) (1.2)

where ¢ > 0 is an absolute constant that only depends on k,{.

Note that case (ii) in Theorem 1.8 covers the result for (3,1)-sum-free sets by Bour-

gain [28].



A closer look to the largest sum-free sets

Recall that 1 denote the characteristic function of Q, and T = R/Z is the one dimensional
torus. Conjecture 1.5 is generally attacked in the literature by considering another stronger

conjecture:

Conjecture 1.9. Let Q= (1/3,2/3) CT. Then when N — oo,

max (Ig — 1/3)(nz) — oo.
BS
neA

This conjecture, if true, would also imply that a similar phenomenon occurs for (2k, 4k)-

sum-free sets for every k£ > 1. In Chapter 4, we prove the latter result directly:

Theorem 1.10. For every k > 1, there is a function w(N) = log N/ loglog N, such that for
every set A of N positive integers, there exists a maximal (2k, 4k)-sum-free set Q(2k,4k) C T,

and we have

1
IileaTX (19(2k,4k) — @) (TL$) > CU(N)

neA

In particular, there is an absolute constant ¢ > 0, such that

N
Mopak) (V) > or + cw(N).

The new ingredient of our proof is a structural analysis on the host set A. It is inspired
by the upper bound construction given in Chapter 3, the Fglner sequence {F,}, that is for

every integer a one have
|F A (a-F)
| F]

We then split the proof into two cases, when |A A (a-A)| is large (multiplicative case) and

when |A A (a-A)| is small (additive case), and use different techniques for these two cases.



Minimal and nearly minimal measure expansions in connected

unimodular groups

Let G be a group equipped with a reasonable notion of size s (e.g. cardinality, Haar measure,
density, etc). For A C G and n € N*° set A" ={a;-...-a, | a; € A}. We are interested in

the following questions in different settings:

e For a subset A of G with finite s(A) and n € N=2| what is the strict lower bound for

s(A™)/s(A) (possibly under further assumptions of A)?
e What can be said about G and A, when s(A")/s(A) has small values?

For either a fixed group or a class of groups, the extremal expansion problems ask for the
the minimum expansion rate s(A?)/s(A) (possibly under extra assumptions on A) together
with structural results for sets A where the minimum expansion rate is achieved or nearly
achieved.

In Chapter 6, we considered the setting when G is connected and unimodular (locally
compact with left Haar measures also right Haar measure), size is given by a Haar measure
pa, and A ranges over compact subsets of G with 0 < pug(A) < pg(A?) < pg(G). Here, an

inequality by Kemperman [112] in 1964 gives us a natural lower bound:

na(A%)/pa(A) > 2.

The question of classifying A such that the equality happened was proposed by Kemperman
in the same paper. Before our work, only the special cases for abelian G were known,
proven by Kneser in [115]. Griesmer considered a related question for disconnected abelian
locally compact group in [81] and conjectured that the Kneser’s answer also hold when G is
nonabelian. In [162], Tao considered the problem of classifying A such that equality almost
happens assuming further that G is compact and abelian, and conjectured that similar

conclusions holds removing the abelian assumption. All these issues were resolved in this
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chapter. Our answer is that for the equality to happen (or almost happens), there must be a
continuous group homomorphism y : G — T such that A is (or is almost) an inverse image
of an interval in T.

Proving these results requires a new method which allow understanding the structure of
G and A when A has small expansion. In more details, we first reduce the problem into
Lie groups by appropriately using the Gleason—Yamabe Theorem [73, 169], and the rest of
the proof goes by induction on dimension. In the second step, we choose a proper closed
subgroup H such that the intersection of A with all its cosets are small, otherwise A contains
a coset of every maximal torus, and sets with this “Kakeya-type” property cannot have very
small measure expansion. In the third step, we deduce from the small expansion assumption
the relative shape of A with respect to H, and show that this remains unchanged under
translations by elements in a small neighborhood of identity. Finally, applying induction
hypothesis on cosets of H and the preceding step we show that the map g — u(A\ gA) is a
pseudometric with a specific property yielding a group homomorphism into either T or R.
With this homomorphism and ideas from the third step applying to the kernel, we get the

desired structure of A. A more detailed overview is given in Section 6.2.

A nonabelian Brunn—Minkowski inequality

The Brunn—Minkowski inequality [38, 136] provides us with a good lower bound for the

measure of the sumset X 4+ Y of two nonempty compact subsets X and Y of R¢.
Theorem 1.11 (The Brunn—Minkowski inequality). Suppose X,Y are nonempty compact
subsets of R, and let \ be the Lebesque measure on R?. Then

AX +Y)1 > MNX)7 4+ A(Y).

In Chapter 7, we consider the problem of generalizing the Brunn—Minkowski inequality

to all locally compact groups, a question suggested by Henstock and Macbeath in 1953 [90]

11



and also later asked in different variations by many others, including Hrushovski [101],
McCrudden [132], and Tao [160].

We first propose the following conjecture: For a possibly nonunimodular locally compact
group GG with a left Haar measure p and right Haar measure v, and nonempty compact

X, Y C G, we expect
v(X)Vr o p(Y)M

<1
S(XY )

(XY )m =

where n is the noncompact Lie dimension of GG. For a Lie group G with dimension d
and maximal dimension m of a compact subgroup, its noncompact Lie dimension is simply
defined as d — m. The noncompact Lie dimension is defined for general locally compact
groups through the Gleason—Yamabe Theorem [73, 169].

The above form of the Brunn—Minkowski inequality is new, and plays an important role

in our proof. Our main results include:
e A proof that the conjectural inequalities are sharp if it holds for a given G.

e A Brunn—Minkowski type inequality for all locally compact groups, and a proof of the
sharpness of the exponent for a large class of groups (including all real linear algebraic
groups and, more generally, Lie groups definable in an o-minimal expansion of the field

of real numbers).
e A reduction of the conjecture to the case of simply connected simple Lie groups.

We next highlight some ideas from our proof. To show sharpness, we can choose the
example of a small neighborhood of a maximal compact subgroup. To get the inequality
for a simple Lie group, we use the Iwasawa decomposition G = K AN, and obtain a lower
bound for the measure expansion on GG from that of AN using a “proportionated average”
trick. The group AN is not necessarily unimodular, so it is crucial to treat the much more
involved nonunimodular case as well. Finally, the reduction to simple Lie groups uses a

generalization of McCrudden’s “exponent splitting” ideas, and a new observation that the

12



expansion exponents match with the dimensions under these reductions. A detailed overview

of the proof is in Section 7.1.3.
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The Abelian Groups
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Chapter 2

Integer colorings with forbidden
rainbow sums

For a set of positive integers A C [n], an r-coloring of A is rainbow sum-free if it contains no
rainbow Schur triple. In this chapter we initiate the study of the rainbow Erdés—Rothschild
problem in the context of sum-free sets, which asks for the subsets of [n] with the maximum
number of rainbow sum-free r-colorings. We show that for = 3, the interval [n] is optimal,
while for » > 8, the set [[n/2],n] is optimal. We also prove a stability theorem for r > 4.
The proofs rely on the hypergraph container method, and some ad-hoc stability analysis.

This chapter is based on joint work with Cheng, Li, Wang, and Zhou [41].

2.1 Introduction

An interesting direction of combinatorics in recent years is the study of multicolored version
of classical extremal results, whose origin can be traced back to a question of Erdés and
Rothschild [60] in 1974. They asked which n-vertex graph admits the maximum number of 2-
edge-colorings without monochromatic triangles, and conjectured that the complete balanced
bipartite graph is the optimal graph. About twenty years later, Yuster [170] confirmed this

conjecture for sufficiently large n.

2.1.1 Erdoés—Rothschild problems in various settings

There are many natural generalizations of the Erdés—Rothschild problem. The most obvious
one may be to ask it for graphs other than the triangles, and one may also increase the

number of colors used. A graph G on n vertices is called (r, F')-extremal if it admits the
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maximum number of r-edge-colorings without any monochromatic copies of F' among all
n-vertex graphs. Alon, Balogh, Keevash and Sudakov [1] greatly extended Yuster’s result
and showed that the Turan graph Tj(n) is the unique (r, K 1)-extremal graph for £ > 2 and
r € {2,3}. Interestingly, they also showed that Turan graphs Ty (n) are no longer optimal
for r > 4. Indeed, Pikhurko, and Yilma [142] later proved that Ty(n) is the unique (4, K3)-
extremal graph, while Ty(n) is the unique (4, K,)-extremal graph. Determining the extremal
configurations in general for £ > 2 and r > 4 turned out to be a difficult problem. For further
results along this line of research (when F' is a non-complete graph or a hypergraph), we
refer to [92, 94, 95, 119, 120, 121].

Another variant of this problem is to study edge-colorings of a graph avoiding a copy
of F with a prescribed color pattern. For an r-colored graph F , a graph G on n vertices
is called (r, F)-extremal if it admits the maximum number of r-colorings which contain
no subgraph whose color pattern is isomorphic to F'. This line of work was initiated by
Balogh [6], who showed that the Turdn graph T} (n) once again yields the maximum number
of 2-colorings avoiding Hy,,, where Hj,; is any 2-coloring of Kj,; that uses both colors.
For r > 3, the behavior of (r, Hyy;)-extremal graphs was studied by Benevides, Hoppen,
Sampaio, Lefmann, and Odermann, see [12, 96, 98, 99]. In particular, the case when F =K
is a triangle with rainbow pattern has recently received a lot of attention (for its relation to
Gallai colorings). Hoppen, Lefmann and Odermann [98] first proved that the Turdn graph
Ty(n) is the unique (r, Ks)-extremal graph for r > 5. Very recently, Balogh and Li [7],
confirming conjectures of [12] and [98], showed that the complete graph K, is the unique
(3, f(g)—extremal graph, while the Turdn graph T5(n) becomes optimal as r > 4.

The Erdés—Rothschild problem can also be extended to other discrete structures. In the
domain of extremal set theory, Hoppen, Kohayakawa and Lefmann [93] solved the Erdés—
Rothschild extension of the famous Erdos—Ko—Rado Theorem. They, for instance, showed
that the optimal ¢-intersecting families (each set is of size k) yields the maximum number of

r-colorings in which every color class is ¢-intersecting for r € {2, 3}, and also provided a fairly
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complete characterization of the corresponding extremal family for » > 4. Hoppen, Lefmann
and Odermann [97], and Clemens, Das and Tran [44] later studied the Erdés—Rothschild
extension of the Erdés—-Ko—Rado Theorem for vector spaces. Moving the problem to the
context of power set lattice, recently, Das, Glebov, Sudakov and Tran [48] investigated
the the Erdés—Rothschild extension of the Sperner’s Theorem, and proved that the largest
antichain yields the maximum number of r-colorings, in which each color class is an antichain,
for r € {2,3}. As for many of the previous results, they demonstrated that as r grows, the
largest antichain is no longer optimal. They also determined that the extremal configurations
for 2-colorings without monochromatic k-chains are the largest k-chain-free family. The

extremal configurations for » > 3 and k£ > 2 are widely unknown.

2.1.2 Erdos—Rothschild problems for sum-free sets
Given integers n > m > 1, write [m,n] := {m,...,n} and [n] :={1,...,n}.

Definition 2.1 (Schur triple & Sum-free set). A Schur triple or a sum in an abelian group
G (or in [n]) is a triple {a,b,c} with a+b=c. Aset A C G (or A C [n]) is sum-free if A

contains no such triple.

Given a set A of numbers, an r-coloring of A is a mapping f : A — [r], which assigns
one color to each element of A. An r-coloring of A is called a sum-free r-coloring if each of
the color classes is a sum-free set. Sum-free colorings are among the classical objects studied
in extremal combinatorics and can be traced back to Schur’s theorem, one of the seminal
results in Ramsey theory.

The Erdés—Rothschild extension for sum-free sets has been pursued by Liu, Sharifzadeh
and Staden [124] for subsets of the integers, and Han and Jiménez [87] for finite abelian
groups. More specifically, they investigated the extremal configurations which maximize the
number of sum-free r-colorings. In the setting of integers, it is well known that the largest

sum-free set in [n] has size [n/2]. Liu, Sharifzadeh and Staden [124] determined the extremal

17



configurations for r = 2.

Theorem 2.2 ([124]). There exists ng > 0 such that for all integers n > ng , the number of
sum-free 2-colorings of a subset A C [n] is at most 2I"/?1. Moreover, the extremal subsets are
{1,3,5,---,2[n/2] =1}, and [|n/2]+1,n|; and if n is even, we additionally have [n/2,n—1],

and [n/2,n].

Unlike the graph case, in the sum-free setting, there are extremal configurations which
are not sum-free even for 2 colors. Therefore, one would expect a more sophisticated ex-
tremal behavior as r grows. Although some asymptotic bounds were obtained in [124], the
characterization of extremal sets for » > 3 remains widely open.

Such problem was also studied for finite abelian groups. Let GG denote a finite abelian
group. Over fifty years ago, Diananda and Yap [55] determined the maximum density u(G)
of a sum-free set in G whenever |G| has a prime factor ¢ Z 1 mod 3, but it was not until
2005 that Green and Ruzsa [78] completely solved this extremal question for all finite abelian
group. Han and Jiménez [87] investigated the Erdds—Rothschild extension for sum-free sets

on some special abelian groups.

Theorem 2.3 ([87]). Let r € {2,3}, ¢ € N and let G be a abelian group of sufficiently large
order, which has a prime divisor q such that ¢ = 2 mod 3. Then the number of sum-free

(@)

r-coloring of a set A C G is at most r™%). Moreover, the maximum is only achieved by the

largest sum-free set.

For more than three colors this phenomenon does not persist in general and the problem
becomes considerably more complicated. For more details, we refer the readers to [87]. For
other abelian groups, despite some asymptotic bounds presented in [87], the exact extremal

phenomena is unknown even for 2 colors.
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2.1.3 Our results

In this chapter, we consider a rainbow variant of the Erdés—Rothschild problem for sum-
free sets in [n]. A Schur triple or a sum {z,y,z} is a rainbow sum if x,y,z are colored
with different colors. Note that a rainbow sum must have three distinct elements. For
convenience, sometimes we would use the following definitions, which are slightly different

with the classical notations on sum-free sets.

Definition 2.4 (Restricted Schur triple & Restricted sum-free set). A restricted Schur triple
or a restricted sum in [n] is an ordered triple (a,b,¢) with a < b < cand a+b = c. A set

A C [n] is restricted sum-free if A contains no such triple.

For any integer n > 7, it is not hard to show that the largest restricted sum-free sets in
[n] have size |n/2] + 1. If n is even, then the only subset attaining this bound is [%,n]; if

n is odd, then the maximum restricted sum-free sets are attained by the following four sets:
ndond 1, on—1) {55t 5 42,000 n), [2H 0], and {1,3,5,...,n}.
Given a set of positive integers A C [n], an r-coloring of A is rainbow sum-free if it
contains no rainbow sum. For a positive integer r and a set A C [n], we write g(A,r) for
the number of rainbow sum-free r-colorings of A and define

= A r).
g(n,r) glg%g( ,T)

A set A C [n] is rainbow r-extremal if g(A,r) = g(n,r). When r € {1,2}, it is trivial to
see that g(n,r) = r™ for all positive integers n, and the only extremal set is the interval [n],
since for every subset A C [n], all r-colorings of A are rainbow sum-free. For r > 3, the
characterization of the extremal sets requires substantially more work.

Our first main result is an upper bound on the number of rainbow sum-free r-colorings

of dense sets.

Theorem 2.5. For every integer r > 3, there exists ng such that for all n > ng the following
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holds. For a set A C [n] with |A| > (1 —r~3)n, the number of rainbow sum-free r-colorings
g(A,r) satisfies

g(A,r) < (g) 2l 4 97 w0 27,

By choosing two of the r colors and coloring the elements of [n] arbitrarily with these

two colors, one can easily obtain that

g(jn),r) > (;) (2" —2) 47 = (;) o — (12 — 2r). (2.1)

Therefore, Theorem 2.5 is asymptotically sharp for A = [n] and then the typical structure

of rainbow sum-free r-colorings of [n] immediately follows from (2.1).

Corollary 2.6. For every integer r > 3, almost all rainbow sum-free r-colorings of [n] are

2-colorings.

Now we turn to the extremal configurations of rainbow sum-free r-colorings. Let us first
consider the case r = 3. Similarly as in the Gallai coloring problem, two natural candidates
of the extremal sets are the maximum restricted sum-free sets and the interval [n]. Note
that for every restrict sum-free set A, we have g(A4,3) < 32141 <« ¢([n],3). Our second

theorem shows that for three colors the interval [n] is indeed optimal.

Theorem 2.7. There exists ng such that for all n > ng, among all subsets of [n|, the interval

[n] is the unique rainbow 3-extremal set.

Just as for the Erdés-Rothschild extension for Gallai colorings [7], we may not expect
that the same phenomena persists for » > 4. Define O := {1,3,5,---,2[n/2] — 1}, and

Iy :=[[n/2] + 1,n]. We prove the following stability theorem.
Theorem 2.8. For every positive integer r > 4, we have
gln,r) = /2700,
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Moreover, for every e > 0, there exist d,ng > 0 such that for all integers n > ng the following

holds. Let A be a subset of [n] with g(A,r) > r™/?="_ Then
(i) forr > 5, we have that either |A A O| < en, or |AA Iy < en;
(ii) for r =4, we have that either |A A [n]| <en, or |[AA O] <en, or |[AA Iy < en.

The behavior of the exact extremal configurations not only depends on the number of

colors, but also depend on the parity of n. For even n, we define

Observe that I; contains exactly two restricted Schur triples (n/2 — 1,n/2,n — 1), (n/2 —
1,n/2 4 1,n), and it is not hard to compute that g(I;,r) = /2 (3 —2/r)>. On the other

hand, the set I, is a restricted sum-free set and therefore g(Io,r) = 711l = /21 For odd

n—1
13:|: 9 ,n:|.

Again, the set I3 contains exactly one restricted Schur triple (%17 ”T’l +1,n), and one can

n, we define

show that g(Is,r) = r["/?1 (3 — 2/r), which is already greater than the number of colorings
for any restricted sum-free set. When a set A is of size at least the size of the maximum
restricted sum-free sets and not one of the above three sets, we believe that the restrictions
from the triples would more than counteract the extra possibilities offered by the additional

vertices. Therefore, we make the following conjecture.
Conjecture 2.9. Let n,r be positive integers and r > 4.

(i) If n is even and r < 7, then g(n,r) = r"2(3 —2/r)*, and I, is the unique rainbow

r-extremal set.

n/2+1

(ii) If n is even and r > 8, then g(n,r) =r , and I is the unique rainbow r-extremal

set.
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(i) Ifn is odd and r =4, then g(n,r) = g([n],r), and [n] is the unique rainbow r-extremal

set.

(iv) If n is odd and v > 5, then g(n,r) = rI"21(3 —2/r), and I3 is the unique rainbow

r-extremal set.
Our forth main result verifies Conjecture 2.9 for » > 8 and n sufficiently large.

Theorem 2.10. For an integer r > 8, there exists ng = no(r) such that for all n > ng the

following holds. Let A be a subset of [n] with |A] > [n/2] + 1.
(i) If n is even, then g(A,r) < r™/21%1 and the equality holds if and only if A = I.
(ii) Ifn is odd, then g(A,r) < rI"21(3 —2/r), and the equality holds if and only if A = Is.

The chapter is organized as follows. In the next section, we list some structural results
on sum-free sets, which are essential for the proof, and introduce the multi-color container
theorem. In Section 2.3, we prove Theorem 2.5. In Section 2.4, we prove the stability
theorem, Theorem 2.8, and determine g(n,3) for n sufficiently large. In Section 2.5, we
determine g(n,r) for r > 8, and describe the corresponding extremal configurations. We
close the chapter with some concluding remarks in Section 2.6. All logaritheorems have base

2.

2.2 Notation and preliminaries

2.2.1 Basic properties of restricted sum-free sets

We use the following result of Staden [157] on the minimum number of additive triples among

all sets of a given size.
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Theorem 2.11 ([157]). Let A be a subset of [n] with |A] > [n/2]. Then the number of

Schur triples in A is at least

(1Al = Tn/2D)(|A] = [n/2]),

where the unique minimising set is [n — |A| 4+ 1,n].

For a set A C [n], we write S(A) for the set of all restricted Schur triples in A, and
let s(A) = |S(A)|. For an integer t € A, denote by S(t, A) the set of all triples in S(A)
containing ¢, and let s(t, A) = |S(¢, A)|. Then from Theorem 2.11, we immediately obtain

the following proposition.

Proposition 2.12. Let A be a subset of [n] with |A| > [n/2]. Then

s(A) = (|A[ = [n/2])(|A] = [n/2]) - [A]/2.

In particular, we have

n2—2n

1 if n is even;

s([n]) =

n2—2n+1

1 otherwise.

2.2.2 Structural properties of sum-free sets

We will use standard definitions and notation in additive combinatorics as given in [163].

Given A, B C Z, let

A+B:={a+blacAbeB}, and A—-B:={a—-blacAbec B}

When B = {z}, we simply write A+ = and A — z.
The following lemma is known as Green’s removal lemma, which was first proved by

Green [76], and was later generalized to nonabelian groups by Kral and Vena [117].
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Lemma 2.13 ([117, 76]). For all ¢ > 0, there exists 6,ng > 0 such that the following holds
for all integers n > ng. Suppose that A C [n] is a set containing at most on? Schur triples.

Then there ezist B,C' C [n] such that A= B U C where B is sum-free and |C| < en.

We also require a very strong stability theorem for sum-free sets proved by Deshouillers,

Freiman, and Odermann [52].

Lemma 2.14 ([52]). Every sum-free set S in [n] satisfies at least one of the following

conditions:
(i) [S] < 2n/5;
(ii) S consists of odd numbers;

(iii) S| < min(S).

2.2.3 Multi-color container theorem

An important tool in our proof is the hypergraph container theorem. We use the following
version from [8]. Let H be a k-uniform hypergraph with average degree d. The co-degree of

a set of vertices X C V(H) is the number of edges containing X; that is,

d(X)={ec E(H) | X Cel.

For every integer 2 < j < k, the j-th maximum co-degree of H is

A;(H) = max{d(X) | X € V(H), |X]| = j}.

When the underlying hypergraph is clear, we simply write it as A;. For 0 < 7 < 1, the

co-degree function A(H, ) is defined as




In particular, when k = 3,

4A 2A
A(H,T) = d_7'2 + ?23

Theorem 2.15 ([8]). Let H be a k-uniform hypergraph on vertex set [N]. Let0 < e,7 < 1/2.
Suppose that 7 < 1/(200k’k) and A(H,7) < e/(12k!). Then there exists ¢ = c(k) <

1000k!3k and a collection of vertex subsets C such that
(i) every independent set in H is a subset of some of A € C;
(i) for every A € C, e(H[A]) <e-e(H);

(iii) log|C| < eNtlog(1l/e)log(1l/7).

A key concept in applying container theory to such coloring problems is the notion of tem-
plate, which was first introduced in [64], although the concept had already appeared in [153]

under the name of ‘2-colored multigraphs’ and later in [9], simply referred as ‘containers’.

Definition 2.16 (Template and palette). An r-template of order n is a function P : [n] —
2l associating to each element = € [n] a list of colors P(z) C [r]. We refer to this set P(x)
as the palette available at z.

For a set A C [n], any r-coloring of A can be considered as an r-template of order n, with

only one color allowed at each element in A, and no color allowed for elements not belonging

to A.

Definition 2.17 (Subtemplate). Let Py, P, be two r-templates of order n. We say that P;

is a subtemplate of Py (written as P, C Py) if Py(z) C Py(z) for each element x € [n].

For an r-template P of order n, write RS(P) for the number of subtemplate of P that
are rainbow restricted sums. We say that P is a rainbow restricted sum-free r-template if

RS(P) = 0. Using Theorem 2.15, we obtain the following.

Theorem 2.18. For every integer r > 3, there exists a constant ¢ = ¢(r) and a collection C

of r-templates of order n such that
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(i) every rainbow restricted sum-free r-template of order n is a subtemplate of some P € C;
(ii) for every P € C, RS(P) < n~3s([n]);
(lll) |C| S 2cn2/3 logzn.

Proof. Let H be a 3-uniform hypergraph with vertex set [n] x {1,2,...,7}, whose edges are
all triples {(z1,¢1), (22, ca), (73, ¢3)} such that (x, e, z3) forms a restricted Schur triple in
[n] and ¢1, co, c3 are all different. In other words, every hyperedge in H corresponds to a
rainbow restricted Schur triple. Note that there are exactly r(r — 1)(r — 2) ways to rainbow

color a restricted Schur triple with r colors. Hence, the average degree d of H is equal to

g 3e(H) _ 3r(r—1)(r —2)s([n]) > 3(r—1)(r— Q)n.

v(H) nr 8

Now we apply Theorem 2.15 on H. Let e = n=2/3/r(r — 1)(r — 2) and 7 = v/96 - 3! - rn 3.
Observe that Ay(H) = 2(r — 2),A3(H) = 1. For n sufficiently large, we can get 7 <
1/(200 - 3!* - 3) and

4A2 2A3 8<T - 2) 2 3
A = = < <
(#,7) dr + dr? dr * dr? — dr? —

€
123

Hence, there is a collection of vertex subsets C satisfying properties (i)-(iii) of Theorem 2.15.
Observe that every vertex set of H corresponds to an r-template of order n; every rainbow
restricted sum-free r-template of order n corresponds to an independent set in H. Therefore,

C is a desired collection of r-templates. O

Definition 2.19 (Good r-template). For A C [n], an r-template P of order n is a good

r-template of A if it satisfies the following properties:
(i) For each element i € A, |P(i)| > 1;

(i) RS(P) < n~3s([n)).

26



For a set A C [n] and a collection of templates P, denote by G(P, A) the set of rainbow
sum-free r-colorings of A, which is a subtemplate of some P € P. Let g(P, A) = |G(P, A)|.

If P consists of a single r-template P, then we simply write G(P, A) and g(P, A).

2.3 Proof of Theorem 2.5

Throughout this section, we fix an integer r > 3, a sufficiently large integer n and an

arbitrary set A C [n] with |A| = (1 — &)n, where

0§§§T_3.

Let C be the collection of containers given by Theorem 2.18, and 6 = 1/(24logn). We divide

C into two classes
Ci={PecC:g(PA) <209 C,={PecC:g(P,A) >20-9m (2.2)
Note that every P € Cs is a good r-template of A. The crucial part of the proof is to estimate

g(Cs, A), which replies on the following four lemmas.

Lemma 2.20. Let F' be the collection of ordered pairs (a,b) € A? with a < b such that

{a,b} € S for all S € S(A). Then we have |F| < &n? +n/6.
Proof. Let
Fy={(a,b) € A?|a+be[n)\A, b=2a},
Fy={(a,b) € A’ |a+b>n, b=2a},

Fy = {(a,b) € A* |a+be n\A, b—ac [n]\A},

Fy={(a,b) € A% |a+b>n, b—a € [n]\A}.
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Clearly, |F| = Y21, |F;| and |Fy| < |[n]\A| = én. Since every (a,b) € Fj satisfies b = 2a < n
and a + b = 3a > n, we have |F5| < n/6. Moreover, we obtain that [F3| < (') < &2n?/2,
as a+b € [n]\A and b — a € [n]\A. Similarly, we have |Fy| < &n?/2, as b > n/2 and

b—a € [n]\A. Finally, we conclude that |F| < &n+n/6+ &2n?/2 +&n?/2 < &n?+n/6. O

For a template P of A, let
Xi={xe€A||Px)|=1}, Xo={x € A||P(x)|=2}, Xs={reA||P(z)|> 3},

and x; = | X;| for i € [3].

Lemma 2.21. Suppose that P is a template of A in Cy. Then we have

-0
max w, 0, <x3< 2n~3n.
logr — 1

In particular, if € > 2(logr — 1)n=3 + 5, then Cy is empty.

Proof. By the definitions of G(P, A) and Cs, we have
277 > g(P, A) > 2079, (2.3)

Since o = |A| — 21 — z3 and |A| = (1 — £)n, we obtain that

(5—5)n+x1.

>
s logr — 1

(2.4)

We first claim that xo > (1—¢)n/3. Otherwise, we immediately have z1+x3 > 2(1—¢)n/3.

Together with (2.4), we obtain that z3 > mﬁ;;f)n > 21;‘gr. By Lemma 2.20 and 0 < & < 173,

there are at least
2

XT3 2
<2> — (&4 n/6) 2 16 log? r

pairs in X3, which are contained in some restricted Schur triples in A. This contradicts the
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definition of good r-templates, as RS(P) > n?/(3 - 161log®r) > n~/3s([n]).
For each a € X3, let B, := {b € X5 | {a,b} C S, for some S € S(A)}. Note that
every b € Xy \ B, satisfies either |b —a| € [n] \ A or |b — a|] = min{a,b}. Then we have

|B,| > (1 —¢&)n/3 —2&n —1>n/4. Since P is a good r-template of A, we obtain that

nPs(n)) > RS(P) > 3 S Bl >

a€X3
which indicates z3 < 2n~1/3n. O

Next, we will prove a stability result on good templates with many rainbow sum-free

colorings.

Lemma 2.22. Let 0 < & < 2(logr — 1)n™Y3 + 5. Then for every P € C,, there ewist
two colors {i,7} € [r] such that the number of elements in A with palette {i,j} is at least
(1 —26)n.

Proof. By Lemma 2.21 and (2.3), we have
Ty > (1 —6—3logr-n~3)n.

For1 <i<j<r,defineV;; :={x € Xy | P(z) = {i,7}}. Without loss of generality, we can
assume that |Y] o] > 352/(;) Let Y/ = X5\Yi 5. Foreacha € Y’ let B, = {b € Y15 | {a,b} C

S, for some S € S(A)}. Similarly as in Lemma 2.21, we obtain that |B,| > z2/(}) —2¢n—1,

and then
os(lnl) 2 RS(P) 2 5 3 |Bal 2 5 0
n
= 2r(r )
xeY’
Since 6 > n~'/3 we have |Yi 5| = 25 — [Y'| > (1 — 26)n, which completes the proof. O

Lemma 2.23. For two colors i,j € [r|, denote by P = P(i,j) the set of good r-template of
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A, in which there are at least (1 — 28)n elements in A with palette {i,j}. Then
g(P, A) < 2HI(1 4 27/12).

Proof. For an r-coloring g € G(P, A), let S(g) the set of elements in A, which are not colored

by i or j. By the definition of P, we have |S(g)| < 26n. Define
Go={9€G(P,A)|S(g) =2}, and G ={geG(P,A)|[|S(g)]=1}.

Clearly, we have g(P, A) = |Go|+|G:| and |Go| < 2M41. Tt remains to show that |G, | < 2141=n/12,

Let us consider the ways to color A so that the resulting colorings are in G;. We first
choose a set Ay C A of size at most 26n, which will be colored by the colors in [r] \ {7,j}.
26n

The number of options is at most Y, ., <05, (Z), and the number of colorings is at most r

Once we fix Ay and its color, take an arbitrary vertex t € A,.

Claim 1. Let D(t) be the collection of disjoint pairs {a, b} in A\ Ag such that {a,b,t} forms

a restricted Schur triple. Then |D(¢)| > n/6.

Proof of Claim 1. Define
S ={(a,b) em?|la+b=t, a<b}, and Sy ={(a,b) € [n]* |t +a=0b, a <b}.

We first observe that |S;| = |[(¢t — 1)/2] for every t € [n]. Note that all pairs in S; are
disjoint. Therefore, if t > 2n/5, we have |D(t)| > |Si| —&n — [Ao| > |Si| — (20 + &)n > n/6.
If t < 2n/5, observe that |Sa| = n — 2t and all pairs in Sy are disjoint. Therefore, we obtain

that |D(t)] > |Sa| — &n — |Ag] > |Sa| — (20 4+ &)n > n /6. X

For every pair (a,b) € D(t), since t is colored by some color in [r] \ {i,j}, and a,b can
only be colored by i or j, the elements a and b must receive the same color in order to avoid

the rainbow Schur triple. Therefore, together with Claim 1, the number of ways to finish
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the colorings is at most

olAI=|Aol=[P()] < olAl-n/6

Hence, we obtain that

|g2| < Z <7”L)T25n214|—n/6 < 2\A|+26n(10gn+logr)—n/6 < 2|A\—n/127
1<k<26n k

where the last inequality follows from § = 1/(241ogn). O
Now we have all ingredients to prove Theorem 2.5.

Proof of Theorem 2.5. First, by property (i) of Theorem 2.18 | every rainbow sum-free
r-coloring of A is a subtemplate of some P € C. By Property (iii) of Theorem 2.18 and the

definition of C; (see (2.2)), we have
g(Cy, A) < |Cy| - 2079 < || - 2079)m < g . g~/ (251ogn)

If ¢ > 2(logr—1)n~"1/3+4, using Lemma 2.21, we are done by g(C, A) = g(C;, A). Otherwise,

by Lemma 2.22 and Lemma 2.23, we obtain that

oCa )= Y a(Pli) ) < ()22

1<i<j<r

Hence, we have
g<C7A) = g(CI;A) +g(C2,A) S 2” . 2_2517olgn + <£>2|A|(1 + 2—”/12) S (g) . 2|A‘ + 2_261’,0Lgn2n7

which gives the desired upper bound on the number of rainbow sum-free r-colorings of A. [
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2.4 Proof of Theorems 2.7 and 2.8

The following lemma gives us a structural description of large sum-free sets.

Lemma 2.24. Lete,¢ > 0, ¢ > 10¢, and e < 1/10. Let A, B C [n] such that ANB =&, B
is sum-free, and |A| = cen. If |B| > (1/2 — e)n, then (A+ B)N B # @.

Proof. Suppose, to the contrary, that (A+ B) N B = &. Since |B| > 2n/5, by Lemma 2.14,
either B only contains odd numbers, or the minimum element of B is at least | B| > (1/2—¢)n.
If B only contains odd numbers, then there is d > ¢ — ¢, such that |A N E| = dn, where
E C [n] is the collection of all even numbers. Thus, there exists an a € AN E such that
dn < a < (1 —d)n. Let P be the collection of all pairs (i, ¢ + a), where 7 is odd, and
1 <i < dn. Observe that all pairs in P are pairwise disjoint and there are at least dn/2 of
them. Since (A + B) N B = @, for each pair (i,7) in P, at least one of {7, 7} is not in B.

This implies

!Blgg—lﬂgg—%”gg—@s(Lza)n,

which contradicts the assumption of B.

If the minimum element of B is at least |B| > (1/2 — ¢)n, let b be the smallest element
in B, then there is d > ¢ — 2¢ such that |A N [b — 1]| = dn. This implies that there exists
a € A with dn/2 < a <b—dn/2. We define P to be the collection of all pairs (i, j), where
b<i< (1/2+3¢e)n and j = i + a. Then the number of pairs in P is at least 2en, as
b < (1/2 + ¢)n. Moreover, for every (i,7) in P, we have j < n since b —dn/2 < (1/2 — 3¢)n
and since b+ a > (1/2 + 3¢)n, P is a set of disjoint pairs. Since (A+ B) N B = @, for every
(7,7) in P, at least one of {7, 7} is not in B. Similarly we obtain that |B| < (1/2 — 2¢)n, a

contradiction. O

Our next lemma says that when the number of colorings » = 3 and the size of A is
significantly smaller than n, the number of rainbow sum-free r-colorings will be much less

than 2". And when r > 5 and the size of A is significantly larger than n/2, much less than
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r™/2 when r, the number of rainbow sum-free r-colorings will be much less than /2.

Lemma 2.25. Let ¢ > 0, r be a positive integer, and let A be a subset of [n]. Then the

followings hold.

(i) If r =3, and |A| < (1 — €)n, then there is a constant 6, = d1(¢) > 0, such that

g(A,3) <2070,

(ii) Ifr > 5, and |A| > (1/2 + &)n, then there is a constant & = 6:(e,7) > 0 such that

g(A,r) < r1/2=00)n

Proof. Let C be the collection of containers given by Theorem 2.18, and let
Gmax(P, A) = max g(P, A).

For a template P € C, suppose P is not a good template. Then there must be an element
i € A with |P(7)| = 0, which immediately gives g(P, A) = 0. Therefore, gmax(P, A) is always
achieved by a good template.

Let P be a good template of A. Since RS(P) = o(n?), by Green’s aritheoremetic removal
lemma, there is a set E C [n] and a template P’ : [n] \ E — 2, such that P |j,g= P,

|E| = o(n), and P’ has no rainbow Schur triples. Define
Xi={ae]\E:[P(a)] =1}, Xo={ac[n]\E:|P(a)] =2},
and

X3 ={a€n]\ E:|P(a) >3}
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Let T = X5 U X3 and let z; = | X;| for i = 1,2,3. Therefore, we have
(Xs+Xs)NXs=0, T+T)NXs=0, (Xz3+T)NT=0. (2.5)

As Xj is sum-free, we have z3 < |n/2] + 1.
Let m be the largest element in X3. By (2.5), for every i < m, at least one of {i, m —i}

is not in T which is also the same for X5. Hence, we have
-1 —1
IT| <n-— [m——‘, x3 <m — {m—w (2.6)

Case 1: r = 3.
Observe that we may assume € < 2/5, as otherwise we will get g(A,3) < 314 < 20-95n
which completes the proof with §; = 0.045. We first consider the case when x5 < (1—>5¢/2)n.

Then we have

log g(C, A) < 10g(|C| - gmax(P, A)) < en®3log?n + |E|log 3 + x5 + 231og 3

1 2
=o(n) + z3 + x3log3 = (o(n) + 3 (|T| + 23 — (1 — @> :132)> log 3
D log 3
§n—|—0(n)—§8 (1— og )n< (1 —61)n,
where we take §; = 25(1 — 1053).

Now, we may assume that zo > (1 — 5¢/2)n. Then z3 < |A| — 22 < 3en/2. Thus we

obtain

log g(C, A) < o(n) + z2 + x3log3 < o(n) + |A] + (log3 — 1)x3

€

<n+o(n) 2(5—310g3)n<(1—61)n,

and we take 6; = § (5 — 3log3)e.
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Case 2: r > 5.

Since |A| > (1/2 +¢€)n, and P is good, we have that z1 + x5 > |A| — x3 — |E| > en/2 for

EN

o5+ Similarly, we get

large enough n. We first assume that z, >

. 2/37 . 2
) = max\+ = 2
log g(C, A) <log(|C| - gmax(P, A)) < en“log”n + |E|logr + xo + z3logr

1 2
o(n) + xo + x3logr = (o(n) + 5 (|T| + x5 — (1 — @) mg)) log r

n 1 2 € n

IN

where we take 6; = 3(1)—0 (1 - lozr) ¢. Note that 6; > 0 as r > 5.

Finally, we may assume that x, < 1%, and then 1 > 5 — 1y > %” We claim that
x3 < (1/2—¢/40)n. Otherwise, by the way we construct P’, we also have (X;+X3)NX3 = &

and this contradicts Lemma 2.24. Similarly as before, we can conclude that

log g(C, A) < o(n)+xe+z3logr < (g +o(n) + 100€Tgrn - 88—071) logr < <g — 51n> logr,

where we take 0; = ;55- O

The case when r = 4 is more involved, and we will discuss it later in this section. But

the result in Lemma 2.25 (i) is enough to imply Theorem 2.7.

Proof of Theorem 2.7. Observe that g([n],3) > 3-2" — 3. Suppose A C [n] and A # [n].
When |A| < (1 — 37%)n, by Lemma 2.25 (i), there is d; > 0 such that g(A,3) < 209" <
g([n],3). Now, we have (1—373)n < |A| < n—1. By Theorem 2.5, g(A,3) < (1.5+0(1))2" <

9([n],3). 0

The next lemma records an easy fact about intervals for convenience in the proof of the

analogue result of Lemma 2.25 when we have only 4 colors.

Lemma 2.26. Let € > 0, and let a,b be integers such that 0 < a < b < n, 3en < a <

n/2 —2en, and a + 2+ 3en < b < 2a. Suppose A C [a+ 1,b], B C [b+ 1,n], and
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|Al|>b—a—en, |B|>n—b—en. Then (A+ A)N B # @.

Proof. Let o be the smallest element in A, then @ < a+en+1. Let J = [a+1, a+1+[2en]] C
l[a + 1,b]. Observe that o+ J C [b+ 1,n]. Since |J| = [2en], and [[a + 1,b] \ A| < en,

[[b+1,n]\ B| < en, this implies there is 5 € AN J such that « + 3 € B. O

The next lemma, Lemma 2.27, is similar to Lemma 2.25, but here we consider the case
when the number of colors is 4. In order to obtain the same conclusion in Lemma 2.25, we
further require that the size of A is significantly smaller than n, since if A is close to [n],
when we color all the elements in A by two colors, the number of colorings we obtained is also
close to the extremal case. Note that if we use the same proof as in Lemma 2.25 for r = 4,
equation (2.7) does not give us the conclusion we want. Hence the proof of Lemma 2.27

requires a more careful and complicated analysis of the structures of the containers.

Lemma 2.27. Let £ > 0 such that (1/2+¢e)n < |A| < (1—¢)n. Then there is 63 = 02(¢) > 0
such that

g(A,4) < 471/2—(5271.

Proof. We apply Theorem 2.18 on A. Let C be the collection of containers, and let P € C be
a good template of order n. As what we did in the proof of Lemma 2.25, we similarly apply
Green’s removal lemma on P, and obtain a template P’ : [n]\E — 20, such that P |, g= P,
|E| = o(n), and P’ is sum-free. Let X1, X5, X35 C A\ Esuch that X; ={a € A | |P'(a)| = 1},
Xo={a€ A||P(a)]=2},and Xs={a € A||P'(a)] > 3}. Let T = XU X3 and z; = | X}
for i € [3]. Therefore, we have equations (2.5) still hold, and in particular, X3 is sum-
free. Thus z3 < (n + 1)/2. Since |A| > (1/2 + )n, and P is good, we also obtain that
x1 + x9 > en/2. Let m = n — a be the maximum element in X3, by using the same
argument, equations (2.6) still hold.

Suppose we have either

-1
|T|§n—[m2 —‘ =N or xggm—{

_ m — 1} en
1000’

2 | 1000
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Thus

g(C’A) < 2cn2/3 log2nT|E|2m2rx3 — ,r,o(n)+%(|T|+x3) < T%+O(n) . < 7"5_52n

and we take 0y = Therefore, we may assume that

3000

{m—lw en <7< {m—lw J [m—lw En < < [m—lw
— n—|—— n - - - —.
" 2 1000 = 1= g | e m 2 1000 = 3=

In the rest of the proof, we are going to show that this is impossible.

Suppose that a < 2. Note that max{xzy,x2} > £ and
(X1 +X35)NXs3=0, (Xo+X3)NX;5=0

this contradicts Lemma 2.24. Thus we have m < (1 — j5)n. Since [A| < (1 — €)n, thus by
the lower bound on |T| in (2.8), m > 3en/2.
We now partition [n] into three parts .Jy, Jo, J3, such that J, = [n—a+1,n|, Jo = [1, ],

and J; = [a + 1,n — a]. By (2.8), we obtain that

en
JNXe| >a— . 2.9
10Xl 2 o = 3555 (2:9)
Take d = 555. Suppose |J; N X3| > dn, then we can find 3 € X3 such that d” <pf<a- 7

Let J{ =[n—a+1,n—a+ %] C J;. Note that (J; + 8) N J| =@, and J; 4+ 8 C Jy, since

(Xo+X3)NXs = @, and for every i € Jj, there is at least one element in the pair {i,i+/} that

is not contained in X5, we have that |J; N X5| < o — 4 = o — £ contradicts (2.9). Hence

we may assume |.J; N X3| < dn. Therefore, by (2.8), |J3 N X3| > 5%

1000

en
1500

us an upper bound on «a since |J3| > |J3 N X3|, that o < 2 + + M Next, we are going

to show that actually we have o < %. Suppose o > %. Note that |J3N X3 > "5 —dn — 1555
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implies
3a en en en

+dn+ 10500 =9 000 < 250°

n—
|J3\ X;5] <

By (2.9) and Lemma 2.26, we get (X3 + X3) N Xy # &, this contradicts (2.5).

Let Ji = [n — 2a,n — a]. We claim that

en 3en

o\ X3 < d )
T3\ Xs| < dn + 250 = 200

(2.10)

Otherwise, observe that at least one of {¢,m — i} is not in X3, then | X5 N (J3\ J§)| < 253

since a < n/3. Hence

< m —}-(Z _% <(i —F EN ) < m EN
s>y mamdn 800/ = 2 800

contradicts (2.8).

Next, let d’ = &5, and suppose that |(J; +a) N X3| > d'n. Thus there is v € X3 such that

a+ Lt <y <2a—2L2 Let J! = [n—2a,n — 2a + £2]. Observe that (7+J{’) NJ/ =

and v + J{ C Jy. Since (X5 4+ X3) N X, = &, we have either [X3NJj| < a— 48 <o — 2

or [ XoN Ji| < a— In o — <% and in either case we get a contradiction with (2.9) or
1 1000 &

(2.10). Thus, we have |(Jo + a) N X3| < d'n. Note that J, = {m} U (m — J,), clearly,

| X3N (JoUJS)| < a+ 1. Then by (2.8),

n — 3« en
2 100

0_|X3ﬂ a,n —2a]| <n—4da+dn,

hence @ < ¢ + % + 5555- Suppose now « > T. We have that |X3 N [2a,n — af| >

5% —dn — d'n — 1555, which implies [[2a,n — o] \ X3| < 1555 + dn + d'n. By (2.9) and

Lemma 2.26, we obtain that (X3 + X3) N Xy # &, and this contradicts (2.5).

Finally, we get 55 < o < %. By (2.8), we have that z3 < Z*. By Lemma 2.14, either X

consists of odd integers, or the minimum element in X3 is at least *5* — The first case

1000
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En

1505, we have

is impossible. Otherwise, since |J3| = a > 2dn +

2a n—oa 9n

2 800’

n_
:E3:|X3ﬂJ2|+|X3ﬂJ3|§dn+ 9

VAN

and this contradicts the lower bound on z3 in (2.8). Now, we assume a € X3 is the minimum

element, and a > "% — 55, Observe that [[*5% +1,n —a] \ X3| < &5, 5% < § — &5, and

by (2.9) and Lemma 2.26, we have (X3 + X3) N Xy # &, this contradicts (2.5). O
The final lemma consider the case when A contains many Schur triples.

Lemma 2.28. Let r > 4 be an integer. Suppose there is u > 0, such that s(A) > un®. Then

_ 3(2logr—log(3r—2)) un

g(A,r) < I

Proof. Since s(A) > un?, by Pigeonhole Principle, there is t € A, such that

2

3un
s(t, A) > > 3un
A

Let the link graph Li(A) to be the simple graph defined on the vertex set A\ {t}, such that
xy € E(Li(A)) if and only if {¢,z,y} € S(t, A). Let k be the size of the maximum matching
in Li;(A). Observe that A(L;(A)) < 2, and |E(L:(A))| = s(t,A) > 3un. Then we have
k> 3un/2.

Now we consider the possible number of rainbow sum-free colorings of A. We first fix a
maximum matching M of L;(A). For the elements in A\ V (M), we color them arbitrarily.
For each edge ab € E(M), in order to avoid a rainbow Schur triple, we either let a,b share
the same color, or color one of a,b by the color of ¢, and color another vertex by a different

color. In this way, a,b have exactly r + 2(r — 1) effective colorings. Hence, we have

2logr
Y

3r — 2\ %" _ 3(2logr—log(3r—2))
g(A,7) < rlA=R=1p (3 — 2)k < plAl <_2 ) = _ Al un
T
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as desired. O
Now we can prove the stability theorem.

Proof of Theorem 2.8. The first part of the statement, that g(n,r) < r™/?+°(  follows
easily from the fact g(A,r) < rl4 when |A| < n/2 + o(n). If |A| > n/2 + nn for some
constant 7, the result follows from Lemma 2.25 (ii) when r» > 5. For the case r = 4, after
applying Lemma 2.27 we still have one extra case that |A| > (1 —n)n, and this follows from
Theorem 2.5.

For the second part of the statement, we will prove it by contrapositive. Let ¢ =

3(2log r—log(3r—2))

STog , clearly ¢ > 0 when r > 4. Let u be the value of 0(55) given in Lemma 2.13,

and let ¢’ = min{%,}. We first consider r > 5, and suppose that we have both

|JAAO| > en, and |AAIL| > en. (2.11)

In this case we take § = min{d,(¢), ', 55}, where d,(¢’) is given in Lemma 2.25 (ii). If |A| >
Z +&'n, we apply Lemma 2.25 (ii) with parameter ', then we obtain that g(A,r) < r"/2=om,

Thus we may assume that [A| < (1/2+&')n. If s(A) > pn?, applying Lemma 2.28, we have
g(A7 7,) < ,r,n/2+€’nfc;m < Tn/Qfs’n < ,r,n/276n.

Finally, we have s(A) < un?. By Lemma 2.13, we get the partition A = B U C, where B
is sum-free and |C| < 55n. Note that we may assume |A| > T — =n, otherwise g(A4,7) <

rlAl < pn/2-0n Now we have

en 2n
Bl > |A C>———>—
Bz |Al- |12 5 -8 > 5

since € < 1. We apply Lemma 2.14 on B. Hence either B contains only odd integers, or the
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minimum element of B is at least | B|. Suppose B consists of odd integers. Thus

5 5
< < — _
|AAO| < |C|+ |0\ B] < 20n+ " < e

contradicts (2.11). Thus, let a be the minimum element in B, then a > § — $¢. Therefore,

IAAL| < |C| + |BAL)| < QEOn + %n + %n < en,

which also contradicts (2.11).

Next, let us consider the case when r = 4. Besides (2.11), we further require
|AA[n]| > en. (2.12)

We now take 0 = min{d(c’),€’, 55}, where d5(¢’) is given in Lemma 2.27. The case when
|A] < §+¢'nis same as when r > 5. When § +¢&'n < |A] < n—e'n, by applying Lemma 2.27
we get g(A,4) < 4727 When |A| > n—e'n, we get |AA[n]| < e'n < en, which contradicts

(2.12). 0

2.5 Proof of Theorem 2.10

For a subset A C [n] and an integer ¢, recall that L;(A) is the simple graph defined on
A\ {t}, in which zy € E(L;(A)) if and only if {t,x,y} € S(t, A). Let k(t, A) be the size of

the maximum matching of L;(A). Note that A(L;(A)) < 2. Therefore we have
k(t, A) = [E(Li(A))]/2 = s(t, A) /2. (2.13)

Proposition 2.29. Let n,r,c € N with r > 8 and ¢ > 1. Suppose that A is a subset of [n]

of size [n/2] + c.
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(i) If there exists an element t € A such that k(t, A) > 2(c — 1), then we have g(A,r) <

7,]—n/2'|—i—1.

(ii) If there exists an element t € A such that k(t, A) > 2(c—1)+1, then we have g(A,r) <
rin/21 (3 —2/r).

Proof. First note that for r > 8 we have

(3r —2)?

S <L (2.14)

Let k = k(t, A). Similarly as in the proof of Lemma 2.28, we obtain that

k
3r—2
O, ) A g o (22

For k > 2(c — 1), we have

2(c—1) 2N c—1
G(A. 1) < pn/2se (37‘ . 2> _ /2l (u) <yl

where the last inequality follows from (2.14) and ¢ > 1.

Similarly, for £ > 2(c — 1) + 1, we have

— 2\ Ft oy 2(e-1)
g(A,r) < rn/2l (3 _ 2 pel 3r—2 <2 (3 2 el 3r —2
T 7’2 r 7"2
2\ c—1
= r["/2] (3 — 2) <—<3r — 2 ) < 7/ <3 - 2) :
T r r

Together with the previous inequality, this completes the proof. O

Lemma 2.30. Let r > 8, 0 < e < 1/36, and A be a subset of [n] of size [n/2] + ¢, where
1 < ¢ < en. Suppose that there exists a partition A = B U C such that B consists of odd

numbers and |C| < en. Then we have g(A,r) < r[™?1(3 —2/r).
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Proof. From the assumption of A, there must be an even number ¢ € A. By Proposi-
tion 2.29(ii) and e < 1/36, it is sufficient to show that k(t, A) > (1/12 —&)n — 1.
Recall that O is the set of all odd numbers in [n]. Since |A| > [n/2] 4+ 1 and |C| < en,

we have |O \ B| < en. Then,

k(t, A) > k(t, B) > k(t,0) — en,

and thus it is equivalent to show that k(t,0) > n/12 — 1.

If t > n/3, we immediately have

k(t,0) > [{(i,t —i,t),i e ON[t/2 — 1]} > t/4—1 > n/12 — 1.

If t < n/3, then by (2.13) we obtain that

k(t,0) > s(t,0)/2 > {(t,i,t +1),i € ON[t+1, n— 4} /2 > (n—2)/4 > n/12.

This completes the proof. O

Lemma 2.31. Let r > 8, 0 < ¢ < 1, and A be a subset of [n| of size [n/2] + ¢, where
1 < ¢ < en. Suppose that there exists a partition A = BUC such that B C Iy and |C] < en.

Then the following holds.
(i) If n is even, then g(A,r) < r/m/21+1,
(ii) If n is odd, then g(A,r) < r™/?1(3 —2/r).

Proof. Let m be the minimum element of A, and clearly m < [n/2| — (¢ — 1). Recall that
Iy =[|n/2] +1,n]. Let d = |Ip\ A|. From the assumption of A, we have d < en. We divide

the proof into four cases.

Case 1: m < d+ 3(c — 1). In this case, we have m < 4en. Similar to the proof of
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Lemma 2.30, we have

k(m,A) > k(m,B) > k(m, ly) —d > s(m,1y)/2 —en > (n/2 —m)/2 —en > n/4 — 3en,

which, together with Proposition 2.29(ii) and € < 1, completes the proof.

Case 2: d+3(c—1) <m < [n/2] —d—3(c—1). Since m < n/2, each nontrivial component
of L,,(Ip) is a path, and there are min {m, [n/2] —m} > d+3(c—1) of them. Therefore we
have

k(m, A) > k(m,Io) —d > d+3(c—1)—d=3(c—1)

which, together with Proposition 2.29(ii) and ¢ > 1, completes the proof.
Case 3: [n/2] —d—3(c—1) <m < [n/2] —2(c —1). By the choice of m, each nontrivial

component of L,,(A) is a path of length 1, and the number of them is exactly

s(m,m+1,n]) —|m+1,n|\Al=n—-2m—(n—|A| — (m—1)) = [n/2] + (c—1) —m.

Therefore, we obtain that

k(m,A) =[n/2]+(c—1) —m >3(c —1),

which completes the proof together with Proposition 2.29(ii) and ¢ > 1.

Case 4: [n/2] —2(c—1) <m < [n/2] — (¢ —1). Similarly as in Case 3, we obtain that
k(m,A) = [n/2] + (¢ — 1) —m. By the choice of m, for even n, we have k(m, A) > 2(c—1),
while for odd n, k(m, A) > 2(¢ — 1) + 1. By Proposition 2.29, this gives the desired upper

bounds. O

Proof of Theorem 2.10. Here we only prove (i) as the proof of (ii) is similar. If |A| =
[n/2] + 1 and A # I, then A must have at least one restricted Schur triple, and therefore

g(A,r) < g(Iy,r) = r[™21+1 When |A| > [n/2]+1, choose a constant ¢ < 1, which satisfies
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the assumptions of Lemmas 2.30 and 2.31. Then by Theorem 2.8, we can further assume
that |[A A O] < en, or |[A A Iy| < en. Applying Lemmas 2.30 and 2.31(i) on A, for both

cases, we obtain g(A,r) < rm/21+1, O

2.6 Concluding Remarks

Our investigation raises many open problems. In this chapter, we determine the rainbow
r-extremal sets, that is, the subsets of [n] which maximize the number of rainbow sum-free
r-colorings, for r < 3 and r > 8. However, for r € {4, 5,6, 7}, although Theorem 2.8 says the
rainbow r-extremal sets should be close to what we expect, our proofs cannot give the exact
structure of the extremal sets. Therefore, the most interesting question is to determine the

unsolved cases of Conjecture 2.9. Recall that [; = [% — 1,n] and I3 = [%51,n].

Conjecture 2.32. Let n,r be positive integers and 4 < r < 7.
(i) If n is even, then g(n,r) = r™? (3 — 2/r)*, and I is the unique rainbow r-extremal set.

(i) Ifn is odd and r = 4, then g(n,r) = g([n],r), and [n] is the unique rainbow r-extremal

set.

(iii) If n is odd and 5 < r < 7, then g(n,r) = r™/21(3 —2/r), and I3 is the unique rainbow

r-extremal set.

Another direction is that one can consider various generalization of this problem. Recall
that a sum-free set is a set forbidding the solutions of the linear equation xy + xo = y. It
is natural to extend the Erdds—-Rothschild problems on sets forbidding solutions of other
linear equations, for example, the (k, ¢)-free sets, that is, the sets without nontrivial tuples
{z1,.. ., 28,91, .., ye} satisfying Zle T = 25:1 y;. It is possible that the method used to
prove Theorem 2.5 can prove the analogous results for some other (k, ¢)-free sets. However,

the stability analysis on other parts would be very involved.
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One could also broaden the study of rainbow Erddés-Rothschild problems to various
other extremal problems in this fashion. In the rainbow Erdés—Rothschild problems studied
to date, that is, the Gallai colorings and the rainbow sum-free colorings, for r = 3 the
configurations maximizing the number of such colorings are complete graphs or the whole
intervals, while for sufficiently large r the optimal configurations are those solving the original
extremal problems. It would be very interesting to determine the threshold of r to ensure
that the extremal configurations for the uncolored problems are optimal for rainbow Erdés—

Rothschild problems.
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Chapter 3

Avoidance density for (k,{)-sum-free
sets

Let M(21)(IV) be the infimum of the largest sum-free subset of any set of IV positive integers.
An old conjecture in additive combinatorics asserts that there is a constant ¢ = ¢(2, 1) and
a function w(N) — oo as N — oo, such that cN + w(N) < M21)(N) < (¢ +o(1))N. The
constant ¢(2, 1) is determined by Eberhard, Green, and Manners [57], while the existence of
w(N) is still wide open.

In this chapter, we study the analogous conjecture on (k, ¢)-sum-free sets and restricted
(k, £)-sum-free sets. We determine the constant c(k, ¢) for every (k, {)-sum-free sets, answer-
ing a question asked by Bajnok [4]. We also confirm the conjecture for infinitely many (k, ¢).

This chapter is based on joint work with Wu [108].

3.1 Introduction

In 1965, Erdés asked the following question [59]. Given an arbitrary sequence A of N
different positive integers, what is the size of the largest sum-free subsequence of A? By
sum-free we mean that if z,y, 2 € A, then z + y # 2. Let

Mepy(N) = inf  max [5].

ACN>0  SCA
|A]=N S is sum-free

Using a beautiful probabilistic argument, Erdds showed that every N-element set A C N>°
contains a sum-free subset of size at least N/3, in other words, M 1y(N) > N/3. It turns

out that it is surprisingly hard to improve upon this bound. The result was later improved
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by Alon and Kleitman (3], who showed that M1)(/N) > (N +1)/3. Bourgain [28], using an
entirely different Fourier analytic argument, showed that M1)(N) > (N + 2)/3, which is
the best lower bound on M(31)(/V) to date. In particular, the following conjecture has been

made in a series of papers. See [59, 28, 57, 164] for example.

Conjecture 3.1. There is a function w(N) — oo as N — 0o, such that
Moy (N) > — +w(N).

On the other hand, a recent breakthrough by Eberhard, Green, and Manners [57] proved
that M1)(N) = (1/3 + o(1))N. More precisely, they showed that for every ¢ > 0, when N
is large enough, there is a set A C N>0 of size N, such that every subset of A of size at least
(1/3+¢)N contains x,y, z with = + y = z. This result is one of the first beautiful applica-
tions of the arithmetic regularity lemma. Later, using a completely different argument, the
result is generalized by Eberhard [56] to k-sum-free set. A set A is k-sum-free if for every
Y, T1,..., 0 €Ay #£ Zf;l x;. Eberhard proved that for every € > 0, there is a set A C N>9
of size N, such that every subset of A of size at least (1/(k + 1) + )N contains a k-sum.
For more background we refer to the survey [164].

In this chapter, we study the analogue of the Erdds sum-free set problem for (k,?¢)-
sum-free sets. Given two positive integers k, ¢ with k > ¢, a set A is (k, ()-sum-free if for
every Ti,...,Tr,Yi,..., Y € A, Zle T # Z§:1 y;. For example, using the notation of
(k, £)-sum-free, sum-free is (2, 1)-sum-free; k-sum-free is (k, 1)-sum-free. Finding the largest
(k, £)-sum-free sets in some given structures has been well-studied in the past fifty years, for
example, the size of the maximum (k, £)-sum-free sets in finite cyclic groups was determined
recently by Bajnok and Matzke [5], and the size in compact abelian groups was determined

by Kravitz [118].
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For every A C N>0 let

Mio)(A) = %1331{ S|, and Mg (V) = Aic%fw Moy (A).
S is (k,£)-sum-free |A]l=N

The problem of determining M ¢ (V) is suggested by Bajnok [4, Problem G.41]. In fact,
we can also make the following conjecture for (k,¢)-sum-free set, which is an analogue of

Conjecture 3.1.

Conjecture 3.2. Let k > ¢ > 0. There is a constant ¢ = c(k,l) > 0, and a function

w(N) — 00 as N — oo, such that
¢N +w(N) < Mpg(N) < (c+¢)N,

for every e > 0.

As we mentioned above, the constant c(k,f) in Conjecture 3.2 for (k,¢) = (2,1) is
determined by Eberhard, Green, and Manners [57], and for (k,¢) = (k,1) is determined
by Eberhard [56]. The conjecture for (k,¢) = (3,1) is confirmed by Bourgain [28].

Our first result determines the constant c(k,¢) in Conjecture 3.2 for every (k, /) (see
statements (i) and (iv) of Theorem 3.3), which answers a question asked by Bajnok [4] when
the ambient group is Z. The statement (ii) of Theorem 3.3 also confirms Conjecture 3.2 for

infinitely many (&, ¢).
Theorem 3.3. Let k,{ be two positive integers and k > €. Then the following hold:

(i) for every k,(, we have M g)(N) > ki%
(ii) suppose k =5(. Then
N log N

M N) >
(k) )_k+€+cloglogN’

(3.1)
where ¢ > 0 1s an absolute constant that only depends on k,£.
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(iii) for every set A of N positive integers, for every positive even integer u, there is an odd

integer v < u such that if k = (u+v)l/(u —v), then

N log N

M A) >
(ko) (A) 2 k+€+cloglogN’

where ¢ > 0 1s an absolute constant that only depends on k,£.
(iv) for every k,{, we have M o)(N) = (kLM +o(1))N.

We remark that Theorem 3.3 (iii) also implies estimate (3.1) when k& = 3¢, which in
particular covers the (3, 1)-sum-free case obtained by Bourgain. This is because when u = 2,
the only possible value of v is 1, and this gives us k = 3¢. It follows that estimate (3.2) holds
for every N-element set A when k& = 3¢. Hence, by the definition of M (N), we prove
estimate (3.1) when k = 3/.

The upper bound construction given by Eberhard, Green, and Manners [57] for (2, 1)-
sum-free set actually works in a more general setting: restricted (2,1)-sum-free set. A set
A is restricted (k,()-sum-free if for every k distinct elements aq, ..., a; in A, and ¢ distinct

elements by, ...,b, in A, we have Zle a; # Z§:1 b;. Let

Mo(N) = inf max S|

|A|=N S is restricted (k,£)—sum free

Clearly, we have that M ¢ (NN) < J/\/\[(k’g)(N). Our next theorem gives us an upper bound
on JVE(W)(N) when k£ <204 1.

Theorem 3.4. Let k,{ be positive integers, and k < 20 + 1. Then
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Overview

The chapter is organized as follows. In the next section, we provide some basic definitions and
properties in additive combinatorics, harmonic analysis, and model theory (or more precisely,
nonstandard analysis) used later in the proof. In Section 3.3, we prove a variant of the weak
Littlewood conjecture, based on the ideas introduced by Bourgain [28]. Theorem 3.3 (i) is
proved by using the probabilistic argument introduced by Erdds, and some structural results
for the (k, £)-sum-free open set on the torus. This is included in Section 3.4. One of the main
parts of the chapter is to prove Theorem 3.3 (ii) and (iii). The special case for (3, 1)-sum-free
set is proved by Bourgain [28], but his argument relies heavily on the fact that a certain term
of the Fourier coefficient of the characteristic function is multiplicative, which is not true for
the other (k,¢). Here we introduce a different sieve function, as well as a finer control on
the functions we constructed. We will discuss it in detail in Section 3.5. In Sections 3.6 and
3.7, we prove Theorem 3.3 (iv). The proof goes by showing that the constructions given by
Eberhard [56] for (k, 1)-sum-free sets, the Fglner sequence, is still the correct construction
for the other (k, £)-sum-free sets. The new ingredients contain structural results for the large
infinite (k, £)-sum-free sets, which can be viewed as a generalization of the Luczak-Schoen
Theorem [127]. We will prove Theorem 3.4 in Section 3.8. In Section 3.9, we make some

concluding remarks, and pose some open problems.

3.2 Preliminaries

3.2.1 Additive combinatorics

Throughout the chapter, we use standard definitions and notation in additive combinatorics
as given in [163]. Let p be a prime, and let m,n, N ranging over positive integers. Given
a,b,N € N and a < b, let [a,b] := [a,b] NN, and let [N] := [1, N]. We use the standard

Vinogradov notation. That is, f < g means f = O(g), and f < gif f < g and f > g.
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Given A, B C Z, we write
A+B:={a+blac Abe B}, and AB:={ab|a € Abe B}.
When A = {z}, we simply write 2 + B :={z} + B and - B := {z}B. Given A C Z, let
kA:={ay+---+ap|ay,... a5 € A},

for integer £ > 2. For example, 2 - N denotes the set of even natural numbers, while 2N
denotes N+ N which is still N. Using this notation, a set A is (k, £)-sum-free if kANLA = @.

We also define the restricted sums. Let

A¥B:={a+b|laec Abe B,a+#b},

kA = {a1 4+ +ag | ay,...,a, € A, all of them are distinct}.

Thus a set A is restricted (k, ()-sum-free if kKANIA = o.
Let f : Z — C be a function. Define f: T — C, where T = R/Z is the 1-dimensional

torus, and for every r € T,

Fr) =" fla)e(—ra),

where e(f) = ™. By Fourier Inversion, for every x € 7Z,

f(z) = /Tf(r)e(rx)dr.

Let i : N°° — C be the Mébius function. Recall that p is supported on the square-

free integers, and y(n) = (—1)*™ when n is square-free, where w(n) counts the number of
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distinct prime factors of n. By Inclusive-Exclusive Principle,

0 ifn>1,

> u(d) =

dn 1 ifn=1.

3.2.2 Nonstandard analysis

We give some basic definitions in nonstandard analysis which will be used later in the proofs.
For more systematic accounts we refer to [15, 54]. Let S be a set with infinitely many
elements. An wultrafilter U on S is a collection of subsets of S, such that the characteristic
function 1y : 2% — {0, 1} is a finitely additive {0, 1}-valued probability measure on S. An
ultrafilter is principal if it consists of all sets containing some element s € S. Let 55 denotes
the collection of all ultrafilters. One can embed S into 55, by mapping x € S to the principal
ultrafilter generated by x. By a standard application of Zorn’s Lemma, 55\ S is non-empty.

Fix U € SN\ N, and let M, be a structure for each n € N. The ultraproduct [[,, ,, My is
a space consists of all ultralimits lim,,_.y x,, of sequences x,, defined in M,,, with lim,,_,y z,, =

lim,, 1 y,, if two sequences {x,} and {y,} agree on a set in U. Let *R := [] ., R be the

n—U

hyperreal field. Every finite hyperreal number ¢ € *R is infinitely close to a unique real
number r € R, called the standard part of . In this case, we use the notation r = st(&).
Given a sequence of finite non-empty sets F,, let u,(X) = |X N F,|/|F.| be a uniform

probability measure. Let F' =[], _, F» be an ultraproduct. The Loeb measure [125] puy, on

n—U

F' is the unique probability measure on the o-algebra generated by the Boolean algebra of

internal subsets of F', such that when X =[] X, is an internal subset of F', we have

n—U

pr(X) = st( lim un(Xn)>.

n—U
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3.2.3 Determinants of certain matrices

We make use of the following lemma several times in the later proofs, which records a fact

about two special matrices.

Lemma 3.5. Let 6y,...,0, € R. Consider two matrices
sinfy sinfy --- sind,
sin26; sin20, --- sin26,
An = ’
sinn#; sinnfy --- sinnd,
and
1 1 . 1
cos 0y cos b, . cos 6,
B, = cos 26, cos 20, . cos 20,
cos(n—1)0; cos(n—1)0y --- cos(n—1)0,

Then we have the formula:

det(4,) = 2"7"( H sin 6 ) det(B,); (3.3)
k=1
and
det(B,) = 2~D=2)/2 H (cos B, — cos by). (3.4)
1<k<iI<n
As a result,

det(A,) = 2”("_1)/2( H sin Hk) H (cos @, — cosby).
k=1

1<k<I<n

Proof. For k =1,2,...n — 1, we subtract the k-th row from the (k + 1)-th row in A,,, and
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use the basic trigonometric identities so that

in 0L 0 o in fn On
2 sin 5 COS 3 2sin 2+ COS 2
det(A,) = det
. 2n-1)0 . 2n-1)6
QSm%COS% QSIH%COS%
Cos %1 e CoSs %"
- 0
. bk
= 2”( | | sm—) det
k=1 2
N (2n-1)6; (2n-1)6,
COS “—5— ©COS

=: C,det(B)).

For k = 1,2,...n — 1, we add the k-th row to the k + 1-th row in B/, and use the basic

n’

trigonometric identities again so that

cos & cos &
QCos%cosel QCOS%"COSGn
det(B]) = det
2cos & cos(n—1)0; -+ 2cos % cos(n—1)0,

& 0
— on-l ( H COS Ek) det(B,)
k=1
Combining the calculations above we prove (3.3).
As for (3.4), we let T,, be the Chebyshev polynomial
[n/2] n
T — 2 1 k n—2k:‘
(=Y (5~ 1t

k=0

Thus, we have T, (cosz) = cosnx. The coefficient of the leading term, 2" in T},(x) would be
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a, = 2" . Combining this fact and several elementary row operations, we get

1 e 1
cos e cos 6,
det(B,) = 2 D0=2/2 e '
(cos@p)" 1 -+ (cosf,) !
= 2-D(n-2)/2 H (cos 0, — cosby).
1<k<i<n
The last equation comes from the determinant formula for Vandermonde martix. O

3.3 A density estimate

In this section, we prove a generalization of the McGehee-Pigno-Smith theorem [135], based
on the ideas given by Bourgain [28]. Recall that the weak Littlewood problem [88] is to ask
to estimate

dz.

’ E einx

/Z neA

I(N):= min /
ACZ)A|=N Jg

The conjecture, I(N) > log N, is resolved by McGehee, Pigno, and Smith [135], and inde-
pendently by Konyagin [116]. The analogous question in discrete setting is also well studied,
we refer to [77, 150, 154] for the interested readers.

Let N be the set of natural numbers that only contains prime factors at least @, where

Q = (log N)'™ is a prime. We will use the following lemma from [28, Section 5].

Lemma 3.6. Let A be a finite subset of Z with |A| = N. For all R > 1, we define
Arp={me A:m < R}.

Also, we use Projp >_ are’*® to denote the truncated sum D lk<R are™® . Assume |a,| < 1
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and Q > (log N)?°. Then there is an absolute big constant C, such that

< CP_1/15|AR|1/2.
2

. An
PI‘OJR E _nezmnx
n

neNi,meA

Now we are able to prove our technical lemma. The proof basically follows the arguments

in [135] and [28].

Lemma 3.7. Let B = {my,...,my} be a finite subset of N”° and let Q > (log N).
Assume that w : N”% — C is a weight. Then there exists a function ®(x) with ||®| s < 10

such that

\<§Jemﬂw<mj>,¢><x>>' > f;'l”(jﬂ (35)

J=1

while for any B € 7Z,

'< > %ewm"x,q’(fﬂ)>‘SC(logM)‘z- (3.6)

neN1,meB

Here ¢, C are two absolute constants.

Proof. Let ky be the largest natural number that 10%° < M. We group B into disjoint
subsets {Bj}1°, such that for 0 < k < kg — 1, |Bi| = 10%. Here By = {m1}, B; =
{ma,...,mgsi1}, -+, and By, = A\ (Up<p,—1 Br). From the construction we know |By, | =<
10%0. Let 7 : N> — S! be the argument function that 7(m)w(m) > 0. For each By, we

define

- 1 ‘
P =— E e r(m).
“ By (m)

meBy,
Let I, = [ay, by be the interval with a;, = min{m : m € By}, b = max{m : m € By}, and

let & be the center of I,. We also define

Pe= Pes (¢ Fl,)
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where Fo = Z|m| <c C_C|m|eim“’ is the C-Féjer kernel. Consequently,

—

supp(Py) = supp(Fy) C Iy, (3.7)
and for any m € By
w(m)Pe(m) > 107 w(m)|.

This shows that the functions Py, are good test functions. However, the function ), Py(x)
has one drawback: It is not distributed evenly on the torus. That is, the L>-norm ), Py(z)
is comparably large.

To overcome this difficulty, for each Py, we construct a function @)y serving as a “compen-
sator”. Specifically, let H be the Hilbert transform in L*(R/Z) that ’}Q}(n) = —isgn(n)f(n),

so that when f is a real-valued function, H f is also real-valued. We define

O = <€—<\ﬁk\—mnﬁkn>> - (3.8)

| Pro| —iH[| Pe]])

Since the Fourier series of e~ is supported in non-positive integers,

supp(Qr) C [—|1x],0]. (3.9)
Using the inequality that |e™* — 1| < |z| if z € C and Re(z) > 0, we can easily prove
11— Qulls < [1Bella + [|HIIPul]], < 21Bel 7> (3.10)

Thus, @ is approximately the identical function. In fact, |Qg| is relatively small when |Py|

is relatively large, so @) can help us “mollify” the function Pj.

We will use the functions P, Q) to construct our test function ®. In specific, we set
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dy = B, and set

®p = QuPi_y + Py, 1<k < k. (3.11)

Define ® = &, which has the explicit formula

S = Py + Pro—1Qry + Pro—2Qro—1Qko + - -+ + PoQ1 -+ - Q.- (3.12)

We claim [[®|| < 10. To see this, we first recall the basic inequality: {5 +e™* < 1 if

a > 0. Then, observing |Fy| = 1 and

1 ~ = 1 ~ -
[ Pel + ’Qk‘H < H(E|Pk| +e ) w By ‘ < HEUDIJ +e B <

[e.e]

Y

|5
10
we argue inductively using (3.11) to conclude our claim.

Next, we will verify (3.5). We will prove that for any m € By,

(& (m) — By(m)| < 1071 Bi(m)| = @. (3.13)

In fact, using the support condition (3.9) and the equation (3.12), we have
®(m) — Pi(m) = Py (m) + Prgmy * Quy (m) + -+ P (1= (Qry -+ Qurn)) (m),

which, combining the support condition of 16; in (3.7), equals to

ko—1

D P (1= Q- Qan)")(m).
j=k
We estimate the above quantity using the equality

1= Qry1- Qro = (1 — Qrg1) + Qi1 (1 — Qra2) + -+ + (1 — Q) Qt1 - - - Qro—15
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so that

ko—1 ko—1 ko—1
[D(m) — Po(m)| = | > P+ (1— (Qu - Qj+1)A)(m)' < P D> 11— Q.
j=k Jj=k l=y

Since ||P;l2 < |B;|~'/% and since (3.10), the right hand side of the above inequality can be

bounded as
ko—1 ko—1 ko—1 ko—1

SR Y 1= Qualla <23 1079 3 10730+,
7=k =i i=k 1=

which implies what we need that

B (m) — Pe(m)| < 107352 < 1071 Py(m)].

As a consequence of (3.13), for any m € By,

Re(wd)(m) > %w(m)ﬁk(m) > 105 up(m)].

We use the above inequality to sum up all m € B to get

( f ) 0(o) )| > fémwa)(mﬁ S f ot
and this gives (3.5).

Finally, we remark that the proof of (3.6) is given in [108]. At this point, we complete

the proof of the lemma. O
As an application of Lemma 3.7, we have the following corollary:

Corollary 3.8. Let B = {my,...,my} be a finite subset of N>° and let Q > (log N)'%°,

Recall that N is the set of natural numbers that only contains prime factors at least Q.
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Assume |a,| < 1. Then for any I' C Z with |T'| <log M, we have

M
Z; eimjacw(mj) + Z (Z C:L_nezﬂmna:>
j=

neNy,meB pBel

o~ lw(my)
> CZ ——= —0o(1).
1 J=1 J
Proof. We apply Lemma 3.7 to obtain a function ®(z) satisfying (3.5) and (3.6). Then

12l

M
Z eimjww(mj) + Z <Z C;_nezﬁmnm)
=1

neN1,meB Bel 1

> ‘<Zeimjxw(mj),q)($)>‘ — Z ’< Z %eiﬁmnz’cp(x)ﬂ

1 Ber neN1,meB

as desired. O

3.4 (k,{)-sum-free open sets in the torus

In this section, we use ur as the Haar probability measure on T.

Proposition 3.9. Let A C T be a (k,{)-sum-free open set. Then prp(A) < k+re

Proof. Since A is (k, {)-sum-free, we have kANIA = @. In particular, pur(kA) + pr(CA) < 1.
By Kneser’s inequality [115],

(k + Opn(A) < pr(kA) + pr(LA) < 1,

which implies that ur(A) < 1/(k + ¢). O

Next, we construct some largest (k,¢)-sum-free open sets in T. When k — ¢ > 2, our
construction is asymmetric, which will help us get a better lower bound on M, »(N). We

will discuss this in details in the next section.
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Lemma 3.10. Let k, ¢ be two positive integers and k > £. For every integer t € [k — /], set

= (ltc 1£ T k2 IZH k e + e 42) Then Y is (k, £)-sum-free.

Lemma 3.10 is easy to verify, and we omit the details here. When k = ¢+ 1, the following
observation shows that all the possible (k, £)-sum-free open sets with maximum measure are
symmetric. Thus one cannot apply the method used in the next section to improve the lower

bound for the cases k = ¢ + 1.

Lemma 3.11. Let k = ¢+ 1. Suppose A C T is a maximum (k,{)-sum-free open set. Then

A is symmetric.

Proof. Since k = ¢+ 1, A is (k,()-sum-free implies that (A —(A)N A = @. Hence A C
T\ (¢A—(A). By Kneser’s inequality,

(T \ (CA — LA)) < 1— 20ur(A).

By Proposition 3.9, ur(A) = Thus A = T\ (/A — (A), and this implies that A is

_1
20+1"

symmetric. O

Using the argument by Erdés [59], Lemma 3.10 is able to give us the following lower bound

on the maximum (k, £)-sum-free subsets of any set of N integers, which proves Theorem 3.3
(i)

Proposition 3.12. Let k,{ be positive integers and k > . Then for every A C N>0 of size

N, A contains a (k,l)-sum-free subsets of size at least k+€N

Proof. Let € be as in Lemma 3.10, and let 1o be the characteristic function of €2 in T.

Thus by Fubini’s Theorem,

N
/Z]lg nx)dpr(x Z/]lg nax)dpr(x :k——i-ﬁ'

neA neA

62



Therefore, by Pigeonhole principle, there exists z € T such that

|{n€A|nx€Q}|2kl+€,

finishes the proof.

3.5 Lower Bounds

Let k, ¢ be two positive integers with k —¢ > 2. Let I = {1,...,k —{} be the index set. Set

P10 -1k
Q:
‘ (k—£+k2—€2’k—£+k2—€2>’

for every t € I. Let 1q, be the indicator function of ;. Given A C N> of size N, let M(A)

be the size of the maximum (k, ¢)-sum-free subset of A. We have

since € is (k, {)-sum-free for every t. Then

N 1
maxz 1g,(nz) = Pl + max (]1@ - k——|—€> (nx),

zeT zeT
neA neA

for every t € I. We introduce a balanced function f; : T — C defined by f; = 1g, —

orthogonality of characters we have
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By Fourier inversion, when n > 0,

-~

Fun) = / Lo, (2)e(—n)du(z)
1 <_€<_(t—1)n nk _(t=Dn nt )>

2mn

Simplify ﬁ(n) as

Film) = 271me<(22€k_—12;1) (Sin(;kf; - /:—n 7) st - me)>

= %e(%) sin (kn—_:_rg>

Hence, for every t € I we have

filz) = Zﬁ(n)e(nm) = ; %e(%) sin (kn_:g)e(nzn).

n#0
Let F(x) :=,c; fi(x). The sine terms cancel when summing up ¢ as
. (2t — 1)n7r) B
> sin (=) =0
t=1

so we get

> L in <knj€>o‘<n) (e(na) + e(—na)),

0 when (k —{) { n,

tel - (=1)*(k—¢) whenn=(k—{)s.
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Therefore, we have

F(zx) = % Z (_i)n sin <(kk:—f)€mr> cos(2m(k — {)nz). (3.16)

n>1

In the rest of the section, we let k£ — ¢ be an even integer. Set
L={1,....(k=0)/2}, L={(k-0/2+1,...,k—/(}.

We define a (5% x EX4)-matrix D = (d;;), such that

for every 7,7 € I5.
Let A = (A1,...,Ax—¢,2) be a vector. By Lemma 3.5, there is A € RE=0O/2 " with
|\i| < k¥, such that DAT = (0,...,0,1)T. Fix this A, and let

G(x) = Z Aifi(x) — Z Ne—tr1—t fr ().

jel tels

Observe that for any n € N>°,
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where

Therefore, we get

G(z) = - 2_ ] ; 751”) sin (@) sin(m(k — )nz),
where v(n) = 5((k — £)n/2). We now split the proof into two cases.

3.5.1 Proof of Theorem 3.3 (ii)

Now we have k = 5¢. On one hand, by equation (3.16), we have

F(z) = —E Z @ cos(8mlnx),

n>1

where )

1 when n =1,2 (mod 6),
Y(n)=49-1 whenn=45 (mod6),

0 otherwise.

\
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Note that 1(n) is not a multiplicative function. Using the Mobius function u, we define a

weighted Mobius function n that

(
p(n) when n=1,4 (mod 6),

nn) =94 —pu(n) whenn=25 (mod 6),

0 otherwise.
\

Set P =< (log N)'% a prime. Let M; be the set of square-free integers such that for every
n € M; we have 3 1 n, all the prime factors of n are at most P, and we further require that

1 € M;. Then, we have
) ) — Y3 (Z)
Z - F(mz) = - Z cos(8mlnzx) Z n(m)y )
meM; n>1 meMi,mln
where

Soommp(=) = X ame(=)+ Do mmp(=) =L+ b

meMi,mln meMi,min meMi,mln
2fm 2|lm

Note that I; + I = 0 when 3 | n. Also, recall that A is the set defined in Section 3.3 that

contains integers only having prime factors at least P. It follows that for any odd integer

n & N with 31 n,

> () =vm) > ulm) =0, (3.18)

meMi,mln meMi,m|n

As a consequence, when n is an odd integer with n € N, we have I, = I, = 0, unless

n = 1; When n is an even integer with n/2 ¢ N and n # 2% we have I;(n) = 0 and
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Iy(n) = I;(n/2) = 0. When n = 2¢, we have

2 whend=1,
L+ 1, = ¢(2d) + ¢(2d_1) =

0 when d > 1.

Therefore,

meMy

Z WF(%) = — V3 (cos(27r€a:) + cos(4mlz) +
v

cos(2mlnz) + Z $(n) +n1/1(n/2) Cos(2ﬁénx)),

neN ne2-N

On the other hand, by equation (3.17), we get

G(z) = ﬁ Z @ sin(4mlnz),

n>1

where )

1 when n =41 (mod 12),
m(n) =9 -1 whenn=45 (mod 12),

0 otherwise.

\

Note that 7(n) is a multiplicative function. Let M be the set of square-free integers such
that for every n € M, all the prime factors of n are at most P, and 1 € M. Thus by the

basic properties of the Mobius function, we have

5 Kt = o 52 Lntntns) 35yt

meMm m(k— ¢ n>1 meM,min
V3 . m(n) .
=D sin(4mlx) + ,% - sin(4nlnx) |.
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Now we are going to apply Corollary 3.8 to obtain a lower bound of M(A). Let

;

m(n) when 2 1 n,

m'(n) = m(n/2) when 2| n and 41 n,

\0 otherwise,
and let )
P(n) when 2 { n,
P'(n) =9 ¢(n) +(n/2) when 2| nand 44n,
\O otherwise.
We have

log N

< Z (cos(2mlma) 4 cos(4mlma) + isin(2mlmz) + isin(4rlmaz))

meA

1
+ Z Z — <w’(n) cos(2mlmnx) + iw'(n) sin(27r€mnx)>
mEA neNORN) | LY(T)
n(t tmx ,u tmx
DRCED DI CS] IS DLty Sl Cey
teMy meA LY(T) teM meA LY(T)
pt)m ()
05 o
teM meA
< ¥ 22l 5 Py +2z\ N S ctme
teMy meA LH(T) teM meA 1(T)
<II(1+ >(z S pma)| 2 32 3 sm )-
p<P =1 I mea LT tehul, 'meA L(T)
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By Mertens’ estimates we get

1
H <1+ —) < log P < loglog N.
p

p<P

log N

Hence there is ¢ € I such that || Y, fi(ma TEDs -

>

iz
Note that,

/Tth(m:)d:c = 0.

Thus we have

Z fi(nx)

z€eT

1
max 3 flne) > &
neA

L(T)

Together with (3.14) and (3.15), we get

N log N

M(A) —
(4) l€—|—€>>loglog]\f7

and this proves Theorem 3.3 (ii).

3.5.2 Proof of Theorem 3.3 (iii)

Let u be an even integer, and let ¢ = u/2 in this subsection. Consider the following matrix

sin(m/u)  sin(3w/u) -+ sin((2t — 1)7/u)
¥ sin(2r/u) sin(6m/u) -+ sin(2(2t — 1)7w/u)
sin(tr/u) sin(3tw/u) ---  sin(t(2t — 1)w/u)

By Lemma 3.5, there is o € R?, with |a;| < ¢!, such that Xa® = (—1,...,0,0).
For each odd integer v ranging from the interval [1, u), define P, to be an infinite collection
of pairs (k,, £,) of positive integers such that k, = (u+v){,/(u—v). Let Fi ¢ (z) and G ()

be the function constructed in (3.16) and (3.17) with respect to the pair (k,¢). Note that in
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the current constructions, for every (ki, (1), (ko, ¢2) € P,, we have

Fliy o) (ﬁ) = Fliy 00 (ﬁ»

and we denote the above function by F,(z) since it only depends on v. Similarly, we also

have

(k1 —01)G 1y 00) (ﬁ) = (k2 = 02)G (k.05 (ﬁ»

and we denote the above function by G,(x).

Let F(x) = (Fi(z), F5(x),... Fy_1(x)), and we construct

®(n)

cos(2mnx),

F(z) = F(z)a’ = %Z

n>1

where )

1 whenn=1,u—1 (mod 2u),
®(n):=9 -1 whenn=u+1—-1 (mod 2u),

0 otherwise,

\

since in this case k, — ¢, is always even for every (k,,{,) in P,. Note that ®(n) is a
multiplicative function. Let M be the set of square-free integers that only contains prime

factors at most P and 1 € M, hence we have

Z ‘I’(m)ﬂ(m)F(mx) — z(cos(wa) + Z (n) cos(27rn:)s)>.

m m n
meM neN
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Similarly, we consider the matrix

sin(m/2u) sin(3m/2u) < osin((2t — 1)w/2u)
v sin(37/2u) sin(97/2u) -+ sin(3(2t — 1)7/2u)
sin((2t — )7 /2u) sin(3(2t — 1)w/2u) -+ sin((2t — 1)*7/2u)

By Lemma 3.5, there is 8 € R!, with |3 < #, such that YBT = (1,...,0,0)T. Let
G(z) = (Gi(z),G5(x),...,Gay-1(x)), and we construct

G(z) = G(z)B3" = 2 Z vin) sin(2mnz),

n

where

1 when n =41 (mod 4u),
U(n):=49—-1 whenn=+2u—1) (mod 4u),

0 otherwise.

\

We also have ¥(n) is a multiplicative function. Hence

Z \Ij(m)ﬂ(m)G(mx) — E(Sm(gm) + Z ¥ (n) sin(27mx)>.

m T n
meM neN

Finally, we apply Corollary 3.8. Using a similar computation employed in Section 3.5.1,

we obtain that

maX{H mZEAF(mx)‘

log N
Z G(mx)‘ } > 8
= L(T) log log N

()’

This implies there is an odd integer v € [1,u) such that

log N
Hax { H T; (ma) n; (ma) L(T) > log log N

L)’
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Therefore, from a similar argument we used in Section 3.5.1, we can conclude that the size

of the maximal (k,, ¢,)-sum-free subset of A for every (k,,¢,) € P, is at least

N log N
+c
ky, + £, loglog N

for some positive c¢. This proves Theorem 3.3 (iii).

3.6 Structure of infinite (k, {)-sum-free sets
Given A C N>Y the upper density of A is defined as

d(A) = limsup m

N—o0

We also define the upper density on multiples of A by

~ l.
d(A) = lim sup lim sup A0 (V! [n])|

N—o0 n—00 n

In this section, we will prove the following theorem, which will be used in the next section

when constructing the upper bound estimate for Theorem 1 (iv).

Theorem 3.13. Suppose that A € N>, and A is (k,{)-sum-free. Then d(A) < 4.

We break the proof of this theorem into three lemmas. The first lemma says that if a
(k, ¢)-sum-free set A contains a certain long arithmetic progression, then the upper density

of A is bounded.

Lemma 3.14. Let A C N>° be a (k,{)-sum-free set. Let x,s,d, m be positive integers, such

that s € LA — (k—1)A, x +d-[m] C A, and s is in the coset x + d - Z. Then

— m-+k+4£0—2
d(A) < )
( )_(k+€)m+2(k+€—2)
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Proof. Since s € {A—(k—1)A and A is (k, {)-sum-free, we have s ¢ A. We will only consider
s <z, and the case when s > x +m follows from the same proof. Since x+d-[m] C A, then
(z+d-[m])N(¢A—(k—1)A) = @. Thus, there is sy € v+d-Z, such that sy € LA—(k—1)A,
and

(so+d-[m])N(CA—(k—1)A) = 2. (3.19)

Let sg = Zle a; — Zf;ll b;, where a;,b; € Aforevery 1 <i</{and1<j<k-1

Let B C A such that
B:={beA|(b+d-[m])NA+#wa}.

Set ag = by = 0. Given integers 1 <u <k —1and 2 <wv </, let

k—u l—v v—1

C(u):B+ij+(u—1)a1, D(v):BqLZaj—l—Zbi,

=1 =0 i=0

and C(k) = A+ (k—1)a;, D(1) = A+ Zﬁ;i aj. Let F={C(u),D(v) | u € [k],v € [{]} be
the collection of all C(u) and D(v).

Claim 2. Elements in F are pairwise disjoint.

Proof of Claim 2. Observe that for every u € [k] and v € [{], C(u) N D(v) = @. Otherwise,
we will get kANCA # &, contradicts that A is (k, £)-sum-free. Let uy,us € [k] and uy < us.

Suppose that C(u;) N C(uz) # &. Then there exist y; € B and y, € A, such that

k—uq
Y1+ Z bj = yo + (ug — u1)as.
Jj=k—ua+1
Then
) k—1
w-Ya-Y
i=1 j=1
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y4
:yl—i—Zai—yg—(uQ—ul—l)al— Z bj.
=2

jEl,k—u2)Ulk—u1+1,k—1]

Since y; € B, thus there is r € [m] such that y;+rd € A. This implies so+rd € (A—(k—1)A,

contradicts (3.19).

Suppose D(v1) N D(vy) # @ for some vy, vy € [f] and v; < ve. Similarly, there exist

y1 € A and y, € B, such that

{—v1 vo—1
Y+ Z aj:y2+zbi‘
Jj=l—va+1 i=v1
Let ¢ =0, and let ¢y, ..., cpy0,—1 € A if v9 > v; + 1. Therefore

vo—v1—1 vo—v1—1

30:y2+ Z CLj'F Z Ct — Y1 — Z bi— Cyt.
t=0

JE[0,€—v2]U[l—v1+1,4] 1€[0,u1 —1|U[v2,k—1] t=0

Observe y, € B implies that there is r € [m], such that y, + rd € A. Hence sq + rd €

(A — (k —1)A, which contradicts (3.19).

By Claim 2, we obtain
(k+¢—2)d(B) +2d(A) < 1.

On the other hand, let N'(t) = A\ B + td for every t € [m], and let

G— {A,A— (k — 1)m—l—§ai,/\/’(t) ‘ te [m]}.

Claim 3. Elements in G are pairwise disjoint.

X

(3.20)

Proof of Claim 3. Suppose there are u,v € [m], u < v, such that N'(u) NN (v) # &. Thus we

have ¢ € A\ B such that ¢; + (u —v)d € A, and this contradicts the assumption of B. Same

conclusion holds if ANN(u) # @. Observe that if AN (A~ (k—1)z+ Y| ;) # @, it will

contradict that A is (k,¢)-sum-free. Finally, we assume that there are ¢;,co € A, u € [m]
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such that

-1
¢ +ud=cy— (k— 1)x+2ai.
i=1
Thus, ¢; + @ +ud + (k — 2)x = ¢3 + .11 a;. Since x + d - [m] C A, this contradicts A is
(k, £)-sum-free. X

Thus, by Claim 3, we get

(m +2)d(A) —md(B) < 1.

Together with (3.20), this finishes the proof. O

The next lemma is a finite version of the Szemerédi Theorem [158], and we will use it to

find the arithmetic progression in Lemma 3.14.

Lemma 3.15 ([158]). For every ¢ > 0 and m € N>, there is L = L(e,m) > 0 such that

every set A C N> with d(A) > ¢, there exist v €N, d < L, and x +d - [m] C A.

Our final lemma says that a (k,/)-sum-free set A with large upper density should be
periodic. This structural result can be viewed as a generalization of the Luczak—Schoen

Theorem [127].

Lemma 3.16. Let e > 0. Then there is D > 0 such that the following holds. Let A C N>0 be
a (k,0)-sum-free set, and d(A) > k%—f +¢e. Then A is contained in a periodic (k,()-sum-free

set with period D.

Proof. We pick m € N> such that

m+k+0—2 - 1 N
(k+0m+2k+0-2) k+/ .

(3.21)

Let L = L(g,m) be as in Lemma 3.15. Let D = L!. Suppose the lemma fails. Let C' C N>Y

be a periodic set with period D, consists of all positive integers in every coset a + D - Z for
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a € A. Thus C is not (k,{)-sum-free. This means, there are ay,...,a, and by, ..., b in C

such that S°¢_ a; = 2521 b;. Let P be the “(k,()-sum-free” part of C. That is,
P=C\ (C—(k-1)C).

Set ag = by = 0. For every u € [k] and v € [{], let

k—u L—v
M) =P+ b+ (u—1a;, N =P+ a+(v—1)b.
j=0 =0

Let F be the collection of all M(u) and N (v).
Claim 4. Elements in J are pairwise disjoint.

Proof of Claim 4. Observe that for every u € [k] and v € [¢], M(u) NN (v) = &. Otherwise

there are py,py € P, such that

{—v k—u
pr=p2+ Y ai+@—1b=Y b~ (u—-1a € (C— (k—1)C,
=0 j=0

contradicts the assumption of P. Now, suppose uy,uy € [k], u; < us, such that M(u;) N
M((us) # @. The case that N'(vy) NN (vg) # @ can be proved in the same way. Thus, there

exist pi, pe € P, such that

k—u1
D1+ Z bj = pa + (ug — u1)ay.
Jj=k—ua+1
This implies
k ¢ ¢
O:ij—Zai:p2+(u2_ul_1)a1+ Z bj_zai_pb
j=1 i=1 FE[0,k—uz]U[k—u1 +1,k] i=2
hence PN (¢C — (k —1)C) # @, contradiction. X
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By Claim 4, we obtain that d(P) < k%—é This means, d(A\ P) > e. By Lemma 3.15,
A\ P contains a progression x + d - [m], and d < L. By the way we construct P, there are

S1,...,8 and ty,...,t;_1 in C such that

¢ k—1
T +dm= Zsi —th.
i=1 j=1

Hence there are ey, ... e, and fi,..., fr_1 in A, such that for every i € [(] and j € [k—1], we
have that e; € s;+D-Z, and f; € t;+D-Z. Let s = i e;—> 5 f;, thus s € LA—(k—1)A,

and s € x + D - Z. Since d | D, we have s € x + d - Z. By Lemma 3.14, we have that

- m+k+0—2
A) <
d(4) = (k+0Om+2(k+¢—2)

and this contradicts (3.21). O

Now we can prove the main result of this section.

Proof of Theorem 3.13. Let A/N! := {a | aN! € A}. Thus d(A) > 0 implies that A/N!
contains a multiple of every natural number. In particular, A/N! is not contained in

a periodic (k,f)-sum-free set. By Lemma 3.16, d(A/N!) < - Observe that d(A) =

limsupy_,.. d(A/N1), thus d(A) < k:+r€ O
3.7 Upper bound constructions

Recall a Folner sequence in (N, -) is any sequence ® : m +— ®,, of finite non-empty subsets

of N, such that for every a € N,

o Na-d
lim [P AN(a - Pyl

m—oo |CI)m|

=0.
Folner sequence has been used as some good constructions in many additive combina-
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torics problems; see [139, 100] for example. In this section, we will show that the sets in
Folner sequence will never have large (k,/)-sum-free subsets. In fact, we will prove the

following theorem.

Theorem 3.17. Let ® = {®,,} be a Folner sequence in (N,-). Suppose there are infinitely
many m such that ®,, has a (k,{)-sum-free set of size at least 0|®,,| for some positive real

number § < 1. Then there exists a (k,£)-sum-free set A C N such that d(A) > 0.
Theorem 3.3 (iv) follows easily from Theorem 3.17 and Theorem 3.13.

Proof of Theorem 3.17. By passing to a subsequence, we may assume for every ®,, € &,
there is a (k, {)-sum-free set ¢,,, C D, such that |¢,,|/|Pm| > 6. Let SN be the collection
of ultrafilters, and let U € SN\ N be a non-principal ultrafilter. Let *Z = [], ., Z be the
ultrapower of Z. Let % be the Loeb o-algebra on *Z. Let uy be the Loeb measure induced
by fim, where 1, (X) = | X N @, |/|Pyy| for every X C Z. Let ¢ =[],y ®m be the internal

set. Then by Lo$’s Theorem, ¢ is (k, £)-sum-free, and

() = st (Tim g (00)) >

Claim 5. For every a € N, the map x + ax is X-measurable and pp-preserving.

Proof of Claim 5. Note that x — ax sends internal sets to internal sets, thus it is -

measurable. For every X C Z, since

XNy —[(a- X)NDPp| (@ Pp) APy,

X) — -X) = <

as m — o0, it preserves the Loeb measure py,. X

Now we are able to apply the probabilistic argument used in the proof of Proposition 3.9

on the set ¢. For every € *Z\ {0}, let A, :={a € N | ax € ¢}. Thus A, is (k, {)-sum-free.

By Claim 5, d(A,) is Y-measurable on x. Suppose z is chosen uniformly at random with
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respect to the measure ;. By Fatou’s Lemma,

E(J(Ax)) > limsup limsup E (’Ax NNt [n])|)

N—o0 n— 00 n

= lim sup lim sup — ZIP’ JjN!lz € ¢).

N—oo n— 00

By Claim 5, we have

E(d(A,)) > limsup lim sup — ZIP’ T € @)= pr(p) > 0.

N—o0 n—oo T

Thus by Pigeonhole Principle, there exists a set A, C N for some = € *Z \ {0} such that
d(A,) > 6. O

3.8 Restricted (k,/)-sum-free sets

In this section, we prove Theorem 3.4. Since restricted (k, ¢)-sum-free can be expressed by
first order formula, once we prove the conclusion in Theorem 3.13 also works for restricted
(k, £)-sum-free sets, Theorem 3.4 follows by using the same proof in Theorem 3.17. More
precisely, in the proof of Theorem 3.17, if A, = {a € N | ax € ¢} is not restricted (k, ¢)-
sum-free for some = € *Z\ {0}, since the map a — ax is injective, we also have that ¢ is
not restricted (k, £)-sum-free.

We first consider the analogue of Lemma 3.14 for restricted (k,¢)-sum-free sets. The
similar argument also works here, with a different and more involved constructions of sets
C(u), D(v), and N(t), and a more careful analysis. These new constructions will lead a
slightly different structure for the large infinite restricted (k, £)-sum-free sets in Lemma 3.19,

compared to the non-restricted setting.

Lemma 3.18. Let k., { be positive integers, and { < k < 20 + 1. Suppose A C N>V be a

restricted (k,{)-sum-free set. Define W C N> satisfies that for every w € W, there are
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¢ distinct elements y1,...,y0 € A, and k — 1 distinct elements zy,...,zx_1 € A, such that
w # z; fori € [k—1], and w = Z§:1 Y — Zf:_ll zi. Let x,s,d,m be integers, such that
seW,m>k+/{, x+d-[m] C A, and s is in the coset x +d - Z. Then

— m_2
dA) < (k+0O(m—k—0+2(k+0-2)

Proof. s € W implies that s ¢ A since A is restricted (k,¢)-sum-free. We only consider
the case when s < z. Since ANW = &, there is s € x + d - Z such that sg € W and
(so+d-[m])NW = @&. Thus there are ¢ distinct elements a,...,q € A, and k — 1 distinct
elements by, ..., b,_1 € A, so # b; for every j € [k — 1], and sp = Zle a; — Zf;ll b;. Let £
consists of k — 1 distinct elements ey, ..., ex_; € A, and all of them are disjoint from {a,; }{_;,

{b;}% Y1, {s0} and so +d - [m]. Let
— A\ (U{al}UU{b}Ufu{so}U(sonLd m ])) (3.22)
Observe that

(so+d-[m])N{b;}" =0, (3.23)

since b; € W for every j € [k — 1]. Let m’ =m — k — {, we claim that
(so+d-[m])N{a}., = 2. (3.24)

Otherwise, suppose there is r € [m/] such that sy + rd = a; for some t € [¢]. Then

x +Zb =2 +rd+ Z a;.

J=1,j#t

By taking ' € x+d- [0, m —r], then both 2’ and 2’ + rd are in A. Since m —r > k+/, there

is a € [0,m — 7] such that = + ad ¢ {b;}5=!, and = + (a +r)d ¢ {a;}{_,. This contradicts

]1’
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that A is restricted (k, )-sum-free.

Let B={bec A" | (b+d-[m'])NA+# o}, and let

B =B\ <(O{ai}ué’> —d-[m’]).

Let ¢ =0, ¢; = a; when ¢ € [{], and ¢; = aj_, when j € [(+ 1,k —1]. For u € [k — 1] and

v e (2,0, let

k—u u—1 l—v v—1
C(U)ZB/—FijvLZCi, D(v):B’+Zai+ij,
j=1 =0 1=0 7=0

and C(k) = A’ + Zf:_ol ¢, D(1) = A"+ 3" a;. Let F consists of all C(u) and D(v), then
Claim 2 still holds. In fact, suppose there are uy, uy € [k], uy < ug such that C(u1)NC(ug) # &

(the case when D(vy) N D(vy) # & is simpler). Then there exist y; € B’, yo € A’ such that

k—uq uz—1

Y1+ Z bj:y2‘|’zci~

j=k7u2+1 1=ul

Let eg =0, and €1, ... ,€4y—u;—1 € € if ug > uy + 1. If uy < ¢, we have
us—ui1—1 us—u1—1
So = Yy1 + Z a; + Z € — Yo — Z b; — Z er.
i€[0,u1 —1]U[u2,¢] =0 G€[0,k—ua]Uk—ui+1,k—1] t=0

Ifuy >0+ 1, we get

u2—u1—1 uz—u1—1

So =1+ Z a; + Z et — Y2 — Z bj — Z €.
t=0

ie[O,ulflfﬁ]U[ugf&é] jE[O,k‘*’U,Q}U[k}*U1+1,]€71} t=0

Iful S& U22€—|—1, anduz—ul—i-lg&
uz—u1—1 uz2—u1—1

So = Y1 + Z a; + Z € — Yo — Z b; — Z €.
=0

iE[U2*£,U1*1] jE[O,k*Ug]U[k‘*U1+1,kfl] t=0
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Ifu </l,up>¢+1,and us —u; > £. Let g =0, eq,...,ep_1 € £if £ > 1. Thus

1 —1 ug—1—¢
Sozyl—f‘g €t — Y2 — E bj—E e — E Q.
t=0 j€[0,k—us]Ulk—u1+1,k—1] t=0 1=uy

Note that £ < 20 + 1 implies up — 1 — ¢ < /.
In any case, since y; € B, by (3.22), (3.23), and (3.24), there is r € [m/] such that

sg + rd € W, which contradicts the assumption of sq3. Therefore,

(k+¢—2)d(B) +2d(A) < 1, (3.25)

since d(A’) = d(A) and d(B') = d(B).

We also modify the construction of N (t) in a similar way. For every t € [m/], let
N(@t)=A\B+td Let eg=0,and ey,...,e, o € Eif k> 3. Let A” = A\ (x +d - [m]).
Define

-1 k—2
g = {N(t),A',A"—l—Zai — T — Zej te [m']}
i=1 J=0

Then by using the similar argument, it is easy to see that Claim 3 still holds. We omit the

details here. We have
(m—k:—€+2)3(A)—(m—k:—é)a(B) <1,

since d(A") = d(A). Together with (3.25), finishes the proof. O

Next, we consider the analogue of Lemma 3.16 for restricted (k,¢)-sum-free sets. The

structure here is slightly different from the (k, ¢)-sum-free sets.

Lemma 3.19. Let ¢ > 0 and let k, ¢ be positive integers with ¢ < k < 20 + 1. Then there
is D > 0 such that the following holds. Let A C N>° be a restricted (k,{)-sum-free set, and

d(A) > k+-€ +¢e. Then after removing at most D(2k + {) elements from A, it is contained in

a periodic restricted (k,{)-sum-free set with period D.
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Proof. We pick m > k + ¢ such that

m— 2 - 1 L
Gt Om—k—0+20k10—-2) ktt

(3.26)

Let L = L(e,m) be as in Lemma 3.15, and let D = L!. We consider the partition of N into
cosets:

N = U z+ D -N.

z€[D]
For every z € [D], let N, =2+ D - N, and A, = ANN,. Let A’ be a subset of A, obtained
by removing A, from A when |A,| < 2k + ¢. Hence d(A’) = d(A). Next, we are going to
show that A’ is contained in a periodic restricted (k, £)-sum-free set with period D. Suppose

this is not the case. Let

C:<Ua+D~Z)mN>°.

acA’
Thus C'is not restricted (k, £)-sum-free. This means, there are ¢ distinct elements ay, ..., a, €
C and k distinct elements by, ..., b, € C, such that 3¢, a; = Z?Zl b;. Let P be the “(k,{)-
sum-free” part of C, that for every w € P, every k—1 distinct elements yy, ..., yx—1 € C\{w},
and every /¢ distinct elements z1,...,2, € C, we have w + Zfz_ll yi # Z§:1 z;. Let eg =0,

and let £ consists of k — 1 distinct elements eq,...,e,_1 € C, such that £ is disjoint from
{ai}le and {bj}?:l'

P'=P\ <Q{ai}u Q{bj} ue).

Set ag = by = ¢o = 0. Let ¢, = a; when t € [{], and ¢, = a;_, when t € [{ + 1,k — 1]. For

every u € [k] and v € [{], let

k—u u—1 {—v v—1
Mu)=P +> bi+> o, N =P+> a+)> b
§=0 t=0 i=0 t=0

Let F be the collection of all M(u) and N'(v). Then elements in F are pairwise disjoint.
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Otherwise, suppose there are uy, us € [k], u1 < ug such that M(u;) N M(ug) # & (the case

when N (vy) NN (v2) # & is simpler). Thus, there are y;,y2 € P’, such that
k—u1 uz—1
Y1+ Z bj:y2+zct-

k—uo+1 t=u1

Let eq,...,euy—u—1 € E if ug > uy + 1. If ug <, we have

l k
OZZCLZ‘—ij
1

i=1 j=
uz—u1—1 u2—u1—1
nt Y wry amm- Y 4y a
i€[0,u1—1]U[uz,4] t=0 J€[0,k—ua]Ulk—u1+1,k] t=0
If uy > ¢+ 1, we have
uz—u1—1 uz—u1—1

O=y1+ Z a; + Z €t — Ya — Z bj— Z €.
t=0 t=0

iE[O,ulflff]U[ung,Z] j€[0,k*U2]U[k*U1+1,k}

Ifu </l ,uy>¢+1,and ¢ > us — uq, we get

w1 —1 ug—uy—1 ug—uy—1
0=y + E a; + E €t — Y2 — E bj — E €
i=ug—/{ t=0 je[O,kqu}U[kfuhLl,k] t=0

Ifu <liug>0+1,and £ <us —uy. Let eq,..., e, 1 € Eif € > 1, we get

-1 up—1—¢ -1
TR SR YT S it
t=0 J€[0,k—u2]Ulk—u1+1,k]| i=u1 t=0
In any case, we get a contradiction with the assumption of P’ and the fact that y, € P’.
Therefore,
- 1
d(P) < ——
(P) < k+ 0

since d(P') = d(P). This means, d(A’\ P) > ¢. By Lemma 3.15, A’\ P contains a progression

x4d-[m], and d < L. By the way we construct P, there are ¢ distinct elements s, ...,s, € C
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and k — 1 distinct elements t1,...,tx_1 in C'\ {z + m} such that

0 k—1
r+m = E S; — E tj.
i=1 =1

By the way we construct A, for every r € [D], if |A'NN,| > 0, then |A'NN,| > 2k+¢. Thus,
there are ¢ distinct elements aq,...,ap € A" and k — 1 distinct elements f5y,...,Br_1 € A,
such that for every ¢ € [¢] and j € [k — 1], we have that a; € s;+ D -Z, and 5; € t; + D - Z.
Let s = Zle a; — Zf;f B;. Note that |[A" N N,| > 2k + ¢ also implies that there is r" € [{],

and M C N> |M| > k, such that

¢
oy +D-MC A, (ap+D-M)n| Jloi} = 2.
i=1
Thus if s N {5, 5;11 # &, then by changing «,» by a,. + nD for some n € M, one can make

s+nDN{p; f;ll = @. Since d | D, we have s € x + d - Z. By Lemma 3.14, we have that

_ m — 2

dA) < (k+0)(m—Fk—0)+2(k+(-2)

and this contradicts (3.26). O

Let A be a restricted (k, £)-sum-free set, and let A’ be a subset of A obtained by removing
finitely many elements from A. Observe that, if A’ is contained in a periodic restricted (k, ¢)-
sum-free set, then A cannot contain a multiple of every natural number. Thus, using the

same proof in Theorem 3.13, we conclude that d(A) < = if A is restricted (k, ()-sum-free.

3.9 Concluding Remarks

In this chapter, we first study M (N). In particular, we prove that Conjecture 3.2 is true

for infinitely many (k,¢). While solving Conjecture 3.2 might not be a realistic target at
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the moment, the following conjecture for the case when k — ¢ > 2 might be feasible. This
is because in this case, Lemma 3.10 implies that we have two different asymmetric maximal

(k, £)-sum-free open sets in T, and the technique developed in this chapter might be useful.

Conjecture 3.20. Let k, 0 be positive integers and k > ¢ + 2. Then there is a function

w(N) = 00 as N — oo, such that

N
M N)>—— N).

We also study JT/[(M)(N) in Theorem 3.4. As we can see in the proofs in Section 3.8,
when k > 20 + 1, the current strategy failed to obtain disjoint sets C and D in the proof of
Lemma 3.18, as well as disjoint sets M and N in the proof of Lemma 3.19. Although we
think it is very likely that the conclusion in Theorem 3.4 holds for every k£ and ¢, the case

k > 20 4+ 1 may require some new ingredients.
Conjecture 3.21. For every positive integers k,{ with k > 20 + 1,

Mgy (N) = (%M + 0(1)> N.

A (k,0)-sum-free set is a set forbidding a linear equation Y'_, z; = 25:1 yj. Another
interesting direction is to consider the analogue problem on sets forbidding a system of
linear equations. One of the most interesting problems along this line might be forbidding
the projective cubes. Given a multiset S = {s1,...,84}, a d-dimensional projective cube

generated by S is

048) = { Z Si

iel

@¢1gm}

A set is O%free if it does not contain any d-dimensional projective cubes as its subsets.
Extremal properties of projective cubes have a vast literature, see e.g. [2, 61, 86, 126]. The

problem on forbidding d-dimensional projective cubes can be viewed as a generalization of
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sum-free sets in another direction, since a sum-free set is also a [J?-free set. Thus, the

following problem is worthwhile to pursue.

Question 3.22. Let d > 3 be an integer. Define

Mpa(N) := inf max |B|.
ACN>0  BCA
|A|=N B is O%free

Determine Mza(N).
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Chapter 4

A closer look to the largest sum-free
sets

Given A a set of N positive integers. In the last chapter, we have discussed an old conjecture

in additive combinatorics:

Conjecture 4.1 (sum-free conjecture, combinatorial form). There is a function w(N) — 0o
as N — oo, such that

N
M(271)<N) > E + w(N)

The conjecture is generally attacked in the literature by considering another stronger

conjecture:

Conjecture 4.2 (sum-free conjecture, analytic form). Let Q = (1/3,2/3) C T. Then when
N — o0,

max (1o — 1/3)(nz) — oc.
S
neA

This analytic conjecture, if true, would also imply that a similar phenomenon occurs for
(2k, 4k)-sum-free sets for every k > 1, though we do not know if these two conjectures are
equivalent. In this chapter, we prove the latter result directly. The new ingredient of our
proof is a structural analysis on the host set A, which might be of independent interest. This

chapter is based on joint work with Wu [107].

4.1 Introduction

In [59], using a probabilistic argument, Erdés showed that M2 1)(N) > N/3. This argument

is actually not complicated: Let 2 be a maximal sum-free subset of R/Z, then (2+Q)NQ =
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@. By Kneser’s inequality [115], we have an upper bound on 2| that |©2] < 1/3. Now we fix
a maximal sum-free set Q) of measure 1/3 (e.g. (1/3,2/3)). For any z € R/Z, we let A, be

the set of integers n in A such that nx € Q. Then clearly A, is sum-free, and hence we have

Me(4) > [A.] =D Ta(na),

neA

where 1q is the characteristic function of €. When z is chosen randomly from R/Z, the
expected size of A, is N/3, which implies that |A,| > N/3 for some z. This is actually
the motivation to formulate Conjecture 4.2, which could imply Conjecture 4.1. The lower
bound estimate of max,ecr/z Y, c4 Lo(n) is later improved to (N +1)/3 by Alon and Kleit-
man [3], and the best estimate up to date is obtained by Bourgain [28], where he showed
that maxzer/z Y ,c4 Lo(nz) > (N +2)/3.

For (k,¢)-sum-free sets, in general, we believe the following should be true, which is a

generalization of Conjecture 4.2 to all (k, £)-sum-free sets.

Conjecture 4.3. There is a function w(N) — oo as N — 0o, such that for every set A of

N positive integers, there exists a mazimal (k,0)-sum-free set Q(k,¢) C R/Z, and we have

1
i) 2 (Borwo = =g ) ) = ().

Note that if Conjecture 4.2 holds, then this would imply that Conjecture 4.3 holds for
(2k, 4k)-sum-free sets for all £ > 1. Hence we believe that the (2k, 4k)-sum-free problem is
one of the most interesting cases of Conjecture 4.3. In this chapter, we prove the (2k, 4k)-

sum-free case without assuming Conjecture 4.2.

Theorem 4.4. For every k > 1, there is a function w(N) = log N/loglog N, such that for
every set A of N positive integers, there exists a maximal (2k,4k)-sum-free set Q(2k,4k) C
R/Z, and we have

1
1 _ —> N).
;gﬂgfzneA< Q2kdb) ~ o (nx) > w(N)
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In particular, there is an absolute constant ¢ > 0, such that

N
Mg k) (V) > % + cw(N).

We remark that Theorem 4.4 is not enough for the sum-free conjecture. Indeed, let
Q= (1/6,1/3) and Qs = (2/3,5/6) be two subsets of R/Z. Note that both §; and 2, are
(2,4)-sum-free in R/Z. By Theorem 4.4, one can find two elements z1, 9 € R/Z such that
Ay i={n € A:nx; € Q} hasat least N/6+w(N) elements, and A,, :={n € A : nxy € Qs}
also has at least N/6 + w(N) elements. Clearly, both A,, and A,, are (2,4)-sum-free. If
r1 = 9, the above argument implies the sum-free conjecture since the union of €2; and {2,
is sum-free in R/Z. However, it is possible that x; # x5 and thus A,, and A,, may share

many common elements.

The new ingredients used in proving Theorem 4.4 contain a structural analysis of the
given set A. Recall that a Fglner sequence in (N, -) is a collection of sets of integers {F,}>° |,

such that for every a € N>°,
lim ————

lim ] = 0.

Thus, when A is close to a set in a Fglner sequence, we expect that |AA (a - A)| is small
for appropriate a. Inspired by the structure Fglner sequences (which is the only known
constructive example whose largest (k, £)-sum-free subsets have cardinality N/(k+¢)+o(N),
for all (k,?), see [56, 108]), we split our proof into two cases: when |[AA (a - A)| is small
(close to having multiplicative structures), and when |[A A (a - A)| is large (close to having
additive structures). We mainly consider the case a = 3 here since the Fourier coefficients
appeared in the later proofs contain a multiplicative character mod 3. The first case is
resolved by an application of Littlewood—Paley theorem, and the proof we given also works

for sum-free sets. In the second case, since the main factors in the Fourier coefficients are

not multiplicative, we carefully sieve out small prime factors, and apply a variant of the
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weak Littlewood conjecture. The nontrivial lower bound of w(N) eventually comes from the

largeness of |[A A (3 - A)|. For convenience, we make the following definition.

Definition 4.5. We say a set A C Z”% is a geometric set, if [AA (3 - A)| < |A|¢ for an

absolute constant ¢ < 1.

The chapter is organized as follows. In the next section, we deal with the case when
|AA (3-A)| is small (we actually prove a more general result there). In Section 4.3, we prove

the case when |A A (3-A)| is large, and finish the proof of Theorem 4.4.

Notation

Given a set A and a positive integer k, we use kA to denote the set {a; + -+ ax : a; €
Afor 1 <i <k}, and use k- A to denote the set {ka : a € A}. For every 6 € R/Z, we write
e(0) = €™, We use the standard Vinogradov notation. That is, f < g means f = O(g),

and f <gif f<gand f>g.

4.2 When A is geometric

In this section, we study the size of the largest sum-free sets when the host set A is well-
structured. Let Q = (1/3,2/3) C R/Z, and it is easy to check that € is sum-free in R/Z.
Define 1, as the characteristic function of €2, and let f = 1o — 1/3 be the balanced function

of 1. By orthogonality of characters we have

0 if n=0,

Io(n) otherwise.

When n > 0,



:27T1m<_€<_2?n)+6(_g>>

1 (n) . (mr)
= —e|l=)sin(—].
™ \2 3

Therefore we obtain

flz) = Z f(n)e(nx) = Z %e(%) sin (%)e(nm)

n#0 n#0
3
—\/—— x(n) cos(2mnz), (4.1)
T

where x(n) is a multiplicative character mod 3, that is

1 whenn =1 (mod 3),

X(n) =< -1 whenn=2 (mod 3),

0 otherwise.

As we mentioned in the introduction,

> max »  f(mx). (4.2)

In the rest of the section, we are going to estimate max, ), f(mz) when A has certain
algebraic constrains.

Let P3 be the collection of intervals [3%,3*1) N N, where k > 0 is an integer. Let A be
a set of N positive integers. We say that A is (3, ¢)-lacunary, if there is a subset P C P;
with |P| > N¢, such that each interval in P contains at least one element of A, and the
intervals in P form a cover of A.

When the set A is (3, c¢)-lacunary, in some sense the distribution of A is not far away
from a union of long geometric progressions, and we expect that approximately there is a

square root cancellation for ||y, e(mz)| 11r/z). To make this observation rigorous, we
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use the Littlewood—Paley theorem.

Theorem 4.6 (Littlewood—Paley). Let g(x) be the trigonometric series

g(x) = Z ane™™.
n=1

For the sequence {a,}, we consider the following auzxiliary truncated function Ay defined as

Ag(z) = i ane™®,

n=nj_1+1

where ng =0, ny = 1, ngy1/ng. >« > 1. Then for any 1 < p < oo.

l

The proof of the Littlewood—Paley theorem can be found in [171, Chapter XV, Theorem

< Cpall fllLrmyz)-
Lr(R/Z)

<§: |Ak|2>1/2
k=1

4.7], and the constant C,, was calculated in [27] when a = 2.

The next lemma gives us a key estimate for lacunary sets.

Lemma 4.7. Assume that {a,})_, is (3,c)-lacunary. Define g(x) as

Then ||g||L1(R/Z) > Nc/g.

Proof. Let ¢y be the indicator function of the interval [3% 3**1). We denote by Ax(g) the

Fourier truncation

Aclg)(@) = 3 dulan)e™.
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By the Littlewood—Paley theorem (Theorem 4.6), we have for any 1 < p < oo,

(Y 1au@)e)”

keE

LP(R/Z)

l9llr/z) > Cp

OIED

LP(R/Z)

Here the set E contains all the positive integers k satisfying [3%,3**1) € P, so

E| = |P| > Ne.

We bound the right hand side of equation (4.3) using Holder’s inequality so that

1/2
‘(mew) > B2 (Y lag@l)|
keE Lr(R/Z) keE Lr(R/Z)
which clearly implies
2\ /2 —1/2
(3 1aw@)?) > B2 3 || Avg(x)
kEE LP(R/Z) kEE LY(R/Z)

Using Holder’s inequality again, we get ||Azrgl|3 < [|Axg|l1]|Arg|ls, and this implies

[Akgllzr =1
uniformly in k. Therefore,

> |E’1/2 > NC/2.
LP(R/Z)

||(Z Ag@)?)

Since [|Argll? < [|Argll1||Argll2s, we can bound [|gl|}, easily by

lgllzrr/z) > NlipHgHip(R/Z)
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Finally, we combine estimates (4.3), (4.4) and (4.5) to finish the proof of this lemma, by

choosing p = 1 + ¢/6. O

Now we are going to estimate the right hand side of (4.2) with assumption that A is

(3, ¢)-lacunary for some constant ¢ > 0. Let

=Y f(ma).

Since f is a balanced function, we have fR 1z F =0, and this implies that

(4.6)

max F(z) > Pl

Let P < N? be a prime, and let M be the collection of square-free integers generated by

primes smaller than P. Let p be the Mébius function, so by equation (4.1),

Z pulk Z f(mkzx) x(n cos (2rmnax) Z (k)

keM meA meA,n>1 keM, k|n

Z x(n) cos (2rmnzx),

meA
n>1,neN

where N is the set of integers n such that for every p < P, ged(n,p) = 1.

Therefore, by Minkowski’s inequality we have

Z ik Z f(mkzx) Z cos(2mmx)

keM meA L(R/Z) meA LY (R/Z)
Z x(n) COS (2rmnz)
n>”f§féN LHR/2)
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Via Cauchy-Schwarz inequality and Plancherel, the second term is bounded by

H Z x(n) cos(2mmnzx) < C|A|P7V2,
n
n TN LR/Z)

Note that P =< N2. By Merten’s estimate, we have

(k)|
<) 2 HF(x)||L1(R/Z)+O(1).
LY(R/Z) keM

1
< H (1 + ];)HF(QZ)HLl(]R/Z) = logNHF(x)”Ll(]R/Z)'
p<P

Z cos(2mmax)

meA

Since A is (3, ¢)-lacunary, we invoke Lemma 4.7 to get

Z cos(2mmx) > N°¢,
meA L\(R/2)
which implies
c/3
1@ erm > ey
Finally, we use estimate (4.6) to conclude max,egr,z F/(z) > N¢/*. O

4.3 When A is not geometric

In this section, we consider the case when the host set A is uniformly distributed, in the
sense that |[A A3 - A| > N¢ for some positive constant ¢ > 0. We will focus on finding the
largest (2,4)-sum-free in A. Let €; = (1/6,1/3) C R/Z, and let Q3 = (2/3,5/6) C R/Z. It
is clear that both Q; and Qy are (2,4)-sum-free in R/Z. Let 1g, be the indicator function

of Q for t = 1,2. Given A C N of size N, let M2,4)(A) be the size of the maximum
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(2,4)-sum-free subset of A. Again we have

M2,4)(A) > max Z Lg,(nx)

rGR/Z

for every t = 1,2. We introduce the balanced function f; : R/Z — C defined by f; = 1o, —

Hence,

0 if n =0,

Lo, (n) otherwise.

When n > 0, the Fourier coefficient f,(n) is

Fun) = / o, (2)e(—nz)du(z)
1 (—e(— (t—1)n n)+e(_ (t—1)n n)>

= onin 3 2 6

2 3

e (7).

Hence, for every t = 1,2 we have

T) = Z ﬁ(n)e(m:) = Z %e(@) sin (%)e(nx)

n#0 n#0

We will prove that either || f1]|; > log N/loglog N or || f2||1 > log N/loglog N. However,

it seems hard to estimate || f;||; directly. In order to get around this difficult, we consider

their sum f; + f» and difference f; — fo. Let T'(z) := f1(x) + f2(z) be the sum so that

[(z) = 1 Z (=1)" sin (g) cos(4mnz). (4.7)

2T n
n>1
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Also, we let A(x) = fi(z) — fa(z) be the difference and let

1 when n =1 (mod 4),
Y(n)=q9-1 whenn=3 (mod 4),

0 otherwise,

so that we can express A(z) as

A(z) = % Z @ sin <%> sin(2mnx)

n>1
2 1 1
= — — sin(2 — —sin(2 . 4.8
W( ; 5 sin(27mnx) ; nsm( an)) (4.8)
3tn,2in 3|n,2fn

We first deal with the function I'(z). Recall that N is the set of positive integers m such
that m only contains prime factor larger than @ =< (log N)'%°. We also define N5 be the set of
square-free integers generated by primes that at most Q. Since (—1)"sin(nr/3) = —v/3x(n)
where x(n) is a multiplicative character mod 3, we can sieve out the small prime factors in

(4.7) by

5 O $ ) - Y3 <cos<4wmx> S mcosummx)), (49)

n
teN, meA neNy

where p is the Mobius function.

Next, we consider A(z). Since the coefficients (n) sin(nm/6) is not multiplicative, A(x)
is more difficult to handle. As shown in equation (4.8), A(x) can be partition into two parts
according to the divisibility of the number 3. This motivates us to first sieve out those
integers n that 3 | n, by a restricted M&bius function defined only on integers divisible by
3. In this way, except for the first term, all other terms with significant contribution in the

second part cancel out, while the first part remains unchanged. Then, we use another sieve
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for the first part in a similar fashion. It turns out that we can combine these two steps to

one by using the Mobius function directly as our sieve. In fact,

wu(m) 2 1 . ny . /nmw
Z ——A(mx) = — Z — sin(2mnz) Z u(m)7<—> sin (—)
rvs m T = 2n v m 6m
The equation above and be further partitioned as
ny . /nmw
> almn () sin (50
meN2,m|n
1 1
SR IRTERD ol (D VISR SRV I SRS
meN2,m|n 9mn,3|ln \ meN2,m|n meN2,m|n 9ln,m|n
3in 3tm 3lm meN3

=: I1(n) + Iy(n) + I3(n).

By the inclusive-exclusive principle, for n ¢ N; U3 - Ny, I1(n) is always 0 unless n = 1, and

I3(n) is always 0. In I(n),

1 1 /m
>ooemy= X —gu(%).
2 2" \3
meN2,m|n meN2,m|n
3lm 3tm

which implies that I3(n) is 0 unless n = 3. Therefore, we get

M) =YY" @A(tmx) (4.10)

teN2 meA
n(n)

2 1 1
=- Z (5 sin(2mrmz) — 3 sin(6mmax) + Z o Sin(27mmx)>,

meA n€N1 U3-N1

where 7 is defined as

% when n € NV,

n(n) =
—% when n € 3- V.

100



Note that A; indeed has the expression

meA neN

A (z) = 1 Z <sin(27rmx) — sin(6mma) + Z %(sin@ﬂnmx) — sin(67mm:p)>>.

Let B = AA3- A, so by our assumption on the host set A, |B| > N¢ For any number

me AU (3-A), we define

1 when m € A,

e(m) =
—1 whenm € 3- A.
We can simplify A;(z) as
Ai(x) = 1 Z <€(m) sin(2rmax) + Z £(m) sin(27mmx)> (4.11)
1 meB neN; " . '

Finally, we combine (4.9) and (4.11) to get

B 2\2% Z u(t)tx(t) Z T(mtz) + 2\??? Z “(t>tx<t) Z ['(3mtz)

teN> meA teNs meA

+m Z @ Z A(2tmazx)

teNs meA

= Z (e(m) cos(dmmx) + Z %e(m)cos(lhmmxv

meB neN

+1 Z <e(m) sin(4rmz) + Z €<;n) sin(47mm:1:)>

meB neNy

= S emmeeim) 4 Y @((X(n)ﬂ)emmu(x(n)—1)6—47mm). (4.12)

meB meB,neNy

Now we can employ Corollary 3.8 and the triangle inequality to (4.12), to obtain

u(t)] ()|
22 t HFHLl(R/Z)"' ZTHAHU(R/Z) > log N.
teN, teNs
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Merten’s estimate tells us

Z < H <1+ ) = loglog N.

te/\/2 p<@Q

Hence we have

log N
maX{HF”Ll(IR/Z)’ ||AHL1(R/Z)} > loglog N

This implies that there is ¢t € {1,2}, such that [|f;|]| > log N/loglog N, and since f; is

balanced, we get max,ecr/z fi(x) > log N/loglog V.

With all tools in hand we are going to prove our main theorem.

Proof of Theorem 4.4. Fix k > 1. We first assume |A A 3- A| > N'/2. By the result proved
earlier in this section, we may assume that for Q; = (1/6,1/3), there is 2y € R/Z such that

log N

Z 1o (nl’o) > ﬂ +c——/—
! 6 loglog N’

neA

where ¢ > 0 is an absolute constant. Consider the continuous group homomorphism y :
R/Z — R/Z with x(x) = kx for every z. Then the Bohr set x~(£2;) is a union of % disjoint
open intervals Iy, ..., Iy in R/Z, each of which has measure 1/6k. It is also easy to see that
I; is (2k, 4k)-sum-free for every 1 <t < k. Indeed, suppose that I; is not (2k, 4k)-sum-free,
then there are 6k elements aq, ..., as, b1, ..., by in I such that Zj 15 = Zjﬁ b;. We may
assume a; < --- < age and by < -+ < by. Define a, = E;ﬁ}cﬂ a;, and B, = ¢ stt}g)fl
for all € {0,1} and s € {0,1,2,3}. Since [ is an interval, oy, @1 and fy, ..., B3 all belong
to I, and Z;l':o a; = Z?:o B;. Now, using the fact that x is a group homomorphism, we
have Z;:o x(ay) = Z?:o X(B;), and this contradicts the fact that Q; is (2, 4)-sum-free.

Let x1 = xo/k. By pigeonhole principle, there is ¢ty € {1,..., k} such that

Zl ( S N N c logN
nT — t
nnan) > kloglog N’
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this finishes the proof of the first case.
Now let us assume |AA3- Al < N2, Then A is at least a (3,1/2)-lacunary set. Let

= (1/3,2/3). By the result proved in Section 4.2, there is yy € R/Z, such that

N
Z ]lg(nyo) > ? + CNl/S,
neA

for some constant ¢ > 0. Let y; = yo/2k, then similarly there is an open interval I C R/Z,

such that I has length 1/6k, I is (2k, 4k)-sum-free, and
N c
Y1 I VeV
Z ](Tby1> > 6k + 2%k y

this finishes the proof. O
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Part 11

The Nonabelian GGroups
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Chapter 5

Preliminaries to topological groups

In this chapter we provide background on topogical groups as needed in Part II of the thesis.

This is based on the appendices of the joint paper with Tran and Zhang [106].

5.1 Some results about topological groups

This section gathers some facts about topological groups which is needed in the proof. We
begin with the three isomorphism theorems of topological groups. Note that the third
isomorphism theorem is almost the same as the familiar result for groups, whereas the first
two isomorphism theorems require extra assumptions; see [25, Proposition I11.2.24], [25,
Proposition I11.4.1], and [25, Proposition I11.2.22] for details. For this fact, we do not need
to assume that G is locally compact. The quotient G/H is equipped with the quotient
topology (i.e., X C G/H is open if and only if it inverse image under the quotient map is

open).
Fact 5.1. Suppose H is a closed normal subgroup of G. Then we have the following:
1. (First isomorphism theorem) Suppose ¢ : G — @ is a continuous surjective group
homomorphism with ker ¢ = H. Then the exact sequence of groups

1-H—->G—->0Q—1

is an exact sequence of topological groups if and only if ¢ is open; the former condition

is equivalent to saying that Q) is canonically isomorphic to G/H as topological groups.

105



2. (Second isomorphism theorem) Suppose S is a closed subgroup of G and H is compact.
Then S/(SNH) is canonically isomorphic to the image of SH/H as topological groups.

This is also equivalent to saying that we have the exact sequence of topological groups

l1-H—SH—S/(SNH)— 1.

3. (Third isomorphism theorem) Suppose S < G is closed, and H < S. Then S/H is a
closed subgroup of G/H. If S < G is normal, then S/H is a normal subgroup of G/H,

and we have the exact sequence of topological groups
1—-S/H—G/H—G/S—1;
this is the same as saying that (G/H)/(S/H) is canonically isomorphic to G/S as
topological groups.
We also need the following simple property of locally compact groups [67, Theorem 6.7].

Fact 5.2. Closed subgroups and quotients of a locally compact group by a closed normal

subgroup are locally compact.
The following lemma holds for all topological group.
Lemma 5.3. Suppose X, Y C G, X s compact and Y s closed. Then XY 1is closed.

Proof. Let a be in G\ XY. Then X 'a is compact and X 'aNY = @. For each point
x € X 'a, we choose an open neighborhood of identity U, such that zU2>NY = &. Then
(2U,)pex-14 is an open cover of X 'a. Using the fact that X 'a is compact, we get a
subcover (U;)%_,. Set U = ﬂle U;. Tt is easy to check that X 'aU NY = @&. Then

aU N XY = @, which implies that XY is closed as a can be chosen arbitrarily. O

The next lemma records a simple fact on compact subgroups.
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Lemma 5.4. If H is a compact subgroup of G, then the quotient map © : G — G/H is a

proper map (i.e., the inverse image of compact subsets are compact).

Proof. Let © be a compact subset of G/H. In particular Q is closed. Hence, 771(Q) is
closed, so it suffices to find a compact set containing 7=1(£2). Since G is locally compact,
we can find an open covering (U;);c; of m=1(€) such that U; has compact closure U; for each
i € I. Then (wU;);er is an open cover of € as 7 is open. Using the assumption that 2 is
compact, we get a finite I’ C I such that (7(U;));er is an open cover of Q. Then |, U:H

is a compact set containing 7 1((). ]

5.2 Measures and the modular function

We say that a measure p on the collection of Borel subsets of G is a left Haar measure if it

satisfies the following properties:
1. (left-translation-invariant) u(X) = p(aX) for all a € G and all measurable sets X C G.

2. (inner and outer regular) pu(X) = sup pu(K) = inf u(U) with K ranging over compact

subsets of X and U ranging over open subsets of G containing X.
3. (compactly finite) p takes finite measure on compact subsets of G.

The notion of a right Haar measure is obtained by making the obvious modifications to the
above definition. The following classical result by Haar makes the above notions enduring

features of locally compact group [67, Theorem 2.20]:

Fact 5.5. Up to multiplication by a positive constant, there is a unique left Haar measure

on G. A similar statement holds for right Haar measure.

Given a locally compact group GG, and p is a left Haar measure on GG. For every z € G,
recall that Ag :  — p,/p is the modular function of G, where p, is a left Haar measure on

G defined by p,(A) = u(Ax), for every measurable set A. When the image of Ag is always
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1, we say G is unimodular. In general, Ag(x) takes values in R>%. We use (R>?, X) to denote
the multiplicative group of positive real number together with the usual Euclidean topology.

The next fact records some basic properties of the modular function; See [67, Section 2.4].

Fact 5.6. Let G be a locally compact group. Assuming p is a left Haar measure and v is a

right Haar measure.

1. Suppose H is a normal closed subgroup of G, then Ay = Ag. In particular, if H =

ker Aq, then H is unimodular.
2. The function Ag : G — (R™Y, x) is a continuous homomorphism.

3. For every x € G and every measurable set A, we have u(Az) = Ag(z)p(A), and
v(zA) = A (2)v(A).

4. There is a constant ¢ such that fod,u = ch fAgdv for every f € C.(G).
We use the following integral formula [67, Theorem 2.49] in our proofs.

Fact 5.7 (Quotient integral formula). Let G' be a locally compact group, and let H be a
closed normal subgroup of G. Given ug, py left Haar measures on G and on H. Then there

is a unique left Haar measure pg/g on G/H, such that for every f € C.(G),

| s ducta) = [ B [ ) () ).

The following fact is a consequence of a result about Haar measure on closed subgroups

and quotients [26, Proposition VII. 2.7.10].

Fact 5.8. Suppose G is nonunimodular, and Ag : G — (R>°, x) is the modular function of

G, then we have the following:

1. If K < G is a compact normal subgroup of G, Ag/k is the modular function of G/K,

and 7 : G — G/K is the quotient map, then we have Ag = Ag/k o T.
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2. If H < G is a closed unimodular group, and py is a Haar measure on H. Suppose G/H

is unimodular, and X is a compact subset of H. Then for every g € G, py(gXg™') =

Ag(g)pu(X).

5.3 Almost-Lie groups and the Gleason—Yamabe
Theorem

In our proof we need the solution of Hilbert’s 5th problem, which is known as the Gleason—
Yamabe Theorem [73, 169], to reduce the problem into Lie groups. For convenience, we
introduce the following terminology. A locally compact group G is an almost-Lie group if
every open neighborhood U of the identity in G contains a compact H < G such that G/H

is a Lie group.

Lemma 5.9. Suppose G is an almost-Lie group. Then every open subgroup of G and every

quotient of G by a closed normal subgroup is an almost-Lie group.

Proof. We first show that every open subgroup of G is almost-Lie. Let S be an open subgroup
of G, and U is an open neighborhood of identity in S. We need to find a compact subgroup
K of S such that K C U and S/K is a Lie group. Since U is also a neighborhood of identity
in G, U contains a compact normal subgroup K of G such that G/K is a Lie group. Note
that K < S. As S is open, S/K is open in G/K and hence a Lie group as desired.

Next, suppose H is a closed normal subgroup of G, and 7 : G — G/ H is the quotient map.
If U is an open neighborhood of the identity in G/H, then 7=1(U) is an open neighborhood
of identity in GG. Hence, we can get a normal compact subgroup K of G such that K C
7 YU) and that G/K is a Lie group. Then 7(K) is a compact subgroup of U. With
S =77 (n(K)), we have m(K) = S/H. Since K is normal in G we have 7(K) is normal in
G/H and thus S is normal in G. Whence by the third isomorphism theorem (Fact 5.1.3),

we conclude that (G/H)/m(K) = G/S. By the third isomorphism theorem again, we have
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G/S = (G/K)/(S/K), thus G/S is a Lie group. O
We use the following strong version of the Gleason—Yamabe Theorem.
Fact 5.10. We have the following:

1. (Gleason—Yamabe Theorem) Suppose G is a locally compact group. Then there is an

open subgroup of G which is an almost-Lie group.

2. An almost-Lie group G is a Lie group if and only if there is an open neighborhood U

of the identity in G that contains no nontrivial compact subgroup of G.

Fact 5.10.2 is not officially part of the Gleason—Yamabe Theorem. However, the forward
direction is an easy fact about the no small subgroup property of Lie groups, and the and

backward direction is a direct consequence of Fact 5.10.1.

5.4 Some results about Lie groups

In this section we gather some facts and lemmas about Lie groups and Lie algebras. Through-

out the chapter, all the Lie groups are finite dimensional second countable real Lie groups.
Fact 5.11. Closed subgroups and quotient groups of Lie groups are Lie groups.

The identity component of a topological group G is the connected component containing
the identity element. The identity component of a topological group G might not be open
even if GG is locally compact. For instance, there are nondiscrete totally disconnected locally
compact groups. For these groups, the identity component only consists of the identity
element, and it is not open because the topology is not discrete. Nevertheless, the following

holds for Lie groups [91, Proposition 9.1.15].

Fact 5.12. If G is a Lie group, then the identity component of G is open and is contained

in every open subgroups of G.
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In Fact 5.1, we introduce the three isomorphism theorems of topological groups. When
G is a Lie group, we can weaken the assumption required for the first two isomorphism

theorems; see [24, Proposition 3.11.2, Proposition 3.31].

Fact 5.13. Suppose G is a Lie group, and H is a closed normal subgroup of G. Then we

have the following:

1. (First isomorphism theorem for Lie groups) If Q) is a Lie group, ¢ : G — Q is a
surjective and continuous group homomorphism, and G has countably many connected

components. Then Q) is isomorphic as a topological group to G/H.

2. (Second isomorphism theorem for Lie groups) Suppose G is a finite dimensional Lie
group, and S is a closed subgroup of G, and SH s a closed subgroup of G. Then
S/(SNH) is canonically isomorphic to the image of SH/H as Lie groups. This is also

equivalent to saying that we have the exact sequence of Lie groups

l1-H—SH—S/(SNH)— 1.

We also need the following fact about maximal compact subgroups consisting of Theorem

14.1.3 (iii) and Theorem 14.3.13 (i) (a) of [91]:

Fact 5.14. Suppose G is a Lie group with finitely many connected components. Then we

have the following:
1. All mazimal compact subgroups of G are conjugate.

2. If0 - H— G5 G/H — 0 is an exact sequence of connected Lie groups, and K is
a maximal compact subgroup of G, then K N H is a mazximal compact subgroup of H,

and w(K) is a maximal compact subgroup of G/H.

We also use the following simple classification results for Lie groups.
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Fact 5.15. Let G be a connected Lie group.
1. If G has dimension 1, then it is isomorphic to either R or T as topological groups.

2. If G is a solvable group with dimension d, and the maximal compact subgroups of G

have dimension m. Then G is diffemorphic to T™ x R4=™. Moreover, if G is compact,

then G = T4,

We say that a topological group G is a covering group of a topological group G with
covering homomorphism p if p : G — G’ is a topological group homomorphism which is also

a covering map. The following is a consequence of [91, Theorem 9.5.4]:

Fact 5.16. Suppose that G and G’ are connected Lie groups and that G is a covering group
of G" with covering homomorphism p. Then Ker p is a closed normal subgroup of the center

Z(G) of G.
We end this section with a lemma about conjugate actions on compact sets in Lie groups.

Lemma 5.17. For a Lie group G and a closed normal subgroup H, if a precompact A C H
such that the closure of A is in B and B is a relative open subset in H, then the following

holds: When g € G is sufficiently close to idg, we have gAg—' C B.

Proof. We prove the lemma by contradiction. Assuming there exist sequences g, — id and
{h,} C A such that g,h,g;! ¢ B. Since A is precompact we may assume h, — h € A.
But then g,h,g;' — h € A. This contradicts the fact that each g,h,g;" is in the closed set

H \ B that does not meet A. Hence the assumption is false and the conclusion holds. [

5.5 Solvable and Semisimple Lie groups

From [91, Section 9.1], there is a functor L from the category of Lie groups to the category

of Lie algebras that assigns to each Lie group G its Lie algebra L(G) and a to Lie group
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morphism ¢ : G — H its tangent morphism L(¢) : L(G) — L(H) of Lie algebras. We will

adopt a more colloquial language in this chapter, invoking this functor implicitly.

Fact 5.18. Suppose G and H are Lie groups, and g and by are their Lie algebras. If H is
a subgroup of G, then b is a subalgebra of g. If H is a normal subgroup of G, then b is an

ideal in g, and g/b is canonically isomorphic to the Lie algebra of G/H.

Suppose g is the Lie algebra of G. The exponential function exp : g — G is defined as
in [91, Section 9.2]. We will use the functoriality of the exponential function [91, Proposition

9.2.10]

Fact 5.19. Suppose G and H are Lie groups, ¢ : G — H is a homomorphism of Lie groups,
g and b are the Lie algebras of G and H, o : g — b is the tangent morphism of ¢, and
expe : g — G and expy : h — H are the exponential maps. Then expy o a = exps o ¢. In

other words, the following diagram commutes:

GLH

expGT eXPHT

Suppose g is a Lie algebra. The derived Lie algebra [g,g] of g is the subalgebra of g

generated by the Lie brackets of the pairs of elements of g. We say that g is solvable if the

derived sequence

g> (g9l >[[g,9],[g.0] > ...

eventually arrive at the O-algebra. A Lie group is solvable if its Lie algebra is solvable. The

following is a consequence of [91, Proposition 5.4.3]:

Fact 5.20. Fvery subalgebra and quotient algebra of a solvable Lie algebra is solvable. Hence,

every closed subgroup and quotient group of a solvable Lie group is solvable.

The following is another consequence of [91, Proposition 5.4.3]:
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Fact 5.21. Suppose g is a Lie algebra. Then g has a largest solvable subalgebra q. If G is
a Lie group with Lie algebra g and exp : g — G is the exponential map, then Q) = {(exp(q))
1s the largest closed connected solvable subgroup of G. Hence, () is a characteristic subgroup

of G.

The subalgebra ¢ as in Fact 5.21 is called the radical of g, and the subgroup ) as in
Fact 5.21 is called the radical of G. A Lie algebra is semisimple if it has trivial radical. A lie
group is semisimple if its Lie algebra is semisimple, or equivalently, if it has trivial radical.

The following results follows from [91, Proposition 5.4.3]:

Fact 5.22. Let G be a connected Lie group. Let Q be the radical of G. Then S = G/Q is a

semisimple Lie group.

A Lie group is simple if its Lie algebra is simple. Note that a simple Lie group needs not

to be simple as a group. We use the following fact for simple Lie groups.

Fact 5.23. A connected Lie group G is a simple Lie group if and only if all its normal proper

subgroups are discrete, and contained in Z(G).

Suppose g is a finite dimensional Lie algebra. For x € g, let adx : g — g,y — [x,y].

Then ad is an endomorphism of g. The Cartan-Killing form of kg : g x g — R is given by
kg(z,y) = tr(adz ady).
The Cartan—Killing form is invariant under an automorphism of g as this corresponds to a

change of basis. The following fact is from [91, Lemma 5.5.8]

Fact 5.24. Suppose g is a Lie algebra, kg is the Cartan—Killing form of g, and b is an ideal
of g. Then the orthogonal space b of b with respect to k4 is also an ideal. If g is semisimple,

then g = b @ bt and Ky = Ky @ KpL where Ky and kyL are the Cartan—Killing form of b and
ht.
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The following fact follows from [91, Lemma 5.5.13]. It is also a consequence of Fact 5.24
and the alternative characterization of semisimple Lie algebras as those whose Cartan—Killing

form is nondegenerate.

Fact 5.25. Fvery ideal and quotient algebra of a semisimple Lie algebra is semisimple.

Hence, every normal subgroup and quotient group of a semisimple Lie group is semisimple.

The first and second assertions in the following fact are immediate consequences of

Facts 5.21, 5.20, 5.25

Fact 5.26. If G is a connected semisimple Lie group, then its center Z(G) is a finitely

generated discrete group, the quotient map p : G — G/Z(G) is a covering map.
The following fact is a consequence of [91, Proposition 9.5.2 and Theorem 9.5.4].

Fact 5.27. If G and G’ are connected Lie groups, p : G — G’ is covering map, Z(G) and
Z(G'") are the centers of G and G'. Then we have ker p < Z(G) and Z(G") = Z(G)/ ker p.

The first assertion in the following fact is known as Weyl’s theorem on Lie groups with

semisimple compact Lie algebra [91, Theorem 12.1.17].

Fact 5.28. If G is a connected semisimple Lie group with compact Lie algebra, then G is

compact and Z(Q) is finite.

The following Fact is a consequence of Fact 5.28 and the result in [156]. This can also be
proven directly using [91, Proposition 13.1.10 (ii)]; we thank Jinpeng An for pointing this

out to us.

Fact 5.29. If G is a simply connected simple Lie group, then the center Z(G) of G has rank

at most 1.

Suppose g is a finite dimensional Lie algebra with Cartan—Killing form x4. A Lie algebra
automorphism 7 of g is a Cartan involution if 72 = idy and (x,y) — —k4(z, 7(y)) is a positive

definite bilinear form. The following fact is [91, Theorem 13.2.10]
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Fact 5.30. Let g be a semisimple Lie algebra. Then g has a Cartan involution T.

We refer the reader to [114, Section 6.4] for the full definition of Iwasawa decomposition;
we will need the following fact which is a consequence of [114, Theorem 6.31, Theorem 6.46]

and [91, Corollary 12.2.3].

Fact 5.31 (Iwasawa decomposition). Suppose G is a connected semisimple Lie group with
Lie algebra g, T 1s a Cartan’s involution of g, € the subalgebra of g fixed by 7, andexp : g — G
is the exponential map. Then there is an Iwasawa decomposition G = KAN such that the

following holds:

1. the multiplication map

O: K xAXN—G:(kan)— kan

is a diffeomorphism.

2. K = exp(t) is a connected closed subgroup of G, Z(G) C K, and K is a mazimal

compact subgroup of G if Z(G) is finite.

3. A is an abelian closed subgroup of G, N is a nilpotent closed subgroup of G, and both

A and N are simply connected.

4. QQ = AN, we have that Q) is a solvable closed subgroup of G, and N < Q.

The following fact is a consequence of the definition of Iwasawa decomposition in [114,

Section 6.4].

Fact 5.32. If G is a noncompact semisimple Lie group with Iwasawa decomposition G =

KAN, then AN has dimension at least 2.
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Chapter 6

Minimal and nearly minimal measure
expansions in connected unimodular
groups

Let G be a connected unimodular group equipped with a (left and hence right) Haar measure
fic:, and suppose A, B C G are nonempty and compact. An inequality by Kemperman [112]

gives us

pa(AB) = min{ug(A) + pe(B), pa(G)}-

Our first result determines the conditions for the equality to hold, providing a complete
answer to a question asked by Kemperman in 1964. Our second result characterizes compact
and connected GG, A, and B that nearly realize equality, with quantitative bounds having
the sharp exponent. This can be seen up-to-constant as a (3k — 4)-theorem for this setting
and confirms the connected case of conjectures by Griesmer [82] and by Tao [162]. As an
application, we get a measure expansion gap result for connected compact simple Lie groups.

The tools developed in our proof include an analysis of the shape of minimal and nearly
minimal expansion sets, a bridge from this to the properties of a certain pseudometric, and
a construction of appropriate continuous group homomorphisms to either R or T = R/Z
from the pseudometric.

This chapter is based on joint work with Tran [105].
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6.1 Introduction

6.1.1 Background

The Cauchy—Davenport theorem asserts that if X and Y are nonempty subsets of the group

Z,/pZ of prime order p, then

X + Y| > min{[X| + Y] - 1,p},

where we set X +Y :={z+y:2z € X,y € Y}. The condition for the equality to happen is

essentially given by Vosper’s theorem [166], which states that if

1< [X],|Y], and [X + Y| = |X|+|Y|-1<p—1

then X and Y must be arithmetic progressions with the same common difference. When the
equality nearly happens, one might expect that X and Y are instead contained in arithmetic
progressions with slightly larger cardinalities. This was confirmed with a sharp exponent
bound by Freiman [69] for small | X | and |Y|. The optimal statement believed to be true for
X =Y, known as the (3k — 4)-conjecture for Z/pZ, remains wide open more than 60 years
after the corresponding statement for Z was proven by Freiman [68]. In the mean time, we see
many similar results obtained for other abelian groups; see e.g. [115, 111, 51, 79, 162, 82, 123].
In another direction, there has been much progress in the study of small expansions in the
nonabelian settings; see [36], in particular, for the classification of approximate groups by
Breuillard, Green, and Tao; see also e.g. [89, 32, 33, 102, 143, 19, 103]. These two trends
together suggest that the theory of minimal and nearly minimal expansion can be extended
to the nonabelian settings as well. In this chapter, we take a step towards realizing this
intuition by considering an inequality by Kemperman, the continuous nonabelian counterpart

of the Cauchy—Davenport theorem, and effectively determining the necessary and sufficient
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conditions for equality and near equality to happen.

Throughout, let G be a connected locally compact group, and ug a left Haar measure
on G. We further assume that G is unimodular (i.e., the measure g is invariant under
right translation), so ug behaves like an appropriate notion of size. This assumption holds
in many situations of interest (e.g, when G is compact, discrete, a nilpotent Lie group, a
semisimple Lie group, etc). As usual, for A, B C G, we set AB :={ab:a € A,b € B} and
let A™ be the n-fold product of A for n € N>°. In [112], Kemperman proved that if A, B C G

are nonempty and compact, then

pna(AB) = min{pc(A) + pa(B), pa(G)}-

This generalizes earlier results for one-dimensional tori, n-dimensional tori, and abelian
groups by Raikov [144], Macbeath [129], and Kneser [115].

The problem of determining when equality holds in the Kemperman inequality was pro-
posed in the same paper [112]. After handling a number of easy cases, the problem can be
reduced to classifying all connected and unimodular group G and pairs (A, B) of compact

subsets of G such that

0 < pc(A), u(B), and ug(AB) = pug(A) + pa(B) < pa(G).

We call such (A, B) a minimally expanding pair on G. It is easy to see that, if [ and J
are closed intervals in T = R/Z, such that [ and J have positive measures and the total of
their measures is strictly smaller than pr(T), then I + J is an interval with length the total
length of I and J. Hence, such (I, J) is a minimally expanding pair on T. More generally,
when G is a compact group, x : G — T is a continuous surjective group homomorphism, /

and J are as before,

A="'(I) and B=y"'(J),
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we can check by using the Fubini theorem that (A, B) is a minimally expanding pair. Note
that an arithmetic progression on Z/pZ is the inverse image under a group homomorphism
¢ : Z/pZ — T of an interval on T, so this example is the counterpart of Vosper’s classification.
Another obvious example is when G is a noncompact group, xy : G — R is a continuous
surjective group homomorphism with compact kernel, [ and J are compact intervals in R
of positive measures, A = x~!(I), and B = x~!(J). One might optimistically conjecture, in
analogy with Vosper’s theorem, that there are no other G, A, and B such that (A, B) is a
minimally expanding pair on G.

In view of the earlier discussions, for compact A, B C G, we say that (A, B) is a d-nearly

minimally expanding pair on G if

0 < pg(A), pe(B), and ug(AB) < na(A) + pe(B) + d min{pa(A), pe(B)} < pa(G).

The problem of determining when equality nearly holds in the Kemperman inequality can
be then reasonably interpreted as classifying all connected and unimodular groups G' and
d-nearly minimally expanding pairs (A, B) on GG. In analogy with the discussion for the
Cauchy—Davenport theorem, we hope for an answer along the following line: If G is com-
pact, and (A, B) is a é-nearly minimally expanding pair on G with small §, then there is a
continuous and surjective group homomorphism y : G — T, compact interval I, J C T, and

small €, such that

ACX (), BE X (), ue(x () \ A) <e,and pe(x (1) \ B) <e. (6.1)

The optimistic conjecture for noncompact groups is similar, but with T replaced by R and
an extra condition that y has compact kernel.
Under the extra assumption that G is abelian, the optimistic conjectures for both clas-

sification problems were more or less confirmed before our work. In the same paper [115]
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mentioned earlier, Kneser solved the classification problem for equality with the answer we
hope for. For the near equality problem, when G = T¢, the desired classification was ob-
tained by Bilu [16], and later improved by Candela and De Roton [39] for a special case when
d = 1. When G is a general abelian group, a classification result was obtained by Tao [162]
for compact G, and by Griesmer [82] when G is noncompact. Griesmer also proved more
general results for disconnected groups [81, 82]. The results by Griesmer [81, 82] and by
Tao [162] used nonstandard analysis methods, and do not provide how ¢ depends on ¢ in
(6.1). A sharp exponent classification result (i.e., ¢ = O(9)) for compact abelian groups was
obtained very recently by Christ and Tliopoulou [43]. Results with sharp exponent bounds
are likely the best that one can achieve without solving the (3k — 4)-conjecture for Z/pZ.
For nonabelian GG, not much was known earlier than this paper. In closest proximity to
what we are doing, Bjorklund considered in [17] a variation of Kemperman’s inequality and
the equality classification problem without assuming that G is connected while assuming
additionally that GG is compact, second countable, and has abelian identity component, and
the sets A and B are “spread out” (i.e., far away from being subgroups). The only common
case to this and our current setting with the connectedness assumption happens when G is
abelian and connected. This is a case already covered by Kneser’s classification result.
Toward showing that appropriate versions of the optimistic conjectures also hold for the
nonabelian classification problem, there is an important new challenge: While the desired
conclusions for the abelian setting are mainly about the structure of (A, B), the structure
of G is also highly involved for the nonabelian setting. If G = SO3(R), for example, one
would not be able to find a minimally expanding pair according to the optimistic answers
because there is no continuous surjective group homomorphism from SO3(R) to T. On the
other hand, one can always find a continuous and surjective group homomorphism from
a compact connected nontrivial abelian group to T and use this to construct minimally
expanding pairs. For a noncompact abelian group G, the requirement that the kernel must

be compact imposes some constraint on the group G, but this is still comparatively mild.
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The above challenge connects our problem to the subject of small expansions in non-
abelian groups, a fascinating topic that brings together ideas from different areas of math-
ematics. The phenomenon that expansion rate encodes structural information about the
group can already be seen through the following famous theorem by Gromov [83] in geomet-
ric group theory: If G is a group generated by a finite set X = X1, and the cardinality
of X™ grows polynomially as a function of n, then G must be virtually nilpotent. A more
recent result by Breuillard indicates that some of the analysis goes through for locally com-
pact groups [35]. Even more suggestive is the classifications of approximate groups in [36]
mentioned earlier (see the definition in Section 6.6.3). In our proof, we will use the con-
tinuous version of the result in [36]; this was proven in the thesis of Carolino [40] and can
also be deduced from the result in [36] using a result of Massicot—Wagner [131]. The ideas
in the proof of these results can be traced back to the solution of Hilbert’s Fifth problem
by Montgomery—Zippin [137], Gleason [73], and Yamabe [169], which we will also use later
on. Finally, let us mention that these stories are also closely tied to the study of defin-
able groups in model theory. This is the natural habitat of the aforementioned result by
Massicot-Wagner [131], and also of Hrushovski’s Lie model theorem [102], a main ingredient
for the proof of the main theorem in [36].

Before getting to the results, we briefly survey a number of works for nonabelian groups
which are thematically relevant but use different techniques. When G is finite and A, B C G
are nonempty, generalizing the Cauchy—Davenport inequality, DeVos showed in [53] that
|AB| > min{|A| + |B| — |H|,|G|} with H a proper subgroup of G with maximum car-
dinality. In the same paper, DeVos classifies all situations where equality can happen.
In [18], Bjorklund and Fish studied an expansion problem with respect to upper Banach
density in amenable nonabelian groups and obtained conclusions with similar flavor. Under
model-theoretic assumptions, Terry, Conant, and Pillay [46, 45] obtained results that are
surprisingly similar to ours.

It would also be interesting to study a different minimal and nearly minimal measure

122



expansion problem where we fix a connected unimodular group G instead of letting GG range
over all connected unimodular group G as we are doing here. When G is R", Kemperman

inequality is a consequence of the Brunn—Minkowski inequality

(G (AB)Y™ > (A" + pg(B)™.

This inequality also holds for nilpotent G [133, 84, 160]. The equality holds in the Brunn—
Minkowski inequality for R™ if and only if A and B are homothetic convex subsets of R™. This
was a result by Brunn and Minkowski when A and B are further assumed to be convex, and
a result by Lyusternik [128], Henstock and Macbeath [90] in the general case. A qualitative
answer for the near equality Brunn—Minkowski problem for R™ is obtained by Christ [42],
and a quantitative version is obtained by Figalli and Jerison [66]. We do not pursue this

direction further here.

6.1.2 Statement of main results

Our first main result determines the conditions for equality to happen in the Kemperman
inequality answering a question by Kemperman in [112]. Scenario (v) and (vi) in the theorem

is a classification of the groups G and minimally expanding pairs (A, B) on G.

Theorem 6.1. Let G be a connected unimodular group, and A, B be nonempty compact

subsets of G. If

pc(AB) = min(ug(A) + pe(B), pa(G)).
then we have the following:
(1) pc(A) + pe(B) = 0 implies pe(AB) = 0;
(i) pc(A4) +pe(B) = pe(G) implies AB = G;
(ili) pa(A) =0 and 0 < pg(B) < uc(G) implies that there is a compact proper subgroup H
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of G such that A C gH for some g € G, and B = HB;

(iv) 0 < pe(A) < pug(G) and pe(B) = 0 imply that there is a compact proper subgroup H
of G such that A= AH, and B C Hg for some g € G;

(v) 0 < min{pug(A), ug(B), pa(G) — na(A) — pa(B)}, and G is compact together imply
that there is a surjective continuous group homomorphism x : G — T and compact
intervals I and J in T with [+ J # T and pr(I), pur(J) > 0 such that A = x"*(I) and
B =x"'(J);

(vi) 0 <min{ug(A), ug(B)}, and G is not compact together implies that there is a surjective
continuous group homomorphism x : G — R with compact kernel and compact intervals

I and J in R with pg(I), ug(J) > 0 such that A= x"'(I) and B = x'(J).

Moreover, ng(AB) = min(ug(A) + pa(B), ua(G)) holds if and only if we are in exactly one

of the implied scenarios in (i-vi).

Next we obtain a classification of nearly minimally expanding pairs. This answers some
questions by Griesmer [82] and confirms a conjecture by Tao [162, Conjecture 5.1], under

the extra assumption of connectedness.

Theorem 6.2. Let G be a connected compact group, pc be a normalized Haar measure on

G, and A, B be compact subsets of G with positive measure. Set

s = min{uc(A), pa(B), 1 — pe(A) — pa(B)}

Given € > 0, there is a constant K = K (s) independent of G, such that if 6 < Ke and

tG(AB) < pa(A) + pe(B) + d min{uc(A), pa(B)}-

Then there is a surjective continuous group homomorphism x : G — T together with two
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compact intervals I, J C T with

pr(l) — pe(A) < epa(A),  wr(J) — pe(B) < epc(B),

and A C x (1), BC x'(J).

It worth noting that the linear dependence between £ and ¢ is the best possible up to a
constant factor. As an application of our main result, we obtain a measure expansion gap

result for sets in connected compact simple Lie groups.

Theorem 6.3 (Expansion gaps in compact simple Lie groups). There is a constant n > 0
such that the following holds. Let d > 0 be an integer. There is a constant C > 0 only
depending on d such that if G is a connected compact simple Lie group of dimension d, and

A is a compact set of G with 0 < pug(A) < C, then

1 (A?) > (2+n)ua(A).

We can take n > 10710,

We did not try to optimise the constant 1 of Theorem 6.3 in this chapter.

One may compare Theorem 6.3 with expansion gaps for finite sets. The study of the
latter problem was initiated by Helfgott [89] where he proved an expansion gap in SLo(Z/pZ).
Results on the expansions for finite sets are one of the main ingredients in proving many
of spectral gap results. For example, the result by Helfgott is largely used in the proof
by Bourgain and Gamburd [30, 31]. De Saxcé proved in [49] an expansion gap results in
simple Lie groups, which is used in the later proof of spectral gap result [13, 34]. For more

background in this direction we refer the reader to [37, 161].
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6.1.3 Notation and convention

Throughout let m and n range over the set N = {0,1,...} of natural numbers. Let G be
a locally compact group equipped with a left Haar measure pug. Let H range over closed
subgroups of G equipped with a left Haar measure py. We normalize ug (i.e., pa(G) = 1)
when G is compact, and do likewise when H is compact. We let G/H and H\G denote the left
coset space and the right coset space of G with respect to H. Given a coset decomposition,
say G/H, a fiber of a set A C G refers to ANaH for some xH € G/H. We also use g to
denote the fiber lengths in the chapter, that is we sometimes write puy(A N xH) to denote
ur(z PANH). A constant in this chapter is always a positive real number, and by Lie group

we mean a real Lie group with finite dimension.

6.2 Outline of the argument

In this section, we informally explain some of the major new ideas of the proofs. We decided

to write a slightly longer outline as some of the later computations are rather technical.

6.2.1 Overview of the strategy

We will explain here the main steps of the proof of Theorem 6.1 and Theorem 6.2 illustrated
by simple examples. The focus will be on the plausibility of the argument and how they
fit together to resolve the main difficulties of the problem. More detailed discussion will be
given in Sections 6.2.2, 6.2.3, and 6.2.4.

After handling a number of easy cases, the proofs of Theorem 6.1 and Theorem 6.2 require
constructing appropriate continuous and surjective group homomorphisms into either R or
T under the given data of a minimal or nearly minimal expanding pair (A, B) on G. The key
difficulty of the problem is that many methods in the abelian setting (e-transform, fourier

analytic, etc) have no obvious generalization to the nonabelian setting.
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Instead, we will use a method in the direction of the solution of Hilbert’s Fifth problem,
namely, making use of pseudometrics on G (i.e., maps d : G x G — R satisfying all the
properties of a metric except d(gi,g92) = 0 implying g = ¢). With some caveats, our
proof can be thought of as having three steps: obtaining a suitable pseudometric on G,
constructing an appropriate group homomorphism from the pseudometric, and deduce an
informative description about (A, B) from the pseudometric. As we want to construct a
group homomorphism into R or T and not any other Lie groups, the new challenge is
to develop properties that allow us to control the desired target group and to obtain a
pseudometric on G satisfying these properties.

Let us first explain the second step to see that the pseudometric idea is plausible. Until
the end of this section, we will focus on the case where G is compact with the other case
treated similarly. If y : G — T is a continuous and surjective group homomorphism, and
dr is the Euclidean metric on T (i.e. dy(r + Z,s + Z) = min{|r — s|,|r — (s — 1)|} for
0 <r < s < 1), then setting d(g1,92) = dr(x(g1), x(g2)), it is easy to see that d is a

pseudometric on GG with the “linear” property that

d(gl,gg) = |d(91792) + d(92,93)|

for all g1,¢92,93 € G such that max{d(g1,92),d(92,93),d(g1,95)} < 1/4. Moreover, in the

above situation we also have

kerx = {g € G : d(g,ide) = 0},

so the group homomorphism x can be recovered from the pseudometric. In the second step
of our proof, we will define the weaker properties locally linear and locally almost linear, and
show that more or less under these conditions, we can obtain an appropriate homomorphism

into T. More details will be given in Section 6.2.3.
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Now we would like to construct a locally (almost) linear pseudometric on G. There is a
caveat: our primary technique discussed later only works for Lie groups. So we need an extra
step in our strategy (also with an underlying pseudometric idea) where we use the Gleason—
Yamabe Theorem to obtain a group homomorphism 7 from G to a Lie group G’ with compact
kernel H. This is relatively standard, but there are two important arrangements we need
to make. We need to choose H carefully to ensure that it is connected and pg (7(A)) +
pe (m(B)) < pug(G); in the third step, we will show that these conditions are enough to
imply that (w(A), 7(B)) essentially has nearly minimal expansion on G’. We also need to
ensure that the dimension of G’ is bounded to be able to to get our sharp exponent bound
later on. This requires the application of the continuous version of the result in [36], which
is proven in Carolino’s thesis [40].

Now we focus on the case where G is a compact connected Lie group with dimension
bounded from above by a constant, where the structure of G can be studied through its
torus subgroups. Using a submodularity argument as in [162], we can carefully modify the
original (A, B) to ensure that pug(A) and pe(B) are relatively small compared to pg(G) but

still large compared to the error. The pseudometric we need is easy to define:

d(g1,92) = pa(A) — pa(g1A N g A).

The real challenge is to show that this is locally (almost) linear. This is achieved by gaining
an understanding of the “shape” of the pair (A, B) at different levels. Keeping in mind that
we already have the desired classification of minimal and nearly minimal expanding pairs
for T, we will choose a suitable one-dimension torus subgroup of G and use it as a tool to
probe for information about (A, B).

Thinking of the one-dimensional torus subgroups of GG as specifying the “directions” in

G, we choose a one-dimensional torus subgroup 7' < G such that for all ¢7" € G/T, the
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“length” ur(g A NT) of the “left fiber” g7 N A of A satisfies

1
TANT) < —
pr(g AN )<100,

and a similar condition holds for a “right fiber” B N Tg of B with Tg € T\G. The exis-
tence of such 7" is by no mean obvious, and is saying that when (A, B) is nearly minimally
expanding, A and B cannot be “Kakeya sets”. More details will be given in the beginning

of Section 6.2.2.

T
d(g1, 92) = pa(A) — pa(g1AN ga A)
3T
T «T T
G G
Bg

Figure 6.1: Intuition of the ideas in the proof.

We visualize G in two ways: a rectangle with the horizontal side representing G/T" and
each of the vertical section representing a left cosets of T, and a similar dual picture for T\G;
see the bottom right half of Figure 6.1. The main idea is to show that ¢; A, g2 A, g3A, and B
geometrically look like in the picture with g1, g2, g3 € G in a suitable neighborhood of id.

(For instance, we want the “fibers” of A and B to be intervals of T, all the nonempty “left
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fibers” of g1 A to have similar “lengths”, the “width” of A to be almost the same as that of
B, the translated copy g1 A to only “move vertically” compared to g; A, and the “moving up”
and “moving down” divisions in go A and g3 A to be almost the same. As a very small hint of
why these are true, imagine that one of the fiber in B is too large compared to the rest. Then
the product of A with that fiber has already much larger measure than pg(A)+ pue(B)) One
can see that the locally (almost) linearity follows from this picture. The key point is that,
the global information about the pseudometric can be deduced via the geometrical shape
from the information on a generic fiber 27", where the classification of nearly minimally
expanding pairs is known. More detailed discussion is given in Section 6.2.2.

Finally, we discuss the third step of deducing the structure of A and B when we have
the appropriate group homomorphism y : G — T. There is another minor caveat: we can
modify the the group homomorphism obtain from the pseudometric to ensure that the kernel
is connected and the image is small; this was also the same arrangement we made earlier
when we use the Gleason—Yamabe Theorem. The following example, already containing the
idea of the later proof, will illustrate to the reader that unless there are closed intervals
I,J C T such that A and B are nearly x~'(I) and x~'(J), the number ug(AB) is much
larger than ug(A) + pg(B). Assume that G = T2, x : T?> — T is the projection onto the

second coordinate, and we identify T? with its fundamental domain [0, 1] x [0,1] C R?. Set

A= (T x [0,1/7]) U ([0,1/3] x [1/7,2/7]).

Then, pe(A) =1/7+(1/3) x (1/7). On the other hand,

A? = (T x [0,3/7]) U ([0,2/3] x [3/7,4/7]).

So pe(A?) = 3/7+ (2/3) x (1/7) > 2/7 +2/3 x (2/7) = 2uc(A).
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6.2.2 The first step: Obtaining a suitable pseudometric

Suppose G is a connected and compact Lie group, and (A, B) is a nearly minimally expanding
pair on G with sufficiently small measure. We will show that there is a one-dimensional torus
subgroup T of G such that the “length” ur(g~'A N H) of each “left fiber” AN gT of A is
small, and a similar condition hold for “right fibers” of B. After that, we will show that
g1 A, g2 A, g3 A satisfy the picture at the bottom left of Figure 1 with respect to T, from which
we can deduce the local almost linearity of d.

Suppose A is a Kakeya set, i.e, it has a long left fiber ANgT for every choice of “direction”
T of G. Fix such a T'. If a large proportion of right fibers of B are rather short, then using
the Kemperman inequality for 7' and Fubini’s theorem, we get ug((A N ¢gT)B) is already
much larger than ug(A) + ue(B), a contradiction. So a large proportion of the right fibers
of B in the direction 7" must be rather long. A reverse argument then shows that a large
proportion of the left fibers of A are long. Thus, pug(AT) is not too large compared to g (A).

From the discussion above, it suffices to show the contradiction when ug(AT)/puc(A)
is not too large for every T. We call a nonempty and compact subset of G a toric K-
nonexpander, if it has this property for a given constant K. We will show in Section 6.8
a result with independent interest: Every nonempty compact subset of G with sufficiently
small measure cannot be a toric K-nonexpander.

Let us present here a pseudo-argument, which nevertheless illustrate the idea. Assume

A is a toric K-nonexpander. Obtain finitely many torus subgroups 7171, ..., T, of G such that

G=T---T,.

(Note that n depends on the dimension of G, which is bounded by the caveat in Step 1.) Let
us pretend that using the assumption pg(AT1) < Kug(A) we can cover ATy with (K + 1)
right translations of A. It can be then shown that AT} is a toric K (K + 1)-nonexpander.

Next, we further pretend that AT;T5 can be covered with K (K + 1)+ 1 right translations of
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AT which can then be covered by K (K +1)?+ (K +1) right translations of A. Continuing the
procedure, we get C'(K) such that AT ---T,, = G can be covered by C(K) right translations
of A. Thus, pg(A) > 1/C(K), contradicting the assumption that ug(A) is very small.

The pseudo-argument in the preceding paragraph does not work in most of the cases. In
particular, one cannot deduce from pg(ATy) < Kug(A) that AT) can be covered by (K +1)
right translations of A. However, it does contain some truth, and we will be able to use a
version of the Lovazs covering argument to approximate this pseudo-argument.

Now choosing a one-dimensional torus subgroup 7' of G such that for all x € G and
y € G, the fibers 2T°'N A and B N Ty are both short. We will show that the set A and B
have the shape as described in Figure 1. Without loss of generality we can arrange that the
width pug(AT) of A in G/T is at most the width ug(T'B) of B in T\G. Choose uniformly

at random xT € AT, and applying the Kemperman inequality for 7', we have

fa(AB) > Eprearpc((AN 2T)B)

> Eorearpr(ANaT)pre(T'B) + pe(B)

_ pra(T'B)

> pe(A) + pa(B);

+ pa(B)

As (A, B) is nearly minimally expanding, we have ug(AB) is nearly the same as pg(A) +
tc(B). The fourth line then gives us that ug(T'B) is nearly the same as ug(AT). The
second line now gives us that for each T € AT, the fiber (21N A) is nearly an interval up
to an endomorphism of 7. From the first line, pur(A N 2T') is almost constant as 21" ranges
through AT

We now discuss the relative position of g1 A, g2 A, and g3A for g;, g2, and g3 near idg.
Clearly, (g14, B), (924, B), and (g3A, B) are also nearly minimally expanding. Using a

submodularity argument as in [162], we can show that (g1 A N g2A, B), (1A U g2 A, B) are
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also nearly minimally expanding. A similar analysis applies to all these pairs. In particular,
in order to have almost all vertical fiber of each pair to having the same height, we can only

have one of the following two scenarios:

1. (Almost vertical movement) AT is close to g1 AT

2. (Almost horizontal movement) fibers in (A U g;A)T has almost the same length as
those in AT

We note that (2) cannot happen because then AU g; A will no longer have a similar width as
B. A similar argument shows us that Figure 2 cannot happen. Hence, the “moving up” and

“moving down” divisions in gs A and g3 A must be the same as in Figure 1 in Section 6.2.1.

T

G

g3 A G A

g A G/T

Figure 6.2: Different “moving up” and “moving down” divisions in g, A and g3A result in
uneven fiber size.

We mention two subtler aspects of the geometry of minimally expanding pairs that we
will not be able to get in details. First, we will also need it to show a condition called
path monotonicity which is a necessary ingredient to show assumption (2) in Step 2 (Sec-
tion 6.2.3)). Second, for the purpose of controlling the error in Step 2, we need to show a

certain “convexity property” of

Nyx={9€G:puc(A) —ne(ANgA) <A}

This requires us to construct a “core” of A, which is related to the Sanders—Croot—Sisask

theorem [151, 47] in additive combinatorics, and stabilizer theorems in model theory [102].
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6.2.3 The second step: Constructing an appropriate

homomorphism

We assume in this section that G is a connected and compact Lie group, d is a left invariant

continuous pseudometric on GG with the following properties:

1. (Local almost linearity) There is A € R”? such that with

Ny:={g € G :d(idg,g9) < A},

there is ¢ < 107'%u¢(Ny) such that for all g1, g2, g3 € Ny

d(g1,93) € |d(g1, 92) = d(g2,93)| + 1(¢),

where I(¢) is the interval (—¢,¢) C R.

2. (Local monotonicity) With the same A in (2), for all g € N,

|d(idg, g°) — 2d(idg, g)| € I(e).

We now sketch how to construct a continuous and surjective group homomorphism to T from
these data. The condition presented here is a simplified but essentially equivalent condition
as in Section 6.7. A crucial argument we will not be able to get into details here is to
show that the local monotonicity condition can be deduced from a weaker property of path
monotonicity obtained from the first step (Section 6.2.2).

When we are in the special case with € = 0 in property (1), there is a relatively easy

argument which also works for noncompact Lie groups. Set

kerd = {g € G : d(idg, g) = 0}.
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Using the left invariance, continuity, and triangle inequality, one can show that kerd is a
closed subgroup of G. Moreover, in this case, G/kerd must be isomorphic to T, and the
pseudometric d locally must agrees with a constant multiple of the pullback of the Euclidean
metric. These are, perhaps, not too surprising as a Lie group equipped with a locally linear
pseudometric is, intuitively, a very rigid object which locally looks like a straight line. In
fact, property (2) is not needed as it is a consequence of property (1) in this case.

The general case is much harder as we no longer have the same type of rigidity. In
particular, ker d might not be normal, and G/ ker d might not be T even if kerd is normal.
The reader familiar with the proof of Hilbert’s Fifth problem would guess that we might try
to slightly modify d to get a locally linear pseudometric d’ and use the earlier strategy. This
is still true at the conceptual level, but our actual argument is much more explicit allowing
error control.

As an expository vehicle for the idea, let us still imagine that we somehow obtain a
locally linear pseudometric d’ only slightly differs from d. By the earlier argument, we get
a group homomorphism x’ : G — T and o’ € R such that d'(g1,92) = /||X'(91) — X' (92)||T

near idg. Therefore, for g near idg we have
X'(9) = £(1/d)d (idg, g) + Z.

Note that this gives us a way to determine x’(g) for g € N, from d', but we need to know
how to describe o from d’. For g1, g2,g3 € N), we say that g is “between” ¢g; and g3 if
d'(q1,93) = d'(g1,92) + d'(g2,93). We say that a product g; - -- g, is “increasing” if g, --- g;
is “between” ¢y ---¢;_1 and g; - - - g;4;. For an arbitrary element g € G, we write it as an

“increasing” product g = g1 - - - g, with g; € N). Then, we can show that
n—1

X(9) =+1/a)> d (g1 991 gip1) + L.
=0
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This gives us a way to determine x'(g) for an arbitrary g if we can get o’ from d’. Now,
note that if we write idg as an “increasing” product 1¢ = g¢g1---¢g, with n > 0 then
Z?;ol d(g1..-9i,91-..9i+1) will be a multiple of o’/. Moreover, o/ will be the minimum
value of such sum. So we recover o from d’ and obtain a much more explicit way to describe

the map '

idg

Figure 6.3: Any element g in G will be captured by one of the monitors.

Back to the situation where we only have d but not d’, we can carry out the same strategy
as above with d while being careful with the errors. There are a number of problems that
arise. To define the “betweeness”, property (2) plays an important technical role. Since the
error propagate very fast, to get a linear error bound, we cannot write g as an “increasing”
product g = ¢y - - - g, with very large n. The upper bound in n comes from a lower bound on
the size of Ny, which essentially comes from the result on “core” in the first step. To get an
analog of o/ with the desired property, we need to choose a standard way of expressing idg as
an “increasing” product idg = ¢; - - - ¢, and use gy, ..., g, to “monitor” the other elements in
the group, as illustrated by Figure 6.3. This require us to develop the machinery of irreducible
sequence and concatenation; see Section 6.7.3 for details. Finally, what we ends up with is a
multi-valued almost homomorphism that is not continuous but still universally measurable.
We will need to use a number of results from descriptive set theory and Riemannian geometry

to extract from this the desired group homomorphism.
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6.2.4 The third step: Deducing the structure of the pair

Suppose (A, B) is a nearly minimally expanding pair on G, H is a connected, compact and

normal subgroup of G, 7 : G — G/H is the quotient map, and

peu(m(A)) + peyu(r(B) < 1.

The goal of this step is to show the following transfer to quotients result: There is a nearly
minimally expanding pair (4’, B') on G/H such that pug(AA7T1(A")) and pg(BAT(B'))

are both small.

H Azl = U?zl Aj
1
A(] ‘\\\ AQ
A2 ) "\
% A — Y
A21 \\\
~ G/H
0 w W>1 — W>1 T w>y /
m(A)

Figure 6.4: Lower bound for pg(A?).

To illustrate the idea, we focus on the special case with A = B. Employing the geometric
language in Section 6.2.1, we call pug/u(m(A)) the width of A, for each g in G, we call ANgH
a fiber of A, and refer to ug(g~'A N H) as its length. We consider a further special case
assuming that A can be partitioned into N + 1 parts A = Uij\io A; such that the images
under 7 of the A;’s are compact and pairwise disjoint, A; has width w;, the fibers in Aq all
have length > 1/2, the fibers in A; all have the same length [; < 1/2 for each ¢ > 1, and
l; > ;41 for all i« < N. This further special case is, in fact, quite representative as we can
reduce the general problem to it using approximation techniques.

The proof of this step can be seen as the following “spillover” argument. Applying the

Kemperman inequalities for H and G/H, we learn that all the fibers in A2 has length 1, and
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the width of A2 is at least 2wy. By Fubini’s theorem, ug(AZ) is at least 2wg. Next, consider
Ap(Ap U Ap). A similar argument gives us that all the fibers in Ag(Ag U A;) has length at
least 1 + 1/2, and the width of Ay(AyU A1) in G/H is at least 2wy + wy. Note that ({1 +
1/2)(2wg +w) is a weak bound for pg(Ag(AgUA;)) since the fibers in A2 are “exceptionally

long”. Taking all of these into account, a stronger lower bound for pg(Ag(AgU Ay)) is
2w0 + (ll -+ 1/2)’[1)1

Iterate this procedure, a lower bound for pug(ApA) = ug(Ag(AgU... U Ay)) is

N
2wo + Y (I + 1/2)w.
=1

Now every fiber in (Ao U A;)A has length at least [1, and the width of (AgU A;)A is at least

(wo + w1) + w. Using the same logic, a lower bound for pg((AgU Ay)A) is

N

i=1

Iterate the procedure, a lower bound for pug(A?) = ua((AgU... U A,)A) is

N N
i=1 1=1

Note that pg(A) = lpwo + ... + Iywy. Hence, ug(A?) is nearly 2ug(A) implies that we
must nearly have wy = 1, w; = ... = wy = 0, and [, = 1. From this, one can deduce the

conclusion that we want for this step.

6.2.5 Structure of the chapter

The chapter is organized as follows. Section 6.3 includes some facts about Haar measures

and unimodular groups, which will be used in the subsequent part of the chapter. Section 6.4
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deals with the more immediate parts of Theorem 6.1 and hence sets up the stage for the
main part of the argument. Section 6.5 allows us to arrange that in a minimally or a nearly
minimally expanding pair (A, B), the sets A and B have small measure (Lemma 6.21).
Sections 6.6, 6.7, and 6.8 contain main new technical ingredients of the proof, which will
be put together in Section 6.9 to complete the proofs of Theorem 6.1, Theorem 6.2, and
Theorem 6.3. Steps 1, 2, and 3 discussed in Sections 6.2.2, 6.2.3, and 6.2.4, corresponds to
Sections 6.8, 6.7, and 6.6 respectively.

In Section 6.6.1, we proved the quotient domination theorem (Theorem 6.26), which allow
us to transfer the problem into certain quotient groups. Section 6.6.2 gives an upper bound
on the dimension of the Lie model (Proposition 6.32). Section 6.6.3 contains structural
results assuming we have an appropriate homomorphism (Proposition 6.36). Together with
the transfer theorem, we reduce the problem to a bounded dimension Lie group.

In Section 6.7.1, we showed that a locally linear pseudometric on G would induce a con-
tinuous surjective homomorphism to either R or T, with compact kernel (Proposition 6.42).
Sections 6.7.2 and 6.7.3 study the locally almost linear pseudometric in compact Lie groups.
In particular, we proved that path monotonicity implies monotonicity (Proposition 6.44),
and for almost monotone almost linear pseudometric, one can also find a homomorphism
mapping to T (Theorem 6.61).

In Section 6.8.1, we bound the size of the toric expanders (Theorem 6.73). We construct
the pseudometric from geometric properties of nearly minimal expansion sets in Sections 6.8.2
and 6.8.3. Section 6.8.2 provides a locally linear pseudometric from minimally expansion
sets (Proposition 6.80). In Section 6.8.3, we construct a path monotone locally almost linear
pseudometric (Proposition 6.84).

The dependency diagram of the chapter is as below.
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Proposition 6.32 ‘ ‘Proposition 6.36

Theorem 6.73 Proposition 6.16‘
Lemma 6.21 Theorem 6.2 Theorem 6.1 H Proposition 6.17‘

Theorem 6.26 ’ ‘ Proposition 6.18 ‘

’Proposition 6.84

’Proposition 6.4@ ’Proposition 6.80‘

’ Proposition 6.44}7 \

Theorem 6.61 Theorem 6.3

6.3 Preliminaries

Throughout this section, we assume that G is a connected locally compact group (in partic-

ular, Hausdorff) equipped with a left Haar measure pug, and A, B C G are nonempty.

6.3.1 Locally compact groups and Haar measures

Below are some basic facts about pg that we will use; see [50, Chapter 1] for details:
Fact 6.4. Suppose g is either a left or a right Haar measure on G. Then:

(i) If A is compact, then A is pg-measurable and pug(A) < co.
(ii) If A is open, then A is pg-measurable and pg(A) > 0.

(iii) (Outer regularity) If A is ug-measurable, then there is a decreasing sequence (U,) of

open subsets of G with A C U, for all n, and pg(A) = lim, o pa(Uy).

(iv) (Inner regularity) If A is ug-measurable, then there is an increasing sequence (K,,) of

compact subsets of A such that pg(A) = limy, o0 pa(K,).

(v) (Measurability characterization) If there is an increasing sequence (K,) of compact
subsets of A, and a decreasing sequence (U,,) of open subsets of G with A C U, for all

n such that im, . pa(K,) = lim, o pa(Uy), then A is measurable.
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(vi) (Uniqueness) If g is another measure on G satisfying the properties (1-5), then there

is C € R™Y such that uy, = Cpug.

(vii) (Continuity of measure under symmetric difference) Suppose A C G is measurable,

then the function G — R, g — pug(AAgA) is continuous.

We remark that the assumption that G is connected implies that every measurable set
is o-finite (i.e., countable union of sets with finite pg-measure). Without the connected
assumption, we only have inner regularity for o-finite sets. From Fact 6.4(vii), we get the

following easy corollary:

Corollary 6.5. Suppose A is pug-measurable and € is a constant. Then Stabg,(A) is closed

in G, while Stabg®(A) is open in G. In particular, Staby(A) is a closed subgroup of G.

We say that G is unimodular if ;g (and hence every left Haar measure on G) is also a

right Haar measure. The following is well known and can be easily verified:

Fact 6.6. If G is unimodular, A is pg-measurable, then A~ is also pg-measurable and

pe(A) = pa(A™).
We use the following isomorphism theorem of topological groups.

Fact 6.7. Suppose G is a locally compact group, H is a closed normal subgroup of G. Then

we have the following.

(i) (First isomorphism theorem) Suppose ¢ : G — @Q is a continuous surjective group

homomorphism with ker ¢ = H. Then the exact sequence of groups

l1-H—-G—-Q—1

18 an exact sequence of topological groups if and only if ¢ is open; the former condition

is equivalent to saying that Q is canonically isomorphic to G/H as topological groups.
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(ii) (Third isomorphism theorem) Suppose S < G is closed, and H < S. Then S/H 'is a
closed subgroup of G/H. If S < G is normal, then S/H is a normal subgroup of G/H,

and we have the exact sequence of topological groups
1—-S/H—-G/H—G/S—1;

this is the same as saying that (G/H)/(S/H) is canonically isomorphic to G/S as

topological groups.

Suppose H is a closed subgroup of GG. The following fact allows us to link Haar measures

on (G with the Haar measures on H for unimodular G and H:

Fact 6.8 (Quotient integral formula). Suppose H is a closed subgroup of G with a left Haar

measure . If f is a continuous function on G with compact support, then

xH»—>/Hf(xh)duH(:c).

defines a function f¥ : G/H — R which is continuous and has compact support. If both
G and H are unimodular, then there is unique invariant Radon measures jic/g on G/H
such that for all continuous function f : G — R with compact support, the following integral

formula holds

/G £(@) dpialz) = /G B /H £ (k) dpsr(h) dpagpar (e H).

A similar statement applies replacing the left homogeneous space G/H with the right homo-

geneous space H\G.

We can extend Fact 6.8 to measurable functions on G, but the function f in the state-
ment can be only be defined and is yig,g-measurable jig-almost everywhere. So, in particular,
this problem applies to indicator function 1,4 of a measurable set A. This causes problem

in our later proof and prompts us to sometimes restrict our attention to a better behaved
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subcollection of measurable subsets of G. We say that a subset of G is o-compact if it is a

countable union of compact subsets of G.
Lemma 6.9. We have the following:

(i) o-compact sets are measurable.

(i) the collection of o-compact sets is closed under taking countable union, taking finite

intersection, and taking product set.

(iii) For all pug-measurable A, we can find a o-compact subset A" of A such that pug(A’") =

pc(A).

(iv) Suppose G is unimodular, H is a closed subgroup of G with a left Haar measure jip,
A C G is o-compact, and 14 is the indicator function of A. Then aH — pg(ANaH)
defines a measurable function 15 : G/H — R. If H is unimodular and, pc/u is the

Radon measure given in Fact 6.8, then

o) = [ B | A1 a) () a1,

A similar statement applies replacing the left homogeneous space G/H with the right

homogeneous space H\G.

Proof. The verification of (i-iii) is straightforward. We now prove (iv). First consider the
case where A is compact. By Baire’s Theorem, 14 is the pointwise limit of a monotone
nondecreasing sequence of continuous function of compact support. If f : G — R is a

continuous function of compact support, then the function
f7.G/H — R,aH|—>/ f(ax)dx
H

is continuous with compact support, and hence measurable; see [50, Lemma 1.5.1]. Noting

that py(ANaH) = [, 1a(ax)dz, and applying monotone convergence theorem, we get that

143



1% is the pointwise limit of a monotone nondecreasing sequence of continuous function of
compact support. Using monotone convergence theorem again, we get 1% is integrable, and
hence measurable. Also by monotone convergence theorem, we get the quotient integral
formula in the statement.

Finally, the general case where A is only o-compact can be handled similarly, noting that
1,4 is then the pointwise limit of a monotone nondecreasing sequence of indicator functions

of compact sets. n

Suppose H is a closed subgroup of G. Then H is locally compact, but not necessarily
unimodular. We use the following fact in order to apply induction arguments in the later

proofs.

Fact 6.10. Let G be a unimodular group. If H is a closed normal subgroup of G, then H is

unimodular. Moreover, if H is compact, then G/H is unimodular.

Given A, B subsets of some unimodular group G, each with finite positive measure, and

suppose AB™! is measurable. Ruzsa’s distance is defined by

pig(AB™)
NG(A)UQHG(B)UQ '

d(A, B) = log

The following fact is known as triangle inequality of Ruzsa’s distance.

Fact 6.11. Let C be a set of finite positive measure, and suppose AC~1, C B~ are measurable
sets. Then d(A, B) < d(A,C) +d(C, B).

6.3.2 More on Kemperman’s inequality and the inverse problem

We will need a version of Kemperman’s inequality for arbitary sets. Recall that the inner

Haar measure jig associated to ug is given by

ta(A) = sup{uc(K) : K C Ais compact.}
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The following is well known and can be easily verified:

Fact 6.12. Suppose pg is the inner Haar measure associated to pg. Then we have the

following:
(i) (Agreement with ug) If A is measurable, then fig(A) = u(A).

(ii) (Inner regularity) There is o-compact A C A such that

fi(A) = fig(A") = pc(A).

(iii) (Superadditivity) If A and B are disjoint, then

fic(AU B) > nc(A) + fic(B).

(iv) (Left invariance) For all g € G, g(gA) = p(A).
(v) (Right invariance) If G is unimodular, then for all g € G, ug(Ag) = p(A).

It is easy to see that we can replace the assumption that A and B are compact in
Kemperman’s inequality in the introduction with the weaker assumption that A and B
are o-compact. Together with the inner regularity of pig (Fact 6.12.2), this give us the
first part of the following Fact 6.13. The second part of Fact 6.13 follows from the fact
that taking product sets preserves compactness, o-compactness, and analyticity. Note that
taking product sets in general does not preserve measurability, so we still need inner measure

in this case.

Fact 6.13 (Generalized Kemperman inequality for connected groups). Suppose fig is the

inner Haar measure on G, and A, B C G are nonempty. Then

fic(AB) = min{fic(A) + i (B), pe(G)}-
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Moreover, if A and B are compact, o-compact, or analytic, then we can replace jig with jg.

The remaining parts of Theorem 6.1 consist of classifying the minimally expanding pairs
(A, B) and show that they match the description in situations (iii) and (iv) of Theorem 6.1.
For compact group, our strategy is to reduce the problem to the known situations of one
dimensional tori. Hence, we need the following special case of Kneser’s classification result,

and the sharp dependence between € and 0 is essentially due to Bilu [16].

Fact 6.14 (Inverse theorem for T¢). Let A, B be compact subsets of T¢. For every T > 0,

there is a constant ¢ = ¢(7) such that if

7 ppa(A) < ppa(B) < ppa(A) < e

then either pra(A + B) > ppa(A) + 2upa(B), or there are compact intervals I1,J in T with
pr(I) = pra(A+ B) — ppa(B) and pr(J) = ppa(A+ B) — pra(A), and a continuous surjective

group homomorphism x : T* — T, such that A C x~(I) and B C x~*(J).

For noncompact group, we reduce the problem to to the known situation of additive
group of real numbers. The following result can be seen as the stability theorem of the

Brunn-Minkowski inequality in R? when d = 1.

Fact 6.15 (Inverse theorem for R). Let A, B be compact subsets in R with ug(A) > pe(B),

and let ug be the Lebesgue measure in R. Suppose we have

pr(A+ B) < ur(A) + 2ur(B).

Then there are compact intervals I,J C R with ug(I) = ur(A + B) — ur(B) and ug(J) =
ur(A+ B) — ur(A), such that AC I and B C J.
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6.4 Reduction to nearly minimal expansion pairs

To set the stage for the later discussion, we would like to separate the core part of Theo-
rem 6.1 from the more immediate parts. Throughout G is a connected unimodular group,

it is a Haar measure on G, and A and B are nonempty compact subsets of G.

Proposition 6.16. Suppose one of the situation listed in Theorem 6.1 holds, then ug(AB) =
min(pc(A) + pe(B), pe(G)).

Proof. We will only consider situation (iii) because (i) and (ii) are immediate and (iv) can
be showed in a same way as (iii). Suppose we are in situation (iii) of Theorem 6.1. As y is
a group homomorphism, we have AB = x~'(I +.J). Note that by quotient integral formula,
we have ug(A) = pr(I), pe(B) = pur(J), pag(AB) = pur(I + J). The desired conclusion

follows from the easy that pur(I + J) = pr(I) + pr(J). O

The following lemma clarifies the second statement in situation (ii) of Theorem 6.1.
Proposition 6.17. Suppose ug(A) + ug(B) > uc(G). Then AB = G.

Proof. Suppose g is an arbitrary element of G. It suffices to show that A~!'¢g and B
has nonempty intersection. As G is unimodular, ug(A) = pa(A™1) by Fact 6.6. Hence
pe(A™g) + pe(B) = pe(GQ). If ug(A=tg N B) > 0, then we are done. Otherwise, we have
have pg(A~'g N B) = 0, and so ug(A~'g U B) = ug(G) by inclusion exclusion principle.
As A and B are compact, A~'g U B is also compact, and the complement of A~'g U B
is open. Since nonempty open sets has positive measure, ug(A~'g U B) = ug(G) implies

A7lgU B = G. Now, since G is connected, we must have A~'g N B must be nonempty. [

Now we clarify the situation in (iii) of Theorem 6.1, situation (iii) can be proved in the

same way.

Proposition 6.18. Let G be a connected unimodular group, and A, B be nonempty compact
subsets of G. Suppose ug(A) = 0, 0 < pug(B) < pe(G), and pe(AB) = min(uc(A) +
ua(B), pa(G)). Then there is a compact subgroup H of G such that A C H, and B = HB.
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Proof. Without loss of generality, we can assume that A and B both contain idg. Let H be
the smallest closed subgroup containing A. It suffices to show that HB = B. Indeed, H is
then a closed subset of B which implies that H is compact.

From Corollary 6.5, Stabo(B) = {g € G | ua(BAgB) = 0} is a closed subgroup of G.
As 1g(AB) = pue(B) and idg is in A, we must have A C Stabg(B). By the assumption that
H is the smallest closed subgroup containing A, one must have H < Stabg(B).

We first consider the special case where ug(U N B) > 0 for every b € B and open
neighborhood U of b. As ug is both left and right invariant, this assumption also implies
that ug(U NgB) > 0 for all g € G, b € gB, and open neighborhood U of b. Suppose b is in
HB\B. Since HB = |J,,.y; hB, we obtain h € H such that b is in hB. Set U = G'\ B. Then
U is an open neighborhood of b. From the earlier discussion, we then have pug(U NhB) > 0.
As hB is a subset of HB, it implies that pug(H B \ B) > 0 which is a contradiction.

It remains to reduce the general situation to the above special case. Set

By = {b € B: There is an open neighborhood U, of b with ug(U, N B) = 0}.

If bisin By, and b’ € U, N B, U, also witnesses that 0’ is in By. Hence, B \ By is a closed
subset of B, which implies that B\ By is compact. Now we show that pug(By) = 0. Suppose
B’ is a compact subset of By. Then from the definition of By, we can obtain an open
covering (U;);er of B’ such that ug(U;NB) =0 for all i € I. As B’ is compact, we get from
(Uy)ier a finite subcovering of B’. Hence, ug(B’) = 0. By inner regularity of Haar measure,

ta(Bo) = 0. Replacing B with B\ By, we reduce the situation to the above special case. [

6.5 Reduction to sets with small measure

Throughout this section, GG is a connected compact group, p¢ is the normalized Haar measure

on G, and A, B C GG are o-compact sets with positive measure. We will show that if (A, B)
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is nearly minimally expanding in G, then we can o-compact A’ and B’ each with smaller
measure such that the pair (A’, B') is also nearly minimally expanding. The similar approach
used in this section is introduced by Tao [162] and used to obtain an inverse theorem in the
abelian setting. We first prove the following easy fact, which will be used several times later
in the paper.

Let f,g: G — C be functions. For every = € GG, we define the convolution of f and g

to be

frg(z)= / fW)gly™" =) duc(y)-
G
Note that f * g is not commutative, but associative by Fubini’s Theorem.

Lemma 6.19. Let t be any real numbers such that pg(A)* < t < ug(A). Then there are

x,y € G such that ug(AN (zA)) = uc(AN (Ay)) =t.

Proof. Consider the maps:
moix Iax1aa(z) = pe(AN (zA)), and mo 1y — La-1 x L4(y) = pa(AN (Ay)).

By Fact 6.4, both m; and 7, are continuous functions, and equals to pg(A) when x = y = idg.
By Fubini’s theorem
E (]lA * 1A71) = ug(A)2 = ]E(:H_Afl * ILA>.

Then the lemma follows from the intermediate value theorem, and the fact that G is con-

nected. O

Recall that 0¢(A, B) = pua(AB) — ug(A) — pue(B) is the discrepancy of A and B on G.
The following property is sometimes refered to as submodularity in the literature. Note
that this is not related to modular functions in locally compact groups or the notion of

modularity in model theory.
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Lemma 6.20. Let 7,7 > 0, and A, By, By are o-compact subsets of G. Suppose that
DG(A7 Bl) S 717 DG(A7 BQ) S 727 and

pg(BiNBz) >0,  and pe(A) + pe(BiU By) < 1.

Then both 0g(A, By N By) and 0¢(A, By U By) are at most 1 + 7o.

Proof. Observe that for every x € G we have

Lag, (x) + Lap,(x) > Lasng,) (@) + La,us,) (),

which implies

Mg(ABl) + ,U(;(ABQ) Z M(;(A<Bl N Bg)) + M(;(A(Bl U Bg)) (62)

By the fact that 0¢(A, B1) < 71 and 05(A, By) < 72, we obtain

pa(ABy) < pa(A) + pe(Br) +m, and pg(AB2) < pa(A) + pa(Bsa) + 2.

Therefore, by equation (6.2) we have

pa(A(BL N By)) + pa(A(By U By))

<2u(A) + pa(Br N Ba) + pg(Bir U By) + 71 + 72.

On the other hand, as pg(B1NBs) > 0 and pg(A)+pne(B1UBy) < 1, and using Kemperman’s
inequality, we have

pa(A(By N By)) > pa(A) + pa(Bi N By),

and

1G(A(By U Bs)) 2 pa(A) + pe(Bi U Ba).
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This implies

pc(A(By N By)) < pa(A) + pe(Bi N Ba) + 71 + 72,

and

pa(A(B1U Bs)) < pa(A) + pg(BrU Bz) + 71 + 7.
Thus we have ag<A, Bl N BQ), Dg(A, Bl U BQ) S 71 + Y2- O

The following lemma is the main result of this section, it says if G admits a small
expansion pair, one can another find pair of sets with sufficiently small measures, and still

has small expansion.

Lemma 6.21. Let dy,dy € (0,1/4) be positive real numbers, and let

m = min{uc(A), uc(B), 1 — pe(A) — pa(B)}

Suppose 0g(A, B) < . Then there are o-compact sets A, B' C G satisfying
(i) pa(A) =dy and pe(B') = ds,
(i) 0¢(A’, B), 0¢(A, B'), and dc(A’, B') are at most Og, 4,(y/m).

Proof. Without loss of generality we assume pg(A) > dy and pug(A) > ug(B). The case
when pg(A) is less than d; can be proved in a similar way by replacing taking intersections
by taking unions. Observe that for every g € G, both 05(gA, B) and 0g(A, Bg) are still
upper bounded by 7. By Lemma 6.19, for every ¢t with pug(A)? < t < pg(A), there is
g € G such that ug(A N gA) = t. Assuming that in each step, we can choose g such
that uc(A N gA) = ug(A)?, and replace A by AN gA. Hence after O(loglog1/d;) steps,
the measure of A will achieve d;. The issue of this simple argument is that we may have
pua(AUgA) + pe(B) > 1 when pg(A) > 1/3, so that we cannot apply Lemma 6.20. Thus

in the first few steps, we will choose g such that ug(A U gA) is not too large.
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We first consider the case when pg(A) > 1/3, and pg(A) —m > ug(A)?. We are going

to choose g € G such that

and pg(ANgA) > max{d, ue(A) —m}. Such g exists by Lemma 6.19. Let A; = AN gA,
then pg(A;) < pg(A) — m,uc(A)?. By Lemma 6.20, 0¢(A;, B) < 2vy. Next we choose
g1 € G satisfying (6.3) with A replaced by A, and pg(A; N g1Ar) > min{d;, pe(A1)?}. Let
Ay = A; N g1 Ay, then pg(As) < max{ug(Ar) — 2m, uc(A;1)?}, and 0g(As, B) < 4v. Repeat
this procedure for #; steps until either ug(As,) = di, or ug(A;) — 27 m < pe(A;)?. In either
case we have t; < log(1/3m).

Next, if ug(As,) > dyi, we choose gy, in G such that ug(Ay, N g, As) = pa(Ay,)?. By the
way we define t1, we have pg(Ay, U gy, Ary) + pa(B) < 1. Set Ay 11 = Ay, N gy, Ay, Repeat

this procedure for to steps until pg(As 11,) = di. We have

IOg dl

1
ty <lopg—=— < loglog —
2= 708 log i (Ay,) — T

and 0g(Ay 11,, B) < 202y = Oy (v/m). We then apply the same procedures for B to
arrange B having measure ds.

If we have pug(A) < 1/3 at the beginning, we are able to choose g such that pug(ANgA) =
pe(A)? and pe(A U gA) + pe(B) < 1. Hence it only requires at most loglog(1/d;) steps to

make A having measure d;. 0
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6.6 Geometry of minimal and nearly minimal
expansion pairs I

This section studies the shape of a nearly minimally expanding pairs relative to a connected
compact normal subgroup of the ambient topological group such that the images of the pair
under the quotient map have small measure. In Section 6.1, we obtain results that will allow
us to reduce the Theorem 6.1 and Theorem 6.2 to analogous result about a simpler quotient
group. Section 6.2 applies Section 6.1 to reduce Theorem 6.1 and Theorem 6.2 to the case of
Lie groups and also prove a coarse version of these results. Section 6.3 applies Section 6.1 to
further reduce Theorem 6.1 and Theorem 6.2 to the problem of constructing suitable group
homomorphism into either T or R.

Throughout this section, GG is a connected unimodular locally compact group with Haar
measure lg, and A and B are o-compact subsets of G with positive ug-measure. We will
assume familiarity with the preliminary Section 3.1 on locally compact group and Haar

measuure.

6.6.1 Preservation of minimal expansion under quotient

In this section, H is a connected compact normal subgroup of G, so H and G/H are uni-
modular by Fact 6.10. Let pp, and pg g be the Haar measure on G, H, and G/H, and let
fic: and fig/ be the inner Haar measures on G and G/H. We also let

Suppose 7 and s are in R, the sets A, and mA(, 4 are given by
Apgi={acA:pg(ANaH) € (r,s]}

and

TAqs = {aH € G/H : pg(ANaH) € (r,s]}.
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In particular, A, 4 is the image of A,y under the map m. We have a number of immediate

observations. We define B, ) and mB ¢ likewise for 1, s" € R.

Lemma 6.22. Let r,s,7",s" be in R>°. For all aH € wAys, DH € wB( g, the sets
ApsNaH, By gy NOH are nonempty o-compact. For all subintervals (r,s] of (0,1], Aq.g

is pg-measurable and wA . 4 is jig/r-measurable.

Proof. The first assertion is immediate from the definition. Let 1 4 be the indicator function

of A. Then the function

17 :G/H > R

aH — pg(ANaH)

is well-defined and measurable by Lemma 6.9. As 1A 4 = (1) (r,s] and A, g = AN

7 (mA(,g), We get the second assertion. O

Note that 7A( g7mBq ¢ is not necessarily jig g-measurable, so Lemma 6.23(ii) does

requires the inner measure fig/q.
Lemma 6.23. We have the following:

(i) For every aH € mA and bH € 7B,

pr((ANaH)(BNbH)) > min{py(ANaH) + py(BNOH), 1}

(ii) If A.g and B g are nonempty, then

/jG/H (WA(T,S}WB(T’,S’O > min{,uG/H(ﬂ'A(r,s]) + MG/H(WB(T’,S’]>7 /JJG’/H(G/H>}

Proof. Note that both H and G/H are connected. So (i) is a consequence of the Kemperman

inequality for H and (ii) is a consequence of the generalized Kemperman inequality for G/H
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(Fact 6.13). O

As the functions we are dealing with are not differentiable, we will need Riemann—Stieltjes
integral which we will now recall. Consider a closed interval [a,b] of R, and functions
f:la,b] - Rand g : R — R. A partition P of [a,b] is a sequence (z;)!, of real numbers
with 9 = a, ¥, = b, and z; < z;4; for ¢ € {0,...,n — 1}. For such P, its norm ||P||
is defined as max}~) |z;11 — 7|, and a corresponding partial sum is given by S(P, f,g) =
Yoo fleiv1)(g(zit1) — g(x;)) with ¢i41 € [2;, 2; + 1]. We then define

b
/ f(x)dg(z) = lim S(P.f.g)

1P[|—0

if this limit exists where we let P range over all the partition of [a,b] and S(P, f, g) ranges
over all the corresponding partial sums of P. The next fact records some basic properties of

the integral.
Fact 6.24. Let [a,b], f(x), and g(x) be as above. Then we have:

(i) (Integrability) If f(x) is continuous on I, and g(z) is monotone and bounded on |a, b,

then f(x)dg(z) is Riemann—Stieltjes integrable on |a, b].

(ii) (Integration by parts) If f(z)dg(z) is Riemann—Stieltjes integrable on interval [a, ],

then g(x)df(z) is also Riemann—Stieltjes integrable on [a,b], and
b b
/ f(x)dg(x) = f(b)g(b) — f(a)g(a) —/ g(x)df(x).

The next lemma uses “spillover” estimate, which gives us a lower bound estimate on

i (AB) when the projection of A and B are not too large.

Lemma 6.25. Suppose jc/u(mA) + pe/u(nB) < 1. Set a = sup,eqpu(ANaH), f =

155



supyep (B NbH), and v = max{l,a + S}. Then

«

+
™

pe(AB) >

(teym(TAajva)) + taa(T B )

=2

a+
+— i (Ao,a/y) + 5 pic(Bo,5/4)-

Q
+
™

Proof. For z € (0,1], set C;, = ABN 7 Y (T A(s0,0)TBps,g)- One first note that
pa(AB) > fia(Co).

By Fact 6.24(1), djig(C;) is Riemann—Stieltjes integrable on any closed subinterval of [0, 1].

Hence,
1

(o) =T o) = | dfa(C)

0

Lemma 6.22 and Lemma 6.23(1) give us that

1c(Chyy) = ey (T Ay ™Bs/q.6)-

Likewise, for 2,y € R”? with 2 <y < 1/7, 1g(C.) — ig(C,) is at least

r(o+ B) (fiaya (T Awaa™Bas,g) — faya(TAyaa™Buys,s)) -

Therefore,

1
~ ~ Y ~
1c(Co) = pia/m(TAa/v,aT™B@s/v.8) — / (a+ B)x dfig (T A, ™Bs,g)-
0

Using integral by parts (Fact 6.24.2), we get

1

(o) = [ fioyn(m A mBana) dla + .
0
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Applying Lemma 6.23.2 and using the assumption that pq/g(7A)+ pe/u(7B) < 1, we have

2=

fic(Co) > /0 (ta/a(TAan) + pa/a(TBesg)) d(a + B)w.

Using integral by parts (Fact 6.24.2), we arrive at

e(Cy) > 250

(meyu(TA @ y.0) + tia/a(TBE )
1

!
(a+ Bz d(pc (T Awa,a)) + Ha/a(TBgs.p))-

S~ =

As d(pe/a(TAmaa)) + ta/a(TBusg)) = — d(pe/n(TAw0za) + Ha/a(TBo.g));

o+

=

fc(Co) >

(meyu(TA @ y.0) + ta/a(TB @)

2|

Y
+ / (Oé + ﬁ)x d(/ub(;/H(WA(07a;a}) + NG/H(WB(O,xﬁ}))~
0

Finally, recall that

1/ 1/~
/ vadpc/a(TAoz) = ta(A@a/y) and / Bx dpc a(TBows) = ta(Bo,s/m)-
0 0

Thus, we arrived at the desired conclusion. O

The next result in the main result in this subsection. It says if the projections of A and

B are not too large, the small expansion properties will be kept in the quotient group.

Theorem 6.26 (Quotient domination). Suppose pc u(mA) + pa/u(7B) < pa/u(G/H) and
0¢(A, B) < min{pug(A), ug(B)}. Then there are o-compact A', B" C G/H such that

Dg/H(A/, B/) < 70@(/1, B)

and max{ug(AAT A", ug(BAT'B')} < 304(A, B).
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Proof. Let a and 8 be as in Lemma 6.25. We first show that o + 8 > 1. Suppose to the

contrary that a + § < 1. Then Lemma 6.25 gives us

It follows that pug(AB) > ug(A) + pe(B) + min{uag(A), pe(B)}, a contradiction.

Now we have oo + 8 > 1. Hence, Lemma 6.25 yields

pc(AB) > pen(mAw)(a+).a)) + be/a(TB@)a+8),8)

a+p a+p
+— e (Aw,a/y) + 5 16 (Bo.s/(a+8))-

Choose o-compact A" C TA(/(a+8),a) a0d B’ C mBg/(a+8),8) 0-compact such that

tu(A) = pe/n (T Aars)a) and pe/a(B') = p/u(7Bs)o+6),8)-

We will verify that A" and B’ satisfy the desired conclusion.
Since pigr(A') 2 (1/a)pa(Aw/a+).a)), ke (B') 2 (1/B)pc(Bs)a+s),s) and a+5 > 1,
we have

He(AB) 2 pa(A) + Sric(B).

From yig(AB) — pig(A) — pe(B) = 06(A, B) < min{uc(A), uc(B)}, we deduce that o, f >
1/2.

By our assumption pg(AB) < puc(A) 4+ ug(B) 4+ 0¢(A, B). Hence,

0¢(A,B) > paua(A) — na(Awsarp)a) + ta/a(B') — pa(Bg/a+s),8)

5 o
+ auo(A(o,a/ﬂ) + BMG(B(O,M(&%)D'

Therefore, pug/u(A") — pa(Aw/(at8),01) and (B/a)puc(Aw,a/y) are at most 9¢(A, B). Not-
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ing also that 8/a < 1/2, we get ug(AATH(A') < 306(A, B). A similar argument yield
pe(BATY(B') < 306(A, B).
Finally, note that 7~' (A’B’) is equal t0 A(a/(a+8).a1B(8/(a+p),5, Which is a subset of AB.

Combining with pg(AB) < uc(A) + pe(B) +0¢(A, B), we get

pe/a(A'B') < pa(A) + pe(B) +36(A, B) < pa/u(A) + pe/n(B') + T06(A, B),

which completes the proof. O

The next corollary of the proof of Theorem 6.26 gives a complementary result when

without the asssumption that pg/u(7A) + pe/u(7B) < pe/u(G/H).

Corollary 6.27. Suppose G is noncompact and 3g(A, B) = 0. Then there are o-compact
A B' C G/H such that 0g/u(A',B") =0, pg(AAT1A") =0, and pe(BAT'B') = 0.

Proof. Choose an increasing sequence (A,) of compact subsets of A and an increasing se-
quence (B,) of compact subsets of B such that A = J)~ A, and B = |J;-, B,. Then
lim,, 00 06(Ay, By) = 0. For each n, A, and B, are compact, so 1A, and 7B, are also
compact and has finite measure. Let A/ and B!, be defined for A,, and B, as in the proof of

Theorem 6.26. Then for n sufficiently large, we have

pa(mTAL AA,) < 30¢(A,, By) and pug(n 'BLAB,) < 30¢(A,, B,)

and

te/m(ALBy) < peyn(Ay) + peyn(B,) + 506(An, Bn).

Moreover, we can arrange that the sequences (A!) and (B!) are increasing. Take A’ =

U~ A, and B’ = J,_, B,. By taking n — oo, we have

pa(mTA'AA) =0 and pg(r ' B'AB) = 0.
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and 0g/p(A’, B') = 0 as desired. O

6.6.2 Coarse versions of the main theorems

For the given (G, there might be no continuous surjective group homomorphism to either
T or R (e.g. G = SO3(R)). However, the famous theorem below by Gleason [73] and
Yamabe [169] allows us to naturally obtain continuous and surjective group homomorphism
to a Lie group. Using together with Corollary 6.27, this allows us to reduce the noncompact
case of Theorem 6.1 to that of Lie group. The connectedness of H is not often stated as

part of the result, but can be arranged by replacing H with its identity component.

Fact 6.28 (Gleason—Yamabe Theorem). For any connected locally compact group G and any
neighborhood U of the identity in G, there is a connected compact normal subgroup H C U

of G such that G/H is Lie group.

With some further effort, we can also arrange that pg/u(7A) + pg/u(7B) < pa/u(G/H)
as necessary to apply Theorem 6.26. However, when 05(A, B) > 0, we will need a dimension
control on the Lie group we obtained from the Gleason—Yamabe Theorem. For that, we
need Fact 6.30, which can be thought of as a refinement of the Gleason—Yamabe theorem
coming from arithmetic combinatorics and model theory.

Recall that an open precompact set S C G is a K-approximate group if idg € 5,
St = S, and S* C XS for some finite set X of cardinality K. The next theorem by
Tao [159] allows us to extract an approximate group from a nearly minimally expanding
pair; as stated in [159], this theorem is only applicable when A, B are open, but the proof

also goes through without this assumption.

Fact 6.29 (Approximate groups from small expansion). Suppose K is a constant and
ua(AB) < Kug2(A)ué/2(B), then there is an open precompact O(K°W)-approzimate group
S with pa(S) = O(KOW) > (A)ud>(B) and a finite set X or cardinality O(K°M) such
that AC XS and B C SX.
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The study of continuous approximate groups by Carolino [40] is able to find a Lie model,
and to control the dimension of the Lie model. This can be seen as a finer version of the

Gleason—Yamabe theorem.

Fact 6.30 (Lie model from approximate groups). Suppose K is a constant and S is an open

precompact K-approzimate group on G. Then there is a connected compact normal subgroup
H of G, such that H C S* and G/H is a Lie group of dimension Ox(1).
The next lemma is the main result in this subsection. Using this, we can pass the problem

to connected Lie groups with bounded dimensions.

Lemma 6.31 (Lie model from small expansions). If ug(AB) < Kulc/z(A)ulG/Q(B) and then
there is a connected compact subgroup H of G such that G/H is a Lie group of dimen-

sion Ok (1) and, with # : G — G/H the quotient map, 7A and 7B have ug-measure

O(KOMut(A)ug* (B).

Proof. By Fact 6.29, there is an open K-approximate group S, with
H(S) = O(KOW)ug (A (B)

such that A can be covered by O(K°W) right translation of S, and B can be covered by
O(K°W) left translation of S. By Fact 6.30, there is a closed connected normal subgroup
H in S*, such that G/H is a Lie group of dimension at most O(1). Let 7 be the quotient

map. Since H C S*, we have
pem(7(8)) = pa(SH) < pa(S”) = O(KOD) ud*(A)ud*(B).

Note that 7(A) can be covered by O(K°W) right translations of 7(S), and 7(B) can be

covered by O(K©W) left translations of 7(S). Hence, we get the desired conclusion. O

The following proposition tells us that small measure expansion phenomenon can always

be reduced to the same phenomenon on a Lie group with small dimension.
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Proposition 6.32 (Coarse versions of the main theorems). There is a constant T such that
if either G is noncompact and pug(A) = uc(B) or G is compact and pe(A) = pe(B) < T,

and

(A, B) < min{ug(A), ug(B)},

then there is a connected compact normal subgroup H of G, and o-compact subsets A', B of

G/H satisfying:
(i) G/H s a Lie group of dimension O(1);

(ii) With m: G — G/H the quotient map,

pa(AAT A < 306(A, B) and pug(BAT*B') < 30¢(A, B);

(111) DG'/H(A/, B/) < 70@(14, B)

Proof. From the assumption we have ug(AB) < BMIG/Q(A)MIG/2B. Obtain H as in Lemma 6.31,

and when ug(A), ig(B) are small enough, we have pg g (mA)+pg/u(nB) < 1. Then G/H is

a Lie group of dimension O(1). By applying Theorem 6.26, we get the desired conclusion. [

6.6.3 Structure control on the nearly minimal expansion sets

The following useful lemma is a corollary of Theorem 6.26, which will be used at various
points in the later proofs. It tells us the character given in the parallel Bohr sets is essentially

unique.

Lemma 6.33 (Stability of characters). Suppose G is compact, x : G — T is a continuous
surjective group homomorphism, J C T is a compact interval, and n is a constant. Suppose

we have

(i) 6(4, B) < min{ug(A), pa(B)};
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(i) pr(J) = pe(B) and pe(BAX™(J)) = ndg(A, B);

Then there is a compact interval I in T such that pr(Il) = pug(A) and
pe(ALXTH (D)) < (45 + 2n)dc(A, B).

Proof. Let K = ker(x). Note that x is an open map, and hence by Fact 6.7 we have
G/K = T. By Theorem 6.26, there are sets A’ and B’ in T such that d7(A’, B") < T0¢(A, B),
and

pa(AAXTHA) = 306(A, B),  na(BAXTH(B')) = 306(A, B).

Then pr(B'AJ) < (n+ 3)0g(A, B). Without loss of generality, we assume ug(B) = &, and
J =1[0,k]. As A’ is measurable, for any £ > 0, there is a finite union of intervals K C A’ in

T such that pup(K) > pur(A’) —e. Fix e = 0¢(A, B). For every x € |0, k], define
f:R =Rz~ pup(K +0,z]).
Note that f is continuous and piecewise linear. Thus by the fundamental theorem of calculus

Afﬂwdxzﬂm—fm>
< pr(A) + K+ (7T +3+1)0c(A, B) — pr(A') +0¢(A, B)

<k+ (114 n)os(A4, B).

Note that f’ > 1 and only taking values in Z. Hence, there is Q@ C [0, x] with ur(Q2) >
k— (114n)d¢(A, B), such that f'(x) =1 for z € . Clearly, there is o < (11+n)0g(A, B),

and f’(z¢) = 1. This implies K + [0, z¢] is an interval. Again we have

AMK+MmD=ﬂ@—[Uva
< un(A) £ (21 + )ou(A. B).
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Thus, there is an interval I C T with pr(I) = pg(A), and ug(AA x 1)) < (2(21 +n) +
3)06(A, B) = (45 + 2n)06(A, B). O

The next lemma shows that, if the symmetric difference of a set A and an interval is

small, then A is also contained in a interval of bounded length.

Lemma 6.34. Suppose G is compact, A, B are o-compact subsets of G, and the discrepancy
0:(A,B) < e. Let x : G — T be a continuous surjective group homomorphism, and I,J

compact intervals in T, with pr(I) = pe(A), pr(J) = pa(B), and

pa(AAXTHI)) <&, pa(BAXT'(J) <e.

Then there are intervals I', J' C T, such that A C x~'(I"), B C x~%(J'), and

pr(I') = pa(A) < 10e,  pr(J') = pa(B) < 10e.

Proof. Suppose there is g € A and g ¢ x (), and the distance between x(g) and the

nearest element in I’ is strictly greater than 5eug(A) in T. Thus

pr(x(9)x(B) \ Ix(B)) > 5¢ — pr(J \ x(B)) > 4e.

and this implies that pg(gB \ x *(I)x~(J)) > 3¢. Therefore,

1G(AB) > pa((x ') N A)(x ' (J) N B)) + pua(gB\ x '(I)x ' (J]))

> pc(A) + pe(B) — 26 + 3¢,

and this contradicts the fact that 95(A, B) < €. Hence there are intervals I’, J' in T such

that A C x~!(I') and B C x~*(J'), and

pe(x I\ A) <10e  pr(x'(J)\ B) < 10¢,
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as desired. O

The stability lemma, together with Theorem 6.26, will be enough to derive a different
proof of a theorem by Tao [162], with a sharp exponent bound. As we mentioned in the
introduction, the same result with a sharp exponent bound was also obtained by Christ and

lliopoulou [43] recently, via a different approach.

Theorem 6.35 (Theorem 6.2 for compact abelian groups). Let G be a connected compact

abelian group, and A, B be compact subsets of G with positive measure. Set

s = min{ug(A), ne(B), 1 — pa(A) — pa(B)}-

Given 0 < e < 1, there is a constant K = K (s) does not depends on G, such that if 6 < Ke

and

pta(A+ B) < pe(A) + pe(B) + d min{ua(A), pe(B)}-

Then there is a surjective continuous group homomorphism x : G — T together with two

compact intervals I, J € T with

pr(l) — pa(A) <epc(A),  pr(J) — pe(B) < epc(B),

and A C x~Y(I), B C x71(J).

Proof. We first assume that 95(A, B) is sufficiently small, and we will compute the bound
on 0 (A, B) later. As G is abelian, by Proposition 6.32, there is a quotient map 7 : G — T4,
and A’, B C T?, such that

pa(AAT A < 306(A, B) and pug(BAT'B') < 30¢(A, B)

and 0¢/(A', B') < T0g(A, B). Let ¢ = ¢(7) be as in Fact 6.14, and by Lemma 6.21, there is

a constant L depending only on s and ¢, and sets A”, B” C T¢ with pra(A”) = pra(B") = ¢
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such that

max{bg(A”, B/), Dg(A”, BH>, 0@(14/, B//)} < Lag(A, B)

By Fact 6.14, there are intervals I’,J" C T with ur(I") = ur(J’) = ¢, and a continuous

surjective group homomorphism p : T¢ — T, such that
pra(A" A p~H(I') < Ldg(A, B) and  ppa(B" A p~'(J')) < Ldg(A, B).
By Lemma 6.33, there are intervals I’, J' C T with
pra (A" A p~HI')) < (45 + 20)0¢(A, B) and ppa(B' A p~H(J)) < (45 +2L)0q(A, B).
Let x = m o p. Hence we have
pa(AA X HI) < (48 +2L)0¢(A, B) and pg(B A x 1(J') < (48 +2L)dq(A, B).
Using Lemma 6.34, there are intervals I,.JJ C T, such that A C x~}(I), B C x~'(J), and

pr(L) — pe(A) < (480 +20L)d¢ (A, B),

pn(J) — pe(B) < (480 + 20L)0¢(A, B).

Now, we fix
. 1 c
K i=min {480 +20L Z}’

and 0 < Ke, where 0¢(A, B) = d min{uc(A), pe(B)}. Clearly, we will have

pr(l) = pa(A) < emin{ug(A), pa(B)},

pr(J) — pe(B) < emin{uc(A), pe(B)}-
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Note that in the above argument, we apply Fact 6.14 on A”, B”, and this would require that

Ldg(A, B) < c. By the way we choose K, we have

Log(A, B) = Lémin{uc(A), pa(B)} <,

as desired. O

The following theorem shows that, once we have a certain group homomorphism to tori,

we will get a good structural control on the (nearly) minimal expansion sets.

Proposition 6.36 (Toric domination from a given homomorphism). Suppose A, B have
(A, B) < min{ug(A), ug(B)}, and x : G — T is a continuous surjective group homo-
morphism such that pr(x(A)) + pr(x(B)) < 1/5. Then there is a continuous and surjective
group homomorphism p : G — T, a constant K, only depending on min{uc(A), uc(B)},

and compact intervals I, J C T with pur(l) = pe(A) and pr(J) = pue(B), such that

na(ALp™H (1)) < Kodg(A, B), and  pg(BAp~'(J)) < Kodg(A, B).

Proof. By Theorem 6.26, there are A’, B’ C T, such that

Ho(ALY (X)) < 306(A, B) and pg(BAY '(B)) < 306(A, B), (6.4)

and 0p(A’, B') < 70¢(A, B). By Theorem 6.35, there are continuous surjective group homo-
morphism 7 : T — T, a constant L depending only on min{us(A), ug(B)}, and compact
intervals 7, J C T such that ur(I) = pr(A"), pr(J) = pr(B’), and

pr(A'An~H(I)) < Log(A, B) and urp(B'An~(J)) < Log(A, B). (6.5)

Set p =mn o x. The conclusion follows from (6.4) and (6.5) with Ky = L + 3. O
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In light of Proposition 6.36, in the rest of the paper, we will be focusing on finding the

desired group homomorphism mapping G to tori.

6.7 Pseudometrics and group homomorphisms into
tori

Proposition 6.32 and Proposition 6.36 reduce the proof of Theorem 6.1 and Theorem 6.2
to problems of constructing certain group homomorphisms from a Lie group into T or R.
In this section, we show these problems can be reduced further to problems of constructing
pseudometrics with certain properties on the ambient group. Section 7.1 shows that a linear
pseudometric suffices, and Section 7.2 and Section 7.3 does so when the pseudometric is
almost linear and almost monotone.

Throughout, G is a connected and unimodular Lie group with Haar measure ug. Recall
that a pseudometric on a set X is a function d : X x X — R satisfying the following three

properties:
1. (Reflexive) d(a,a) =0 for all a € X,
2. (Symmetry) d(a,b) = d(b,a) for all a,b € X,
3. (Triangle inequality) d(a,c) < d(a,b) 4+ d(b,c) € X.

Hence, a pseudometric on X is a metric if for all a,b € X, we have d(a,b) = 0 implies a = b.

If d is a pseudometric on G, for an element g € G, we set ||g|la = d(idg, g).

6.7.1 Linear pseudometrics

Suppose d is a pseudometric on G. We say that d is left-invariant if for all g, ¢;,92 € G,
we have d(gg1, gg2) = d(g1,92). left-invariant pseudometrics arise naturally from measurable

sets in a group; the pseudometric we will construct in Section 8 is of this form.
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Proposition 6.37. Suppose A is a measurable subset of G. For g, and go in G, define

d(g1, 92) = pa(A) — pa(giAN g A).

Then d is a continuous left-invariant pseudometric on G.

Proof. We first verify the triangle inequality. Let g1, g2, and g3 be in GG, we need to show

that

pe(4) — pe(GAN gsA) < pe(4) — pe(GAN gA) + pe(A) — pelg2ANgsA).  (6.6)

As pg(A) = pc(g2A), we have pc(A) — pe(g1A N gaA) = pe(geA\ g14), and pa(A) —

(g2 AN gsA) = ug(g2A\ g3A). Hence, (6.6) is equivalent to

1 (g2A) — na(g2 A\ 91A) — pa(g2A N\ gsA) < (g AN gsA).

Note that the left hand side is at most pg(g1 ANgaANgsA), which is less than the right hand
side. Hence, we get the desired conclusion. The continuity of d follows from Fact 6.4(vii),

and the remaining parts are straightforward. O]

Another natural source of left-invariant pseudometrics is group homomorphims onto met-
ric groups. Suppose d is a continuous left-invariant metric on a group H and 7 : G — H is
a group homomorphism, then for every g;, g» in GG, one can naturally define a pseudometric
d(g1,92) = d((g1), m(go)). It is easy to see that such d is a continuous left-invariant pseu-
dometric, and {g € G : ||g||la = 0} = ker(m) is a normal subgroup of G. The latter part of

this statement is no longer true for an arbitrary continuous left-invariant pseudometric, but

we still have the following:

Lemma 6.38. Suppose d is a continuous left-invariant pseudometric on G. Then the set

{g € G :||g|lla =0} is the underlying set of a closed subgroup of G.
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Proof. Suppose g1 and gy are elements in G such that ||g1|la = ||g2/la¢ = 0. Then

d(idGagng) S d<1dGagl) + d(glvgng) = d(ldG7gl> + d<ldGagg) = 0.

Now, suppose (g,) is a sequence of elements in G converging to g with ||g,|l¢ = 0. Then

lglla = 0 by continuity, we get the desired conclusions. O

In many situations, a left-invariant pseudometric allows us to construct surjective con-
tinuous group homomorphism into metric groups. The following lemma tells us precisely
when this happens. We omit the proof as the result is motivationally relevant but will not

be used later on.

Lemma 6.39. Let d be a continuous left-invariant pseudometric on G. The following are

equivalent
(i) The set {g € G :||g|la = 0} is the underlying set of a closed normal subgroup of G.

(ii) There is a continuous surjective group homomorphism = : G — H, and d is a left-

nvariant metric on H. Then

d(g1, 92) = d(7g1,7ga).

Moreover, when (ii) happens, {g € G : |lglla = 0} = kerw, hence H and d if exist are

uniquely determined up to isomorphism.

The group R and T = R/Z are naturally equipped with the metrics dg and dr induced
by the Euclidean norms, and these metrics interact in a very special way with the additive
structures. Hence one would expect that if there is a group homomorphism from G to either
R or T, then G can be equipped with a pseudometric which interacts nontrivially with

addition.
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Let d be a left-invariant pseudometric on G. The radius p of d is defined to be sup{||g||4 :
g € G}; this is also sup{d(g1, g2) : 91,92 € G} by left invariance. We say that d is locally

linear if it satisfies the following properties:

1. d is continuous and left-invariant;

2. for all g1, g2, and g3 with d(g1, g2) + d(g2, g3) < p, we have either

d(g1, 93) = d(g1, 92) + d(g2, g3), or d(g1,93) = |d(g1,92) — d(g2, g3)|- (6.7)

A pseudometric d is monotone if for all g € G such that ||g|ls < p/2, we have

lg*lla = 2llglla.

To investigate the property of this notion further, we need the following fact about the

adjoint representations of Lie groups [91, Proposition 9.2.21].

Fact 6.40. Let g be the Lie algebra of G, and let Ad : G — Aut(g) be the adjoint represen-

tation. Then ker(Ad) is the center of G.

The following result is the first time we need G to be a Lie group instead of just a locally

compact group.
Proposition 6.41. If d is a locally linear pseudometric on G, then d is monotone.
Proof. We first prove an auxiliary statement.

Claim 6. Suppose s : G — G, g — ¢? is the squaring map. Then there is no open U C G

and proper closed subgroup H of G such that s(U) C H.

Proof of Claim. Consider the case where G is a connected component of a linear algebraic

subgroup of GL,(R). Let Js be the Jacobian of the function s. Then the set

{g € G : det J,(g9) =0}
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has the form G N Z where Z is a solution set of a system of polynomial equations. It is not
possible to have G N Z = @, as s is a local diffeomorphism at idg. Hence, G N Z must be
of strictly lower dimension than G. By the inverse function theorem, s|g\ 7 is open. Hence
s(U) is not contained in a subgroup of G with smaller dimension.

We also note a stronger conclusion for abelian Lie group: If V' is an open subset of a
not necessarily connected abelian Lie group A, then the image of A under a — a? is not
contained in a closed subset of A with smaller dimension. Indeed, A is isomorphic as a

topological group to D x T™ x R™, with D a discrete group. If

UCDxT™xR™,

then it is easy to see that {a®: a € V'} contains a subset of D x T™ x R™, and is therefore
not a subset of a closed subset of A with smaller dimension.

Finally, we consider the general case. Suppose to the contrary that s(U) C H with H a
proper closed subgroup of G. Let Z(G) be the center of G, G' = G/Z(G), 7 : G — G’ be

the quotient map, U’ = w(U), and

s G =G g (¢)

Then U’ is an open subset of G, which is isomorphic as a topological group to a connected
component of an algebraic group by Fact 6.40. By the earlier case, s'(U’) is not contained
in any proper closed subgroup of G, so we must have 7(H) = G’. In particular, this implies
dim(H N Z(G)) < dim Z(G), and HZ(G) = G. Choose h € H such that hZ(G) N U is
nonempty. Then

s(hZ(G)NU) ={h*a*:a € Z(G)Nh~'U}.

As s(hZ(G)NU) C H, we must have {a*: a € Z(G)Nh™'U} is a subset of HNZ(G). Using

the case for abelian Lie groups, this is a contradiction, because H N Z((G) is a closed subset
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of Z(G) with smaller dimension. X

We now get back to the problem of showing that d is monotone. As d is invariant,
d(idg, g) = d(g,¢*) for all ¢ € G. From local linearity of d, for all g € G with ||g||s < p/2,

we either have

lg*la =2llglla or [lg*[la =0.

It suffices to rule out the possibility that 0 < ||g|la < p/4, and ||¢%||4 = 0.

As d is continuous, there is an open neighborhood W of g such that for all ¢ € W, we
have ||¢'||4 > 0 and ||(¢')?|l¢ = 0. From Lemma 6.38, the set {g € G : ||g|la = 0} is a closed
subgroup of G. As d is nontrivial and G is a connected Lie group, {g € G : ||g|ls = 0} must
be a Lie group with smaller dimension. Therefore, we only need to show that if W is an open
subset of G, then s(1V) is not contained in a closed subgroup of G with smaller dimension,

where s : G — @ is the squaring map, and this is guaranteed by the earlier claim. O

The next result confirms our earlier intuition: locally linear pseudometric in G will

induced a homomorphism mapping to either T or R.

Proposition 6.42. Suppose d is a locally linear pseudometric with radius p > 0. Then ker d
is a normal subgroup of G, G/kerd is isomorphic to T if G is compact, and G/kerd is

isomorphic to R if G is noncompact.

Proof. We first prove that kerd is a normal subgroup of G. Suppose ||g||ls = 0 and h € G
satisfies ||h|la < p/4. We have

d(h, hgh™") = d(idg, gh™")

= |d(1dG7g) + d(gagh_1)| = d(ldG’a h_l) = d(ldG7 h)

Hence, d(idg, hgh™!) = |d(idg, h) & d(h, hgh™')| is either 0 or 2d(idg, h). Assume first that
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|hgh~™t||a = 0 for every such h when ||g|lqs = 0. Let

U= {h: [hlla < p/4}.

By the continuity of d, U is open. Hence for every h in GG, h can be written as a finite
product of elements in U. By induction, we conclude that for every h € G, |[[hgh™||s = 0
given ||g|l¢ = 0, and this implies that ker d is normal in G.

Suppose ||[hgh™ |4 = 2||h||4. By Proposition 6.41, d is monotone. Hence, we have

Ihg*h ™ la = 4] ]la-

On the other hand, as ||g||q = 0, repeating the argument above, we get ||hg?h~!|; is either
0 or 2||h|l4. Hence, ||h]|s = 0, and so ||hgh™"||4 = 0.

We now show that G’ = G/ kerd has dimension 1. Let d’ be the pseudometric on G’
induced by d. Choose g € G’ in the neighborhood of idg such that g is in the image of the
exponential map and ||g|le < p/4. If ¢’ is another element in the neighborhood of idg which
is in the image of the exponential map and ||¢'||s < p/4. Without loss of generality, we may
assume ||¢'||e < ||g]lar- Suppose ¢ = exp(X). Then by the monotonicity, there is k£ > 1 such

that || (¢")lle > |lgl|lar- By the continuity of the exponential map, there is t € (0, 1] such that

9llar = llexp(thX)a-

This implies that g and ¢’ are on the same one parameter subgroup, which is the desired

conclusion. O

174



6.7.2 Almost linear pseudometrics: relative sign and total weight

functions

In this section, we will introduce a weakening of the notion of a locally linear pseudometric
and define the relative sign function and total weight function associate to it. When d is a
pseudometric arising from a measurable subset A as in Proposition 6.37, these roughly give
the “direction” and the “distance” that an element of the group translates A.

Throughout this section, d is a pseudometric on G with radius p > 0, and + is a constant
with 0 < v < 107%p. For a constant A, we write I(\) for the interval (—\, ) in either R or
T, and we write N(A) for {g € G : ||g|la € I(N\)}. By Fact 6.4(vii), N(\) is an open set, and

hence measurable. We say that d is y-linear if it satisfies the following conditions:
1. d is continuous and left-invariant;

2. for all g1, g2, 93 € G with d(g1, g2) + d(g2, g3) < p — v, we have either

d(gl7g3) € d(gl,QQ) + d(92793) + ](ry)a

or

d(g1,93) € |d(g1, 92) — d(g2, 93)| + 1 (7).

Given a < p, let N(a) = {g € G : ||g]la < a}. We say that d is y-monotone if for all
g € N(p/2 —~), we have

19°Mla € 2l|glla + I (7).

The next lemma says that under the ~-linearity condition, the group G essentially has
only one “direction”: if there are three elements have the same distance to idg, then at least

two of them are very close to each other.
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Lemma 6.43. Suppose d is a y-linear pseudometric on G. If g, 91,92 € G such that

lglla = llgrlla = llgalla € I(p/4 =)\ 1(27),

and d(g1, 92) € 2||glla + I(~y). Then either d(g, 1) € I(~y) or d(g,g2) € I(7).

Proof. Suppose both d(g, g1) and d(g, g2) are not in I(). By 7-linearity of d, we have

d(g,91) € |d(idg, g) & d(ide, g1)| + I(7),

and so d(g,g1) € 2||glla + L(y). Similarly, we have d(g, g2)2||glla + 1(7)-

Suppose first that d(g1, g2) € d(g,91) + d(g, g2) + I(7), then

d(g1,g2) € 4l|glla + 1(37).

On the other hand, by 7-linearity we have d(g1, g2) < 2||g||a+7. Hence, we have ||g||4 € 1(27),
a contradiction.
The other two possibilities are d(g1, g2) +d(g, g2) € d(g, 91) +1(7) or d(g1, g2) +d(g, 91) €

d(g, g2) + I(7y), but similar calculations also lead to contradictions. O

Proposition 6.44 below is a partial replacement for Proposition 6.41 for linear pseudo-
metric. The fact that we do not automatically have monotonicity is a reason that the later

Section 8.3 is much harder than Section 8.2.

Proposition 6.44 (Path monotonicity implies global monotonicity). Let g be the Lie algebra
of G, exp : g — G the exponential map, and d a y-linear pseudometric on G. Suppose for

each X in g, we have one of the following two possibilities:

(i) llexp(tX)lla < for allt € R;
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(i) there is to € R with ||lexp(toX)|la € I(p/2 — ) \ I(p/4),

lexp(2t0 X)[|a = 2llexp(toX)lla + 1(7), (6.8)

and

lexp(tX)[la + llexp((to — 1) X)la € llexp(toX)la + 1(7) (6.9)
for all t €0, to].
Then d is (9v)-monotone.

Proof. Fix an element g of G with ||g|la € I(p/2 — 167). Our job is to show that ||¢%||s €
2||glla + 1(97). Since G is compact and connected, the exponential map exp is surjective.
We get X € g such that g € {exp(tX) : t € R}. If we are in scenario (i), then ||g|ls < 7,
hence [|g2|la € 2||glla + I(37). Therefore, it remains to deal with the case where we have an
to as in (ii).

Set go = exp(tpX). We consider first the special case where ||g|la < ||golla — 27. As d is
continuous, there is t; € [0,to] such that with g, = exp(t,1X), we have ||gi1]|la = ||g]la- Let

ty = —t1, and gy = exp(toX) = g; '. Since d is invariant,

lgalla = d(g " ide) = d(ide, g1) = [lg1]la-

Hence, [lgilla = llgalla = lglla- If llglla < 2, then [|g*[la € 2[lglla + I(5v) and we are done.

Thus we suppose ||g||s > 2. Then, by Lemma 6.43, either d(g, g1) < 7, or d(g,g2) < 7.
Since these two cases are similar, we assume that d(g,g;) < 7. By 7-linearity, ||g?]4

is in either 2||gi|la + I(v) or I(vy). Using ||¢2]la € 2||golla + I() and the assumption that

lglla < llgolla — 27, in either case, we have

lgtlla < llgglla —27. (6.10)
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Since gy 'g1 = 9195+, and by 7-linearity of d, we get

d(gi. g5) = d(idg, g7 %g5) = d(idg, (91" 90)*) € {0,2d(g1,90)} + 1(7). (6.11)

By (6.9), we have [|g1[la + d(g1,90) € llgolla + 1(7). Recalling that ||gila = ||glla > 27, and
from (6.8) and (6.11), we have

d(g1,95) < 2llgolla = 3v = llgoll — 27- (6.12)

By (6.10), (6.12), and the v-linearity of d, we have

lgilla € llgalla — d(gt. 93) + 1(7).

Therefore by (6.9) and (6.11), we have either

Ig5]la € 2llgilla + 1(5v) or lgilla € 2llgolla + 1(37).

As [lgullZ < 2llgill +v < 2llgoll — 5v, we must have ||gf|| € 2||g1]| + 1(5v). Now, since

lgi glla = d(g1,9) < 7, again by the ~-linearity we conclude that

d(g7,9%) = 1(97"9)*|la < 37-

Thus, [lg[la € 2llglla + 1(97)-

Finally, we consider the other special case where ||golla + 27 < ||glla < p/2 — 167. For
g1 = exp(t; X) with t; € [0,%0], we have ||g}|la € 2|lg1]] + I(8y) by a similar argument as
above. Using continuity, we can choose ¢, such that |¢?||¢ = ||g]la, and let g» = g;'. The
argument goes in exactly the same way with the role of g; replaced by g7 and the role of g,

replaced by g3. O
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Suppose d is v-linear. We define s(g1, g2) to be the relative sign for g1, g» € G satisfying

lgilla +llgzlla < p =~ by

0 if min{{[g1(|a, [|g2lla} < 47,

s(91,92) = 41 if min{||g1]la, |g2lla} > 47 and ||gigalla € [|g1]la + llgalla + (7).

|1 if minglgilla, llgalla} > 4 and |gigala € lgilla = llgzllal + (7).

Note that this is well defined because when min{||g1|4, ||g2||a} > 47 in the above definition,
the differences between |||g1 [l — ||g2/la| and ||g1|la+ |92l is at least 6. The following lemma

gives us tools to relate signs between different elements.

Proposition 6.45. Suppose d is y-linear and ~y-monotone. Then for g1, g», and gs in

N(p/4—~)\ N(4v), we have the following

(i) s(g1,91") = —1 and s(g1, 1) = 1.

(i) 5(g1,92) = (g2, 91)-

(iii) s(g1,92) = (g1, 92") = —s(g1 ", 92) = —s(g1, 92 )
(iv) s(g1,92)5(92, 93)s(gs, 1) = 1.

(v) If llgilla < llg2lla, and gige is in N(p/4 — )\ N(4y), then

3(9079192) = 8(9079291) = 3(90792)-

Proof. As g1, g2, and g3 are in N(p/4—~)\ N(47), one has s(g;,9;) # 0 for all 4,57 € {1,2,3}.
The first part of (i) is immediate from the fact that ||idg|lq = 0, and the second part of (i)
follows from the y-monotonicity and the definition of the relative sign.

We now prove (ii). Suppose to the contrary that s(gi, g2) = —s(g2, g1). Without loss of

generality, assume s(gy,92) = 1. Then ||g1929192||a is in 2||g192||la + I(7), which is a subset
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of 2||g1|la + 2[|g2]la + I(37). On the other hand, as s(g2,91) = —1, we have

91929192/l € [llg1lla = (lgalla = llgilla) £ llgalla] + I(37).

This contradicts the assumption that g; and go are not in N (4+).

Next, we prove the first and third equality in (iii). Note that ||g|ls = ||l¢g7"||a for all
g € G as d is symmetric and invariant. Hence, ||g1g2|la = [|95 gy |la- This implies that
s(g1,92) = s(g3*,97"). Combining with (ii), we get the first equality in (iii). The third
equality in (iii) is a consequence of the first equality in (iii).

Now, consider the second equality in (iii). Suppose s(g;*,95") = s(g; "', g2). Then from

(ii) and the first equality of (iii), we get s(g2,g1) = s(g; ', g2). Hence, either

1929197 ' g2lla € 2 ([|g1lla + llg2lla) + 1(37)

or

929191 " g2lla € 2[llg1lla = llg2lla] + I(37)-

On the other hand, ||g2g197 * g2/l = 1|g3||4, which is in 2||ga||a + I (7). We get a contradiction
with the fact that g, and go are not in N (4v).

We now prove (iv). Without loss of generality, assume ||g1]la < ||g2]la < ||g3|la- Using
(iii) to replace g3 with g3 ' if necessary, we can further assume that s(gs,g3) = 1. We
need to show that s(g1,g92) = s(g1,93). Suppose to the contrary. Then from (iii), we get

s(g1,92) = s(g7", g3). Using (iii) to replacing g; with g; ' if necessary, we can assume that

s(g1,92) = s(g; ", g3) = 1. Using (ii), we get s(go,g1) = 1. Hence, either

929191 gslla € 20l g1lla + llgalla + llgslla + 1(37)
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or

929191 gsla € llgslla = llg2lla + 1(37)-

On the other hand, |g2g19; 'gs3lla = |lg293lla is in ||g2lla + |lgalla + (7). Hence, we get a
contradiction to the fact that g;, g, and g3 are not in N(47).

Finally, we prove (v). Using (iv), it suffices to show s(g192,92) = s(g291,92) = 1. We
will only show the former, as the proof for the latter is similar. Suppose to the contrary
that s(g1g2,92) = —1. Then [lg13]la is in |||g1g2lla — llg2lla| + I(7), which is a subset of
lg1]la+1(27). On the other hand, ||g1g3||« is also in ||| g1]la — [|93]la| + I () which is a subset
of 2||g2lla — ||g1]la + I(27y). Hence, we get a contradiction with the assumption that g; and

g2 are not in N (47). O

The notion of relative sign corrects the ambiguity in calculating distance, as can be seen

in the next result.

Lemma 6.46. Suppose d is y-monotone ~y-linear, and g1 and gy are in N(p/16 — ~y) with

lgilla < |lg2lla- Then we have the following
(1) Both |g1gzlla and [|g2g1la are in s(g1, g2)llgilla + llgalla + 1(57).

(ii) If go is in N(p/4) \ N(4v), then both s(go, g192)|19192|la and s(go, g291)||g291la are in

(90, 91) 1911l + (g0, 92) lg2la + I(257).

Proof. We first prove (i). When g1,g2 ¢ N(47), the statement for ||giga|/s is immediate
from the definition of the relative sign, and the statement for ||g2g:||a is a consequence of

Proposition 6.45(ii). Now suppose ||g1]|la < 4. From the ~-linearity, we have

lg2lla = lgilla — v < llgrg2lla < llgrlla + llg2lla + -

We deal with the case where ||gs||q < 4 similarly.
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We now prove (ii). Fix go in N(p/4 — )\ N(4v). We will consider two cases, when g is
not in N(4v) and when g; is in N(4v). Suppose we are in the first case, that is g; ¢ N(4).
As ||gilla < ||lg2la, we also have g5 ¢ N(4v). If both g1go and gog1 are not in N(4v), then
the desired conclusion is a consequence of (i) and Proposition 6.45(iv, v). Within the first
case, it remains to deal with the situations where g;gs is in N(47v) or g2g; is in N(47).

Since these two situations are similar, we may assume ¢;¢2 is in N(4v). From (i), we
have s(g1,92) = —1 and ||galla — ||g1]/a is at most 5. Therefore, ||g2g1]l4 is in I(67). By

Proposition 6.45(iv), we have s(go, ¢1) = —s(go, g2), and so

(90, 91)lg1lla + (g0, 92)|lg2la € I(67).

Since both s(go, g192)||9192]|a and s(go, 9291)||g192||a are in 1(67), they are both in

(g0, 91)ll911la + (g0, g2)||92lla + 1(127)

giving us the desired conclusion.

Continuing from the previous paragraph, we consider the second case when ¢; is in
N(4v). If g2 is in N(167), then both |[g1g2|la and ||g291|la are in I(25y) by (i), and the
desired conclusion follows. Now suppose g is not in N(167). Then from (i) and the fact
that g, € N(4y), we get g9 and gog; are both not in N(47). Note that s(g1g2,95 ") = —1,

because otherwise we get

lgilla = lgrgzlla + llgz e — 57 > 4.

A similar argument gives s(gy ', g291) = —1. Hence, s(g192, 92) = 5(g241, g2) = 1. By Propo-
sition 6.45(v), we get

3(90,92) = 8(9079192) = 3(90,9291)-
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From (i), ||g192]|4 and ||g2g1]|4 are both in ||g|la+ I(97). On the other hand, as s(go, g1) = 0,

we have s(go, 91)||91lla + $(90, 92)1|92|la = $(g0, 92)||g2||la- The desired conclusion follows. [
The next corollary will be important in the subsequent development.

Corollary 6.47. Suppose d is y-linear and vy-monotone, gy and gj, are elements in N(p/4 —

)\ N4v), and (g1, ..., 9n) is a sequence with g; € N(p/4 —~)\ N(4dv) fori e {1,...,n}.
Then

n

ZS(gé,gi)Hgin

=1

Zs(g07gi)”gi”d
i=1

Proof. As s(go,9:) = s(g6,9:) = 0 whenever ||g;|la < 47, we can reduce to the case where
ming <<y ||gilla > 47. Using Proposition 6.45(iii) to replace gy with g; ' if necessary, we can
assume that s(go, g1) = s(gj,91). Then by Proposition 6.45(iii), s(go,9:;) = s(g5, g;) for all

i€ {l,...,n}. This gives us the desired conclusion. ]
The following auxiliary lemma allows us to choose gq as in Corollary 6.47.
Lemma 6.48. The set N(p/4 — )\ N(4v) is not empty.

Proof. It suffices to show that ug(N(47)) < ua(N(p/4 — 7). Since idg is in N(47y), N(4y)
is a nonempty open set and has pg(N(4y)) > 0. Therefore, N?(4v) and N*(4v) are also

open. By v-linearity, we have

N2<4’}/) - Ngfy and N4(4’}/) - N19“/'

As 197 < p, we have N*(4v) # G. Using Proposition 6.17, we get

pe(N*(47)) <2/3 and  pg(N(49)) < 1/3.

Hence, by Kemperman’s inequality uc(N(47)) < pa(N?(4y)) < ug(N(p/4 — 7)), which is

the desired conclusion. O
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Suppose (g1, ..., gs) is a sequence of elements in N(p/4 — ) \ N(47). We set

n

23(90791‘)||9i||d

=1

t(glv"'agn) =

with go is an arbitrary element in N(p/4 — ) \ N(4v), and call this the total weight

associated to (g1, ..., gn). This is well defined by Corollary 6.47 and Lemma 6.48.

6.7.3 Almost linear pseudometrics: group homomorphisms into

tori

In this section, we will use the relative sign function and the total weight function defined
in Section 7.2 to define a universally measurable multivalued group homomorphism into T.
We will then use a number or results in descriptive set theory and geometry to refine this
into a continuous group homomorphism.

We keep the setting of Section 7.2, and assume further that G is compact. Let s and ¢
be the relative sign function and the total weight function defined earlier. Set A = p/36, and
N[N ={g9 € G : |lglla < A}. The set N[} is compact, and hence measurable. Moreover,

Lemma 6.46 is applicable when g is an arbitrary element in N(p/4 —~)\ N(47), and g, are

g2 are in N[A].
A sequence (gq,...,gn) of elements in G is a A-sequence if g; is in N[)\] for all i €
{1,...,n}. We are interested in expressing an arbitrary g of G as a product of a A\-sequence

where all components are “in the same direction”. The following notion captures that idea.

A A-sequence (g1, ..., gn) is irreducible if for all 2 < j < 4, we have

Gi+1 " Jitj ¢ NO\)-

A concatenation of a A-sequence (g1,...,g,) is a A-sequence (hy, ..., h,,) such that there
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are 0 = ko < ky < --- < k,,, = n with

hi = gg,_,+1" gk, for i € {1,...,m}.

The next lemma allows us to reduce an arbitrary sequence to irreducible A-sequences via

concatenation.
Lemma 6.49. Suppose d is y-linear and y-monotone, and (g1, - .., gn) 1S a A-sequence. Then
(91,---,9n) has an irreducible concatenation (g}, ..., q.,) with

t(g1s -2 9) € g1, gn) + 1(25(n — m)7y).

Proof. The statement is immediate when n = 1. Using induction, suppose we have proven
the statement for all smaller values of n. If (g1, ..., ¢g,) is irreducible, we are done. Consider
the case where g;11¢i+2 is in N(A) for some 0 < i < n —2. Fix gy in N(A\/4 —~) \ N(4v).
Using Lemma 6.46(ii)

5(90; gir19i+2) | git19iv2lla € 5(g0; giv1)lGiv1lla + 5(90, Giv2)l|Givalla + 1(257).

From here, we get the desired conclusion. The cases where either g¢;.1g;12g;13 for some
0 <i<mn—30r g19i+29i+39i+a is in N(A) for some 0 < i < n — 4 can be dealt with

similarly. O]
The following lemma makes the earlier intuition of “in the same direction” precise:

Lemma 6.50. Suppose d is ~y-linear and vy-monotone, gy is in N(p/4 — ) \ N(4v), and
(91, -+, 9n) is an irreducible A\-sequence. Then for all i, ', j, and j' such that 2 < j, 7' < 4,
0<i<n—j, and 0 < <n-—j, we have

S(go, gi+1 - 'gi—i-j) = 3(90, gir41 - '9¢’+j’)-
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Proof. 1t suffices to show for fixed 7,7 with 0 <7 <m—j7—1and 2 <5 <3 that

8(907gi+1 .- .9i+j) = 3(90,gi+1 e 'gi+j+1)‘

Note that both ¢;+1---¢i+; and git1- - girj41 are in N(p/4 — ) \ N(4v). Hence, applying

Proposition 6.45(iv), we reduce the problem to showing

S(.gi_-|-1j it Gt Girga)) = — 1.

This is the case because otherwise, ||gi+j+1]la > 2A —~ > A, a contradiction. O
We now get a lower bound for the total distance of an irreducible A-sequence:

Corollary 6.51. Suppose d is vy-linear and y-monotone, and (g1, ..., gn) is an irreducible

A-sequence. Then

t(g1, .-, gn) > nA/4.

Proof. It n = 2k, let h; = go;i_192; for i € {1,... k}. If n = 2k + 1, let h; = g9i_1g9; for

ie{l,....,k—1}, and hy = gon_192ngon+1- From Lemma 6.46, we have
Wi, hg) € Hgn - ga) + T(25(n — K)). (6.13)

As (g1,...,9n) is irreducible, h; is in N(3X\) \ N(A) for i € {1,...,k}. By Lemma 6.50, we
get s(go, hi) = s(go, hj) for all s and j in i € {1,...,k}. Thus by the definition of the total
weight again, t(hq, ..., hg) > nA/3. Combining with the assumption on A and (6.13), we get
t(grs- - gn) >nA/3 —1lny > n\/4. O

When (gy....,9,) is an irreducible A-sequence, ¢g; - - - g, is intuitively closer to gy than
g1 gmak for some positive k. However, as G is compact, the sequence may “return back”

to idg when n is large. The next proposition provides a lower bound estimate on such n.
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Lemma 6.52 (Monitor lemma). Suppose d is vy-linear and y-monotone, and (g1, ..., gn) 1S

an irreducible A\-sequence with g -+ - g, = idg. Then n > 1/ug(N(4)N)).

Proof. Let m > 0. For convenience, when m > n we write g,, to denote the element ¢; with

i <nand i =m (mod n). Define

N™UN) ={g € G| d(g,g1--- gm) < 4\}.

Note that we have N(™ (4)\) = N(™)(4)\) when m = m’ (mod n). By invariance of d and

g, clearly ua(N™(4))) = pg(N(4N)) for all m. We also write N (4\) = N(4)). We will

show that
n—1
G=[JN™x) = N,
meZ m=0

which yields the desired conclusion.

As g1+ gn = idg, we have idg is in N(©(2)), and hence in |J,,., N™(4X). As every
elements in G' can be written as a product of finitely many elements in N(A), it suffices to
show for every g € |J,,c; N™(4X) and ¢’ = gh with h € N()) that ¢’ is in |J,,, N™(4).
The desired conclusion then follows from the induction on the number of translations in
N(A).

Fix m which minimizes d(g, ¢; . .. gm). We claim that d(g, g1 ... gm) < 2A+~. This claim
gives us the desired conclusion because we then have d(¢’, g1 ... gm) < 3\ + 27 < 4\ by the
~-linearity of d.

We now prove the claim that d(g,g1...9m) < 2XA 4+ 7. Suppose to the contrary that
d(g,g1---gm) > 22+ 7. Let u = (91 - gm)'g. Now by Lemma 6.50 we have either
$(Uy Gmy19mi2) = 1, or s(u,g;tg.t,) = 1. Suppose it is the former, since the latter
case can be proved similarly. Then s(u,g,\.9,.%1) = —1. Note that ¢ = g1+ gnu =

(91" Gm+2) G oGmiit. By the definition of u, and the linearity of d, we have ||ullg >
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2\ + v > ||gms19ma2||a, therefore by the irreducibility we have

d(g,91 " Gms2) = ||9;z129;z£r1u||d

< lulla = llgmiagmialla +v < lulla = A+ < [Julla.

This contradicts our choice of m having d(g, g1, . . ., gn) minimized. O

In the later proofs of this section, we will fix an irreducible A\ sequence ¢y - - - g, = idg to
serve as “monitors”. As each element of G will be captured by one of the monitors, this will
help us to bound the error terms in the final almost homomorphism we obtained from the
pseudometric.

Suppose d is y-linear and y-monotone, and N (p/4—~)\N(47) # &. Define the returning

weight of d to be

w=inf{t(g1,...,9n) : (g1,-..,9n) is an irreducible A-sequence with ¢; - - - g, = idg}.

The following corollary translate Lemma 6.52 to a bound on such w:

Corollary 6.53. Suppose d is v-linear and y-monotone, and w is the returning weight of d.

Then we have the following:
(1) MApc(N(4N) < w <4M ua(N(A)).

(ii) There is an irreducible A-sequence (g1, ..., gn) such that w = t(g1,...,g,) and

L/u6(N(4N) < n < 4/uc(N (V).

Proof. Note that each irreducible A-sequence (gi,...,gn) has n > 1/ug(N(4))) by using
Lemma 6.52. Hence, by Corollary 6.51, we get w > A/4uc(N(4X)). On the other hand, by
Proposition 6.17, G = (N(X))* for all k > 1/ug(N())). Hence, with Lemma 6.49, there is
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an irreducible A-sequence (g1,...,¢,) with ¢g;--- ¢, = idg and n < 4/ug(N(A)). From the
definition of ¢, we get w < 4\/puc(N(N)).
Now if an irreducible A-sequence (gi,...,¢9,) has n > 4/ug(N(\)), then by (i) and

Corollary 6.51,

4N

t(gla"'agn) > m 2w7

a contradiction. Therefore, we have

w=inf{t(g1,...,9n) : (g1, .- gn) is an irreducible A\-sequence with

n<4/uc(N(A)) and g1 - - g, = idg}.

For fixed n the set of irreducible A-sequence of length n is closed under taking limit. Hence,

we obtain desired (gi, ..., g,) using the Bozalno-Wierstrass Theorem. O]
The next lemma allows us to convert between pg(N (X)) and pe(N(4N)):

Lemma 6.54. Suppose d is y-linear and y-monotone. Then

pa(N(4X) < 16pc(N(N)).

Proof. Fix h € N(A\)\ N(\/2—+). Such h exists since by y-monotonicity we have N?(\/2 —
v) € N()A), and by Kemperman’s inequality, pug(N(A) > 2uq(N(A/2 —v)). Let g be an
arbitrary element in N(4\), and assume first s(g,h) = 1. Let & > 0 be an integer, and define

gr = g(h~1)*. Then by Lemma 6.45 and Lemma 6.46,

lgxlla € Nglla = Kl[Rlla + 1(5kv) for k < |lglla/[[la-

Hence, there is k < 8 such that gy € N(\). When s(g,h) = —1, one can similarly construct
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g, as gh®, and find k < 8 such that g, € N()). Therefore
7 7
N4\ C (U N(A)hi) U (U N(A)h‘j>.
i=0 =0

Thus, pe(N(4X)) < 16pa(N(A)). o

The following proposition implicitly establish that ¢ defines an approximate multivalue

group homomorphism from G to R/wZ.

Proposition 6.55. Suppose d is y-linear and y-monotone, w is the returning weight of d,

and (g1, .-, gn) is a A\-sequence with ¢y ... g, =1idg and n < 4/puc(N(N)). Then
t(g1, .-, 9n) € WZ+ I(w/400).

Proof. Let go be in N(p/4 — )\ N(4v). Using Proposition 6.45(iii) to replace gy with g;'
if necessary, we can assume that

tgla"'?.gn 2590792 ngHd
=1

Asn <4/puc(N(N)), we have t(g1, ..., 9n) < 4N/ uc(N(N)). From Corollary 6.53(i), we have
A < Adwpug(N(4)X)). Hence,

16wpc(N(4X))
g, s 0n) < 6.14
(100 < S NO) (014
Using Corollary 6.53 again, we obtain an irreducible A-sequence (hq,...,h,,) such that

t(hiy... hym) = w and 1/uc(N(4X) < m < 4/ug(N(N)). Using Proposition 6.45(iii) to
replace (hi, ..., hy) with (bt ... hy') if necessary, we can assume that

t(hiy. .. hm) = — ZS(Q(}, hi)[[hilla-

=1
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We now define a sequence (g1, ..., ¢.,) such that
1. n' =n + km for some integer k > 0.

2. gl =g; for 1 <i<n.

3. Fori >n+1, g, = h; with j =i —n (mod m).

From the definition of the total weight, for k < t(¢1, ..., g,)/w, we have

t<gll7vg;L/) = t(9177gn) — kw.

We choose integer k < t(g1,...,gn)/w + 1 such that |t(g},...,¢./)| < w/2. Then by (6.14),
and the trivial bound pg(N(X)) < pe(N(4X)), we have

n <n+km<

N (16MG(N(4>\)) 1) 4 2pe(N(4N)
pa(N(A)) pa(N (X)) pa(NA) = ug(N(V)
Note that (¢i,...,¢,,) is a A-sequence with ¢} ...¢/, = idg. We assume further that
0<t(gy,.-.,9,) <w/2 as the other case can be dealt with similarly. Obtain an irreducible

concatenation (hy,...,hl ) of (¢1,...,9g.,). From Lemma 6.49, we get

180016 (N (4X))y
t(hy, ..., 0 ) <ty .. gh) +25(n" —m')y < Y4
Using Corollary 6.53(i) and Lemma 6.54, we have
1800uc(N(4A))y _ 1800uG(N(4A)y _ 5- 105y o s 10574_(0
pe(NN) 7 pg(N(4X) /162~ N(4A) — A

As v < 1078p, and X\ = p/16 — v, one can check that the lass expression is at most w/400.
Hence, t(h),...,h! ) < w. From the definition of w, we must have ¢(h},...,h!,) = 0. Thus
by Lemma 6.49 again,

t(gys---,4n) € 1(25n'y) C I(w/400),
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which completes the proof. O]

Recall that a Polish space is a topological space which is separable and completely
metrizable. In particular, the underlying topological space of any connected compact Lie
group is a Polish space. Let X be a Polish space. A subset B of X is Borel if B can be
formed from open subsets of X (equivalently, closed subsets of X) through taking countable
unions, taking countable intersections, and taking complement. A function f : X — Y
between Polish space is Borel, if the inverse image of any Borel subset of Y is Borel. A
subset A of X is analytic if it is the continuous image of another Polish space Y. Below

are some standard facts about these notions; see [110] for details.

Fact 6.56. Suppose X,Y are Polish spaces, and f : X — Y is continuous. We have the

following:
(i) Ewvery Borel subset of X is analytic.

(ii) Fquipping X x'Y with the product topology, the graph of a Borel function from X to

Y is analytic.

(iii) The collection of analytic subsets of X is closed under taking countable unions, taking

intersections and cartersian products.
(iv) Images of analytic subsets in X under f is analytic.

Given z € R, let ||z||r be the distance of x to the nearest element in Z. We now obtain

a consequence of Lemma 6.55.

Corollary 6.57 (Analytic multivalued almost homomorphism). There is an analytic subset

I' of G x T satisfying the following properties:
(i) The projection of ' on G is surjective.
(ii) (idg,idg,uz) is in T

192



(iii) If g1,92 € G and ty,ta,t3 € R are such that (g1,t1/w + Z), (g2,t2/w + Z), and

(9192, t3/w +7Z) in T, then

1(t1 + t2 — t3) /w]lx < 1/400.

(iv) There are g1,92 € G and ty,ty € R with that (g1,t1/w + Z), (ge,t2/w + Z) € T and

[(t = t2)/wllz > 1/3.

Proof. Let T' consist of (g,t/w +Z) € G x T with ¢ € G and t € R such that there is

n < 1/pug(N(N)) + 1 and an irreducible A-sequence (g, ..., g,) satisfying

g=91--gn and t=t(g1,...,0n).

Note that the relative sign function s : G x G — R is Borel, the set N[y| is compact, and
the function x — ||z||4 is continuous. Hence, by Fact 6.56(i,ii), the function (gi,...,gn) —

t(g1,-..,9gn) is Borel, and its graph is analytic. For each n, by Fact 6.56(iii)

Ly ={(g,t,91,.--,9,) E GXRXG":

lgilla <Afor 1 <i<n,g=g1- gn,t =t(g91,-..,9n)}

is analytic. Let I',, be the image of T, under the continuous map

(g7tagla"'7gn) = (g,t/w—i—Z)

Then by Fact 6.56(iv), I', is analytic. Finally, I' = (U, /vy [e 15 analytic by
Fact 6.56(iii).

We now verify that I' satisfies the desired properties. It is easy to see that (i) and
(ii) are immediately from the construction, and (iii) is a consequence of Lemma 6.55. We

now prove (iv). Using Corollary 6.53, we obtain an irreducible A-sequence (¢i, ..., g,) with
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t(g1,---,9n) =w and n < 4/pug(N(X)). Note that

1t(g1, -5 grvr) — t(g1, - 96)| < A

Hence, there must be k € {1,...n} such that w/3 < t(g1,...,9x) < 2w/3. Set t; = 0 and

to =t(g1,...,gx) for such k. It is then easy to see that ||(t; — t2)/wl|/r > 1/3. O

To construct a group homomorphism from G to T, we will need three more facts. Re-
call the following measurable selection theorem from descriptive set theory; see [23, Theo-

rem 6.9.3].

Fact 6.58 (Kuratowski and Ryll-Nardzewski measurable selection theorem). Let (X, A)
be a measurable space, Y a complete separable metric space equipped with the usual Borel
o-algebra, and F a function on X with values in the set of nonempty closed subsets of Y.

Suppose that for every open U CY, we have

{ae X :Fla)NnU # @} € A.

Then F' has a selection f : X — Y which is measurable with respect to A.

A Polish group is a topological group whose underlying space is a Polish space. In
particular, Lie groups are Polish groups. A subset A of a Polish space X is universally
measurable if A is measurable with respect to every complete probability measure on X
for which every Borel set is measurable. In particular, every analytic set is universally
measurable; see [147] for details. A map f: X — Y between Polish spaces is universally
measurable if inverse images of open sets are universally measurable. We have the following
recent result from descriptive set theory by [147]; in fact, we will only apply it to Lie groups

so a special case which follows from an earlier result by Weil [168, page 50| suffices.

Fact 6.59 (Rosendal). Suppose G and H are Polish groups, f : G — H is a universally

measurable group homomorphism. Then f is continuous.
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Finally, we need the following theorem from geometry by Grove, Karcher, and Ruh [85]
and independently by Kazhdan [109], that in a compact Lie groups an almost homomorphism
is always close to a homomorphism uniformly. We remark that the result is not true for

general compact topological groups, as a counterexample is given in [167].

Fact 6.60 (Grove-Karcher-Ruh; Kazhdan). Let G, H be compact Lie groups. There is a
constant ¢ only depending on H, such that for every real number q in [0,c|, if 7 : G — H is a
q-almost homomorphism, then there is a homomorphism x : G — H which is 1.36q-close to
m. Moreover, if T is universally measurable, then x is universally measurable. When H =T,

we can take ¢ = /6.

The next theorem is the main result in this subsection. It tells us from an almost linear
pseudometric, one can construct a group homomorphism to T or to R; this can also be seen

as a stability theorem of Proposition 6.42.

Theorem 6.61. Suppose d is vy-linear and y-monotone. Then there is a continuous sur-
jective group homomorphism x : G — T such that for all g € ker(x) N N(A), we have
lglla € N(A/2).

Proof. Let w be the returning weight of d, and let I' be as in the proof of Corollary 6.57.
Equip G with the o-algebra A of universally measurable sets. Then A in particular consists
of analytic subsets of G. Define F' to be the function from G to the set of closed subsets of

T given by

F(g)={t/w+Z:teR, (9, t/w+7Z) T}

If U is an open subset of T, then {g € G : F(g9) NU # @} is in A being the projection on G
of the analytic set {(g,t/w+2Z) € GXxT: (g9,t/w+7Z) €T and t € U}. Applying Fact 6.58,
we get a universally measurable 1/400-almost homomorphism 7 : G — T. Using Fact 6.60,

we get a universal measurable group homomorphism y : G — T satisfying

lIx(g) — 7(g)||r < 1.36/400 = 0.0068.

195



The group homomorphism y is automatically continuous by Fact 6.59. Combining with
Corollary 6.57(iv), we see that y cannot be the trivial group homomorphism, so x is surjec-
tive.

Finally, for g be in ker(x) N (N(A)), we need to verify that g is in N(A/2). Suppose
to the contrary that g ¢ N(A/2). Choose n = [1/ug(N(4N))], and (g1,...,9,) the A-
sequence such that g; = g for i € {1,...,n}. By Proposition 6.45, (g1, ..., gy) is irreducible.
Hence, by Lemma 6.52, t(g1,...,9,) < w. Asn < 1/ug(N(A\) + 1), by construction and

Corollary 6.57(iii), we have

w(g") € t(g1, ..., 9n)/w+ 1(1/400) + Z = n||g||4¢/w + 1(1/400) + Z.

Since g™ € ker y, we have ||7(¢g")||r < 0.0068, so n||g|ls/w < (0.0068 + 1/400). By Corol-

lary 6.53(i) and Lemma 6.54, this implies

(0.0068 + 1/400) - 4
pa(N(A))

9

po(N(N) < 3

lglla <

which is a contradiction. This completes our proof. O

6.8 Geometry of minimal and nearly minimal
expansion pairs 11

In this section, we study the shape of a nearly minimally expanding pair relative to a
connected closed proper subgroup of the ambient Lie group such that the cosets of the
subgroup intersect the nearly minimal expanding pair “transversally in measure”. Section 8.1
shows that in a compact connected Lie group, such a subgroup exists and can in fact be
chosen to be a one-dimensional torus. In Section 8.2 and 8.3, we obtain shape description

for the minimally expanding pair and nearly minimally expanding pair respectively. Using
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that we will construct linear and almost linear pseudometric as described in Section 7.
Throughout this section, G is a connected unimodular Lie group, and H is a connected
unimodular closed subgroup of G. In particular, the left Haar measures pug and g are Haar
measures. We let A, and B be o-compact subsets of G.
We set pig/i and g\ to be the Radon measures on G/ H and H\G such that we have
the quotient integral formulas (Fact 6.8 and Lemma 6.9(vi)). We also remind the reader
that we normalize the measure whenever a group under consideration is compact. Hence, if

H is compact, then we have

pa(AH) = pe/n(rA) and ppp(7B) = pme(TB),

and if y : H — R is a continuous and surjective group homomorphism with compact kernel,

then the pushforward of uy is the Lesbegue measure pg.

6.8.1 Toric transversal intersection in measure

In this section, we assume that G is compact. We will consider a more general situation than

what we need assuming

pc(A) = pug(B) =k and pug(AB) < Mk.

where M is a constant. We will prove that if k is sufficiently small measure, then there is a

torus H C G such that we are in the short fiber scenario (i.e., for every z,y € G,

min{pg(ANzH), ug(HyN B)} < A (6.15)

for some given constant A). Assume (6.15) fails for every maximal tori H, which means we
have a long fiber “in every direction”. Then both A and B can be seen as a variant of Kakeya

sets in Lie groups; see [140] for some properties of Kakeya sets in this setting. In general,
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it is well-known that Kakeya sets can have arbitrarily small measure; but when A, B has

nearly minimally expansion, we will show in this section that both A and B must not be too

small. Our result in particular applies to approximate groups, as described in Section 6.2.
We use the following lemma, which can be seen as a corollary of the quotient integral

formula (Fact 6.8).

Lemma 6.62. For every b € G, the following identity holds

ue(A(B N HY)) = LMH(<A N aH)(B N HY)) du(a).

Proof. Let C' = A(B N Hb). From Fact 6.8, one has
nelC) = [ (€0 HE) () = [ (€ 10 o).
Hence, it suffices to check that
CNaHb= (ANaH)(BNHb) forallabeg.

The backward inclusion is clear. Note that aHHb = aHb = ab(b~'Hb) for all a and b in G.
For all a, d/, and b in GG, we have we have ' Hb = aHb when aH = o'H and aHbNd'Hb = &
otherwise. An arbitrary element ¢ € C'is in (ANa’'H)(B N Hb) for some a’ € A. Hence if ¢

is also in aHb, we must have o’ H = aH. So we also get the forward inclusion. [

Suppose 7 and s are in R, the sets A, and mA(, 4 are given by
Apgi={acA:pg(ANaH) € (r,s]}

and

TAps =1{aH € G/H : pgp(ANaH) € (r,s]}.
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In particular, 7A(. 4 is the image of A, under the map m. By Lemma 6.9, 744 is

pi/n-measurable, and A g H = 7~ (mA(4) and A, 4 are pig-measurable.

Lemma 6.63. Suppose A\ < 1 is a constant, and either there is a € A such that uy(ANaH) >
A, or there is b € B such that pug(B N Hb) > \. Then,

min{ pa(A) pc(B) } S A
po/a(TA) pme(7B) | = (M +2)%

Proof. Without loss of generality, suppose uy(B N Hb) > X for a fixed b € B. By the

quotient integral formula, k = pg(A) is at least

1 1
/ pr(ANzH)dpg/prH > §NG/H(7TA(1/2,1]> = §MG(A(1/2,1]H),
7TA(1/2,1]

Hence, pua(AqjH) < 25. We now prove that pg(Awi/9H) < Mk/X. Suppose that it is

not the case. By Lemma 6.62 we get

He(A(B OV HE)) > / uar (AN aH)(B 1 Hb)) dpigla)

Ao,1/21H

Observe that uy((ANaH)(BNHb)) > A since py(B N Hb) > A, we have
pc(AB) = pa(A(B N HD)) = Auc(Awpa2H) > Mk,

contradicting the assumption that 9¢(AB) < k. Hence pug(AH) < (M +2)x/A. This implies
that there is a € A such that ug(ANaH) > A\/(M + 2). Now we apply the same argument
switching the role of A and B, we get puma(TB) < (M + 2)?puc(B)/A which completes the

proof. O]

Lemma 6.63 leads us to consider the problem of obtaining lower bound for the measure

of toric nonexpanders, which is of independent interest.

Definition 6.64. We say A is called a toric K-expander, if there is a one-dimensional
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torus subgroup H of G such that pug(AH) > Kuc(A).

Lemma 6.65. Suppose A is not a toric K-expander, gy, ..., g, arein G, and A’ = U;l:l Ag;.

Then A’ is not a toric (nK)-expander.

Proof. We need to verify for each T' that pug(A'T) < nKug(A"). Note that

<U Agl) U (9:T) = O A(g:Tg; ) U AT,

i=1 =1

where T} is the torus subgroup ¢;7'g; * of G. Hence,
pa(A'T) < nKpg(A) < nKpc(A)

as desired. ]

Fact 6.66 (Bhatia—Davis inequality). Suppose (X, A, ) is a measure space, a and [ are

constants, and f : X — R>Y is a measurable function with

o < inf f(x) < sup f(x) < 6

zeX

Then (B, f*(2)) — (Eof(2))* < (B — Eof (2)) (Bo f () — o).
The following lemma will help us to translate the set along some direction.

Lemma 6.67. Suppose K, «, and B are constant with K > 1,0 < a < <1, puc(AH) =
Kpg(A), and

a < mf ,uH(A NgH) <supug(ANgH) < p.
geA

Then for every number v > (a + 8 — Kaf)ug(A), there is h € H with pg(AN Ah) =

Proof. Let pug, py be normalized Haar measures of G and H. Choose h from H uniformly
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at random. Note that

Eacanio(ANAR) = [ po(An Ah) dyn(h)
H

= [ ] 14616 dpc(a) ).

Using the quotient integral formula (Fact 6.8), the above equality is

| tatat At duoto) = [ AN 6H) dpcn (1)

= Eynec/n (1h(ANgH))

= peyn(TA)Bgrera(ph (AN gH))

Note that pg/u(1A) = pe(AH) = Kua(A), and

EgHEﬂA(luH<A N gH)) = 1/[(
Hence, applying the Bhatia-Davis inequality (Fact 6.66), we get

Erenpc(ANAR) < (o + 8 — Kaf)uc(A).

The desired conclusion follows from the continuity of H — R, h — ug(A N Ah). m

The following lemma says that for a toric nonexpander A and a torus subgroup H of G,
one can slightly modify A to get A’ such that most of A’H can be covered by finitely many

right translations of A’.

Lemma 6.68. Suppose K > 1 is a constant, A is not a toric K-expander, and H is a
one-dimensional torus subgroup of G. Then for every 0 < e < 1/2K, there is a o-compact

A" C A, integer m = m(K,e) >0, and hy, ..., h, € H, satisfying
(i) A" is not a toric 2K -expander
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(i) pe(A) > (1—eK)uc(A)
(iii) pe (A'H\ UL, A'hi) < epc(AH).

Proof. Let ug, pg be normalized Haar measures on G and H, and let jug/y be the invariant

Radon measure induced by pg and gy on the homogeneous space G/H. Let

TAey ={9€G/H e <pu(ANgH) <1},

7TA(071] ={9€eG/H| AngH #+ @}.

Let v = pa/a(mAwe)/ e a(mAw,), then pg/a(mAey) = (1 — 2)(pa/a(mA@,1). One has

pomTen) (4

- < (ex + 1= 2)ug/u(TAp)).

It follows that
_ poyu(mAp) _ K—1
MG/H(WA(O,I}) K(l—e¢)

Choose o-compact A" C A, such that (A1 \ A’) = 0. One has

H(A) > pe(A) — e

> (1—5

(1 — )MG/H(WA(M])
) 1 —€K

—Ha(A) = (1 = eK)uc(A).

Hence we have

l1—-eK 1
AY>(1—-¢eK A) > AT) > —ug(A'T
pe(A) = (1 —eK)ug(A) = K pua(AT) > QKNG( T),
for every torus 7" when ¢ < 1/2K.
It remains to obtain m = m(e, K) and hy, ..., hy, such that (iii) is satisfied. Construct a

sequence (A])) of o-compact subset of G with A/ H = A’H as follows. Let Aj = A’. Suppose
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Al has been constructed. Set

en= inf py(Al NgH) and K,, = ug(A,H)/uc(A,).

gHemy

Using Lemma 6.67, obtain h], € H such that

pa(Ahy \ A) = en (K5, — Dpc(4y).

Finally, let A, ., = Al U A/ h!,. Then, A, H = A,H = AH. It is also easy to see that

en > ¢ for all n. Now, if pug(A,) < (1 —e)ug(A'H) for some n, then

/
pa(An) l—e¢
and hence,
1—¢g+¢?
pe(Any) = —jr:zj—#G(A%)

As (1 —e+¢€%)/(1 —¢€) > 1, this cannot be the case for all n. Let N be the first n such that

pc(Ay) > (1 —e)ug(A'H). Then

1—e+e2\"
2K g (A) > pa(A'H) = pa(Ay) = (ﬁ) pc(A).

This implies that
log 2K

N < .
~ log(1l —e+¢2) —log(l —¢)

Finally set m = 2V, and choose hy, ..., h,, such that Ay = [J;", A’h;, we get the desired

conclusion. O

The next simple lemma shows that we can find finitely many torus such that the product

of them is G.

Fact 6.69. Let G is compact. Then there is a constant n depending only on the dimension
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of G such that there are n tori Hy, ..., H, in G with H,---H, = G.

Let A be a toric nonexpander. The next important “cage” lemma provides an inductive
construction to construct a set C' from A, such that the size of C' is bounded from above,

and any right translations of A cannot “escape” C.

Lemma 6.70 (Cage lemma). Suppose A C G is not a toric K-expander, then there is a

o-compact C C A such that pug(C) = Ox(1)ug(A) and for all g € G

pe(Cndg) 1

pa(A) 2
Proof. Using Fact 6.69, we obtain one-dimensional torus subgroups Hi,..., H, of G such
that G = H, --- H,,. For every constant &, ...,&,_1, we construct a sequence (A;)"_, of o-

compact subsets of G and a sequence (K;)", of constants satisfying the following conditions
1. Ay=Aand Ko = K.
2. A; is not a toric K;-expander for 0 <7 < n.
3. A; C Ay with pug(Ainr) < Kiug(A;) for 0 <i<n—1.
4. pa(A; \ Aisihivr) < eipg(A4;) for any hiyq € Hipp and 0 <i <n — 1.
5. Kiv1 = Ki(go,...,6) for 0 <i<n-—1.

Suppose we have Ag, ..., A; and Ky, ..., K; satisfying all the conditions restricted down to
i. We are going to construct A;y;. By (2), A; is a toric K;-nonexpander. Let § > 0 be
a parameter which we will determine later. Using Lemma 6.68, we obtain a o-compact

AL C Ay, m=m(K;,0), and kY, ..., hl, € H;yy such that

pa (A7) > (1 — 0K;) pa(As),
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Al is a toric 2K;-nonexpander, and
e (A;Hi—kl U A;h;) < Spc(AiHipr).
j=1

By adding one element of H;.; if necessary, we can arrange that eg is in {1,...,m}. Set
A = U;"Zl A;h} and set K; ;1 = mK;. By Lemma 6.65, A;,; is not a toric K;, -expander,

so (2) is satisfied. By construction A4; C A;4;, and

pi(Aip1) < pe(AjHi) < pe(AiHin) < Kipa(4:),

so we have (3). For every h' € H, 1, since A;1h' C AL H; 1, we have
pa(A\ Aiih') < opg(AjHi1) < dpa(AiHi) < 0K e (A;).

Therefore,

ILL(;(Al \ Ai-l—lh/) < 25Klug(Az)

Note that the construction so far depends on 6. Now, by choosing § = §( K, ;) sufficiently
small, we can make

pi(Ai \ Aiih') < gipa(Aq),

so we get (4). Finally, note that K;1y = mK;, m = m(K;,9), § = §(K;,&;), and K; =
Ki(go,...,8i-1), SO

Kiv1 = Kita(eo, - .-, €0),

which gives us (5).
We now proceed with the proof of the lemma. Let ¢g,...,e,_1 be parameters which we

will determine later, and obtain (A4;)!", and (K;), as in the earlier step. Set C' = A,,. Note
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that

Hence, an arbitrary ¢ € G can be written as a product h, ---hy with h; € H; for i €
{1,...,n}. Now consider Cg = Aph,---hy. By (4), pe(An_1\ Anhn) < en_1pc(An_1).
Next, for A, h,h,_1, again by (4),

,uG(An—Z \ Anhnhn—l) S ﬂ/G’(An—2 \ An—lhn—l) + PJG’(An—lhn—l \Anhnh’n—l)

< gn—QluG(An—Q) + €n—1,uG(An—1)-

Hence by induction and (3), we conclude that
n—1  i-1
a(A\ Cyg) < Zglug ( & Kj> pa(A).

Using (5), we can choose ¢; sufficiently small such that (Z HZ VK > < 1/2. Then,

for all g € G.
pa(CnAg) _ pa(Cg'nA) 1
pic(A) pc(A) 2
Finally, note that we can choose ¢y, ..., &, 1 depending on K. Hence,
1 (C) = Ok (1)pa(A),
which completes the proof. O

Suppose p and v are measures on (G. Their convolution u * v is the unique measure

satisfying the property

| @ ansv@) = [ fa duteyavty).

GxG
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The convolution exists for all the case we care about. If u(A) > 0, the uniform measure

on A is defined by

_ pe(ANX)

palX): pc(A)

for measurable X C G.

The following lemma is an immediate consequence of the definition and Fubini’s theorem.
Lemma 6.71. Let pg be the uniform measure on A. Then pa * pug = pa-

Proof. Let X be a measurable set in G, then

fra * pe(X) =/

G

( [ 15t duc(y)) dia(e) = 6(X) [ diua(o) = el

as desired. ]

The next theorem is the main result of this subsection. It gives us a lower bound control
on the toric nonexpanders. Together with Lemma 6.63, this quantitative result shows that
a sufficiently small set which inside some nearly minimal expansion pair cannot contain a

long fiber in every direction.

Proposition 6.72 (Bounding size of toric nonexpanders). For each K, there is S = Ok (1)

such that if A is not a toric K-expander, then ug(A) > S.

Proof. Let C be as in Lemma 6.70. Recall p14 is the uniform measure on A, and pa * pg is

the convolution measure. Then

/G To(z) dps * i (z) = /G /G To(wy) dua(e) duc(y)

:/ na(Cy~' N A)
G MG(A)

1
dMG(y) > 5

This means fi4 * pe(C) > 1/2. By Lemma 6.71, this implies pg(C) > 1/2. Since pg(C) =

Ok (1)ug(A) we get the desired conclusion. O
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We now deduce the main theorem of this section.

Theorem 6.73. There is S = Opa(1) such that if pe(A) = pa(B) = k < S and pg(AB) <

Mk, then there is a one-dimensional torus subgroup H of G such that for all z,y € G

par(ANzH) < X and pg(BN Hy) < A

Proof. Suppose for every one-dimensional torus subgroup H of G, either uy(ANxzH) > A
some z € G or uy(B N By) > A for some y € G. Then by Lemma 6.63, A is not a toric
K-expander with K = (M + 2)?/\. Hence, by Proposition 6.72, we have ug(A) > S with

S = OpA(1). Thus, we get the desired conclusion. O

We get the following immediate corollary for approximate groups. Since our proof is

quantitative, we can make the constant below quantitative if we wish.

Corollary 6.74. There is S = Ok(1) such that if A is a K-approximate group with ug(A) <

S, then there is a one-dimensional torus subgroup H of G such that for all x,y € G

pg(ANzH) < X and pg(BN Hy) < A.

6.8.2 Linear pseudometric from minimal expansions

Throughout the subsection G is a connected noncompact unimodular group, and H is a
closed subgroup of GG which is either isomorphic to R, or some smaller dimension connected
unimodular group, so that by induction on dimension we may assume Theorem 6.1 holds on

H. Suppose (A, B) is minimally expanding, that is,

pa(AB) = pa(A) + pa(B),

and both A, B have positive measure.
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This section can also be seen as a preview of Section 8.3. The strategy of this section also
works for compact G replacing H with result of Section 8.1. For convenience of notation, we
will treat the compact case in Section 8.3 together with the situation where (A, B) is nearly

minimally expanding.

Lemma 6.75. For alla € A and b € B, we have
1. pp((ANaH) (BN HY)) > pu(ANaH) + pg(B N Hb).
2. pa(A(BNHD)) > pa(A) + peyu(tA)pm(B 0 HD).
3. po((ANaH)B) > (AN aH)ume(7B) + pa(B).

The equality in (2) holds if and only if the equality in (1) holds for almost all a € AH. A

similar conclusion holds for (3).

Proof. The first inequality comes from a direct application of Kemperman inequality. For the
second inequality, by right translating B and using the unimodularity of G, we can arrange

that Hb = H. The desired conclusion follows from applying (1) and Lemma 6.62. ]
The next lemma gives us the important geometric properties of A and B.

Theorem 6.76 (Rigidity fiberwise). There is a continuous surjective group homomorphism

X : H = R, two compact intervals I, J C R with

pic(B)

_ ne(A) an —

B MG/H(WA)
o-compact A’ C A and B' C B with
pc/m(rA) = pe/u(rA) and pme(TB') = pme(TB)

such that the following hold:
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(i) peyu(TA) = pma(TB);

(ii) for each a € A'H, we have

pa(A)

ANaH) = ———"—,
MH( ) MG/H(WA)

and there is (, € R such that

pr (AN aH)Nax™ (G + 1)) =0,

(iii) for each b € HB', we have

pu (BN HD) = M>

p\G(TB)

and there is a, € R such that

g (B OVHD)AY (G + J)b) = 0.

Proof. Without loss of generality we assume pqg/p(7A) > pme(7B). Below, we let Hb
range over 7B, and choose Hb uniformly at random in the expectation. By Lemma 6.62

and the quotient integration formula, we have

311{15) pa(A(BNHD)) > pa(A) + peyu(mA) 811{15) wr (BN HD) (6.16)

> pe(A) + pe/n(mA)Eyppn (B N HD)

e/ (mA)

@D P) Z Hald) + pa(B).

= pg(A) +

Note that pug(AB) > supy, ua(A(B N HY)). Since pug(AB) = pua(A) + pa(B), the equality
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must hold at each step. In particular, we have

pyu(TA) = pme(TB), (6.17)

and for yup\ p-almost all Hb € 7(B), we have

pa(B)

BN Hb) =Eyy (BN HY) = e
ﬂH( ) Hb( ) MH\G(WB)

Now, using (6.17) and applying the same argument again switching the role of A and B, we

conclude that for pgg-almost all aH in wA, we have

pa(A)

ANaH)=E, ANdH) = ———~—_.
MH( ) H:uH( ) MG/H(TFA)

(6.18)

Moreover, the fact that equality holds in (6.16) shows that for jig, p-almost all el € 1A

and pp\g-almost all Hb € 7B we have
pr((ANaH)(BNHb)) = pg(ANaH) 4+ py(B N HD).

By the relationship between pg and pg/ g, in the preceding statement, we can replace pg,p-
almost all aH € mA with pg-almost all a € AH. We can do the same for pug and pm\¢.

Now, as H satisfies Theorem 6.1, for a an b such that (6.18) holds, we can choose a
continuous surjective group homomorphism x,; :  — R and compact intervals I,;, and
Jap in R with

pr(lap) = pa(ANaH),  pr(Jop) = pu(B N HD),

and

(AN GH) D () = 0. i (B0 HBAX(Jus) = 0.

Applying Lemma 6.33, we deduce that x,; is the same, and I,; and J,; have constant
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lengths for pg-almost all a € AH and pg-almost all b € HB. It follows that we can choose

x, I, J, A, and B’ as described in the statement of the Theorem. ]

Corollary 6.77 (Global structure of AH). For all g € G, we have
pa/a(TAAT(gA)) = 0.

Proof. Set p = ug(A). Recall that Stab5(A) is open in G, and every g € G can be
expressed as a finite products of elements in Stabg”(A) since G is connected. Therefore,
it suffcies to consider the case where g is in Stabg’(A). Clearly, (gA, B) is a minimally
expanding pair. In the current case, we also have d4(idg, g) < p and pg(ANgA) > 0. By
Lemma 6.21, (AU gA, B) is also a minimally expanding pair. Theorem 6.76 (i) then gives

us

tu(mA) = pg/u(r(9A)) = pe/n(rAUT(9A)) = pme(TB).
This gives us pg/u(TAAT(gA)) = 0 as desired. O

Theorem 6.76 and Corollary 6.77 essentially allows us to define a “directed linear pseu-

dometric” on G by “looking at the generic fiber” as discussed in the following remark:

Remark 6.78. Fix a € AH and let the notation be as in Lemma 6.76. For g, go in GG such
that g, 'a, g, 'a € A'H, set

(5a,A(91792) = Cgfla o Cg{la'

We have the following linearity property of d, 4 when the relevant terms are defined, which

is essentially the linearity property of the metric from R.
L. 0q,4(91, 91)=0.
2. 64,4(91,92) = 0a,4(92, 91)-
3. 0a,4(91,93) = a,a(g1, 92) + a,4(92, g3).
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Properties (1) and (2) are immediate, and property (3) follows from the easy calculation

below:

6a,A(g17 g2) = Cgl_la - ngla
= Coita ™ Cgpta T Cgpta T Cgta

= 6a,A(glv 93) + 50,,14(937 g2>

Properties (3) also implies that

100,4(g1, 93)] = | £ 60,4(g1, 92)| £ 1004 (g2, 93) |

which tells us that |0, 4| is a linear-pseudometric. The problem with the above definitions
is that they are not defined everywhere.

There are two ways to overcome this difficulty. The new approach, using difference in
measure, will be presented later on. The old approach, present in an earlier version of this

paper, is to define a pseudometric on G directly by setting
d(g1,g2) = € if for pg-almost all a € AH, [6,,.4(91,92)| = &.

This is indeed possible. In fact, one can bypass the pseudometric machinery altogether and

define the group homomorphism y : G — T directly by setting
x(g) = ¢ if for pg-almost all a € AH, |0, 4(idg, 9)| = .

However, this does not come for free, and one need to work equally hard to verify that yx is
indeed a group homomorphism.
The old approach can moreover be extended to the case of nearly minimal expansion.

However, we can only handle a quadratic error with this old approach because we only have
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Corollary 6.82, which lacks the global property of Corollary 6.77. The real problem solved
by introducing the pseudometric is to get the linear error bound for the nearly minimal

expansion problem. X

Lemma 6.79. Let x : H — R be as in Theorem 6.81. For all g1,g2 € G with pg(g1AN

g2A) > 0, there is a o-compact A” C A with
pga(mA") = peym(rA)

such that for all a € A"H, the following holds

(i) there are CyrtarGos1a €T such that for i € {1,2};

(AN &H)Aax‘l((’g;la +1)) =0.

(ii) with any Cgfla, Cg;a satisfying (i) and dq 4(g1,g2) = Corta — Cgfla, if we have pg(g1 AN
g2 A) > 0, then

da(91,92) = payu(mA)|6a,4(g1, 92)|-

Proof. Obtain , x, A’, I, J as in Theorem 6.81. Let A” C G be the o-compact set
{a€A:g;'a,g5'ac AH}.
By the preceding lemma, pg u(mA”) = pe/u(nA). Fix a € A”. We then have
Anglald = gy lax ({1, + 1) and AN gytal = gy ax ™ (¢, + 1)

Multiplying by g1 and go respectively, we get (i).
As pg(giANgeA) > 0, by Lemma 6.21, (g1A N g2 A, B) is minimally expanding. From
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Theorem 6.76(ii), for piq/m-almost all aH € (g1 AN g2 A), we have

pe(grAN g A)
pe/a(m(giAN g A))

pa(giA)

pu(grANal) = peu(m(giA))

and pup(grANgANaH) =

Note that m(g1AN g2 A) C w(g1A) N7(g2A). However, by Lemma 6.76,

pe/a(m(GrAN g A)) = ume(TB) = pe/u(m(g1A)) = peyu(m(gaA)).

Combining with Lemma 6.77, we get

pe/a(m(gA)ATA) =0 and pe/m(m(grAN g A)ATA) = 0.

Hence, shrinking the above A” if necessary, we can arrange that for all a € A”H,

_He(gd)
pc/u(mA)

_ pa(giAN g A)

ANaH) = and ANgAnaH) =
L (g1 ) pr(giAN g ) i (7 (A))

Finally, from (i), for all a € A”H, we have
p(A) = pr(grAN AN aH) = [( -1, = (-1,

Recalling that da(g1,92) = pa(g14) — pa(g1AN g A), we learn that (ii) is satisfied. O
We now construct the pseudometric as promised.

Proposition 6.80 (Linearity of the pseudometric). For all, g1, g2, g3 in Stabg’(A), we have

da(g1,92) € {da(g1,93) + dalgs, g2), |[da(g1, 93) — da(gs, 92)| }-

Proof. Fori € {1,...,3}, g; is in Stab3”(A) by assumption, so da(idg, g;) < p/2. Hence, for
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i,7 €{1,...,3 we have

da(gi,9;) < p and pe(g:ANg;A) > 0.

Applying the preceding Corollary(ii), we get o-compact A” C A with ug(A” H) # @ such

that for each a € A” H, we have

pa(giANgiA) = ,U/(;/H<7TA)|C9;1G - Cg;1a| for 4,5 € {1,2,3}.

The desired conclusion immediately follows. O]

6.8.3 Almost linear pseudometric from near minimal expansions

In this subsection, G is always a connected compact Lie group. Let H be a closed subgroup of
G, and H is isomorphic to the one dimension torus T. Throughout the subsection, A, B C ¢

are o-compact subsets such that
k/2 < pg(A) < 2k and pug(B) = K,

and (A, B) is nk-nearly minimally expanding for some sufficiently small constant n > 0, that
is

pa(AB) < pa(A) + pa(B) + nk.

In this section, we assume 1 < 1071%°. We did not try to optimise 7, so it is very likely that
by a more careful computation, one can make 1 much larger. But we believe this method
does not allow n to be very close to 1.

By Fact 6.14, let 7 = 2, and ¢ = ¢(7) be the constant obtained from the theorem. In this
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subsection, we consider the case when
max{ug(ANaH),ug (BN Hb)} < c

for all a,b € GG. The proofs in this section is more involved compared to the equality case,
and the main difficulty is to control the error term coming from the near minimally expansion
pair. For the readers who do not care the exact quantitative bound on the error terms, one
can always view 1 as an infinitesimal element, then one can use equalities to replace all the
inequalities in the proofs by pretending to take the standard part, and apply the methods
given in the previous section.

Towards showing that sets A and B behave rigidly, our next theorem shows that most of
the non-empty fibers in A and B have the similar lengths, and the majority of them behaves

rigidly fiberwise.

Theorem 6.81 (Near rigidity fiberwise). There is a continuous surjective group homomor-

phism x : H — T, two compact intervals I, J C T with

p(B)

- MG(A)

=——"-7_ qand J) =
uG/H(WA) MT( )

o-compact A’ C A and B' C B with
pe/a(mA) > 99uc/a(rA)/100 and ppe(TB') > 99ume(TB)/100,

and a constant v < 107% such that the following statements hold:
(i) A =n)pme(TB) < pg/u(rA) < (1+n)pme(TB).
(ii) For every a in A'H,

pa(A)
Ha/H (mA)

MG(A)

1—v ,
( pe/m(mTA)

<wpug(ANaeH)<(1+v)
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and there is (, € T with

pa(A) pc(B) }

i (AN aH)Aax™ (G + 1)) < vamin {MG/H@TA)’ 1inG(7B)

(iii) For every b in HB',

(1—V)M <ug(BNHbD) < (1+v)

pma(7B)

pa(B)
pma(TB)’

and there is a) e T with

pa(4)  pe(B) }

pa (BN HB)AXT(G(B) + J)b) < vmin { pea(mA) e (7)

Proof. Without loss of generality, we assume that pg/p(mA) > pp\a(7B). Let § be a

constant such that § < x£/800um¢(7B). Obtain b* € G such that
pg(BNHbY) > puy (BN HDb) — ( forall b € G,
and the fiber B N Hb* has at least the average length, that is

B
pr (BN HD) > Byeppun (B N Hb) = _#alB) (6.19)

pe(TB)

Set & = 400nK/pc/u(wA). Asn < 10719 we get v < 107% such that

6 <wvpc(A)/pe/u(TA).

Set
N ={ae AH :doy(ANaH,BNHV") > [}
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Note that N is measurable by Lemma 6.9. By Lemma 6.62 we have

:/NMH((AmaH)(Bme*))duG(a)+/G\NMH((AmaH)(Bme*))duG(a).

Since A N aH is nonempty for every a € AH, using Kemperman’s inequality on H we have

that pg(A(B N HbY)) is at least

/]V(MH(AmaH)+uH(Bme*)+6) d,ug<(l>—|—/G\N (nu(ANaH) 4 py (BN HYY)) dpc(a).

Suppose we have pg(N) > pe/u(mA)/400. Therefore, by the choice of b* we get

o TA
MG/1+(()> + pu (BN HV e n(TA) (6.20)

> pa(A) + MG(B)ZZ(Z—E;Q

pe(A(BNHD)) > pa(A) +

+ nk.

Since pig/u(mA) > pme(TB), and A(BN Hb*) C AB, we have

1c(AB) > pa(A) + pe(B) + k.

This contradicts the assumption that (A, B) is nx-nearly minimally expanding. From

equation (6.20) we also get

pinG(TB) < pe/u(rA) < (1+n)pme(7B), (6.21)

which proves (i).

From now on, we assume that pug(N) < pg/a(mA)/400. Since (A, B) is nx-minimally
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expanding, by (6.20), we have
pa(B O HO ) pma(TB) < pg(B) + 15k,

and this in particular implies that for every b € G, we have

pe(B) + 77#6*(?) +77<(1+V) MG(ZE) .

BN Hb < —
b )< pne(tB)  pme(TB) pmG(TB)

Thus there is Y C B with ug(HY') < pme(7B)/400 such that for every b € HY,

By > 1B g melB) o () teB)

pma(TB) pma(TB) pinG(TB)

Next, we apply the similar argument to A. Let a < (ug(A) — 2nk)/200puc/u(7A), and

choose a* such that pg(ANa*H) > pg(ANaH) — a for all a € AH, and

pa(A)

ANa*H) > E ANaH) = ————.
par(ANa*H) > Ejeappu(ANaH) ,ug/H(TFA)

Let N’ C HB such that for every bin N, 0g(ANa*H, BN Hb) < § minimally expanding.

Hence we have

ne((ANa*H)B)

— //MH((Ana*H)(Bme)) dMG(b)+/G’\N’ pr((ANa*H) (BN HD)) duc(b)

pe(A)nk

+ dua(N').

By the fact that pc(AB) > ua((ANa*H)B) and (A, B) is nk-nearly minimally expanding,
we have that

1 1
N) < — A) < — TB).
na(N') < gestan(mA) < Tespma(TB)
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Now, by equation (6.22), and the choice of a*, we have that for all « € AH,

MG(A) 77,UG<A)
b @A) maEE) o< 1Y)

pa(A)

ANaH) < .
pr(ANal) < ey (7 A)

Again by equation (6.22), there is X C A with pg(XH) < pg/a(mA)/200, such that for

every a € X,

pa(A)

0 npc(A)
po/a(TA)

pald) o = 2000 > (1—v)

ANaH) >
i = pcya(mA) pe(TB)

Let A'= AN (AH\ (XHUN")), and let B'= BN (HB\ (HY U N)). Then

99

99 -
pa(A') > mMG/H(WA)a pa(B') > mﬂH\G(WB)u

Let a be in A’H and b be in B’H. By our construction, the first parts of (ii) and (iii) are
satisfied. Moreover, (AN aH,B N Hb*) and (ANa*H, BN Hb) are é-minimally expanding
pairs. By the way we construct A’ and B’, we have that a* € A’ and b* € B’. Recall that
pr(ANaH), pg(B N Hb) < X for every a,b € G. Therefore, by the inverse theorem on T
(Fact 6.14), and Lemma 6.33, there is a group homomorphism x : H — T, and two compact

intervals 14, Ig in T, with

such that for every a € A" and b € B’, there are elements (,, a,(B ) in T, and
pr(ANaHNax ™ (Co+1a)) <6,  pa(BNHbAY (G + Ip)b) <6,

as desired. m

The next corollary gives us an important fact of the structure of the projection of A on
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G/H.

Corollary 6.82 (Global structure of AH). Suppose ug(A) = k. Then for all g € Stabg/Q(A),

we have

1
ne(AHAGAH) < peyn(mA) 105

Proof. By Lemma 6.21, (AU gA, B) is a 2nk-minimal expansion pair, and by Theorem 6.81,

we have
1 pe(AH UgAH)
1+2n pmG(TB)

<1+ 2n.

On the other hand, since (A, B) and (gA, B) are nx-nearly minimal expanding, we have

paa(TA) pua(gAH)
pinG(@B)" pma(TB)

1/(14n) < <l+n

0—100

Since n < 1 , we get the desised conclusion. O

Lemma 6.83. Suppose ug(A) =K, g1,92 € Stabg/4(A), and x : H— T and I C T are as

in Theorem 6.81. Then there is a o-compact A” C A with

pea(mA”) =96 /p(mA)/100

such that for all a € A"H, the following holds
(i) there are CyrtarGosta €T such that for i € {1,2};

VK

/LH((A N CLH)A(IX_l(Cg;la + [)) < m

(il) with any Cortar Cgrta satisfying (i) and 64,4(91, 92) = ngla — Cgr1gr WE have

da(g1,92) € peyu(mA)|0a,a(g1, 92)| + I(2vk).
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Proof. Obtain , x, A’, I, J as in Theorem 6.81. Let A” C G be the o-compact set
{acA:g7'a, g, ac AH}.
It is easy to see that pug/m(mA”) > 98/100puq/u(TA). Fix a € A”. We then have
ANgtaH = gl_lax_l(cgfla +1I)and ANg,taH = g;lax_l(gggla +1).

Multiplying by ¢; and g, respectively, we get (i).
Now suppose further that pg(g1A N g2A) > 0. Recall that (g1A N g2 A, B) is then a
minimally expanding pair by Lemma 6.21. By Theorem 6.76(ii), for yic/g-almost all aH €

(g1 AN g A), we have

— VUV M a v M
O =) gy < PN a) < (L) )
and
pa(gr AN g A) B 5 pa(g1AN g2 A)
(1- QV)HG/H(ﬂ'(glA N g2A)) < pir(grANgANall) = (142 )MG/H(W(glA NgA))

Note that (g1 AN g2 A) C m(g91A) N 7(g2A). However, by Lemma 6.76,

pe/u(m(grAN g2 A)) = pme(TB) = pe/u(m(g1A)) = peyu(m(gaA)).

Combining with Lemma 6.77, we get

pte/u(m(grA)ArA) =0 and pe/u(m(g1AN g2A)ATA) = 0.
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Hence, shrinking the above A” if necessary, we can arrange that for all a € A”H,

pa(giA) < pa(grA) pa(g14)

1—5v < ANaH) < (1+5v
( )MG/H(WA) MG/H(WA)MI(Q1 )< ( )MG/H(WA)
and
pa(giAN g A) pa(giAN go A)
1—10v < gANgANaH) < (1+ 10v .
U100 () = Pl AN eANGH) < Q1007 o er)

Finally, from (i) for all « € A”H, we have

pr(g1A) — pr(gi AN g AN aH) € peyu(TA)|(—1, = (ool + 1 (2vp6(A)).

Recall that da(g1, 92) = pu(g1A) — par(g1AN geANaH). Hence, (ii) is satisfied. O
We now show deduce property of the pseudometric d 4.

Proposition 6.84 (Almost linearity and path monotonicity of the pseudometric). Assume

that ug(A) = k. Then we have the following:

(i) For all g1, go, 93 in Stabg/z(A), we have
da(g1,92) € | £ dalgr,93) + dalga, g3)| + I (6apa(A)),

(ii) Let g be the Lie algebra of G, and let exp : g — G be the exponential map. For
every X € g, either da(exp(Xt),idg) < /4 for every t, or there is to > 0 with

da(exp(Xto),idg) > k/4 such that for every t € [0, 1],

da(exp(X(t+tp)),ide)

€ da(exp(X (t + t)), exp(Xto)) + da(exp(Xto),ide) + I (12vpc(A)).
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Proof. We first prove (i). Let x and I be as in Theorem 6.81. Applying Lemma 6.83, we

get a € AH and (14, (o1, (o1, € T osuch that for i € {1,...,3}, we have

VK

par (AN aH) B G+ D) < s

and for 7,5 € {1,...,3}, we have
da(9i,95) € paya(mA)0a,a(gi 9j)| + I (2vk).

with dq 4(9:, 95) = <g;1a — (9;1(1. As 04.4(91,92) = 0a.4(91,93) +04.4(g3, g2), we get the desired
conclusion.

Next, we prove (ii). Let X € g, and suppose there is ¢ > 0 such that
da(exp(Xt),idg) > k.

Using the continuity of g — ug(A\ gA) (Fact 6.4(vii)), we obtain ty > 0 such that ¢, the

smallest positive real number with d4(idg, exp(Xtg)) > £/10. Fix t € [0, to], and set
go = exp(Xtp) and g = exp(Xt).

Note that ggo = gog as go and g are on the same one parameter subgroup of G. One can
easily check that gg, g, gog are in Stabg/ 2(A). Again, let x and I be as in Theorem 6.81 and

apply Lemma 6.83 to get a € AH and (-1, € T for g; € {idg, g, g0, 990} such that

VK

ANaH)A(ax Y (¢ + 1 < —, 6.23
luH(( ) ( X (ng la )) ,UG/H(’/TA) ( )

and for g;, g; € {idg, ¢, 9o, 990}, We have
da(9i,9;) € peu(TA)|00,4(g: 95)| + 1(2vK) (6.24)
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with 8q,4(9:, 9;5) = ngfla — ngla' As ggo = gog, we have
da,4(idc, 9) + da,4(9, 990) = 0a,4(1dc, gog) = da,4(ide; go) + da,a(go, 9og) (6.25)

Using (6.23), (6.24), and the fact that d(idg, go) = da(g, 990), we get

0a,4(9, 990) € £84,4(ide, go) + I (6 (A)).

By a similar argument,d, (g0, gog) € £da 4a(ide, g) + I(6a,ug(A)). Combining with (6.25),

we get that d, 4(ide, gg;) is in both

da,4(ide, go) £ a.a(ide, g) + I (6apc(A))

and

(Sa,A(idg, g) + 5a’A(idg, go) + I(6a/Lg(A)).

Using the fact that v is very small, and considering all the four possibilites, we deduce

ba.4(ide, 990) = ba,a(idc, go) + 00,4(ide, 9) + I (12ap6(A)).

Applying (6.23) and (6.24) again, we get the desired conclusion. O

6.9 Proof of the main theorems

6.9.1 Minimal expansion pairs in noncompact groups

In this subsection, we prove Theorems 6.1 when G is noncompact. The next theorem is a

restatement of Theorem 6.1(vi), which is the main result in this subsection.

Theorem 6.85 (Main theorem for noncompact groups). Suppose G is a connected unimod-
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ular noncompact group, pg is a Haar measure on G, and A, B C G are o-compact subsets

of G with positive finite measures, such that

pc(AB) = pc(A) + pe(B)

Then there is a continuous surjective group homomorphism x : G — R with compact kernel,

and compact intervals I, J C R with pc(A) = ur(I) and pe(B) = pr(J), such that

ACx NI), and BCx '(J).

Moreover, if A and B are compact, then A= x"'(I) and B = x~(J).

Proof. By the Gleason—Yamabe Theorem (Fact 6.28), there is a connected compact normal
subgroup H of G such that L. = G/H is a connected Lie group. By Fact 6.10, L is unimodu-
lar. Let m : G — L be the quotient map. Using Corollary 6.27, there are o-compact subsets
A’, B’ of L such that

HG(ALTA)) =0 and  pg(BAT'(B) =0,

and we still have pup(A'B’") = pr(A") + pn(B).

When L is a simple Lie group, by the Iwasawa decomposition, L = K AN where AN is a
simply connected closed nilpotent group. Thus AN contains R as a closed subgroup, and so
does L. When L is not simple, then L contains a connected closed normal subgroup H, and
by Fact 6.10, H is unimodular, and of smaller dimension. Applying induction on dimension,

we may assume H satisfies the statement of the theorem. For ¢;,gs € L, let

da(91,92) = nr(A) — pr(grAN gaA).

Then by Proposition 6.37, da is a pseudometric on L, with radius pug(A). By Proposi-
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tion 6.80, d4 is locally linear. Using Proposition 6.42, we have ker d4 is a compact normal
subgroup of L, and L/ ker d4 is isomorphic to R as topological groups. By the third isomor-
phism theorem (Fact 6.7), R is a quotient group of GG, and the corresponding quotient map
X has a compact kernel. Applying Corollary 6.27 again, as well as the inverse theorem on R

(Fact 6.15), there are I, J compact intervals of R such that

pe(AAYTH (1) =0 and  pg(BAX(J)) =0.

This also implies that ug(A) = pur(I) and pg(B) = pur(J).
Suppose g € A and g ¢ x~(I). Since I is compact, x(g) ¢ I, and there is o > 0 such

that the distance between y(g) and the nearest element in [ is at least a. Thus

tr(x(9)x(B) \ x(A)x(B)) > a.

and this implies that ug(gB \ x 1(I)x (J)) > «a. Therefore,

na(AB) > pe(x " ()x () + pa(gB\ x ' (Dx ' (J)) > pa(A) + pe(B) + a,

and this contradicts the fact that (A, B) is minimally expanding. Hence we have A C x (1)
and B C x~*(J) as desired. When both A and B are compact, we have A = x~*(I) and

B = x"!(J) by the compactness. O

We remark that the same argument almost works for compact groups when (A, B) is a
minimal expansion pair, except that when we choose the closed subgroup H, we need to
choose one such that we are in the toric transversal scenario. This can be done by using

Theorem 6.73 (See Section 6.9.2).
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6.9.2 Nearly minimal expansion pairs in compact groups

In this subsection, we prove the main theorems for compact groups. We first prove Theo-

rem 6.3.

Proof of Theorem 6.3. Let d > 0 be an integer, let ¢ be the real number fixed at the beginning
of Section 8.3, let o be in Proposition 6.84. Let G be a connected compact simple Lie
group of dimension at most d, and A is a compact subset of G of measure at most C, and
pa(A%) < (2 + n)pg(A), where C = C(d) is the constant in Theorem 6.73, and 7 is the
constant fixed in Section 8.3.

By Theorem 6.73, when A satisfies ug(A) < C, there is a closed subgroup H which is
isomorphic to T, such that for all g € G, ug(gAN H) < c. We fix such a closed subgroup H

of G. Let

dA(gb 92) = pa(A) — NG(glA N 92A)-

By Proposition 6.37, d4 is a pseudometric. Since ug(A?) < (2 + n)ug(A), Proposition 6.84
shows that da is a 6aug(A)-linear pseudometric, and it is 12auc(A)-monotone along each
one parameter subgroup. By Proposition 6.44, d4 is globally 96auc(A)-monotone. Let
v = 96apuc(A). Then dy is y-monotone 7-linear, and of radius p = ug(A). Theorem 6.61
thus implies that there is a continuous surjective group homomorphism mapping G to T,

and this contradicts the fact that G is simple. n

Now we are going to prove the inverse theorem. In Proposition 6.36, given a continuous
surjective group homomorphism from G to T, we obtain a structural characterization with
further assumption that the images of both A and B are small. The next lemma says that,
with the homomorphism obtained from almost linear pseudometric in Sections 7 and 8, both

A and B should have small image.

Lemma 6.86. Let G be a connected compact groups, ™ : G — T is a surjective continuous

group homomorphism, and A, B are o-compact subgroups of G' with 9g(A, B) = § for some
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§ < min{ug(A), pe(B)}, and max{puc(A), uc(B)} < 1/100. Suppose for every g € kermw
with i (A\gA) < pc(A)/16, we have pg(A\gA) < pug(A)/32. Then pr(r(A))+pr(7(B)) <
1/5.

Proof. Let H = (kerm)o. As G is compact, we will have G/H = T as topological groups.

For every set X in GG, and interval I C [0, 1], we define
X ={9€G:puy(¢g ' XNH)EI}.

It is clear that 7 X; C X H. Since G is compact and H is normal, we also have XH = HX
and pp (X NgH) = py(X N Hy).

Assume first that we have sup, up (BN Hg) > 1/2. Choose by such that jip (B N Hby) >
1/2. We claim that pug(mAp1/2) < 2ua(B) + 20. Otherwise, applying Kemperman’s in-

equality on H we have
1c(AB) > pna(A(B N Hbo)) > pa(A) + pa(B) + 9,

this contradicts that 9(A, B) < 4. Similarly we also have pg(mAp)2,1)) < 2uc(A) + 29, as

otherwise

1
16(AB) 2 Spa(mApyan) + na(B) > pa(A) + pe(B) + 6,

contradiction. Assume we also have sup, p(ANgH) > 1/2. Then using the same argument,
we conclude that jg(mB1/2)) < 2pa(A) + 20, and pue(mBpu2,)) < 2pa(B) 4+ 20. Thus we
have

pr(m(A)) + pr(m(B)) < 4pc(A) 4 4pe(B) + 80 < 1/5.
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Next, we may assume that sup, ug(ANgH) < 1/2. Note that

pc(AH) 1
pa(A) — supgp(ANgH)

Hence by Lemma 6.67, for every ¢ > 1/2, there is h € H such that ug(ANhA) = luc(A),

and in particular, there is h € H with

15pc(A)
16

3luc(A)

< ,ug(A N hA) < 39 ,

which contradicts the assumption.
Finally, let us consider the case when sup, uy (BN Hg) < 1/2. From the above argument,
we may also assume that sup, pu(ANgH) > 1/2. This implies that puc (7 Bo,1/2)) < 2uc(A)+

20, and in particular

pc(B)

E BNHg) > —F——————.

Hence, we have

(1a(B) +9)(2ua(A) + 20)
MG(B)

e (mAp/2)) < < Apg(A) + 40,

Therefore,

pr(m(A)) + i (m(B)) < Spa(A) + 65 < 1/5,
as desired. ]

With all tools in hand, we are going to prove the following theorem, which is a restatement

of Theorem 6.2 and Theorem 6.1(v) for compact groups.

Theorem 6.87 (Main theorem for compact groups). Let G be a connected compact group,

and A, B be compact subsets of G with positive measure. Set

s = min{uc(A), pa(B), 1 — pa(A) — pa(B)}.
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Given 0 < e < 1, there is a constant K = K(s) does not depends on G, such that if 6 < Ke

and

p1c(AB) < pe(A) + pe(B) + d min{uc(A), pa(B)}-

Then there is a surjective continuous group homomorphism x : G — T together with two

compact intervals 1, J € T with pr(I) = pua(A), pr(J) = pe(B), and

pa(ALXTHD)) < epa(A),  pa(BAXT'(J)) < epa(B).

Moreover, when ug(AB) <1 and

pa(AB) = pa(A) + pa(B),

we have A C x7(I) and B C x~}(J).

Proof. Given ¢ > 0 and s defined in the statement of the theorem. Let 6 > 0 to be
determined later. Suppose pg(A) < pe(B), and 96(A, B) < 0ug(A). By Lemma 6.21, there
is a constant K only depending on s such that there are small o-compact sets Ay, B in G,

such that pg(A41) = pe(Br) < T,

pa(ABy) < pa(Ar) 4 pa(Br) + K0 min pe(A;),

and both 95(Ay, B) and 95(A, B;) are at most K;6uc(A1), where 7 is the constant from
Proposition 6.32. Again using Proposition 6.32, there is a constant d > 0, and a connected
compact subgroup H of G, such that L = G/H is a Lie group of dimension at most d, and

we can find o-compact sets A, By in L, such that pp(As) < pur(Bs),

max{ (A AT (Ay)), pa(BiAT H(By))} < 3K 15ua(AL), (6.26)
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and

nr(AeBy) < pp(Az) + pp(B2) + TK10pa(Ar) < pr(A2) + pp(B2) + TK 16 (As).

Now we apply Lemma 6.21 again. Then there is a constant K5 only depending on s,
and two small o-compact sets As, By in L, such that pp(As) = pr(Bs) < S, and all of
07 (As, Bs), 0.(As, B2), and 01,(Ay, B;) are at most Ky K50y (As), where S is the constant
from Proposition 6.72.

Let ¢ be the constant fixed in the beginning of Section 8.3. By Theorem 6.73, there is a

closed subgroup T of L, such that T is isomorphic to T, and for every g € L, we have

max{ur(ANgT),ur(BNTg)} < c.

Now we are in the toric transversal scenario. Similarly as what we did in the proof of The-
orem 6.3, we define the pseudometric d4, and from Proposition 6.84 and Proposition 6.44,
when K K50 < n where 7 is from Proposition 6.84, we obtain a v-linear y-monotone pseudo-
metric, where v = 96, and « is also from Proposition 6.84. Therefore, Theorem 6.61 gives
us a surjective continuous group homomorphism ¢ : L — T, such that for every g € ker ¢,
we have jup,(As \ gAs) < pr(A4s)/10.

By the third isomorphism theorem (Fact 6.7), T is also a quotient group of G. It remains
to determine the structure of A and B. By Lemma 6.86, we have ur(¢(As)) + pur(o(Bs)) <

1/5. Then by Proposition 6.36, there are compact intervals I3, J3 in T, such that

pr(l3) = pr(As) and  pr(Js) = pup(Bs),

and pr(AsDg 1 (13) < KoKi1K20ur(As), pr(BsAg(Js)) < KoK1Ka0p,(As). Thus by
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Lemma 6.33, there are compact intervals I, Jo in T with

pr(l2) = pr(Az) and  pr(Je) = pr(Ba),

and

ML(A2A¢_1<]2)) < (2K0K1K2 + 45)5/LL(A2),

ML(B2A¢_1(J2)) < (2K0K1K2 + 45)5ML(A2)

Let x = mo¢. By (6.26) and Lemma 6.33 again, there are intervals I’ and J’ in T, such that

pr(l') = pe(A) and  pr(J') = pa(B),

and

MG(AAXﬁl([/)) < <4KOK1K2 + 90)5/,LG(A),

Note that all Ky, K;, and K5 only depend on s, then one can take

. 9 n
5= { , }
M IK K Ky + 907 2K KL Ky

Finally, we consider the case when ¢ = 0, that is, pug(AB) = uc(A) + ug(B). The proof
follows the same argument, by replacing Proposition 6.84 with Proposition 6.80 to construct
the locally linear pseudometric, and by replacing Proposition 6.84 and Theorem 6.61 by
Proposition 6.42. Proposition 6.44 is not needed in this case, as in this case, in order to

construct a homomorphism to T, the monotonicity of the pseudometric is not needed. [
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Chapter 7

A nonabelian Brunn—Minkowski
inequality

Henstock and Macbeath [90] asked in 1953 whether the Brunn—Minkowski inequality can be
generalized to nonabelian locally compact groups; questions in the same line were also asked
by Hrushovski [101], McCrudden [132], and Tao [160]. We obtain here such an inequality
and prove that it is sharp for helix-free locally compact groups, which includes real linear
algebraic groups, Nash groups, semisimple Lie groups with finite center, solvable Lie groups,
etc. The proof follows an induction on dimension strategy; new ingredients include an
understanding of the role played by maximal compact subgroups of Lie groups, a necessary
modified form of the inequality which is also applicable to nonunimodular locally compact
groups, and a proportionated averaging trick. This chapter is based on joint work with Tran

and Zhang [106].

7.1 Introduction

7.1.1 Background

Let p be the usual Lebesgue measure on R?, let X and Y be nonempty and compact subsets

of R4 and set X +Y :={x+y:2z € X,y € Y}. The Brunn—Minkowski inequality says that
H(X 4 Y)W > (X0 4 () (7.1)

For fixed p(X) and p(Y'), the inequality provides us with the minimum value of u(X +Y')

which is obtained, for example, when X, Y, and X 4+ Y are d-dimensional hypercubes with
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side length p(X)Y4, u(Y)Y4 and p(X)Y + (Y)Y, respectively.

Under the further assumption that X and Y are convex, the inequality in an equivalent
form was proven by Brunn [38] in 1887. In the celebrated Geometrie der Zahlen (Geometry
of Numbers) [136] published in 1896, Minkowski introduced the current form of the inequal-
ity and established that the equality happens if and only if X and Y are homothetic convex
sets. Removing the convexity assumption was done by Lyusternik [128] in 1935. However,
his proof that the same condition for equality still holds was seen to contain some flaws, a sit-
uation eventually corrected by Henstock and Macbeath [90] in 1953. The Brunn-Minkowski
inequality is widely considered a cornerstone of convex geometry. See [72] for an excellent
survey on its numerous generalizations and applications.

In this chapter, we consider the problem of generalizing the Brunn—Minkowski inequality
to a locally compact group G. Here, up to a multiplication by positive constants, we have a
unique left Haar measure p generalizing the Lebesgue measure in R%; see Section 5.2 for the
precise definitions.

We temporarily further assume that p is also invariant under right translations. Such
G is called unimodular. This assumption holds when G = R¢ and in many other situations
(e.g, when G is compact, discrete, a nilpotent Lie group, a semisimple Lie group, etc). Set
XY ={zy: 2z € X,y € Y} for nonempty compact X,Y C G. The translation invariance
property of p implies that

u(XY) = max{p(X), p(Y)}

and should intuitively be even larger, hinting at a meaningful generalization of the Brunn—
Minkowski inequality to this setting. This will be shown to be the case.

For an arbitrary locally compact group G, i might no longer be right invariant. Hence, we
still have pu(XY') > u(Y'), but we might have p(XY') < p(X). By a result by Macbeath [130]

in 1960, the trivial inequality p(XY) > u(Y) for nonunimodular G is already sharp in the
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sense that for any «, 8, > 0, there are nonempty compact X, Y C G with

pw(X) =a,u(Y) =8, and p(XY) < pu(Y) +e.

We will later see in this chapter that there is still a meaningful generalization of the Brunn—
Minkowski inequality involving both p and a right Haar measure v. Surprisingly, it turns
out that if one only cares about unimodular cases, the nonunimodular cases are still needed
for our proof. We will keep the settings and notations of this paragraph throughout the rest
of the chapter.

The problem of generalizing the Brunn—Minkowski inequality was proposed in 1953 by
Henstock and Macbeath [90]; different variations of this problem were also later suggested
by Hrushovski [101], by McCrudden [132], and by Tao [160]. In the direction of the intuition
described earlier, Kemperman [112] showed in 1964 that u(XY) > pu(X) + pu(Y) when G
is connected, unimodular and noncompact. Even more important for us is the followin

generalization to all connected noncompact locally compact groups, which reads

While applicable to all locally compact groups, Kemperman’s inequalities are not sharp
even for R? giving a weaker conclusion than the Brunn-Minkowski inequality. The most
definite result toward the correct lower bound was obtained by McCrudden [132] in 1969.
In effect, he showed that when G is a unimodular solvable Lie group of dimension d, and m

is the dimension of the maximal compact subgroup, we have

(XY > (X 4y () ),

The above differs from McCrudden’s original statement in that m was defined using an

inductive idea in [132]; the current form is more suitable to get the later generalization and
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to show that it is indeed sharp. A number of special cases of this result were rediscovered
by Gromov [84], by Hrushovski [102], by Leonardi and Mansou [122], and by Tao [160].

Sharpness for nilpotent groups was essentially proven by Monti [138]; see also Tao [160].

7.1.2 Statement of main results

Suppose G is Lie group with connected component Gy. Following Levi decomposition

(Fact 5.22), we have an exact sequence of Lie groups

1-Q—>Gy—S5S—1

where @) is solvable and S is semisimple. It is known that the center Z(5) is a discrete abelian
group of finite rank h; see Facts 5.26 and 5.27. We call h the helix dimension of G. As
an example, SLo(R) has helix dimension 0 while its universal cover has helix dimension 1.
If h =0, equivalently S has finite center, we say that G is helix-free. Real linear algebraic
groups and more generally, Nash groups (equivalently, semialgebraic Lie groups or groups
definable in the field of real numbers) are helix free; see [10, Lemma 4.5] and the subsequent
discussion in the same paper. Our first main results is a generalization of Brunn—Minkowski

inequality to Lie groups whose exponent will be seen to be sharp for helix-free Lie groups:

Theorem 7.1. Suppose G is a Lie group, p is a left Haar measure, v is a right Haar
measure, the dimension of G is d, the mazimal dimension of a compact subgroup of G 1is

m, the helix dimension of G is h, and X,Y are compact subsets of G with positive measure.

Then

1/(d—m—h) 1/(d—m—h)
V(XY)/(d=m=h) T (XY )1/(d=m—h)

the left-hand-side is interpreted as max{v(X)/v(XY),u(Y)/uw(XY)} ifd—m —h =0. In
1 1 1
particular, if G is unimodular, then (XY )d=m=h > (X )d=m=h 4 (Y )d=m=h,

Now consider an arbitrary locally compact group GG. Using the Gleason—Yamabe Theorem
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(Fact 5.10), one can choose an open subgroup G’ of G and a normal compact subgroup H

of G’ such that G'/H is a Lie group. It is shown in Proposition 7.13 that
n =dim(G'/H) — max{dim(K) : K is a compact subgroup of G'/H}

is independent of the choice of G’ and H satisfying the above properties. We call n the
noncompact Lie dimension of G. Let @ be the radical (i.e, the maximal connected closed
solvable normal subgroup, see Fact 5.21) of G'/H. Note that (G'/H),/Q) has discrete center
Z((G'/H)p/Q by Facts 5.26 and 5.27. We call

h =rank(Z((G'/H)o/Q))

the helix dimension of G. We will also show that the helix dimension h of G'/H is

independent of the choice of G and H in Proposition 7.13. Our second main result reads:

Theorem 7.2. Suppose G is a locally compact group with noncompact Lie dimension n
and heliz dimension h, p is a left Haar measure, v is a right Haar measure, and X,Y are

compact subsets of G- with positive measure. Then

V(X)l/(n—h) (Y)l/(n—h)
a <1
I/(XY)l/("_h) M(Xy)l/(n_h) -

the left-hand-side is interpreted as max{v(X)/v(XY),u(Y)/uw(XY)} when n —h = 0. In
1

1 1
particular, if G is unimodular, then u(XY)n—h > p(X)n—h + p(Y)n—=h.

When G is as in Theorem 7.1, the noncompact Lie dimension n is simply d — m, so
Theorem 7.2 is a generalization of Theorem 7.1. On the other hand, Theorem 7.2 is equally
applicable to totally disconnected locally compact groups, which are the polar opposite of
Lie groups.

Our last main result tells us that when G is helix-free, the exponent 1/(n — h) = 1/n

in Theorem 7.1 and Theorem 7.2 are sharp even when we assume further that X =Y. As
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usual in the current setting, we write X* for the k-fold product of X.

Theorem 7.3. Suppose G is a locally compact group with noncompact Lie dimension n,

s a left Haar measure, and v is a right Haar measure. Then

1. When n = 0, there is a compact set X with positive left and right measure in G such

that 1(X?) = p(X) and v(X?) = v(X).

2. When n > 0, for every € > 0, there is a compact set X with positive left and right

measure in G such that
L_g 1_¢
VX)E | (X)

i > 1.
p(X2)5 | (X2

As a corollary, if G is unimodular with n > 0, for every e’ > 0, there is a compact set X

in G such that (X?) < (2" + & )u(X).

The upper bound given in Theorem 7.3 matches the lower bound given in Theorem 7.2
when the group is helix-free, that is a group has helix dimension 0, which essentially means
the semisimple part of the group has finite center. Hence, for these groups, our theorems
resolve the problem of generalizing the Brunn—Minkowski inequality, which was suggested by
Henstock and Macbeath [90], by Hrushovski [101], by McCrudden [130], and by Tao [160].

We believe that the exponent in Theorem 7.3 should be correct for all locally compact

groups, which is made precise by the following conjecture:

Conjecture 7.4 (Nonabelian Brunn—Minkowski Conjecture). Suppose G is a locally compact
group with noncompact Lie dimension n, p is a left Haar measure, v is a right Haar measure,
and X, Y are compact subsets of G with positive measure. Then

1/n 1/n
VX))
v(XY)Un o (XY)n

the left-hand-side is interpreted as max{v(X)/v(XY), u(Y)/i(XY)} when n = 0.
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We remark that, the exponent in the inequality obtained in Theorem 7.2, if is not sharp,
still has the correct order of magnitude, as the helix dimension h of G is always at most n/3,
where n is the noncompact Lie dimension of GG; see Corollary 7.20.

The next result shows that one can reduce Conjecture 7.4 to all simply connected simple
Lie groups. Unexpectedly, the hardest remaining cases are what one might initially regard

to be the simplest cases.

Theorem 7.5. Suppose the nonabelian Brunn—Minkowski conjecture holds for all simply

connected simple Lie groups, then it holds for all locally compact groups.

In the statements of our main results, we require the sets X and Y to be compact. The
reason is that, when X and Y are just measurable, the set XY may not be measurable. We
remark that by using the regularity property of Haar measure, the conclusions in our main
theorems still hold for measurable X and Y if we replace u(XY) and v(XY') by inner Haar
measures.

The results of this chapter continue a line of work by the first two authors [105] on small
measure expansions in locally compact groups. Through classifying groups G and compact
subsets X and Y of G with nearly minimal expansion, it is shown there that when G is a

simple compact Lie group and u(X) sufficiently small,

u(X?) > (2 +c)u(X)

for a positive constant ¢. This can be seen as a continuous analog of the expansion gap
results. For noncompact simple Lie groups, Theorem 7.1 provides a significant strengthening
counterpart where we have u(X?) > 4u(X). As we will see later, some of the techniques
used in this chapter are further developments from techniques used in [105].

The equality for Theorems 7.1 and 7.2 can happen for R?, but might be impossible for
general G. In fact, from McCrudden’s result [134], the equality cannot happen even when

G is the Heisenberg group. It would also be interesting to understand when equality nearly
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happens and develop a theory similar to that of Christ, Figalli, and Jerison [42, 65, 66] for
R

Like the Brunn-Minkowski inequality for R, our results do not rely on the normalization
of Haar measures. However, by fixing a Haar measure p on a unimodular group G, it would

be interesting to determine the value of

min{u(XY) : X, Y C G are compact, u(X) = a, u(Y) = 5},

for given o, 3 € R>Y, and to classify the situations where the equality happens. We do not

pursue this question here.

7.1.3 Overview of the proof

In this subsection, we discuss the idea of the proof of the main results and the organiza-
tion of the chapter. For expository purpose, we restrict our attention to helix-free locally
compact groups, where we can fully prove Conjecture 7.4. The proof of the full versions of
Theorems 7.1 and 7.2 requires a more involved discussion on the helix dimension, which is
developed in Section 7.2.

In the current situation, for all our three theorems, the exponent of the inequalities are
controlled by n of G instead of just its topological dimension d as in the simpler versions
for R?. Recall that, for a Lie group G, n = d — m where m the maximum dimension of
a compact subgroup of G. The proof of Theorem 7.3 explains the critical role of m: Our
construction is essentially a small neighborhood of a compact subgroup of G having maximal
dimension, see Figure 7.1. One may then naturally conjecture that the above is the best we
can do. Theorems 7.1 and 7.2 confirm this intuition for helix-free groups.

To motivate our proofs of Theorems 7.1 and 7.2, we first recall some proofs of the known
cases of the Brunn-Minkowski inequality. Over R?, the usual strategy is to induct on

dimensions. This is generalized by McCrudden to obtain the following “unimodular exponent
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Figure 7.1: Let G = SL(2,R) (the open region bounded by the outer torus), and let
K = SO(2,R) be the maximal compact subgroup of G. If we take X to be a small closed
neighborhood of K (closed region bounded by the inner torus), Theorem 7.3 says when X is
sufficiently small, pue(X?) will be very close to 4u6(X) instead of 8ug(X), although G has
topological dimension 3.

splitting” result: Given an exact sequence of unimodular locally compact groups
l1-H—-G—G/H—1,

if H and G/H satisfy Brunn—Minkowski inequalities with exponents 1/n; and 1/n,, respec-
tively, then the group G satisfies a Brunn—Minkowski inequality with exponent 1/(ny 4 ns).

McCrudden’s proof of the above result can be seen as the following “spillover” argument:
For each g in G, we call X N gH a fiber of X, and refer to the size of ¢7*X N H in H as
its length. Let m : G — G/H be the quotient map. We now partition X and Y each into
N parts. Suppose X = Uf\il X;and Y = Uf\il Y;, we require that the images under 7 of
the X;’s are pairwise disjoint, the shortest fiber-length in each X; is at least the longest
fiber-length in X; 1, and likewise for the Y;’s.

The induction hypotheses, i.e., the Brunn—Minkowski inequalities, in H and G/H give us
a lower bound [y on fiber-lengths in XyYy and a lower bound wy on the size of 7(XyYy)
in G/H. Their product [ywy is a lower bound for pu(XyYy). Next we consider (Xy_; U
Xn)(Yn_1 UYy). Again a lower bound ly_; on fiber-lengths in this set and a lower bound

wy_1 on the size of its image under 7™ can be obtained from the induction hypotheses on
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H and G/H. From our method, we have Iy 1 < Iy and wy_; > wy. The Iy_jwy_
will be a weak lower bound for u((Xy_1 U Xn)(Yy_1 U Yy)) since the fibers in XyYy are

“exceptionally long”. Taking all of these into account, a stronger lower bound is

INwy + lN_l(wN_l — ’LUN).

Repeating the above process and taking the limit N — oo we have the “spillover” argument
which enables McCrudden to obtain his result.

McCrudden applied this result to obtain the Brunn—Minkowski inequality for unimodular
solvable groups with sharp exponents. A simpler proof of his result is given in Section 7.4
for completeness. In the proof of our main theorems, one important ingredient will be an
exponent splitting result (that is a generalization of his).

McCrudden’s method completely stops working when one is looking to prove Brunn-—
Minkowski for simple groups since there is no nontrivial closed normal subgroup to induct
from. Next we explain how we overcome this main difficulty. Our method turns out to
work also for semisimple groups in the same way and we will explain it in this more general
setting.

Let us assume G is a connected semisimple Lie group with finite center (hence helix-free
and automatically unimodular) and think about how we can prove the Brunn—Minkowski
for it. One can consider the Iwasawa decomposition G = K AN where K has a compact Lie
algebra and Q = AN is solvable and try to connect the Brunn—-Minkowski of S to a similar
property of ). However, () may not be unimodular in general. Let Ay be the modular
function on G. One can choose to compromise by choosing )" = ker(Ag) that is unimodular
and try to use the Brunn—Minkowski for () to prove the Brunn—Minkowski on G. This is
indeed a good direction to go but along this direction one inevitably gives up on the sharp
exponent 1/n and can at best prove a weaker inequality with the worse exponent 1/(n —1).

Because of this, it is necessary to formulate an inequality for nonunimodular groups that
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is a good analogue of (7.1). We propose the inequality (7.2), which seems to be new in the
literature. To prove (7.2) for AN, we need a nonunimodular exponent splitting result for
the exact sequence coming out from the modular function. It turns out that the spillover
method can also be used to reduce the problem to the case where the modular function is
almost constant on X and Y. We work this out in Section 7.5. In the next more involved
step in the same section, we obtain an approximate version of McCrudden’s result, which
involves another use of the spillover method, to finish off the proof.

In the next crucial step, we prove that the Brunn—Minkowski for a semisimple G follows
from (7.2) for the solvable AN. Our method was motivated by a recent paper [105] by the
first two authors, which characterizes nearly minimal expansion sets. Over there, a key idea
is to choose a fiber f uniformly at random in Y and uses X f to estimate XY. For our current
proof, we also choose two fibers fx and fy randomly from X and Y, but with respect to two
carefully chosen probability measures px and py that are in general nonuniform. We show
that by constructing px and py based on the structural information of X and Y, u(XY)
can be estimated by the expected size of fx fy in AN, and the latter is well controlled by the
Brunn—Minkowski inequality (7.2) for AN. This part is done in Section 7.6. It worth noting
that in this case our inequality matches the upper bound construction when the semisimple
group has a finite center.

With the above preparation, we can explain how we prove Brunn-Minkowski for a general
helix-free Lie group . Using reductions proved in Sections 7.4, 7.5, and 7.6, we can reduce
the problem to the case where G is unimodular and connected. Such G can be decomposed
into a semi-direct product of a unimodular solvable group () and a semisimple group S via
the Levi decomposition. We already know how to handle S from the discussion in Section
7.6. McCrudden’s result can then be used to deal with @) and to deduce the desired inequality
for G.

In many of our reductions, we have an exact sequence of groups 1 - H - G — G/H — 1

and want to deduce the Brunn—Minkowski for G from the Brunn—Minkowski for H and G/H.
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One tricky issue is that this inductive method only gives sharp results if the sum of the
noncompact Lie dimensions and helix dimensions of H and G/H is equal to the noncompact
Lie dimension of GG. Unfortunately this is not always true (see examples in page 15). With
this warning in mind, we must ensure the above property is always satisfied in the whole
reduction. Our discussion in Section 7.2 guarantees this.

In the remaining part, we discuss some new challenges in the proof of Theorem 7.2 for a
helix-free locally compact group G. The Gleason—Yamabe Theorem tells us that G contains
an open subgroup G’ that has a Lie quotient G'/H with H compact. For the start, we need
to handle the nonuniqueness in the choice of G’ and H and make sure that every choice
gives the same desired result. This requires some nontrivial effort and makes heavy use of
the Gleason—Yamabe Theorem, and we prove it in Section 7.2.

The rest of the proof of Theorem 7.2 has two steps. In the first step, we reduce the
problem to unimodular groups. This is done with a similar strategy as used in the proof of
the Lie group case with the additional help of a dichotomy result proved in Section 7.7. To
motivate the second step, recall that in the Lie group case we first reduce the problem to
connected groups. In our second step, unlike in the Lie group case, the identity component
of our group here may not be open. Hence the correct analogue is to reduce the situation to
open subgroups with a Lie quotient, which requires some additional results in Section 7.4.

The desired result then follows from the Lie group case.

7.2 Noncompact Lie dimension and helix dimension

In this section, we show that noncompact Lie dimensions and helix dimensions are well de-
fined in locally compact groups and that they behave well in many exact sequences. The
latter is the nontrivial underlying reason that the lower bound in Theorem 7.1 and Theo-
rem 7.2 matches the upper bound in Theorem 7.3 for helix-free locally compact groups.

Throughout the section, all groups are locally compact, we will use various definitions
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and facts from Sections 5.3, 5.4, and 5.5. The following lemma discusses the behavior of

Iwasawa decomposition under taking quotient by a compact normal subgroup.

Lemma 7.6. Suppose G is a connected semisimple Lie group, H is a (not necessarily con-

nected) compact subgroup of G. Then we have the following.
1. There is an Twasawa decomposition G = KAN such that H < K.

2. Assume further that H is a normal subgroup of G, G = KAN is an Iwasawa decom-
position such that H < K, G' = G/H, and 7 : G — G’ is the quotient map. Then

there is an Iwasawa decomposition G' = K'A'N' such that n(K) = K'.

Proof. We first prove (1). Let Z(G) be the center of G, G' = G/Z(G) and p : G — G’
be the quotient map, and H' = p(H). By Facts 5.26 and 5.27, p is a covering map and
G' is centerless. Let g be the common Lie algebra of G and G’, and exp : g — G and
exp’ : g — G’ be the exponential maps. Using Fact 5.31.2 about Iwasawa decomposition, it
suffices to construct a Cartan involution 7 of g such that if £ is the subalgebra of g fixed by
7 and exp(t) = K, then H < K. Take a maximal compact subgroup K’ of G’ that contains
H'. Let 1y be an arbitrary Cartan involution of G (this exists because of Fact 5.30). Let &
be the the subalgebra of g fixed by 79, and K] = exp(£y) in G'. Then by Fact 5.31.2 about
Iwasawa decomposition and the earlier observation that G’ is centerless, K| is a maximal
compact subgroup of GG'. By Fact 5.14.1 and the assumption that G is connected, there is
an automorphism ¢’ of G’ such that ¢'(K() = K’. Let a be the automorphism of g obtain

by taking the tangent map of ¢/, and let

7 =amna ! and € = a()

As every Cartan—Killing form is invariant under automorphisms of g, we get that 7 is a
Cartan involution. It is also easy to check that £ is the subalgebra of g fixed by 7. Using

the functoriality of the exponential function (Fact 5.19), we get K’ = exp(t). Now set
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K = exp(t). By Fact 5.31.2, we get an Iwasawa decomposition G = KAN. Therefore, by
the functoriality of the exponential function (Fact 5.19), K’ = p(K). Now as H' < K,
every element of H is in Z(G)K. By Fact 5.31.2 about Iwasawa decomposition, we have
Z(G) C K, so H <K as desired.

We now prove (2). Set K’ = n(K). Let g, h, and ¢ be the Lie algebras of G, H, and K,
and let kg, Ky, ke be the Cartan—Killing form of g, b, and €. Then, g’ = g/b is the Lie algebra
of G', and ¥ = /b is the Lie algebra of K’ by Fact 5.18. Let 7 be a Cartan involution of
g that fixes . We will construct from this a Cartan involution 7’ of g’ which fixes ¢. If we
have done so, then using Fact 5.31.2, we obtain A" and N’ such that G’ = K'A’N’ is an
Iwasawa decomposition, which completes the proof.

Now we construct 7/ as described earlier. As g is semisimple, the Lie algebras b and ¢
are also semisimple. With q the orthogonal complement of £ in g with respect to g and ¢
the orthogonal complement of h in £ with respect to k¢, we have g =t @ p and €= 0§ S ¢ by
Fact 5.24. By the same fact, with k, and &, the Cartan-Killing forms of p and ¢, we have
Kg = ke @D Ky and ke = Ky D K. It is then easy to see that every elements of ¢@p is orthogonal
to b with respect to xy. A dimension comparison gives us ¢ @ p = 0 with 0 the orthogonal

complement of h in g. In summary, we have

g=tDp=HDcPp=HDP0 and Ky = ke D Ky = Ky DK D Ky = Ky D K.

As a particular consequence, the quotient map from g to g’ restricts to isomorphisms of Lie
algebras from 0 to g’ = g/h and from ¢ to ¢ = £/h. Since b is a subalgebra of ¢, 7 fixes h. As
Cartan—Killing forms are invariant under automorphisms, 7 restricts to an endomorphism of
0, which the the orthogonal complement of § in g under x,. Therefore, 7, is an involution

of 0. The bilinear form

0X0: (l’,y) = _lib(m77—|0(y))
is positive definite as it is simply the restriction to 0 of the positive definite bilinear form
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gxg: (z,y) = —ko(x,7(y)). Hence, 7|, is a Cartan involution of d. It is clear that the
subalgebra of 0 fixed by 7|, is ¢. Finally, let 7/ be the pushforward of 7|, under the quotient

map from g to g’. It is easy to see that 7’ satisfies the desired requirement. O

The following lemma allows us to compute noncompact Lie dimensions for the universal

cover of a compact Lie group.

Lemma 7.7. Suppose that K is a covering group of a compact Lie group K' with the covering
map p: K — K', and that K and K' are connected. If ker(p) is a discrete group of rank h,

and m is the mazimum dimension of a compact subgroup of K. Then h = dim(K) — m.

Proof. We first consider the case when K is a solvable group. Then K’ =2 T* where k is the
dimension of K by Fact 5.15.2. Recall that K is a quotient of the universal cover of K’,
which is R¥. Hence, K = R" x TF¥". It is easy to see that the maximum dimension of a
compact subgroup of K is k — h, which gives us the desired conclusion in this case.

We now prove the statement of the Lemma. Let Qi be the radical of K, Q)+ the radical
of K/, Sy = K/Qk, and S = K'/Qg. Note that K and K’ have the same Lie algebra .
By Fact 5.21, Q and @k have the same Lie algebra ¢, which is the radical of €. Moreover,
by the functoriality of the exponential function (Fact 5.19), p restrict to a covering map
from Q to Qg with kernel ker p N Q. By Fact 5.18, the Lie algebras of Sk and Sk are
both isomorphic to £/q. Hence, Sk is a connected semisimple Lie group with compact Lie
algebra. Using Fact 5.28, we get Sk is compact with finite center Z(Sk). Let 7 : K — Sk
be the quotient map. Note that ker p is a subgroup of the center of K by Fact 5.16. Hence,
the image of 7|ker, is a subset of Z(Sk), which is finite. As a consequence, ker p N Q,
which is the kernel of 7|ker , has the same rank h as ker p. Let m; and my be the maximum
dimensions of a compact subgroup of QQx and of Sk respectively. Then m = m; + my by
Fact 5.14.2. By the special case for the solvable group K proven earlier, h + m; = dim Q.
As Sk is compact, my = dim Sk. Thus, h + m = h + m; + my = dim(Qg) + dim(Sk) as
desired. O
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The following proposition links the noncompact Lie dimension and the helix dimension.

Proposition 7.8. Suppose G is a connected semisimple Lie group of dimension d, m is
the maximal dimension of a compact subgroup of G, h is the heliz dimension of G, and
G = KAN is an Iwasawa decomposition of G. Then h = dim K — m, or equivalently,
d—m —h=dim(AN).
Proof. Let Z(G) be the center of G. Then Z(G) has rank h by the definition. By Fact 5.31.2,
we have Z(G) is a subset of K. Let G' = G/Z(G), and K' = K/Z(G). Using Lemma 7.6.2,
we obtain A" and N’ such that G’ = K’A’N’ is an Iwasawa decomposition. Let p: G — G’
be the quotient map. The group Z(G) is discrete by Fact 5.26, so p and p|x are covering
maps.

Now, the maximum dimension of a compact subgroup of G is the same as that of K
by Lemma 7.6.1. Applying Lemma 7.7 to K, we have that h = dim K — m. Note that
d = dim(K) + dim(AN) by Fact 5.31, so we also get d — m — h = dim(AN). O

The next lemma discusses the noncompact Lie dimensions and the helix dimensions of a

Lie group and its open subgroups.

Lemma 7.9. Suppose G is a Lie group, and G’ is an open subgroup of G. Then G and
G’ have the same dimension, the same maximum dimension of a compact subgroup, and the

same helixz dimension.

Proof. 1t is clear that G and G’ have the same dimension. Any compact subgroup of G’ is a
compact subgroup of G. If K is a compact subgroup of G, then K NG’ is an open subgroup
of K, hence K N G’ has the same dimension as K. Therefore the maximum dimension of
a compact subgroup of G is the same as that of G’. Finally, note that G and G’ have the
same identity component Gy, and the helix dimension is defined using Gy. Thus, G and G’

have the same helix dimension. OJ

The following Lemma tells us the behavior of radical under quotient by a compact normal

subgroup.
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Lemma 7.10. Suppose G is a Lie group, H is a compact normal subgroup of G, G' = G/H,
7w G — G’ is the quotient map. Let Q) be the radical of G, S = G/Q. Then we have the

following:

1. with Q" = ©(Q), and " = G'/Q’, we have HQ 1is closed in G, Q' = HQ/H, and
S'"=G'/(HQ/H) = (G/H)/(HQ/H)) is canonically isomorphic as a topological group
to both G/HQ and (G/Q)/(HQ/Q) = S/(HQ/Q);

2. Q' is the radical of G';

Proof. We prove (1). As H is compact, we get HQ is closed in G by Lemma 5.3. Then
Q =HQ/H, and 8" = G'/(HQ/H) = (G/H)/(HQ/H)). The remaining part of (1) is a
consequence of the third isomorphism theorem (Fact 5.1.3).

We next prove (2). As @’ is a quotient of the solvable group @, it is solvable. Moreover,
Q' is a connected closed normal subsgroup of G’ as () is a connected closed normal subgroup
of G. By (1), G'/Q’ is a quotient of the semisimple group S. Hence, G'/Q)’ is semisimple.
Therefore, () is the maximal connected solvable closed normal subgroup of G’. In other

words, @' is the radical of G'. O

The next lemma says in a Lie group, taking quotient by a normal compact group does
not change the helix dimension. Doing so also does not change the difference between the

dimension and the dimension of a maximum compact subgroup.

Lemma 7.11. Suppose G is a Lie group, H is a compact normal subgroup of G, and G' =
G/H. Let d, m, and h be the dimension, the maximal dimension of a compact subgroup,

and the helix dimension of G, respectively. Define d', m’, and h' likewise for G'. Then:
1. d=d +dim(H) and m =m’ + dim(H);

2. h="n.
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Proof. We prove (1). Clearly, d = d' + dim(H). If K is a compact subgroup of G and
K' = n(K), then K’ is a compact subgroup of G’, then dim(K’) + dim(H) = dim(K).
Conversely, if K’ is a compact subgroup of G’, then K = 7~!(K’) is a compact subgroup
of G by Lemma 5.4, and Lemma 7.7 that dim(K) = dim(K’) + dim(H). Therefore, m =
m’ + dim(H).

We now prove (2). First further assume that both G and G’ are semisimple. Let 7 :
G — G’ be the quotient map. Using Lemma 7.6.1, we obtain an Iwasawa decomposition
G = KAN of G such that H C K. By Lemma 7.6.2, we obtain an Iwasawa decomposition
G' = K'AN' with K/ = n(K), A’ = w(A), and N’ = 7my. Let mg be the maximum
dimension of a compact subgroup of K, and m/; be the maximum dimension of a compact
subgroup of K’. By Proposition 7.8, my + h = dim(K), and mg + h' = dim(K’). Now, by
(1) applied to K, we have my = m/, + dim(H ). Therefore, we get h = b’

Next, consider the case where G is connected. Let @ be the radical of G, S = G/Q,
Q' =7(Q),and S" = G'/Q’. Then by Lemma 7.10.2, ' is the radical of G’. Hence, it suffices
to show that S and S has the same helix dimension. By Lemma 7.10.1, S’ is isomorphic as
a topological group to S/(HQ/Q). Note that HQ/Q is isomorphic as a topological group to
H/(H N Q) by the second isomorphism theorem for Lie groups (Fact 5.13.2). In particular,
HQ/Q is compact, and S’ is the quotient of S by a compact group. Applying the known
case for semisimple and connected groups, we get the desired conclusion.

Finally, we address the general case. Let Gy be the identity component of G. Then Gy is
open by Fact 5.12, and GoH/H is an open subgroup of G’ = G/H. Hence, by Lemma 7.9,
G has the same helix dimension as Gy, and G’ has the same helix dimension as GoH/H.
By the second isomorphism theorem (Fact 5.1.2), GoH/H is isomorphic as a topological
group to Go/(Go N H), which is a quotient of Gy by a compact subgroup. Thus, we get the
desired conclusion for the general case from the known case discussed above for connected

groups. ]

Lemma 7.12. Suppose G is an almost Lie group, Hy and Hs are closed normal subgroup of
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G such that G/H, and G/Hy are Lie groups, and H = Hy N Hy. Then G/H is a Lie group.

Proof. By Fact 5.9, G/H is an almost-Lie group. In light of Fact 5.10.2, we want to con-
struct an open neighborhood U of the identity in G/H that contains no nontrivial compact
subgroup. Let 7 : G — G/H, m : G — G/H,, and 7y : G — G/H; be the quotient maps.
Using Fact 5.1.3, we get continuous surjective group homomorphisms p; : G/H — G/H;
and py : G/H — G/H, such that

m=pironm and 7wy =pyoT.

As G/H; is a Lie group, we can use Fact 5.10.2 to choose an open neighborhood U; of the
identity in G/ H; such that U; contains no nontrival compact subgroup of G/H;. Choose an

open neighborhood U, of the identity in G/H, likewise, and set

U =pr ' (Uy) Npy ' (Ua).

If K C U is a compact subgroup of G/H, then p;(K) is a compact subgroup of U;. By
our choice of Uy, pi(L) = {idg/m, }, which implies that ;' (p(K)) = 7~ (K) is a subgroup
of Hy. A similar argument yields that 7, ' (ps(K)) = 7~1(K) is a subgroup of H,. Hence,
7 1(K) must be a subgroup of H = H; N Hy. It follows that K = {idg g}, which is the

desired conclusion. O
Proposition 7.13 below ensures us the notion of noncompact Lie dimension and helix

dimension of a locally compact group as described in the introduction are well defined.

Proposition 7.13. Suppose G’ is an open subgroup of G, and H < G’ is compact such that
G'/H is a Lie group with dimension d, with mazximum dimension of a compact subgroup m,

and helix dimension h. Then d —m and h are independent of the choice of G' and H.

Proof. We first prove a simpler statement: If G’ is an almost Lie subgroup of G, H is a

compact subgroup of G', and we define d, m, and h as in the statement of the Proposition,

253



then d —m and h are independent of the choice of H. Let H; and H, be compact and normal
subgroups of G such that both G/H; and G/H, are Lie groups. Then by Lemma 7.12,
G/(Hy N Hy) is also a Lie group. Note that G/H; and G/H, are quotients of G/(H; N Hy)
by compact subgroups by the third isomorphism theorem (Fact 5.1.3). Hence, it follows from
Lemma 7.11 that G/H; and G/(H; N Hy) have the same difference between the dimension
and the maximum dimension of a compact subgroup, and the same helix dimension. A
similar statement holds for G/H, and G/(H; N Hy). This completes the proof of the simpler
statement.

Now we show the statement of the proposition. Let G| and G be open subgroups of
G, H, and H, are compact normal subgroup of G| and G}, respectively such that G'/H;
and G%/H, are Lie groups. Using the Gleason—Yamabe Theorem (Fact 5.10), we get an
open subgroup G’ of G; N G5 which is an almost Lie group. Then G’ is an open subgroup
of G. Note that G' N H; and G’ N Hy are compact subgroups of G'. Then G'/(G' N H;)
is an open subgroup of G'{/H;. It follows from Lemma 7.11 that G'/H; and G'/(G' N Hy)
have the same difference between the dimension and the maximum dimension and the same
helix dimension. A similar statement hold for G'/Hs and G'/(G’' N Hs). Thus, from the
simpler statement we proved in the preceding paragraph, G /H; and GY/H, have the same

noncompact dimension and and the same helix dimension. O]
We have the following two corollaries.

Corollary 7.14. If H is an open subgroup of G, then H has the same noncompact Lie

dimension and heliz dimension as G.

Proof. Proposition 7.13 implies that the noncompact Lie dimension and helix dimension of
a locally compact group is the same as its open almost-Lie subgroups, if those exist. Hence,
it suffices to show that there is a common almost-Lie open subgroup of G and H. This is

an immediate consequence of the Gleason—Yamabe Theorem (Fact 5.10.1). O
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Corollary 7.15. If H is a compact normal subgroup of G, then G/H has the same non-

compact Lie dimension and heliz dimension as G.

Proof. Let m be the projection from G to G/H. If G/H is a Lie group, then from the
definitions, G has the same noncompact Lie dimension and helix dimension as G/H. Hence,
the conclusion holds in this special case.

Suppose there is a compact K <t G/H such that (G/H)/K is a Lie group, then (G/H)/K
is isomorphic as topological group to G/n~1(K) by Fact 5.1.3. By Lemma 5.4, 7 1(K) is
compact. Hence (G/H)/K is a quotient of G by a compact normal subgroup, and we can
use the previous case to get the desired conclusion.

Now we treat the general situation. By the Gleason—Yamabe Theorem, we get an almost-
Lie open subgroup G’ of G. Then G'H is an open subgroup of G and hence has the same
noncompact Lie dimension and helix dimension as G by Corollary 7.14. By the second
isomorphism theorem (Fact 5.1.2), we get that G'/(G" N H) is isomorphic to G'H/H which
is an open subgroup of G/H. In particular, G’'/(G' N H) has the same noncompact Lie
dimension and helix dimension as G/H by Corollary 7.14. Note that G'/(G' N H) is an
almost-Lie group by Fact 5.9. Hence, we can find K such that (G'/(G' N H))/K is a Lie

group. We are back to the earlier known situation in the second paragraph. O]
We have the following lemma about the Iwasawa decompositions.

Lemma 7.16. Suppose 1 — H — G = G/H — 1 is an evact sequence of connected

semisimple Lie groups. Then there are Iwasawa decompositions G = KAN, H = K1 ANy,
and G/H = KyA3Ny such that Ky = (K N H)g, and Ky = w(K).

Proof. Let g and b be the Lie algebras of G'and H, and let k4 and xy be the Cartan—Killing
form of g and . Then g/b is the Lie algebra of G/H, and g ,h, and g/b are semisimple. By
Fact 5.24,

g=b®cand kg = Ky D K
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where k. is the orthogonal complement of ky with respect to kg, and &, is the Cartan-Killing
form of k.. Therefore, the quotient map from g to g/b induces an isomorphism from ¢ to
g/b, so we can identify g/h with ¢. Let 7y and 7, be a Cartan involutions of h and ¢. Then
T = 71 @ 75 is an involution of g. As 7, and 7, are Cartan involutions, the bilinear forms
hxb:(x,y1) — —ke(x1,71(y1)) and ¢ X ¢ : (z2,Y2) — —FK(22, T2(y2)) are positive definite.
Hence, the bilinear from g x g : (x,y) — —k4(z, 7(y)) is also positive definite. Therefore, 7
is a Cartan involution of g. Let €, £, and & be the Lie subalgebras of g, h, and ¢ fixed by
T, 71, and 7, respectively. It is easy to see that ¢ =€ ® €. Let exp: g — G, exp, : h — H,

and exp, : ¢ — G/H be the exponential maps, and set

K =exp(t), K; = exp, () and Ky = exp(t,).

From Fact 5.31, we obtain Iwasawa decompositions G = KAN, H = K1A; Ny, and G/H =
K3A5N;. By the functoriality of the exponential function (Fact 5.19), we get K1 < K N H,
and Ky = 7(K). Since K; is connected, by a dimension calculation we have K; = (K N

H)o‘ O

In a short exact sequence of locally compact groups, one may hope that the noncompact
Lie dimension and the helix dimension of the middle term is the sum of those of the outer

terms. This is not true in general. For instance, in the exact sequence

1-Z—->R—-R/Z—1,

the noncompact Lie dimension of R is 1, while both Z and T = R/Z has noncompact Lie
dimension 0. Another exmaple is the following. Let H be the universal cover of SL(2,R),

and let G = (H x R)/{(n,n) : n € Z}. Then we have the exact sequence

1 H—->G—->T-—1,
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the helix dimension of H is 1, but the helix dimensions of G and T are 0.
Nevertheless, we have the summability of noncompact Lie dimensions and helix dimen-

sions in many short exact sequences of interest:

Proposition 7.17. Suppose 1 — H — G ™ G/H — 1 is an ezact sequence of connected

Lie groups. Then we have the following:

1. If n, ny, and ny are the noncompact Lie dimensions of G, H, and G/H respectively,

then n = ny + na;

2. If G is moreover semisimple, and h, hy, and hy are the heliz dimensions of G, H, and

G/H respectively, then h = hy + hs.

Proof. We first prove (1). Let m be the maximum dimension of a compact subgroup in G.
As (G is connected, m is also the dimension of an arbitrary maximal compact subgroup of
G by Fact 5.14.1. Defining m; and ms likewise for H and G/H, we get similar conclusions
for them from the connectedness of H and G/H. Let K be a maximal compact subgroup
of G. By Fact 5.14.2, K N H is a maximal compact subgroup in H, and 7(K) is a maximal
compact subgroup in G/ H. The kernel of 7| is isomorphic to KN H, and the image is 7(K).
Hence, m = mj + my. This gives us (1) recalling that m +n = dim(G), m; + ny = dim(H),
mg + ne = dim(G/H), and dim(G) = dim(H) + dim(G/H).

We now prove (2). Since Z(G)NH < Z(H), and 7(Z(G)) < Z(G/H), we have h <
hi+ hs. It remains to show h > hy + hs. As G is semisimple, H and G/H are semisimple by
Fact 5.25. Take Iwasawa decompositions G = KAN, H = K;A; Ny, and G/H = KyA;N,
as in Lemma 7.16. By the first isomorphism theorem for Lie groups (Fact 5.13.1), 1 —

KNH — K — Ky — 1is an exact sequence of Lie groups. We also have an exact sequence

1> K — K— K),—1. (7.3)

As Ky = (K N H)g, by the third isomorphism theorem, we have Ky = K/(K N H) =
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(K/K,)/(KNH)/K,) = K}/(KNH)/K;). Since (KN H)/K; is discrete, K} is a covering
group of K. Let ¢ : K} — K, be the covering map. Note that ¢ has discrete kernel,
and K, K! have the same dimension. Suppose S is a compact subgroup of K with the
maximum dimension. Then ¢(5) is a compact subgroup of K, and S and ¢(S) have the same
dimension. This shows that the noncompact Lie dimension of KJ is at least the noncompact
Lie dimension of K5. By (7.3) and Statement (1), the noncompact Lie dimension of K is the
sum of noncompact Lie dimensions of K; and K, hence it is at least the sum of noncompact

Lie dimensions of K; and K. It then follows from Proposition 7.8 that h > hy + hs. O

Lemma 7.18. Suppose 1 — H — G = (R>° x) — 1 is an exact sequence of Lie groups,

and G is connected. Then H 1is connected.

Proof. Consider first the case when when G and H are Lie groups but are not necessarily
connected. Let Gy and Hy be the identity components of G and H respectively. As Lie groups
are locally path connected, GGy is open in GG. Hence, Gy and G have the same noncompact
Lie dimension by Corollary 7.14. Likewise, H, has the same noncompact Lie dimension as
H. As G| is an open connected subgroup of G, the map 7|g, is continuous and open. Hence,
its image 7(Gy) is an open connected subgroup of (R>?, x). Therefore, 7(Gy) = (R>?, x),
and 7|g, is a quotient map by the first isomorphism theorem (Fact 5.1.1). The kernel of

|G, 1s H N Gy, so we get the exact sequence of Lie groups
1—>HﬂGO —>G07TI—G>O (R>O,X) — 1.

We claim that Hy = HNGy, which will bring us back to the known case where both G and H
are connected. The forward inclusion is immediate by definition. By the third isomorphism

theorem (Fact 5.1.3), we get the exact sequence of Lie groups

1— (HmGo)/HQ — Go/HO — (R>O, X) — 1.
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The group (HNGy)/Hy is discrete. Hence, G/ Hy is a Lie group with dimension 1. As G is
connected, the Lie group G/ Hy is also connected. Hence, Go/H is either isomorphic to R
or T. But since Go/Hy has (R”Y, x) as a quotient, it cannot be compact, and therefore must

be isomorphic to R. This implies that (H N Gy)/Hy is trivial, and hence Hy = H N Gy. O

The next proposition gives us a summability result of noncompact Lie dimensions along

a short exact sequence of locally compact groups when the quotient group is (R>?, x).

Proposition 7.19. Suppose 1 — H — G = (R>°, x) — 1 is an ezact sequence of locally

compact groups. Then we have the following:

1. Ifn, ny, and ny are the noncompact Lie dimensions of G, H, and (R”°, x) respectively,

thenn =n; +ne =nq + 1.
2. G and H have the same heliz dimension.

Proof. First, we consider the case when G is a connected Lie group. Then by Lemma 7.18,
H is also connected. Hence, (1) for this case is a consequence of Proposition 7.17.1.

We prove (2) for this special case. Let @ be the radical of G. We claim that QH = G,
or equivalently, that 7(Q) = (R”Y, x). Suppose this is not true. Then 7(Q) is a connected
subgroup of (R>Y, x), so it must be {1}. Hence, @ C H. Then (R*°, x) = G/H which
is isomorphic as a topological group to (G/Q)/(H/Q) by the third isomorphism theorem
(Fact 5.1.3). This is a contradiction, because (G/Q)/(H/Q) is semisimple as a quotient of
the semisimple group G/Q, while (R>?, x) is solvable.

We next show that @ N H is the radical of H. The radical of H is a characteristic closed
subgroup of H (by Fact 5.21), hence a connected solvable closed normal subgroup of G.
Thus, the radical of H is a subgroup of ) N H. It is straightforward that () N H is solvable.
We also have that () N H is second countable as both ) and H are second countable. From

the preceding paragraph, m(Q) = (R>Y, x). Using the first isomorphism theorem for Lie
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groups (Fact 5.13.1), we have the exact sequence

1-QNH—Q— (R x)—1.

Applying Lemma 7.18, we learn that @) N H is connected. This completes the proof that
@ N H is the radical of H.

Note that QH = G and @ is a closed subgroup of G. Hence, by the second isomorphism
theorem for Lie groups (Fact 5.13.2), H/(Q N H) is isomorphic as a topological group to
HQ/Q = G/Q. Therefore G and H have the same helix dimension.

Next, we address the slightly more general case where G is a Lie group but not neces-
sarily connected. Let Gy be the connected component of G. Then 7(Gy) is an open sub-
group of (R™Y) x), so m(Gy) = (R”Y, x). By the first isomorphism theorem for Lie groups

(Fact 5.13.1), we have the exact sequence

1= GoNH— Gy— (R, x) — 1.

Applying Lemma 7.29 and the known case of the current lemma where the middle term of
the exact sequence is a connected Lie group, we obtain both (1) and (2) for this more general
case.

Using the Gleason—Yamabe theorem and a similar argument as in the preceding para-
graph, we can reduce (1) and (2) for general locally compact groups to the case where we
assume that G is an almost-Lie group. Hence, there is a compact normal subgroup K of G
such that G/K is a Lie group. As K is compact, 7(K) is a compact subgroup of (R>?, x),
so m(K) = {1}. Hence K < H. By the third isomorphism theorem (Fact 5.1.3), we have the
exact sequence 1 -+ H/K — G/K — (R”?, x) — 1. Applying Lemma 7.11 and the known
case of the current lemma where the middle term of the exact sequence is a Lie group, we

obtain both (1) and (2) for this remaining case. O
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We discuss the relationship between the noncompact Lie dimension and helix dimension

of a locally compact group G.

Corollary 7.20. Suppose G has noncompact Lie dimension n and heliz dimension h. Then

we have h < n/3.

Proof. We first check the result for simple Lie groups. If h = 0, then the statement holds
vacuously. Hence, using Fact 5.29, it suffices to consider the case where h = 1. Let G = KAN
be an Iwasawa decomposition. Then by Proposition 7.7, we have n — 1 = dim(AN) > 0.
Hence, n > 0 and G is not compact. From Fact 5.32, we have dim(AN) > 2. Therefore
n > 3. Hence, we get the desired conclusion for simple Lie groups.

When G is a connected semisimple Lie group which is not simple. Using induction on
dimension, we can assume we have proven the statement for all connected semisimple Lie
groups of smaller dimensions. Using Fact 5.23, we get an exact sequence of semisimple
Lie groups 1 - H - G — G/H — 1 with 0 < dim(H) < dim(G). Replacing H with
its connected component if necessary, we can arrange that H is connected. The desired
conclusion then follows from Proposition 7.17.2.

For a general locally compact group G, from Proposition 7.13, we may assume G is a
Lie group. Corollary 7.14 and Fact 5.12 allow us to reduce the problem to connected Lie
groups. By Lemma 7.10 and Lemma 7.9, the radical of G only contributes the noncompact
Lie dimension of GG. Using Fact 5.22 and Proposition 7.17.1, we reduce the problem to

connected semisimple Lie groups. O

7.3 Proof of Theorem 7.3

The constructions given in this section are open sets (hence all have positive measure), and
the exact statement given in Theorem 7.3 (i.e., in the compact sets case) follows by the inner
regularity of Haar measure.

We first prove the theorem when G is a unimodular Lie group.
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Proof of Theorem 7.3, unimodular Lie group case. Since G is unimodular, without loss of
generality we assume that © = v. Let d be the dimension of G. Let K be the maximal
compact subgroup of G and let m = dim K. Hence n = d — m is the noncompact Lie
dimension of G.

If n = 0, then the identity component G of G is compact. Taking X = G, we have

H(X) = u(X?).

Hence Theorem 7.3 holds in this case. In the rest of the proof we assume n > 0.

Since K is closed, G/K is a homogeneous (and smooth) manifold. Fix an arbitrary
G-invariant (smooth) Riemannian metric on G/K (such a metric exists by first finding a
K-invariant Riemannian metric at [id] and then extend it onto the whole G/K by the action
of G). This metric induces a volume measure Vol on G/K.

Let 7 be the projection from G to G/K. For any Borel subset U of G/K, n=*(U) is also
Borel and hence p-measurable. For any r > 0, we use B, to denote the (open) r-ball around

[id] on G/K under the chosen metric and use D, to denote 7 '(B,). We claim that:

(i) There exists a constant b > 0 only depending on the metric on G/ K such that as Borel

measures 7, (u) = b - Vol, and
(ii) For any r > 0, D,.-D, C Ds,..

We postpone the proofs of claims (i) and (ii) to the end of this proof and first show how
they lead to Theorem 7.3. We can take X to be D; for a sufficiently small 6 > 0 (depending

on ¢) to be determined. Then by (i),

#(X) = . (u(By)) = b- Vol(By).

And by (ii), X? C Dy and hence as before, we get u(X?) < pu(Das) = b - Vol(Bsgs). Note
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that the invariant metric on G/K is smooth and thus

VOI(BQ(S)

SO0 _on,
550 Vol(Bs)

1_.
Hence a sufficiently small § can guarantee 27—

— > % and we have proved Theorem 7.3 in
p(X2)n—e

this special case.

It remains to prove claims (i) and (ii). To see claim (i), note that Vol is G-invariant. We
also see that m,(u) is G-invariant because u(7=*(U)) = pu(gr=1(U)) = p(x1(gU)) for any
g € G and any Borel subset U C G/K. Since the G-invariant Borel measure on G/K is
unique up to a scalar (see Theorem 8.36 in [114]), Vol has to be a scalar multiple of . ().

Finally we verify claim (ii). Taking arbitrary gi, g, € D, and it suffices to show g1gs €
D,,. By definition, there is a piecewise smooth curve ; connecting [id] and [g;] such that
the length of ; is strictly smaller than r (for j = 1,2). Note that by the invariance of the
metric, [g;]72 must have the same length as 2. Let v be the curve formed by [g1]7y2 after ;.
It is a curve connecting [id] and [g;¢2] and by the reasoning above has two pieces and each
of them has length strictly smaller than r. Hence v has length shorter than 2r and thus by

definition g1go € Ds,. We have successfully verified (ii). O

Running the above proof with a little bit of extra effort, we have the following slightly
stronger “stability” result. We will use it in the generalization to the nonunimodular Lie

group case.

Proposition 7.21. Given any unimodular Lie group G, let n be its noncompact Lie dimen-
sion. Let € > 0 be fized. Then there exists precompact open subsets X and Xy with u(X) > 0
such that the closure X C X1 and pu(X;-X) < (2 +&)"u(X).

Proof. This proof is very similar to the proof of the unimodular Lie case of Theorem 7.3
we just did. We continue to use notations in that proof and take X = Ds = 7 !(B;s) and

X, = Ds, = 7 1(By,) where 0 < § < ¢; and both § and §; to be determined.
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We see that X and X; are open because X = 7 !(By;), etc. Bs and B, are precompact, by
Lemma 5.4, X and X are also precompact. Moreover we have X C 77! (B;) C 7= 4(Bs,) =
Xi.

Now by the same reasoning as in the previous proof of Theorem 7.3 (unimodular Lie

case), we see that X;-X C Dy 5. Now,

—VOI(B%) =2" and lim Vol(By)

i — 20—,
61~I>I(l) VOI(B(;) ’ 01—0 V01(351+5)

Hence we can take § sufficiently small, and then ¢; sufficiently close to d, such that we have

all good properties in the last paragraph and

XX D Vol(B
(X1 X) < 1(Ds, +s5) _ ol(Bs,45) < (242",
W(X) = u(Ds) | Vol(By)
which proves the proposition. O

Next we use Proposition 7.21 to prove Theorem 7.3 for general Lie groups.

Proof of Theorem 7.3, Lie group case. We have already proved the theorem when G is uni-
modular. In the rest of this proof, we assume G is nonunimodular. Let Gy be the connected
component of G. Since uglg, is a left Haar measure on Gg, and same holds vg|g,, we may
assume without loss of generality that G = Gj. As the only connected subgroups of (R>?, x)
is itself and {1}, and G is not unimodular, the modular function Ag must be surjective.
Hence, Aq is a quotient map by the first isomorphism for Lie groups Fact 5.13.1.

Let H be the kernel of the modular function on G. By Proposition 7.19.1, the noncompact
Lie dimension of H is n — 1 where n is the noncompact Lie dimension of G. By Fact 5.6.1,
H is unimodular. To avoid confusion, we will always use pug and v for p and v below and
use gy = vy to denote a fixed Haar measure on H.

In light of Fact 5.7, we can fix a Haar measure dr on the multiplicative group (R>°, x) =
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G /H such that for any Borel function f on g,

| s@aueta) = [ B | b dun(n . (7.4)

Let g and § be the Lie algebras of G and H, respectively. We fix an element Z € g such
that Z ¢ h. Note that t — A(exp(tZ)) is a nontrivial continuous group homomorphism from
(R, +) to (R™°, x). As the only connected subset of (R”?, x) are points and intervals, this
map must be surjective, and hence an isomorphism by the first isomorphism for Lie groups
(Fact 5.13). In light of the quotient integral formula (7.4), we can choose an appropriate
Haar measure dt on R such that for any Borel subset A of GG, we have the Fubini-type

measure formula

pa(A) = /RMH((GXP(—tZ)A) N H)dt. (7.5)

Without loss of generality we assume dt is the standard Lebesgue measure (otherwise we
multiply ug by a constant).

With the preliminary discussions above, we now construct X satisfying the inequality in
Theorem 7.3.

Before going to details of the construction, we first describe the intuition behind it. We
arrange our X to live very close to H so that ; and v are almost proportional on X and X?2.
We then realize that it suffices to choose our X to be like a thickened copy of the almost
sharp example of Theorem 7.3 for (the unimodular group) H.

More precisely, let £ > 0 be a small number (depending on ¢) to be determined. let X
and X; be the “X” and “X;”, respectively, in Proposition 7.21 where we replace “G” by
“H”. We now take X = {exp(tZ)h :t € [0,£],h € X} and will show that X? is reasonably
small when ¢ is small enough.

By (7.5), we have

Ho(X?) = / i ((exp(—£2)X?) N H) dt, (7.6)
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Note that an arbitrary element in X? can be written as

exp(t1Z)hiexp(taZ)hs

= exp((t1 + t2)Z)(exp(—taZ)h1exp(taZ)-hs) € exp((t1 + t2)Z)H,
where t1,t5 € [0,€] and hy, he € H. Hence (7.6) is reduced to

Ho(X?) = / juar((exp(—t2)X?) 0 H) i (7.7)

and moreover for any 0 <ty < 2, we see from the above discussion that

(exp(—toZ)X*) N H = U (exp(—t1Z) Xexp(t, Z))-X.

0<t1,t2<€t1+t2=to

By Lemma 5.17 and Proposition 7.21, when € is sufficiently small, which we will always

assume, we have the above union contained in X;-X. Now by (7.7),
2¢ o o
ne(X?) < / (X1 X) dt = 28u(X, - X). (7.8)
0
On the other hand, by (7.5) we have
pe(X) = epn(X). (7.9)

Combining (7.8) and (7.9) and use the measure properties of X and X, guaranteed by

Proposition 7.21, we have

pe(X) S MH(NX)~ 1

pe(X?) 7 2up(X1-X) ~ 224 &)mt

(7.10)

Recall that A(exp(-Z)) is an isomorphism from (R, +) to (R>?, x). Hence there exists a

constant C' > 0 only depending on Z such that on the support of X we have e7¢% < A < %%
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and on the support of X? we have e 2¢¢ < A < ¢2°¢. Thus by Fact 5.6.4, we have

and

NG(XZ) S 208
Vg(X2)

Combining the above inequalities with (7.10), we have

X —3C¢
velX) e (7.11)
va(X?) © 2(2+é&)n !
Hence for the X we constructed,
X)n—e X)n—e .
I/G( );_ + /LG( );_ > (1+6_306(%_8))(2(2+§)n_1)_%+8. (7‘12)
va(X2)n ™= pa(X?)n*
It suffices to take € small enough such that the right hand side of (7.12) is > 1. ]

With the Gleason—Yamabe Theorem and the results developed in Section 7.2, we are

able to pass our Lie group constructions to general locally compact groups.

Proof of Theorem 7.3. By Fact 5.10, there is open subgroup G’ of G which is almost-Lie.
Since pg|er is a left Haar measure on G’, and same holds v¢|¢r, we may assume without loss
of generality that GG is almost-Lie.

With this assumption, there is a a short exact sequence 0 — H — G = G/H — 0 where

H is a compact subgroup, and G/H is a Lie group. Let X be a subset of G/H such that

v (X)w* | (X ) e

: o, (7.13)
vap(X2)n™*  pg/u(X?)n®

where n is the noncompact Lie dimension of G/H. Thus by the quotient integral formula,

267



we have

pe (™ (X))

/ (g™ (1 (X)) O H) dpicya(9)
G/H

/G " Ix(g) dpa/u(g) = wayu(X),

and similarly vg (7~ (X)) = vg/u(X). Observe that 7~!(X?) = 7~ 1(X) - 77!(X). Thus the

desired conclusion follows from (7.13) and Propositions 7.13. ]

7.4 Reduction to outer terms of certain short exact
sequences

For n € Z=° and (z,y) € R?, we set

(7 4 Jy |y im0,
Il =
max{|z|, |y|} if n=0.

We say that the group G satisfies the Brunn—Minkowski inequality with exponent n,

abbreviated as BM(n), if for all compact X,Y C G,

H< y(X)  p(Y) )

When G is unimodular and n > 1, the above is equivalent to having the inequality

XY ) 2 (XM 4 (V)

Note that ;Eg?% < 1 and % < 1. Hence, every locally compact group G satisfies the

Brunn—Minkowski inequality with exponent n = 0. Moreover, if n < n’ and G satisfies
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the Brunn-Minkowski inequality with exponent n’, then it satisfies the Brunn—Minkowski
inequality with exponent n.

Given a function f: X — R, for every t € R, define the superlevel set of f
L}“(t) ={re X: f(x) >t}

We will use this notation at various points in the later proofs. We use the following simple

consequence of Fubini concerning the superlevel sets:

Fact 7.22. Let f : G — R be a function. For every r > 0,

/fr(x)dx:/ r:zc’”_lL;[(x)dx.
G R20

The next proposition is the main result of this section. The current statement of the
proposition is proved by McCrudden as the main result in [132]. We give a simpler (but

essentially the same) proof here for the sake of the completeness.

Proposition 7.23. Let G be a unimodular group, ni,ny > 0 are integers, H is a closed nor-
mal subgroup of G satisfying BM(ny), and the quotient group G/H is unimodular satisfying
BM(ng). Then G satisfies BM(ny + na).

Proof. Suppose 2 is a compact subset of G. Let the “fiber length function” fq : G/H — R=°
be a measurable function such that for every gH € G/H, fo(gH) = pu(¢7*Q N H). The
case when both n; = ny = 0 holds trivially.

Now we split the proof into three cases.
Case 1. When ny > 1 and ny + ny > 2.

By the quotient integral formula (Fact 5.7), we have

1/(n1+n2) V(p1+n2)
o 2<Q>=( fQ<m>duG/H<x>)
G/H
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1/(n1+n2)
= ( / mt™ gy (L], (")) dt) : (7.14)
R>0

— _ni—1 — ng — _
Set a = roET— b= e Y =m e — 1, and

Fo(t) = t*udly (L, (™)) |

for compact set 2 in G and ¢ > 0 (Note that Fy, is well-defined when ny = 0). Then (7.14)

can be rewritten as

~1/(r41) 1/(v+1) o)
O = ([ R a) (7.15)

Fix nonempty compact sets X, Y C G. By (7.15), we need to show that

1/(y+1) 1/(v+1) 1/(y+1)
( / FL, (t) dt) > ( / F1(#) dt) + ( / FI() dt) (7.16)
R>0 R>0 R>0

We will do so in two steps. First, we will show the following convexity property
Fxy(t1 +t2) > Fx(t1) + Fy(t2). (7.17)
For every ty,t, € R, since H satisfies BM(ny), by definition we have
Li L (1Y) € L, (b +1)™).
Also, since G/ H satisfies BM(ny), we have

i (L3 (1) + gl (LE(51) < gl (D (i +12)™)) - (7.18)
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By Holder’s inequality and (7.18), as well as the fact that ny,ny > 1, we obtain

(12 (i (L (4 2))
n ni n ni n2

> (ty+ )" (gl (L5, (6) + el (L, (51))
n ni n ni v

=t ) I3, || (& (Ehee) i (£550)

1/p
o, B/n n o, B/n n v
> (e (L3 ) + 5l (L5,(5) )

We remark that the above inequalities also make sense when n, = 0. In that case ||(a, b)||1/n,
is to be understood as max{a, b} for every a,b € R=°. The first line of the above inequality
is Fiiy (t1 + t2) and the last line is (Fx(t1) + Fy(t2))”. So we finished the first step.

We now prove (7.16). By the above convexity property (7.17) and Kneser’s inequal-

ity [115] for R (i.e. the Brunn—Minkowski inequality for R), we have

pr (L, (51 + 89)) > pir (L (51)) + pm (L, (52)). (7.19)

Let Mx = esssup, Fx(x), My = esssup, Fy(x). By Holder’s inequality and (7.19), we have

Mx+My
[ omas= [T s (L (9) ds
R>0 0

1
= (MX + My)v/ ’yS’Y_l,uR(LJ'_ (MXs + Mys)) ds
0

Fxy
1
> (Mx + My)”/ v (LE, (Mxs)) ds
0
1
(x4 M) [ 97 (L, (M) ds
0

1 1
X JR>O0 Yy JR>0

Finally, by (7.14), (7.20) and Holder’s inequality,

nl—l/(%i-l)lué/(%f‘l) (XY)
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1/(y+1)
- ( JR%0 dt)
R>0

/(y+1)
1
> (((M)v()l/v+ (M}W/)l/w)V/('YJrl) (m /R>O dt+ - - F“/ dt)>

X

1/(r+1) /(1)
> ( / FL(t) dt) 4 ( / F2(1) dt)
R>0 R>0

—1/(v+1)  1/(v+1 —1/(v+1)  1/(v+1
=n, /(v + )MG/(W- )(X) +n, /(v+ )MG/(%F )(Y)

)

this proves the case when n; is at least 1.
Case 2. Whenn; =1 and ny = 0.

In this case, the conclusion can be derived from (7.14) directly. In particular, using the

fact that G/H satisfies BM(0) and H satisfies BM(1), we have

pasm (L, (1)) > mac iy (L, () (L5, ()}

Let Nx = sup, fx(t) and Ny = sup, fy(t). Therefore, by Holder’s inequality,

pa(XY) = /]R>0 pam (L, (1) dt
= [ N gL, (N + M)
> (Nx + Ny) max { /0 ey (LE (Nxt) b, /0 e (LE (Nyt) dt}
> Ny /0 e (L (Nut)) dt + Ny /O ey(L, (Nyt)) di

= pe(X) + peY).

Thus G satisfies BM(1).
Case 3. Whenn; =0 and ngy > 1.

Applying Brunn—-Minkowski inequality with exponent 0 on H, and the fact that G/H
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satisfies BM(ny), we obtain

el (L, (max{ty, 1)) > puilfi (LE (0) + nglfis (L, (1)) (7.21)

Given a compact set € in G, we define
1/n9
Ealt) = g i (L, (1)), 6> 0.

Thus by (7.21), we have Exy(max{a;,as}) > Ex(a1) + Ey(ag) for all a;,as. This can be
seen as a ‘“convexity property” for E, but the maximum operator insider the function E
prevent us from using the same argument as used in Case 1 for F'. On the other hand, we

observe that

pr(Ly, (51 + s2)) > max{ur(Ly (s1)), ur(LE, (s2))} (7.22)

Now we consider pg(XY'). We have

pd™(XY) = ( /R ER(9) ds) e (/R nas" " g (LEXY(S))ds) o (7.23)

Let Px = esssup, Ex(t) and Py = esssup, Fy(t). By (7.22) and (7.23) we see

ny g™ (XY)
l/ng

1 1
(PX + Py)™ max {/ s"rluR(L}EX(PXS) dS,/ SnTlMR(LEy(PYS) ds})
0 0

( (s <PXS))dS)1/n2+ (Pff /O 1SnQ_lHR(LEY(PYs))dS)l/m

—ln 1/n —1/n 1/n
=n, “uc! 2(X) 40y g™ (Y).

This proves the case when ny = 0, and hence finishes the proof of the proposition. O

Using a similar technique as used in the proof of Proposition 7.23, we are able to reduce
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the problem to open subgroups.

Proposition 7.24. Let G be a unimodular group, and let G' be an open subgroup of G.

Suppose G’ satisfies BM(n) for some integer n > 0, then G satisfies BM(n).

Proof. When n = 0, the conclusion follows from p(XY) > u(Y). In the remaining time we
assume n > 1.
Let pg be a Haar measure on G, and let ug be the restricted Haar measure of pg on

G'. By Fact 5.1.1, for every compact set 2 in G we have

ne () = Z e (92N G').

geG/G!

We similarly define fq : G/G’ — R2° such that fo(g) = pe(g7'QNG).

Fix two compact sets X,Y in G. Using the fact that G’ satisfies BM(n), we have
‘L+XY ((t1 + tg)”)| > max{‘L;?X (t’f)| , |L;fy(t§)‘}

because if fx(g1),..., fx(gx) > tT and fy(g) > t5 we have fxy(g19), ..., fxyv(9xg) > (t1 +
B

Let Nx = sup, fx(g) and Ny = sup, fy(g). By the above inequality we deduce

n V(XY

1/n
— (/R>O "L ()] dt)

1 1 1/n
> <(NX—|—NY)"maX{ / UL (Nxt)"|dt, / t”1|Lny((Nyt)”|dt})

0 0
1/n

> (N;é /O ltnl\L}rX((Nxt)")\dt) n (Ng; /0 ' | L?Y((Nyt)mdt) 1/n

=0 Vg™ () + 0 g (),

Thus G satisfies BM(n). O
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7.5 Reduction to unimodular subgroups

The main result of this section allows us to obtain a Brunn—Minkowski inequality for a
nonunimodular group from its certain unimodular normal subgroup. We use ugx to denote
a Haar measure on the multiplicative group (R>°, x). The next lemma concerns the case

when the modular function on X and on Y are “sufficiently uniform”.

Lemma 7.25. Suppose the modular function Ag : G — (R”° x) is a quotient map of
topological groups. Let X, Y be compact subsets of G, and parameters a,b,e > 0 andn > 0 an
integer, such that for every x € X, Ag(x) € |a,a+¢) and for everyy € Y, Ag(y) € [b,b+¢).
Suppose H = ker(Ag) satisfying BM(n). Then

X 1/(n+1) Y 1/(n+1)
ve(X) pa(Y) <1+ (o),
V(XY WD G (XY )

where f(g) is an explicit function depending only on a,b,n and €, and f(¢) — 0 as e — 0.

Moreover, this convergence is uniform when n is fized and a and b vary over compact sets.
Proof. We first consider the case when n > 1. For every compact subset €2 of GG, define two

functions £q,rq : (R, x) — R2° such that

lo(g) = pr(gQN H), and ro(g) = pu(Qg~' N H).

Note that given ¢, go in G, note that (X N Hgy)-(Y NgoH) lies in

Hgy9.H = (9192)(9192)711—‘[(9192)[{ = H(ngz)H(ngﬂ*l(ngﬁ

since H is normal. Now we fix Haar measures pg, urx on H and on (R>? x), and these
two measures will also uniquely determine a left Haar measure pug on G and a right Haar
measure Vg on G via the quotient integral formula.

For every compact sets X1, X5 in H, and g1, g» in GG, by the above equality, X;¢,92Xs C
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g192H. By Fact 5.8.2 and the fact that H satisfies BM(n), we have

M%n((91gz)_1X19192X2) > u%"((glgg) 'X1g192) + MH "(Xy)

= (Aa(91)Ac(g2) ™"y " (X0) + " (Xa).  (7.24)

In light of this, applying the Brunn—Minkowski inequality on (R>?, x), we get

e (2, ((nt () 20() 0+ 2)") ) 2 (L1 (0 + e (2 5)

rzeX,yeY

and similarly for right Haar measure on H, we have

zeX,yeY

e (2 (1m0 (Bae)2(0)702)") ) 2 (L () + e (2, 1)

Let Mx = sup, rx (L, (x)) and My = sup, urx(L;, (y)). By a change of variables and

then by the first inequality above, we have

/uH XY N H) dpgx(g)
R

X

/ nt" g (L (7)) dt

R>0

v

H(a—l—e b—i—e H

My)
/0 nt™ " g ( . ((( Y MX>1/nt+M§/”t>n>) dt
y)

(_VG’ X)+ Miqu(Y)) :

H( (a+e)( b—l—s

1/n

Thus by Holder’s inequality, we get

g " XY) >

1 [k
> <WVG(X)) + pud D (7). (7.25)
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Similarly, for vg(XY) we have

vo(XY) = | pu(XYg™ N H)dugx(9)

X

nt" tupx (L (")) dt

XYy

1/n (MLXVG(X) + Ming(Y)) ,

—

>0

>

VRS

Mx, abMy> ‘

and we obtain

Therefore, combining (7.25) and (7.26), we conclude

Vé/(n-Fl) (X) /,LIG/(TH—I) (Y)
_|_
v "XY)  opd T (XY)
1 1

< +
L+ (Cab) D = 4 ()

14 (Clabt c(atb+ )0t — (Cap)/ D
<1+ (14 (Cab)V/+D) (1 + (Cla+¢e)(b+¢))/+D)

where C' = pg(Y)/va(X).

Hence
1/(n+1 1/(n+1
vd 0 e )
1/(n+1) XY 1/(n+1) XY —
vg (XY) pg (XY
where

_ (r(ab+e(a+0b+ 5)))1/(n+1) _ (mb)l/(nﬂ)
fle) = f}ilg (14 (rab)+D) (1 + (r(a +€)(b+ €)YV +D)

depends only on a,b,n and € and we see lim. o f(¢) = 0 uniformly when a, b taken values

in a compact set by an elementary computation.
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The remaining case is when n = 0. Note that in this case, inequality (7.24) becomes

i ((9192) " X19192X52) > max{(Ac(g1)Ac(g2)) " ua(X1), pu(Xa)}.

This implies for every tq, ts,

reX,yey

. (L;;Y max{ inf (AG@)AG(y))-ltl,tg}) > i (LE, (1)) + s (L7 (1))
For any compact set 2 in GG, define two functions &g, Vg : R — R, that
Dolt) = j (LE, (1), and  Wa(t) = s (L (1),
Thus we have
(L (14 2) 2 mac{ it (A(o)a) s (LG, (1), (L, ()}

Let Nx = sup, pr(Ly () and Ny = sup, pr(Lg_(y)). By a change of variable, for p(XY')

we have

na(XY) = [ (L, () d

1 va(X) pa(Y)
> (v Mmoo
1 va(X) + pa(Y). (7.27)

a0+

Similarly, for every t{,t; we also have

e (L max {11t Ac@)dalu)ta}) > e (17, (0) + e (L2, (),

zeX,yeyY
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which implies

rzeX,yeYy

uR<L$XY<t1+t2>>zmax{uR<L$X<t1>>, inf  Ac(o)Ac(y)ur(Ly, (t2))

Therefore, for vg(XY') we get

Vg<XY) > Vg(X) + aqu(Y)

Together with (7.27), similarly as in the case when n > 1, we get

ve(X) pa(Y) 1 1
+ < + T
VG(XY) /,LG(XY) 1+Cab 1+m
<14 eCla+b+e)

- (1+Cab)(1+C(a+e)b+e))

where C' = pe(Y)/ve(X). The conclusion follows by taking

B er(a+0b+e)
HE) = a1+ rla+ o))

and we can see that f(¢) — 0 as ¢ — 0 uniformly when «a,b taken values in a compact set

by elementary computations.

The next proposition is the main result of the section. As we mentioned in the introduc-
tion, the proof uses a discretized “spillover” method. We remark that one can always make

the proof continuous like what we did in Section 7.4, but we give a discrete proof here since

we believe this reflects our idea in a clearer way.

Proposition 7.26. Suppose G is a locally compact group with H = ker(Ag) satisfying

BM(n). Suppose the map Ag : G — (R”°, x) is a quotient map of topological groups, then

G satisfies BM(n + 1).
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Proof. Since X and Y are compact, there are ay, as,b; and by > 0, such that

a; = inf Ag(z), as =sup Ag(x), by = inf Ag(y), by = sup Ag(y).
zeX zeX yey yeY

We fix g and vg as in the proof of Lemma 7.25, and let € > 0 be a sufficient small number
(depending on aq,as,b; and by). Then by Fact 5.7 and familiar properties of integrable
functions on R, there is an N > 0, such that we can partition [ai,as| and [by, by] into N

subintervals, that is
N N

[a17a2] = UAz', [51,b2] = UBz‘,

i=1 =1

such that each subinterval has length at most ¢, and the intersection of X with J Hg

gEA;
has vg-measure v(X)/N, the intersection of Y with {J,cp gH has ug-measure pg(Y)/N,
for every 1 <7 < N.

Let X; = XN HA; and let Y; =Y N B;H. Then vg(X) = Zfil ve(X;) and pug(Y) =

ZiN:1 ua(Y;). In particular, we have

pe(XY) >3 pa(XY:) and ve(XY) > ve(XpY).

=1

Observe that given 1 <, < N and ¢ # j, X;Y; and X,Y; are disjoint. Indeed, the modulus
of every element in X,Y; lies in A;B; and the modulus of every element in XY lies in A;B;.
But A;B; and A;B; are disjoint subsets of R”" when i # j.

By Lemma 7.25, for every 1 < i < N, there is a function f;(¢), such that f;(¢) — 0 when

¢ — 0 uniformly, and

vd "X ed )
vd ") el

<1+ fi(e).
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Take f(g) = sup; f;(¢), hence f() — 0 as ¢ — 0. Therefore, for every 1 <t < N,

1

1
Vé/(n+1)(X) N ,Ué;/(n—H)(Y) _ NVG(Xt) n+1+ NNG(K&) 1 (7 28)
v "TXY) pdTY(xY) T A\ ve(XY)) SV he(XY)

Also by Holder’s inequality, we observe that for every t,

n+1

N _1 . nd2N\ 3 N n%r?
VG’(XZ') n+2 n+l _1
—_— XY, > Nvit? (Xy). 7.29
(Z () ) (Z el >> 2T,
Averaging (7.28) over all ¢ and using inequality (7.29), we have

+
I/é/(n+1) (XY) Iul/(n+1) (XY)
1

SNZ(VG XY> )1/(n+1>+Ni(%)wm+n <14 e

The desired conclusion follows by taking ¢ — 0. O]

7.6 Reduction to cocompact and codiscrete subgroups

The main results in this section will help us to reduce the problem to cocompact subgroups or
open normal subgroups. We make use of the following integral formula, see [113, Proposition

5.26, Consequence 1].

Fact 7.27. Let G be a connected unimodular Lie group. Suppose S,T are closed subgroups
of G, such that G = ST, and the intersection S N'T is compact. Then there is a left Haar

measure pg on S and a right Haar measure vy on T, such that

/G F@) dpe(x) = [ F(st) dus(s) dur(t),

SxT

for every f € C.(G).
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The next proposition allows us to reduce the problem to closed cocompact subgroups

with the same noncomapct Lie dimension.

Proposition 7.28. Suppose G is connected unimodular Lie group, H is a connected closed
subgroup of G satisfying BM(n), K is a connected unimodular subgroup of G, such that
G = KH and K N H is compact. Then G satisfies BM(n).

Proof. We assume n > 1, otherwise the result is trivial. Note that both G and K are
unimodular. In light of this we will not be using v, vk, etc. and only use ug = vg and
W = Vi below.

We fix a Haar measure px on K, and a Haar measure pg on GG. These measures will also
uniquely determine a left Haar measure gy and a right Haar measure vy on H such that we
have the integral formula in Fact 7.27 and another similar formula involving dug(h) dpg (k).

For a compact subset 2 of G, we define two functions rq, fo : K — R=°, such that
ro(k) =vg(EQNH), {lo(k):=ug(QkNH),

for every k € K. We also define two bivariate functions Rq, Lo : K x K — R=% that for

every ki, ko in K,
Ra(ky, ks) = v (kiQks O H),  Lo(ki, ka) = jus(krQks 0 H).
Thus Fact 7.27 gives us
1 () = /K v (k10 O H) dpage (k) = /K (k1 1 H) dpuse ().

We define two probability measures px and py on K in the following way:

Tx d,LLK de _ EY d[I,K
pe(X)’ pe(Y)

dpx =
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Now, we choose a left coset k1 H of H in G randomly with respect to the probability measure
Px, and choose a right coset Hky of H in G randomly with respect to the probability measure

py. By the fact that H satisfies BM(n), we get
( rx (k1) )Un n ( Uy (ks) )l/n <1
Rxy (k1, ko) Lixy (K1, k2) T
This implies

]EPX (kl)EpY (k2)

k 1/n O (k 1/n
( 7x (k1) > +( y (k2) ) < 1. (7.30)
Rxy (ki, k2) Lixy (k1, k)
On the other hand, by Holder’s inequality, Fact 7.27 and the fact that G is unimodular,
1
rx(k) \"
px (k1) RXY(kla k2)

n+1

- / P (k) R (ks ) dpage (k)
K

> HJG’?X) (/K rx (k1) dpe (ki) - (/K Rxy (ki1 k2) dNK(kl))nL> N

We have a similar inequality concerning Ep, (1, (%) . Combining both inequal-

(=

3=

ities with (7.30), we get

pc(X) )i ( pe(Y) )'IL
+ <1,
(MG(XY) ne(XY)) =
and hence G satisfies BM(n). O

Using the proportionated averaging trick in a similar fashion, the next result allows us

to reduce the problem to certain open subgroups.
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Proposition 7.29. Let G be a locally compact group, and let G’ be an open normal unimod-
ular subgroup of G. Suppose G’ satisfies BM(n) for some integer n > 1. Then G satisfies
BM(n).

Proof. Let ug be a left (and hence right) Haar measure on G'. By Fact 5.8.2, there is a left
Haar measure pg and a right Haar measure v on G, such that for every compact set (2 in

G we have

= > Aclg MuelgANG), pe@) = > Aclgpe(Qe NG,

geG/G’ geEG\G

Now we fix two compact sets X,Y in G. For every g € G/G', let X, = ¢! X NG, and we
similarly define Y3, = Xh~ ' NG’ for every h € G'\G. Since G’ satisfies BM(n), we have that

(X 1/n (Y, 1/n
(M) + (M) < 1. (7.31)
kg (XgYh> [ 2ed (XgYh)
Now we choose g from G /G’ randomly with probability px(g) = W. Therefore
by Holder’s inequality,

n+1

E ()( per (X) ) (her(Xg)Ac(g™)) ™

Px (9 _ 1

o (XYh) ) yeare (e (X, mAG( H)»

- <uc<)<<y)h)) - (%)

Ag(h )HG/ Y4)

hoy) o Again

Similarly, we choose h from G'\G randomly with probability py(h) =

using Holder’s inequality, we conclude that

4 per (Ya)
By (h) j2%e% (XgYh)

3=
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Hence by (7.31),

( ) (MZG(g 32) )l/ln .
st | (i) (evn) | <

and thus G also satisfies BM(n). O

7.7 Proof of Theorems 7.1, 7.2, and 7.5

7.7.1 A dichotomy lemma

In this subsection, we prove a dichotomy result for the kernel of a continuous homomorphism
to (R™?, x).

The following lemma records a fact on open maps between locally compact groups.

Lemma 7.30. Suppose G, H are locally compact groups, ¢ : G — H is a continuous and
surjective group homomorphism, and there is an open subgroup G' of G such that ¢|q is

open. Then ¢ : G — H 1is a quotient map of locally compact groups.

Proof. By the first isomorphism theorem (Fact 5.1.1), it suffices to check that ¢ is open.

Suppose U is an open subset of G. Then U = |J,., U NaG'". For each a € G, we have
d(UNaG') = ¢(a)d|la(a'UNG).

As ¢|¢r is open, ¢(U NaG’) is open for each a € G. Hence, ¢(U) = U, #(U NaG’) is open

in H, which is the desired conclusion. [

In the next lemma we present our main dichotomy result.

Lemma 7.31. If G is a locally compact group, and 7 : G — (R>°, x) is a continuous group

homomorphism. Then exactly one of the following holds:
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1. we have the short exact sequence of locally compact groups

Il kerm — G5 (R x) — 1;

2. kerm 1s an open subgroup of G.

Proof. 1t is easy to see that (1) and (2) are mutually disjoint, so we need to prove that we
are always either in (1) or (2). Consider first the case when G is a Lie group. Let Gy be
the identity component of G. Then Gy is open by Fact 5.12. Hence m(Gy) is a connected
subgroup of (R>? x). As the only connected subsets of (R, x) are points and intervals,
we deduce that m(Gy) can only be {1} or (R”?, x). In the former case, ker 7 is open as a
union of translations of Gy. Now suppose 7(Gg) = (R™Y, x). Since Gy is a connected Lie
group. Using the first isomorphism theorem for Lie group (Fact 5.13.1), we get 7|¢, is open.
Applying Lemma 7.30, we get that 7 is a quotient map as desired.

We now deal with the general situation where G is locally compact. Using the Gleason—
Yamabe Theorem (Fact 5.10.1), we obtain an almost-Lie open subgroup G’ of G. Since
G’ is open, the natural embedding of i : G’ — G induces a continuous homomorphism
7l G — (R”Y, x). Note that there is a compact normal subgroup H of G’ such that
G'/H is a Lie group. Then H < ker(7|g/) since 7|/ (H) is a compact subgroup of (R>?, x).
Let ¢ : G' — G'/H be the quotient map. Hence the homomorphisms induce a continuous
group homomorphism ¢ from G'/H to (R, x).

G —2 Gl
e
G —— (R;O/, X)
Note that the above diagram commutes. By the proven special case for Lie groups, we then

either have the exact sequence
1 — keryp = G'/H — (R”? x) — 1
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or ker v is open in G'/H. In the former case, 7| is open as a composition of open maps. By
Lemma 7.30, we conclude that 7 is a quotient map in this case. In the latter case, ker(m|q)
is open in GG’. Thus, here we have ker 7 is open in G because ker 7 is a union of translations

of ker(ﬂG/). ]

The modular function Ag : G — (R>% x) is a continuous group homomorphism by
Fact 5.6.2, but generally not a quotient map. It is easy to construct examples where
G/(ker Ag) is discrete. The above proposition claims that these are the only two possi-

bilities, which will be used in the later proofs.

7.7.2 Proofs of the main theorems

In this subsection, we prove Theorems 7.1 and 7.2. For the reader’s convenience, Proposi-
tion 7.32 gathers together all the induction steps we can do using the earlier results with the

exception of Proposition 7.28, which will be used in the proof of Theorem 7.1 directly.

Proposition 7.32. Let G be a locally compact group with noncompact Lie dimension n and
heliz dimension h. Let Ag : G — (R”Y, x) be the modular function of G. Then G satisfies

BM(n — h) if one of the following assumptions holds:

1. The locally compact group ker Ag has noncompact Lie dimension n' and heliz dimen-

sion h', and ker A satisfies BM(n' — h').

2. G is unimodular, G' is an open subgroup of G such that G' has noncompact Lie di-

mension n' and heliz dimension h' and satisfies BM(n' — 1').

3. G is unimodular, H is a compact normal subgroup of G, the quotient G/H has non-

compact Lie dimension n' and heliz dimension h' and satisfies BM(n' — h’).

4. There is an exact sequence of connected semisimple Lie groups

l1-H—-G—-G/H—1
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such that H has non compact Lie dimension ny and helix dimension hy, and satisfies
BM(ny —hy), and G/H has noncompact Lie dimension ny and helix dimension hy, and

satisfies BM(ng — hs).

5. There is an exact sequence of connected unimodular Lie groups

l1-H—-G—-G/H—1

such that H has noncompact Lie dimension nq, and helix dimension 0, and satisfies
BM(n,), and G/H has noncompact Lie dimension ny and heliz dimension hy with

ho = h, and satisfies BM(ny — h).

Proof. We first prove (1). Note that by Fact 5.6.1, ker Ag is unimodular. By Lemma 7.31,

we either have the exact sequence of locally compact groups

1= kerAg — G — (R7?, x) =1

or ker Ag is open in G. In the former case, by Proposition 7.19, we have n = n’ + 1 and
h = h'. Hence, in this case G satisfies BM(n — h) by Proposition 7.26. In the latter case, by
Corollary 7.14, n = n/ and h = h'. Here, we have G satisfies BM(n — h) by Proposition 7.29.

Next we prove (2). By Corollary 7.14, we have n = n’ and h = h’. The desired conclusion
then follows from Proposition 7.24.

We now prove (3). By Corollary 7.15, we have n = n’ and h = h’. Also by Corollary 7.15,
the compact group H has noncompact Lie dimension and helix dimension 0. Hence, using
Proposition 7.23, we obtain the conclusion that we want.

We prove (4). By Proposition 7.17.1 and Proposition 7.17.2 respectively, we have n = n;+
ne and h = hy + hy. Recall that semisimple groups are unimodular. Using Proposition 7.23,
we learn that G satisfies BM(n — h).

Finally, we prove (5). By Proposition 7.17.1, we have n = n; + ny. Since the helix
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dimension of H is 0, and the helix dimension of G/H is h, by Proposition 7.23, G satisfies

BM(n — h). m

The following corollary says that when G is a Lie group, we can further reduce the

problem to connected unimodular groups.

Corollary 7.33. Let G be a Lie group with noncompact Lie dimension n and heliz dimension
h. Let Ag : G — (R>?, x) be the modular function of G. Let G' = (ker Ag)o be the identity
component of ker Ag with noncompact Lie dimension n' and heliz dimension h'. Then G’ is

connected and unimodular, and if G' satisfies BM(n' — h'), G satisfies BM(n — h).

Proof. Note that (ker Ag)g is open in ker Ag by Fact 5.12. The desired conclusion is then a

consequence of Proposition 7.32.1 and Proposition 7.32.2. O

Now we are able to prove the main inequality (7.2) for Lie groups. As mentioned earlier,

the main strategy is induction on dimension.

Proof of Theorem 7.1. Consider first the case where G is a solvable Lie group. Using Corol-
lary 7.33, we can also assume that G is connected and unimodular. Recall that d is the
topological dimension of G. The case when d = 0 or 1 is trivial, as every group satisfies
BM(0), and the one dimensional solvable Lie group is either T or R by Fact 5.15.1. If G is
abelian, then it is isomorphic to T™ x R4~™. We get a desired conclusion applying Proposi-

tion 7.32.5 repeatedly. Otherwise, from the solvability of G we get the exact sequence

1 - [G,G]—G—G/[G,G] =1

with both [G,G] and G/[G, G| connected, solvable and having smaller dimensions than G.
Note that G/[G, G] is abelian, and hence unimodular. Applying Proposition 7.32.5, and the
statement for of the theorem for abelian Lie groups, we get desired conclusion for this case.

Consider next the case where G is connected and semisimple. We may further assume that

G is a connected simple Lie group, otherwise by Fact 5.23, we can always find a connected
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group H <1 G such that both H and G/H are connected semisimple Lie groups with lower
dimension; by Proposition 7.32.4, the Brunn—Minkowski inequality on G can be obtained
from the Brunn-Minkowski inequalities on H and G/H. Now we write G = KAN as in
Fact 5.31. We first consider the case when G has a finite center, and then K is compact. Let
n be the noncompact Lie dimension of G. Hence, n is the dimension of the solvable Lie group
@ = AN. Note that A and N are simply connected by Fact 5.31. Hence their noncompact
Lie dimensions are the same as their dimensions by Fact 5.15.2. By Proposition 7.17.1 and
Fact 5.31, the noncompact Lie dimension of @) is n, and hence @ satisfies BM(n) from the
solvable Lie case. We obtain the desired conclusion for G by applying Proposition 7.28.

Suppose the connected simple Lie group G has a center of rank h > 1. Apply Propo-
sition 7.28 again, and we obtain an inequality (7.2) for G with exponent dim(AN). By
Proposition 7.8, we have dim(AN) = n — h. The desired conclusion for the connected
semisimple Lie groups follows similarly from Fact 5.23 and Proposition 7.32.4.

Finally, we show the statement for an arbitrary Lie group G. Using Corollary 7.33 again,
we can assume that G is connected and unimodular. Then by Fact 5.22 we obtain an exact
sequence

1-Q—-G—95—1,

where () is a connected unimodular solvable group and S is a connected semisimple Lie group.

We then apply Proposition 7.32.5 and the earlier two cases to get the desired conclusion. [
Finally, we prove the inequality (7.2) for all locally compact groups.

Proof of Theorem 7.2. By Proposition 7.32.1 we can assume that G is unimodular. By the
Gleason—Yamabe Theorem (Fact 5.10.1), G has an almost-Lie open subgroup. Now using
Proposition 7.32.2, we can further assume that G is a unimodular almost-Lie group. Then
we can choose a compact subgroup K of G such that G/K is a unimodular Lie group. The

desired conclusion then follows from Theorem 7.1 and Proposition 7.32.3. O
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We briefly discuss Theorem 7.5, which is a consequence of the proof of Theorem 7.2.

Proof of Theorem 7.5. Repeating the arguments in the proofs of Proposition 7.32, Corol-
lary 7.33, Theorem 7.1, Theorem 7.2, and Fact 5.23 while ignoring the helix dimension, it
suffices to show the theorem when G is a simple Lie group.

From the hypothesis, we already have the desired conclusion under the further assumption
that our simple Lie group G is also simply connected. We now consider the general case. If
G has finite center, the result is a special case of Theorem 7.1. So suppose the center Z(G)
of G is infinite. Let G be the universal cover of G, Z(é) its center, and p : G — G the

covering map. Then ker p is a subgroup of Z(G) by Fact 5.27. Using Fact 5.29, the center

Z(G) have rank at most 1. By the earlier assumption, the center Z(G) also has rank at
least 1. Hence, by Fact 5.27, both Z(G) and Z(G) must have rank 1, and ker p is finite.
Therefore, the desired conclusion for G' can be reduced to that of G by taking the inverse

image under p, which we already know from the hypothesis. O]
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