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Abstract

In this dissertation we study arithmetic Ramsey type problems and inverse problems, in

various settings. This work consists of two parts.

In Part I, we study arithmetic Ramsey type problems over abelian groups. This part

consists of three chapters. In Chapter 2, using hypergraph containers, we study the rainbow

Erdős–Rothschild problem for sum-free sets. This is joint work with Cheng, Li, Wang, and

Zhou. In Chapters 3 and 4, we study the avoidance density for (k, `)-sum-free sets. The

upper bound constructions are given in Chapter 3, answering a question asked by Bajnok.

We also improved the lower bound for infinitely many (k, `) in both chapters, and a special

case of the sum-free conjecture is verified in Chapter 4. These two chapters are based on

joint work with Wu.

In Part II, we study inverse problems over nonabelian topological groups. Preliminaries

to topological groups are given in Chapter 5. In Chapter 6, we first obtain classifications of

connected groups and sets which satisfy the equality in Kemperman’s inequality, answering

a question asked by Kemperman in 1964. When the ambient group is compact, we also get

a near equality version of the above result with a sharp exponent bound, which confirms

conjectures by Griesmer and by Tao. A measure expansion gap result for simple Lie groups

is also presented. This chapter is based on joint work with Tran. In Chapter 7, we study the

small measure expansion problem in noncompact locally compact groups. The question that

whether there is a Brunn–Minkowski inequality was asked by Henstock and Macbeath in

1953. We obtain such an inequality and prove it is sharp for a large class of groups (including

real linear algebraic groups, Nash groups, semisimple Lie groups with finite center, solvable
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Lie groups, etc), answering questions by Hrushovski and by Tao. This chapter is based on

joint work with Tran and Zhang.

This dissertation is based on the following papers and preprints: [41, 108, 107] (Part I),

and [105, 106] (Part II).
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∗Z the hyperinteger ring
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v(G) |V (G)|
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e(G) |E(G)|
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[G,G], G(1) the derived subgroup of G
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G(k) for k ∈ N, the k-th derived subgroup of G
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G�H the Cartesian product of two graphs G and H
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µ the Möbius function
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∆G the modular function of a locally compact group G

Cc(G) the space of compactly supported continuous functions over G

1A the characteristic function of a set A
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eN(θ) e
2πiθ
N

ex(n,H) the maximum number of edges in an n vertex graph that contains no
subgraph isomorphic to H

expG, exp the exponential map from a Lie algebra g to a Lie group G

f̂ the Fourier coefficient of a function f

f = O(g) f ≤ Cg for some constant C

f � g, g = Ω(f) f = O(g)

f � g, f = Θ(g) f � g and g � f

f = o(g) limn→∞ f(n)/g(n) = 0
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f ∼ g limn→∞ f(n)/g(n) = 1
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Xk for k ∈ N, the k-fold productset of X
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Chapter 1

Introduction

This thesis is a fusion of my research papers and preprints [41, 105, 106, 107, 108]. They

share a common theme considering problems over some algebraic or geometric structures

with certain extremal flavor, including Ramsey-type problems and inverse problems.

In this introduction, I would like to present some background of arithmetic Ramsey

problems and inverse problems briefly, and why it might be interesting to explore these

problems. Afterward, I will go into a more detailed description of the structure of this thesis

and the main results in each chapter.

1.1 Background

The following questions arise naturally in many areas of mathematics: Let S be a certain

structure (for examples, complete graphs, groups, fields), and let P be a property. How big

must some substructure S ′ of S be to guarantee that the property P holds in S ′? What can

be said about the structures of S ′ when the property P holds or nearly holds in it?

The first type of problem refers to Ramsey problem, or arithmetic Ramsey problem

when S has some arithmetic constraints. The second problem asks about the structural

characterizations of the substructures when they have maximal (or nearly maximal) size

and do not have property P ; this type of problems are known as inverse problems.
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1.1.1 Arithmetic Ramsey theorems

Let us begin the story with Ramsey-type theorems. The celebrated Ramsey Theorem [145]

asserts that any finitely colored sufficiently large complete graph will contain a large mono-

chromatic complete subgraph. This result created a new species of mathematical result —

the Ramsey type theorems, and also represented the discovery of a new phenomenon in

mathematics that “complete disorder is impossible”.

One of the first arithmetic Ramsey results was van der Waerden’s Theorem [165]: given

any finite coloring of integers, one of the color classes must contain arbitrarily long arithmetic

progressions. Van der Waerden’s orginal proof is beautiful and elegant, but only offers poor

quantitative bounds for the appearance of the first arithmetic progression of a given length.

Erdős and Turán [63] then made a couple of conjectures to pursue this quantitative question

further.

The first major progress of the conjectures was by Roth [148], who applied the Hardy–

Littlewood circle method together with the density increment argument to establish Roth’s

Theorem:

Theorem 1.1 (Roth’s Theorem). If A ⊆ [N ] contains no nontrivial three term progressions,

then |A| � N
log logN

.

On the other direction, Behrend [11] constructed a subset of [N ] of size Ne−O(
√

logN)

that contains no nontrivial three term arithmetic progressions. Quantitative improvements

of Roth’s theorem were later obtained by a series of important papers by Bourgain [29],

by Sanders [152], by Bloom [20], by Bloom and Sisask [21], and by Schoen [155]. A recent

breakthrough by Bloom and Sisask [22] shows that any subset of [N ] of size N/(logN)1+c

contain a three term arithmetic progression. This confirms the first nontrivial case of the

well-known Erdős sum of reciprocals conjecture.

For longer arithmetic progressions, using purely combinatorial techniques, Szemerédi

established the celebrated Szemerédi’s Theorem [158], which asserts that any dense subset
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of integers contain an arbitrarily long arithmetic progression. This confirms a conjecture by

Erdős and Turán mentioned earlier in the section. One of the new ingredients in Szemerédi’s

proof was later formulated as Szemerédi’s regularity lemma, and has became one of the most

important tools in extremal combinatorics.

Szemerédi’s proof required van der Waerden’s Theorem, so it did not give any improved

quantitative bound on that theorem. Thus, after Szemerédi proved his theorem, math-

ematicians were seeking to understand, reprove, and improve upon Szemerédi’s Theorem

in other ways. Furstenberg insightfully observed that Szemerédi’s Theorem is equivalent

to a multiple recurrence theorem for measure-preserving systems, and then he was able to

prove Szemerédi’s Theorem using ergodic theory [70]. Mathematicians then realized this new

method is very powerful, and could be used to prove some other arithmetic Ramsey-type

results, for instance the density Hales–Jewett Theorem [71], and the polynomial Szemerédi

Theorem [14].

In parallel to these ergodic theory developments, the graph removal lemma, a break-

through in graph theory was obtained Ruzsa and Szemerédi [149] by using the regularity

lemma. They also observed that the triangle removal lemma implies Roth’s Theorem (with

worse quantitative bounds). This motivated the program for finding satisfactory analogue

of the regularity lemma and the counting lemma for hypergraphs, and to prove Szemerédi’s

Theorem using purely graph theoretical techniques. These results were eventually proved

by Gowers [75], and independently by Nagle, Rödl, Schacht and Skokan [141, 146].

The Fourier analytic approach, the method firstly used by Roth for the case of three term

progressions, was finally revisited by Gowers [74]. In the proof, he introduced a new notion of

uniformity, now known as the Gowers uniformity norms, which has many other applications

and has became a standard tool in arithmetic combinatorics. It is worth noting that the

Fourier analytic approach by Gowers obtained remarkably strong quantitative bounds on

Szemerédi’s Theorem:

Theorem 1.2 (Gowers). If A ⊆ [N ] contains no nontrivial k-term progressions, then there

3



is ck > 0 such that |A| ≤ N
(log logN)ck

.

Szemerédi’s Theorem studies the size of the largest subset of integers that avoids long

arithmetic progressions. Although this result is possibly the most famous arithmetic Ramsey-

type theorem, many other Ramsey-type problems considering avoiding patterns other than

arithmetic progressions or inside other ambient structures are also well-studied. In this

thesis, we will mainly focus on Schur triples, and more generally, (k, `)-sums, under different

settings. These results are included in Chapters 2, 3 and 4.

1.1.2 Inverse theorems

In an inverse problem, we usually begin with the sumsets (or product sets) and try to deduce

information about the structure of underlying sets. For instance, suppose the ambient group

is Z, then for any nonempty set A ⊆ Z, one can easily see that |A+A| ≥ 2|A|−1. Freiman’s

Theorem gives us the additive structure of A when we know that |A+ A| is small:

Theorem 1.3 (Freiman’s Theorem, qualitative form). Let A ⊆ Z be nonempty. Suppose

|A + A| ≤ K|A| for some constant K, then A is contained in a generalized arithmetic

progression of dimension at most d(K) and length at most f(K)|A|.

Freiman’s Theorem was later generalized to arbitrary abelian groups by Green and

Ruzsa [80]. In their theorem, a similar conclusion still holds by replacing generalized arith-

metic progression by coset progression. Generalized arithmetic progressions, and more ge-

nerally, coset progressions, can be seen as a subgroup “up to a constant error” (in fact, they

are approximate groups). Thus, intuitively, these results informally tell us, for a subset of

an abelian group, if it has small cardinality expansion (that is |A+A|/|A| is small), then it

should look like a “subgroup” of the ambient abelian group.

The famous sum-product theorem, proved by Erdős and Szemerédi [62], asserts that

a subset of a field cannot have small sumset expansion and small product set expansion

simultaneously. This suggests that finite subsets of a one-dimensional space have expansion
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behavior under binary operations unless the situation is “controlled” by a single abelian

group. This can also be seen from the celebrated Elekes–Rónyai Theorem [58]: A nontrivial

bivarite polynomial P (x, y) exhibits small expansion (that is |P (A,A)|/|A| is small), it must

exploit the underlying additive structure or multiplicative structure of the field (a more

precised structural result was recently obtained by [104]).

For possibly nonabelian groups, Gromov’s theorem on groups of polynomial growth [83]

tells us that if A is finite, and there is a polynomial P such that |An| < P (n) for every

n ∈ N≥1, then 〈A〉 is virtually nilpotent. This result suggests that the small expansion

property in nonabelian groups will also give us some structural information for the ambient

group. This phenomenon can be also seen from a recently breakthrough by Breuillard,

Green, and Tao [36]:

Theorem 1.4 (Breuillard–Green–Tao, simple form). If A ⊆ G is a finite K-approximate

group, then there is a KO(1)-approximate group A′ ⊆ A4, such that:

(i) A is covered by L(K) left cosets of A′;

(ii) 〈A′〉 has a d-nilpotent subgroup of finite index, with d� logK.

Here, A is a K-approximate group means A = A−1, and A2 can be covered by K left

cosets of A. It is clear that being a K-approximate group is a stronger condition than

having small cardinality expansions (for instance, if A is a singleton union a subgroup, while

|A2|/|A| is at most 4, |A3|/|A| can be arbitrarily large), a result by Tao [159] shows that

a small expansion set is essentially an approximate group (by removing some elements).

The Breuillard–Green–Tao Theorem can be seen as a spiritual generalization of Freiman’s

theorem in nonabelian groups, and Gromov’s theorem for approximate groups. Their proof

was built upon earlier work of Hrushovski [102] and employ tools from model theory.

The structures of “small expansion sets” are also well studied for some other notion of

size. In this thesis, we will mainly focus on the case when the ambient group is a locally

compact group G equipped with a Haar measure µ, and our set A ⊆ G is a measurable
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set with finite positive measure. In this context, by small expansion, or small measure

expansion, we mean that µ(A2)/µ(A) is small. We are interested in how A and G behave

when we know that A has small measure expansion in G. For more background about small

measure expansion sets, we refer to Section 6.1.1.

1.2 Overview of the thesis

In this section we give a brief chapter-by-chapter overview of this work.

Integer colorings with forbidden rainbow sums

The Erdős–Rothschild extension for sum-free sets has been recently pursued by Liu, Shar-

ifzadeh and Staden [124] for subsets of the integers, and Hàn and Jiménez [87] for finite

abelian groups. More specifically, they investigated the extremal configurations which max-

imize the number of sum-free r-colorings, where each of the color classes is a sum-free set,

for small r. The characterization of extremal sets for r ≥ 3 remains widely open.

We consider a rainbow variant of the Erdős–Rothschild problem for sum-free sets on

integers. For a set A ⊆ [n], an r-coloring of A is rainbow sum-free if it contains no rain-

bow ordered triple (a, b, c) with a < b < c and a + b = c. For an integer r ≥ 1 and a

set A ⊆ [n], we write g(A, r) for the number of rainbow sum free r-colorings of A and de-

fine g(n, r) := maxA⊆[n] g(A, r). A set A ⊆ [n] is rainbow r-extremal if g(A, r) = g(n, r).

When r ∈ {1, 2}, it is easy to see that the only extremal set is the interval [n]. For

more colors, the problem becomes considerably more complicated. For odd n, we de-

fine I1 =
{
n−1

2
, n−1

2
+ 1, . . . , n− 1, n

}
. For even n, we define I2 =

{
n
2
− 1, n

2
, . . . , n

}
,

I3 =
{
n
2
, n

2
+ 1, . . . , n

}
. We first made the following conjecture.

Conjecture 1.5. Let n, r be positive integers and r ≥ 3.

(i) For r = 3, the interval [n] is the unique rainbow r-extremal set.
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(ii) For odd n and r = 4, the interval [n] is the unique rainbow r-extremal set.

(iii) For odd n and r ≥ 5, the set I1 is the unique rainbow r-extremal set.

(iv) For even n and r ≤ 7, the set I2 is the unique rainbow r-extremal set.

(v) For even n and r ≥ 8, the set I3 is the unique rainbow r-extremal set.

We resolved Conjecture 1.5 for r = 3 and r ≥ 8 when n is sufficiently large. For 4 ≤ r ≤ 7,

we asymptotically determine the logarithm of g(n, r):

Theorem 1.6. For 4 ≤ r ≤ 7 and all positive integers n, we have g(n, r) = rdn/2e+o(n).

Like the Gallai coloring problem, we also provide a sharp bound on the number of rainbow

sum free r-colorings of [n], and this determines its typical structure: we showed that for every

integer r ≥ 3, almost all rainbow sum free r-colorings of [n] are 2-colorings. The proof relies

on the hypergraph container method, and some ad-hoc stability analysis of sum-free sets.

Avoidance density for (k, `)-sum-free sets

In 1965, Erdős [59] asked the following question: Given a set of positive integers of cardinality

N , what is the size of the maximal sum-free subset of it? A set is called sum-free, if for every

three elements x, y, z we have x+ y 6= z. For every pair of distinct positive integers (k, `), a

set A is (k, `)-sum-free if for every k + ` elements x1, . . . , xk, y1, . . . , y` in A, we always have∑k
i=1 xi 6=

∑`
j=1 yj.

In a recent breakthrough, Eberhard, Green, and Manners [57] showed that the size of

the maximal sum-free subset of a set of size N is at most (1/3 + o(1))N . The upper bound

for (k, `)-sum-free sets was asked by Bajnok recently. The case for (1, k)-sum-free sets was

resolved by Eberhard [56]. With Wu [108], we determined the avoidance density for all

(k, `)-sum-free sets. More precisely, let

M(k,`)(N) = inf
A⊆N>0

|A|=N

M(k,`)(A) where M(k,`)(A) = max
S⊆A

S is (k,`)-sum-free

|S|.
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In Chapter 3, we showed that M(k,`)(N) ≤ N
k+`

+ o(N).

A more interesting problem is to consider the lower bound on M(k,`)(N). For the sum-free

case (i.e. (k, `) = (2, 1)), the following conjecture is well-known:

Conjecture 1.7. There is a function ω(N)→∞ as N →∞, such that

M(2,1)(N) >
N

3
+ ω(N).

The current best bound in this direction is obtained by Bourgain [28] using Fourier

analytic argument, where he showed that M(2,1)(N) ≥ (N + 2)/3.

One can also ask an analogue question for (k, `)-sum-free set, that whether there is a

function ω(N) →∞ as N →∞, such that M(k,`)(N) ≥ N/(k + `) + ω(N). The case when

(k, `) = (3, 1) is confirmed by Bourgain [28]. In the same chapter, by generalizing Bourgain’s

argument, we confirm this conjecture for some other infinite families of (k, `):

Theorem 1.8. Let k, ` be two positive integers and k > `. Then the following hold:

(i) suppose k = 5`. Then

M(k,`)(N) ≥ N

k + `
+ c

logN

log logN
, (1.1)

where c > 0 is an absolute constant that only depends on k, `.

(ii) for every set A of N positive integers, for every positive even integer u, there is an odd

integer v < u such that if k = (u+ v)`/(u− v), then

M(k,`)(A) ≥ N

k + `
+ c

logN

log logN
, (1.2)

where c > 0 is an absolute constant that only depends on k, `.

Note that case (ii) in Theorem 1.8 covers the result for (3, 1)-sum-free sets by Bour-

gain [28].
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A closer look to the largest sum-free sets

Recall that 1Ω denote the characteristic function of Ω, and T = R/Z is the one dimensional

torus. Conjecture 1.5 is generally attacked in the literature by considering another stronger

conjecture:

Conjecture 1.9. Let Ω = (1/3, 2/3) ⊆ T. Then when N →∞,

max
x∈T

∑
n∈A

(1Ω − 1/3)(nx)→∞.

This conjecture, if true, would also imply that a similar phenomenon occurs for (2k, 4k)-

sum-free sets for every k ≥ 1. In Chapter 4, we prove the latter result directly:

Theorem 1.10. For every k ≥ 1, there is a function ω(N) = logN/ log logN , such that for

every set A of N positive integers, there exists a maximal (2k, 4k)-sum-free set Ω(2k, 4k) ⊆ T,

and we have

max
x∈T

∑
n∈A

(
1Ω(2k,4k) −

1

6k

)
(nx)� ω(N).

In particular, there is an absolute constant c > 0, such that

M(2k,4k)(N) ≥ N

6k
+ c ω(N).

The new ingredient of our proof is a structural analysis on the host set A. It is inspired

by the upper bound construction given in Chapter 3, the Følner sequence {Fn}, that is for

every integer a one have

|Fn4 (a·Fn)|
|Fn|

→ 0.

We then split the proof into two cases, when |A4 (a·A)| is large (multiplicative case) and

when |A4 (a·A)| is small (additive case), and use different techniques for these two cases.
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Minimal and nearly minimal measure expansions in connected

unimodular groups

Let G be a group equipped with a reasonable notion of size s (e.g. cardinality, Haar measure,

density, etc). For A ⊆ G and n ∈ N>0, set An = {a1 · . . . · an | ai ∈ A}. We are interested in

the following questions in different settings:

• For a subset A of G with finite s(A) and n ∈ N≥2, what is the strict lower bound for

s(An)/s(A) (possibly under further assumptions of A)?

• What can be said about G and A, when s(An)/s(A) has small values?

For either a fixed group or a class of groups, the extremal expansion problems ask for the

the minimum expansion rate s(A2)/s(A) (possibly under extra assumptions on A) together

with structural results for sets A where the minimum expansion rate is achieved or nearly

achieved.

In Chapter 6, we considered the setting when G is connected and unimodular (locally

compact with left Haar measures also right Haar measure), size is given by a Haar measure

µG, and A ranges over compact subsets of G with 0 < µG(A) < µG(A2) < µG(G). Here, an

inequality by Kemperman [112] in 1964 gives us a natural lower bound:

µG(A2)/µG(A) ≥ 2.

The question of classifying A such that the equality happened was proposed by Kemperman

in the same paper. Before our work, only the special cases for abelian G were known,

proven by Kneser in [115]. Griesmer considered a related question for disconnected abelian

locally compact group in [81] and conjectured that the Kneser’s answer also hold when G is

nonabelian. In [162], Tao considered the problem of classifying A such that equality almost

happens assuming further that G is compact and abelian, and conjectured that similar

conclusions holds removing the abelian assumption. All these issues were resolved in this
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chapter. Our answer is that for the equality to happen (or almost happens), there must be a

continuous group homomorphism χ : G→ T such that A is (or is almost) an inverse image

of an interval in T.

Proving these results requires a new method which allow understanding the structure of

G and A when A has small expansion. In more details, we first reduce the problem into

Lie groups by appropriately using the Gleason–Yamabe Theorem [73, 169], and the rest of

the proof goes by induction on dimension. In the second step, we choose a proper closed

subgroup H such that the intersection of A with all its cosets are small, otherwise A contains

a coset of every maximal torus, and sets with this “Kakeya-type” property cannot have very

small measure expansion. In the third step, we deduce from the small expansion assumption

the relative shape of A with respect to H, and show that this remains unchanged under

translations by elements in a small neighborhood of identity. Finally, applying induction

hypothesis on cosets of H and the preceding step we show that the map g 7→ µ(A \ gA) is a

pseudometric with a specific property yielding a group homomorphism into either T or R.

With this homomorphism and ideas from the third step applying to the kernel, we get the

desired structure of A. A more detailed overview is given in Section 6.2.

A nonabelian Brunn–Minkowski inequality

The Brunn–Minkowski inequality [38, 136] provides us with a good lower bound for the

measure of the sumset X + Y of two nonempty compact subsets X and Y of Rd.

Theorem 1.11 (The Brunn–Minkowski inequality). Suppose X, Y are nonempty compact

subsets of Rd, and let λ be the Lebesgue measure on Rd. Then

λ(X + Y )
1
d ≥ λ(X)

1
d + λ(Y )

1
d .

In Chapter 7, we consider the problem of generalizing the Brunn–Minkowski inequality

to all locally compact groups, a question suggested by Henstock and Macbeath in 1953 [90]
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and also later asked in different variations by many others, including Hrushovski [101],

McCrudden [132], and Tao [160].

We first propose the following conjecture: For a possibly nonunimodular locally compact

group G with a left Haar measure µ and right Haar measure ν, and nonempty compact

X, Y ⊆ G, we expect

ν(X)1/n

ν(XY )1/n
+

µ(Y )1/n

µ(XY )1/n
≤ 1

where n is the noncompact Lie dimension of G. For a Lie group G with dimension d

and maximal dimension m of a compact subgroup, its noncompact Lie dimension is simply

defined as d − m. The noncompact Lie dimension is defined for general locally compact

groups through the Gleason–Yamabe Theorem [73, 169].

The above form of the Brunn–Minkowski inequality is new, and plays an important role

in our proof. Our main results include:

• A proof that the conjectural inequalities are sharp if it holds for a given G.

• A Brunn–Minkowski type inequality for all locally compact groups, and a proof of the

sharpness of the exponent for a large class of groups (including all real linear algebraic

groups and, more generally, Lie groups definable in an o-minimal expansion of the field

of real numbers).

• A reduction of the conjecture to the case of simply connected simple Lie groups.

We next highlight some ideas from our proof. To show sharpness, we can choose the

example of a small neighborhood of a maximal compact subgroup. To get the inequality

for a simple Lie group, we use the Iwasawa decomposition G = KAN , and obtain a lower

bound for the measure expansion on G from that of AN using a “proportionated average”

trick. The group AN is not necessarily unimodular, so it is crucial to treat the much more

involved nonunimodular case as well. Finally, the reduction to simple Lie groups uses a

generalization of McCrudden’s “exponent splitting” ideas, and a new observation that the
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expansion exponents match with the dimensions under these reductions. A detailed overview

of the proof is in Section 7.1.3.
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Part I

The Abelian Groups
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Chapter 2

Integer colorings with forbidden
rainbow sums

For a set of positive integers A ⊆ [n], an r-coloring of A is rainbow sum-free if it contains no

rainbow Schur triple. In this chapter we initiate the study of the rainbow Erdős–Rothschild

problem in the context of sum-free sets, which asks for the subsets of [n] with the maximum

number of rainbow sum-free r-colorings. We show that for r = 3, the interval [n] is optimal,

while for r ≥ 8, the set [bn/2c, n] is optimal. We also prove a stability theorem for r ≥ 4.

The proofs rely on the hypergraph container method, and some ad-hoc stability analysis.

This chapter is based on joint work with Cheng, Li, Wang, and Zhou [41].

2.1 Introduction

An interesting direction of combinatorics in recent years is the study of multicolored version

of classical extremal results, whose origin can be traced back to a question of Erdős and

Rothschild [60] in 1974. They asked which n-vertex graph admits the maximum number of 2-

edge-colorings without monochromatic triangles, and conjectured that the complete balanced

bipartite graph is the optimal graph. About twenty years later, Yuster [170] confirmed this

conjecture for sufficiently large n.

2.1.1 Erdős–Rothschild problems in various settings

There are many natural generalizations of the Erdős–Rothschild problem. The most obvious

one may be to ask it for graphs other than the triangles, and one may also increase the

number of colors used. A graph G on n vertices is called (r, F )-extremal if it admits the
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maximum number of r-edge-colorings without any monochromatic copies of F among all

n-vertex graphs. Alon, Balogh, Keevash and Sudakov [1] greatly extended Yuster’s result

and showed that the Turán graph Tk(n) is the unique (r,Kk+1)-extremal graph for k ≥ 2 and

r ∈ {2, 3}. Interestingly, they also showed that Turán graphs Tk(n) are no longer optimal

for r ≥ 4. Indeed, Pikhurko, and Yilma [142] later proved that T4(n) is the unique (4, K3)-

extremal graph, while T9(n) is the unique (4, K4)-extremal graph. Determining the extremal

configurations in general for k ≥ 2 and r ≥ 4 turned out to be a difficult problem. For further

results along this line of research (when F is a non-complete graph or a hypergraph), we

refer to [92, 94, 95, 119, 120, 121].

Another variant of this problem is to study edge-colorings of a graph avoiding a copy

of F with a prescribed color pattern. For an r-colored graph F̂ , a graph G on n vertices

is called (r, F̂ )-extremal if it admits the maximum number of r-colorings which contain

no subgraph whose color pattern is isomorphic to F̂ . This line of work was initiated by

Balogh [6], who showed that the Turán graph Tk(n) once again yields the maximum number

of 2-colorings avoiding Hk+1, where Hk+1 is any 2-coloring of Kk+1 that uses both colors.

For r ≥ 3, the behavior of (r,Hk+1)-extremal graphs was studied by Benevides, Hoppen,

Sampaio, Lefmann, and Odermann, see [12, 96, 98, 99]. In particular, the case when F̂ = K̂3

is a triangle with rainbow pattern has recently received a lot of attention (for its relation to

Gallai colorings). Hoppen, Lefmann and Odermann [98] first proved that the Turán graph

T2(n) is the unique (r, K̂3)-extremal graph for r ≥ 5. Very recently, Balogh and Li [7],

confirming conjectures of [12] and [98], showed that the complete graph Kn is the unique

(3, K̂3)-extremal graph, while the Turán graph T2(n) becomes optimal as r ≥ 4.

The Erdős–Rothschild problem can also be extended to other discrete structures. In the

domain of extremal set theory, Hoppen, Kohayakawa and Lefmann [93] solved the Erdős–

Rothschild extension of the famous Erdős–Ko–Rado Theorem. They, for instance, showed

that the optimal `-intersecting families (each set is of size k) yields the maximum number of

r-colorings in which every color class is `-intersecting for r ∈ {2, 3}, and also provided a fairly
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complete characterization of the corresponding extremal family for r ≥ 4. Hoppen, Lefmann

and Odermann [97], and Clemens, Das and Tran [44] later studied the Erdős–Rothschild

extension of the Erdős–Ko–Rado Theorem for vector spaces. Moving the problem to the

context of power set lattice, recently, Das, Glebov, Sudakov and Tran [48] investigated

the the Erdős–Rothschild extension of the Sperner’s Theorem, and proved that the largest

antichain yields the maximum number of r-colorings, in which each color class is an antichain,

for r ∈ {2, 3}. As for many of the previous results, they demonstrated that as r grows, the

largest antichain is no longer optimal. They also determined that the extremal configurations

for 2-colorings without monochromatic k-chains are the largest k-chain-free family. The

extremal configurations for r ≥ 3 and k ≥ 2 are widely unknown.

2.1.2 Erdős–Rothschild problems for sum-free sets

Given integers n ≥ m ≥ 1, write [m,n] := {m, . . . , n} and [n] := {1, ..., n}.

Definition 2.1 (Schur triple & Sum-free set). A Schur triple or a sum in an abelian group

G (or in [n]) is a triple {a, b, c} with a + b = c. A set A ⊆ G (or A ⊆ [n]) is sum-free if A

contains no such triple.

Given a set A of numbers, an r-coloring of A is a mapping f : A → [r], which assigns

one color to each element of A. An r-coloring of A is called a sum-free r-coloring if each of

the color classes is a sum-free set. Sum-free colorings are among the classical objects studied

in extremal combinatorics and can be traced back to Schur’s theorem, one of the seminal

results in Ramsey theory.

The Erdős–Rothschild extension for sum-free sets has been pursued by Liu, Sharifzadeh

and Staden [124] for subsets of the integers, and Hàn and Jiménez [87] for finite abelian

groups. More specifically, they investigated the extremal configurations which maximize the

number of sum-free r-colorings. In the setting of integers, it is well known that the largest

sum-free set in [n] has size dn/2e. Liu, Sharifzadeh and Staden [124] determined the extremal
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configurations for r = 2.

Theorem 2.2 ([124]). There exists n0 > 0 such that for all integers n ≥ n0 , the number of

sum-free 2-colorings of a subset A ⊆ [n] is at most 2dn/2e. Moreover, the extremal subsets are

{1, 3, 5, · · · , 2dn/2e−1}, and [bn/2c+1, n]; and if n is even, we additionally have [n/2, n−1],

and [n/2, n].

Unlike the graph case, in the sum-free setting, there are extremal configurations which

are not sum-free even for 2 colors. Therefore, one would expect a more sophisticated ex-

tremal behavior as r grows. Although some asymptotic bounds were obtained in [124], the

characterization of extremal sets for r ≥ 3 remains widely open.

Such problem was also studied for finite abelian groups. Let G denote a finite abelian

group. Over fifty years ago, Diananda and Yap [55] determined the maximum density µ(G)

of a sum-free set in G whenever |G| has a prime factor q 6≡ 1 mod 3, but it was not until

2005 that Green and Ruzsa [78] completely solved this extremal question for all finite abelian

group. Hàn and Jiménez [87] investigated the Erdős–Rothschild extension for sum-free sets

on some special abelian groups.

Theorem 2.3 ([87]). Let r ∈ {2, 3}, q ∈ N and let G be a abelian group of sufficiently large

order, which has a prime divisor q such that q ≡ 2 mod 3. Then the number of sum-free

r-coloring of a set A ⊆ G is at most rµ(G). Moreover, the maximum is only achieved by the

largest sum-free set.

For more than three colors this phenomenon does not persist in general and the problem

becomes considerably more complicated. For more details, we refer the readers to [87]. For

other abelian groups, despite some asymptotic bounds presented in [87], the exact extremal

phenomena is unknown even for 2 colors.
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2.1.3 Our results

In this chapter, we consider a rainbow variant of the Erdős–Rothschild problem for sum-

free sets in [n]. A Schur triple or a sum {x, y, z} is a rainbow sum if x, y, z are colored

with different colors. Note that a rainbow sum must have three distinct elements. For

convenience, sometimes we would use the following definitions, which are slightly different

with the classical notations on sum-free sets.

Definition 2.4 (Restricted Schur triple & Restricted sum-free set). A restricted Schur triple

or a restricted sum in [n] is an ordered triple (a, b, c) with a < b < c and a + b = c. A set

A ⊆ [n] is restricted sum-free if A contains no such triple.

For any integer n ≥ 7, it is not hard to show that the largest restricted sum-free sets in

[n] have size bn/2c + 1. If n is even, then the only subset attaining this bound is
[
n
2
, n
]
; if

n is odd, then the maximum restricted sum-free sets are attained by the following four sets:{
n−1

2
, n−1

2
+ 1, . . . , n− 1

}
,
{
n−1

2
, n−1

2
+ 2, . . . , n

}
,
[
n+1

2
, n
]
, and {1, 3, 5, . . . , n}.

Given a set of positive integers A ⊆ [n], an r-coloring of A is rainbow sum-free if it

contains no rainbow sum. For a positive integer r and a set A ⊆ [n], we write g(A, r) for

the number of rainbow sum-free r-colorings of A and define

g(n, r) := max
A⊆[n]

g(A, r).

A set A ⊆ [n] is rainbow r-extremal if g(A, r) = g(n, r). When r ∈ {1, 2}, it is trivial to

see that g(n, r) = rn for all positive integers n, and the only extremal set is the interval [n],

since for every subset A ⊆ [n], all r-colorings of A are rainbow sum-free. For r ≥ 3, the

characterization of the extremal sets requires substantially more work.

Our first main result is an upper bound on the number of rainbow sum-free r-colorings

of dense sets.

Theorem 2.5. For every integer r ≥ 3, there exists n0 such that for all n > n0 the following
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holds. For a set A ⊆ [n] with |A| ≥ (1− r−3)n, the number of rainbow sum-free r-colorings

g(A, r) satisfies

g(A, r) ≤
(
r

2

)
· 2|A| + 2−

n
26 logn2n.

By choosing two of the r colors and coloring the elements of [n] arbitrarily with these

two colors, one can easily obtain that

g([n], r) ≥
(
r

2

)
(2n − 2) + r =

(
r

2

)
2n − (r2 − 2r). (2.1)

Therefore, Theorem 2.5 is asymptotically sharp for A = [n] and then the typical structure

of rainbow sum-free r-colorings of [n] immediately follows from (2.1).

Corollary 2.6. For every integer r ≥ 3, almost all rainbow sum-free r-colorings of [n] are

2-colorings.

Now we turn to the extremal configurations of rainbow sum-free r-colorings. Let us first

consider the case r = 3. Similarly as in the Gallai coloring problem, two natural candidates

of the extremal sets are the maximum restricted sum-free sets and the interval [n]. Note

that for every restrict sum-free set A, we have g(A, 3) ≤ 3bn/2c+1 � g([n], 3). Our second

theorem shows that for three colors the interval [n] is indeed optimal.

Theorem 2.7. There exists n0 such that for all n > n0, among all subsets of [n], the interval

[n] is the unique rainbow 3-extremal set.

Just as for the Erdős-Rothschild extension for Gallai colorings [7], we may not expect

that the same phenomena persists for r ≥ 4. Define O := {1, 3, 5, · · · , 2dn/2e − 1}, and

I0 := [bn/2c+ 1, n]. We prove the following stability theorem.

Theorem 2.8. For every positive integer r ≥ 4, we have

g(n, r) = rn/2+o(n).
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Moreover, for every ε > 0, there exist δ, n0 > 0 such that for all integers n ≥ n0 the following

holds. Let A be a subset of [n] with g(A, r) ≥ rn/2−δn. Then

(i) for r ≥ 5, we have that either |A4O| ≤ εn, or |A4 I0| ≤ εn;

(ii) for r = 4, we have that either |A4 [n]| ≤ εn, or |A4O| ≤ εn, or |A4 I0| ≤ εn.

The behavior of the exact extremal configurations not only depends on the number of

colors, but also depend on the parity of n. For even n, we define

I1 =
[n

2
− 1, n

]
, I2 =

[n
2
, n
]
.

Observe that I1 contains exactly two restricted Schur triples (n/2 − 1, n/2, n − 1), (n/2 −

1, n/2 + 1, n), and it is not hard to compute that g(I1, r) = rn/2 (3− 2/r)2. On the other

hand, the set I2 is a restricted sum-free set and therefore g(I2, r) = r|I1| = rn/2+1. For odd

n, we define

I3 =

[
n− 1

2
, n

]
.

Again, the set I3 contains exactly one restricted Schur triple (n−1
2
, n−1

2
+ 1, n), and one can

show that g(I3, r) = rdn/2e (3− 2/r), which is already greater than the number of colorings

for any restricted sum-free set. When a set A is of size at least the size of the maximum

restricted sum-free sets and not one of the above three sets, we believe that the restrictions

from the triples would more than counteract the extra possibilities offered by the additional

vertices. Therefore, we make the following conjecture.

Conjecture 2.9. Let n, r be positive integers and r ≥ 4.

(i) If n is even and r ≤ 7, then g(n, r) = rn/2 (3− 2/r)2, and I1 is the unique rainbow

r-extremal set.

(ii) If n is even and r ≥ 8, then g(n, r) = rn/2+1, and I2 is the unique rainbow r-extremal

set.

21



(iii) If n is odd and r = 4, then g(n, r) = g([n], r), and [n] is the unique rainbow r-extremal

set.

(iv) If n is odd and r ≥ 5, then g(n, r) = rdn/2e (3− 2/r), and I3 is the unique rainbow

r-extremal set.

Our forth main result verifies Conjecture 2.9 for r ≥ 8 and n sufficiently large.

Theorem 2.10. For an integer r ≥ 8, there exists n0 = n0(r) such that for all n > n0 the

following holds. Let A be a subset of [n] with |A| ≥ dn/2e+ 1.

(i) If n is even, then g(A, r) ≤ rdn/2e+1, and the equality holds if and only if A = I2.

(ii) If n is odd, then g(A, r) ≤ rdn/2e (3− 2/r), and the equality holds if and only if A = I3.

The chapter is organized as follows. In the next section, we list some structural results

on sum-free sets, which are essential for the proof, and introduce the multi-color container

theorem. In Section 2.3, we prove Theorem 2.5. In Section 2.4, we prove the stability

theorem, Theorem 2.8, and determine g(n, 3) for n sufficiently large. In Section 2.5, we

determine g(n, r) for r ≥ 8, and describe the corresponding extremal configurations. We

close the chapter with some concluding remarks in Section 2.6. All logaritheorems have base

2.

2.2 Notation and preliminaries

2.2.1 Basic properties of restricted sum-free sets

We use the following result of Staden [157] on the minimum number of additive triples among

all sets of a given size.
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Theorem 2.11 ([157]). Let A be a subset of [n] with |A| > dn/2e. Then the number of

Schur triples in A is at least

(|A| − dn/2e)(|A| − bn/2c),

where the unique minimising set is [n− |A|+ 1, n].

For a set A ⊆ [n], we write S(A) for the set of all restricted Schur triples in A, and

let s(A) = |S(A)|. For an integer t ∈ A, denote by S(t, A) the set of all triples in S(A)

containing t, and let s(t, A) = |S(t, A)|. Then from Theorem 2.11, we immediately obtain

the following proposition.

Proposition 2.12. Let A be a subset of [n] with |A| > dn/2e. Then

s(A) ≥ (|A| − dn/2e)(|A| − bn/2c)− |A|/2.

In particular, we have

s([n]) =


n2−2n

4
if n is even;

n2−2n+1
4

otherwise.

2.2.2 Structural properties of sum-free sets

We will use standard definitions and notation in additive combinatorics as given in [163].

Given A,B ⊆ Z, let

A+B := {a+ b | a ∈ A, b ∈ B}, and A−B := {a− b | a ∈ A, b ∈ B}.

When B = {x}, we simply write A+ x and A− x.

The following lemma is known as Green’s removal lemma, which was first proved by

Green [76], and was later generalized to nonabelian groups by Král and Vena [117].
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Lemma 2.13 ([117, 76]). For all ε > 0, there exists δ, n0 > 0 such that the following holds

for all integers n ≥ n0. Suppose that A ⊆ [n] is a set containing at most δn2 Schur triples.

Then there exist B,C ⊆ [n] such that A = B ∪ C where B is sum-free and |C| ≤ εn.

We also require a very strong stability theorem for sum-free sets proved by Deshouillers,

Freiman, and Odermann [52].

Lemma 2.14 ([52]). Every sum-free set S in [n] satisfies at least one of the following

conditions:

(i) |S| ≤ 2n/5;

(ii) S consists of odd numbers;

(iii) |S| ≤ min(S).

2.2.3 Multi-color container theorem

An important tool in our proof is the hypergraph container theorem. We use the following

version from [8]. Let H be a k-uniform hypergraph with average degree d. The co-degree of

a set of vertices X ⊆ V (H) is the number of edges containing X; that is,

d(X) = {e ∈ E(H) | X ⊆ e}.

For every integer 2 ≤ j ≤ k, the j-th maximum co-degree of H is

∆j(H) = max{d(X) | X ⊆ V (H), |X| = j}.

When the underlying hypergraph is clear, we simply write it as ∆j. For 0 < τ < 1, the

co-degree function ∆(H, τ) is defined as

∆(H, τ) = 2(k2)−1
k∑
j=2

2−(j−1
2 ) ∆j

dτ j−1
.
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In particular, when k = 3,

∆(H, τ) =
4∆2

dτ
+

2∆3

dτ 2
.

Theorem 2.15 ([8]). Let H be a k-uniform hypergraph on vertex set [N ]. Let 0 < ε, τ < 1/2.

Suppose that τ < 1/(200k!2k) and ∆(H, τ) ≤ ε/(12k!). Then there exists c = c(k) ≤

1000k!3k and a collection of vertex subsets C such that

(i) every independent set in H is a subset of some of A ∈ C;

(ii) for every A ∈ C, e(H[A]) ≤ ε · e(H);

(iii) log |C| ≤ cNτ log(1/ε) log(1/τ).

A key concept in applying container theory to such coloring problems is the notion of tem-

plate, which was first introduced in [64], although the concept had already appeared in [153]

under the name of ‘2-colored multigraphs’ and later in [9], simply referred as ‘containers’.

Definition 2.16 (Template and palette). An r-template of order n is a function P : [n]→

2[r], associating to each element x ∈ [n] a list of colors P (x) ⊆ [r]. We refer to this set P (x)

as the palette available at x.

For a set A ⊆ [n], any r-coloring of A can be considered as an r-template of order n, with

only one color allowed at each element in A, and no color allowed for elements not belonging

to A.

Definition 2.17 (Subtemplate). Let P1, P2 be two r-templates of order n. We say that P1

is a subtemplate of P2 (written as P1 ⊆ P2) if P1(x) ⊆ P2(x) for each element x ∈ [n].

For an r-template P of order n, write RS(P ) for the number of subtemplate of P that

are rainbow restricted sums. We say that P is a rainbow restricted sum-free r-template if

RS(P ) = 0. Using Theorem 2.15, we obtain the following.

Theorem 2.18. For every integer r ≥ 3, there exists a constant c = c(r) and a collection C

of r-templates of order n such that
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(i) every rainbow restricted sum-free r-template of order n is a subtemplate of some P ∈ C;

(ii) for every P ∈ C, RS(P ) ≤ n−1/3s([n]);

(iii) |C| ≤ 2cn
2/3 log2 n.

Proof. Let H be a 3-uniform hypergraph with vertex set [n]× {1, 2, ..., r}, whose edges are

all triples {(x1, c1), (x2, c2), (x3, c3)} such that (x1, x2, x3) forms a restricted Schur triple in

[n] and c1, c2, c3 are all different. In other words, every hyperedge in H corresponds to a

rainbow restricted Schur triple. Note that there are exactly r(r− 1)(r− 2) ways to rainbow

color a restricted Schur triple with r colors. Hence, the average degree d of H is equal to

d =
3e(H)

v(H)
=

3r(r − 1)(r − 2)s([n])

nr
≥ 3(r − 1)(r − 2)n

8
.

Now we apply Theorem 2.15 on H. Let ε = n−1/3/r(r − 1)(r − 2) and τ =
√

96 · 3! · rn− 1
3 .

Observe that ∆2(H) = 2(r − 2),∆3(H) = 1. For n sufficiently large, we can get τ <

1/(200 · 3!2 · 3) and

∆(H, τ) =
4∆2

dτ
+

2∆3

dτ 2
=

8(r − 2)

dτ
+

2

dτ 2
≤ 3

dτ 2
≤ ε

12 · 3!
.

Hence, there is a collection of vertex subsets C satisfying properties (i)-(iii) of Theorem 2.15.

Observe that every vertex set of H corresponds to an r-template of order n; every rainbow

restricted sum-free r-template of order n corresponds to an independent set in H. Therefore,

C is a desired collection of r-templates.

Definition 2.19 (Good r-template). For A ⊆ [n], an r-template P of order n is a good

r-template of A if it satisfies the following properties:

(i) For each element i ∈ A, |P (i)| ≥ 1;

(ii) RS(P ) ≤ n−1/3s([n]).
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For a set A ⊆ [n] and a collection of templates P , denote by G(P , A) the set of rainbow

sum-free r-colorings of A, which is a subtemplate of some P ∈ P . Let g(P , A) = |G(P , A)|.

If P consists of a single r-template P , then we simply write G(P,A) and g(P,A).

2.3 Proof of Theorem 2.5

Throughout this section, we fix an integer r ≥ 3, a sufficiently large integer n and an

arbitrary set A ⊆ [n] with |A| = (1− ξ)n, where

0 ≤ ξ ≤ r−3.

Let C be the collection of containers given by Theorem 2.18, and δ = 1/(24 log n). We divide

C into two classes

C1 = {P ∈ C : g(P,A) ≤ 2(1−δ)n}, C2 = {P ∈ C : g(P,A) > 2(1−δ)n}. (2.2)

Note that every P ∈ C2 is a good r-template of A. The crucial part of the proof is to estimate

g(C2, A), which replies on the following four lemmas.

Lemma 2.20. Let F be the collection of ordered pairs (a, b) ∈ A2 with a < b such that

{a, b} * S for all S ∈ S(A). Then we have |F | ≤ ξn2 + n/6.

Proof. Let

F1 = {(a, b) ∈ A2 | a+ b ∈ [n]\A, b = 2a},

F2 = {(a, b) ∈ A2 | a+ b > n, b = 2a},

F3 = {(a, b) ∈ A2 | a+ b ∈ [n]\A, b− a ∈ [n]\A},

F4 = {(a, b) ∈ A2 | a+ b > n, b− a ∈ [n]\A}.
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Clearly, |F | =
∑4

i=1 |Fi| and |F1| ≤ |[n]\A| = ξn. Since every (a, b) ∈ F2 satisfies b = 2a ≤ n

and a + b = 3a > n, we have |F2| ≤ n/6. Moreover, we obtain that |F3| ≤
(
ξn
2

)
≤ ξ2n2/2,

as a + b ∈ [n]\A and b − a ∈ [n]\A. Similarly, we have |F4| ≤ ξn2/2, as b > n/2 and

b− a ∈ [n]\A. Finally, we conclude that |F | ≤ ξn+ n/6 + ξ2n2/2 + ξn2/2 ≤ ξn2 + n/6.

For a template P of A, let

X1 = {x ∈ A | |P (x)| = 1}, X2 = {x ∈ A | |P (x)| = 2}, X3 = {x ∈ A | |P (x)| ≥ 3},

and xi = |Xi| for i ∈ [3].

Lemma 2.21. Suppose that P is a template of A in C2. Then we have

max

{
(ξ − δ)n+ x1

log r − 1
, 0

}
< x3 ≤ 2n−1/3n.

In particular, if ξ ≥ 2(log r − 1)n−1/3 + δ, then C2 is empty.

Proof. By the definitions of G(P,A) and C2, we have

2x2rx3 ≥ g(P,A) > 2(1−δ)n. (2.3)

Since x2 = |A| − x1 − x3 and |A| = (1− ξ)n, we obtain that

x3 >
(ξ − δ)n+ x1

log r − 1
. (2.4)

We first claim that x2 ≥ (1−ξ)n/3. Otherwise, we immediately have x1+x3 > 2(1−ξ)n/3.

Together with (2.4), we obtain that x3 >
(2+ξ−3δ)n

3 log r
> n

2 log r
. By Lemma 2.20 and 0 ≤ ξ ≤ r−3,

there are at least (
x3

2

)
− (ξn2 + n/6) ≥ n2

16 log2 r

pairs in X3, which are contained in some restricted Schur triples in A. This contradicts the
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definition of good r-templates, as RS(P ) ≥ n2/(3 · 16 log2 r) > n−1/3s([n]).

For each a ∈ X3, let Ba := {b ∈ X2 | {a, b} ⊆ S, for some S ∈ S(A)}. Note that

every b ∈ X2 \ Ba satisfies either |b − a| ∈ [n] \ A or |b − a| = min{a, b}. Then we have

|Ba| ≥ (1− ξ)n/3− 2ξn− 1 > n/4. Since P is a good r-template of A, we obtain that

n−1/3s([n]) ≥ RS(P ) ≥ 1

2

∑
a∈X3

|Ba| ≥
x3 · n

8
,

which indicates x3 ≤ 2n−1/3n.

Next, we will prove a stability result on good templates with many rainbow sum-free

colorings.

Lemma 2.22. Let 0 ≤ ξ < 2(log r − 1)n−1/3 + δ. Then for every P ∈ C2, there exist

two colors {i, j} ∈ [r] such that the number of elements in A with palette {i, j} is at least

(1− 2δ)n.

Proof. By Lemma 2.21 and (2.3), we have

x2 ≥ (1− δ − 3 log r · n−1/3)n.

For 1 ≤ i < j ≤ r, define Yi,j := {x ∈ X2 | P (x) = {i, j}}. Without loss of generality, we can

assume that |Y1,2| ≥ x2/
(
r
2

)
. Let Y ′ = X2\Y1,2. For each a ∈ Y ′, let Ba = {b ∈ Y1,2 | {a, b} ⊆

S, for some S ∈ S(A)}. Similarly as in Lemma 2.21, we obtain that |Ba| ≥ x2/
(
r
2

)
−2ξn−1,

and then

n−1/3s([n]) ≥ RS(P ) ≥ 1

2

∑
x∈Y ′
|Ba| ≥

|Y ′| · n
2r(r − 1)

.

Since δ � n−1/3, we have |Y1,2| = x2 − |Y ′| ≥ (1− 2δ)n, which completes the proof.

Lemma 2.23. For two colors i, j ∈ [r], denote by P = P(i, j) the set of good r-template of
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A, in which there are at least (1− 2δ)n elements in A with palette {i, j}. Then

g(P , A) ≤ 2|A|(1 + 2−n/12).

Proof. For an r-coloring g ∈ G(P , A), let S(g) the set of elements in A, which are not colored

by i or j. By the definition of P , we have |S(g)| ≤ 2δn. Define

G0 = {g ∈ G(P , A) | S(g) = ∅}, and G1 = {g ∈ G(P , A) | |S(g)| ≥ 1}.

Clearly, we have g(P , A) = |G0|+|G1| and |G0| ≤ 2|A|. It remains to show that |G1| ≤ 2|A|−n/12.

Let us consider the ways to color A so that the resulting colorings are in G1. We first

choose a set A0 ⊆ A of size at most 2δn, which will be colored by the colors in [r] \ {i, j}.

The number of options is at most
∑

1≤k≤2δn

(
n
k

)
, and the number of colorings is at most r2δn.

Once we fix A0 and its color, take an arbitrary vertex t ∈ A0.

Claim 1. Let D(t) be the collection of disjoint pairs {a, b} in A\A0 such that {a, b, t} forms

a restricted Schur triple. Then |D(t)| ≥ n/6.

Proof of Claim 1. Define

S1 = {(a, b) ∈ [n]2 | a+ b = t, a < b}, and S2 = {(a, b) ∈ [n]2 | t+ a = b, a < b}.

We first observe that |S1| = b(t − 1)/2c for every t ∈ [n]. Note that all pairs in S1 are

disjoint. Therefore, if t > 2n/5, we have |D(t)| ≥ |S1| − ξn− |A0| ≥ |S1| − (2δ + ξ)n ≥ n/6.

If t ≤ 2n/5, observe that |S2| = n− 2t and all pairs in S2 are disjoint. Therefore, we obtain

that |D(t)| ≥ |S2| − ξn− |A0| ≥ |S2| − (2δ + ξ)n ≥ n/6. 1

For every pair (a, b) ∈ D(t), since t is colored by some color in [r] \ {i, j}, and a, b can

only be colored by i or j, the elements a and b must receive the same color in order to avoid

the rainbow Schur triple. Therefore, together with Claim 1, the number of ways to finish
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the colorings is at most

2|A|−|A0|−|D(t)| ≤ 2|A|−n/6.

Hence, we obtain that

|G2| ≤
∑

1≤k≤2δn

(
n

k

)
r2δn2|A|−n/6 ≤ 2|A|+2δn(logn+log r)−n/6 ≤ 2|A|−n/12,

where the last inequality follows from δ = 1/(24 log n).

Now we have all ingredients to prove Theorem 2.5.

Proof of Theorem 2.5. First, by property (i) of Theorem 2.18 , every rainbow sum-free

r-coloring of A is a subtemplate of some P ∈ C. By Property (iii) of Theorem 2.18 and the

definition of C1 (see (2.2)), we have

g(C1, A) ≤ |C1| · 2(1−δ)n ≤ |C| · 2(1−δ)n < 2n · 2−n/(25 logn).

If ξ ≥ 2(log r−1)n−1/3+δ, using Lemma 2.21, we are done by g(C, A) = g(C1, A). Otherwise,

by Lemma 2.22 and Lemma 2.23, we obtain that

g(C2, A) =
∑

1≤i<j≤r

g(P(i, j), A) ≤
(
r

2

)
2|A|(1 + 2−n/12).

Hence, we have

g(C, A) = g(C1, A) + g(C2, A) ≤ 2n · 2−
n

25 logn +

(
r

2

)
2|A|(1 + 2−n/12) ≤

(
r

2

)
· 2|A| + 2−

n
26 logn2n,

which gives the desired upper bound on the number of rainbow sum-free r-colorings of A.
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2.4 Proof of Theorems 2.7 and 2.8

The following lemma gives us a structural description of large sum-free sets.

Lemma 2.24. Let ε, c > 0, c > 10ε, and ε < 1/10. Let A,B ⊆ [n] such that A∩B = ∅, B

is sum-free, and |A| = cn. If |B| ≥ (1/2− ε)n, then (A+B) ∩B 6= ∅.

Proof. Suppose, to the contrary, that (A+B) ∩B = ∅. Since |B| > 2n/5, by Lemma 2.14,

eitherB only contains odd numbers, or the minimum element ofB is at least |B| ≥ (1/2−ε)n.

If B only contains odd numbers, then there is d ≥ c − ε, such that |A ∩ E| = dn, where

E ⊆ [n] is the collection of all even numbers. Thus, there exists an a ∈ A ∩ E such that

dn ≤ a ≤ (1 − d)n. Let P be the collection of all pairs (i, i + a), where i is odd, and

1 ≤ i ≤ dn. Observe that all pairs in P are pairwise disjoint and there are at least dn/2 of

them. Since (A + B) ∩ B = ∅, for each pair (i, j) in P , at least one of {i, j} is not in B.

This implies

|B| ≤ n

2
− |P | ≤ n

2
− dn

2
≤ n

2
− (c− ε)n

2
≤
(

1

2
− 2ε

)
n,

which contradicts the assumption of B.

If the minimum element of B is at least |B| ≥ (1/2− ε)n, let b be the smallest element

in B, then there is d ≥ c − 2ε such that |A ∩ [b − 1]| = dn. This implies that there exists

a ∈ A with dn/2 ≤ a ≤ b− dn/2. We define P to be the collection of all pairs (i, j), where

b ≤ i < (1/2 + 3ε)n and j = i + a. Then the number of pairs in P is at least 2εn, as

b ≤ (1/2 + ε)n. Moreover, for every (i, j) in P , we have j < n since b− dn/2 ≤ (1/2− 3ε)n

and since b+ a > (1/2 + 3ε)n, P is a set of disjoint pairs. Since (A+B)∩B = ∅, for every

(i, j) in P , at least one of {i, j} is not in B. Similarly we obtain that |B| ≤ (1/2 − 2ε)n, a

contradiction.

Our next lemma says that when the number of colorings r = 3 and the size of A is

significantly smaller than n, the number of rainbow sum-free r-colorings will be much less

than 2n. And when r ≥ 5 and the size of A is significantly larger than n/2, much less than
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rn/2 when r, the number of rainbow sum-free r-colorings will be much less than rn/2.

Lemma 2.25. Let ε > 0, r be a positive integer, and let A be a subset of [n]. Then the

followings hold.

(i) If r = 3, and |A| ≤ (1− ε)n, then there is a constant δ1 = δ1(ε) > 0, such that

g(A, 3) ≤ 2(1−δ1)n.

(ii) If r ≥ 5, and |A| ≥
(
1/2 + ε

)
n, then there is a constant δ1 = δ1(ε, r) > 0 such that

g(A, r) ≤ r(1/2−δ1)n.

Proof. Let C be the collection of containers given by Theorem 2.18, and let

gmax(P,A) = max
P∈C

g(P,A).

For a template P ∈ C, suppose P is not a good template. Then there must be an element

i ∈ A with |P (i)| = 0, which immediately gives g(P,A) = 0. Therefore, gmax(P,A) is always

achieved by a good template.

Let P be a good template of A. Since RS(P ) = o(n2), by Green’s aritheoremetic removal

lemma, there is a set E ⊆ [n] and a template P ′ : [n] \ E → 2[r], such that P |[n]\E= P ′,

|E| = o(n), and P ′ has no rainbow Schur triples. Define

X1 = {a ∈ [n] \ E : |P ′(a)| = 1}, X2 = {a ∈ [n] \ E : |P ′(a)| = 2},

and

X3 = {a ∈ [n] \ E : |P ′(a)| ≥ 3}.

33



Let T = X2 ∪X3 and let xi = |Xi| for i = 1, 2, 3. Therefore, we have

(X3 +X3) ∩X3 = ∅, (T + T ) ∩X3 = ∅, (X3 + T ) ∩ T = ∅. (2.5)

As X3 is sum-free, we have x3 ≤ bn/2c+ 1.

Let m be the largest element in X3. By (2.5), for every i < m, at least one of {i, m− i}

is not in T which is also the same for X3. Hence, we have

|T | ≤ n−
⌈m− 1

2

⌉
, x3 ≤ m−

⌈m− 1

2

⌉
. (2.6)

Case 1: r = 3.

Observe that we may assume ε < 2/5, as otherwise we will get g(A, 3) ≤ 3|A| ≤ 20.955n,

which completes the proof with δ1 = 0.045. We first consider the case when x2 ≤ (1−5ε/2)n.

Then we have

log g(C, A) ≤ log(|C| · gmax(P,A)) ≤ cn2/3 log2 n+ |E| log 3 + x2 + x3 log 3

= o(n) + x2 + x3 log 3 =

(
o(n) +

1

2

(
|T |+ x3 −

(
1− 2

log 3

)
x2

))
log 3

≤ n+ o(n)− 5ε

2

(
1− log 3

2

)
n < (1− δ1)n,

where we take δ1 = 5ε
4

(1− log 3
2

).

Now, we may assume that x2 > (1 − 5ε/2)n. Then x3 ≤ |A| − x2 < 3εn/2. Thus we

obtain

log g(C, A) ≤ o(n) + x2 + x3 log 3 ≤ o(n) + |A|+ (log 3− 1)x3

≤ n+ o(n)− ε

2
(5− 3 log 3)n < (1− δ1)n,

and we take δ1 = 1
4

(5− 3 log 3) ε.
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Case 2: r ≥ 5.

Since |A| ≥ (1/2 + ε)n, and P is good, we have that x1 + x2 ≥ |A| − x3− |E| ≥ εn/2 for

large enough n. We first assume that x2 ≥ εn
100

. Similarly, we get

log g(C, A) ≤ log(|C| · gmax(P,A)) ≤ cn2/3 log2 n+ |E| log r + x2 + x3 log r

= o(n) + x2 + x3 log r =

(
o(n) +

1

2

(
|T |+ x3 −

(
1− 2

log r

)
x2

))
log r

≤
(
n

2
+ o(n)− 1

2

(
1− 2

log r

)
ε

100
n

)
log r <

(n
2
− δ1n

)
log r, (2.7)

where we take δ1 = 1
300

(
1− 2

log r

)
ε. Note that δ1 > 0 as r ≥ 5.

Finally, we may assume that x2 ≤ εn
100

, and then x1 ≥ εn
2
− x2 ≥ εn

3
. We claim that

x3 ≤ (1/2−ε/40)n. Otherwise, by the way we construct P ′, we also have (X1+X3)∩X3 = ∅

and this contradicts Lemma 2.24. Similarly as before, we can conclude that

log g(C, A) ≤ o(n) +x2 +x3 log r ≤
(
n

2
+ o(n) +

ε

100 log r
n− ε

80
n

)
log r ≤

(n
2
− δ1n

)
log r,

where we take δ1 = ε
400

.

The case when r = 4 is more involved, and we will discuss it later in this section. But

the result in Lemma 2.25 (i) is enough to imply Theorem 2.7.

Proof of Theorem 2.7. Observe that g([n], 3) ≥ 3 · 2n − 3. Suppose A ⊆ [n] and A 6= [n].

When |A| ≤ (1 − 3−3)n, by Lemma 2.25 (i), there is δ1 > 0 such that g(A, 3) ≤ 2(1−δ1)n <

g([n], 3). Now, we have (1−3−3)n < |A| ≤ n−1. By Theorem 2.5, g(A, 3) ≤ (1.5+o(1))2n <

g([n], 3).

The next lemma records an easy fact about intervals for convenience in the proof of the

analogue result of Lemma 2.25 when we have only 4 colors.

Lemma 2.26. Let ε > 0, and let a, b be integers such that 0 < a < b < n, 3εn < a <

n/2 − 2εn, and a + 2 + 3εn < b ≤ 2a. Suppose A ⊆ [a + 1, b], B ⊆ [b + 1, n], and
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|A| > b− a− εn, |B| > n− b− εn. Then (A+ A) ∩B 6= ∅.

Proof. Let α be the smallest element in A, then α ≤ a+εn+1. Let J = [α+1, α+1+d2εne] ⊆

[a + 1, b]. Observe that α + J ⊆ [b + 1, n]. Since |J | = d2εne, and |[a + 1, b] \ A| < εn,

|[b+ 1, n] \B| < εn, this implies there is β ∈ A ∩ J such that α + β ∈ B.

The next lemma, Lemma 2.27, is similar to Lemma 2.25, but here we consider the case

when the number of colors is 4. In order to obtain the same conclusion in Lemma 2.25, we

further require that the size of A is significantly smaller than n, since if A is close to [n],

when we color all the elements in A by two colors, the number of colorings we obtained is also

close to the extremal case. Note that if we use the same proof as in Lemma 2.25 for r = 4,

equation (2.7) does not give us the conclusion we want. Hence the proof of Lemma 2.27

requires a more careful and complicated analysis of the structures of the containers.

Lemma 2.27. Let ε > 0 such that
(
1/2+ε

)
n ≤ |A| ≤ (1−ε)n. Then there is δ2 = δ2(ε) > 0

such that

g(A, 4) ≤ 4n/2−δ2n.

Proof. We apply Theorem 2.18 on A. Let C be the collection of containers, and let P ∈ C be

a good template of order n. As what we did in the proof of Lemma 2.25, we similarly apply

Green’s removal lemma on P , and obtain a template P ′ : [n]\E → 2[r], such that P |[n]\E= P ′,

|E| = o(n), and P ′ is sum-free. Let X1, X2, X3 ⊆ A\E such that X1 = {a ∈ A | |P ′(a)| = 1},

X2 = {a ∈ A | |P ′(a)| = 2}, and X3 = {a ∈ A | |P ′(a)| ≥ 3}. Let T = X2∪X3 and xi = |Xi|

for i ∈ [3]. Therefore, we have equations (2.5) still hold, and in particular, X3 is sum-

free. Thus x3 ≤ (n + 1)/2. Since |A| ≥ (1/2 + ε)n, and P is good, we also obtain that

x1 + x2 ≥ εn/2. Let m = n − α be the maximum element in X3, by using the same

argument, equations (2.6) still hold.

Suppose we have either

|T | ≤ n−
⌈m− 1

2

⌉
− εn

1000
, or x3 ≤ m−

⌈m− 1

2

⌉
− εn

1000
.
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Thus

g(C, A) ≤ 2cn
2/3 log2 nr|E|2x2rx3 = ro(n)+ 1

2
(|T |+x3) ≤ r

n
2

+o(n)− εn
2000 < r

n
2
−δ2n,

and we take δ2 = ε
3000

. Therefore, we may assume that

n−
⌈m− 1

2

⌉
− εn

1000
≤ |T | ≤ n−

⌈m− 1

2

⌉
, and m−

⌈m− 1

2

⌉
− εn

1000
≤ x3 ≤ m−

⌈m− 1

2

⌉
.

(2.8)

In the rest of the proof, we are going to show that this is impossible.

Suppose that α ≤ εn
40

. Note that max{x1, x2} ≥ εn
4

, and

(X1 +X3) ∩X3 = ∅, (X2 +X3) ∩X3 = ∅,

this contradicts Lemma 2.24. Thus we have m ≤ (1 − ε
40

)n. Since |A| ≤ (1 − ε)n, thus by

the lower bound on |T | in (2.8), m ≥ 3εn/2.

We now partition [n] into three parts J1, J2, J3, such that J1 = [n−α+ 1, n], J2 = [1, α],

and J3 = [α + 1, n− α]. By (2.8), we obtain that

|J1 ∩X2| ≥ α− εn

1000
. (2.9)

Take d = ε
400

. Suppose |J2 ∩X3| ≥ dn, then we can find β ∈ X3 such that dn
2
≤ β ≤ α− dn

2
.

Let J ′1 = [n− α + 1, n− α + dn
2

] ⊆ J1. Note that (J ′1 + β) ∩ J ′1 = ∅, and J ′1 + β ⊆ J1, since

(X2+X3)∩X2 = ∅, and for every i ∈ J ′1, there is at least one element in the pair {i, i+β} that

is not contained in X2, we have that |J1 ∩X2| ≤ α− dn
2

= α− εn
800

, contradicts (2.9). Hence

we may assume |J2 ∩X3| ≤ dn. Therefore, by (2.8), |J3 ∩X3| ≥ n−α
2
− εn

1000
− dn. This gives

us an upper bound on α since |J3| ≥ |J3 ∩X3|, that α ≤ n
3

+ εn
1500

+ 2dn
3

. Next, we are going

to show that actually we have α ≤ n
3
. Suppose α > n

3
. Note that |J3∩X3| ≥ n−α

2
−dn− εn

1000
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implies

|J3 \X3| ≤
n− 3α

2
+ dn+

εn

1000
≤ dn+

εn

1000
<

εn

250
.

By (2.9) and Lemma 2.26, we get (X3 +X3) ∩X2 6= ∅, this contradicts (2.5).

Let J ′3 = [n− 2α, n− α]. We claim that

|J ′3 \X3| ≤ dn+
εn

800
=

3εn

800
. (2.10)

Otherwise, observe that at least one of {i,m− i} is not in X3, then |X3 ∩ (J3 \ J ′3)| ≤ n−3α
2

since α ≤ n/3. Hence

x3 ≤
m

2
− α + dn+ α−

(
dn+

εn

800

)
≤ m

2
− εn

800
,

contradicts (2.8).

Next, let d′ = ε
60

, and suppose that |(J2 +α)∩X3| ≥ d′n. Thus there is γ ∈ X3 such that

α + d′n
2
≤ γ ≤ 2α − d′n

2
. Let J ′′1 = [n− 2α, n− 2α + d′n

2
]. Observe that (γ + J ′′1 ) ∩ J ′′1 = ∅,

and γ + J ′′1 ⊆ J1. Since (X2 +X3) ∩X2 = ∅, we have either |X3 ∩ J ′3| ≤ α− d′n
4
< α− 3εn

800
,

or |X2 ∩ J1| ≤ α − d′n
4
< α − εn

1000
, and in either case we get a contradiction with (2.9) or

(2.10). Thus, we have |(J2 + α) ∩ X3| ≤ d′n. Note that J ′3 = {m} ∪ (m − J2), clearly,

|X3 ∩ (J2 ∪ J ′3)| ≤ α + 1. Then by (2.8),

n− 3α

2
− εn

1000
≤
∣∣X3 ∩ [α, n− 2α]

∣∣ ≤ n− 4α + d′n,

hence α ≤ n
5

+ 2d′n
5

+ εn
2500

. Suppose now α ≥ n
5
. We have that |X3 ∩ [2α, n − α]| ≥

n−α
2
− dn − d′n − εn

1000
, which implies |[2α, n − α] \ X3| ≤ εn

1000
+ dn + d′n. By (2.9) and

Lemma 2.26, we obtain that (X3 +X3) ∩X2 6= ∅, and this contradicts (2.5).

Finally, we get εn
40
≤ α < n

5
. By (2.8), we have that x3 ≤ 2n

5
. By Lemma 2.14, either X3

consists of odd integers, or the minimum element in X3 is at least n−α
2
− εn

1000
. The first case
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is impossible. Otherwise, since |J2| = α > 2dn+ εn
1000

, we have

x3 = |X3 ∩ J2|+ |X3 ∩ J3| ≤ dn+
n− 2α

2
≤ n− α

2
− 9εn

800
,

and this contradicts the lower bound on x3 in (2.8). Now, we assume a ∈ X3 is the minimum

element, and a ≥ n−α
2
− εn

1000
. Observe that |[n−α

2
+ 1, n− α] \X3| ≤ εn

500
, n−α

2
≤ n

2
− εn

80
, and

by (2.9) and Lemma 2.26, we have (X3 +X3) ∩X2 6= ∅, this contradicts (2.5).

The final lemma consider the case when A contains many Schur triples.

Lemma 2.28. Let r ≥ 4 be an integer. Suppose there is µ > 0, such that s(A) ≥ µn2. Then

g(A, r) ≤ r|A|−
3(2 log r−log(3r−2))

2 log r
µn.

Proof. Since s(A) ≥ µn2, by Pigeonhole Principle, there is t ∈ A, such that

s(t, A) ≥ 3µn2

|A|
≥ 3µn.

Let the link graph Lt(A) to be the simple graph defined on the vertex set A \ {t}, such that

xy ∈ E(Lt(A)) if and only if {t, x, y} ∈ S(t, A). Let k be the size of the maximum matching

in Lt(A). Observe that ∆(Lt(A)) ≤ 2, and |E(Lt(A))| = s(t, A) ≥ 3µn. Then we have

k ≥ 3µn/2.

Now we consider the possible number of rainbow sum-free colorings of A. We first fix a

maximum matching M of Lt(A). For the elements in A \ V (M), we color them arbitrarily.

For each edge ab ∈ E(M), in order to avoid a rainbow Schur triple, we either let a, b share

the same color, or color one of a, b by the color of t, and color another vertex by a different

color. In this way, a, b have exactly r + 2(r − 1) effective colorings. Hence, we have

g(A, r) ≤ r|A|−2k−1r(3r − 2)k ≤ r|A|
(3r − 2

r2

) 3µn
2

= r|A|−
3(2 log r−log(3r−2))

2 log r
µn,
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as desired.

Now we can prove the stability theorem.

Proof of Theorem 2.8. The first part of the statement, that g(n, r) ≤ rn/2+o(n), follows

easily from the fact g(A, r) ≤ r|A| when |A| ≤ n/2 + o(n). If |A| ≥ n/2 + ηn for some

constant η, the result follows from Lemma 2.25 (ii) when r ≥ 5. For the case r = 4, after

applying Lemma 2.27 we still have one extra case that |A| ≥ (1− η)n, and this follows from

Theorem 2.5.

For the second part of the statement, we will prove it by contrapositive. Let c =

3(2 log r−log(3r−2))
2 log r

, clearly c > 0 when r ≥ 4. Let µ be the value of δ( ε
20

) given in Lemma 2.13,

and let ε′ = min{ cµ
2
, ε}. We first consider r ≥ 5, and suppose that we have both

|A4O| > εn, and |A4I0| > εn. (2.11)

In this case we take δ = min{δ1(ε′), ε′, ε
20
}, where δ1(ε′) is given in Lemma 2.25 (ii). If |A| ≥

n
2

+ ε′n, we apply Lemma 2.25 (ii) with parameter ε′, then we obtain that g(A, r) ≤ rn/2−δn.

Thus we may assume that |A| ≤ (1/2 + ε′)n. If s(A) ≥ µn2, applying Lemma 2.28, we have

g(A, r) ≤ rn/2+ε′n−cµn ≤ rn/2−ε
′n ≤ rn/2−δn.

Finally, we have s(A) < µn2. By Lemma 2.13, we get the partition A = B ∪ C, where B

is sum-free and |C| < ε
20
n. Note that we may assume |A| ≥ n

2
− ε

20
n, otherwise g(A, r) ≤

r|A| ≤ rn/2−δn. Now we have

|B| ≥ |A| − |C| ≥ n

2
− εn

10
≥ 2n

5

since ε ≤ 1. We apply Lemma 2.14 on B. Hence either B contains only odd integers, or the
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minimum element of B is at least |B|. Suppose B consists of odd integers. Thus

|A4O| ≤ |C|+ |O \B| ≤ ε

20
n+

ε

10
n < εn,

contradicts (2.11). Thus, let a be the minimum element in B, then a ≥ n
2
− εn

10
. Therefore,

|A4I0| ≤ |C|+ |B4I0| ≤
ε

20
n+

ε

10
n+

ε

5
n < εn,

which also contradicts (2.11).

Next, let us consider the case when r = 4. Besides (2.11), we further require

|A4[n]| > εn. (2.12)

We now take δ = min{δ2(ε′), ε′, ε
20
}, where δ2(ε′) is given in Lemma 2.27. The case when

|A| ≤ n
2

+ε′n is same as when r ≥ 5. When n
2

+ε′n ≤ |A| ≤ n−ε′n, by applying Lemma 2.27

we get g(A, 4) ≤ 4n/2−δn. When |A| ≥ n−ε′n, we get |A4[n]| ≤ ε′n ≤ εn, which contradicts

(2.12).

2.5 Proof of Theorem 2.10

For a subset A ⊆ [n] and an integer t, recall that Lt(A) is the simple graph defined on

A \ {t}, in which xy ∈ E(Lt(A)) if and only if {t, x, y} ∈ S(t, A). Let k(t, A) be the size of

the maximum matching of Lt(A). Note that ∆(Lt(A)) ≤ 2. Therefore we have

k(t, A) ≥ |E(Lt(A))|/2 = s(t, A)/2. (2.13)

Proposition 2.29. Let n, r, c ∈ N with r ≥ 8 and c > 1. Suppose that A is a subset of [n]

of size dn/2e+ c.
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(i) If there exists an element t ∈ A such that k(t, A) ≥ 2(c − 1), then we have g(A, r) <

rdn/2e+1.

(ii) If there exists an element t ∈ A such that k(t, A) ≥ 2(c−1)+1, then we have g(A, r) <

rdn/2e (3− 2/r).

Proof. First note that for r ≥ 8 we have

(3r − 2)2

r3
< 1. (2.14)

Let k = k(t, A). Similarly as in the proof of Lemma 2.28, we obtain that

g(A, r) ≤ rdn/2e+c−2k(3r − 2)k = rdn/2e+c
(

3r − 2

r2

)k
.

For k ≥ 2(c− 1), we have

g(A, r) ≤ rdn/2e+c
(

3r − 2

r2

)2(c−1)

= rdn/2e+1

(
(3r − 2)2

r3

)c−1

< rdn/2e+1,

where the last inequality follows from (2.14) and c > 1.

Similarly, for k ≥ 2(c− 1) + 1, we have

g(A, r) ≤ rdn/2e
(

3− 2

r

)
rc−1

(
3r − 2

r2

)k−1

≤ rdn/2e
(

3− 2

r

)
rc−1

(
3r − 2

r2

)2(c−1)

= rdn/2e
(

3− 2

r

)(
(3r − 2)2

r3

)c−1

< rdn/2e
(

3− 2

r

)
.

Together with the previous inequality, this completes the proof.

Lemma 2.30. Let r ≥ 8, 0 < ε ≤ 1/36, and A be a subset of [n] of size dn/2e + c, where

1 < c ≤ εn. Suppose that there exists a partition A = B ∪ C such that B consists of odd

numbers and |C| ≤ εn. Then we have g(A, r) < rdn/2e (3− 2/r).
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Proof. From the assumption of A, there must be an even number t ∈ A. By Proposi-

tion 2.29(ii) and ε ≤ 1/36, it is sufficient to show that k(t, A) ≥ (1/12− ε)n− 1.

Recall that O is the set of all odd numbers in [n]. Since |A| ≥ dn/2e + 1 and |C| ≤ εn,

we have |O \B| ≤ εn. Then,

k(t, A) ≥ k(t, B) ≥ k(t, O)− εn,

and thus it is equivalent to show that k(t, O) ≥ n/12− 1.

If t ≥ n/3, we immediately have

k(t, O) ≥ |{(i, t− i, t), i ∈ O ∩ [t/2− 1]}| ≥ t/4− 1 ≥ n/12− 1.

If t < n/3, then by (2.13) we obtain that

k(t, O) ≥ s(t, O)/2 ≥ |{(t, i, t+ i), i ∈ O ∩ [t+ 1, n− t]}| /2 ≥ (n− 2t)/4 ≥ n/12.

This completes the proof.

Lemma 2.31. Let r ≥ 8, 0 < ε � 1, and A be a subset of [n] of size dn/2e + c, where

1 < c ≤ εn. Suppose that there exists a partition A = B ∪C such that B ⊆ I0 and |C| ≤ εn.

Then the following holds.

(i) If n is even, then g(A, r) < rdn/2e+1.

(ii) If n is odd, then g(A, r) < rdn/2e (3− 2/r).

Proof. Let m be the minimum element of A, and clearly m ≤ bn/2c − (c − 1). Recall that

I0 = [bn/2c+ 1, n]. Let d = |I0 \A|. From the assumption of A, we have d ≤ εn. We divide

the proof into four cases.

Case 1: m ≤ d + 3(c − 1). In this case, we have m ≤ 4εn. Similar to the proof of
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Lemma 2.30, we have

k(m,A) ≥ k(m,B) ≥ k(m, I0)− d ≥ s(m, I0)/2− εn ≥ (n/2−m)/2− εn ≥ n/4− 3εn,

which, together with Proposition 2.29(ii) and ε� 1, completes the proof.

Case 2: d+3(c−1) < m ≤ dn/2e−d−3(c−1). Since m ≤ n/2, each nontrivial component

of Lm(I0) is a path, and there are min {m, dn/2e −m} ≥ d+ 3(c− 1) of them. Therefore we

have

k(m,A) ≥ k(m, I0)− d ≥ d+ 3(c− 1)− d = 3(c− 1)

which, together with Proposition 2.29(ii) and c > 1, completes the proof.

Case 3: dn/2e − d− 3(c− 1) < m ≤ dn/2e − 2(c− 1). By the choice of m, each nontrivial

component of Lm(A) is a path of length 1, and the number of them is exactly

s(m, [m+ 1, n])− |[m+ 1, n] \ A| = n− 2m− (n− |A| − (m− 1)) = dn/2e+ (c− 1)−m.

Therefore, we obtain that

k(m,A) = dn/2e+ (c− 1)−m ≥ 3(c− 1),

which completes the proof together with Proposition 2.29(ii) and c > 1.

Case 4: dn/2e − 2(c − 1) < m ≤ bn/2c − (c − 1). Similarly as in Case 3, we obtain that

k(m,A) = dn/2e+ (c− 1)−m. By the choice of m, for even n, we have k(m,A) ≥ 2(c− 1),

while for odd n, k(m,A) ≥ 2(c − 1) + 1. By Proposition 2.29, this gives the desired upper

bounds.

Proof of Theorem 2.10. Here we only prove (i) as the proof of (ii) is similar. If |A| =

dn/2e + 1 and A 6= I2, then A must have at least one restricted Schur triple, and therefore

g(A, r) < g(I2, r) = rdn/2e+1. When |A| > dn/2e+1, choose a constant ε� 1, which satisfies
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the assumptions of Lemmas 2.30 and 2.31. Then by Theorem 2.8, we can further assume

that |A4 O| ≤ εn, or |A4 I0| ≤ εn. Applying Lemmas 2.30 and 2.31(i) on A, for both

cases, we obtain g(A, r) < rdn/2e+1.

2.6 Concluding Remarks

Our investigation raises many open problems. In this chapter, we determine the rainbow

r-extremal sets, that is, the subsets of [n] which maximize the number of rainbow sum-free

r-colorings, for r ≤ 3 and r ≥ 8. However, for r ∈ {4, 5, 6, 7}, although Theorem 2.8 says the

rainbow r-extremal sets should be close to what we expect, our proofs cannot give the exact

structure of the extremal sets. Therefore, the most interesting question is to determine the

unsolved cases of Conjecture 2.9. Recall that I1 = [n
2
− 1, n] and I3 = [n−1

2
, n].

Conjecture 2.32. Let n, r be positive integers and 4 ≤ r ≤ 7.

(i) If n is even, then g(n, r) = rn/2 (3− 2/r)2, and I1 is the unique rainbow r-extremal set.

(ii) If n is odd and r = 4, then g(n, r) = g([n], r), and [n] is the unique rainbow r-extremal

set.

(iii) If n is odd and 5 ≤ r ≤ 7, then g(n, r) = rdn/2e (3− 2/r), and I3 is the unique rainbow

r-extremal set.

Another direction is that one can consider various generalization of this problem. Recall

that a sum-free set is a set forbidding the solutions of the linear equation x1 + x2 = y. It

is natural to extend the Erdős–Rothschild problems on sets forbidding solutions of other

linear equations, for example, the (k, `)-free sets, that is, the sets without nontrivial tuples

{x1, . . . , xk, y1, . . . , y`} satisfying
∑k

i=1 xi =
∑`

j=1 yj. It is possible that the method used to

prove Theorem 2.5 can prove the analogous results for some other (k, `)-free sets. However,

the stability analysis on other parts would be very involved.
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One could also broaden the study of rainbow Erdős–Rothschild problems to various

other extremal problems in this fashion. In the rainbow Erdős–Rothschild problems studied

to date, that is, the Gallai colorings and the rainbow sum-free colorings, for r = 3 the

configurations maximizing the number of such colorings are complete graphs or the whole

intervals, while for sufficiently large r the optimal configurations are those solving the original

extremal problems. It would be very interesting to determine the threshold of r to ensure

that the extremal configurations for the uncolored problems are optimal for rainbow Erdős–

Rothschild problems.
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Chapter 3

Avoidance density for (k, `)-sum-free
sets

Let M(2,1)(N) be the infimum of the largest sum-free subset of any set of N positive integers.

An old conjecture in additive combinatorics asserts that there is a constant c = c(2, 1) and

a function ω(N) → ∞ as N → ∞, such that cN + ω(N) < M(2,1)(N) < (c + o(1))N . The

constant c(2, 1) is determined by Eberhard, Green, and Manners [57], while the existence of

ω(N) is still wide open.

In this chapter, we study the analogous conjecture on (k, `)-sum-free sets and restricted

(k, `)-sum-free sets. We determine the constant c(k, `) for every (k, `)-sum-free sets, answer-

ing a question asked by Bajnok [4]. We also confirm the conjecture for infinitely many (k, `).

This chapter is based on joint work with Wu [108].

3.1 Introduction

In 1965, Erdős asked the following question [59]. Given an arbitrary sequence A of N

different positive integers, what is the size of the largest sum-free subsequence of A? By

sum-free we mean that if x, y, z ∈ A, then x+ y 6= z. Let

M(2,1)(N) = inf
A⊆N>0

|A|=N

max
S⊆A

S is sum-free

|S|.

Using a beautiful probabilistic argument, Erdős showed that every N -element set A ⊆ N>0

contains a sum-free subset of size at least N/3, in other words, M(2,1)(N) ≥ N/3. It turns

out that it is surprisingly hard to improve upon this bound. The result was later improved
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by Alon and Kleitman [3], who showed that M(2,1)(N) ≥ (N + 1)/3. Bourgain [28], using an

entirely different Fourier analytic argument, showed that M(2,1)(N) ≥ (N + 2)/3, which is

the best lower bound on M(2,1)(N) to date. In particular, the following conjecture has been

made in a series of papers. See [59, 28, 57, 164] for example.

Conjecture 3.1. There is a function ω(N)→∞ as N →∞, such that

M(2,1)(N) >
N

3
+ ω(N).

On the other hand, a recent breakthrough by Eberhard, Green, and Manners [57] proved

that M(2,1)(N) = (1/3 + o(1))N . More precisely, they showed that for every ε > 0, when N

is large enough, there is a set A ⊆ N>0 of size N , such that every subset of A of size at least

(1/3 + ε)N contains x, y, z with x + y = z. This result is one of the first beautiful applica-

tions of the arithmetic regularity lemma. Later, using a completely different argument, the

result is generalized by Eberhard [56] to k-sum-free set. A set A is k-sum-free if for every

y, x1, . . . , xk ∈ A, y 6=
∑k

i=1 xi. Eberhard proved that for every ε > 0, there is a set A ⊆ N>0

of size N , such that every subset of A of size at least (1/(k + 1) + ε)N contains a k-sum.

For more background we refer to the survey [164].

In this chapter, we study the analogue of the Erdős sum-free set problem for (k, `)-

sum-free sets. Given two positive integers k, ` with k > `, a set A is (k, `)-sum-free if for

every x1, . . . , xk, y1, . . . , y` ∈ A,
∑k

i=1 xk 6=
∑`

j=1 yj. For example, using the notation of

(k, `)-sum-free, sum-free is (2, 1)-sum-free; k-sum-free is (k, 1)-sum-free. Finding the largest

(k, `)-sum-free sets in some given structures has been well-studied in the past fifty years, for

example, the size of the maximum (k, `)-sum-free sets in finite cyclic groups was determined

recently by Bajnok and Matzke [5], and the size in compact abelian groups was determined

by Kravitz [118].
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For every A ⊆ N>0, let

M(k,`)(A) = max
S⊆A

S is (k,`)-sum-free

|S|, and M(k,`)(N) = inf
A⊆N>0

|A|=N

M(k,`)(A).

The problem of determining M(k,`)(N) is suggested by Bajnok [4, Problem G.41]. In fact,

we can also make the following conjecture for (k, `)-sum-free set, which is an analogue of

Conjecture 3.1.

Conjecture 3.2. Let k > ` > 0. There is a constant c = c(k, `) > 0, and a function

ω(N)→∞ as N →∞, such that

cN + ω(N) <M(k,`)(N) < (c+ ε)N,

for every ε > 0.

As we mentioned above, the constant c(k, `) in Conjecture 3.2 for (k, `) = (2, 1) is

determined by Eberhard, Green, and Manners [57], and for (k, `) = (k, 1) is determined

by Eberhard [56]. The conjecture for (k, `) = (3, 1) is confirmed by Bourgain [28].

Our first result determines the constant c(k, `) in Conjecture 3.2 for every (k, `) (see

statements (i) and (iv) of Theorem 3.3), which answers a question asked by Bajnok [4] when

the ambient group is Z. The statement (ii) of Theorem 3.3 also confirms Conjecture 3.2 for

infinitely many (k, `).

Theorem 3.3. Let k, ` be two positive integers and k > `. Then the following hold:

(i) for every k, `, we have M(k,`)(N) ≥ N
k+`

.

(ii) suppose k = 5`. Then

M(k,`)(N) ≥ N

k + `
+ c

logN

log logN
, (3.1)

where c > 0 is an absolute constant that only depends on k, `.
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(iii) for every set A of N positive integers, for every positive even integer u, there is an odd

integer v < u such that if k = (u+ v)`/(u− v), then

M(k,`)(A) ≥ N

k + `
+ c

logN

log logN
, (3.2)

where c > 0 is an absolute constant that only depends on k, `.

(iv) for every k, `, we have M(k,`)(N) =
(

1
k+`

+ o(1)
)
N .

We remark that Theorem 3.3 (iii) also implies estimate (3.1) when k = 3`, which in

particular covers the (3, 1)-sum-free case obtained by Bourgain. This is because when u = 2,

the only possible value of v is 1, and this gives us k = 3`. It follows that estimate (3.2) holds

for every N -element set A when k = 3`. Hence, by the definition of M(k,`)(N), we prove

estimate (3.1) when k = 3`.

The upper bound construction given by Eberhard, Green, and Manners [57] for (2, 1)-

sum-free set actually works in a more general setting: restricted (2, 1)-sum-free set. A set

A is restricted (k, `)-sum-free if for every k distinct elements a1, . . . , ak in A, and ` distinct

elements b1, . . . , b` in A, we have
∑k

i=1 ai 6=
∑`

j=1 bj. Let

M̂(k,`)(N) = inf
A⊆N>0

|A|=N

max
S⊆A

S is restricted (k,`)−sum free

|S|.

Clearly, we have that M(k,`)(N) ≤ M̂(k,`)(N). Our next theorem gives us an upper bound

on M̂(k,`)(N) when k ≤ 2`+ 1.

Theorem 3.4. Let k, ` be positive integers, and k ≤ 2`+ 1. Then

M̂(k,`)(N) =
( 1

k + `
+ o(1)

)
N.

50



Overview

The chapter is organized as follows. In the next section, we provide some basic definitions and

properties in additive combinatorics, harmonic analysis, and model theory (or more precisely,

nonstandard analysis) used later in the proof. In Section 3.3, we prove a variant of the weak

Littlewood conjecture, based on the ideas introduced by Bourgain [28]. Theorem 3.3 (i) is

proved by using the probabilistic argument introduced by Erdős, and some structural results

for the (k, `)-sum-free open set on the torus. This is included in Section 3.4. One of the main

parts of the chapter is to prove Theorem 3.3 (ii) and (iii). The special case for (3, 1)-sum-free

set is proved by Bourgain [28], but his argument relies heavily on the fact that a certain term

of the Fourier coefficient of the characteristic function is multiplicative, which is not true for

the other (k, `). Here we introduce a different sieve function, as well as a finer control on

the functions we constructed. We will discuss it in detail in Section 3.5. In Sections 3.6 and

3.7, we prove Theorem 3.3 (iv). The proof goes by showing that the constructions given by

Eberhard [56] for (k, 1)-sum-free sets, the Følner sequence, is still the correct construction

for the other (k, `)-sum-free sets. The new ingredients contain structural results for the large

infinite (k, `)-sum-free sets, which can be viewed as a generalization of the  Luczak–Schoen

Theorem [127]. We will prove Theorem 3.4 in Section 3.8. In Section 3.9, we make some

concluding remarks, and pose some open problems.

3.2 Preliminaries

3.2.1 Additive combinatorics

Throughout the chapter, we use standard definitions and notation in additive combinatorics

as given in [163]. Let p be a prime, and let m,n,N ranging over positive integers. Given

a, b,N ∈ N and a < b, let [a, b] := [a, b] ∩ N, and let [N ] := [1, N ]. We use the standard

Vinogradov notation. That is, f � g means f = O(g), and f � g if f � g and f � g.
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Given A,B ⊆ Z, we write

A+B := {a+ b | a ∈ A, b ∈ B}, and AB := {ab | a ∈ A, b ∈ B}.

When A = {x}, we simply write x+B := {x}+B and x ·B := {x}B. Given A ⊆ Z, let

kA := {a1 + · · ·+ ak | a1, . . . , ak ∈ A},

for integer k ≥ 2. For example, 2 · N denotes the set of even natural numbers, while 2N

denotes N+N which is still N. Using this notation, a set A is (k, `)-sum-free if kA∩`A = ∅.

We also define the restricted sums. Let

A+̂B := {a+ b | a ∈ A, b ∈ B, a 6= b},

k̂A := {a1 + · · ·+ ak | a1, . . . , ak ∈ A, all of them are distinct}.

Thus a set A is restricted (k, `)-sum-free if k̂A ∩ ̂̀A = ∅.

Let f : Z → C be a function. Define f̂ : T → C, where T = R/Z is the 1-dimensional

torus, and for every r ∈ T,

f̂(r) =
∑
x

f(x)e(−rx),

where e(θ) = e2πiθ. By Fourier Inversion, for every x ∈ Z,

f(x) =

∫
T
f̂(r)e(rx)dr.

Let µ : N>0 → C be the Möbius function. Recall that µ is supported on the square-

free integers, and µ(n) = (−1)ω(n) when n is square-free, where ω(n) counts the number of
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distinct prime factors of n. By Inclusive-Exclusive Principle,

∑
d|n

µ(d) =


0 if n > 1,

1 if n = 1.

3.2.2 Nonstandard analysis

We give some basic definitions in nonstandard analysis which will be used later in the proofs.

For more systematic accounts we refer to [15, 54]. Let S be a set with infinitely many

elements. An ultrafilter U on S is a collection of subsets of S, such that the characteristic

function 1U : 2S → {0, 1} is a finitely additive {0, 1}-valued probability measure on S. An

ultrafilter is principal if it consists of all sets containing some element s ∈ S. Let βS denotes

the collection of all ultrafilters. One can embed S into βS, by mapping x ∈ S to the principal

ultrafilter generated by x. By a standard application of Zorn’s Lemma, βS \S is non-empty.

Fix U ∈ βN\N, and let Mn be a structure for each n ∈ N. The ultraproduct
∏

n→UMn is

a space consists of all ultralimits limn→U xn of sequences xn defined in Mn, with limn→U xn =

limn→U yn if two sequences {xn} and {yn} agree on a set in U. Let ∗R :=
∏

n→UR be the

hyperreal field. Every finite hyperreal number ξ ∈ ∗R is infinitely close to a unique real

number r ∈ R, called the standard part of ξ. In this case, we use the notation r = st(ξ).

Given a sequence of finite non-empty sets Fn, let µn(X) = |X ∩ Fn|/|Fn| be a uniform

probability measure. Let F =
∏

n→U Fn be an ultraproduct. The Loeb measure [125] µL on

F is the unique probability measure on the σ-algebra generated by the Boolean algebra of

internal subsets of F , such that when X =
∏

n→UXn is an internal subset of F , we have

µL(X) = st
(

lim
n→U

µn(Xn)
)
.
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3.2.3 Determinants of certain matrices

We make use of the following lemma several times in the later proofs, which records a fact

about two special matrices.

Lemma 3.5. Let θ1, . . . , θn ∈ R. Consider two matrices

An =



sin θ1 sin θ2 · · · sin θn

sin 2θ1 sin 2θ2 · · · sin 2θn

· · · · · · · · · · · ·

sinnθ1 sinnθ2 · · · sinnθn


,

and

Bn =



1 1 · · · 1

cos θ1 cos θ2 · · · cos θn

cos 2θ1 cos 2θ2 · · · cos 2θn

· · · · · · · · · · · ·

cos(n−1)θ1 cos(n−1)θ2 · · · cos(n−1)θn


.

Then we have the formula:

det(An) = 2n−1
( n∏
k=1

sin θk
)

det(Bn); (3.3)

and

det(Bn) = 2(n−1)(n−2)/2
∏

1≤k<l≤n

(cos θl − cos θk). (3.4)

As a result,

det(An) = 2n(n−1)/2
( n∏
k=1

sin θk
) ∏

1≤k<l≤n

(cos θl − cos θk).

Proof. For k = 1, 2, . . . n − 1, we subtract the k-th row from the (k + 1)-th row in An, and
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use the basic trigonometric identities so that

det(An) = det


2 sin θ1

2
cos θ1

2
· · · 2 sin θn

2
cos θn

2

· · · · · · · · ·

2 sin θ1
2

cos (2n−1)θ1
2

· · · 2 sin θn
2

cos (2n−1)θn
2



= 2n
( n∏
k=1

sin
θk
2

)
det


cos θ1

2
· · · cos θn

2

· · · · · · · · ·

cos (2n−1)θ1
2

· · · cos (2n−1)θn
2


=: Cn det(B′n).

For k = 1, 2, . . . n − 1, we add the k-th row to the k + 1-th row in B′n, and use the basic

trigonometric identities again so that

det(B′n) = det



cos θ1
2

· · · cos θn
2

2 cos θ1
2

cos θ1 · · · 2 cos θn
2

cos θn

· · · · · · · · ·

2 cos θ1
2

cos(n−1)θ1 · · · 2 cos θn
2

cos(n−1)θn


= 2n−1

( n∏
k=1

cos
θk
2

)
det(Bn)

Combining the calculations above we prove (3.3).

As for (3.4), we let Tn be the Chebyshev polynomial

Tn(x) =

bn/2c∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k.

Thus, we have Tn(cosx) = cosnx. The coefficient of the leading term, xn in Tn(x) would be
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an = 2n−1. Combining this fact and several elementary row operations, we get

det(Bn) = 2(n−1)(n−2)/2 det



1 · · · 1

cos θ1 · · · cos θn

· · · · · · · · ·

(cos θ1)n−1 · · · (cos θn)n−1


= 2(n−1)(n−2)/2

∏
1≤k<l≤n

(cos θl − cos θk).

The last equation comes from the determinant formula for Vandermonde martix.

3.3 A density estimate

In this section, we prove a generalization of the McGehee–Pigno–Smith theorem [135], based

on the ideas given by Bourgain [28]. Recall that the weak Littlewood problem [88] is to ask

to estimate

I(N) := min
A⊆Z,|A|=N

∫
R/Z

∣∣∣∑
n∈A

einx
∣∣∣dx.

The conjecture, I(N) � logN , is resolved by McGehee, Pigno, and Smith [135], and inde-

pendently by Konyagin [116]. The analogous question in discrete setting is also well studied,

we refer to [77, 150, 154] for the interested readers.

Let N1 be the set of natural numbers that only contains prime factors at least Q, where

Q � (logN)100 is a prime. We will use the following lemma from [28, Section 5].

Lemma 3.6. Let A be a finite subset of Z+ with |A| = N . For all R ≥ 1, we define

AR = {m ∈ A : m < R}.

Also, we use ProjR
∑
ake

ikx to denote the truncated sum
∑
|k|≤R ake

ikx. Assume |an| ≤ 1
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and Q > (logN)20. Then there is an absolute big constant C, such that

∥∥∥∥∥ProjR
∑

n∈N1,m∈A

an
n
eimnx

∥∥∥∥∥
2

< CP−1/15|AR|1/2.

Now we are able to prove our technical lemma. The proof basically follows the arguments

in [135] and [28].

Lemma 3.7. Let B = {m1, . . . ,mM} be a finite subset of N>0 and let Q > (logN)100.

Assume that w : N>0 → C is a weight. Then there exists a function Φ(x) with ‖Φ‖∞ < 10

such that ∣∣∣∣〈 M∑
j=1

eimjxw(mj),Φ(x)

〉∣∣∣∣� M∑
j=1

|w(mj)|
j

; (3.5)

while for any β ∈ Z,

∣∣∣∣〈 ∑
n∈N1,m∈B

an
n
eiβmnx,Φ(x)

〉∣∣∣∣ ≤ C(logM)−2. (3.6)

Here c, C are two absolute constants.

Proof. Let k0 be the largest natural number that 106k0 < M . We group B into disjoint

subsets {Bk}k0
k=0 such that for 0 ≤ k ≤ k0 − 1, |Bk| = 106k. Here B0 = {m1}, B1 =

{m2, . . . ,m106+1}, · · · , and Bk0 = A \ (
⋃
k≤k0−1Bk). From the construction we know |Bk0 | �

106k0 . Let τ : N>0 → S1 be the argument function that τ(m)w(m) ≥ 0. For each Bk, we

define

P̃k =
1

|Bk|
∑
m∈Bk

eimxτ(m).

Let Ik = [ak, bk] be the interval with ak = min{m : m ∈ Bk}, bk = max{m : m ∈ Bk}, and

let ξk be the center of Ik. We also define

Pk = P̃k ∗
(
eiξkxF|Ik|

)
,
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where FC =
∑
|m|≤C

C−|m|
C

eimx is the C-Féjer kernel. Consequently,

supp(P̂k) = supp(
̂̃
Pk) ⊂ Ik, (3.7)

and for any m ∈ Bk

w(m)P̂k(m) > 10−6k−1|w(m)|.

This shows that the functions Pk are good test functions. However, the function
∑

k Pk(x)

has one drawback: It is not distributed evenly on the torus. That is, the L∞-norm
∑

k Pk(x)

is comparably large.

To overcome this difficulty, for each Pk, we construct a function Qk serving as a “compen-

sator”. Specifically, let H be the Hilbert transform in L2(R/Z) that Ĥf(n) = −isgn(n)f̂(n),

so that when f is a real-valued function, Hf is also real-valued. We define

Qk =
(
e−(|P̃k|−iH[|P̃k|])

)
∗ F|Ik|. (3.8)

Since the Fourier series of e−(|P̃k|−iH[|P̃k|]) is supported in non-positive integers,

supp
(
Q̂k

)
⊂ [−|Ik|, 0]. (3.9)

Using the inequality that |e−z − 1| ≤ |z| if z ∈ C and Re(z) ≥ 0, we can easily prove

‖1−Qk‖2 ≤ ‖P̃k‖2 +
∥∥H[|P̃k|]

∥∥
2
< 2|Bk|−1/2. (3.10)

Thus, Qk is approximately the identical function. In fact, |Qk| is relatively small when |Pk|

is relatively large, so Qk can help us “mollify” the function Pk.

We will use the functions Pk, Qk to construct our test function Φ. In specific, we set
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Φ0 = P0 and set

Φk = QkΦk−1 + Pk, 1 ≤ k ≤ k0. (3.11)

Define Φ = Φk0 , which has the explicit formula

Φ = Pk0 + Pk0−1Qk0 + Pk0−2Qk0−1Qk0 + · · ·+ P0Q1 · · ·Qk0 . (3.12)

We claim ‖Φ‖∞ < 10. To see this, we first recall the basic inequality: a
10

+ e−a ≤ 1 if

a ≥ 0. Then, observing |P0| = 1 and

∥∥∥ 1

10
|Pk|+ |Qk|

∥∥∥
∞
≤
∥∥∥( 1

10
|P̃k|+ e−|P̃k|

)
∗ F|Ik|

∥∥∥
∞
≤
∥∥∥ 1

10
|P̃k|+ e−|P̃k|

∥∥∥
∞
≤ 1,

we argue inductively using (3.11) to conclude our claim.

Next, we will verify (3.5). We will prove that for any m ∈ Bk,

∣∣Φ̂(m)− P̂k(m)
∣∣ ≤ 10−1

∣∣P̂k(m)
∣∣ =

1

10|Bk|
. (3.13)

In fact, using the support condition (3.9) and the equation (3.12), we have

Φ̂(m)− P̂k(m) = P̂k0(m) + P̂k0−1 ∗ Q̂k0(m) + · · ·+ P̂k ∗ (1− (Qk0 · · ·Qk+1)∧)(m),

which, combining the support condition of P̂k in (3.7), equals to

k0−1∑
j=k

P̂j ∗ (1− (Qk0 · · ·Qj+1)∧)(m).

We estimate the above quantity using the equality

1−Qk+1 · · ·Qk0 = (1−Qk+1) +Qk+1(1−Qk+2) + · · ·+ (1−Qk0)Qk+1 . . . Qk0−1,
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so that

|Φ̂(m)− P̂k(m)| =
∣∣∣∣ k0−1∑
j=k

P̂j ∗ (1− (Qk0 · · ·Qj+1)∧)(m)

∣∣∣∣ ≤ k0−1∑
j=k

‖Pj‖2

k0−1∑
l=j

‖1−Ql‖2.

Since ‖Pj‖2 ≤ |Bj|−1/2 and since (3.10), the right hand side of the above inequality can be

bounded as
k0−1∑
j=k

‖Pj‖2

k0−1∑
l=j

‖1−Ql+1‖2 ≤ 2

k0−1∑
j=k

10−3j

k0−1∑
l=j

10−3(l+1),

which implies what we need that

|Φ̂(m)− P̂k(m)| ≤ 10−3k−2 ≤ 10−1|P̂k(m)|.

As a consequence of (3.13), for any m ∈ Bk,

Re(wΦ̂)(m) >
1

2
w(m)P̂k(m) ≥ 10−6k−1|w(m)|.

We use the above inequality to sum up all m ∈ B to get

∣∣∣∣〈 M∑
j=1

eimjxw(mj),Φ(x)

〉∣∣∣∣ ≥ M∑
j=1

Re(wΦ̂)(mj)�
M∑
j=1

|w(mj)|
j

,

and this gives (3.5).

Finally, we remark that the proof of (3.6) is given in [108]. At this point, we complete

the proof of the lemma.

As an application of Lemma 3.7, we have the following corollary:

Corollary 3.8. Let B = {m1, . . . ,mM} be a finite subset of N>0 and let Q > (logN)100.

Recall that N is the set of natural numbers that only contains prime factors at least Q.
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Assume |an| ≤ 1. Then for any Γ ⊂ Z with |Γ| ≤ logM , we have

∥∥∥∥∥
M∑
j=1

eimjxw(mj) +
∑

n∈N1,m∈B

(∑
β∈Γ

an
n
eiβmnx

)∥∥∥∥∥
1

≥ c

M∑
j=1

|w(mj)|
j

− o(1).

Proof. We apply Lemma 3.7 to obtain a function Φ(x) satisfying (3.5) and (3.6). Then

∥∥∥∥∥
M∑
j=1

eimjxw(mj) +
∑

n∈N1,m∈B

(∑
β∈Γ

an
n
eiβmnx

)∥∥∥∥∥
1

‖Φ‖∞

≥
∣∣∣〈 M∑

j=1

eimjxw(mj),Φ(x)
〉∣∣∣−∑

β∈Γ

∣∣∣〈 ∑
n∈N1,m∈B

an
n
eiβmnx,Φ(x)

〉∣∣∣
> c

M∑
j=1

|w(mj)|
j

− o(1),

as desired.

3.4 (k, `)-sum-free open sets in the torus

In this section, we use µT as the Haar probability measure on T.

Proposition 3.9. Let A ⊆ T be a (k, `)-sum-free open set. Then µT(A) ≤ 1
k+`

.

Proof. Since A is (k, `)-sum-free, we have kA∩ `A = ∅. In particular, µT(kA)+µT(`A) ≤ 1.

By Kneser’s inequality [115],

(k + `)µT(A) ≤ µT(kA) + µT(`A) ≤ 1,

which implies that µT(A) ≤ 1/(k + `).

Next, we construct some largest (k, `)-sum-free open sets in T. When k − ` ≥ 2, our

construction is asymmetric, which will help us get a better lower bound on M(k,`)(N). We

will discuss this in details in the next section.
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Lemma 3.10. Let k, ` be two positive integers and k > `. For every integer t ∈ [k − `], set

Ωt =
(
t−1
k−` + `

k2−`2 ,
t−1
k−` + k

k2−`2
)
. Then Ωt is (k, `)-sum-free.

Lemma 3.10 is easy to verify, and we omit the details here. When k = `+1, the following

observation shows that all the possible (k, `)-sum-free open sets with maximum measure are

symmetric. Thus one cannot apply the method used in the next section to improve the lower

bound for the cases k = `+ 1.

Lemma 3.11. Let k = `+ 1. Suppose A ⊆ T is a maximum (k, `)-sum-free open set. Then

A is symmetric.

Proof. Since k = ` + 1, A is (k, `)-sum-free implies that (`A − `A) ∩ A = ∅. Hence A ⊆

T \ (`A− `A). By Kneser’s inequality,

µT(T \ (`A− `A)) ≤ 1− 2`µT(A).

By Proposition 3.9, µT(A) = 1
2`+1

. Thus A = T \ (`A − `A), and this implies that A is

symmetric.

Using the argument by Erdős [59], Lemma 3.10 is able to give us the following lower bound

on the maximum (k, `)-sum-free subsets of any set of N integers, which proves Theorem 3.3

(i).

Proposition 3.12. Let k, ` be positive integers and k > `. Then for every A ⊆ N>0 of size

N , A contains a (k, `)-sum-free subsets of size at least 1
k+`

N .

Proof. Let Ωt be as in Lemma 3.10, and let 1Ω be the characteristic function of Ω in T.

Thus by Fubini’s Theorem,

∫
T

∑
n∈A

1Ω(nx)dµT(x) =
∑
n∈A

∫
T
1Ω(nx)dµT(x) =

N

k + `
.
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Therefore, by Pigeonhole principle, there exists x ∈ T such that

|{n ∈ A | nx ∈ Ω}| ≥ N

k + `
,

finishes the proof.

3.5 Lower Bounds

Let k, ` be two positive integers with k− ` ≥ 2. Let I = {1, . . . , k− `} be the index set. Set

Ωt =
( t− 1

k − `
+

`

k2 − `2
,
t− 1

k − `
+

k

k2 − `2

)
,

for every t ∈ I. Let 1Ωt be the indicator function of Ωt. Given A ⊆ N>0 of size N , let M(A)

be the size of the maximum (k, `)-sum-free subset of A. We have

M(A) ≥ max
x∈T

∑
n∈A

1Ωt(nx), (3.14)

since Ωt is (k, `)-sum-free for every t. Then

max
x∈T

∑
n∈A

1Ωt(nx) =
N

k + `
+ max

x∈T

∑
n∈A

(
1Ωt −

1

k + `

)
(nx), (3.15)

for every t ∈ I. We introduce a balanced function ft : T→ C defined by ft = 1Ωt − 1
k+`

. By

orthogonality of characters we have

f̂t(n) =


0 if n = 0,

1̂Ωt(n) else.
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By Fourier inversion, when n > 0,

f̂t(n) =

∫
T
1Ωt(x)e(−nx)dµ(x)

=
1

2πin

(
− e
(
− (t− 1)n

k − `
− nk

k2 − `2

)
+ e
(
− (t− 1)n

k − `
− n`

k2 − `2

))
.

Simplify f̂t(n) as

f̂t(n) =
1

2πn
e
((2t− 1)n

2(k − `)

)(
sin(

2knπ

k2 − `2
− πn

k − `
)− sin(

2`nπ

k2 − `2
− πn

k − `
)
)

=
1

πn
e
((2t− 1)n

2(k − `)

)
sin
( nπ

k + `

)
.

Hence, for every t ∈ I we have

ft(x) =
∑
n6=0

f̂1(n)e(nx) =
∑
n 6=0

1

πn
e
((2t− 1)n

2(k − `)

)
sin
( nπ

k + `

)
e(nx).

Let F (x) :=
∑

t∈I ft(x). The sine terms cancel when summing up t as

k−∑̀
t=1

sin
((2t− 1)nπ

k − `

)
= 0,

so we get

F (x) =
1

π

∑
n≥1

1

n
sin
( nπ

k + `

)
α(n)

(
e(nx) + e(−nx)

)
,

where α(n) : Z→ C is defined by

α(n) =
∑
t∈I

cos
((2t− 1)nπ

k − `

)
=


0 when (k − `) - n,

(−1)s(k − `) when n = (k − `)s.
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Therefore, we have

F (x) =
2

π

∑
n≥1

(−1)n

n
sin
((k − `)nπ

k + `

)
cos(2π(k − `)nx). (3.16)

In the rest of the section, we let k − ` be an even integer. Set

I1 = {1, . . . , (k − `)/2}, I2 = {(k − `)/2 + 1, . . . , k − `}.

We define a (k−`
2
× k−`

2
)-matrix D = (dij), such that

dij = sin
(i(2j − 1)π

k − `

)

for every i, j ∈ I1.

Let λ = (λ1, . . . , λ(k−`)/2) be a vector. By Lemma 3.5, there is λ ∈ R(k−`)/2, with

|λi| ≤ kk, such that DλT = (0, . . . , 0, 1)T . Fix this λ, and let

G(x) =
∑
j∈I1

λjfj(x)−
∑
t∈I2

λk−`+1−tft(x).

Observe that for any n ∈ N>0,

∑
t∈I1

λt cos
((2t− 1)nπ

k − `

)
=
∑
t∈I2

λk−`+1−t cos
((2t− 1)nπ

k − `

)
.

As a result, we have

G(x) =
1

π

∑
n≥1

1

n
sin
( nπ

k + `

)
β(n) sin(2πnx),
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where

β(n) =
∑
j∈I2

λk−j sin
((2j − 1)nπ

k − `

)
−
∑
t∈I1

λt sin
((2t− 1)nπ

k − `

)

=


0 when n 6= k−`

2
(2s− 1),

2(−1)s+1 when n = k−`
2

(2s− 1).

Therefore, we get

G(x) =
2

π(k − `)
∑
n≥1

γ(n)

n
sin
((k − `)nπ

2(k + `)

)
sin(π(k − `)nx), (3.17)

where γ(n) = β((k − `)n/2). We now split the proof into two cases.

3.5.1 Proof of Theorem 3.3 (ii)

Now we have k = 5`. On one hand, by equation (3.16), we have

F (x) = −
√

3

π

∑
n≥1

ψ(n)

n
cos(8π`nx),

where

ψ(n) =


1 when n ≡ 1, 2 (mod 6),

−1 when n ≡ 4, 5 (mod 6),

0 otherwise.
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Note that ψ(n) is not a multiplicative function. Using the Möbius function µ, we define a

weighted Möbius function η that

η(n) =


µ(n) when n ≡ 1, 4 (mod 6),

−µ(n) when n ≡ 2, 5 (mod 6),

0 otherwise.

Set P � (logN)100 a prime. Let M1 be the set of square-free integers such that for every

n ∈M1 we have 3 - n, all the prime factors of n are at most P , and we further require that

1 ∈M1. Then, we have

∑
m∈M1

η(m)

m
F (mx) = −

√
3

π

∑
n≥1

1

n
cos(8π`nx)

∑
m∈M1,m|n

η(m)ψ
( n
m

)
,

where

∑
m∈M1,m|n

η(m)ψ
( n
m

)
=

∑
m∈M1,m|n

2-m

η(m)ψ
( n
m

)
+

∑
m∈M1,m|n

2|m

η(m)ψ
( n
m

)
=: I1 + I2.

Note that I1 + I2 = 0 when 3 | n. Also, recall that N is the set defined in Section 3.3 that

contains integers only having prime factors at least P . It follows that for any odd integer

n 6∈ N with 3 - n,

∑
m∈M1,m|n

η(m)ψ
( n
m

)
= ψ(n)

∑
m∈M1,m|n

µ(m) = 0. (3.18)

As a consequence, when n is an odd integer with n 6∈ N , we have I1 = I2 = 0, unless

n = 1; When n is an even integer with n/2 6∈ N and n 6= 2d, we have I1(n) = 0 and

67



I2(n) = I1(n/2) = 0. When n = 2d, we have

I1 + I2 = ψ(2d) + ψ(2d−1) =


2 when d = 1,

0 when d > 1.

Therefore,

∑
m∈M1

η(m)

m
F
(mx

4

)
= −
√

3

π

(
cos(2π`x) + cos(4π`x) +

∑
n∈N

ψ(n)

n
cos(2π`nx) +

∑
n∈2·N

ψ(n) + ψ(n/2)

n
cos(2π`nx)

)
,

On the other hand, by equation (3.17), we get

G(x) =

√
3

π

∑
n≥1

π(n)

n
sin(4π`nx),

where

π(n) =


1 when n ≡ ±1 (mod 12),

−1 when n ≡ ±5 (mod 12),

0 otherwise.

Note that π(n) is a multiplicative function. Let M be the set of square-free integers such

that for every n ∈ M, all the prime factors of n are at most P , and 1 ∈ M. Thus by the

basic properties of the Möbius function, we have

∑
m∈M

µ(m)π(m)

m
G(mx) =

√
3

π(k − `)
∑
n≥1

π(n)

n
sin(4π`nx)

∑
m∈M,m|n

µ(m)

=

√
3

π(k − `)

(
sin(4π`x) +

∑
n∈N

π(n)

n
sin(4π`nx)

)
.
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Now we are going to apply Corollary 3.8 to obtain a lower bound of M(A). Let

π′(n) =


π(n) when 2 - n,

π(n/2) when 2 | n and 4 - n,

0 otherwise,

and let

ψ′(n) =


ψ(n) when 2 - n,

ψ(n) + ψ(n/2) when 2 | n and 4 - n,

0 otherwise.

We have

logN

�

∥∥∥∥∥∑
m∈A

(
cos(2π`mx) + cos(4π`mx) + i sin(2π`mx) + i sin(4π`mx)

)
+
∑
m∈A

∑
n∈N∪(2·N )

1

n

(
ψ′(n) cos(2π`mnx) + iπ′(n) sin(2π`mnx)

)∥∥∥∥∥
L1(T)

�

∥∥∥∥∥ ∑
t∈M1

η(t)

t

∑
m∈A

F
(tmx

4

)∥∥∥∥∥
L1(T)

+

∥∥∥∥∥∑
t∈M

µ(t)π(t)

t

∑
m∈A

G
(tmx

2

)∥∥∥∥∥
L1(T)

+

∥∥∥∥∥∑
t∈M

µ(t)π(t)

t

∑
m∈A

G(tmx)

∥∥∥∥∥
L1(T)

�
∑
t∈M1

∣∣∣∣η(t)

t

∣∣∣∣∥∥∥∥∑
m∈A

F (mx)

∥∥∥∥
L1(T)

+ 2
∑
t∈M

∣∣∣∣µ(t)π(t)

t

∣∣∣∣
∥∥∥∥∥∑
m∈A

G(mx)

∥∥∥∥
L1(T)

�
∏
p≤P

(
1 +

1

p

)( k−∑̀
t=1

∥∥∥∥∑
m∈A

ft(mx)

∥∥∥∥
L1(T)

+ 2
∑

t∈I1∪I2

λt

∥∥∥∥∑
m∈A

ft(mx)

∥∥∥∥
L1(T)

)
.
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By Mertens’ estimates we get

∏
p≤P

(
1 +

1

p

)
� logP � log logN.

Hence there is t ∈ I such that
∥∥∑

m∈A ft(mx)
∥∥
L1(T)

� logN
log logN

.

Note that, ∫
T

∑
n∈A

ft(nx)dx = 0.

Thus we have

max
x∈T

∑
n∈A

ft(nx) ≥ 1

2

∥∥∥∥∑
n∈A

ft(nx)

∥∥∥∥
L1(T)

.

Together with (3.14) and (3.15), we get

M(A)− N

k + `
� logN

log logN
,

and this proves Theorem 3.3 (ii).

3.5.2 Proof of Theorem 3.3 (iii)

Let u be an even integer, and let t = u/2 in this subsection. Consider the following matrix

X =



sin(π/u) sin(3π/u) · · · sin((2t− 1)π/u)

sin(2π/u) sin(6π/u) · · · sin(2(2t− 1)π/u)

· · · · · · · · · · · ·

sin(tπ/u) sin(3tπ/u) · · · sin(t(2t− 1)π/u)


.

By Lemma 3.5, there is α ∈ Rt, with |αi| ≤ tt, such that XαT = (−1, . . . , 0, 0)T .

For each odd integer v ranging from the interval [1, u), define Pv to be an infinite collection

of pairs (kv, `v) of positive integers such that kv = (u+v)`v/(u−v). Let F(k,`)(x) and G(k,`)(x)

be the function constructed in (3.16) and (3.17) with respect to the pair (k, `). Note that in
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the current constructions, for every (k1, `1), (k2, `2) ∈ Pv, we have

F(k1,`1)

( x

k1 − `1

)
= F(k2,`2)

( x

k2 − `2

)
,

and we denote the above function by Fv(x) since it only depends on v. Similarly, we also

have

(k1 − `1)G(k1,`1)

( x

k1 − `1

)
= (k2 − `2)G(k2,`2)

( x

k2 − `2

)
,

and we denote the above function by Gv(x).

Let F (x) = (F1(x), F3(x), . . . F2t−1(x)) , and we construct

F (x) := F (x)αT =
2

π

∑
n≥1

Φ(n)

n
cos(2πnx),

where

Φ(n) :=


1 when n ≡ 1, u− 1 (mod 2u),

−1 when n ≡ u+ 1,−1 (mod 2u),

0 otherwise,

since in this case kv − `v is always even for every (kv, `v) in Pv. Note that Φ(n) is a

multiplicative function. Let M be the set of square-free integers that only contains prime

factors at most P and 1 ∈M, hence we have

∑
m∈M

Φ(m)µ(m)

m
F (mx) =

2

π

(
cos(2πx) +

∑
n∈N

Φ(n)

n
cos(2πnx)

)
.
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Similarly, we consider the matrix

Y =



sin(π/2u) sin(3π/2u) · · · sin((2t− 1)π/2u)

sin(3π/2u) sin(9π/2u) · · · sin(3(2t− 1)π/2u)

· · · · · · · · · · · ·

sin((2t− 1)π/2u) sin(3(2t− 1)π/2u) · · · sin((2t− 1)2π/2u)


.

By Lemma 3.5, there is β ∈ Rt, with |βi| ≤ tt, such that Y βT = (1, . . . , 0, 0)T . Let

G(x) = (G1(x), G3(x), . . . , G2t−1(x)) , and we construct

G(x) := G(x)βT =
2

π

∑
n≥1

Ψ(n)

n
sin(2πnx),

where

Ψ(n) :=


1 when n ≡ ±1 (mod 4u),

−1 when n ≡ ±(2u− 1) (mod 4u),

0 otherwise.

We also have Ψ(n) is a multiplicative function. Hence

∑
m∈M

Ψ(m)µ(m)

m
G(mx) =

2

π

(
sin(2πx) +

∑
n∈N

Ψ(n)

n
sin(2πnx)

)
.

Finally, we apply Corollary 3.8. Using a similar computation employed in Section 3.5.1,

we obtain that

max
{∥∥∥∑

m∈A

F (mx)
∥∥∥
L1(T)

,
∥∥∥∑
m∈A

G(mx)
∥∥∥
L1(T)

}
� logN

log logN
.

This implies there is an odd integer v ∈ [1, u) such that

max
{∥∥∥∑

m∈A

Fv(mx)
∥∥∥
L1(T)

,
∥∥∥∑
m∈A

Gv(mx)
∥∥∥
L1(T)

}
� logN

log logN
.
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Therefore, from a similar argument we used in Section 3.5.1, we can conclude that the size

of the maximal (kv, `v)-sum-free subset of A for every (kv, `v) ∈ Pv is at least

N

kv + `v
+ c

logN

log logN

for some positive c. This proves Theorem 3.3 (iii).

3.6 Structure of infinite (k, `)-sum-free sets

Given A ⊆ N>0, the upper density of A is defined as

d(A) = lim sup
N→∞

|A ∩ [N ]|
N

.

We also define the upper density on multiples of A by

d̃(A) = lim sup
N→∞

lim sup
n→∞

|A ∩ (N ! · [n])|
n

.

In this section, we will prove the following theorem, which will be used in the next section

when constructing the upper bound estimate for Theorem 1 (iv).

Theorem 3.13. Suppose that A ⊆ N>0, and A is (k, `)-sum-free. Then d̃(A) ≤ 1
k+`

.

We break the proof of this theorem into three lemmas. The first lemma says that if a

(k, `)-sum-free set A contains a certain long arithmetic progression, then the upper density

of A is bounded.

Lemma 3.14. Let A ⊆ N>0 be a (k, `)-sum-free set. Let x, s, d,m be positive integers, such

that s ∈ `A− (k − 1)A, x+ d · [m] ⊆ A, and s is in the coset x+ d · Z. Then

d(A) ≤ m+ k + `− 2

(k + `)m+ 2(k + `− 2)
.
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Proof. Since s ∈ `A−(k−1)A and A is (k, `)-sum-free, we have s /∈ A. We will only consider

s ≤ x, and the case when s ≥ x+m follows from the same proof. Since x+d · [m] ⊆ A, then(
x+d · [m]

)
∩
(
`A−(k−1)A

)
= ∅. Thus, there is s0 ∈ x+d ·Z, such that s0 ∈ `A−(k−1)A,

and (
s0 + d · [m]

)
∩
(
`A− (k − 1)A

)
= ∅. (3.19)

Let s0 =
∑`

i=1 ai −
∑k−1

j=1 bj, where ai, bj ∈ A for every 1 ≤ i ≤ ` and 1 ≤ j ≤ k − 1.

Let B ⊆ A such that

B := {b ∈ A |
(
b+ d · [m]

)
∩ A 6= ∅}.

Set a0 = b0 = 0. Given integers 1 ≤ u ≤ k − 1 and 2 ≤ v ≤ `, let

C(u) = B +
k−u∑
j=1

bj + (u− 1)a1, D(v) = B +
`−v∑
j=0

aj +
v−1∑
i=0

bi,

and C(k) = A + (k − 1)a1, D(1) = A +
∑`−1

j=1 aj. Let F = {C(u),D(v) | u ∈ [k], v ∈ [`]} be

the collection of all C(u) and D(v).

Claim 2. Elements in F are pairwise disjoint.

Proof of Claim 2. Observe that for every u ∈ [k] and v ∈ [`], C(u) ∩ D(v) = ∅. Otherwise,

we will get kA∩ `A 6= ∅, contradicts that A is (k, `)-sum-free. Let u1, u2 ∈ [k] and u1 < u2.

Suppose that C(u1) ∩ C(u2) 6= ∅. Then there exist y1 ∈ B and y2 ∈ A, such that

y1 +

k−u1∑
j=k−u2+1

bj = y2 + (u2 − u1)a1.

Then

s0 =
∑̀
i=1

ai −
k−1∑
j=1

bj
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= y1 +
∑̀
i=2

ai − y2 − (u2 − u1 − 1)a1 −
∑

j∈[1,k−u2]∪[k−u1+1,k−1]

bj.

Since y1 ∈ B, thus there is r ∈ [m] such that y1+rd ∈ A. This implies s0+rd ∈ `A−(k−1)A,

contradicts (3.19).

Suppose D(v1) ∩ D(v2) 6= ∅ for some v1, v2 ∈ [`] and v1 < v2. Similarly, there exist

y1 ∈ A and y2 ∈ B, such that

y1 +

`−v1∑
j=`−v2+1

aj = y2 +

v2−1∑
i=v1

bi.

Let c0 = 0, and let c1, . . . , cv2−v1−1 ∈ A if v2 > v1 + 1. Therefore

s0 = y2 +
∑

j∈[0,`−v2]∪[`−v1+1,`]

aj +

v2−v1−1∑
t=0

ct − y1 −
∑

i∈[0,v1−1]∪[v2,k−1]

bi −
v2−v1−1∑
t=0

ct.

Observe y2 ∈ B implies that there is r ∈ [m], such that y2 + rd ∈ A. Hence s0 + rd ∈

`A− (k − 1)A, which contradicts (3.19). 1

By Claim 2, we obtain

(k + `− 2)d(B) + 2d(A) ≤ 1. (3.20)

On the other hand, let N (t) = A \B + td for every t ∈ [m], and let

G =
{
A,A− (k − 1)x+

`−1∑
i=1

ai,N (t)
∣∣∣ t ∈ [m]

}
.

Claim 3. Elements in G are pairwise disjoint.

Proof of Claim 3. Suppose there are u, v ∈ [m], u < v, such that N (u)∩N (v) 6= ∅. Thus we

have c ∈ A \B such that c1 + (u− v)d ∈ A, and this contradicts the assumption of B. Same

conclusion holds if A∩N (u) 6= ∅. Observe that if A∩ (A− (k− 1)x+
∑`−1

i=1 ai) 6= ∅, it will

contradict that A is (k, `)-sum-free. Finally, we assume that there are c1, c2 ∈ A, u ∈ [m]
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such that

c1 + ud = c2 − (k − 1)x+
`−1∑
i=1

ai.

Thus, c1 + x + ud + (k − 2)x = c2 +
∑`−1

i=1 ai. Since x + d · [m] ⊆ A, this contradicts A is

(k, `)-sum-free. 1

Thus, by Claim 3, we get

(m+ 2)d(A)−md(B) ≤ 1.

Together with (3.20), this finishes the proof.

The next lemma is a finite version of the Szemerédi Theorem [158], and we will use it to

find the arithmetic progression in Lemma 3.14.

Lemma 3.15 ([158]). For every ε > 0 and m ∈ N>0, there is L = L(ε,m) > 0 such that

every set A ⊆ N>0 with d(A) > ε, there exist x ∈ N, d < L, and x+ d · [m] ⊆ A.

Our final lemma says that a (k, `)-sum-free set A with large upper density should be

periodic. This structural result can be viewed as a generalization of the  Luczak–Schoen

Theorem [127].

Lemma 3.16. Let ε > 0. Then there is D > 0 such that the following holds. Let A ⊆ N>0 be

a (k, `)-sum-free set, and d(A) > 1
k+`

+ ε. Then A is contained in a periodic (k, `)-sum-free

set with period D.

Proof. We pick m ∈ N>0 such that

m+ k + `− 2

(k + `)m+ 2(k + `− 2)
<

1

k + `
+ ε. (3.21)

Let L = L(ε,m) be as in Lemma 3.15. Let D = L!. Suppose the lemma fails. Let C ⊆ N>0

be a periodic set with period D, consists of all positive integers in every coset a+D · Z for
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a ∈ A. Thus C is not (k, `)-sum-free. This means, there are a1, . . . , a` and b1, . . . , bk in C

such that
∑`

i=1 ai =
∑k

j=1 bj. Let P be the “(k, `)-sum-free” part of C. That is,

P = C \
(
`C − (k − 1)C

)
.

Set a0 = b0 = 0. For every u ∈ [k] and v ∈ [`], let

M(u) = P +
k−u∑
j=0

bj + (u− 1)a1, N (v) = P +
`−v∑
i=0

ai + (v − 1)b1.

Let F be the collection of all M(u) and N (v).

Claim 4. Elements in F are pairwise disjoint.

Proof of Claim 4. Observe that for every u ∈ [k] and v ∈ [`], M(u) ∩N (v) = ∅. Otherwise

there are p1, p2 ∈ P , such that

p1 = p2 +
`−v∑
i=0

a1 + (v − 1)b−
k−u∑
j=0

bj − (u− 1)a1 ∈ `C − (k − 1)C,

contradicts the assumption of P . Now, suppose u1, u2 ∈ [k], u1 < u2, such that M(u1) ∩

M(u2) 6= ∅. The case that N (v1)∩N (v2) 6= ∅ can be proved in the same way. Thus, there

exist p1, p2 ∈ P , such that

p1 +

k−u1∑
j=k−u2+1

bj = p2 + (u2 − u1)a1.

This implies

0 =
k∑
j=1

bj −
∑̀
i=1

ai = p2 + (u2 − u1 − 1)a1 +
∑

j∈[0,k−u2]∪[k−u1+1,k]

bj −
∑̀
i=2

ai − p1,

hence P ∩ (`C − (k − 1)C) 6= ∅, contradiction. 1
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By Claim 4, we obtain that d(P ) ≤ 1
k+`

. This means, d(A \ P ) ≥ ε. By Lemma 3.15,

A \ P contains a progression x + d · [m], and d < L. By the way we construct P , there are

s1, . . . , s` and t1, . . . , tk−1 in C such that

x+ dm =
∑̀
i=1

si −
k−1∑
j=1

tj.

Hence there are e1, . . . , e` and f1, . . . , fk−1 in A, such that for every i ∈ [`] and j ∈ [k−1], we

have that ei ∈ si+D·Z, and fj ∈ tj+D·Z. Let s =
∑`

i=1 ei−
∑k−1

j=1 fj, thus s ∈ `A−(k−1)A,

and s ∈ x+D · Z. Since d | D, we have s ∈ x+ d · Z. By Lemma 3.14, we have that

d(A) ≤ m+ k + `− 2

(k + `)m+ 2(k + `− 2)
,

and this contradicts (3.21).

Now we can prove the main result of this section.

Proof of Theorem 3.13. Let A/N ! := {a | aN ! ∈ A}. Thus d̃(A) > 0 implies that A/N !

contains a multiple of every natural number. In particular, A/N ! is not contained in

a periodic (k, `)-sum-free set. By Lemma 3.16, d(A/N !) ≤ 1
k+`

. Observe that d̃(A) =

lim supN→∞ d(A/N !), thus d̃(A) ≤ 1
k+`

.

3.7 Upper bound constructions

Recall a Følner sequence in (N, ·) is any sequence Φ : m 7→ Φm of finite non-empty subsets

of N, such that for every a ∈ N,

lim
m→∞

|Φm4(a · Φm)|
|Φm|

= 0.

Følner sequence has been used as some good constructions in many additive combina-
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torics problems, see [139, 100] for example. In this section, we will show that the sets in

Følner sequence will never have large (k, `)-sum-free subsets. In fact, we will prove the

following theorem.

Theorem 3.17. Let Φ = {Φm} be a Følner sequence in (N, ·). Suppose there are infinitely

many m such that Φm has a (k, `)-sum-free set of size at least δ|Φm| for some positive real

number δ ≤ 1. Then there exists a (k, `)-sum-free set A ⊆ N such that d̃(A) ≥ δ.

Theorem 3.3 (iv) follows easily from Theorem 3.17 and Theorem 3.13.

Proof of Theorem 3.17. By passing to a subsequence, we may assume for every Φm ∈ Φ,

there is a (k, `)-sum-free set φm ⊆ Φm, such that |φm|/|Φm| ≥ δ. Let βN be the collection

of ultrafilters, and let U ∈ βN \ N be a non-principal ultrafilter. Let ∗Z =
∏

m→U Z be the

ultrapower of Z. Let Σ be the Loeb σ-algebra on ∗Z. Let µL be the Loeb measure induced

by µm, where µm(X) = |X ∩ Φm|/|Φm| for every X ⊆ Z. Let φ =
∏

m→U φm be the internal

set. Then by  Loś’s Theorem, φ is (k, `)-sum-free, and

µL(φ) = st
(

lim
m→U

µm(φm)
)
≥ δ.

Claim 5. For every a ∈ N, the map x 7→ ax is Σ-measurable and µL-preserving.

Proof of Claim 5. Note that x 7→ ax sends internal sets to internal sets, thus it is Σ-

measurable. For every X ⊆ Z, since

µm(X)− µm(a ·X) =
|X ∩ Φm| − |(a ·X) ∩ Φm|

|Φm|
≤ |(a · Φm)4Φm|

|Φm|
→ 0

as m→∞, it preserves the Loeb measure µL. 1

Now we are able to apply the probabilistic argument used in the proof of Proposition 3.9

on the set φ. For every x ∈ ∗Z \ {0}, let Ax := {a ∈ N | ax ∈ φ}. Thus Ax is (k, `)-sum-free.

By Claim 5, d̃(Ax) is Σ-measurable on x. Suppose x is chosen uniformly at random with
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respect to the measure µL. By Fatou’s Lemma,

E(d̃(Ax)) ≥ lim sup
N→∞

lim sup
n→∞

E
(
|Ax ∩ (N ! · [n])|

n

)
= lim sup

N→∞
lim sup
n→∞

1

n

n∑
j=1

P(jN !x ∈ φ).

By Claim 5, we have

E(d̃(Ax)) ≥ lim sup
N→∞

lim sup
n→∞

1

n

n∑
j=1

P(x ∈ φ) = µL(φ) ≥ δ.

Thus by Pigeonhole Principle, there exists a set Ax ⊆ N for some x ∈ ∗Z \ {0} such that

d̃(Ax) ≥ δ.

3.8 Restricted (k, `)-sum-free sets

In this section, we prove Theorem 3.4. Since restricted (k, `)-sum-free can be expressed by

first order formula, once we prove the conclusion in Theorem 3.13 also works for restricted

(k, `)-sum-free sets, Theorem 3.4 follows by using the same proof in Theorem 3.17. More

precisely, in the proof of Theorem 3.17, if Ax = {a ∈ N | ax ∈ φ} is not restricted (k, `)-

sum-free for some x ∈ ∗Z \ {0}, since the map a 7→ ax is injective, we also have that φ is

not restricted (k, `)-sum-free.

We first consider the analogue of Lemma 3.14 for restricted (k, `)-sum-free sets. The

similar argument also works here, with a different and more involved constructions of sets

C(u), D(v), and N (t), and a more careful analysis. These new constructions will lead a

slightly different structure for the large infinite restricted (k, `)-sum-free sets in Lemma 3.19,

compared to the non-restricted setting.

Lemma 3.18. Let k, ` be positive integers, and ` < k ≤ 2` + 1. Suppose A ⊆ N>0 be a

restricted (k, `)-sum-free set. Define W ⊆ N>0, satisfies that for every w ∈ W , there are
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` distinct elements y1, . . . , y` ∈ A, and k − 1 distinct elements z1, . . . , zk−1 ∈ A, such that

w 6= zi for i ∈ [k − 1], and w =
∑`

j=1 yj −
∑k−1

i=1 zi. Let x, s, d,m be integers, such that

s ∈ W , m > k + `, x+ d · [m] ⊆ A, and s is in the coset x+ d · Z. Then

d(A) ≤ m− 2

(k + `)(m− k − `) + 2(k + `− 2)
.

Proof. s ∈ W implies that s /∈ A since A is restricted (k, `)-sum-free. We only consider

the case when s < x. Since A ∩ W = ∅, there is s0 ∈ x + d · Z such that s0 ∈ W and

(s0 + d · [m])∩W = ∅. Thus there are ` distinct elements a1, . . . , al ∈ A, and k− 1 distinct

elements b1, . . . , bk−1 ∈ A, s0 6= bj for every j ∈ [k − 1], and s0 =
∑`

i=1 ai −
∑k−1

j=1 bj. Let E

consists of k−1 distinct elements e1, . . . , ek−1 ∈ A, and all of them are disjoint from {ai}`i=1,

{bj}k−1
j=1 , {s0} and s0 + d · [m]. Let

A′ = A \
( ⋃̀
i=1

{ai} ∪
k−1⋃
j=1

{bj} ∪ E ∪ {s0} ∪ (s0 + d · [m])
)
. (3.22)

Observe that

(s0 + d · [m]) ∩ {bj}k−1
j=1 = ∅, (3.23)

since bj ∈ W for every j ∈ [k − 1]. Let m′ = m− k − `, we claim that

(s0 + d · [m′]) ∩ {ai}`i=1 = ∅. (3.24)

Otherwise, suppose there is r ∈ [m′] such that s0 + rd = at for some t ∈ [`]. Then

x′ +
k−1∑
j=1

bj = x′ + rd+
∑̀

j=1,j 6=t

aj.

By taking x′ ∈ x+d · [0,m− r], then both x′ and x′+ rd are in A. Since m− r ≥ k+ `, there

is α ∈ [0,m − r] such that x + αd /∈ {bj}k−1
j=1 , and x + (α + r)d /∈ {ai}`i=1. This contradicts

81



that A is restricted (k, `)-sum-free.

Let B = {b ∈ A′ | (b+ d · [m′]) ∩ A 6= ∅}, and let

B′ = B \

((⋃̀
i=1

{ai} ∪ E
)
− d · [m′]

)
.

Let c0 = 0, ci = ai when i ∈ [`], and cj = aj−` when j ∈ [` + 1, k − 1]. For u ∈ [k − 1] and

v ∈ [2, `], let

C(u) = B′ +
k−u∑
j=1

bj +
u−1∑
i=0

ci, D(v) = B′ +
`−v∑
i=0

ai +
v−1∑
j=0

bj,

and C(k) = A′ +
∑k−1

i=0 ci, D(1) = A′ +
∑`−1

i=1 ai. Let F consists of all C(u) and D(v), then

Claim 2 still holds. In fact, suppose there are u1, u2 ∈ [k], u1 < u2 such that C(u1)∩C(u2) 6= ∅

(the case when D(v1) ∩ D(v2) 6= ∅ is simpler). Then there exist y1 ∈ B′, y2 ∈ A′ such that

y1 +

k−u1∑
j=k−u2+1

bj = y2 +

u2−1∑
i=u1

ci.

Let e0 = 0, and e1, . . . , eu2−u1−1 ∈ E if u2 > u1 + 1. If u2 ≤ `, we have

s0 = y1 +
∑

i∈[0,u1−1]∪[u2,`]

ai +

u2−u1−1∑
t=0

et − y2 −
∑

j∈[0,k−u2]∪[k−u1+1,k−1]

bj −
u2−u1−1∑
t=0

et.

If u1 ≥ `+ 1, we get

s0 = y1 +
∑

i∈[0,u1−1−`]∪[u2−`,`]

ai +

u2−u1−1∑
t=0

et − y2 −
∑

j∈[0,k−u2]∪[k−u1+1,k−1]

bj −
u2−u1−1∑
t=0

et.

If u1 ≤ `, u2 ≥ `+ 1, and u2 − u1 + 1 ≤ `,

s0 = y1 +
∑

i∈[u2−`,u1−1]

ai +

u2−u1−1∑
t=0

et − y2 −
∑

j∈[0,k−u2]∪[k−u1+1,k−1]

bj −
u2−u1−1∑
t=0

et.
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If u1 ≤ `, u2 ≥ `+ 1, and u2 − u1 ≥ `. Let e0 = 0, e1, . . . , e`−1 ∈ E if ` > 1. Thus

s0 = y1 +
`−1∑
t=0

et − y2 −
∑

j∈[0,k−u2]∪[k−u1+1,k−1]

bj −
`−1∑
t=0

et −
u2−1−`∑
i=u1

ai.

Note that k ≤ 2`+ 1 implies u2 − 1− ` ≤ `.

In any case, since y1 ∈ B, by (3.22), (3.23), and (3.24), there is r ∈ [m′] such that

s0 + rd ∈ W , which contradicts the assumption of s0. Therefore,

(k + `− 2)d(B) + 2d(A) ≤ 1, (3.25)

since d(A′) = d(A) and d(B′) = d(B).

We also modify the construction of N (t) in a similar way. For every t ∈ [m′], let

N (t) = A′ \ B + td. Let e0 = 0, and e1, . . . , ek−2 ∈ E if k ≥ 3. Let A′′ = A′ \ (x + d · [m′]).

Define

G =
{
N (t), A′, A′′ +

`−1∑
i=1

ai − x−
k−2∑
j=0

ej

∣∣∣ t ∈ [m′]
}

Then by using the similar argument, it is easy to see that Claim 3 still holds. We omit the

details here. We have

(m− k − `+ 2)d(A)− (m− k − `)d(B) ≤ 1,

since d(A′′) = d(A). Together with (3.25), finishes the proof.

Next, we consider the analogue of Lemma 3.16 for restricted (k, `)-sum-free sets. The

structure here is slightly different from the (k, `)-sum-free sets.

Lemma 3.19. Let ε > 0 and let k, ` be positive integers with ` < k ≤ 2` + 1. Then there

is D > 0 such that the following holds. Let A ⊆ N>0 be a restricted (k, `)-sum-free set, and

d(A) > 1
k+`

+ ε. Then after removing at most D(2k+ `) elements from A, it is contained in

a periodic restricted (k, `)-sum-free set with period D.
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Proof. We pick m > k + ` such that

m− 2

(k + `)(m− k − `) + 2(k + `− 2)
<

1

k + `
+ ε. (3.26)

Let L = L(ε,m) be as in Lemma 3.15, and let D = L!. We consider the partition of N into

cosets:

N =
⋃
x∈[D]

x+D · N.

For every x ∈ [D], let Nx = x+D · N, and Ax = A ∩ Nx. Let A′ be a subset of A, obtained

by removing Ax from A when |Ax| < 2k + `. Hence d(A′) = d(A). Next, we are going to

show that A′ is contained in a periodic restricted (k, `)-sum-free set with period D. Suppose

this is not the case. Let

C =
( ⋃
a∈A′

a+D · Z
)
∩ N>0.

Thus C is not restricted (k, `)-sum-free. This means, there are ` distinct elements a1, . . . , a` ∈

C and k distinct elements b1, . . . , bk ∈ C, such that
∑`

i=1 ai =
∑k

j=1 bj. Let P be the “(k, `)-

sum-free” part of C, that for every w ∈ P , every k−1 distinct elements y1, . . . , yk−1 ∈ C\{w},

and every ` distinct elements z1, . . . , z` ∈ C, we have w +
∑k−1

i=1 yi 6=
∑`

j=1 zj. Let e0 = 0,

and let E consists of k − 1 distinct elements e1, . . . , ek−1 ∈ C, such that E is disjoint from

{ai}`i=1 and {bj}kj=1.

P ′ = P \
( ⋃̀
i=1

{ai} ∪
k⋃
j=1

{bj} ∪ E
)
.

Set a0 = b0 = c0 = 0. Let ct = at when t ∈ [`], and ct = at−` when t ∈ [`+ 1, k − 1]. For

every u ∈ [k] and v ∈ [`], let

M(u) = P ′ +
k−u∑
j=0

bj +
u−1∑
t=0

ct, N (v) = P ′ +
`−v∑
i=0

ai +
v−1∑
t=0

bt.

Let F be the collection of all M(u) and N (v). Then elements in F are pairwise disjoint.
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Otherwise, suppose there are u1, u2 ∈ [k], u1 < u2 such that M(u1) ∩M(u2) 6= ∅ (the case

when N (v1) ∩N (v2) 6= ∅ is simpler). Thus, there are y1, y2 ∈ P ′, such that

y1 +

k−u1∑
k−u2+1

bj = y2 +

u2−1∑
t=u1

ct.

Let e1, . . . , eu2−u1−1 ∈ E if u2 > u1 + 1. If u2 ≤ `, we have

0 =
∑̀
i=1

ai −
k∑
j=1

bj

= y1 +
∑

i∈[0,u1−1]∪[u2,`]

ai +

u2−u1−1∑
t=0

et − y2 −
∑

j∈[0,k−u2]∪[k−u1+1,k]

bj −
u2−u1−1∑
t=0

et.

If u1 ≥ `+ 1, we have

0 = y1 +
∑

i∈[0,u1−1−`]∪[u2−`,`]

ai +

u2−u1−1∑
t=0

et − y2 −
∑

j∈[0,k−u2]∪[k−u1+1,k]

bj −
u2−u1−1∑
t=0

et.

If u1 ≤ `, u2 ≥ `+ 1, and ` ≥ u2 − u1, we get

0 = y1 +

u1−1∑
i=u2−`

ai +

u2−u1−1∑
t=0

et − y2 −
∑

j∈[0,k−u2]∪[k−u1+1,k]

bj −
u2−u1−1∑
t=0

et.

If u1 ≤ `, u2 ≥ `+ 1, and ` < u2 − u1. Let e1, . . . , e`−1 ∈ E if ` > 1, we get

0 = y1 +
`−1∑
t=0

et − y2 −
∑

j∈[0,k−u2]∪[k−u1+1,k]

bj −
u2−1−`∑
i=u1

ai −
`−1∑
t=0

et.

In any case, we get a contradiction with the assumption of P ′ and the fact that y2 ∈ P ′.

Therefore,

d(P ) ≤ 1

k + `
,

since d(P ′) = d(P ). This means, d(A′\P ) ≥ ε. By Lemma 3.15, A′\P contains a progression

x+d·[m], and d < L. By the way we construct P , there are ` distinct elements s1, . . . , s` ∈ C
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and k − 1 distinct elements t1, . . . , tk−1 in C \ {x+m} such that

x+m =
∑̀
i=1

si −
k−1∑
j=1

tj.

By the way we construct A′, for every r ∈ [D], if |A′∩Nr| > 0, then |A′∩Nr| ≥ 2k+`. Thus,

there are ` distinct elements α1, . . . , α` ∈ A′ and k − 1 distinct elements β1, . . . , βk−1 ∈ A′,

such that for every i ∈ [`] and j ∈ [k − 1], we have that αi ∈ si +D · Z, and βj ∈ tj +D · Z.

Let s =
∑`

i=1 αi −
∑k−1

j=1 βj. Note that |A′ ∩ Nr| ≥ 2k + ` also implies that there is r′ ∈ [`],

and M ⊆ N>0, |M | ≥ k, such that

αr′ +D ·M ⊆ A′, (αr′ +D ·M) ∩
⋃̀
i=1

{αi} = ∅.

Thus if s ∩ {βj}k−1
j=1 6= ∅, then by changing αr′ by αr′ + nD for some n ∈ M , one can make

s+ nD ∩ {βj}k−1
j=1 = ∅. Since d | D, we have s ∈ x+ d · Z. By Lemma 3.14, we have that

d(A) ≤ m− 2

(k + `)(m− k − `) + 2(k + `− 2)
,

and this contradicts (3.26).

Let A be a restricted (k, `)-sum-free set, and let A′ be a subset of A obtained by removing

finitely many elements from A. Observe that, if A′ is contained in a periodic restricted (k, `)-

sum-free set, then A cannot contain a multiple of every natural number. Thus, using the

same proof in Theorem 3.13, we conclude that d̃(A) ≤ 1
k+`

if A is restricted (k, `)-sum-free.

3.9 Concluding Remarks

In this chapter, we first study M(k,`)(N). In particular, we prove that Conjecture 3.2 is true

for infinitely many (k, `). While solving Conjecture 3.2 might not be a realistic target at
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the moment, the following conjecture for the case when k − ` ≥ 2 might be feasible. This

is because in this case, Lemma 3.10 implies that we have two different asymmetric maximal

(k, `)-sum-free open sets in T, and the technique developed in this chapter might be useful.

Conjecture 3.20. Let k, ` be positive integers and k ≥ ` + 2. Then there is a function

ω(N)→∞ as N →∞, such that

M(k,`)(N) ≥ N

k + `
+ ω(N).

We also study M̂(k,`)(N) in Theorem 3.4. As we can see in the proofs in Section 3.8,

when k > 2` + 1, the current strategy failed to obtain disjoint sets C and D in the proof of

Lemma 3.18, as well as disjoint sets M and N in the proof of Lemma 3.19. Although we

think it is very likely that the conclusion in Theorem 3.4 holds for every k and `, the case

k > 2`+ 1 may require some new ingredients.

Conjecture 3.21. For every positive integers k, ` with k > 2`+ 1,

M̂(k,`)(N) =
( 1

k + `
+ o(1)

)
N.

A (k, `)-sum-free set is a set forbidding a linear equation
∑`

i=1 xi =
∑k

j=1 yj. Another

interesting direction is to consider the analogue problem on sets forbidding a system of

linear equations. One of the most interesting problems along this line might be forbidding

the projective cubes. Given a multiset S = {s1, . . . , sd}, a d-dimensional projective cube

generated by S is

�d(S) :=
{∑

i∈I

si

∣∣∣ ∅ 6= I ⊆ [d]
}
.

A set is �d-free if it does not contain any d-dimensional projective cubes as its subsets.

Extremal properties of projective cubes have a vast literature, see e.g. [2, 61, 86, 126]. The

problem on forbidding d-dimensional projective cubes can be viewed as a generalization of
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sum-free sets in another direction, since a sum-free set is also a �2-free set. Thus, the

following problem is worthwhile to pursue.

Question 3.22. Let d ≥ 3 be an integer. Define

M�d(N) := inf
A⊆N>0

|A|=N

max
B⊆A

B is �d-free

|B|.

Determine M�d(N).
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Chapter 4

A closer look to the largest sum-free
sets

Given A a set of N positive integers. In the last chapter, we have discussed an old conjecture

in additive combinatorics:

Conjecture 4.1 (sum-free conjecture, combinatorial form). There is a function ω(N)→∞

as N →∞, such that

M(2,1)(N) >
N

3
+ ω(N).

The conjecture is generally attacked in the literature by considering another stronger

conjecture:

Conjecture 4.2 (sum-free conjecture, analytic form). Let Ω = (1/3, 2/3) ⊆ T. Then when

N →∞,

max
x∈T

∑
n∈A

(1Ω − 1/3)(nx)→∞.

This analytic conjecture, if true, would also imply that a similar phenomenon occurs for

(2k, 4k)-sum-free sets for every k ≥ 1, though we do not know if these two conjectures are

equivalent. In this chapter, we prove the latter result directly. The new ingredient of our

proof is a structural analysis on the host set A, which might be of independent interest. This

chapter is based on joint work with Wu [107].

4.1 Introduction

In [59], using a probabilistic argument, Erdős showed that M(2,1)(N) ≥ N/3. This argument

is actually not complicated: Let Ω be a maximal sum-free subset of R/Z, then (Ω+Ω)∩Ω =
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∅. By Kneser’s inequality [115], we have an upper bound on |Ω| that |Ω| ≤ 1/3. Now we fix

a maximal sum-free set Ω of measure 1/3 (e.g. (1/3, 2/3)). For any x ∈ R/Z, we let Ax be

the set of integers n in A such that nx ∈ Ω. Then clearly Ax is sum-free, and hence we have

M(2,1)(A) ≥ |Ax| =
∑
n∈A

1Ω(nx),

where 1Ω is the characteristic function of Ω. When x is chosen randomly from R/Z, the

expected size of Ax is N/3, which implies that |Ax| ≥ N/3 for some x. This is actually

the motivation to formulate Conjecture 4.2, which could imply Conjecture 4.1. The lower

bound estimate of maxx∈R/Z
∑

n∈A 1Ω(nx) is later improved to (N +1)/3 by Alon and Kleit-

man [3], and the best estimate up to date is obtained by Bourgain [28], where he showed

that maxx∈R/Z
∑

n∈A 1Ω(nx) ≥ (N + 2)/3.

For (k, `)-sum-free sets, in general, we believe the following should be true, which is a

generalization of Conjecture 4.2 to all (k, `)-sum-free sets.

Conjecture 4.3. There is a function ω(N)→∞ as N →∞, such that for every set A of

N positive integers, there exists a maximal (k, `)-sum-free set Ω(k, `) ⊆ R/Z, and we have

max
x∈R/Z

∑
n∈A

(
1Ω(k,`) −

1

k + `

)
(nx) = ω(N).

Note that if Conjecture 4.2 holds, then this would imply that Conjecture 4.3 holds for

(2k, 4k)-sum-free sets for all k ≥ 1. Hence we believe that the (2k, 4k)-sum-free problem is

one of the most interesting cases of Conjecture 4.3. In this chapter, we prove the (2k, 4k)-

sum-free case without assuming Conjecture 4.2.

Theorem 4.4. For every k ≥ 1, there is a function ω(N) = logN/ log logN , such that for

every set A of N positive integers, there exists a maximal (2k, 4k)-sum-free set Ω(2k, 4k) ⊆

R/Z, and we have

max
x∈R/Z

∑
n∈A

(
1Ω(2k,4k) −

1

6k

)
(nx)� ω(N).
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In particular, there is an absolute constant c > 0, such that

M(2k,4k)(N) ≥ N

6k
+ c ω(N).

We remark that Theorem 4.4 is not enough for the sum-free conjecture. Indeed, let

Ω1 = (1/6, 1/3) and Ω2 = (2/3, 5/6) be two subsets of R/Z. Note that both Ω1 and Ω2 are

(2, 4)-sum-free in R/Z. By Theorem 4.4, one can find two elements x1, x2 ∈ R/Z such that

Ax1 := {n ∈ A : nx1 ∈ Ω1} has at least N/6+ω(N) elements, and Ax2 := {n ∈ A : nx2 ∈ Ω2}

also has at least N/6 + ω(N) elements. Clearly, both Ax1 and Ax2 are (2, 4)-sum-free. If

x1 = x2, the above argument implies the sum-free conjecture since the union of Ω1 and Ω2

is sum-free in R/Z. However, it is possible that x1 6= x2 and thus Ax1 and Ax2 may share

many common elements.

The new ingredients used in proving Theorem 4.4 contain a structural analysis of the

given set A. Recall that a Følner sequence in (N, ·) is a collection of sets of integers {Fn}∞n=1,

such that for every a ∈ N>0,

lim
n→∞

|Fn4 (a · Fn)|
|Fn|

= 0.

Thus, when A is close to a set in a Følner sequence, we expect that |A4 (a · A)| is small

for appropriate a. Inspired by the structure Følner sequences (which is the only known

constructive example whose largest (k, `)-sum-free subsets have cardinality N/(k+`)+o(N),

for all (k, `), see [56, 108]), we split our proof into two cases: when |A4 (a · A)| is small

(close to having multiplicative structures), and when |A4 (a · A)| is large (close to having

additive structures). We mainly consider the case a = 3 here since the Fourier coefficients

appeared in the later proofs contain a multiplicative character mod 3. The first case is

resolved by an application of Littlewood–Paley theorem, and the proof we given also works

for sum-free sets. In the second case, since the main factors in the Fourier coefficients are

not multiplicative, we carefully sieve out small prime factors, and apply a variant of the
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weak Littlewood conjecture. The nontrivial lower bound of ω(N) eventually comes from the

largeness of |A4 (3 · A)|. For convenience, we make the following definition.

Definition 4.5. We say a set A ⊆ Z>0 is a geometric set, if |A4 (3 · A)| � |A|c for an

absolute constant c < 1.

The chapter is organized as follows. In the next section, we deal with the case when

|A4 (3·A)| is small (we actually prove a more general result there). In Section 4.3, we prove

the case when |A4 (3·A)| is large, and finish the proof of Theorem 4.4.

Notation

Given a set A and a positive integer k, we use kA to denote the set {a1 + · · · + ak : ai ∈

A for 1 ≤ i ≤ k}, and use k ·A to denote the set {ka : a ∈ A}. For every θ ∈ R/Z, we write

e(θ) = e2πiθ. We use the standard Vinogradov notation. That is, f � g means f = O(g),

and f � g if f � g and f � g.

4.2 When A is geometric

In this section, we study the size of the largest sum-free sets when the host set A is well-

structured. Let Ω = (1/3, 2/3) ⊆ R/Z, and it is easy to check that Ω is sum-free in R/Z.

Define 1Ω as the characteristic function of Ω, and let f = 1Ω− 1/3 be the balanced function

of 1Ω. By orthogonality of characters we have

f̂(n) =


0 if n = 0,

1̂Ω(n) otherwise.

When n > 0,

f̂(n) =

∫
R/Z

1Ω(x)e(−nx)dx
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=
1

2πin

(
− e
(
− 2n

3

)
+ e
(
− n

3

))
=

1

πn
e
(n

2

)
sin
(nπ

3

)
.

Therefore we obtain

f(x) =
∑
n6=0

f̂(n)e(nx) =
∑
n6=0

1

πn
e
(n

2

)
sin
(nπ

3

)
e(nx)

= −
√

3

π

∑
n≥1

χ(n)

n
cos(2πnx), (4.1)

where χ(n) is a multiplicative character mod 3, that is

χ(n) =


1 when n ≡ 1 (mod 3),

−1 when n ≡ 2 (mod 3),

0 otherwise.

As we mentioned in the introduction,

M(2,1)(A)− N

3
≥ max

x∈R/Z

∑
m∈A

f(mx). (4.2)

In the rest of the section, we are going to estimate maxx
∑

m∈A f(mx) when A has certain

algebraic constrains.

Let P3 be the collection of intervals [3k, 3k+1) ∩ N, where k ≥ 0 is an integer. Let A be

a set of N positive integers. We say that A is (3, c)-lacunary, if there is a subset P ⊂ P3

with |P| � N c, such that each interval in P contains at least one element of A, and the

intervals in P form a cover of A.

When the set A is (3, c)-lacunary, in some sense the distribution of A is not far away

from a union of long geometric progressions, and we expect that approximately there is a

square root cancellation for ‖
∑

m∈A e(mx)‖L1(R/Z). To make this observation rigorous, we
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use the Littlewood–Paley theorem.

Theorem 4.6 (Littlewood–Paley). Let g(x) be the trigonometric series

g(x) =
∞∑
n=1

ane
inx.

For the sequence {an}, we consider the following auxiliary truncated function ∆k defined as

∆k(x) =

nk∑
n=nk−1+1

ane
inx,

where n0 = 0, n1 = 1, nk+1/nk ≥ α > 1. Then for any 1 < p <∞.

∥∥∥∥∥(
∞∑
k=1

|∆k|2
)1/2

∥∥∥∥∥
Lp(R/Z)

≤ Cp,α‖f‖Lp(R/Z).

The proof of the Littlewood–Paley theorem can be found in [171, Chapter XV, Theorem

4.7], and the constant Cp,α was calculated in [27] when α = 2.

The next lemma gives us a key estimate for lacunary sets.

Lemma 4.7. Assume that {an}Nn=1 is (3, c)-lacunary. Define g(x) as

g(x) =
N∑
n=1

eianx.

Then ‖g‖L1(R/Z) � N c/3.

Proof. Let φk be the indicator function of the interval [3k, 3k+1). We denote by ∆k(g) the

Fourier truncation

∆k(g)(x) =
N∑
n=1

φk(an)eianx.
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By the Littlewood–Paley theorem (Theorem 4.6), we have for any 1 < p <∞,

‖g‖Lp(R/Z) ≥ Cp

∥∥∥∥∥(
∞∑
k=0

|∆kg(x)|2
)1/2

∥∥∥∥∥
Lp(R/Z)

= Cp

∥∥∥∥∥(∑
k∈E

|∆kg(x)|2
)1/2

∥∥∥∥∥
Lp(R/Z)

. (4.3)

Here the set E contains all the positive integers k satisfying [3k, 3k+1) ∈ P , so

|E| = |P| � N c.

We bound the right hand side of equation (4.3) using Hölder’s inequality so that

∥∥∥∥∥(∑
k∈E

|∆kg(x)|2
)1/2

∥∥∥∥∥
Lp(R/Z)

≥ |E|−1/2

∥∥∥∥∥(∑
k∈E

|∆kg(x)|
)∥∥∥∥∥

Lp(R/Z)

,

which clearly implies

∥∥∥∥∥(∑
k∈E

|∆kg(x)|2
)1/2

∥∥∥∥∥
Lp(R/Z)

≥ |E|−1/2
∑
k∈E

∥∥∥∥∆kg(x)

∥∥∥∥
L1(R/Z)

.

Using Hölder’s inequality again, we get ‖∆kg‖2
2 ≤ ‖∆kg‖1‖∆kg‖∞, and this implies

‖∆kg‖L1 ≥ 1

uniformly in k. Therefore,

∥∥∥∥∥(∑
k∈E

|∆kg(x)|2
)1/2

∥∥∥∥∥
Lp(R/Z)

≥ |E|1/2 � N c/2. (4.4)

Since ‖∆kg‖pp ≤ ‖∆kg‖1‖∆kg‖p−1
∞ , we can bound ‖g‖pLp easily by

‖g‖L1(R/Z) ≥ N1−p‖g‖pLp(R/Z) (4.5)
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Finally, we combine estimates (4.3), (4.4) and (4.5) to finish the proof of this lemma, by

choosing p = 1 + c/6.

Now we are going to estimate the right hand side of (4.2) with assumption that A is

(3, c)-lacunary for some constant c > 0. Let

F (x) =
∑
m∈A

f(mx).

Since f is a balanced function, we have
∫
R/Z F = 0, and this implies that

max
x∈R/Z

F (x) ≥ 1

2

∥∥F∥∥
L1(R/Z)

. (4.6)

Let P � N2 be a prime, and let M be the collection of square-free integers generated by

primes smaller than P . Let µ be the Möbius function, so by equation (4.1),

∑
k∈M

µ(k)χ(k)

k

∑
m∈A

f(mkx) = −
√

3

π

∑
m∈A,n≥1

χ(n)

n
cos(2πmnx)

∑
k∈M, k|n

µ(k)

= −
√

3

π

∑
m∈A

n≥1,n∈N

χ(n)

n
cos(2πmnx),

where N is the set of integers n such that for every p < P , gcd(n, p) = 1.

Therefore, by Minkowski’s inequality we have

∥∥∥∥∥∑
k∈M

µ(k)χ(k)

k

∑
m∈A

f(mkx)

∥∥∥∥∥
L1(R/Z)

�

∥∥∥∥∥∑
m∈A

cos(2πmx)

∥∥∥∥∥
L1(R/Z)

−

∥∥∥∥∥ ∑
m∈A

n>1,n∈N

χ(n)

n
cos(2πmnx)

∥∥∥∥∥
L1(R/Z)

.
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Via Cauchy–Schwarz inequality and Plancherel, the second term is bounded by

∥∥∥∥∥ ∑
m∈A

n>1,n∈N

χ(n)

n
cos(2πmnx)

∥∥∥∥∥
L1(R/Z)

≤ C|A|P−1/2.

Note that P � N2. By Merten’s estimate, we have

∥∥∥∥∥∑
m∈A

cos(2πmx)

∥∥∥∥∥
L1(R/Z)

�
∑
k∈M

|µ(k)|
k

∥∥F (x)
∥∥
L1(R/Z)

+O(1).

�
∏
p<P

(
1 +

1

p

)∥∥F (x)
∥∥
L1(R/Z)

� logN
∥∥F (x)

∥∥
L1(R/Z)

.

Since A is (3, c)-lacunary, we invoke Lemma 4.7 to get

∥∥∥∥∥∑
m∈A

cos(2πmx)

∥∥∥∥∥
L1(R/Z)

� N c,

which implies ∥∥F (x)
∥∥
L1(R/Z)

� N c/3

logN
.

Finally, we use estimate (4.6) to conclude maxx∈R/Z F (x)� N c/4.

4.3 When A is not geometric

In this section, we consider the case when the host set A is uniformly distributed, in the

sense that |A4 3 · A| � N c for some positive constant c > 0. We will focus on finding the

largest (2, 4)-sum-free in A. Let Ω1 = (1/6, 1/3) ⊆ R/Z, and let Ω2 = (2/3, 5/6) ⊆ R/Z. It

is clear that both Ω1 and Ω2 are (2, 4)-sum-free in R/Z. Let 1Ωt be the indicator function

of Ωt for t = 1, 2. Given A ⊆ N>0 of size N , let M(2,4)(A) be the size of the maximum
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(2, 4)-sum-free subset of A. Again we have

M(2,4)(A) ≥ max
x∈R/Z

∑
n∈A

1Ωt(nx),

for every t = 1, 2. We introduce the balanced function ft : R/Z→ C defined by ft = 1Ωt− 1
6
.

Hence,

f̂t(n) =


0 if n = 0,

1̂Ωt(n) otherwise.

When n > 0, the Fourier coefficient f̂t(n) is

f̂t(n) =

∫
T
1Ωt(x)e(−nx)dµ(x)

=
1

2πin

(
− e
(
− (t− 1)n

2
− n

3

)
+ e
(
− (t− 1)n

2
− n

6

))
=

1

πn
e
((2t− 1)n

4

)
sin
(nπ

6

)
.

Hence, for every t = 1, 2 we have

ft(x) =
∑
n6=0

f̂t(n)e(nx) =
∑
n6=0

1

πn
e
((2t− 1)n

4

)
sin
(nπ

6

)
e(nx).

We will prove that either ‖f1‖1 � logN/ log logN or ‖f2‖1 � logN/ log logN . However,

it seems hard to estimate ‖ft‖1 directly. In order to get around this difficult, we consider

their sum f1 + f2 and difference f1 − f2. Let Γ(x) := f1(x) + f2(x) be the sum so that

Γ(x) =
1

2π

∑
n≥1

(−1)n

n
sin
(nπ

3

)
cos(4πnx). (4.7)
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Also, we let Λ(x) = f1(x)− f2(x) be the difference and let

γ(n) =


1 when n ≡ 1 (mod 4),

−1 when n ≡ 3 (mod 4),

0 otherwise,

so that we can express Λ(x) as

Λ(x) =
2

π

∑
n≥1

γ(n)

n
sin
(nπ

6

)
sin(2πnx)

=
2

π

( ∑
n≥1

3-n,2-n

1

2n
sin(2πnx)−

∑
n≥1

3|n,2-n

1

n
sin(2πnx)

)
. (4.8)

We first deal with the function Γ(x). Recall that N1 is the set of positive integers m such

that m only contains prime factor larger than Q � (logN)100. We also define N2 be the set of

square-free integers generated by primes that at most Q. Since (−1)n sin(nπ/3) = −
√

3χ(n)

where χ(n) is a multiplicative character mod 3, we can sieve out the small prime factors in

(4.7) by

∑
t∈N2

µ(t)χ(t)

t

∑
m∈A

Γ(mtx) = −
√

3

2π

∑
m∈A

(
cos(4πmx) +

∑
n∈N1

χ(n)

n
cos(4πnmx)

)
, (4.9)

where µ is the Möbius function.

Next, we consider Λ(x). Since the coefficients γ(n) sin(nπ/6) is not multiplicative, Λ(x)

is more difficult to handle. As shown in equation (4.8), Λ(x) can be partition into two parts

according to the divisibility of the number 3. This motivates us to first sieve out those

integers n that 3 | n, by a restricted Möbius function defined only on integers divisible by

3. In this way, except for the first term, all other terms with significant contribution in the

second part cancel out, while the first part remains unchanged. Then, we use another sieve
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for the first part in a similar fashion. It turns out that we can combine these two steps to

one by using the Möbius function directly as our sieve. In fact,

∑
m∈N2

µ(m)

m
Λ(mx) =

2

π

∑
n≥1

1

2n
sin(2πnx)

∑
m∈N2,m|n

µ(m)γ
( n
m

)
sin
( nπ

6m

)
.

The equation above and be further partitioned as

∑
m∈N2,m|n

µ(m)γ
( n
m

)
sin
( nπ

6m

)

=
∑

m∈N2,m|n
3-n

1

2
µ(m) +

∑
9-n,3|n

( ∑
m∈N2,m|n

3-m

−µ(m) +
∑

m∈N2,m|n
3|m

1

2
µ(m)

)
+
∑

9|n,m|n
m∈N2

−µ(m)

=: I1(n) + I2(n) + I3(n).

By the inclusive-exclusive principle, for n /∈ N1 ∪ 3 · N1, I1(n) is always 0 unless n = 1, and

I3(n) is always 0. In I2(n),

∑
m∈N2,m|n

3|m

1

2
µ(m) =

∑
m∈N2,m|n

3-m

−1

2
µ
(m

3

)
,

which implies that I2(n) is 0 unless n = 3. Therefore, we get

Λ1(x) :=
∑
t∈N2

∑
m∈A

µ(t)

t
Λ(tmx) (4.10)

=
2

π

∑
m∈A

(
1

2
sin(2πmx)− 1

2
sin(6πmx) +

∑
n∈N1∪3·N1

η(n)

n
sin(2πnmx)

)
,

where η is defined as

η(n) =


1
2

when n ∈ N1,

−3
2

when n ∈ 3 · N1.
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Note that Λ1 indeed has the expression

Λ1(x) =
1

π

∑
m∈A

(
sin(2πmx)− sin(6πmx) +

∑
n∈N

1

n

(
sin(2πnmx)− sin(6πnmx)

))
.

Let B = A4 3 · A, so by our assumption on the host set A, |B| � N c. For any number

m ∈ A ∪ (3 · A), we define

ε(m) =


1 when m ∈ A,

−1 when m ∈ 3 · A.

We can simplify Λ1(x) as

Λ1(x) =
1

π

∑
m∈B

(
ε(m) sin(2πmx) +

∑
n∈N1

ε(m)

n
sin(2πnmx)

)
. (4.11)

Finally, we combine (4.9) and (4.11) to get

− 2
√

3π

3

∑
t∈N2

µ(t)χ(t)

t

∑
m∈A

Γ(mtx) +
2
√

3π

3

∑
t∈N2

µ(t)χ(t)

t

∑
m∈A

Γ(3mtx)

+ iπ
∑
t∈N2

µ(t)

t

∑
m∈A

Λ(2tmx)

=
∑
m∈B

(
ε(m) cos(4πmx) +

∑
n∈N1

χ(n)ε(m)

n
cos(4πnmx)

)

+ i
∑
m∈B

(
ε(m) sin(4πmx) +

∑
n∈N1

ε(m)

n
sin(4πnmx)

)

=
∑
m∈B

e4πimxε(m) +
∑

m∈B,n∈N1

ε(m)

n

(
(χ(n) + 1)e4πnmx + (χ(n)− 1)e−4πnmx

)
. (4.12)

Now we can employ Corollary 3.8 and the triangle inequality to (4.12), to obtain

2
∑
t∈N2

|µ(t)|
t

∥∥Γ
∥∥
L1(R/Z)

+
∑
t∈N2

|µ(t)|
t

∥∥Λ
∥∥
L1(R/Z)

� logN.
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Merten’s estimate tells us

∑
t∈N2

1

t
�
∏
p<Q

(
1 +

1

p

)
� log logN.

Hence we have

max
{∥∥Γ

∥∥
L1(R/Z)

,
∥∥Λ
∥∥
L1(R/Z)

}
� logN

log logN
.

This implies that there is t ∈ {1, 2}, such that ‖ft‖ � logN/ log logN , and since ft is

balanced, we get maxx∈R/Z ft(x)� logN/ log logN .

With all tools in hand we are going to prove our main theorem.

Proof of Theorem 4.4. Fix k ≥ 1. We first assume |A4 3 ·A| � N1/2. By the result proved

earlier in this section, we may assume that for Ω1 = (1/6, 1/3), there is x0 ∈ R/Z such that

∑
n∈A

1Ω1(nx0)� N

6
+ c

logN

log logN
,

where c > 0 is an absolute constant. Consider the continuous group homomorphism χ :

R/Z→ R/Z with χ(x) = kx for every x. Then the Bohr set χ−1(Ω1) is a union of k disjoint

open intervals I1, . . . , Ik in R/Z, each of which has measure 1/6k. It is also easy to see that

It is (2k, 4k)-sum-free for every 1 ≤ t ≤ k. Indeed, suppose that I1 is not (2k, 4k)-sum-free,

then there are 6k elements a1, . . . , a2k, b1, . . . , b4k in I1 such that
∑2k

j=1 aj =
∑4k

j=1 bj. We may

assume a1 ≤ · · · ≤ a2k and b1 ≤ · · · ≤ b4k. Define αr = 1
k

∑(r+1)k
j=rk+1 aj, and βs = 1

k

∑(s+1)k
j=sk+1 bj

for all r ∈ {0, 1} and s ∈ {0, 1, 2, 3}. Since I1 is an interval, α0, α1 and β0, . . . , β3 all belong

to I1, and
∑1

j=0 αj =
∑3

j=0 βj. Now, using the fact that χ is a group homomorphism, we

have
∑1

j=0 χ(αj) =
∑3

j=0 χ(βj), and this contradicts the fact that Ω1 is (2, 4)-sum-free.

Let x1 = x0/k. By pigeonhole principle, there is t0 ∈ {1, . . . , k} such that

∑
n∈A

1It(nx1)� N

6k
+
c

k

logN

log logN
,
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this finishes the proof of the first case.

Now let us assume |A4 3 · A| � N1/2. Then A is at least a (3, 1/2)-lacunary set. Let

Ω = (1/3, 2/3). By the result proved in Section 4.2, there is y0 ∈ R/Z, such that

∑
n∈A

1Ω(ny0)� N

3
+ cN1/8,

for some constant c > 0. Let y1 = y0/2k, then similarly there is an open interval I ⊆ R/Z,

such that I has length 1/6k, I is (2k, 4k)-sum-free, and

∑
n∈A

1I(ny1)� N

6k
+

c

2k
N1/8,

this finishes the proof.
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Part II

The Nonabelian Groups
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Chapter 5

Preliminaries to topological groups

In this chapter we provide background on topogical groups as needed in Part II of the thesis.

This is based on the appendices of the joint paper with Tran and Zhang [106].

5.1 Some results about topological groups

This section gathers some facts about topological groups which is needed in the proof. We

begin with the three isomorphism theorems of topological groups. Note that the third

isomorphism theorem is almost the same as the familiar result for groups, whereas the first

two isomorphism theorems require extra assumptions; see [25, Proposition III.2.24], [25,

Proposition III.4.1], and [25, Proposition III.2.22] for details. For this fact, we do not need

to assume that G is locally compact. The quotient G/H is equipped with the quotient

topology (i.e., X ⊆ G/H is open if and only if it inverse image under the quotient map is

open).

Fact 5.1. Suppose H is a closed normal subgroup of G. Then we have the following:

1. (First isomorphism theorem) Suppose φ : G → Q is a continuous surjective group

homomorphism with kerφ = H. Then the exact sequence of groups

1→ H → G→ Q→ 1

is an exact sequence of topological groups if and only if φ is open; the former condition

is equivalent to saying that Q is canonically isomorphic to G/H as topological groups.
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2. (Second isomorphism theorem) Suppose S is a closed subgroup of G and H is compact.

Then S/(S∩H) is canonically isomorphic to the image of SH/H as topological groups.

This is also equivalent to saying that we have the exact sequence of topological groups

1→ H → SH → S/(S ∩H)→ 1.

3. (Third isomorphism theorem) Suppose S ≤ G is closed, and H ≤ S. Then S/H is a

closed subgroup of G/H. If S C G is normal, then S/H is a normal subgroup of G/H,

and we have the exact sequence of topological groups

1→ S/H → G/H → G/S → 1;

this is the same as saying that (G/H)/(S/H) is canonically isomorphic to G/S as

topological groups.

We also need the following simple property of locally compact groups [67, Theorem 6.7].

Fact 5.2. Closed subgroups and quotients of a locally compact group by a closed normal

subgroup are locally compact.

The following lemma holds for all topological group.

Lemma 5.3. Suppose X, Y ⊆ G, X is compact and Y is closed. Then XY is closed.

Proof. Let a be in G \ XY . Then X−1a is compact and X−1a ∩ Y = ∅. For each point

x ∈ X−1a, we choose an open neighborhood of identity Ux such that xU2
x ∩ Y = ∅. Then

(xUx)x∈X−1a is an open cover of X−1a. Using the fact that X−1a is compact, we get a

subcover (Ui)
k
i=1. Set U =

⋂k
i=1 Ui. It is easy to check that X−1aU ∩ Y = ∅. Then

aU ∩XY = ∅, which implies that XY is closed as a can be chosen arbitrarily.

The next lemma records a simple fact on compact subgroups.
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Lemma 5.4. If H is a compact subgroup of G, then the quotient map π : G → G/H is a

proper map (i.e., the inverse image of compact subsets are compact).

Proof. Let Ω be a compact subset of G/H. In particular Ω is closed. Hence, π−1(Ω) is

closed, so it suffices to find a compact set containing π−1(Ω). Since G is locally compact,

we can find an open covering (Ui)i∈I of π−1(Ω) such that Ui has compact closure Ui for each

i ∈ I. Then (πUi)i∈I is an open cover of Ω as π is open. Using the assumption that Ω is

compact, we get a finite I ′ ⊆ I such that (π(Ui))i∈I′ is an open cover of Ω. Then
⋃
i∈I′ UiH

is a compact set containing π−1(Ω).

5.2 Measures and the modular function

We say that a measure µ on the collection of Borel subsets of G is a left Haar measure if it

satisfies the following properties:

1. (left-translation-invariant) µ(X) = µ(aX) for all a ∈ G and all measurable sets X ⊆ G.

2. (inner and outer regular) µ(X) = supµ(K) = inf µ(U) with K ranging over compact

subsets of X and U ranging over open subsets of G containing X.

3. (compactly finite) µ takes finite measure on compact subsets of G.

The notion of a right Haar measure is obtained by making the obvious modifications to the

above definition. The following classical result by Haar makes the above notions enduring

features of locally compact group [67, Theorem 2.20]:

Fact 5.5. Up to multiplication by a positive constant, there is a unique left Haar measure

on G. A similar statement holds for right Haar measure.

Given a locally compact group G, and µ is a left Haar measure on G. For every x ∈ G,

recall that ∆G : x 7→ µx/µ is the modular function of G, where µx is a left Haar measure on

G defined by µx(A) = µ(Ax), for every measurable set A. When the image of ∆G is always
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1, we say G is unimodular. In general, ∆G(x) takes values in R>0. We use (R>0,×) to denote

the multiplicative group of positive real number together with the usual Euclidean topology.

The next fact records some basic properties of the modular function; See [67, Section 2.4].

Fact 5.6. Let G be a locally compact group. Assuming µ is a left Haar measure and ν is a

right Haar measure.

1. Suppose H is a normal closed subgroup of G, then ∆H = ∆G. In particular, if H =

ker ∆G, then H is unimodular.

2. The function ∆G : G→ (R>0,×) is a continuous homomorphism.

3. For every x ∈ G and every measurable set A, we have µ(Ax) = ∆G(x)µ(A), and

ν(xA) = ∆−1
G (x)ν(A).

4. There is a constant c such that
∫
G
f dµ = c

∫
G
f∆G dν for every f ∈ Cc(G).

We use the following integral formula [67, Theorem 2.49] in our proofs.

Fact 5.7 (Quotient integral formula). Let G be a locally compact group, and let H be a

closed normal subgroup of G. Given µG, µH left Haar measures on G and on H. Then there

is a unique left Haar measure µG/H on G/H, such that for every f ∈ Cc(G),

∫
G

f(x) dµG(x) =

∫
G/H

∫
H

f(xh) dµH(h) dµG/H(x).

The following fact is a consequence of a result about Haar measure on closed subgroups

and quotients [26, Proposition VII. 2.7.10].

Fact 5.8. Suppose G is nonunimodular, and ∆G : G→ (R>0,×) is the modular function of

G, then we have the following:

1. If K C G is a compact normal subgroup of G, ∆G/K is the modular function of G/K,

and π : G→ G/K is the quotient map, then we have ∆G = ∆G/K ◦ π.
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2. If H C G is a closed unimodular group, and µH is a Haar measure on H. Suppose G/H

is unimodular, and X is a compact subset of H. Then for every g ∈ G, µH(gXg−1) =

∆G(g)µH(X).

5.3 Almost-Lie groups and the Gleason–Yamabe

Theorem

In our proof we need the solution of Hilbert’s 5th problem, which is known as the Gleason–

Yamabe Theorem [73, 169], to reduce the problem into Lie groups. For convenience, we

introduce the following terminology. A locally compact group G is an almost-Lie group if

every open neighborhood U of the identity in G contains a compact H C G such that G/H

is a Lie group.

Lemma 5.9. Suppose G is an almost-Lie group. Then every open subgroup of G and every

quotient of G by a closed normal subgroup is an almost-Lie group.

Proof. We first show that every open subgroup ofG is almost-Lie. Let S be an open subgroup

of G, and U is an open neighborhood of identity in S. We need to find a compact subgroup

K of S such that K ⊆ U and S/K is a Lie group. Since U is also a neighborhood of identity

in G, U contains a compact normal subgroup K of G such that G/K is a Lie group. Note

that K C S. As S is open, S/K is open in G/K and hence a Lie group as desired.

Next, supposeH is a closed normal subgroup ofG, and π : G→ G/H is the quotient map.

If U is an open neighborhood of the identity in G/H, then π−1(U) is an open neighborhood

of identity in G. Hence, we can get a normal compact subgroup K of G such that K ⊆

π−1(U) and that G/K is a Lie group. Then π(K) is a compact subgroup of U . With

S = π−1(π(K)), we have π(K) = S/H. Since K is normal in G we have π(K) is normal in

G/H and thus S is normal in G. Whence by the third isomorphism theorem (Fact 5.1.3),

we conclude that (G/H)/π(K) ∼= G/S. By the third isomorphism theorem again, we have
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G/S ∼= (G/K)/(S/K), thus G/S is a Lie group.

We use the following strong version of the Gleason–Yamabe Theorem.

Fact 5.10. We have the following:

1. (Gleason–Yamabe Theorem) Suppose G is a locally compact group. Then there is an

open subgroup of G which is an almost-Lie group.

2. An almost-Lie group G is a Lie group if and only if there is an open neighborhood U

of the identity in G that contains no nontrivial compact subgroup of G.

Fact 5.10.2 is not officially part of the Gleason–Yamabe Theorem. However, the forward

direction is an easy fact about the no small subgroup property of Lie groups, and the and

backward direction is a direct consequence of Fact 5.10.1.

5.4 Some results about Lie groups

In this section we gather some facts and lemmas about Lie groups and Lie algebras. Through-

out the chapter, all the Lie groups are finite dimensional second countable real Lie groups.

Fact 5.11. Closed subgroups and quotient groups of Lie groups are Lie groups.

The identity component of a topological group G is the connected component containing

the identity element. The identity component of a topological group G might not be open

even if G is locally compact. For instance, there are nondiscrete totally disconnected locally

compact groups. For these groups, the identity component only consists of the identity

element, and it is not open because the topology is not discrete. Nevertheless, the following

holds for Lie groups [91, Proposition 9.1.15].

Fact 5.12. If G is a Lie group, then the identity component of G is open and is contained

in every open subgroups of G.
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In Fact 5.1, we introduce the three isomorphism theorems of topological groups. When

G is a Lie group, we can weaken the assumption required for the first two isomorphism

theorems; see [24, Proposition 3.11.2, Proposition 3.31].

Fact 5.13. Suppose G is a Lie group, and H is a closed normal subgroup of G. Then we

have the following:

1. (First isomorphism theorem for Lie groups) If Q is a Lie group, φ : G → Q is a

surjective and continuous group homomorphism, and G has countably many connected

components. Then Q is isomorphic as a topological group to G/H.

2. (Second isomorphism theorem for Lie groups) Suppose G is a finite dimensional Lie

group, and S is a closed subgroup of G, and SH is a closed subgroup of G. Then

S/(S∩H) is canonically isomorphic to the image of SH/H as Lie groups. This is also

equivalent to saying that we have the exact sequence of Lie groups

1→ H → SH → S/(S ∩H)→ 1.

We also need the following fact about maximal compact subgroups consisting of Theorem

14.1.3 (iii) and Theorem 14.3.13 (i) (a) of [91]:

Fact 5.14. Suppose G is a Lie group with finitely many connected components. Then we

have the following:

1. All maximal compact subgroups of G are conjugate.

2. If 0 → H → G
π→ G/H → 0 is an exact sequence of connected Lie groups, and K is

a maximal compact subgroup of G, then K ∩H is a maximal compact subgroup of H,

and π(K) is a maximal compact subgroup of G/H.

We also use the following simple classification results for Lie groups.
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Fact 5.15. Let G be a connected Lie group.

1. If G has dimension 1, then it is isomorphic to either R or T as topological groups.

2. If G is a solvable group with dimension d, and the maximal compact subgroups of G

have dimension m. Then G is diffemorphic to Tm×Rd−m. Moreover, if G is compact,

then G ∼= Td.

We say that a topological group G is a covering group of a topological group G with

covering homomorphism ρ if ρ : G→ G′ is a topological group homomorphism which is also

a covering map. The following is a consequence of [91, Theorem 9.5.4]:

Fact 5.16. Suppose that G and G′ are connected Lie groups and that G is a covering group

of G′ with covering homomorphism ρ. Then ker ρ is a closed normal subgroup of the center

Z(G) of G.

We end this section with a lemma about conjugate actions on compact sets in Lie groups.

Lemma 5.17. For a Lie group G and a closed normal subgroup H, if a precompact A ⊆ H

such that the closure of A is in B and B is a relative open subset in H, then the following

holds: When g ∈ G is sufficiently close to idG, we have gAg−1 ⊆ B.

Proof. We prove the lemma by contradiction. Assuming there exist sequences gn → id and

{hn} ⊆ A such that gnhng
−1
n /∈ B. Since A is precompact we may assume hn → h ∈ A.

But then gnhng
−1
n → h ∈ A. This contradicts the fact that each gnhng

−1
n is in the closed set

H \B that does not meet A. Hence the assumption is false and the conclusion holds.

5.5 Solvable and Semisimple Lie groups

From [91, Section 9.1], there is a functor L from the category of Lie groups to the category

of Lie algebras that assigns to each Lie group G its Lie algebra L(G) and a to Lie group
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morphism φ : G → H its tangent morphism L(φ) : L(G) → L(H) of Lie algebras. We will

adopt a more colloquial language in this chapter, invoking this functor implicitly.

Fact 5.18. Suppose G and H are Lie groups, and g and h are their Lie algebras. If H is

a subgroup of G, then h is a subalgebra of g. If H is a normal subgroup of G, then h is an

ideal in g, and g/h is canonically isomorphic to the Lie algebra of G/H.

Suppose g is the Lie algebra of G. The exponential function exp : g → G is defined as

in [91, Section 9.2]. We will use the functoriality of the exponential function [91, Proposition

9.2.10]

Fact 5.19. Suppose G and H are Lie groups, φ : G→ H is a homomorphism of Lie groups,

g and h are the Lie algebras of G and H, α : g → h is the tangent morphism of φ, and

expG : g → G and expH : h → H are the exponential maps. Then expH ◦ α = expG ◦ φ. In

other words, the following diagram commutes:

G H

g h

φ

α

expG expH

Suppose g is a Lie algebra. The derived Lie algebra [g, g] of g is the subalgebra of g

generated by the Lie brackets of the pairs of elements of g. We say that g is solvable if the

derived sequence

g ≥ [g, g] ≥ [[g, g], [g, g]] ≥ . . .

eventually arrive at the 0-algebra. A Lie group is solvable if its Lie algebra is solvable. The

following is a consequence of [91, Proposition 5.4.3]:

Fact 5.20. Every subalgebra and quotient algebra of a solvable Lie algebra is solvable. Hence,

every closed subgroup and quotient group of a solvable Lie group is solvable.

The following is another consequence of [91, Proposition 5.4.3]:
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Fact 5.21. Suppose g is a Lie algebra. Then g has a largest solvable subalgebra q. If G is

a Lie group with Lie algebra g and exp : g → G is the exponential map, then Q = 〈exp(q)〉

is the largest closed connected solvable subgroup of G. Hence, Q is a characteristic subgroup

of G.

The subalgebra q as in Fact 5.21 is called the radical of g, and the subgroup Q as in

Fact 5.21 is called the radical of G. A Lie algebra is semisimple if it has trivial radical. A lie

group is semisimple if its Lie algebra is semisimple, or equivalently, if it has trivial radical.

The following results follows from [91, Proposition 5.4.3]:

Fact 5.22. Let G be a connected Lie group. Let Q be the radical of G. Then S = G/Q is a

semisimple Lie group.

A Lie group is simple if its Lie algebra is simple. Note that a simple Lie group needs not

to be simple as a group. We use the following fact for simple Lie groups.

Fact 5.23. A connected Lie group G is a simple Lie group if and only if all its normal proper

subgroups are discrete, and contained in Z(G).

Suppose g is a finite dimensional Lie algebra. For x ∈ g, let adx : g → g, y 7→ [x, y].

Then ad is an endomorphism of g. The Cartan–Killing form of κg : g× g→ R is given by

κg(x, y) = tr(adx ady).

The Cartan–Killing form is invariant under an automorphism of g as this corresponds to a

change of basis. The following fact is from [91, Lemma 5.5.8]

Fact 5.24. Suppose g is a Lie algebra, κg is the Cartan–Killing form of g, and h is an ideal

of g. Then the orthogonal space h⊥ of h with respect to κg is also an ideal. If g is semisimple,

then g = h⊕ h⊥ and κg = κh ⊕ κh⊥ where κh and κh⊥ are the Cartan–Killing form of h and

h⊥.
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The following fact follows from [91, Lemma 5.5.13]. It is also a consequence of Fact 5.24

and the alternative characterization of semisimple Lie algebras as those whose Cartan–Killing

form is nondegenerate.

Fact 5.25. Every ideal and quotient algebra of a semisimple Lie algebra is semisimple.

Hence, every normal subgroup and quotient group of a semisimple Lie group is semisimple.

The first and second assertions in the following fact are immediate consequences of

Facts 5.21, 5.20, 5.25

Fact 5.26. If G is a connected semisimple Lie group, then its center Z(G) is a finitely

generated discrete group, the quotient map ρ : G→ G/Z(G) is a covering map.

The following fact is a consequence of [91, Proposition 9.5.2 and Theorem 9.5.4].

Fact 5.27. If G and G′ are connected Lie groups, ρ : G → G′ is covering map, Z(G) and

Z(G′) are the centers of G and G′. Then we have ker ρ ≤ Z(G) and Z(G′) = Z(G)/ ker ρ.

The first assertion in the following fact is known as Weyl’s theorem on Lie groups with

semisimple compact Lie algebra [91, Theorem 12.1.17].

Fact 5.28. If G is a connected semisimple Lie group with compact Lie algebra, then G is

compact and Z(G) is finite.

The following Fact is a consequence of Fact 5.28 and the result in [156]. This can also be

proven directly using [91, Proposition 13.1.10 (ii)]; we thank Jinpeng An for pointing this

out to us.

Fact 5.29. If G is a simply connected simple Lie group, then the center Z(G) of G has rank

at most 1.

Suppose g is a finite dimensional Lie algebra with Cartan–Killing form κg. A Lie algebra

automorphism τ of g is a Cartan involution if τ 2 = idg and (x, y) 7→ −κg(x, τ(y)) is a positive

definite bilinear form. The following fact is [91, Theorem 13.2.10]
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Fact 5.30. Let g be a semisimple Lie algebra. Then g has a Cartan involution τ .

We refer the reader to [114, Section 6.4] for the full definition of Iwasawa decomposition;

we will need the following fact which is a consequence of [114, Theorem 6.31, Theorem 6.46]

and [91, Corollary 12.2.3].

Fact 5.31 (Iwasawa decomposition). Suppose G is a connected semisimple Lie group with

Lie algebra g, τ is a Cartan’s involution of g, k the subalgebra of g fixed by τ , and exp : g→ G

is the exponential map. Then there is an Iwasawa decomposition G = KAN such that the

following holds:

1. the multiplication map

Φ : K × A×N → G : (k, a, n) 7→ kan

is a diffeomorphism.

2. K = exp(k) is a connected closed subgroup of G, Z(G) ⊆ K, and K is a maximal

compact subgroup of G if Z(G) is finite.

3. A is an abelian closed subgroup of G, N is a nilpotent closed subgroup of G, and both

A and N are simply connected.

4. Q = AN , we have that Q is a solvable closed subgroup of G, and N C Q.

The following fact is a consequence of the definition of Iwasawa decomposition in [114,

Section 6.4].

Fact 5.32. If G is a noncompact semisimple Lie group with Iwasawa decomposition G =

KAN , then AN has dimension at least 2.
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Chapter 6

Minimal and nearly minimal measure
expansions in connected unimodular
groups
Let G be a connected unimodular group equipped with a (left and hence right) Haar measure

µG, and suppose A,B ⊆ G are nonempty and compact. An inequality by Kemperman [112]

gives us

µG(AB) ≥ min{µG(A) + µG(B), µG(G)}.

Our first result determines the conditions for the equality to hold, providing a complete

answer to a question asked by Kemperman in 1964. Our second result characterizes compact

and connected G, A, and B that nearly realize equality, with quantitative bounds having

the sharp exponent. This can be seen up-to-constant as a (3k − 4)-theorem for this setting

and confirms the connected case of conjectures by Griesmer [82] and by Tao [162]. As an

application, we get a measure expansion gap result for connected compact simple Lie groups.

The tools developed in our proof include an analysis of the shape of minimal and nearly

minimal expansion sets, a bridge from this to the properties of a certain pseudometric, and

a construction of appropriate continuous group homomorphisms to either R or T = R/Z

from the pseudometric.

This chapter is based on joint work with Tran [105].
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6.1 Introduction

6.1.1 Background

The Cauchy–Davenport theorem asserts that if X and Y are nonempty subsets of the group

Z/pZ of prime order p, then

|X + Y | ≥ min{|X|+ |Y | − 1, p},

where we set X + Y := {x+ y : x ∈ X, y ∈ Y }. The condition for the equality to happen is

essentially given by Vosper’s theorem [166], which states that if

1 < |X|, |Y |, and |X + Y | = |X|+ |Y | − 1 < p− 1

then X and Y must be arithmetic progressions with the same common difference. When the

equality nearly happens, one might expect that X and Y are instead contained in arithmetic

progressions with slightly larger cardinalities. This was confirmed with a sharp exponent

bound by Freiman [69] for small |X| and |Y |. The optimal statement believed to be true for

X = Y , known as the (3k − 4)-conjecture for Z/pZ, remains wide open more than 60 years

after the corresponding statement for Z was proven by Freiman [68]. In the mean time, we see

many similar results obtained for other abelian groups; see e.g. [115, 111, 51, 79, 162, 82, 123].

In another direction, there has been much progress in the study of small expansions in the

nonabelian settings; see [36], in particular, for the classification of approximate groups by

Breuillard, Green, and Tao; see also e.g. [89, 32, 33, 102, 143, 19, 103]. These two trends

together suggest that the theory of minimal and nearly minimal expansion can be extended

to the nonabelian settings as well. In this chapter, we take a step towards realizing this

intuition by considering an inequality by Kemperman, the continuous nonabelian counterpart

of the Cauchy–Davenport theorem, and effectively determining the necessary and sufficient
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conditions for equality and near equality to happen.

Throughout, let G be a connected locally compact group, and µG a left Haar measure

on G. We further assume that G is unimodular (i.e., the measure µG is invariant under

right translation), so µG behaves like an appropriate notion of size. This assumption holds

in many situations of interest (e.g, when G is compact, discrete, a nilpotent Lie group, a

semisimple Lie group, etc). As usual, for A,B ⊆ G, we set AB := {ab : a ∈ A, b ∈ B} and

let An be the n-fold product of A for n ∈ N>0. In [112], Kemperman proved that if A,B ⊆ G

are nonempty and compact, then

µG(AB) ≥ min{µG(A) + µG(B), µG(G)}.

This generalizes earlier results for one-dimensional tori, n-dimensional tori, and abelian

groups by Raikov [144], Macbeath [129], and Kneser [115].

The problem of determining when equality holds in the Kemperman inequality was pro-

posed in the same paper [112]. After handling a number of easy cases, the problem can be

reduced to classifying all connected and unimodular group G and pairs (A,B) of compact

subsets of G such that

0 < µG(A), µG(B), and µG(AB) = µG(A) + µG(B) < µG(G).

We call such (A,B) a minimally expanding pair on G. It is easy to see that, if I and J

are closed intervals in T = R/Z, such that I and J have positive measures and the total of

their measures is strictly smaller than µT(T), then I + J is an interval with length the total

length of I and J . Hence, such (I, J) is a minimally expanding pair on T. More generally,

when G is a compact group, χ : G → T is a continuous surjective group homomorphism, I

and J are as before,

A = χ−1(I) and B = χ−1(J),
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we can check by using the Fubini theorem that (A,B) is a minimally expanding pair. Note

that an arithmetic progression on Z/pZ is the inverse image under a group homomorphism

φ : Z/pZ→ T of an interval on T, so this example is the counterpart of Vosper’s classification.

Another obvious example is when G is a noncompact group, χ : G → R is a continuous

surjective group homomorphism with compact kernel, I and J are compact intervals in R

of positive measures, A = χ−1(I), and B = χ−1(J). One might optimistically conjecture, in

analogy with Vosper’s theorem, that there are no other G, A, and B such that (A,B) is a

minimally expanding pair on G.

In view of the earlier discussions, for compact A,B ⊆ G, we say that (A,B) is a δ-nearly

minimally expanding pair on G if

0 < µG(A), µG(B), and µG(AB) < µG(A) + µG(B) + δmin{µG(A), µG(B)} < µG(G).

The problem of determining when equality nearly holds in the Kemperman inequality can

be then reasonably interpreted as classifying all connected and unimodular groups G and

δ-nearly minimally expanding pairs (A,B) on G. In analogy with the discussion for the

Cauchy–Davenport theorem, we hope for an answer along the following line: If G is com-

pact, and (A,B) is a δ-nearly minimally expanding pair on G with small δ, then there is a

continuous and surjective group homomorphism χ : G→ T, compact interval I, J ⊆ T , and

small ε, such that

A ⊆ χ−1(I), B ⊆ χ−1(J), µG(χ−1(I) \ A) < ε, and µG(χ−1(I) \B) < ε. (6.1)

The optimistic conjecture for noncompact groups is similar, but with T replaced by R and

an extra condition that χ has compact kernel.

Under the extra assumption that G is abelian, the optimistic conjectures for both clas-

sification problems were more or less confirmed before our work. In the same paper [115]
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mentioned earlier, Kneser solved the classification problem for equality with the answer we

hope for. For the near equality problem, when G = Td, the desired classification was ob-

tained by Bilu [16], and later improved by Candela and De Roton [39] for a special case when

d = 1. When G is a general abelian group, a classification result was obtained by Tao [162]

for compact G, and by Griesmer [82] when G is noncompact. Griesmer also proved more

general results for disconnected groups [81, 82]. The results by Griesmer [81, 82] and by

Tao [162] used nonstandard analysis methods, and do not provide how ε depends on δ in

(6.1). A sharp exponent classification result (i.e., ε = O(δ)) for compact abelian groups was

obtained very recently by Christ and Iliopoulou [43]. Results with sharp exponent bounds

are likely the best that one can achieve without solving the (3k − 4)-conjecture for Z/pZ.

For nonabelian G, not much was known earlier than this paper. In closest proximity to

what we are doing, Björklund considered in [17] a variation of Kemperman’s inequality and

the equality classification problem without assuming that G is connected while assuming

additionally that G is compact, second countable, and has abelian identity component, and

the sets A and B are “spread out” (i.e., far away from being subgroups). The only common

case to this and our current setting with the connectedness assumption happens when G is

abelian and connected. This is a case already covered by Kneser’s classification result.

Toward showing that appropriate versions of the optimistic conjectures also hold for the

nonabelian classification problem, there is an important new challenge: While the desired

conclusions for the abelian setting are mainly about the structure of (A,B), the structure

of G is also highly involved for the nonabelian setting. If G = SO3(R), for example, one

would not be able to find a minimally expanding pair according to the optimistic answers

because there is no continuous surjective group homomorphism from SO3(R) to T. On the

other hand, one can always find a continuous and surjective group homomorphism from

a compact connected nontrivial abelian group to T and use this to construct minimally

expanding pairs. For a noncompact abelian group G, the requirement that the kernel must

be compact imposes some constraint on the group G, but this is still comparatively mild.
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The above challenge connects our problem to the subject of small expansions in non-

abelian groups, a fascinating topic that brings together ideas from different areas of math-

ematics. The phenomenon that expansion rate encodes structural information about the

group can already be seen through the following famous theorem by Gromov [83] in geomet-

ric group theory: If G is a group generated by a finite set X = X−1, and the cardinality

of Xn grows polynomially as a function of n, then G must be virtually nilpotent. A more

recent result by Breuillard indicates that some of the analysis goes through for locally com-

pact groups [35]. Even more suggestive is the classifications of approximate groups in [36]

mentioned earlier (see the definition in Section 6.6.3). In our proof, we will use the con-

tinuous version of the result in [36]; this was proven in the thesis of Carolino [40] and can

also be deduced from the result in [36] using a result of Massicot–Wagner [131]. The ideas

in the proof of these results can be traced back to the solution of Hilbert’s Fifth problem

by Montgomery–Zippin [137], Gleason [73], and Yamabe [169], which we will also use later

on. Finally, let us mention that these stories are also closely tied to the study of defin-

able groups in model theory. This is the natural habitat of the aforementioned result by

Massicot–Wagner [131], and also of Hrushovski’s Lie model theorem [102], a main ingredient

for the proof of the main theorem in [36].

Before getting to the results, we briefly survey a number of works for nonabelian groups

which are thematically relevant but use different techniques. When G is finite and A,B ⊆ G

are nonempty, generalizing the Cauchy–Davenport inequality, DeVos showed in [53] that

|AB| ≥ min{|A| + |B| − |H|, |G|} with H a proper subgroup of G with maximum car-

dinality. In the same paper, DeVos classifies all situations where equality can happen.

In [18], Björklund and Fish studied an expansion problem with respect to upper Banach

density in amenable nonabelian groups and obtained conclusions with similar flavor. Under

model-theoretic assumptions, Terry, Conant, and Pillay [46, 45] obtained results that are

surprisingly similar to ours.

It would also be interesting to study a different minimal and nearly minimal measure
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expansion problem where we fix a connected unimodular group G instead of letting G range

over all connected unimodular group G as we are doing here. When G is Rn, Kemperman

inequality is a consequence of the Brunn–Minkowski inequality

µG(AB)1/n ≥ µG(A)1/n + µG(B)1/n.

This inequality also holds for nilpotent G [133, 84, 160]. The equality holds in the Brunn–

Minkowski inequality for Rn if and only if A and B are homothetic convex subsets of Rn. This

was a result by Brunn and Minkowski when A and B are further assumed to be convex, and

a result by Lyusternik [128], Henstock and Macbeath [90] in the general case. A qualitative

answer for the near equality Brunn–Minkowski problem for Rn is obtained by Christ [42],

and a quantitative version is obtained by Figalli and Jerison [66]. We do not pursue this

direction further here.

6.1.2 Statement of main results

Our first main result determines the conditions for equality to happen in the Kemperman

inequality answering a question by Kemperman in [112]. Scenario (v) and (vi) in the theorem

is a classification of the groups G and minimally expanding pairs (A,B) on G.

Theorem 6.1. Let G be a connected unimodular group, and A,B be nonempty compact

subsets of G. If

µG(AB) = min(µG(A) + µG(B), µG(G)).

then we have the following:

(i) µG(A) + µG(B) = 0 implies µG(AB) = 0;

(ii) µG(A) + µG(B) ≥ µG(G) implies AB = G;

(iii) µG(A) = 0 and 0 < µG(B) < µG(G) implies that there is a compact proper subgroup H
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of G such that A ⊆ gH for some g ∈ G, and B = HB;

(iv) 0 < µG(A) < µG(G) and µG(B) = 0 imply that there is a compact proper subgroup H

of G such that A = AH, and B ⊆ Hg for some g ∈ G;

(v) 0 < min{µG(A), µG(B), µG(G) − µG(A) − µG(B)}, and G is compact together imply

that there is a surjective continuous group homomorphism χ : G → T and compact

intervals I and J in T with I + J 6= T and µT(I), µT(J) > 0 such that A = χ−1(I) and

B = χ−1(J);

(vi) 0 < min{µG(A), µG(B)}, and G is not compact together implies that there is a surjective

continuous group homomorphism χ : G→ R with compact kernel and compact intervals

I and J in R with µR(I), µR(J) > 0 such that A = χ−1(I) and B = χ−1(J).

Moreover, µG(AB) = min(µG(A) +µG(B), µG(G)) holds if and only if we are in exactly one

of the implied scenarios in (i-vi).

Next we obtain a classification of nearly minimally expanding pairs. This answers some

questions by Griesmer [82] and confirms a conjecture by Tao [162, Conjecture 5.1], under

the extra assumption of connectedness.

Theorem 6.2. Let G be a connected compact group, µG be a normalized Haar measure on

G, and A,B be compact subsets of G with positive measure. Set

s = min{µG(A), µG(B), 1− µG(A)− µG(B)}.

Given ε > 0, there is a constant K = K(s) independent of G, such that if δ < Kε and

µG(AB) < µG(A) + µG(B) + δmin{µG(A), µG(B)}.

Then there is a surjective continuous group homomorphism χ : G → T together with two
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compact intervals I, J ⊆ T with

µT(I)− µG(A) < εµG(A), µT(J)− µG(B) < εµG(B),

and A ⊆ χ−1(I), B ⊆ χ−1(J).

It worth noting that the linear dependence between ε and δ is the best possible up to a

constant factor. As an application of our main result, we obtain a measure expansion gap

result for sets in connected compact simple Lie groups.

Theorem 6.3 (Expansion gaps in compact simple Lie groups). There is a constant η > 0

such that the following holds. Let d > 0 be an integer. There is a constant C > 0 only

depending on d such that if G is a connected compact simple Lie group of dimension d, and

A is a compact set of G with 0 < µG(A) < C, then

µG(A2) > (2 + η)µG(A).

We can take η > 10−10.

We did not try to optimise the constant η of Theorem 6.3 in this chapter.

One may compare Theorem 6.3 with expansion gaps for finite sets. The study of the

latter problem was initiated by Helfgott [89] where he proved an expansion gap in SL2(Z/pZ).

Results on the expansions for finite sets are one of the main ingredients in proving many

of spectral gap results. For example, the result by Helfgott is largely used in the proof

by Bourgain and Gamburd [30, 31]. De Saxcé proved in [49] an expansion gap results in

simple Lie groups, which is used in the later proof of spectral gap result [13, 34]. For more

background in this direction we refer the reader to [37, 161].
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6.1.3 Notation and convention

Throughout let m and n range over the set N = {0, 1, . . .} of natural numbers. Let G be

a locally compact group equipped with a left Haar measure µG. Let H range over closed

subgroups of G equipped with a left Haar measure µH . We normalize µG (i.e., µG(G) = 1)

whenG is compact, and do likewise whenH is compact. We letG/H andH\G denote the left

coset space and the right coset space of G with respect to H. Given a coset decomposition,

say G/H, a fiber of a set A ⊆ G refers to A ∩ xH for some xH ∈ G/H. We also use µH to

denote the fiber lengths in the chapter, that is we sometimes write µH(A ∩ xH) to denote

µH(x−1A∩H). A constant in this chapter is always a positive real number, and by Lie group

we mean a real Lie group with finite dimension.

6.2 Outline of the argument

In this section, we informally explain some of the major new ideas of the proofs. We decided

to write a slightly longer outline as some of the later computations are rather technical.

6.2.1 Overview of the strategy

We will explain here the main steps of the proof of Theorem 6.1 and Theorem 6.2 illustrated

by simple examples. The focus will be on the plausibility of the argument and how they

fit together to resolve the main difficulties of the problem. More detailed discussion will be

given in Sections 6.2.2, 6.2.3, and 6.2.4.

After handling a number of easy cases, the proofs of Theorem 6.1 and Theorem 6.2 require

constructing appropriate continuous and surjective group homomorphisms into either R or

T under the given data of a minimal or nearly minimal expanding pair (A,B) on G. The key

difficulty of the problem is that many methods in the abelian setting (e-transform, fourier

analytic, etc) have no obvious generalization to the nonabelian setting.
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Instead, we will use a method in the direction of the solution of Hilbert’s Fifth problem,

namely, making use of pseudometrics on G (i.e., maps d : G × G → R satisfying all the

properties of a metric except d(g1, g2) = 0 implying g1 = g2). With some caveats, our

proof can be thought of as having three steps: obtaining a suitable pseudometric on G,

constructing an appropriate group homomorphism from the pseudometric, and deduce an

informative description about (A,B) from the pseudometric. As we want to construct a

group homomorphism into R or T and not any other Lie groups, the new challenge is

to develop properties that allow us to control the desired target group and to obtain a

pseudometric on G satisfying these properties.

Let us first explain the second step to see that the pseudometric idea is plausible. Until

the end of this section, we will focus on the case where G is compact with the other case

treated similarly. If χ : G → T is a continuous and surjective group homomorphism, and

dT is the Euclidean metric on T (i.e. dT(r + Z, s + Z) = min{|r − s|, |r − (s − 1)|} for

0 ≤ r ≤ s < 1), then setting d(g1, g2) = dT(χ(g1), χ(g2)), it is easy to see that d is a

pseudometric on G with the “linear” property that

d(g1, g3) = |d(g1, g2)± d(g2, g3)|

for all g1, g2, g3 ∈ G such that max{d(g1, g2), d(g2, g3), d(g1, g3)} < 1/4. Moreover, in the

above situation we also have

kerχ = {g ∈ G : d(g, idG) = 0},

so the group homomorphism χ can be recovered from the pseudometric. In the second step

of our proof, we will define the weaker properties locally linear and locally almost linear, and

show that more or less under these conditions, we can obtain an appropriate homomorphism

into T. More details will be given in Section 6.2.3.
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Now we would like to construct a locally (almost) linear pseudometric on G. There is a

caveat: our primary technique discussed later only works for Lie groups. So we need an extra

step in our strategy (also with an underlying pseudometric idea) where we use the Gleason–

Yamabe Theorem to obtain a group homomorphism π from G to a Lie group G′ with compact

kernel H. This is relatively standard, but there are two important arrangements we need

to make. We need to choose H carefully to ensure that it is connected and µG′(π(A)) +

µG′(π(B)) < µG(G); in the third step, we will show that these conditions are enough to

imply that (π(A), π(B)) essentially has nearly minimal expansion on G′. We also need to

ensure that the dimension of G′ is bounded to be able to to get our sharp exponent bound

later on. This requires the application of the continuous version of the result in [36], which

is proven in Carolino’s thesis [40].

Now we focus on the case where G is a compact connected Lie group with dimension

bounded from above by a constant, where the structure of G can be studied through its

torus subgroups. Using a submodularity argument as in [162], we can carefully modify the

original (A,B) to ensure that µG(A) and µG(B) are relatively small compared to µG(G) but

still large compared to the error. The pseudometric we need is easy to define:

d(g1, g2) := µG(A)− µG(g1A ∩ g2A).

The real challenge is to show that this is locally (almost) linear. This is achieved by gaining

an understanding of the “shape” of the pair (A,B) at different levels. Keeping in mind that

we already have the desired classification of minimal and nearly minimal expanding pairs

for T, we will choose a suitable one-dimension torus subgroup of G and use it as a tool to

probe for information about (A,B).

Thinking of the one-dimensional torus subgroups of G as specifying the “directions” in

G, we choose a one-dimensional torus subgroup T ≤ G such that for all gT ∈ G/T , the
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“length” µT (g−1A ∩ T ) of the “left fiber” gT ∩ A of A satisfies

µT (g−1A ∩ T ) <
1

100
,

and a similar condition holds for a “right fiber” B ∩ Tg of B with Tg ∈ T\G. The exis-

tence of such T is by no mean obvious, and is saying that when (A,B) is nearly minimally

expanding, A and B cannot be “Kakeya sets”. More details will be given in the beginning

of Section 6.2.2.

d(g1, g2) = µG(A)− µG(g1A ∩ g2A)

∃T

T

G/T

Gg1A

g2A

xT

g1A

g2A

g3A

G

g3A

g3A ∩ xTg1A ∩ xT
g2A ∩ xT

G

T

T\G

B

T

Bg

Figure 6.1: Intuition of the ideas in the proof.

We visualize G in two ways: a rectangle with the horizontal side representing G/T and

each of the vertical section representing a left cosets of T , and a similar dual picture for T\G;

see the bottom right half of Figure 6.1. The main idea is to show that g1A, g2A, g3A, and B

geometrically look like in the picture with g1, g2, g3 ∈ G in a suitable neighborhood of idG.

(For instance, we want the “fibers” of A and B to be intervals of T , all the nonempty “left
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fibers” of g1A to have similar “lengths”, the “width” of A to be almost the same as that of

B, the translated copy g1A to only “move vertically” compared to g1A, and the “moving up”

and “moving down” divisions in g2A and g3A to be almost the same. As a very small hint of

why these are true, imagine that one of the fiber in B is too large compared to the rest. Then

the product of A with that fiber has already much larger measure than µG(A)+µG(B)) One

can see that the locally (almost) linearity follows from this picture. The key point is that,

the global information about the pseudometric can be deduced via the geometrical shape

from the information on a generic fiber xT , where the classification of nearly minimally

expanding pairs is known. More detailed discussion is given in Section 6.2.2.

Finally, we discuss the third step of deducing the structure of A and B when we have

the appropriate group homomorphism χ : G → T. There is another minor caveat: we can

modify the the group homomorphism obtain from the pseudometric to ensure that the kernel

is connected and the image is small; this was also the same arrangement we made earlier

when we use the Gleason–Yamabe Theorem. The following example, already containing the

idea of the later proof, will illustrate to the reader that unless there are closed intervals

I, J ⊆ T such that A and B are nearly χ−1(I) and χ−1(J), the number µG(AB) is much

larger than µG(A) + µG(B). Assume that G = T2, χ : T2 → T is the projection onto the

second coordinate, and we identify T2 with its fundamental domain [0, 1]× [0, 1] ⊆ R2. Set

A = (T× [0, 1/7]) ∪ ([0, 1/3]× [1/7, 2/7]).

Then, µG(A) = 1/7 + (1/3)× (1/7). On the other hand,

A2 = (T× [0, 3/7]) ∪ ([0, 2/3]× [3/7, 4/7]).

So µG(A2) = 3/7 + (2/3)× (1/7) > 2/7 + 2/3× (2/7) = 2µG(A).
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6.2.2 The first step: Obtaining a suitable pseudometric

Suppose G is a connected and compact Lie group, and (A,B) is a nearly minimally expanding

pair on G with sufficiently small measure. We will show that there is a one-dimensional torus

subgroup T of G such that the “length” µT (g−1A ∩ H) of each “left fiber” A ∩ gT of A is

small, and a similar condition hold for “right fibers” of B. After that, we will show that

g1A, g2A, g3A satisfy the picture at the bottom left of Figure 1 with respect to T , from which

we can deduce the local almost linearity of d.

Suppose A is a Kakeya set, i.e, it has a long left fiber A∩gT for every choice of “direction”

T of G. Fix such a T . If a large proportion of right fibers of B are rather short, then using

the Kemperman inequality for T and Fubini’s theorem, we get µG((A ∩ gT )B) is already

much larger than µG(A) + µG(B), a contradiction. So a large proportion of the right fibers

of B in the direction T must be rather long. A reverse argument then shows that a large

proportion of the left fibers of A are long. Thus, µG(AT ) is not too large compared to µG(A).

From the discussion above, it suffices to show the contradiction when µG(AT )/µG(A)

is not too large for every T . We call a nonempty and compact subset of G a toric K-

nonexpander, if it has this property for a given constant K. We will show in Section 6.8

a result with independent interest: Every nonempty compact subset of G with sufficiently

small measure cannot be a toric K-nonexpander.

Let us present here a pseudo-argument, which nevertheless illustrate the idea. Assume

A is a toric K-nonexpander. Obtain finitely many torus subgroups T1, . . . , Tn of G such that

G = T1 · · ·Tn.

(Note that n depends on the dimension of G, which is bounded by the caveat in Step 1.) Let

us pretend that using the assumption µG(AT1) ≤ KµG(A) we can cover AT1 with (K + 1)

right translations of A. It can be then shown that AT1 is a toric K(K + 1)-nonexpander.

Next, we further pretend that AT1T2 can be covered with K(K + 1) + 1 right translations of
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AT1 which can then be covered by K(K+1)2+(K+1) right translations of A. Continuing the

procedure, we get C(K) such that AT1 · · ·Tn = G can be covered by C(K) right translations

of A. Thus, µG(A) > 1/C(K), contradicting the assumption that µG(A) is very small.

The pseudo-argument in the preceding paragraph does not work in most of the cases. In

particular, one cannot deduce from µG(AT1) < KµG(A) that AT1 can be covered by (K+1)

right translations of A. However, it does contain some truth, and we will be able to use a

version of the Lovazs covering argument to approximate this pseudo-argument.

Now choosing a one-dimensional torus subgroup T of G such that for all x ∈ G and

y ∈ G, the fibers xT ∩ A and B ∩ Ty are both short. We will show that the set A and B

have the shape as described in Figure 1. Without loss of generality we can arrange that the

width µG(AT ) of A in G/T is at most the width µG(TB) of B in T\G. Choose uniformly

at random xT ∈ AT , and applying the Kemperman inequality for T , we have

µG(AB) ≥ ExT∈ATµG((A ∩ xT )B)

≥ ExT∈ATµT (A ∩ xT )µT\G(TB) + µG(B)

= µG(A)
µT\G(TB)

µG/T (AT )
+ µG(B)

≥ µG(A) + µG(B);

As (A,B) is nearly minimally expanding, we have µG(AB) is nearly the same as µG(A) +

µG(B). The fourth line then gives us that µG(TB) is nearly the same as µG(AT ). The

second line now gives us that for each xT ∈ AT , the fiber (xT ∩A) is nearly an interval up

to an endomorphism of T . From the first line, µT (A ∩ xT ) is almost constant as xT ranges

through AT .

We now discuss the relative position of g1A, g2A, and g3A for g1, g2, and g3 near idG.

Clearly, (g1A,B), (g2A,B), and (g3A,B) are also nearly minimally expanding. Using a

submodularity argument as in [162], we can show that (g1A ∩ g2A,B), (g1A ∪ g2A,B) are
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also nearly minimally expanding. A similar analysis applies to all these pairs. In particular,

in order to have almost all vertical fiber of each pair to having the same height, we can only

have one of the following two scenarios:

1. (Almost vertical movement) AT is close to g1AT

2. (Almost horizontal movement) fibers in (A ∪ g1A)T has almost the same length as

those in AT

We note that (2) cannot happen because then A∪g1A will no longer have a similar width as

B. A similar argument shows us that Figure 2 cannot happen. Hence, the “moving up” and

“moving down” divisions in g2A and g3A must be the same as in Figure 1 in Section 6.2.1.

G
T

G/Tg1A

g2A
g3A

Figure 6.2: Different “moving up” and “moving down” divisions in g2A and g3A result in
uneven fiber size.

We mention two subtler aspects of the geometry of minimally expanding pairs that we

will not be able to get in details. First, we will also need it to show a condition called

path monotonicity which is a necessary ingredient to show assumption (2) in Step 2 (Sec-

tion 6.2.3)). Second, for the purpose of controlling the error in Step 2, we need to show a

certain “convexity property” of

Nλ = {g ∈ G : µG(A)− µG(A ∩ gA) < λ}.

This requires us to construct a “core” of A, which is related to the Sanders–Croot–Sisask

theorem [151, 47] in additive combinatorics, and stabilizer theorems in model theory [102].

133



6.2.3 The second step: Constructing an appropriate

homomorphism

We assume in this section that G is a connected and compact Lie group, d is a left invariant

continuous pseudometric on G with the following properties:

1. (Local almost linearity) There is λ ∈ R>0 such that with

Nλ := {g ∈ G : d(idG, g) < λ},

there is ε < 10−10µG(Nλ) such that for all g1, g2, g3 ∈ Nλ

d(g1, g3) ∈ |d(g1, g2)± d(g2, g3)|+ I(ε),

where I(ε) is the interval (−ε, ε) ⊆ R.

2. (Local monotonicity) With the same λ in (2), for all g ∈ Nλ,

|d(idG, g
2)− 2d(idG, g)| ∈ I(ε).

We now sketch how to construct a continuous and surjective group homomorphism to T from

these data. The condition presented here is a simplified but essentially equivalent condition

as in Section 6.7. A crucial argument we will not be able to get into details here is to

show that the local monotonicity condition can be deduced from a weaker property of path

monotonicity obtained from the first step (Section 6.2.2).

When we are in the special case with ε = 0 in property (1), there is a relatively easy

argument which also works for noncompact Lie groups. Set

ker d = {g ∈ G : d(idG, g) = 0}.
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Using the left invariance, continuity, and triangle inequality, one can show that ker d is a

closed subgroup of G. Moreover, in this case, G/ ker d must be isomorphic to T, and the

pseudometric d locally must agrees with a constant multiple of the pullback of the Euclidean

metric. These are, perhaps, not too surprising as a Lie group equipped with a locally linear

pseudometric is, intuitively, a very rigid object which locally looks like a straight line. In

fact, property (2) is not needed as it is a consequence of property (1) in this case.

The general case is much harder as we no longer have the same type of rigidity. In

particular, ker d might not be normal, and G/ ker d might not be T even if ker d is normal.

The reader familiar with the proof of Hilbert’s Fifth problem would guess that we might try

to slightly modify d to get a locally linear pseudometric d′ and use the earlier strategy. This

is still true at the conceptual level, but our actual argument is much more explicit allowing

error control.

As an expository vehicle for the idea, let us still imagine that we somehow obtain a

locally linear pseudometric d′ only slightly differs from d. By the earlier argument, we get

a group homomorphism χ′ : G → T and α′ ∈ R such that d′(g1, g2) = α′‖χ′(g1) − χ′(g2)‖T

near idG. Therefore, for g near idG we have

χ′(g) = ±(1/α′)d′(idG, g) + Z.

Note that this gives us a way to determine χ′(g) for g ∈ Nλ from d′, but we need to know

how to describe α′ from d′. For g1, g2, g3 ∈ Nλ, we say that g2 is “between” g1 and g3 if

d′(g1, g3) = d′(g1, g2) + d′(g2, g3). We say that a product g1 · · · gn is “increasing” if g1 · · · gi

is “between” g1 · · · gi−1 and g1 · · · gi+i. For an arbitrary element g ∈ G, we write it as an

“increasing” product g = g1 · · · gn with gi ∈ Nλ. Then, we can show that

χ′(g) = ±(1/α′)
n−1∑
i=0

d′(g1 . . . gi, g1 . . . gi+1) + Z.
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This gives us a way to determine χ′(g) for an arbitrary g if we can get α′ from d′. Now,

note that if we write idG as an “increasing” product 1G = g1 · · · gn with n > 0 then∑n−1
i=0 d

′(g1 . . . gi, g1 . . . gi+1) will be a multiple of α′. Moreover, α′ will be the minimum

value of such sum. So we recover α′ from d′ and obtain a much more explicit way to describe

the map χ′.

g

idG

Figure 6.3: Any element g in G will be captured by one of the monitors.

Back to the situation where we only have d but not d′, we can carry out the same strategy

as above with d while being careful with the errors. There are a number of problems that

arise. To define the “betweeness”, property (2) plays an important technical role. Since the

error propagate very fast, to get a linear error bound, we cannot write g as an “increasing”

product g = g1 · · · gn with very large n. The upper bound in n comes from a lower bound on

the size of Nλ, which essentially comes from the result on “core” in the first step. To get an

analog of α′ with the desired property, we need to choose a standard way of expressing idG as

an “increasing” product idG = g1 · · · gn and use g1, . . . , gn to “monitor” the other elements in

the group, as illustrated by Figure 6.3. This require us to develop the machinery of irreducible

sequence and concatenation; see Section 6.7.3 for details. Finally, what we ends up with is a

multi-valued almost homomorphism that is not continuous but still universally measurable.

We will need to use a number of results from descriptive set theory and Riemannian geometry

to extract from this the desired group homomorphism.

136



6.2.4 The third step: Deducing the structure of the pair

Suppose (A,B) is a nearly minimally expanding pair on G, H is a connected, compact and

normal subgroup of G, π : G→ G/H is the quotient map, and

µG/H(π(A)) + µG/H(π(B) < 1.

The goal of this step is to show the following transfer to quotients result: There is a nearly

minimally expanding pair (A′, B′) on G/H such that µG(A4π−1(A′)) and µG(B4π−1(B′))

are both small.

A

H
1

1
2

0

A≥1

A0

−→
A2

A2
0

G/H

1
2

π(A2)
w0 w≥1

π(A)
w≥12w0 w≥1

A2A0A≥1

A2
≥1

A≥1 :=
⋃n

i=1Ai

Figure 6.4: Lower bound for µG(A2).

To illustrate the idea, we focus on the special case with A = B. Employing the geometric

language in Section 6.2.1, we call µG/H(π(A)) the width of A, for each g in G, we call A∩gH

a fiber of A, and refer to µH(g−1A ∩ H) as its length. We consider a further special case

assuming that A can be partitioned into N + 1 parts A =
⋃N
i=0 Ai such that the images

under π of the Ai’s are compact and pairwise disjoint, Ai has width wi, the fibers in A0 all

have length ≥ 1/2, the fibers in Ai all have the same length li ≤ 1/2 for each i ≥ 1, and

li ≥ li+1 for all i < N . This further special case is, in fact, quite representative as we can

reduce the general problem to it using approximation techniques.

The proof of this step can be seen as the following “spillover” argument. Applying the

Kemperman inequalities for H and G/H, we learn that all the fibers in A2
0 has length 1, and
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the width of A2
0 is at least 2w0. By Fubini’s theorem, µG(A2

0) is at least 2w0. Next, consider

A0(A0 ∪ A1). A similar argument gives us that all the fibers in A0(A0 ∪ A1) has length at

least l1 + 1/2, and the width of A0(A0 ∪ A1) in G/H is at least 2w0 + w1. Note that (l1 +

1/2)(2w0 +w1) is a weak bound for µG(A0(A0∪A1)) since the fibers in A2
0 are “exceptionally

long”. Taking all of these into account, a stronger lower bound for µG(A0(A0 ∪ A1)) is

2w0 + (l1 + 1/2)w1.

Iterate this procedure, a lower bound for µG(A0A) = µG(A0(A0 ∪ . . . ∪ AN)) is

2w0 +
N∑
i=1

(li + 1/2)wi.

Now every fiber in (A0 ∪A1)A has length at least l1, and the width of (A0 ∪A1)A is at least

(w0 + w1) + w. Using the same logic, a lower bound for µG((A0 ∪ A1)A) is

2w0 +
N∑
i=1

(li + 1/2)wi + l1w1.

Iterate the procedure, a lower bound for µG(A2) = µG((A0 ∪ . . . ∪ An)A) is

2w0 +
N∑
i=1

(li + 1/2)wi +
N∑
i=1

liwi.

Note that µG(A) = l0w0 + . . . + lNwN . Hence, µG(A2) is nearly 2µG(A) implies that we

must nearly have w0 = 1, w1 = . . . = wN = 0, and l0 = 1. From this, one can deduce the

conclusion that we want for this step.

6.2.5 Structure of the chapter

The chapter is organized as follows. Section 6.3 includes some facts about Haar measures

and unimodular groups, which will be used in the subsequent part of the chapter. Section 6.4
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deals with the more immediate parts of Theorem 6.1 and hence sets up the stage for the

main part of the argument. Section 6.5 allows us to arrange that in a minimally or a nearly

minimally expanding pair (A,B), the sets A and B have small measure (Lemma 6.21).

Sections 6.6, 6.7, and 6.8 contain main new technical ingredients of the proof, which will

be put together in Section 6.9 to complete the proofs of Theorem 6.1, Theorem 6.2, and

Theorem 6.3. Steps 1, 2, and 3 discussed in Sections 6.2.2, 6.2.3, and 6.2.4, corresponds to

Sections 6.8, 6.7, and 6.6 respectively.

In Section 6.6.1, we proved the quotient domination theorem (Theorem 6.26), which allow

us to transfer the problem into certain quotient groups. Section 6.6.2 gives an upper bound

on the dimension of the Lie model (Proposition 6.32). Section 6.6.3 contains structural

results assuming we have an appropriate homomorphism (Proposition 6.36). Together with

the transfer theorem, we reduce the problem to a bounded dimension Lie group.

In Section 6.7.1, we showed that a locally linear pseudometric on G would induce a con-

tinuous surjective homomorphism to either R or T, with compact kernel (Proposition 6.42).

Sections 6.7.2 and 6.7.3 study the locally almost linear pseudometric in compact Lie groups.

In particular, we proved that path monotonicity implies monotonicity (Proposition 6.44),

and for almost monotone almost linear pseudometric, one can also find a homomorphism

mapping to T (Theorem 6.61).

In Section 6.8.1, we bound the size of the toric expanders (Theorem 6.73). We construct

the pseudometric from geometric properties of nearly minimal expansion sets in Sections 6.8.2

and 6.8.3. Section 6.8.2 provides a locally linear pseudometric from minimally expansion

sets (Proposition 6.80). In Section 6.8.3, we construct a path monotone locally almost linear

pseudometric (Proposition 6.84).

The dependency diagram of the chapter is as below.
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Theorem 6.2 Theorem 6.1

Theorem 6.26

Theorem 6.61

Proposition 6.42

Theorem 6.3

Proposition 6.84

Proposition 6.32

Lemma 6.21

Theorem 6.73 Proposition 6.16

Proposition 6.17

Proposition 6.18

Proposition 6.36

Proposition 6.80

Proposition 6.44

6.3 Preliminaries

Throughout this section, we assume that G is a connected locally compact group (in partic-

ular, Hausdorff) equipped with a left Haar measure µG, and A,B ⊆ G are nonempty.

6.3.1 Locally compact groups and Haar measures

Below are some basic facts about µG that we will use; see [50, Chapter 1] for details:

Fact 6.4. Suppose µG is either a left or a right Haar measure on G. Then:

(i) If A is compact, then A is µG-measurable and µG(A) <∞.

(ii) If A is open, then A is µG-measurable and µG(A) > 0.

(iii) (Outer regularity) If A is µG-measurable, then there is a decreasing sequence (Un) of

open subsets of G with A ⊆ Un for all n, and µG(A) = limn→∞ µG(Un).

(iv) (Inner regularity) If A is µG-measurable, then there is an increasing sequence (Kn) of

compact subsets of A such that µG(A) = limn→∞ µG(Kn).

(v) (Measurability characterization) If there is an increasing sequence (Kn) of compact

subsets of A, and a decreasing sequence (Un) of open subsets of G with A ⊆ Un for all

n such that limn→∞ µG(Kn) = limn→∞ µG(Un), then A is measurable.
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(vi) (Uniqueness) If µ′G is another measure on G satisfying the properties (1-5), then there

is C ∈ R>0 such that µ′G = CµG.

(vii) (Continuity of measure under symmetric difference) Suppose A ⊆ G is measurable,

then the function G→ R, g 7→ µG(A4gA) is continuous.

We remark that the assumption that G is connected implies that every measurable set

is σ-finite (i.e., countable union of sets with finite µG-measure). Without the connected

assumption, we only have inner regularity for σ-finite sets. From Fact 6.4(vii), we get the

following easy corollary:

Corollary 6.5. Suppose A is µG-measurable and ε is a constant. Then StabεG(A) is closed

in G, while Stab<εG (A) is open in G. In particular, Stab0
G(A) is a closed subgroup of G.

We say that G is unimodular if µG (and hence every left Haar measure on G) is also a

right Haar measure. The following is well known and can be easily verified:

Fact 6.6. If G is unimodular, A is µG-measurable, then A−1 is also µG-measurable and

µG(A) = µG(A−1).

We use the following isomorphism theorem of topological groups.

Fact 6.7. Suppose G is a locally compact group, H is a closed normal subgroup of G. Then

we have the following.

(i) (First isomorphism theorem) Suppose φ : G → Q is a continuous surjective group

homomorphism with kerφ = H. Then the exact sequence of groups

1→ H → G→ Q→ 1

is an exact sequence of topological groups if and only if φ is open; the former condition

is equivalent to saying that Q is canonically isomorphic to G/H as topological groups.
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(ii) (Third isomorphism theorem) Suppose S ≤ G is closed, and H ≤ S. Then S/H is a

closed subgroup of G/H. If S C G is normal, then S/H is a normal subgroup of G/H,

and we have the exact sequence of topological groups

1→ S/H → G/H → G/S → 1;

this is the same as saying that (G/H)/(S/H) is canonically isomorphic to G/S as

topological groups.

Suppose H is a closed subgroup of G. The following fact allows us to link Haar measures

on G with the Haar measures on H for unimodular G and H:

Fact 6.8 (Quotient integral formula). Suppose H is a closed subgroup of G with a left Haar

measure µH . If f is a continuous function on G with compact support, then

xH 7→
∫
H

f(xh) dµH(x).

defines a function fH : G/H → R which is continuous and has compact support. If both

G and H are unimodular, then there is unique invariant Radon measures µG/H on G/H

such that for all continuous function f : G→ R with compact support, the following integral

formula holds ∫
G

f(x) dµG(x) =

∫
G/H

∫
H

f(xh) dµH(h) dµG/H(xH).

A similar statement applies replacing the left homogeneous space G/H with the right homo-

geneous space H\G.

We can extend Fact 6.8 to measurable functions on G, but the function fH in the state-

ment can be only be defined and is µG/H-measurable µG-almost everywhere. So, in particular,

this problem applies to indicator function 1A of a measurable set A. This causes problem

in our later proof and prompts us to sometimes restrict our attention to a better behaved

142



subcollection of measurable subsets of G. We say that a subset of G is σ-compact if it is a

countable union of compact subsets of G.

Lemma 6.9. We have the following:

(i) σ-compact sets are measurable.

(ii) the collection of σ-compact sets is closed under taking countable union, taking finite

intersection, and taking product set.

(iii) For all µG-measurable A, we can find a σ-compact subset A′ of A such that µG(A′) =

µG(A).

(iv) Suppose G is unimodular, H is a closed subgroup of G with a left Haar measure µH ,

A ⊆ G is σ-compact, and 1A is the indicator function of A. Then aH 7→ µH(A ∩ aH)

defines a measurable function 1
H
A : G/H → R. If H is unimodular and, µG/H is the

Radon measure given in Fact 6.8, then

µG(A) =

∫
G/H

∫
H

µH(A ∩ aH) dµH(h) dµG/H(xH).

A similar statement applies replacing the left homogeneous space G/H with the right

homogeneous space H\G.

Proof. The verification of (i-iii) is straightforward. We now prove (iv). First consider the

case where A is compact. By Baire’s Theorem, 1A is the pointwise limit of a monotone

nondecreasing sequence of continuous function of compact support. If f : G → R is a

continuous function of compact support, then the function

fH : G/H → R, aH 7→
∫
H

f(ax)dx

is continuous with compact support, and hence measurable; see [50, Lemma 1.5.1]. Noting

that µH(A∩ aH) =
∫
H
1A(ax)dx, and applying monotone convergence theorem, we get that
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1
H
A is the pointwise limit of a monotone nondecreasing sequence of continuous function of

compact support. Using monotone convergence theorem again, we get 1HA is integrable, and

hence measurable. Also by monotone convergence theorem, we get the quotient integral

formula in the statement.

Finally, the general case where A is only σ-compact can be handled similarly, noting that

1A is then the pointwise limit of a monotone nondecreasing sequence of indicator functions

of compact sets.

Suppose H is a closed subgroup of G. Then H is locally compact, but not necessarily

unimodular. We use the following fact in order to apply induction arguments in the later

proofs.

Fact 6.10. Let G be a unimodular group. If H is a closed normal subgroup of G, then H is

unimodular. Moreover, if H is compact, then G/H is unimodular.

Given A,B subsets of some unimodular group G, each with finite positive measure, and

suppose AB−1 is measurable. Ruzsa’s distance is defined by

d(A,B) = log
µG(AB−1)

µG(A)1/2µG(B)1/2
.

The following fact is known as triangle inequality of Ruzsa’s distance.

Fact 6.11. Let C be a set of finite positive measure, and suppose AC−1, CB−1 are measurable

sets. Then d(A,B) ≤ d(A,C) + d(C,B).

6.3.2 More on Kemperman’s inequality and the inverse problem

We will need a version of Kemperman’s inequality for arbitary sets. Recall that the inner

Haar measure µ̃G associated to µG is given by

µ̃G(A) = sup{µG(K) : K ⊆ A is compact.}
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The following is well known and can be easily verified:

Fact 6.12. Suppose µ̃G is the inner Haar measure associated to µG. Then we have the

following:

(i) (Agreement with µG) If A is measurable, then µ̃G(A) = µ(A).

(ii) (Inner regularity) There is σ-compact A′ ⊆ A such that

µ̃G(A) = µ̃G(A′) = µG(A).

(iii) (Superadditivity) If A and B are disjoint, then

µ̃G(A ∪B) ≥ µ̃G(A) + µ̃G(B).

(iv) (Left invariance) For all g ∈ G, µ̃G(gA) = µ̃(A).

(v) (Right invariance) If G is unimodular, then for all g ∈ G, µ̃G(Ag) = µ̃(A).

It is easy to see that we can replace the assumption that A and B are compact in

Kemperman’s inequality in the introduction with the weaker assumption that A and B

are σ-compact. Together with the inner regularity of µ̃G (Fact 6.12.2), this give us the

first part of the following Fact 6.13. The second part of Fact 6.13 follows from the fact

that taking product sets preserves compactness, σ-compactness, and analyticity. Note that

taking product sets in general does not preserve measurability, so we still need inner measure

in this case.

Fact 6.13 (Generalized Kemperman inequality for connected groups). Suppose µ̃G is the

inner Haar measure on G, and A,B ⊆ G are nonempty. Then

µ̃G(AB) ≥ min{µ̃G(A) + µ̃G(B), µ̃G(G)}.
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Moreover, if A and B are compact, σ-compact, or analytic, then we can replace µ̃G with µG.

The remaining parts of Theorem 6.1 consist of classifying the minimally expanding pairs

(A,B) and show that they match the description in situations (iii) and (iv) of Theorem 6.1.

For compact group, our strategy is to reduce the problem to the known situations of one

dimensional tori. Hence, we need the following special case of Kneser’s classification result,

and the sharp dependence between ε and δ is essentially due to Bilu [16].

Fact 6.14 (Inverse theorem for Td). Let A,B be compact subsets of Td. For every τ > 0,

there is a constant c = c(τ) such that if

τ−1µTd(A) ≤ µTd(B) ≤ µTd(A) ≤ c,

then either µTd(A + B) ≥ µTd(A) + 2µTd(B), or there are compact intervals I, J in T with

µT(I) = µTd(A+B)−µTd(B) and µT(J) = µTd(A+B)−µTd(A), and a continuous surjective

group homomorphism χ : Td → T, such that A ⊆ χ−1(I) and B ⊆ χ−1(J).

For noncompact group, we reduce the problem to to the known situation of additive

group of real numbers. The following result can be seen as the stability theorem of the

Brunn–Minkowski inequality in Rd when d = 1.

Fact 6.15 (Inverse theorem for R). Let A,B be compact subsets in R with µG(A) ≥ µG(B),

and let µR be the Lebesgue measure in R. Suppose we have

µR(A+B) < µR(A) + 2µR(B).

Then there are compact intervals I, J ⊆ R with µR(I) = µR(A + B) − µR(B) and µR(J) =

µR(A+B)− µR(A), such that A ⊆ I and B ⊆ J .
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6.4 Reduction to nearly minimal expansion pairs

To set the stage for the later discussion, we would like to separate the core part of Theo-

rem 6.1 from the more immediate parts. Throughout G is a connected unimodular group,

µG is a Haar measure on G, and A and B are nonempty compact subsets of G.

Proposition 6.16. Suppose one of the situation listed in Theorem 6.1 holds, then µG(AB) =

min(µG(A) + µG(B), µG(G)).

Proof. We will only consider situation (iii) because (i) and (ii) are immediate and (iv) can

be showed in a same way as (iii). Suppose we are in situation (iii) of Theorem 6.1. As χ is

a group homomorphism, we have AB = χ−1(I +J). Note that by quotient integral formula,

we have µG(A) = µT(I), µG(B) = µT(J), µG(AB) = µT(I + J). The desired conclusion

follows from the easy that µT(I + J) = µT(I) + µT(J).

The following lemma clarifies the second statement in situation (ii) of Theorem 6.1.

Proposition 6.17. Suppose µG(A) + µG(B) ≥ µG(G). Then AB = G.

Proof. Suppose g is an arbitrary element of G. It suffices to show that A−1g and B

has nonempty intersection. As G is unimodular, µG(A) = µG(A−1) by Fact 6.6. Hence

µG(A−1g) + µG(B) = µG(G). If µG(A−1g ∩ B) > 0, then we are done. Otherwise, we have

have µG(A−1g ∩ B) = 0, and so µG(A−1g ∪ B) = µG(G) by inclusion exclusion principle.

As A and B are compact, A−1g ∪ B is also compact, and the complement of A−1g ∪ B

is open. Since nonempty open sets has positive measure, µG(A−1g ∪ B) = µG(G) implies

A−1g ∪B = G. Now, since G is connected, we must have A−1g ∩B must be nonempty.

Now we clarify the situation in (iii) of Theorem 6.1, situation (iii) can be proved in the

same way.

Proposition 6.18. Let G be a connected unimodular group, and A,B be nonempty compact

subsets of G. Suppose µG(A) = 0, 0 < µG(B) < µG(G), and µG(AB) = min(µG(A) +

µG(B), µG(G)). Then there is a compact subgroup H of G such that A ⊆ H, and B = HB.
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Proof. Without loss of generality, we can assume that A and B both contain idG. Let H be

the smallest closed subgroup containing A. It suffices to show that HB = B. Indeed, H is

then a closed subset of B which implies that H is compact.

From Corollary 6.5, Stab0(B) = {g ∈ G | µG(B4gB) = 0} is a closed subgroup of G.

As µG(AB) = µG(B) and idG is in A, we must have A ⊆ Stab0(B). By the assumption that

H is the smallest closed subgroup containing A, one must have H ≤ Stab0(B).

We first consider the special case where µG(U ∩ B) > 0 for every b ∈ B and open

neighborhood U of b. As µG is both left and right invariant, this assumption also implies

that µG(U ∩ gB) > 0 for all g ∈ G, b ∈ gB, and open neighborhood U of b. Suppose b is in

HB \B. Since HB =
⋃
h∈H hB, we obtain h ∈ H such that b is in hB. Set U = G\B. Then

U is an open neighborhood of b. From the earlier discussion, we then have µG(U ∩ hB) > 0.

As hB is a subset of HB, it implies that µG(HB \B) > 0 which is a contradiction.

It remains to reduce the general situation to the above special case. Set

B0 = {b ∈ B : There is an open neighborhood Ub of b with µG(Ub ∩B) = 0}.

If b is in B0, and b′ ∈ Ub ∩ B, Ub also witnesses that b′ is in B0. Hence, B \ B0 is a closed

subset of B, which implies that B \B0 is compact. Now we show that µG(B0) = 0. Suppose

B′ is a compact subset of B0. Then from the definition of B0, we can obtain an open

covering (Ui)i∈I of B′ such that µG(Ui ∩B) = 0 for all i ∈ I. As B′ is compact, we get from

(Ui)i∈I a finite subcovering of B′. Hence, µG(B′) = 0. By inner regularity of Haar measure,

µG(B0) = 0. Replacing B with B \B0, we reduce the situation to the above special case.

6.5 Reduction to sets with small measure

Throughout this section, G is a connected compact group, µG is the normalized Haar measure

on G, and A,B ⊆ G are σ-compact sets with positive measure. We will show that if (A,B)
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is nearly minimally expanding in G, then we can σ-compact A′ and B′ each with smaller

measure such that the pair (A′, B′) is also nearly minimally expanding. The similar approach

used in this section is introduced by Tao [162] and used to obtain an inverse theorem in the

abelian setting. We first prove the following easy fact, which will be used several times later

in the paper.

Let f, g : G → C be functions. For every x ∈ G, we define the convolution of f and g

to be

f ∗ g(x) =

∫
G

f(y)g(y−1x) dµG(y).

Note that f ∗ g is not commutative, but associative by Fubini’s Theorem.

Lemma 6.19. Let t be any real numbers such that µG(A)2 ≤ t ≤ µG(A). Then there are

x, y ∈ G such that µG(A ∩ (xA)) = µG(A ∩ (Ay)) = t.

Proof. Consider the maps:

π1 : x 7→ 1A ∗ 1A−1(x) = µG(A ∩ (xA)), and π2 : y 7→ 1A−1 ∗ 1A(y) = µG(A ∩ (Ay)).

By Fact 6.4, both π1 and π2 are continuous functions, and equals to µG(A) when x = y = idG.

By Fubini’s theorem

E (1A ∗ 1A−1) = µG(A)2 = E (1A−1 ∗ 1A).

Then the lemma follows from the intermediate value theorem, and the fact that G is con-

nected.

Recall that dG(A,B) = µG(AB)− µG(A)− µG(B) is the discrepancy of A and B on G.

The following property is sometimes refered to as submodularity in the literature. Note

that this is not related to modular functions in locally compact groups or the notion of

modularity in model theory.

149



Lemma 6.20. Let γ1, γ2 > 0, and A,B1, B2 are σ-compact subsets of G. Suppose that

dG(A,B1) ≤ γ1, dG(A,B2) ≤ γ2, and

µG(B1 ∩B2) > 0, and µG(A) + µG(B1 ∪B2) ≤ 1.

Then both dG(A,B1 ∩B2) and dG(A,B1 ∪B2) are at most γ1 + γ2.

Proof. Observe that for every x ∈ G we have

1AB1(x) + 1AB2(x) ≥ 1A(B1∩B2)(x) + 1A(B1∪B2)(x),

which implies

µG(AB1) + µG(AB2) ≥ µG(A(B1 ∩B2)) + µG(A(B1 ∪B2)). (6.2)

By the fact that dG(A,B1) ≤ γ1 and dG(A,B2) ≤ γ2, we obtain

µG(AB1) ≤ µG(A) + µG(B1) + γ1, and µG(AB2) ≤ µG(A) + µG(B2) + γ2.

Therefore, by equation (6.2) we have

µG(A(B1 ∩B2)) + µG(A(B1 ∪B2))

≤ 2µG(A) + µG(B1 ∩B2) + µG(B1 ∪B2) + γ1 + γ2.

On the other hand, as µG(B1∩B2) > 0 and µG(A)+µG(B1∪B2) ≤ 1, and using Kemperman’s

inequality, we have

µG(A(B1 ∩B2)) ≥ µG(A) + µG(B1 ∩B2),

and

µG(A(B1 ∪B2)) ≥ µG(A) + µG(B1 ∪B2).
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This implies

µG(A(B1 ∩B2)) ≤ µG(A) + µG(B1 ∩B2) + γ1 + γ2,

and

µG(A(B1 ∪B2)) ≤ µG(A) + µG(B1 ∪B2) + γ1 + γ2.

Thus we have dG(A,B1 ∩B2), dG(A,B1 ∪B2) ≤ γ1 + γ2.

The following lemma is the main result of this section, it says if G admits a small

expansion pair, one can another find pair of sets with sufficiently small measures, and still

has small expansion.

Lemma 6.21. Let d1, d2 ∈ (0, 1/4) be positive real numbers, and let

m = min{µG(A), µG(B), 1− µG(A)− µG(B)}.

Suppose dG(A,B) ≤ γ. Then there are σ-compact sets A′, B′ ⊆ G satisfying

(i) µG(A′) = d1 and µG(B′) = d2,

(ii) dG(A′, B), dG(A,B′), and dG(A′, B′) are at most Od1,d2(γ/m).

Proof. Without loss of generality we assume µG(A) > d1 and µG(A) ≥ µG(B). The case

when µG(A) is less than d1 can be proved in a similar way by replacing taking intersections

by taking unions. Observe that for every g ∈ G, both dG(gA,B) and dG(A,Bg) are still

upper bounded by γ. By Lemma 6.19, for every t with µG(A)2 ≤ t ≤ µG(A), there is

g ∈ G such that µG(A ∩ gA) = t. Assuming that in each step, we can choose g such

that µG(A ∩ gA) = µG(A)2, and replace A by A ∩ gA. Hence after O(log log 1/d1) steps,

the measure of A will achieve d1. The issue of this simple argument is that we may have

µG(A ∪ gA) + µG(B) > 1 when µG(A) ≥ 1/3, so that we cannot apply Lemma 6.20. Thus

in the first few steps, we will choose g such that µG(A ∪ gA) is not too large.
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We first consider the case when µG(A) ≥ 1/3, and µG(A)−m ≥ µG(A)2. We are going

to choose g ∈ G such that

2µG(A)− µG(A ∩ gA) + µG(B) = µG(A ∪ gA) + µG(B) ≤ 1, (6.3)

and µG(A ∩ gA) ≥ max{d1, µG(A) −m}. Such g exists by Lemma 6.19. Let A1 = A ∩ gA,

then µG(A1) ≤ µG(A) − m,µG(A)2. By Lemma 6.20, dG(A1, B) ≤ 2γ. Next we choose

g1 ∈ G satisfying (6.3) with A replaced by A1, and µG(A1 ∩ g1A1) ≥ min{d1, µG(A1)2}. Let

A2 = A1 ∩ g1A1, then µG(A2) ≤ max{µG(A1)− 2m,µG(A1)2}, and dG(A2, B) ≤ 4γ. Repeat

this procedure for t1 steps until either µG(At1) = d1, or µG(At)−2t−1m ≤ µG(At)
2. In either

case we have t1 ≤ log(1/3m).

Next, if µG(At1) > d1, we choose gt1 in G such that µG(At1 ∩ gt1At1) = µG(At1)2. By the

way we define t1, we have µG(At1 ∪ gt1At1) + µG(B) ≤ 1. Set At1+1 = At1 ∩ gt1At1 . Repeat

this procedure for t2 steps until µG(At1+t2) = d1. We have

t2 ≤ log
log d1

log µG(At1)
≤ log log

1

d1

,

and dG(At1+t2 , B) ≤ 2t1+t2γ = Od1(γ/m). We then apply the same procedures for B to

arrange B having measure d2.

If we have µG(A) < 1/3 at the beginning, we are able to choose g such that µG(A∩gA) =

µG(A)2 and µG(A ∪ gA) + µG(B) ≤ 1. Hence it only requires at most log log(1/d1) steps to

make A having measure d1.
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6.6 Geometry of minimal and nearly minimal

expansion pairs I

This section studies the shape of a nearly minimally expanding pairs relative to a connected

compact normal subgroup of the ambient topological group such that the images of the pair

under the quotient map have small measure. In Section 6.1, we obtain results that will allow

us to reduce the Theorem 6.1 and Theorem 6.2 to analogous result about a simpler quotient

group. Section 6.2 applies Section 6.1 to reduce Theorem 6.1 and Theorem 6.2 to the case of

Lie groups and also prove a coarse version of these results. Section 6.3 applies Section 6.1 to

further reduce Theorem 6.1 and Theorem 6.2 to the problem of constructing suitable group

homomorphism into either T or R.

Throughout this section, G is a connected unimodular locally compact group with Haar

measure µG, and A and B are σ-compact subsets of G with positive µG-measure. We will

assume familiarity with the preliminary Section 3.1 on locally compact group and Haar

measuure.

6.6.1 Preservation of minimal expansion under quotient

In this section, H is a connected compact normal subgroup of G, so H and G/H are uni-

modular by Fact 6.10. Let µH , and µG/H be the Haar measure on G, H, and G/H, and let

µ̃G and µ̃G/H be the inner Haar measures on G and G/H. We also let

Suppose r and s are in R, the sets A(r,s] and πA(r,s] are given by

A(r,s] := {a ∈ A : µH(A ∩ aH) ∈ (r, s]}

and

πA(r,s] := {aH ∈ G/H : µH(A ∩ aH) ∈ (r, s]}.
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In particular, πA(r,s] is the image of A(r,s] under the map π. We have a number of immediate

observations. We define B(r′,s′] and πB(r′,s′] likewise for r′, s′ ∈ R.

Lemma 6.22. Let r, s, r′, s′ be in R>0. For all aH ∈ πA(r,s], bH ∈ πB(r′,s′], the sets

A(r,s] ∩ aH, B(r′,s′] ∩ bH are nonempty σ-compact. For all subintervals (r, s] of (0, 1], A(r,s]

is µG-measurable and πA(r,s] is µG/H-measurable.

Proof. The first assertion is immediate from the definition. Let 1A be the indicator function

of A. Then the function

1
H
A : G/H → R

aH 7→ µH(A ∩ aH)

is well-defined and measurable by Lemma 6.9. As πA(r,s] = (1HA )−1(r, s] and A(r,s] = A ∩

π−1(πA(r,s]), we get the second assertion.

Note that πA(r,s]πB(r′,s′] is not necessarily µG/H-measurable, so Lemma 6.23(ii) does

requires the inner measure µ̃G/H .

Lemma 6.23. We have the following:

(i) For every aH ∈ πA and bH ∈ πB,

µH
(
(A ∩ aH)(B ∩ bH)

)
≥ min{µH(A ∩ aH) + µH(B ∩ bH), 1}.

(ii) If A(r,s] and B(r′,s′] are nonempty, then

µ̃G/H(πA(r,s]πB(r′,s′]) ≥ min{µG/H(πA(r,s]) + µG/H(πB(r′,s′]), µG/H(G/H)}.

Proof. Note that both H and G/H are connected. So (i) is a consequence of the Kemperman

inequality for H and (ii) is a consequence of the generalized Kemperman inequality for G/H
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(Fact 6.13).

As the functions we are dealing with are not differentiable, we will need Riemann–Stieltjes

integral which we will now recall. Consider a closed interval [a, b] of R, and functions

f : [a, b] → R and g : R → R. A partition P of [a, b] is a sequence (xi)
n
i=0 of real numbers

with x0 = a, xn = b, and xi < xi+1 for i ∈ {0, . . . , n − 1}. For such P , its norm ‖P‖

is defined as maxn−1
i=0 |xi+1 − xi|, and a corresponding partial sum is given by S(P, f, g) =∑n

i=0 f(ci+1)(g(xi+1)− g(xi)) with ci+1 ∈ [xi, xi + 1]. We then define

∫ b

a

f(x) dg(x) := lim
‖P‖→0

S(P, f, g)

if this limit exists where we let P range over all the partition of [a, b] and S(P, f, g) ranges

over all the corresponding partial sums of P . The next fact records some basic properties of

the integral.

Fact 6.24. Let [a, b], f(x), and g(x) be as above. Then we have:

(i) (Integrability) If f(x) is continuous on I, and g(x) is monotone and bounded on [a, b],

then f(x) dg(x) is Riemann–Stieltjes integrable on [a, b].

(ii) (Integration by parts) If f(x) dg(x) is Riemann–Stieltjes integrable on interval [a, b],

then g(x) df(x) is also Riemann–Stieltjes integrable on [a, b], and

∫ b

a

f(x) dg(x) = f(b)g(b)− f(a)g(a)−
∫ b

a

g(x) df(x).

The next lemma uses “spillover” estimate, which gives us a lower bound estimate on

µG(AB) when the projection of A and B are not too large.

Lemma 6.25. Suppose µG/H(πA) + µG/H(πB) < 1. Set α = supa∈A µH(A ∩ aH), β =
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supb∈B µH(B ∩ bH), and γ = max{1, α + β}. Then

µG(AB) ≥ α + β

γ

(
µG/H(πA(α/γ,α]) + µG/H(πB(β/γ,β])

)
+
α + β

α
µG(A(0,α/γ]) +

α + β

β
µG(B(0,β/γ]).

Proof. For x ∈ (0, 1], set Cx = AB ∩ π−1(πA(xα,α]πB(xβ,β]). One first note that

µG(AB) ≥ µ̃G(C0).

By Fact 6.24(1), dµ̃G(Cx) is Riemann–Stieltjes integrable on any closed subinterval of [0, 1].

Hence,

µ̃G(C0) = µ̃G(C1/γ)−
∫ 1

γ

0

dµ̃G(Cx).

Lemma 6.22 and Lemma 6.23(1) give us that

µ̃G(C1/γ) ≥ µ̃G/H(πA(α/γ,α]πB(β/γ,β]).

Likewise, for x, y ∈ R>0 with x < y ≤ 1/γ, µ̃G(Cx)− µ̃G(Cy) is at least

r(α + β)
(
µ̃G/H(πA(xα,α]πB(xβ,β])− µ̃G/H(πA(yα,α]πB(yβ,β])

)
.

Therefore,

µ̃G(C0) ≥ µ̃G/H(πA(α/γ,α]πB(β/γ,β])−
∫ 1

γ

0

(α + β)x dµ̃G/H(πA(xα,α]πB(xβ,β]).

Using integral by parts (Fact 6.24.2), we get

µ̃G(C0) ≥
∫ 1

γ

0

µ̃G/H(πA(xα,α]πB(xβ,β]) d(α + β)x.
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Applying Lemma 6.23.2 and using the assumption that µG/H(πA)+µG/H(πB) < 1 , we have

µ̃G(C0) ≥
∫ 1

γ

0

(µG/H(πA(xα,α]) + µG/H(πB(xβ,β])) d(α + β)x.

Using integral by parts (Fact 6.24.2), we arrive at

µ̃G(C0) ≥ α + β

γ

(
µG/H(πA(α/γ,α]) + µG/H(πB(β/γ,β])

)
−
∫ 1

γ

0

(α + β)x d(µG/H(πA(xα,α]) + µG/H(πB(xβ,β])).

As d(µG/H(πA(xα,α]) + µG/H(πB(xβ,β])) = − d(µG/H(πA(0,xα]) + µG/H(πB(0,xβ])),

µ̃G(C0) ≥ α + β

γ

(
µG/H(πA(α/γ,α]) + µG/H(πB(β/γ,β])

)
+

∫ 1
γ

0

(α + β)x d(µG/H(πA(0,xα]) + µG/H(πB(0,xβ])).

Finally, recall that

∫ 1/γ

0

xα dµG/H(πA(0,xα]) = µG(A(0,α/γ]) and

∫ 1/γ

0

βx dµG/H(πB(0,xβ]) = µG(B(0,β/γ]).

Thus, we arrived at the desired conclusion.

The next result in the main result in this subsection. It says if the projections of A and

B are not too large, the small expansion properties will be kept in the quotient group.

Theorem 6.26 (Quotient domination). Suppose µG/H(πA) +µG/H(πB) < µG/H(G/H) and

dG(A,B) < min{µG(A), µG(B)}. Then there are σ-compact A′, B′ ⊆ G/H such that

dG/H(A′, B′) < 7dG(A,B)

and max{µG(A4π−1A′), µG(B4π−1B′)} < 3dG(A,B).

157



Proof. Let α and β be as in Lemma 6.25. We first show that α + β ≥ 1. Suppose to the

contrary that α + β < 1. Then Lemma 6.25 gives us

µG(AB) ≥ α + β

α
µG(A) +

α + β

β
µG(B)

It follows that µG(AB) > µG(A) + µG(B) + min{µG(A), µG(B)}, a contradiction.

Now we have α + β ≥ 1. Hence, Lemma 6.25 yields

µG(AB) ≥ µG/H(πA(α/(α+β),α]) + µG/H(πB(β/(α+β),β])

+
α + β

α
µG(A(0,α/γ]) +

α + β

β
µG(B(0,β/(α+β)]).

Choose σ-compact A′ ⊆ πA(α/(α+β),α] and B′ ⊆ πB(β/(α+β),β]) σ-compact such that

µG/H(A′) = µG/H(πA(α/(α+β),α]) and µG/H(B′) = µG/H(πB(β/(α+β),β]).

We will verify that A′ and B′ satisfy the desired conclusion.

Since µG/H(A′) ≥ (1/α)µG(A(α/(α+β),α]), µG/H(B′) ≥ (1/β)µG(B(β/(α+β),β]) and α+β > 1,

we have

µG(AB) ≥ 1

α
µG(A) +

1

β
µG(B).

From µG(AB)− µG(A)− µG(B) = dG(A,B) ≤ min{µG(A), µG(B)}, we deduce that α, β ≥

1/2.

By our assumption µG(AB) < µG(A) + µG(B) + dG(A,B). Hence,

dG(A,B) ≥ µG/H(A′)− µG(A(α/(α+β),α]) + µG/H(B′)− µG(B(β/(α+β),β])

+
β

α
µG(A(0,α/γ]) +

α

β
µG(B(0,β/(α+β)]).

Therefore, µG/H(A′) − µG(A(α/(α+β),α]) and (β/α)µG(A(0,α/γ]) are at most dG(A,B). Not-
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ing also that β/α ≤ 1/2, we get µG(A4π−1(A′) ≤ 3dG(A,B). A similar argument yield

µG(B4π−1(B′) ≤ 3dG(A,B).

Finally, note that π−1 (A′B′) is equal to A(α/(α+β),α]B(β/(α+β),β], which is a subset of AB.

Combining with µG(AB) < µG(A) + µG(B) + dG(A,B), we get

µG/H(A′B′) ≤ µG(A) + µG(B) + dG(A,B) ≤ µG/H(A′) + µG/H(B′) + 7dG(A,B),

which completes the proof.

The next corollary of the proof of Theorem 6.26 gives a complementary result when

without the asssumption that µG/H(πA) + µG/H(πB) < µG/H(G/H).

Corollary 6.27. Suppose G is noncompact and dG(A,B) = 0. Then there are σ-compact

A′, B′ ⊆ G/H such that dG/H(A′, B′) = 0, µG(A4π−1A′) = 0, and µG(B4π−1B′) = 0.

Proof. Choose an increasing sequence (An) of compact subsets of A and an increasing se-

quence (Bn) of compact subsets of B such that A =
⋃∞
n=0An and B =

⋃∞
i=0Bn. Then

limn→∞ dG(An, Bn) = 0. For each n, An and Bn are compact, so πAn and πBn are also

compact and has finite measure. Let A′n and B′n be defined for An and Bn as in the proof of

Theorem 6.26. Then for n sufficiently large, we have

µG(π−1A′n4An) < 3dG(An, Bn) and µG(π−1B′n4Bn) < 3dG(An, Bn)

and

µG/H(A′nB
′
n) < µG/H(A′n) + µG/H(B′n) + 5dG(An, Bn).

Moreover, we can arrange that the sequences (A′n) and (B′n) are increasing. Take A′ =⋃∞
n=1A

′
n and B′ =

⋃∞
n=1 B

′
n. By taking n→∞, we have

µG(π−1A′4A) = 0 and µG(π−1B′4B) = 0.
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and dG/H(A′, B′) = 0 as desired.

6.6.2 Coarse versions of the main theorems

For the given G, there might be no continuous surjective group homomorphism to either

T or R (e.g. G = SO3(R)). However, the famous theorem below by Gleason [73] and

Yamabe [169] allows us to naturally obtain continuous and surjective group homomorphism

to a Lie group. Using together with Corollary 6.27, this allows us to reduce the noncompact

case of Theorem 6.1 to that of Lie group. The connectedness of H is not often stated as

part of the result, but can be arranged by replacing H with its identity component.

Fact 6.28 (Gleason–Yamabe Theorem). For any connected locally compact group G and any

neighborhood U of the identity in G, there is a connected compact normal subgroup H ⊆ U

of G such that G/H is Lie group.

With some further effort, we can also arrange that µG/H(πA)+µG/H(πB) < µG/H(G/H)

as necessary to apply Theorem 6.26. However, when dG(A,B) > 0, we will need a dimension

control on the Lie group we obtained from the Gleason–Yamabe Theorem. For that, we

need Fact 6.30, which can be thought of as a refinement of the Gleason–Yamabe theorem

coming from arithmetic combinatorics and model theory.

Recall that an open precompact set S ⊆ G is a K-approximate group if idG ∈ S,

S−1 = S, and S2 ⊆ XS for some finite set X of cardinality K. The next theorem by

Tao [159] allows us to extract an approximate group from a nearly minimally expanding

pair; as stated in [159], this theorem is only applicable when A,B are open, but the proof

also goes through without this assumption.

Fact 6.29 (Approximate groups from small expansion). Suppose K is a constant and

µG(AB) < Kµ
1/2
G (A)µ

1/2
G (B), then there is an open precompact O(KO(1))-approximate group

S with µG(S) = O(KO(1))µ
1/2
G (A)µ

1/2
G (B) and a finite set X or cardinality O(KO(1)) such

that A ⊆ XS and B ⊆ SX.
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The study of continuous approximate groups by Carolino [40] is able to find a Lie model,

and to control the dimension of the Lie model. This can be seen as a finer version of the

Gleason–Yamabe theorem.

Fact 6.30 (Lie model from approximate groups). Suppose K is a constant and S is an open

precompact K-approximate group on G. Then there is a connected compact normal subgroup

H of G, such that H ⊆ S4 and G/H is a Lie group of dimension OK(1).

The next lemma is the main result in this subsection. Using this, we can pass the problem

to connected Lie groups with bounded dimensions.

Lemma 6.31 (Lie model from small expansions). If µG(AB) ≤ Kµ
1/2
G (A)µ

1/2
G (B) and then

there is a connected compact subgroup H of G such that G/H is a Lie group of dimen-

sion OK(1) and, with π : G → G/H the quotient map, πA and πB have µG-measure

O(KO(1))µ
1/2
G (A)µ

1/2
G (B).

Proof. By Fact 6.29, there is an open K-approximate group S, with

µG(S) = O(KO(1))µ
1/2
G (A)µ

1/2
G (B)

such that A can be covered by O(KO(1)) right translation of S, and B can be covered by

O(KO(1)) left translation of S. By Fact 6.30, there is a closed connected normal subgroup

H in S4, such that G/H is a Lie group of dimension at most OK(1). Let π be the quotient

map. Since H ⊆ S4, we have

µG/H(π(S)) = µG(SH) ≤ µG(S5) = O(KO(1))µ
1/2
G (A)µ

1/2
G (B).

Note that π(A) can be covered by O(KO(1)) right translations of π(S), and π(B) can be

covered by O(KO(1)) left translations of π(S). Hence, we get the desired conclusion.

The following proposition tells us that small measure expansion phenomenon can always

be reduced to the same phenomenon on a Lie group with small dimension.
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Proposition 6.32 (Coarse versions of the main theorems). There is a constant τ such that

if either G is noncompact and µG(A) = µG(B) or G is compact and µG(A) = µG(B) < τ ,

and

dG(A,B) < min{µG(A), µG(B)},

then there is a connected compact normal subgroup H of G, and σ-compact subsets A′, B′ of

G/H satisfying:

(i) G/H is a Lie group of dimension O(1);

(ii) With π : G→ G/H the quotient map,

µG(A4π−1A′) < 3dG(A,B) and µG(B4π−1B′) < 3dG(A,B);

(iii) dG/H(A′, B′) < 7dG(A,B).

Proof. From the assumption we have µG(AB) < 3µ
1/2
G (A)µ

1/2
G B. ObtainH as in Lemma 6.31,

and when µG(A), µG(B) are small enough, we have µG/H(πA)+µG/H(πB) < 1. Then G/H is

a Lie group of dimension O(1). By applying Theorem 6.26, we get the desired conclusion.

6.6.3 Structure control on the nearly minimal expansion sets

The following useful lemma is a corollary of Theorem 6.26, which will be used at various

points in the later proofs. It tells us the character given in the parallel Bohr sets is essentially

unique.

Lemma 6.33 (Stability of characters). Suppose G is compact, χ : G → T is a continuous

surjective group homomorphism, J ⊆ T is a compact interval, and η is a constant. Suppose

we have

(i) dG(A,B) < min{µG(A), µG(B)};
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(ii) µT(J) = µG(B) and µG(B4χ−1(J)) = ηdG(A,B);

Then there is a compact interval I in T such that µT(I) = µG(A) and

µG(A4χ−1(I)) ≤ (45 + 2η)dG(A,B).

Proof. Let K = ker(χ). Note that χ is an open map, and hence by Fact 6.7 we have

G/K ∼= T. By Theorem 6.26, there are sets A′ and B′ in T such that dT(A′, B′) ≤ 7dG(A,B),

and

µG(A4χ−1(A′)) = 3dG(A,B), µG(B4χ−1(B′)) = 3dG(A,B).

Then µT(B′4J) ≤ (η + 3)dG(A,B). Without loss of generality, we assume µG(B) = κ, and

J = [0, κ]. As A′ is measurable, for any ε > 0, there is a finite union of intervals K ⊆ A′ in

T such that µT(K) ≥ µT(A′)− ε. Fix ε = dG(A,B). For every x ∈ [0, κ], define

f : R→ R, x 7→ µT(K + [0, x]).

Note that f is continuous and piecewise linear. Thus by the fundamental theorem of calculus

∫ κ

0

f ′(x) dx = f(κ)− f(0)

≤ µT(A′) + κ+ (7 + 3 + η)dG(A,B)− µT(A′) + dG(A,B)

≤ κ+ (11 + η)dG(A,B).

Note that f ′ ≥ 1 and only taking values in Z. Hence, there is Ω ⊆ [0, κ] with µR(Ω) ≥

κ− (11 +η)dG(A,B), such that f ′(x) = 1 for x ∈ Ω. Clearly, there is x0 ≤ (11 +η)dG(A,B),

and f ′(x0) = 1. This implies K + [0, x0] is an interval. Again we have

µT(K + [0, x0]) = f(κ)−
∫ κ

x0

f ′(x) dx

≤ µT(A′) + (21 + η)dG(A,B).
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Thus, there is an interval I ⊆ T with µT(I) = µG(A), and µG(A4χ−1(I)) ≤ (2(21 + η) +

3)dG(A,B) = (45 + 2η)dG(A,B).

The next lemma shows that, if the symmetric difference of a set A and an interval is

small, then A is also contained in a interval of bounded length.

Lemma 6.34. Suppose G is compact, A,B are σ-compact subsets of G, and the discrepancy

dG(A,B) < ε. Let χ : G → T be a continuous surjective group homomorphism, and I, J

compact intervals in T, with µT(I) = µG(A), µT(J) = µG(B), and

µG(A4χ−1(I)) < ε, µG(B4χ−1(J)) < ε.

Then there are intervals I ′, J ′ ⊆ T, such that A ⊆ χ−1(I ′), B ⊆ χ−1(J ′), and

µT(I ′)− µG(A) < 10ε, µT(J ′)− µG(B) < 10ε.

Proof. Suppose there is g ∈ A and g /∈ χ−1(I), and the distance between χ(g) and the

nearest element in I ′ is strictly greater than 5εµG(A) in T. Thus

µT(χ(g)χ(B) \ Iχ(B)) ≥ 5ε− µT(J \ χ(B)) ≥ 4ε.

and this implies that µG(gB \ χ−1(I)χ−1(J)) ≥ 3ε. Therefore,

µG(AB) ≥ µG
(
(χ−1(I) ∩ A)(χ−1(J) ∩B)

)
+ µG(gB \ χ−1(I)χ−1(J))

≥ µG(A) + µG(B)− 2ε+ 3ε,

and this contradicts the fact that dG(A,B) < ε. Hence there are intervals I ′, J ′ in T such

that A ⊆ χ−1(I ′) and B ⊆ χ−1(J ′), and

µG(χ−1(I ′) \ A) < 10ε µT(χ−1(J ′) \B) < 10ε,
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as desired.

The stability lemma, together with Theorem 6.26, will be enough to derive a different

proof of a theorem by Tao [162], with a sharp exponent bound. As we mentioned in the

introduction, the same result with a sharp exponent bound was also obtained by Christ and

Iliopoulou [43] recently, via a different approach.

Theorem 6.35 (Theorem 6.2 for compact abelian groups). Let G be a connected compact

abelian group, and A,B be compact subsets of G with positive measure. Set

s = min{µG(A), µG(B), 1− µG(A)− µG(B)}.

Given 0 < ε < 1, there is a constant K = K(s) does not depends on G, such that if δ < Kε

and

µG(A+B) < µG(A) + µG(B) + δmin{µG(A), µG(B)}.

Then there is a surjective continuous group homomorphism χ : G → T together with two

compact intervals I, J ∈ T with

µT(I)− µG(A) < εµG(A), µT(J)− µG(B) < εµG(B),

and A ⊆ χ−1(I), B ⊆ χ−1(J).

Proof. We first assume that dG(A,B) is sufficiently small, and we will compute the bound

on dG(A,B) later. As G is abelian, by Proposition 6.32, there is a quotient map π : G→ Td,

and A′, B′ ⊆ Td, such that

µG(A4π−1A′) < 3dG(A,B) and µG(B4π−1B′) < 3dG(A,B)

and dG/H(A′, B′) < 7dG(A,B). Let c = c(τ) be as in Fact 6.14, and by Lemma 6.21, there is

a constant L depending only on s and c, and sets A′′, B′′ ⊆ Td with µTd(A
′′) = µTd(B

′′) = c
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such that

max{dG(A′′, B′), dG(A′′, B′′), dG(A′, B′′)} < LdG(A,B).

By Fact 6.14, there are intervals I ′, J ′ ⊆ T with µT(I ′) = µT(J ′) = c, and a continuous

surjective group homomorphism ρ : Td → T, such that

µTd(A
′′4 ρ−1(I ′)) < LdG(A,B) and µTd(B

′′4 ρ−1(J ′)) < LdG(A,B).

By Lemma 6.33, there are intervals I ′, J ′ ⊆ T with

µTd(A
′4 ρ−1(I ′)) < (45 + 2L)dG(A,B) and µTd(B

′4 ρ−1(J ′)) < (45 + 2L)dG(A,B).

Let χ = π ◦ ρ. Hence we have

µG(A4χ−1(I ′)) < (48 + 2L)dG(A,B) and µG(B4χ−1(J ′)) < (48 + 2L)dG(A,B).

Using Lemma 6.34, there are intervals I, J ⊆ T, such that A ⊆ χ−1(I), B ⊆ χ−1(J), and

µT(I)− µG(A) < (480 + 20L)dG(A,B),

µT(J)− µG(B) < (480 + 20L)dG(A,B).

Now, we fix

K := min
{ 1

480 + 20L
,
c

L

}
,

and δ < Kε, where dG(A,B) = δmin{µG(A), µG(B)}. Clearly, we will have

µT(I)− µG(A) < εmin{µG(A), µG(B)},

µT(J)− µG(B) < εmin{µG(A), µG(B)}.
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Note that in the above argument, we apply Fact 6.14 on A′′, B′′, and this would require that

LdG(A,B) < c. By the way we choose K, we have

LdG(A,B) = Lδmin{µG(A), µG(B)} < c,

as desired.

The following theorem shows that, once we have a certain group homomorphism to tori,

we will get a good structural control on the (nearly) minimal expansion sets.

Proposition 6.36 (Toric domination from a given homomorphism). Suppose A,B have

dG(A,B) < min{µG(A), µG(B)}, and χ : G → T is a continuous surjective group homo-

morphism such that µT(χ(A)) + µT(χ(B)) < 1/5. Then there is a continuous and surjective

group homomorphism ρ : G → T, a constant K0 only depending on min{µG(A), µG(B)},

and compact intervals I, J ⊆ T with µT(I) = µG(A) and µT(J) = µG(B), such that

µG(A4ρ−1(I)) < K0dG(A,B), and µG(B4ρ−1(J)) < K0dG(A,B).

Proof. By Theorem 6.26, there are A′, B′ ⊆ T, such that

µG(A4χ−1(A′)) < 3dG(A,B) and µG(B4χ−1(B′)) < 3dG(A,B), (6.4)

and dT(A′, B′) < 7dG(A,B). By Theorem 6.35, there are continuous surjective group homo-

morphism η : T → T, a constant L depending only on min{µG(A), µG(B)}, and compact

intervals I, J ⊆ T such that µT(I) = µT(A′), µT(J) = µT(B′), and

µT(A′4η−1(I)) < LdG(A,B) and µT(B′4η−1(J)) < LdG(A,B). (6.5)

Set ρ = η ◦ χ. The conclusion follows from (6.4) and (6.5) with K0 = L+ 3.
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In light of Proposition 6.36, in the rest of the paper, we will be focusing on finding the

desired group homomorphism mapping G to tori.

6.7 Pseudometrics and group homomorphisms into

tori

Proposition 6.32 and Proposition 6.36 reduce the proof of Theorem 6.1 and Theorem 6.2

to problems of constructing certain group homomorphisms from a Lie group into T or R.

In this section, we show these problems can be reduced further to problems of constructing

pseudometrics with certain properties on the ambient group. Section 7.1 shows that a linear

pseudometric suffices, and Section 7.2 and Section 7.3 does so when the pseudometric is

almost linear and almost monotone.

Throughout, G is a connected and unimodular Lie group with Haar measure µG. Recall

that a pseudometric on a set X is a function d : X ×X → R satisfying the following three

properties:

1. (Reflexive) d(a, a) = 0 for all a ∈ X,

2. (Symmetry) d(a, b) = d(b, a) for all a, b ∈ X,

3. (Triangle inequality) d(a, c) ≤ d(a, b) + d(b, c) ∈ X.

Hence, a pseudometric on X is a metric if for all a, b ∈ X, we have d(a, b) = 0 implies a = b.

If d is a pseudometric on G, for an element g ∈ G, we set ‖g‖d = d(idG, g).

6.7.1 Linear pseudometrics

Suppose d is a pseudometric on G. We say that d is left-invariant if for all g, g1, g2 ∈ G,

we have d(gg1, gg2) = d(g1, g2). left-invariant pseudometrics arise naturally from measurable

sets in a group; the pseudometric we will construct in Section 8 is of this form.

168



Proposition 6.37. Suppose A is a measurable subset of G. For g1 and g2 in G, define

d(g1, g2) = µG(A)− µG(g1A ∩ g2A).

Then d is a continuous left-invariant pseudometric on G.

Proof. We first verify the triangle inequality. Let g1, g2, and g3 be in G, we need to show

that

µG(A)− µG(g1A ∩ g3A) ≤ µG(A)− µG(g1A ∩ g2A) + µG(A)− µG(g2A ∩ g3A). (6.6)

As µG(A) = µG(g2A), we have µG(A) − µG(g1A ∩ g2A) = µG(g2A \ g1A), and µG(A) −

µG(g2A ∩ g3A) = µG(g2A \ g3A). Hence, (6.6) is equivalent to

µG(g2A)− µG(g2A \ g1A)− µG(g2A \ g3A) ≤ µ(g1A ∩ g3A).

Note that the left hand side is at most µG(g1A∩g2A∩g3A), which is less than the right hand

side. Hence, we get the desired conclusion. The continuity of d follows from Fact 6.4(vii),

and the remaining parts are straightforward.

Another natural source of left-invariant pseudometrics is group homomorphims onto met-

ric groups. Suppose d̃ is a continuous left-invariant metric on a group H and π : G→ H is

a group homomorphism, then for every g1, g2 in G, one can naturally define a pseudometric

d(g1, g2) = d̃(π(g1), π(g2)). It is easy to see that such d is a continuous left-invariant pseu-

dometric, and {g ∈ G : ‖g‖d = 0} = ker(π) is a normal subgroup of G. The latter part of

this statement is no longer true for an arbitrary continuous left-invariant pseudometric, but

we still have the following:

Lemma 6.38. Suppose d is a continuous left-invariant pseudometric on G. Then the set

{g ∈ G : ‖g‖d = 0} is the underlying set of a closed subgroup of G.
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Proof. Suppose g1 and g2 are elements in G such that ‖g1‖d = ‖g2‖d = 0. Then

d(idG, g1g2) ≤ d(idG, g1) + d(g1, g1g2) = d(idG, g1) + d(idG, g2) = 0.

Now, suppose (gn) is a sequence of elements in G converging to g with ‖gn‖d = 0. Then

‖g‖d = 0 by continuity, we get the desired conclusions.

In many situations, a left-invariant pseudometric allows us to construct surjective con-

tinuous group homomorphism into metric groups. The following lemma tells us precisely

when this happens. We omit the proof as the result is motivationally relevant but will not

be used later on.

Lemma 6.39. Let d be a continuous left-invariant pseudometric on G. The following are

equivalent

(i) The set {g ∈ G : ‖g‖d = 0} is the underlying set of a closed normal subgroup of G.

(ii) There is a continuous surjective group homomorphism π : G → H, and d̃ is a left-

invariant metric on H. Then

d(g1, g2) = d̃(πg1, πg2).

Moreover, when (ii) happens, {g ∈ G : ‖g‖d = 0} = ker π, hence H and d̃ if exist are

uniquely determined up to isomorphism.

The group R and T = R/Z are naturally equipped with the metrics dR and dT induced

by the Euclidean norms, and these metrics interact in a very special way with the additive

structures. Hence one would expect that if there is a group homomorphism from G to either

R or T, then G can be equipped with a pseudometric which interacts nontrivially with

addition.
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Let d be a left-invariant pseudometric on G. The radius ρ of d is defined to be sup{‖g‖d :

g ∈ G}; this is also sup{d(g1, g2) : g1, g2 ∈ G} by left invariance. We say that d is locally

linear if it satisfies the following properties:

1. d is continuous and left-invariant;

2. for all g1, g2, and g3 with d(g1, g2) + d(g2, g3) < ρ, we have either

d(g1, g3) = d(g1, g2) + d(g2, g3), or d(g1, g3) = |d(g1, g2)− d(g2, g3)|. (6.7)

A pseudometric d is monotone if for all g ∈ G such that ‖g‖d < ρ/2, we have

‖g2‖d = 2‖g‖d.

To investigate the property of this notion further, we need the following fact about the

adjoint representations of Lie groups [91, Proposition 9.2.21].

Fact 6.40. Let g be the Lie algebra of G, and let Ad : G→ Aut(g) be the adjoint represen-

tation. Then ker(Ad) is the center of G.

The following result is the first time we need G to be a Lie group instead of just a locally

compact group.

Proposition 6.41. If d is a locally linear pseudometric on G, then d is monotone.

Proof. We first prove an auxiliary statement.

Claim 6. Suppose s : G → G, g 7→ g2 is the squaring map. Then there is no open U ⊆ G

and proper closed subgroup H of G such that s(U) ⊆ H.

Proof of Claim. Consider the case where G is a connected component of a linear algebraic

subgroup of GLn(R). Let Js be the Jacobian of the function s. Then the set

{g ∈ G : det Js(g) = 0}
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has the form G ∩ Z where Z is a solution set of a system of polynomial equations. It is not

possible to have G ∩ Z = G, as s is a local diffeomorphism at idG. Hence, G ∩ Z must be

of strictly lower dimension than G. By the inverse function theorem, s|G\Z is open. Hence

s(U) is not contained in a subgroup of G with smaller dimension.

We also note a stronger conclusion for abelian Lie group: If V is an open subset of a

not necessarily connected abelian Lie group A, then the image of A under a 7→ a2 is not

contained in a closed subset of A with smaller dimension. Indeed, A is isomorphic as a

topological group to D × Tm × Rm, with D a discrete group. If

U ⊆ D × Tm × Rm,

then it is easy to see that {a2 : a ∈ V } contains a subset of D × Tm × Rm, and is therefore

not a subset of a closed subset of A with smaller dimension.

Finally, we consider the general case. Suppose to the contrary that s(U) ⊆ H with H a

proper closed subgroup of G. Let Z(G) be the center of G, G′ = G/Z(G), π : G → G′ be

the quotient map, U ′ = π(U), and

s′ : G′ → G′, g′ 7→ (g′)2.

Then U ′ is an open subset of G′, which is isomorphic as a topological group to a connected

component of an algebraic group by Fact 6.40. By the earlier case, s′(U ′) is not contained

in any proper closed subgroup of G′, so we must have π(H) = G′. In particular, this implies

dim(H ∩ Z(G)) < dimZ(G), and HZ(G) = G. Choose h ∈ H such that hZ(G) ∩ U is

nonempty. Then

s(hZ(G) ∩ U) = {h2a2 : a ∈ Z(G) ∩ h−1U}.

As s(hZ(G)∩U) ⊆ H, we must have {a2 : a ∈ Z(G)∩h−1U} is a subset of H ∩Z(G). Using

the case for abelian Lie groups, this is a contradiction, because H ∩ Z(G) is a closed subset
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of Z(G) with smaller dimension. 1

We now get back to the problem of showing that d is monotone. As d is invariant,

d(idG, g) = d(g, g2) for all g ∈ G. From local linearity of d, for all g ∈ G with ‖g‖d < ρ/2,

we either have

‖g2‖d = 2‖g‖d or ‖g2‖d = 0.

It suffices to rule out the possibility that 0 < ‖g‖d < ρ/4, and ‖g2‖d = 0.

As d is continuous, there is an open neighborhood W of g such that for all g′ ∈ W , we

have ‖g′‖d > 0 and ‖(g′)2‖d = 0. From Lemma 6.38, the set {g ∈ G : ‖g‖d = 0} is a closed

subgroup of G. As d is nontrivial and G is a connected Lie group, {g ∈ G : ‖g‖d = 0} must

be a Lie group with smaller dimension. Therefore, we only need to show that if W is an open

subset of G, then s(W ) is not contained in a closed subgroup of G with smaller dimension,

where s : G→ G is the squaring map, and this is guaranteed by the earlier claim.

The next result confirms our earlier intuition: locally linear pseudometric in G will

induced a homomorphism mapping to either T or R.

Proposition 6.42. Suppose d is a locally linear pseudometric with radius ρ > 0. Then ker d

is a normal subgroup of G, G/ ker d is isomorphic to T if G is compact, and G/ ker d is

isomorphic to R if G is noncompact.

Proof. We first prove that ker d is a normal subgroup of G. Suppose ‖g‖d = 0 and h ∈ G

satisfies ‖h‖d < ρ/4. We have

d(h, hgh−1) = d(idG, gh
−1)

= |d(idG, g)± d(g, gh−1)| = d(idG, h
−1) = d(idG, h).

Hence, d(idG, hgh
−1) = |d(idG, h)± d(h, hgh−1)| is either 0 or 2d(idG, h). Assume first that
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‖hgh−1‖d = 0 for every such h when ‖g‖d = 0. Let

U := {h : ‖h‖d < ρ/4}.

By the continuity of d, U is open. Hence for every h in G, h can be written as a finite

product of elements in U . By induction, we conclude that for every h ∈ G, ‖hgh−1‖d = 0

given ‖g‖d = 0, and this implies that ker d is normal in G.

Suppose ‖hgh−1‖d = 2‖h‖d. By Proposition 6.41, d is monotone. Hence, we have

‖hg2h−1‖d = 4‖h‖d.

On the other hand, as ‖g‖d = 0, repeating the argument above, we get ‖hg2h−1‖d is either

0 or 2‖h‖d. Hence, ‖h‖d = 0, and so ‖hgh−1‖d = 0.

We now show that G′ = G/ ker d has dimension 1. Let d′ be the pseudometric on G′

induced by d. Choose g ∈ G′ in the neighborhood of idG′ such that g is in the image of the

exponential map and ‖g‖d′ < ρ/4. If g′ is another element in the neighborhood of idG′ which

is in the image of the exponential map and ‖g′‖d′ < ρ/4. Without loss of generality, we may

assume ‖g′‖d′ ≤ ‖g‖d′ . Suppose g′ = exp(X). Then by the monotonicity, there is k ≥ 1 such

that ‖(g′)k‖d′ ≥ ‖g‖d′ . By the continuity of the exponential map, there is t ∈ (0, 1] such that

‖g‖d′ = ‖exp(tkX)‖d′ .

This implies that g and g′ are on the same one parameter subgroup, which is the desired

conclusion.

174



6.7.2 Almost linear pseudometrics: relative sign and total weight

functions

In this section, we will introduce a weakening of the notion of a locally linear pseudometric

and define the relative sign function and total weight function associate to it. When d is a

pseudometric arising from a measurable subset A as in Proposition 6.37, these roughly give

the “direction” and the “distance” that an element of the group translates A.

Throughout this section, d is a pseudometric on G with radius ρ > 0, and γ is a constant

with 0 < γ < 10−8ρ. For a constant λ, we write I(λ) for the interval (−λ, λ) in either R or

T, and we write N(λ) for {g ∈ G : ‖g‖d ∈ I(λ)}. By Fact 6.4(vii), N(λ) is an open set, and

hence measurable. We say that d is γ-linear if it satisfies the following conditions:

1. d is continuous and left-invariant;

2. for all g1, g2, g3 ∈ G with d(g1, g2) + d(g2, g3) < ρ− γ, we have either

d(g1, g3) ∈ d(g1, g2) + d(g2, g3) + I(γ),

or

d(g1, g3) ∈ |d(g1, g2)− d(g2, g3)|+ I(γ).

Given α ≤ ρ, let N(α) = {g ∈ G : ‖g‖d ≤ α}. We say that d is γ-monotone if for all

g ∈ N(ρ/2− γ), we have

‖g2‖d ∈ 2‖g‖d + I(γ).

The next lemma says that under the γ-linearity condition, the group G essentially has

only one “direction”: if there are three elements have the same distance to idG, then at least

two of them are very close to each other.
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Lemma 6.43. Suppose d is a γ-linear pseudometric on G. If g, g1, g2 ∈ G such that

‖g‖d = ‖g1‖d = ‖g2‖d ∈ I(ρ/4− γ) \ I(2γ),

and d(g1, g2) ∈ 2‖g‖d + I(γ). Then either d(g, g1) ∈ I(γ) or d(g, g2) ∈ I(γ).

Proof. Suppose both d(g, g1) and d(g, g2) are not in I(γ). By γ-linearity of d, we have

d(g, g1) ∈ |d(idG, g)± d(idG, g1)|+ I(γ),

and so d(g, g1) ∈ 2‖g‖d + I(γ). Similarly, we have d(g, g2)2‖g‖d + I(γ).

Suppose first that d(g1, g2) ∈ d(g, g1) + d(g, g2) + I(γ), then

d(g1, g2) ∈ 4‖g‖d + I(3γ).

On the other hand, by γ-linearity we have d(g1, g2) ≤ 2‖g‖d+γ. Hence, we have ‖g‖d ∈ I(2γ),

a contradiction.

The other two possibilities are d(g1, g2)+d(g, g2) ∈ d(g, g1)+I(γ) or d(g1, g2)+d(g, g1) ∈

d(g, g2) + I(γ), but similar calculations also lead to contradictions.

Proposition 6.44 below is a partial replacement for Proposition 6.41 for linear pseudo-

metric. The fact that we do not automatically have monotonicity is a reason that the later

Section 8.3 is much harder than Section 8.2.

Proposition 6.44 (Path monotonicity implies global monotonicity). Let g be the Lie algebra

of G, exp : g → G the exponential map, and d a γ-linear pseudometric on G. Suppose for

each X in g, we have one of the following two possibilities:

(i) ‖exp(tX)‖d < γ for all t ∈ R;
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(ii) there is t0 ∈ R>0 with ‖exp(t0X)‖d ∈ I(ρ/2− γ) \ I(ρ/4),

‖exp(2t0X)‖d = 2‖exp(t0X)‖d + I(γ), (6.8)

and

‖exp(tX)‖d + ‖exp((t0 − t)X)‖d ∈ ‖exp(t0X)‖d + I(γ) (6.9)

for all t ∈ [0, t0].

Then d is (9γ)-monotone.

Proof. Fix an element g of G with ‖g‖d ∈ I(ρ/2 − 16γ). Our job is to show that ‖g2‖d ∈

2‖g‖d + I(9γ). Since G is compact and connected, the exponential map exp is surjective.

We get X ∈ g such that g ∈ {exp(tX) : t ∈ R}. If we are in scenario (i), then ‖g‖d < γ,

hence ‖g2‖d ∈ 2‖g‖d + I(3γ). Therefore, it remains to deal with the case where we have an

t0 as in (ii).

Set g0 = exp(t0X). We consider first the special case where ‖g‖d < ‖g0‖d − 2γ. As d is

continuous, there is t1 ∈ [0, t0] such that with g1 = exp(t1X), we have ‖g1‖d = ‖g‖d. Let

t2 = −t1, and g2 = exp(t2X) = g−1
1 . Since d is invariant,

‖g2‖d = d(g−1
1 , idG) = d(idG, g1) = ‖g1‖d.

Hence, ‖g1‖d = ‖g2‖d = ‖g‖d. If ‖g‖d < 2γ, then ‖g2‖d ∈ 2‖g‖d + I(5γ) and we are done.

Thus we suppose ‖g‖d ≥ 2γ. Then, by Lemma 6.43, either d(g, g1) < γ, or d(g, g2) < γ.

Since these two cases are similar, we assume that d(g, g1) < γ. By γ-linearity, ‖g2
1‖d

is in either 2‖g1‖d + I(γ) or I(γ). Using ‖g2
0‖d ∈ 2‖g0‖d + I(γ) and the assumption that

‖g‖d < ‖g0‖d − 2γ, in either case, we have

‖g2
1‖d < ‖g2

0‖d − 2γ. (6.10)
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Since g−1
0 g1 = g1g

−1
0 , and by γ-linearity of d, we get

d(g2
1, g

2
0) = d(idG, g

−2
1 g2

0) = d(idG, (g
−1
1 g0)2) ∈ {0, 2d(g1, g0)}+ I(γ). (6.11)

By (6.9), we have ‖g1‖d + d(g1, g0) ∈ ‖g0‖d + I(γ). Recalling that ‖g1‖d = ‖g‖d > 2γ, and

from (6.8) and (6.11), we have

d(g2
1, g

2
0) < 2‖g0‖d − 3γ = ‖g2

0‖ − 2γ. (6.12)

By (6.10), (6.12), and the γ-linearity of d, we have

‖g2
1‖d ∈ ‖g2

0‖d − d(g2
1, g

2
0) + I(γ).

Therefore by (6.9) and (6.11), we have either

‖g2
1‖d ∈ 2‖g1‖d + I(5γ) or ‖g2

1‖d ∈ 2‖g0‖d + I(3γ).

As ‖g1‖2
d ≤ 2‖g1‖ + γ < 2‖g0‖ − 5γ, we must have ‖g2

1‖ ∈ 2‖g1‖ + I(5γ). Now, since

‖g−1
1 g‖d = d(g1, g) < γ, again by the γ-linearity we conclude that

d(g2
1, g

2) = ‖(g−1
1 g)2‖d < 3γ.

Thus, ‖g2‖d ∈ 2‖g‖d + I(9γ).

Finally, we consider the other special case where ‖g0‖d + 2γ < ‖g‖d < ρ/2 − 16γ. For

g1 = exp(t1X) with t1 ∈ [0, t0], we have ‖g2
1‖d ∈ 2‖g1‖ + I(8γ) by a similar argument as

above. Using continuity, we can choose t1 such that ‖g2
1‖d = ‖g‖d, and let g2 = g−1

1 . The

argument goes in exactly the same way with the role of g1 replaced by g2
1 and the role of g2

replaced by g2
2.
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Suppose d is γ-linear. We define s(g1, g2) to be the relative sign for g1, g2 ∈ G satisfying

‖g1‖d + ‖g2‖d < ρ− γ by

s(g1, g2) =


0 if min{‖g1‖d, ‖g2‖d} ≤ 4γ,

1 if min{‖g1‖d, ‖g2‖d} > 4γ and ‖g1g2‖d ∈ ‖g1‖d + ‖g2‖d + I(γ).

−1 if min{‖g1‖d, ‖g2‖d} > 4γ and |g1g2|d ∈
∣∣‖g1‖d − ‖g2‖d

∣∣+ I(γ).

Note that this is well defined because when min{‖g1‖d, ‖g2‖d} ≥ 4γ in the above definition,

the differences between
∣∣‖g1‖d−‖g2‖d

∣∣ and ‖g1‖d+‖g2‖d is at least 6γ. The following lemma

gives us tools to relate signs between different elements.

Proposition 6.45. Suppose d is γ-linear and γ-monotone. Then for g1, g2, and g3 in

N(ρ/4− γ) \N(4γ), we have the following

(i) s(g1, g
−1
1 ) = −1 and s(g1, g1) = 1.

(ii) s(g1, g2) = s(g2, g1).

(iii) s(g1, g2) = s(g−1
1 , g−1

2 ) = −s(g−1
1 , g2) = −s(g1, g

−1
2 ).

(iv) s(g1, g2)s(g2, g3)s(g3, g1) = 1.

(v) If ‖g1‖d ≤ ‖g2‖d, and g1g2 is in N(ρ/4− γ) \N(4γ), then

s(g0, g1g2) = s(g0, g2g1) = s(g0, g2).

Proof. As g1, g2, and g3 are in N(ρ/4−γ)\N(4γ), one has s(gi, gj) 6= 0 for all i, j ∈ {1, 2, 3}.

The first part of (i) is immediate from the fact that ‖idG‖d = 0, and the second part of (i)

follows from the γ-monotonicity and the definition of the relative sign.

We now prove (ii). Suppose to the contrary that s(g1, g2) = −s(g2, g1). Without loss of

generality, assume s(g1, g2) = 1. Then ‖g1g2g1g2‖d is in 2‖g1g2‖d + I(γ), which is a subset
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of 2‖g1‖d + 2‖g2‖d + I(3γ). On the other hand, as s(g2, g1) = −1, we have

‖g1g2g1g2‖d ∈
∣∣‖g1‖d ± (‖g2‖d − ‖g1‖d)± ‖g2‖d

∣∣+ I(3γ).

This contradicts the assumption that g1 and g2 are not in N(4γ).

Next, we prove the first and third equality in (iii). Note that ‖g‖d = ‖g−1‖d for all

g ∈ G as d is symmetric and invariant. Hence, ‖g1g2‖d = ‖g−1
2 g−1

1 ‖d. This implies that

s(g1, g2) = s(g−1
2 , g−1

1 ). Combining with (ii), we get the first equality in (iii). The third

equality in (iii) is a consequence of the first equality in (iii).

Now, consider the second equality in (iii). Suppose s(g−1
1 , g−1

2 ) = s(g−1
1 , g2). Then from

(ii) and the first equality of (iii), we get s(g2, g1) = s(g−1
1 , g2). Hence, either

‖g2g1g
−1
1 g2‖d ∈ 2 (‖g1‖d + ‖g2‖d) + I(3γ)

or

‖g2g1g
−1
1 g2‖d ∈ 2

∣∣‖g1‖d − ‖g2‖d
∣∣+ I(3γ).

On the other hand, ‖g2g1g
−1
1 g2‖d = ‖g2

2‖d, which is in 2‖g2‖d + I(γ). We get a contradiction

with the fact that g1 and g2 are not in N(4γ).

We now prove (iv). Without loss of generality, assume ‖g1‖d ≤ ‖g2‖d ≤ ‖g3‖d. Using

(iii) to replace g3 with g−1
3 if necessary, we can further assume that s(g2, g3) = 1. We

need to show that s(g1, g2) = s(g1, g3). Suppose to the contrary. Then from (iii), we get

s(g1, g2) = s(g−1
1 , g3). Using (iii) to replacing g1 with g−1

1 if necessary, we can assume that

s(g1, g2) = s(g−1
1 , g3) = 1. Using (ii), we get s(g2, g1) = 1. Hence, either

‖g2g1g
−1
1 g3‖d ∈ 2‖g1‖d + ‖g2‖d + ‖g3‖d + I(3γ)
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or

‖g2g1g
−1
1 g3‖d ∈ ‖g3‖d − ‖g2‖d + I(3γ).

On the other hand, ‖g2g1g
−1
1 g3‖d = ‖g2g3‖d is in ‖g2‖d + ‖g3‖d + I(γ). Hence, we get a

contradiction to the fact that g1, g2, and g3 are not in N(4γ).

Finally, we prove (v). Using (iv), it suffices to show s(g1g2, g2) = s(g2g1, g2) = 1. We

will only show the former, as the proof for the latter is similar. Suppose to the contrary

that s(g1g2, g2) = −1. Then ‖g1g
2
2‖d is in

∣∣‖g1g2‖d − ‖g2‖d
∣∣ + I(γ), which is a subset of

‖g1‖d + I(2γ). On the other hand, ‖g1g
2
2‖d is also in

∣∣‖g1‖d−‖g2
2‖d
∣∣+ I(γ) which is a subset

of 2‖g2‖d − ‖g1‖d + I(2γ). Hence, we get a contradiction with the assumption that g1 and

g2 are not in N(4γ).

The notion of relative sign corrects the ambiguity in calculating distance, as can be seen

in the next result.

Lemma 6.46. Suppose d is γ-monotone γ-linear, and g1 and g2 are in N(ρ/16 − γ) with

‖g1‖d ≤ ‖g2‖d. Then we have the following

(i) Both ‖g1g2‖d and ‖g2g1‖d are in s(g1, g2)‖g1‖d + ‖g2‖d + I(5γ).

(ii) If g0 is in N(ρ/4) \N(4γ), then both s(g0, g1g2)‖g1g2‖d and s(g0, g2g1)‖g2g1‖d are in

s(g0, g1)‖g1‖d + s(g0, g2)‖g2‖d + I(25γ).

Proof. We first prove (i). When g1, g2 /∈ N(4γ), the statement for ‖g1g2‖d is immediate

from the definition of the relative sign, and the statement for ‖g2g1‖d is a consequence of

Proposition 6.45(ii). Now suppose ‖g1‖d < 4γ. From the γ-linearity, we have

‖g2‖d − ‖g1‖d − γ < ‖g1g2‖d < ‖g1‖d + ‖g2‖d + γ.

We deal with the case where ‖g2‖d < 4γ similarly.
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We now prove (ii). Fix g0 in N(ρ/4− γ) \N(4γ). We will consider two cases, when g1 is

not in N(4γ) and when g1 is in N(4γ). Suppose we are in the first case, that is g1 /∈ N(4γ).

As ‖g1‖d ≤ ‖g2‖d, we also have g2 /∈ N(4γ). If both g1g2 and g2g1 are not in N(4γ), then

the desired conclusion is a consequence of (i) and Proposition 6.45(iv, v). Within the first

case, it remains to deal with the situations where g1g2 is in N(4γ) or g2g1 is in N(4γ).

Since these two situations are similar, we may assume g1g2 is in N(4γ). From (i), we

have s(g1, g2) = −1 and ‖g2‖d − ‖g1‖d is at most 5γ. Therefore, ‖g2g1‖d is in I(6γ). By

Proposition 6.45(iv), we have s(g0, g1) = −s(g0, g2), and so

s(g0, g1)‖g1‖d + s(g0, g2)‖g2‖d ∈ I(6γ).

Since both s(g0, g1g2)‖g1g2‖d and s(g0, g2g1)‖g1g2‖d are in I(6γ), they are both in

s(g0, g1)‖g1‖d + s(g0, g2)‖g2‖d + I(12γ)

giving us the desired conclusion.

Continuing from the previous paragraph, we consider the second case when g1 is in

N(4γ). If g2 is in N(16γ), then both ‖g1g2‖d and ‖g2g1‖d are in I(25γ) by (i), and the

desired conclusion follows. Now suppose g2 is not in N(16γ). Then from (i) and the fact

that g1 ∈ N(4γ), we get g1g2 and g2g1 are both not in N(4γ). Note that s(g1g2, g
−1
2 ) = −1,

because otherwise we get

‖g1‖d ≥ ‖g1g2‖d + ‖g−1
2 ‖d − 5γ > 4γ.

A similar argument gives s(g−1
2 , g2g1) = −1. Hence, s(g1g2, g2) = s(g2g1, g2) = 1. By Propo-

sition 6.45(v), we get

s(g0, g2) = s(g0, g1g2) = s(g0, g2g1).
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From (i), ‖g1g2‖d and ‖g2g1‖d are both in ‖g2‖d+I(9γ). On the other hand, as s(g0, g1) = 0,

we have s(g0, g1)‖g1‖d + s(g0, g2)‖g2‖d = s(g0, g2)‖g2‖d. The desired conclusion follows.

The next corollary will be important in the subsequent development.

Corollary 6.47. Suppose d is γ-linear and γ-monotone, g0 and g′0 are elements in N(ρ/4−

γ) \N(4γ), and (g1, . . . , gn) is a sequence with gi ∈ N(ρ/4− γ) \N(4γ) for i ∈ {1, . . . , n}.

Then ∣∣∣∣∣
n∑
i=1

s(g0, gi)‖gi‖d

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

s(g′0, gi)‖gi‖d

∣∣∣∣∣ .
Proof. As s(g0, gi) = s(g′0, gi) = 0 whenever ‖gi‖d < 4γ, we can reduce to the case where

min1≤i≤n ‖gi‖d ≥ 4γ. Using Proposition 6.45(iii) to replace g0 with g−1
0 if necessary, we can

assume that s(g0, g1) = s(g′0, g1). Then by Proposition 6.45(iii), s(g0, gi) = s(g′0, gi) for all

i ∈ {1, . . . , n}. This gives us the desired conclusion.

The following auxiliary lemma allows us to choose g0 as in Corollary 6.47.

Lemma 6.48. The set N(ρ/4− γ) \N(4γ) is not empty.

Proof. It suffices to show that µG(N(4γ)) < µG(N(ρ/4 − γ). Since idG is in N(4γ), N(4γ)

is a nonempty open set and has µG(N(4γ)) > 0. Therefore, N2(4γ) and N4(4γ) are also

open. By γ-linearity, we have

N2(4γ) ⊆ N9γ and N4(4γ) ⊆ N19γ.

As 19γ < ρ, we have N4(4γ) 6= G. Using Proposition 6.17, we get

µG(N2(4γ)) ≤ 2/3 and µG(N(4γ)) < 1/3.

Hence, by Kemperman’s inequality µG(N(4γ)) < µG(N2(4γ)) ≤ µG(N(ρ/4 − γ)), which is

the desired conclusion.
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Suppose (g1, . . . , gn) is a sequence of elements in N(ρ/4− γ) \N(4γ). We set

t(g1, . . . , gn) =

∣∣∣∣∣
n∑
i=1

s(g0, gi)‖gi‖d

∣∣∣∣∣
with g0 is an arbitrary element in N(ρ/4 − γ) \ N(4γ), and call this the total weight

associated to (g1, . . . , gn). This is well defined by Corollary 6.47 and Lemma 6.48.

6.7.3 Almost linear pseudometrics: group homomorphisms into

tori

In this section, we will use the relative sign function and the total weight function defined

in Section 7.2 to define a universally measurable multivalued group homomorphism into T.

We will then use a number or results in descriptive set theory and geometry to refine this

into a continuous group homomorphism.

We keep the setting of Section 7.2, and assume further that G is compact. Let s and t

be the relative sign function and the total weight function defined earlier. Set λ = ρ/36, and

N [λ] = {g ∈ G : ‖g‖d ≤ λ}. The set N [λ] is compact, and hence measurable. Moreover,

Lemma 6.46 is applicable when g0 is an arbitrary element in N(ρ/4− γ) \N(4γ), and g1 are

g2 are in N [λ].

A sequence (g1, . . . , gn) of elements in G is a λ-sequence if gi is in N [λ] for all i ∈

{1, . . . , n}. We are interested in expressing an arbitrary g of G as a product of a λ-sequence

where all components are “in the same direction”. The following notion captures that idea.

A λ-sequence (g1, . . . , gn) is irreducible if for all 2 ≤ j ≤ 4, we have

gi+1 · · · gi+j /∈ N(λ).

A concatenation of a λ-sequence (g1, . . . , gn) is a λ-sequence (h1, . . . , hm) such that there
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are 0 = k0 < k1 < · · · < km = n with

hi = gki−1+1 · · · gki for i ∈ {1, . . . ,m}.

The next lemma allows us to reduce an arbitrary sequence to irreducible λ-sequences via

concatenation.

Lemma 6.49. Suppose d is γ-linear and γ-monotone, and (g1, . . . , gn) is a λ-sequence. Then

(g1, . . . , gn) has an irreducible concatenation (g′1, . . . , g
′
m) with

t(g′1, . . . , g
′
m) ∈ t(g1, . . . , gn) + I(25(n−m)γ).

Proof. The statement is immediate when n = 1. Using induction, suppose we have proven

the statement for all smaller values of n. If (g1, . . . , gn) is irreducible, we are done. Consider

the case where gi+1gi+2 is in N(λ) for some 0 ≤ i ≤ n − 2. Fix g0 in N(λ/4 − γ) \ N(4γ).

Using Lemma 6.46(ii)

s(g0, gi+1gi+2)‖gi+1gi+2‖d ∈ s(g0, gi+1)‖gi+1‖d + s(g0, gi+2)‖gi+2‖d + I(25γ).

From here, we get the desired conclusion. The cases where either gi+1gi+2gi+3 for some

0 ≤ i ≤ n − 3 or gi+1gi+2gi+3gi+4 is in N(λ) for some 0 ≤ i ≤ n − 4 can be dealt with

similarly.

The following lemma makes the earlier intuition of “in the same direction” precise:

Lemma 6.50. Suppose d is γ-linear and γ-monotone, g0 is in N(ρ/4 − γ) \ N(4γ), and

(g1, . . . , gn) is an irreducible λ-sequence. Then for all i, i′, j, and j′ such that 2 ≤ j, j′ ≤ 4,

0 ≤ i ≤ n− j, and 0 ≤ i′ ≤ n− j′, we have

s(g0, gi+1 · · · gi+j) = s(g0, gi′+1 · · · gi′+j′).
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Proof. It suffices to show for fixed i, j with 0 ≤ i ≤ n− j − 1 and 2 ≤ j ≤ 3 that

s(g0, gi+1 · · · gi+j) = s(g0, gi+1 · · · gi+j+1).

Note that both gi+1 · · · gi+j and gi+1 · · · gi+j+1 are in N(ρ/4 − γ) \ N(4γ). Hence, applying

Proposition 6.45(iv), we reduce the problem to showing

s(g−1
i+j · · · g−1

i+1, gi+1 · · · gi+j+1)) = −1.

This is the case because otherwise, ‖gi+j+1‖d ≥ 2λ− γ > λ, a contradiction.

We now get a lower bound for the total distance of an irreducible λ-sequence:

Corollary 6.51. Suppose d is γ-linear and γ-monotone, and (g1, . . . , gn) is an irreducible

λ-sequence. Then

t(g1, . . . , gn) > nλ/4.

Proof. If n = 2k, let hi = g2i−1g2i for i ∈ {1, . . . , k}. If n = 2k + 1, let hi = g2i−1g2i for

i ∈ {1, . . . , k − 1}, and hk = g2n−1g2ng2n+1. From Lemma 6.46, we have

t(h1, . . . , hk) ∈ t(g1, . . . , gn) + I(25(n− k)γ). (6.13)

As (g1, . . . , gn) is irreducible, hi is in N(3λ) \ N(λ) for i ∈ {1, . . . , k}. By Lemma 6.50, we

get s(g0, hi) = s(g0, hj) for all i and j in i ∈ {1, . . . , k}. Thus by the definition of the total

weight again, t(h1, . . . , hk) > nλ/3. Combining with the assumption on λ and (6.13), we get

t(g1, . . . , gn) > nλ/3− 11nγ > nλ/4.

When (g1. . . . , gn) is an irreducible λ-sequence, g1 · · · gm is intuitively closer to g0 than

g1 · · · gm+k for some positive k. However, as G is compact, the sequence may “return back”

to idG when n is large. The next proposition provides a lower bound estimate on such n.
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Lemma 6.52 (Monitor lemma). Suppose d is γ-linear and γ-monotone, and (g1, . . . , gn) is

an irreducible λ-sequence with g1 · · · gn = idG. Then n ≥ 1/µG(N(4λ)).

Proof. Let m > 0. For convenience, when m > n we write gm to denote the element gi with

i ≤ n and i ≡ m (mod n). Define

N (m)(4λ) = {g ∈ G | d(g, g1 · · · gm) < 4λ}.

Note that we have N (m)(4λ) = N (m′)(4λ) when m ≡ m′ (mod n). By invariance of d and

µG, clearly µG(N (m)(4λ)) = µG(N(4λ)) for all m. We also write N (0)(4λ) = N(4λ). We will

show that

G =
⋃
m∈Z

N (m)(4λ) =
n−1⋃
m=0

N (m)(4λ),

which yields the desired conclusion.

As g1 · · · gn = idG, we have idG is in N (0)(2λ), and hence in
⋃
m∈ZN

(m)(4λ). As every

elements in G can be written as a product of finitely many elements in N(λ), it suffices to

show for every g ∈
⋃
m∈ZN

(m)(4λ) and g′ = gh with h ∈ N(λ) that g′ is in
⋃
m∈ZN

(m)(4λ).

The desired conclusion then follows from the induction on the number of translations in

N(λ).

Fix m which minimizes d(g, g1 . . . gm). We claim that d(g, g1 . . . gm) < 2λ+γ. This claim

gives us the desired conclusion because we then have d(g′, g1 . . . gm) < 3λ+ 2γ < 4λ by the

γ-linearity of d.

We now prove the claim that d(g, g1 . . . gm) < 2λ + γ. Suppose to the contrary that

d(g, g1 . . . gm) ≥ 2λ + γ. Let u = (g1 · · · gm)−1g. Now by Lemma 6.50 we have either

s(u, gm+1gm+2) = 1, or s(u, g−1
m g−1

m−1) = 1. Suppose it is the former, since the latter

case can be proved similarly. Then s(u, g−1
m+2g

−1
m+1) = −1. Note that g = g1 · · · gmu =

(g1 · · · gm+2)g−1
m+2g

−1
m+1u. By the definition of u, and the linearity of d, we have ‖u‖d ≥
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2λ+ γ > ‖gm+1gm+2‖d, therefore by the irreducibility we have

d(g, g1 · · · gm+2) = ‖g−1
m+2g

−1
m+1u‖d

< ‖u‖d − ‖g−1
m+2g

−1
m+1‖d + γ < ‖u‖d − λ+ γ < ‖u‖d.

This contradicts our choice of m having d(g, g1, . . . , gm) minimized.

In the later proofs of this section, we will fix an irreducible λ sequence g1 · · · gn = idG to

serve as “monitors”. As each element of G will be captured by one of the monitors, this will

help us to bound the error terms in the final almost homomorphism we obtained from the

pseudometric.

Suppose d is γ-linear and γ-monotone, andN(ρ/4−γ)\N(4γ) 6= ∅. Define the returning

weight of d to be

ω = inf{t(g1, . . . , gn) : (g1, . . . , gn) is an irreducible λ-sequence with g1 · · · gn = idG}.

The following corollary translate Lemma 6.52 to a bound on such ω:

Corollary 6.53. Suppose d is γ-linear and γ-monotone, and ω is the returning weight of d.

Then we have the following:

(i) λ/4µG(N(4λ)) ≤ ω ≤ 4λ/µG(N(λ)).

(ii) There is an irreducible λ-sequence (g1, . . . , gn) such that ω = t(g1, . . . , gn) and

1/µG(N(4λ)) ≤ n ≤ 4/µG(N(λ)).

Proof. Note that each irreducible λ-sequence (g1, . . . , gn) has n ≥ 1/µG(N(4λ)) by using

Lemma 6.52. Hence, by Corollary 6.51, we get ω ≥ λ/4µG(N(4λ)). On the other hand, by

Proposition 6.17, G = (N(λ))k for all k > 1/µG(N(λ)). Hence, with Lemma 6.49, there is
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an irreducible λ-sequence (g1, . . . , gn) with g1 · · · gn = idG and n ≤ 4/µG(N(λ)). From the

definition of t, we get ω ≤ 4λ/µG(N(λ)).

Now if an irreducible λ-sequence (g1, . . . , gn) has n > 4/µG(N(λ)), then by (i) and

Corollary 6.51,

t(g1, . . . , gn) >
4λ

µG(N(λ))
≥ ω,

a contradiction. Therefore, we have

ω = inf{t(g1, . . . , gn) : (g1, . . . gn) is an irreducible λ-sequence with

n ≤ 4/µG(N(λ)) and g1 · · · gn = idG}.

For fixed n the set of irreducible λ-sequence of length n is closed under taking limit. Hence,

we obtain desired (g1, . . . , gn) using the Bozalno–Wierstrass Theorem.

The next lemma allows us to convert between µG(N(λ)) and µG(N(4λ)):

Lemma 6.54. Suppose d is γ-linear and γ-monotone. Then

µG(N(4λ)) ≤ 16µG(N(λ)).

Proof. Fix h ∈ N(λ)\N(λ/2−γ). Such h exists since by γ-monotonicity we have N2(λ/2−

γ) ⊆ N(λ), and by Kemperman’s inequality, µG(N(λ) > 2µG(N(λ/2 − γ)). Let g be an

arbitrary element in N(4λ), and assume first s(g, h) = 1. Let k ≥ 0 be an integer, and define

gk = g(h−1)k. Then by Lemma 6.45 and Lemma 6.46,

‖gk‖d ∈ ‖g‖d − k‖h‖d + I(5kγ) for k < ‖g‖d/‖h‖d.

Hence, there is k < 8 such that gk ∈ N(λ). When s(g, h) = −1, one can similarly construct
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g′k as ghk, and find k < 8 such that g′k ∈ N(λ). Therefore

N(4λ) ⊆
( 7⋃
i=0

N(λ)hi
)
∪
( 7⋃
j=0

N(λ)h−j
)
.

Thus, µG(N(4λ)) ≤ 16µG(N(λ)).

The following proposition implicitly establish that t defines an approximate multivalue

group homomorphism from G to R/ωZ.

Proposition 6.55. Suppose d is γ-linear and γ-monotone, ω is the returning weight of d,

and (g1, . . . , gn) is a λ-sequence with g1 . . . gn = idG and n ≤ 4/µG(N(λ)). Then

t(g1, . . . , gn) ∈ ωZ + I(ω/400).

Proof. Let g0 be in N(ρ/4− γ) \N(4γ). Using Proposition 6.45(iii) to replace g0 with g−1
0

if necessary, we can assume that

t(g1, . . . , gn) =
n∑
i=1

s(g0, gi)‖gi‖d.

As n ≤ 4/µG(N(λ)), we have t(g1, . . . , gn) ≤ 4λ/µG(N(λ)). From Corollary 6.53(i), we have

λ ≤ 4ωµG(N(4λ)). Hence,

t(g1, . . . , gn) <
16ωµG(N(4λ))

µG(N(λ))
. (6.14)

Using Corollary 6.53 again, we obtain an irreducible λ-sequence (h1, . . . , hm) such that

t(h1, . . . , hm) = ω and 1/µG(N(4λ)) ≤ m ≤ 4/µG(N(λ)). Using Proposition 6.45(iii) to

replace (h1, . . . , hm) with (h−1
m , . . . , h−1

1 ) if necessary, we can assume that

t(h1, . . . , hm) = −
n∑
i=1

s(g0, hi)‖hi‖d.
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We now define a sequence (g′1, . . . , g
′
n′) such that

1. n′ = n+ km for some integer k ≥ 0.

2. g′i = gi for 1 ≤ i ≤ n.

3. For i ≥ n+ 1, g′i = hj with j ≡ i− n (mod m).

From the definition of the total weight, for k < t(g1, . . . , gn)/ω, we have

t(g′1, . . . , g
′
n′) = t(g1, . . . , gn)− kω.

We choose integer k < t(g1, . . . , gn)/ω + 1 such that |t(g′1, . . . , g′n′)| ≤ ω/2. Then by (6.14),

and the trivial bound µG(N(λ)) < µG(N(4λ)), we have

n′ < n+ km <
4

µG(N(λ))
+

(
16µG(N(4λ))

µG(N(λ))
+ 1

)
4

µG(N(λ))
≤ 72µG(N(4λ))

µ2
G(N(λ))

.

Note that (g′1, . . . , g
′
n′) is a λ-sequence with g′1 . . . g

′
n′ = idG. We assume further that

0 ≤ t(g′1, . . . , g
′
n′) < ω/2 as the other case can be dealt with similarly. Obtain an irreducible

concatenation (h′1, . . . , h
′
m′) of (g′1, . . . , g

′
n′). From Lemma 6.49, we get

t(h′1, . . . , h
′
m′) < t(g′1, . . . , g

′
n′) + 25(n′ −m′)γ ≤ ω

2
+

1800µG(N(4λ))γ

µ2
G(N(λ))

.

Using Corollary 6.53(i) and Lemma 6.54, we have

1800µG(N(4λ))γ

µ2
G(N(λ))

≤ 1800µG(N(4λ))γ

µ2
G(N(4λ))/162

<
5 · 105γ

N(4λ)
≤ 5 · 105γ

4ω

λ
.

As γ < 10−8ρ, and λ = ρ/16 − γ, one can check that the lass expression is at most ω/400.

Hence, t(h′1, . . . , h
′
m′) < ω. From the definition of ω, we must have t(h′1, . . . , h

′
m′) = 0. Thus

by Lemma 6.49 again,

t(g′1, . . . , g
′
n) ∈ I(25n′γ) ⊆ I(ω/400),
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which completes the proof.

Recall that a Polish space is a topological space which is separable and completely

metrizable. In particular, the underlying topological space of any connected compact Lie

group is a Polish space. Let X be a Polish space. A subset B of X is Borel if B can be

formed from open subsets of X (equivalently, closed subsets of X) through taking countable

unions, taking countable intersections, and taking complement. A function f : X → Y

between Polish space is Borel, if the inverse image of any Borel subset of Y is Borel. A

subset A of X is analytic if it is the continuous image of another Polish space Y . Below

are some standard facts about these notions; see [110] for details.

Fact 6.56. Suppose X, Y are Polish spaces, and f : X → Y is continuous. We have the

following:

(i) Every Borel subset of X is analytic.

(ii) Equipping X × Y with the product topology, the graph of a Borel function from X to

Y is analytic.

(iii) The collection of analytic subsets of X is closed under taking countable unions, taking

intersections and cartersian products.

(iv) Images of analytic subsets in X under f is analytic.

Given x ∈ R, let ‖x‖T be the distance of x to the nearest element in Z. We now obtain

a consequence of Lemma 6.55.

Corollary 6.57 (Analytic multivalued almost homomorphism). There is an analytic subset

Γ of G× T satisfying the following properties:

(i) The projection of Γ on G is surjective.

(ii) (idG, idR/ωZ) is in Γ.
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(iii) If g1, g2 ∈ G and t1, t2, t3 ∈ R are such that (g1, t1/ω + Z), (g2, t2/ω + Z), and

(g1g2, t3/ω + Z) in Γ, then

‖(t1 + t2 − t3)/ω‖T < 1/400.

(iv) There are g1, g2 ∈ G and t1, t2 ∈ R with that (g1, t1/ω + Z), (g2, t2/ω + Z) ∈ Γ and

‖(t1 − t2)/ω‖T > 1/3.

Proof. Let Γ consist of (g, t/ω + Z) ∈ G × T with g ∈ G and t ∈ R such that there is

n ≤ 1/µG(N(λ)) + 1 and an irreducible λ-sequence (g1, . . . , gn) satisfying

g = g1 · · · gn and t = t(g1, . . . , gn).

Note that the relative sign function s : G × G → R is Borel, the set N [γ] is compact, and

the function x → ‖x‖d is continuous. Hence, by Fact 6.56(i,ii), the function (g1, . . . , gn) 7→

t(g1, . . . , gn) is Borel, and its graph is analytic. For each n, by Fact 6.56(iii)

Γ̃n := {(g, t, g1, . . . , gn) ∈ G× R×Gn :

‖gi‖d < λ for 1 ≤ i ≤ n, g = g1 · · · gn, t = t(g1, . . . , gn)}

is analytic. Let Γn be the image of Γ̃n under the continuous map

(g, t, g1, . . . , gn) 7→ (g, t/ω + Z).

Then by Fact 6.56(iv), Γn is analytic. Finally, Γ =
⋃
n<1/µG(N(λ))+1 Γn is analytic by

Fact 6.56(iii).

We now verify that Γ satisfies the desired properties. It is easy to see that (i) and

(ii) are immediately from the construction, and (iii) is a consequence of Lemma 6.55. We

now prove (iv). Using Corollary 6.53, we obtain an irreducible λ-sequence (g1, . . . , gn) with
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t(g1, . . . , gn) = ω and n < 4/µG(N(λ)). Note that

|t(g1, . . . , gk+1)− t(g1, . . . , gk)| ≤ λ.

Hence, there must be k ∈ {1, . . . n} such that ω/3 < t(g1, . . . , gk) < 2ω/3. Set t1 = 0 and

t2 = t(g1, . . . , gk) for such k. It is then easy to see that ‖(t1 − t2)/ω‖T > 1/3.

To construct a group homomorphism from G to T, we will need three more facts. Re-

call the following measurable selection theorem from descriptive set theory; see [23, Theo-

rem 6.9.3].

Fact 6.58 (Kuratowski and Ryll–Nardzewski measurable selection theorem). Let (X,A)

be a measurable space, Y a complete separable metric space equipped with the usual Borel

σ-algebra, and F a function on X with values in the set of nonempty closed subsets of Y .

Suppose that for every open U ⊆ Y , we have

{a ∈ X : F (a) ∩ U 6= ∅} ∈ A.

Then F has a selection f : X → Y which is measurable with respect to A.

A Polish group is a topological group whose underlying space is a Polish space. In

particular, Lie groups are Polish groups. A subset A of a Polish space X is universally

measurable if A is measurable with respect to every complete probability measure on X

for which every Borel set is measurable. In particular, every analytic set is universally

measurable; see [147] for details. A map f : X → Y between Polish spaces is universally

measurable if inverse images of open sets are universally measurable. We have the following

recent result from descriptive set theory by [147]; in fact, we will only apply it to Lie groups

so a special case which follows from an earlier result by Weil [168, page 50] suffices.

Fact 6.59 (Rosendal). Suppose G and H are Polish groups, f : G → H is a universally

measurable group homomorphism. Then f is continuous.
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Finally, we need the following theorem from geometry by Grove, Karcher, and Ruh [85]

and independently by Kazhdan [109], that in a compact Lie groups an almost homomorphism

is always close to a homomorphism uniformly. We remark that the result is not true for

general compact topological groups, as a counterexample is given in [167].

Fact 6.60 (Grove–Karcher–Ruh; Kazhdan). Let G,H be compact Lie groups. There is a

constant c only depending on H, such that for every real number q in [0, c], if π : G→ H is a

q-almost homomorphism, then there is a homomorphism χ : G→ H which is 1.36q-close to

π. Moreover, if π is universally measurable, then χ is universally measurable. When H = T,

we can take c = π/6.

The next theorem is the main result in this subsection. It tells us from an almost linear

pseudometric, one can construct a group homomorphism to T or to R; this can also be seen

as a stability theorem of Proposition 6.42.

Theorem 6.61. Suppose d is γ-linear and γ-monotone. Then there is a continuous sur-

jective group homomorphism χ : G → T such that for all g ∈ ker(χ) ∩ N(λ), we have

‖g‖d ∈ N(λ/2).

Proof. Let ω be the returning weight of d, and let Γ be as in the proof of Corollary 6.57.

Equip G with the σ-algebra A of universally measurable sets. Then A in particular consists

of analytic subsets of G. Define F to be the function from G to the set of closed subsets of

T given by

F (g) = {t/ω + Z : t ∈ R, (g, t/ω + Z) ∈ Γ}.

If U is an open subset of T, then {g ∈ G : F (g)∩U 6= ∅} is in A being the projection on G

of the analytic set {(g, t/ω+Z) ∈ G×T : (g, t/ω+Z) ∈ Γ and t ∈ U}. Applying Fact 6.58,

we get a universally measurable 1/400-almost homomorphism π : G→ T. Using Fact 6.60,

we get a universal measurable group homomorphism χ : G→ T satisfying

‖χ(g)− π(g)‖T < 1.36/400 = 0.0068.
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The group homomorphism χ is automatically continuous by Fact 6.59. Combining with

Corollary 6.57(iv), we see that χ cannot be the trivial group homomorphism, so χ is surjec-

tive.

Finally, for g be in ker(χ) ∩ (N(λ)), we need to verify that g is in N(λ/2). Suppose

to the contrary that g /∈ N(λ/2). Choose n = b1/µG(N(4λ))c, and (g1, . . . , gn) the λ-

sequence such that gi = g for i ∈ {1, . . . , n}. By Proposition 6.45, (g1, . . . , gn) is irreducible.

Hence, by Lemma 6.52, t(g1, . . . , gn) < ω. As n ≤ 1/µG(N(λ) + 1), by construction and

Corollary 6.57(iii), we have

π(gn) ∈ t(g1, . . . , gn)/ω + I(1/400) + Z = n‖g‖d/ω + I(1/400) + Z.

Since gn ∈ kerχ, we have ‖π(gn)‖T < 0.0068, so n‖g‖d/ω < (0.0068 + 1/400). By Corol-

lary 6.53(i) and Lemma 6.54, this implies

‖g‖d ≤
(0.0068 + 1/400) · 4λ

µG(N(λ))
µG(N(4λ)) <

λ

2
,

which is a contradiction. This completes our proof.

6.8 Geometry of minimal and nearly minimal

expansion pairs II

In this section, we study the shape of a nearly minimally expanding pair relative to a

connected closed proper subgroup of the ambient Lie group such that the cosets of the

subgroup intersect the nearly minimal expanding pair “transversally in measure”. Section 8.1

shows that in a compact connected Lie group, such a subgroup exists and can in fact be

chosen to be a one-dimensional torus. In Section 8.2 and 8.3, we obtain shape description

for the minimally expanding pair and nearly minimally expanding pair respectively. Using
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that we will construct linear and almost linear pseudometric as described in Section 7.

Throughout this section, G is a connected unimodular Lie group, and H is a connected

unimodular closed subgroup of G. In particular, the left Haar measures µG and µH are Haar

measures. We let A, and B be σ-compact subsets of G.

We set µG/H and µH\G to be the Radon measures on G/H and H\G such that we have

the quotient integral formulas (Fact 6.8 and Lemma 6.9(vi)). We also remind the reader

that we normalize the measure whenever a group under consideration is compact. Hence, if

H is compact, then we have

µG(AH) = µG/H(πA) and µH\B(π̃B) = µH\G(π̃B),

and if χ : H → R is a continuous and surjective group homomorphism with compact kernel,

then the pushforward of µH is the Lesbegue measure µR.

6.8.1 Toric transversal intersection in measure

In this section, we assume that G is compact. We will consider a more general situation than

what we need assuming

µG(A) = µG(B) = κ and µG(AB) < Mκ.

where M is a constant. We will prove that if κ is sufficiently small measure, then there is a

torus H ⊆ G such that we are in the short fiber scenario (i.e., for every x, y ∈ G,

min{µH(A ∩ xH), µH(Hy ∩B)} < λ (6.15)

for some given constant λ). Assume (6.15) fails for every maximal tori H, which means we

have a long fiber “in every direction”. Then both A and B can be seen as a variant of Kakeya

sets in Lie groups; see [140] for some properties of Kakeya sets in this setting. In general,
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it is well-known that Kakeya sets can have arbitrarily small measure; but when A,B has

nearly minimally expansion, we will show in this section that both A and B must not be too

small. Our result in particular applies to approximate groups, as described in Section 6.2.

We use the following lemma, which can be seen as a corollary of the quotient integral

formula (Fact 6.8).

Lemma 6.62. For every b ∈ G, the following identity holds

µG
(
A(B ∩Hb)

)
=

∫
G

µH
(
(A ∩ aH)(B ∩Hb)

)
dµG(a).

Proof. Let C = A(B ∩Hb). From Fact 6.8, one has

µG(C) =

∫
G

µH(C ∩ ab−1Hb) dµG(a) =

∫
G

µH(C ∩ aHb) dµG(a).

Hence, it suffices to check that

C ∩ aHb = (A ∩ aH)(B ∩Hb) for all a, b ∈ G.

The backward inclusion is clear. Note that aHHb = aHb = ab(b−1Hb) for all a and b in G.

For all a, a′, and b in G, we have we have a′Hb = aHb when aH = a′H and aHb∩a′Hb = ∅

otherwise. An arbitrary element c ∈ C is in (A ∩ a′H)(B ∩Hb) for some a′ ∈ A. Hence if c

is also in aHb, we must have a′H = aH. So we also get the forward inclusion.

Suppose r and s are in R, the sets A(r,s] and πA(r,s] are given by

A(r,s] := {a ∈ A : µH(A ∩ aH) ∈ (r, s]}

and

πA(r,s] := {aH ∈ G/H : µH(A ∩ aH) ∈ (r, s]}.
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In particular, πA(r,s] is the image of A(r,s] under the map π. By Lemma 6.9, πA(r,s] is

µG/H-measurable, and A(r,s]H = π−1(πA(r,s]) and A(r,s] are µG-measurable.

Lemma 6.63. Suppose λ < 1 is a constant, and either there is a ∈ A such that µH(A∩aH) >

λ, or there is b ∈ B such that µH(B ∩Hb) > λ. Then,

min

{
µG(A)

µG/H(πA)
,

µG(B)

µH\G(π̃B)

}
≥ λ

(M + 2)2
.

Proof. Without loss of generality, suppose µH(B ∩ Hb) > λ for a fixed b ∈ B. By the

quotient integral formula, κ = µG(A) is at least

∫
πA(1/2,1]

µH(A ∩ xH) dµG/HxH >
1

2
µG/H(πA(1/2,1]) =

1

2
µG(A(1/2,1]H),

Hence, µG(A(1/2,1]H) < 2κ. We now prove that µG(A(0,1/2]H) < Mκ/λ. Suppose that it is

not the case. By Lemma 6.62 we get

µG(A(B ∩Hb)) ≥
∫
A(0,1/2]H

µH((A ∩ aH)(B ∩Hb)) dµG(a)

Observe that µH((A ∩ aH)(B ∩Hb)) > λ since µH(B ∩Hb) > λ, we have

µG(AB) ≥ µG(A(B ∩Hb)) ≥ λµG(A(0,1/2]H) > Mκ,

contradicting the assumption that dG(AB) < κ. Hence µG(AH) < (M+2)κ/λ. This implies

that there is a ∈ A such that µH(A ∩ aH) > λ/(M + 2). Now we apply the same argument

switching the role of A and B, we get µH\G(π̃B) < (M + 2)2µG(B)/λ which completes the

proof.

Lemma 6.63 leads us to consider the problem of obtaining lower bound for the measure

of toric nonexpanders, which is of independent interest.

Definition 6.64. We say A is called a toric K-expander, if there is a one-dimensional
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torus subgroup H of G such that µG(AH) ≥ KµG(A).

Lemma 6.65. Suppose A is not a toric K-expander, g1, . . . , gn are in G, and A′ =
⋃d
j=1Agj.

Then A′ is not a toric (nK)-expander.

Proof. We need to verify for each T that µG(A′T ) < nKµG(A′). Note that

A′T =
( n⋃
i=1

Agi

)
T =

n⋃
i=1

A(giT ) =
n⋃
i=1

A(giTg
−1
i )gi =

n⋃
i=1

ATigi,

where Ti is the torus subgroup giTg
−1
i of G. Hence,

µG(A′T ) < nKµG(A) ≤ nKµG(A′)

as desired.

Fact 6.66 (Bhatia–Davis inequality). Suppose (X,A, µ) is a measure space, α and β are

constants, and f : X → R>0 is a measurable function with

α ≤ inf
x∈X

f(x) < sup
x∈X

f(x) ≤ β

Then (Exf 2(x))− (Exf(x))2 ≤ (β − Exf(x))(Exf(x)− α).

The following lemma will help us to translate the set along some direction.

Lemma 6.67. Suppose K, α, and β are constant with K > 1, 0 < α < β < 1, µG(AH) =

KµG(A), and

α ≤ inf
g∈A

µH(A ∩ gH) < sup
g∈A

µH(A ∩ gH) ≤ β.

Then for every number γ ≥ (α + β −Kαβ)µG(A), there is h ∈ H with µG(A ∩ Ah) = γ.

Proof. Let µG, µH be normalized Haar measures of G and H. Choose h from H uniformly
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at random. Note that

Eh∈HµG(A ∩ Ah) =

∫
H

µG(A ∩ Ah) dµH(h)

=

∫
H

∫
G

1A(g)1A(gh) dµG(g) dµH(h).

Using the quotient integral formula (Fact 6.8), the above equality is

∫
G

1A(g)µH(A ∩ gH) dµG(g) =

∫
G/H

µ2
H(A ∩ gH) dµG/H(gH)

= EgH∈G/H
(
µ2
H(A ∩ gH)

)
= µG/H(πA)EgH∈πA

(
µ2
H(A ∩ gH)

)
Note that µG/H(πA) = µG(AH) = KµG(A), and

EgH∈πA
(
µH(A ∩ gH)

)
= 1/K.

Hence, applying the Bhatia–Davis inequality (Fact 6.66), we get

Eh∈HµG(A ∩ Ah) ≤ (α + β −Kαβ)µG(A).

The desired conclusion follows from the continuity of H → R, h 7→ µG(A ∩ Ah).

The following lemma says that for a toric nonexpander A and a torus subgroup H of G,

one can slightly modify A to get A′ such that most of A′H can be covered by finitely many

right translations of A′.

Lemma 6.68. Suppose K > 1 is a constant, A is not a toric K-expander, and H is a

one-dimensional torus subgroup of G. Then for every 0 < ε < 1/2K, there is a σ-compact

A′ ⊆ A, integer m = m(K, ε) > 0, and h1, . . . , hm ∈ H, satisfying

(i) A′ is not a toric 2K-expander
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(ii) µG(A′) > (1− εK)µG(A)

(iii) µG (A′H \
⋃m
i=1 A

′hi) < εµG(AH).

Proof. Let µG, µH be normalized Haar measures on G and H, and let µG/H be the invariant

Radon measure induced by µG and µH on the homogeneous space G/H. Let

πA(ε,1] = {g ∈ G/H | ε < µH(A ∩ gH) ≤ 1},

πA(0,1] = {g ∈ G/H | A ∩ gH 6= ∅}.

Let x = µG/H(πA(0,ε))/µG/H(πA(0,1]), then µG/H(πA(ε,1]) = (1− x)(µG/H(πA(0,1]). One has

µG/H(πA(0,1])

K
< µG(A) ≤ (εx+ 1− x)µG/H(πA(0,1])).

It follows that

x =
µG/H(πA(0,ε])

µG/H(πA(0,1])
<

K − 1

K(1− ε)
.

Choose σ-compact A′ ⊆ A(ε,1] such that µG(A(ε,1] \ A′) = 0. One has

µG(A′) ≥ µG(A)− ε K − 1

K(1− ε)
µG/H(πA(0,1])

≥
(

1− εK − 1

1− ε

)
µG(A) =

1− εK
1− ε

µG(A) ≥ (1− εK)µG(A).

Hence we have

µG(A′) ≥ (1− εK)µG(A) ≥ 1− εK
K

µG(AT ) >
1

2K
µG(A′T ),

for every torus T when ε < 1/2K.

It remains to obtain m = m(ε,K) and h1, . . . , hm such that (iii) is satisfied. Construct a

sequence (A′n) of σ-compact subset of G with A′nH = A′H as follows. Let A′0 = A′. Suppose
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A′n has been constructed. Set

εn = inf
gH∈πA

µH(A′n ∩ gH) and Kn = µG(A′nH)/µG(A′n).

Using Lemma 6.67, obtain h′n ∈ H such that

µG(A′h′n \ A′) = εn(K ′n − 1)µG(A′n).

Finally, let A′n+1 = A′n ∪ A′nh′n. Then, An+1H = AnH = A′H. It is also easy to see that

εn ≥ ε for all n. Now, if µG(An) < (1− ε)µG(A′H) for some n, then

Kn =
µG(A′H)

µG(An)
≥ 1

1− ε
,

and hence,

µG(A′n+1) ≥ 1− ε+ ε2

1− ε
µG(A′n).

As (1− ε+ ε2)/(1− ε) > 1, this cannot be the case for all n. Let N be the first n such that

µG(A′N) > (1− ε)µG(A′H). Then

2KµG(A′) > µG(A′H) ≥ µG(A′N) ≥
(

1− ε+ ε2

1− ε

)N
µG(A′).

This implies that

N ≤ log 2K

log(1− ε+ ε2)− log(1− ε)
.

Finally set m = 2N , and choose h1, . . . , hm such that A′N =
⋃m
i=1 A

′hi, we get the desired

conclusion.

The next simple lemma shows that we can find finitely many torus such that the product

of them is G.

Fact 6.69. Let G is compact. Then there is a constant n depending only on the dimension
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of G such that there are n tori H1, . . . , Hn in G with H1 · · ·Hn = G.

Let A be a toric nonexpander. The next important “cage” lemma provides an inductive

construction to construct a set C from A, such that the size of C is bounded from above,

and any right translations of A cannot “escape” C.

Lemma 6.70 (Cage lemma). Suppose A ⊆ G is not a toric K-expander, then there is a

σ-compact C ⊆ A such that µG(C) = OK(1)µG(A) and for all g ∈ G

µG(C ∩ Ag)

µG(A)
>

1

2
.

Proof. Using Fact 6.69, we obtain one-dimensional torus subgroups H1, . . . , Hn of G such

that G = H1 · · ·Hn. For every constant ε0, . . . , εn−1, we construct a sequence (Ai)
n
i=0 of σ-

compact subsets of G and a sequence (Ki)
n
i=0 of constants satisfying the following conditions

1. A0 = A and K0 = K.

2. Ai is not a toric Ki-expander for 0 ≤ i ≤ n.

3. Ai ⊆ Ai+1 with µG(Ai+1) ≤ KiµG(Ai) for 0 ≤ i ≤ n− 1.

4. µG(Ai \ Ai+1hi+1) ≤ εiµG(Ai) for any hi+1 ∈ Hi+1 and 0 ≤ i ≤ n− 1.

5. Ki+1 = Ki(ε0, . . . , εi) for 0 ≤ i ≤ n− 1.

Suppose we have A0, . . . , Ai and K0, . . . , Ki satisfying all the conditions restricted down to

i. We are going to construct Ai+1. By (2), Ai is a toric Ki-nonexpander. Let δ > 0 be

a parameter which we will determine later. Using Lemma 6.68, we obtain a σ-compact

A′i ⊆ Ai, m = m(Ki, δ), and h′1, . . . , h
′
m ∈ Hi+1 such that

µG(A′i) > (1− δKi)µG(Ai),
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A′i is a toric 2Ki-nonexpander, and

µG

(
A′iHi+1 \

m⋃
j=1

A′ih
′
j

)
< δµG(A′iHi+1).

By adding one element of Hi+1 if necessary, we can arrange that eG is in {1, . . . ,m}. Set

Ai+1 =
⋃m
j=1 A

′
ih
′
j and set Ki+1 = mKi. By Lemma 6.65, Ai+1 is not a toric Ki+1-expander,

so (2) is satisfied. By construction Ai ⊆ Ai+1, and

µG(Ai+1) ≤ µG(A′iHi+1) ≤ µG(AiHi+1) < KiµG(Ai),

so we have (3). For every h′ ∈ Hi+1, since Ai+1h
′ ⊆ A′iHi+1, we have

µG(A′i \ Ai+1h
′) < δµG(A′iHi+1) ≤ δµG(AiHi+1) < δKiµG(Ai).

Therefore,

µG(Ai \ Ai+1h
′) < 2δKiµG(Ai).

Note that the construction so far depends on δ. Now, by choosing δ = δ(Ki, εi) sufficiently

small, we can make

µG(Ai \ Ai+1h
′) < εiµG(Ai),

so we get (4). Finally, note that Ki+1 = mKi, m = m(Ki, δ), δ = δ(Ki, εi), and Ki =

Ki(ε0, . . . , εi−1), so

Ki+1 = Ki+1(ε0, . . . , εi),

which gives us (5).

We now proceed with the proof of the lemma. Let ε0, . . . , εn−1 be parameters which we

will determine later, and obtain (Ai)
n
i=0 and (Ki)

n
i=0 as in the earlier step. Set C = An. Note

205



that

G = G−1 = (H1 . . . Hn)−1 = Hn · · ·H1.

Hence, an arbitrary g ∈ G can be written as a product hn · · ·h1 with hi ∈ Hi for i ∈

{1, . . . , n}. Now consider Cg = Anhn · · ·h1. By (4), µG(An−1 \ Anhn) < εn−1µG(An−1).

Next, for Anhnhn−1, again by (4),

µG(An−2 \ Anhnhn−1) ≤ µG(An−2 \ An−1hn−1) + µG(An−1hn−1 \ Anhnhn−1)

< εn−2µG(An−2) + εn−1µG(An−1).

Hence by induction and (3), we conclude that

µG(A \ Cg) <
n−1∑
i=0

εiµG(Ai) ≤

(
n−1∑
i=0

εi

i−1∏
j=0

Kj

)
µG(A).

Using (5), we can choose εi sufficiently small such that
(∑n−1

i=0 εi
∏i−1

j=0Kj

)
< 1/2. Then,

for all g ∈ G.

µG(C ∩ Ag)

µG(A)
=
µG(Cg−1 ∩ A)

µG(A)
>

1

2
.

Finally, note that we can choose ε0, . . . , εn−1 depending on K. Hence,

µG(C) = OK(1)µG(A),

which completes the proof.

Suppose µ and ν are measures on G. Their convolution µ ∗ ν is the unique measure

satisfying the property

∫
G

f(x) dµ ∗ ν(x) =

∫
G×G

f(xy) dµ(x) dν(y).
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The convolution exists for all the case we care about. If µ(A) > 0, the uniform measure

on A is defined by

µA(X) :=
µG(A ∩X)

µG(A)
for measurable X ⊆ G.

The following lemma is an immediate consequence of the definition and Fubini’s theorem.

Lemma 6.71. Let µA be the uniform measure on A. Then µA ∗ µG = µG.

Proof. Let X be a measurable set in G, then

µA ∗ µG(X) =

∫
G

(∫
G

1X(xy) dµG(y)

)
dµA(x) = µG(X)

∫
G

dµA(x) = µG(X)

as desired.

The next theorem is the main result of this subsection. It gives us a lower bound control

on the toric nonexpanders. Together with Lemma 6.63, this quantitative result shows that

a sufficiently small set which inside some nearly minimal expansion pair cannot contain a

long fiber in every direction.

Proposition 6.72 (Bounding size of toric nonexpanders). For each K, there is S = OK(1)

such that if A is not a toric K-expander, then µG(A) > S.

Proof. Let C be as in Lemma 6.70. Recall µA is the uniform measure on A, and µA ∗ µG is

the convolution measure. Then

∫
G

1C(x) dµA ∗ µG(x) =

∫
G

∫
G

1C(xy) dµA(x) dµG(y)

=

∫
G

µG(Cy−1 ∩ A)

µG(A)
dµG(y) ≥ 1

2
.

This means µA ∗ µG(C) ≥ 1/2. By Lemma 6.71, this implies µG(C) ≥ 1/2. Since µG(C) =

OK(1)µG(A) we get the desired conclusion.
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We now deduce the main theorem of this section.

Theorem 6.73. There is S = OM,λ(1) such that if µG(A) = µG(B) = κ < S and µG(AB) <

Mκ, then there is a one-dimensional torus subgroup H of G such that for all x, y ∈ G

µH(A ∩ xH) < λ and µH(B ∩Hy) < λ.

Proof. Suppose for every one-dimensional torus subgroup H of G, either µH(A ∩ xH) > λ

some x ∈ G or µH(B ∩ By) > λ for some y ∈ G. Then by Lemma 6.63, A is not a toric

K-expander with K = (M + 2)2/λ. Hence, by Proposition 6.72, we have µG(A) > S with

S = OM,λ(1). Thus, we get the desired conclusion.

We get the following immediate corollary for approximate groups. Since our proof is

quantitative, we can make the constant below quantitative if we wish.

Corollary 6.74. There is S = OK(1) such that if A is a K-approximate group with µG(A) <

S, then there is a one-dimensional torus subgroup H of G such that for all x, y ∈ G

µH(A ∩ xH) < λ and µH(B ∩Hy) < λ.

6.8.2 Linear pseudometric from minimal expansions

Throughout the subsection G is a connected noncompact unimodular group, and H is a

closed subgroup of G which is either isomorphic to R, or some smaller dimension connected

unimodular group, so that by induction on dimension we may assume Theorem 6.1 holds on

H. Suppose (A,B) is minimally expanding, that is,

µG(AB) = µG(A) + µG(B),

and both A,B have positive measure.
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This section can also be seen as a preview of Section 8.3. The strategy of this section also

works for compact G replacing H with result of Section 8.1. For convenience of notation, we

will treat the compact case in Section 8.3 together with the situation where (A,B) is nearly

minimally expanding.

Lemma 6.75. For all a ∈ A and b ∈ B, we have

1. µH
(
(A ∩ aH)(B ∩Hb)

)
≥ µH(A ∩ aH) + µH(B ∩Hb).

2. µG
(
A(B ∩Hb)

)
≥ µG(A) + µG/H(πA)µH(B ∩Hb).

3. µG
(
(A ∩ aH)B

)
≥ µH(A ∩ aH)µH\G(π̃B) + µG(B).

The equality in (2) holds if and only if the equality in (1) holds for almost all a ∈ AH. A

similar conclusion holds for (3).

Proof. The first inequality comes from a direct application of Kemperman inequality. For the

second inequality, by right translating B and using the unimodularity of G, we can arrange

that Hb = H. The desired conclusion follows from applying (1) and Lemma 6.62.

The next lemma gives us the important geometric properties of A and B.

Theorem 6.76 (Rigidity fiberwise). There is a continuous surjective group homomorphism

χ : H → R, two compact intervals I, J ⊆ R with

µR(I) =
µG(A)

µG/H(πA)
and µR(J) =

µG(B)

µG\H(π̃B)

σ-compact A′ ⊆ A and B′ ⊆ B with

µG/H(πA′) = µG/H(πA) and µH\G(π̃B′) = µH\G(π̃B)

such that the following hold:
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(i) µG/H(πA) = µH\G(π̃B);

(ii) for each a ∈ A′H, we have

µH(A ∩ aH) =
µG(A)

µG/H(πA)
,

and there is ζa ∈ R such that

µH
(
(A ∩ aH)4aχ−1(ζa + I)

)
= 0.

(iii) for each b ∈ HB′, we have

µH(B ∩Hb) =
µG(B)

µH\G(π̃B)
,

and there is ζ̃b ∈ R such that

µH
(
(B ∩Hb)4χ−1(ζ̃b + J)b

)
= 0.

Proof. Without loss of generality we assume µG/H(πA) ≥ µH\G(π̃B). Below, we let Hb

range over π̃B, and choose Hb uniformly at random in the expectation. By Lemma 6.62

and the quotient integration formula, we have

sup
Hb

µG(A(B ∩Hb)) ≥ µG(A) + µG/H(πA) sup
Hb

µH(B ∩Hb) (6.16)

≥ µG(A) + µG/H(πA)EHbµH(B ∩Hb)

= µG(A) +
µG/H(πA)

µH\G(π̃B)
µG(B) ≥ µG(A) + µG(B).

Note that µG(AB) ≥ supHb µG(A(B ∩Hb)). Since µG(AB) = µG(A) + µG(B), the equality
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must hold at each step. In particular, we have

µG/H(πA) = µH\G(π̃B), (6.17)

and for µH\B-almost all Hb ∈ π̃(B), we have

µH(B ∩Hb) = EHb′(B ∩Hb′) =
µG(B)

µH\G(π̃B)
.

Now, using (6.17) and applying the same argument again switching the role of A and B, we

conclude that for µG/H-almost all aH in πA, we have

µH(A ∩ aH) = Ea′HµH(A ∩ a′H) =
µG(A)

µG/H(πA)
. (6.18)

Moreover, the fact that equality holds in (6.16) shows that for µG/H-almost all aH ∈ πA

and µH\G-almost all Hb ∈ π̃B we have

µH((A ∩ aH)(B ∩Hb)) = µH(A ∩ aH) + µH(B ∩Hb).

By the relationship between µG and µG/H , in the preceding statement, we can replace µG/H-

almost all aH ∈ πA with µG-almost all a ∈ AH. We can do the same for µG and µH\G.

Now, as H satisfies Theorem 6.1, for a an b such that (6.18) holds, we can choose a

continuous surjective group homomorphism χa,b : H → R and compact intervals Ia,b, and

Ja,b in R with

µR(Ia,b) = µH(A ∩ aH), µR(Ja,b) = µH(B ∩Hb),

and

µH
(
(A ∩ aH)4χ−1

a,b(Ia,b)
)

= 0, µH
(
(B ∩Hb)4χ−1

a,b(Ja,b)
)

= 0.

Applying Lemma 6.33, we deduce that χa,b is the same, and Ia,b and Ja,b have constant
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lengths for µG-almost all a ∈ AH and µG-almost all b ∈ HB. It follows that we can choose

χ, I, J , A′, and B′ as described in the statement of the Theorem.

Corollary 6.77 (Global structure of AH). For all g ∈ G, we have

µG/H(πA4π(gA)) = 0.

Proof. Set ρ = µG(A). Recall that Stab<2ρ
G (A) is open in G, and every g ∈ G can be

expressed as a finite products of elements in Stab<2ρ
G (A) since G is connected. Therefore,

it suffcies to consider the case where g is in Stab<2ρ
G (A). Clearly, (gA,B) is a minimally

expanding pair. In the current case, we also have dA(idG, g) < ρ and µG(A ∩ gA) > 0. By

Lemma 6.21, (A ∪ gA,B) is also a minimally expanding pair. Theorem 6.76 (i) then gives

us

µG/H(πA) = µG/H(π(gA)) = µG/H(πA ∪ π(gA)) = µH\G(πB).

This gives us µG/H(πA4π(gA)) = 0 as desired.

Theorem 6.76 and Corollary 6.77 essentially allows us to define a “directed linear pseu-

dometric” on G by “looking at the generic fiber” as discussed in the following remark:

Remark 6.78. Fix a ∈ AH and let the notation be as in Lemma 6.76. For g1, g2 in G such

that g−1
1 a, g−1

2 a ∈ A′H, set

δa,A(g1, g2) = ζg−1
1 a − ζg−1

2 a.

We have the following linearity property of δa,A when the relevant terms are defined, which

is essentially the linearity property of the metric from R.

1. δa,A(g1, g1)=0.

2. δa,A(g1, g2) = δa,A(g2, g1).

3. δa,A(g1, g3) = δa,A(g1, g2) + δa,A(g2, g3).
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Properties (1) and (2) are immediate, and property (3) follows from the easy calculation

below:

δa,A(g1, g2) = ζg−1
1 a − ζg−1

2 a

= ζg−1
1 a − ζg−1

3 a + ζg−1
3 a − ζg−1

2 a

= δa,A(g1, g3)± δa,A(g3, g2).

Properties (3) also implies that

|δa,A(g1, g3)| =
∣∣± |δa,A(g1, g2)| ± |δa,A(g2, g3)|

∣∣.
which tells us that |δa,A| is a linear-pseudometric. The problem with the above definitions

is that they are not defined everywhere.

There are two ways to overcome this difficulty. The new approach, using difference in

measure, will be presented later on. The old approach, present in an earlier version of this

paper, is to define a pseudometric on G directly by setting

d(g1, g2) = ξ if for µG-almost all a ∈ AH, |δa,A(g1, g2)| = ξ.

This is indeed possible. In fact, one can bypass the pseudometric machinery altogether and

define the group homomorphism χ : G→ T directly by setting

χ(g) = ζ if for µG-almost all a ∈ AH, |δa,A(idG, g)| = ζ.

However, this does not come for free, and one need to work equally hard to verify that χ is

indeed a group homomorphism.

The old approach can moreover be extended to the case of nearly minimal expansion.

However, we can only handle a quadratic error with this old approach because we only have
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Corollary 6.82, which lacks the global property of Corollary 6.77. The real problem solved

by introducing the pseudometric is to get the linear error bound for the nearly minimal

expansion problem. 1

Lemma 6.79. Let χ : H → R be as in Theorem 6.81. For all g1, g2 ∈ G with µG(g1A ∩

g2A) > 0, there is a σ-compact A′′ ⊆ A with

µG/H(πA′′) = µG/H(πA)

such that for all a ∈ A′′H, the following holds

(i) there are ζg−1
1 a, ζg−1

2 a ∈ T such that for i ∈ {1, 2};

µH
(
(A ∩ aH)4aχ−1(ζg−1

i a + I)
)

= 0.

(ii) with any ζg−1
1 a, ζg−1

2 a satisfying (i) and δa,A(g1, g2) = ζg−1
2 a− ζg−1

1 a, if we have µG(g1A∩

g2A) > 0, then

dA(g1, g2) = µG/H(πA)|δa,A(g1, g2)|.

Proof. Obtain , χ, A′, I, J as in Theorem 6.81. Let A′′ ⊆ G be the σ-compact set

{a ∈ A : g−1
1 a, g−1

2 a ∈ A′H}.

By the preceding lemma, µG/H(πA′′) = µG/H(πA). Fix a ∈ A′′. We then have

A ∩ g−1
1 aH = g−1

1 aχ−1(ζg−1
1 a + I) and A ∩ g−1

2 aH = g−1
2 aχ−1(ζg−1

2 a + I).

Multiplying by g1 and g2 respectively, we get (i).

As µG(g1A ∩ g2A) > 0, by Lemma 6.21, (g1A ∩ g2A,B) is minimally expanding. From

214



Theorem 6.76(ii), for µG/H-almost all aH ∈ π(g1A ∩ g2A), we have

µH(g1A ∩ aH) =
µG(g1A)

µG/H(π(g1A))
and µH(g1A ∩ g2A ∩ aH) =

µG(g1A ∩ g2A)

µG/H(π(g1A ∩ g2A))
.

Note that π(g1A ∩ g2A) ⊆ π(g1A) ∩ π(g2A). However, by Lemma 6.76,

µG/H(π(g1A ∩ g2A)) = µH\G(π̃B) = µG/H(π(g1A)) = µG/H(π(g2A)).

Combining with Lemma 6.77, we get

µG/H(π(g1A)4πA) = 0 and µG/H(π(g1A ∩ g2A)4πA) = 0.

Hence, shrinking the above A′′ if necessary, we can arrange that for all a ∈ A′′H,

µH(g1A ∩ aH) =
µG(g1A)

µG/H(πA)
and µH(g1A ∩ g2A ∩ aH) =

µG(g1A ∩ g2A)

µG/H(π(A))
.

Finally, from (i), for all a ∈ A′′H, we have

µH(g1A)− µH(g1A ∩ g2A ∩ aH) = |ζg−1
1 a − ζg−1

1 a|.

Recalling that dA(g1, g2) = µG(g1A)− µG(g1A ∩ g2A), we learn that (ii) is satisfied.

We now construct the pseudometric as promised.

Proposition 6.80 (Linearity of the pseudometric). For all, g1, g2, g3 in Stab<ρG (A), we have

dA(g1, g2) ∈ {dA(g1, g3) + dA(g3, g2), |dA(g1, g3)− dA(g3, g2)|}.

Proof. For i ∈ {1, . . . , 3}, gi is in Stab<ρG (A) by assumption, so dA(idG, gi) < ρ/2. Hence, for
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i, j ∈ {1, . . . , 3 we have

dA(gi, gj) < ρ and µG(giA ∩ gjA) > 0.

Applying the preceding Corollary(ii), we get σ-compact A′′′ ⊆ A with µG(A′′′H) 6= ∅ such

that for each a ∈ A′′′H, we have

µG(giA ∩ gjA) = µG/H(πA)|ζg−1
i a − ζg−1

j a| for i, j ∈ {1, 2, 3}.

The desired conclusion immediately follows.

6.8.3 Almost linear pseudometric from near minimal expansions

In this subsection, G is always a connected compact Lie group. Let H be a closed subgroup of

G, and H is isomorphic to the one dimension torus T. Throughout the subsection, A,B ⊆ G

are σ-compact subsets such that

κ/2 < µG(A) < 2κ and µG(B) = κ,

and (A,B) is ηκ-nearly minimally expanding for some sufficiently small constant η > 0, that

is

µG(AB) ≤ µG(A) + µG(B) + ηκ.

In this section, we assume η < 10−100. We did not try to optimise η, so it is very likely that

by a more careful computation, one can make η much larger. But we believe this method

does not allow η to be very close to 1.

By Fact 6.14, let τ = 2, and c = c(τ) be the constant obtained from the theorem. In this
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subsection, we consider the case when

max{µH(A ∩ aH), µH(B ∩Hb)} < c

for all a, b ∈ G. The proofs in this section is more involved compared to the equality case,

and the main difficulty is to control the error term coming from the near minimally expansion

pair. For the readers who do not care the exact quantitative bound on the error terms, one

can always view η as an infinitesimal element, then one can use equalities to replace all the

inequalities in the proofs by pretending to take the standard part, and apply the methods

given in the previous section.

Towards showing that sets A and B behave rigidly, our next theorem shows that most of

the non-empty fibers in A and B have the similar lengths, and the majority of them behaves

rigidly fiberwise.

Theorem 6.81 (Near rigidity fiberwise). There is a continuous surjective group homomor-

phism χ : H → T, two compact intervals I, J ⊆ T with

µT(I) =
µG(A)

µG/H(πA)
and µT(J) =

µH(B)

µH\G(π̃B)
.

σ-compact A′ ⊆ A and B′ ⊆ B with

µG/H(πA′) > 99µG/H(πA)/100 and µH\G(π̃B′) > 99µH\G(π̃B)/100,

and a constant ν < 10−6 such that the following statements hold:

(i) (1− η)µH\G(π̃B) ≤ µG/H(πA) ≤ (1 + η)µH\G(π̃B).

(ii) For every a in A′H,

(1− ν)
µG(A)

µG/H(πA)
≤ µH(A ∩ aH) ≤ (1 + ν)

µG(A)

µG/H(πA)
,

217



and there is ζa ∈ T with

µH
(
(A ∩ aH)4aχ−1(ζa + I)

)
< ν min

{ µG(A)

µG/H(πA)
,

µG(B)

µH\G(π̃B)

}
.

(iii) For every b in HB′,

(1− ν)
µG(B)

µH\G(π̃B)
≤ µH(B ∩Hb) ≤ (1 + ν)

µG(B)

µH\G(π̃B)
,

and there is ζ̃b ∈ T with

µH
(
(B ∩Hb)4χ−1(ζ̃b(B) + J)b

)
< ν min

{ µG(A)

µG/H(πA)
,
µG(B)

µH\G(π̃)

}
.

Proof. Without loss of generality, we assume that µG/H(πA) ≥ µH\G(π̃B). Let β be a

constant such that β < κ/800µH\G(π̃B). Obtain b∗ ∈ G such that

µH(B ∩Hb∗) ≥ µH(B ∩Hb)− β for all b ∈ G,

and the fiber B ∩Hb∗ has at least the average length, that is

µH(B ∩Hb∗) ≥ Eb∈BHµH(B ∩Hb) =
µG(B)

µH\G(π̃B)
. (6.19)

Set δ = 400ηκ/µG/H(πA). As η < 10−100, we get ν < 10−6 such that

δ < νµG(A)/µG/H(πA).

Set

N = {a ∈ AH : dH(A ∩ aH,B ∩Hb∗) > β}.
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Note that N is measurable by Lemma 6.9. By Lemma 6.62 we have

µG
(
A(B ∩Hb∗)

)
=

∫
N

µH
(
(A ∩ aH)(B ∩Hb∗)

)
dµG(a) +

∫
G\N

µH
(
(A ∩ aH)(B ∩Hb∗)

)
dµG(a).

Since A ∩ aH is nonempty for every a ∈ AH, using Kemperman’s inequality on H we have

that µG(A(B ∩Hb∗)) is at least

∫
N

(
µH(A ∩ aH) + µH(B ∩Hb∗) + δ

)
dµG(a) +

∫
G\N

(
µH(A ∩ aH) + µH(B ∩Hb∗)

)
dµG(a).

Suppose we have µG(N) > µG/H(πA)/400. Therefore, by the choice of b∗ we get

µG
(
A(B ∩Hb∗)

)
> µG(A) +

δµG/H(πA)

100
+ µH(B ∩Hb∗)µG/H(πA) (6.20)

≥ µG(A) + µG(B)
µG/H(πA)

µH\G(π̃B)
+ ηκ.

Since µG/H(πA) > µH\G(π̃B), and A(B ∩Hb∗) ⊆ AB, we have

µG(AB) > µG(A) + µG(B) + ηκ.

This contradicts the assumption that (A,B) is ηκ-nearly minimally expanding. From

equation (6.20) we also get

µH\G(π̃B) ≤ µG/H(πA) ≤
(
1 + η

)
µH\G(π̃B), (6.21)

which proves (i).

From now on, we assume that µG(N) ≤ µG/H(πA)/400. Since (A,B) is ηκ-minimally
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expanding, by (6.20), we have

µH(B ∩Hb∗)µH\G(π̃B) ≤ µG(B) + ηκ,

and this in particular implies that for every b ∈ G, we have

µH(B ∩Hb) ≤ µG(B)

µH\G(π̃B)
+

ηµG(B)

µH\G(π̃B)
+ η <

(
1 + ν

) µG(B)

µH\G(π̃B)
.

Thus there is Y ⊆ B with µG(HY ) < µH\G(π̃B)/400 such that for every b ∈ HY ,

µH(B ∩Hb) ≥ µG(B)

µH\G(π̃B)
− 400

ηµG(B)

µH\G(π̃B)
− 400η >

(
1− ν

) µG(B)

µH\G(π̃B)
.

Next, we apply the similar argument to A. Let α < (µG(A) − 2ηκ)/200µG/H(πA), and

choose a∗ such that µH(A ∩ a∗H) > µH(A ∩ aH)− α for all a ∈ AH, and

µH(A ∩ a∗H) ≥ Ea∈AHµH(A ∩ aH) =
µG(A)

µG/H(πA)
.

Let N ′ ⊆ HB such that for every b in N ′, dH(A ∩ a∗H,B ∩Hb) < δ minimally expanding.

Hence we have

µG
(
(A ∩ a∗H)B

)
=

∫
N ′
µH
(
(A ∩ a∗H)(B ∩Hb)

)
dµG(b) +

∫
G\N ′

µH
(
(A ∩ a∗H)(B ∩Hb)

)
dµG(b)

≥µG(B) + µH(A ∩ a∗H)µH\G(π̃B) + δµG(N ′) (6.22)

≥µG(A) + µG(B)− µG(A)ηκ

µG(A) + ηκ
+ δµG(N ′).

By the fact that µG(AB) ≥ µG((A ∩ a∗H)B) and (A,B) is ηκ-nearly minimally expanding,

we have that

µG(N ′) ≤ 1

200
µG/H(πA) ≤ 1

150
µH\G(π̃B).
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Now, by equation (6.22), and the choice of a∗, we have that for all a ∈ AH,

µH(A ∩ aH) ≤ µG(A)

µG/H(πA)
+

ηµG(A)

µH\G(π̃B)
+ α <

(
1 + ν

) µG(A)

µG/H(πA)
.

Again by equation (6.22), there is X ⊆ A with µG(XH) ≤ µG/H(πA)/200, such that for

every a ∈ X,

µH(A ∩ aH) ≥ µG(A)

µG/H(πA)
− 200

ηµG(A)

µH\G(π̃B)
− 200α ≥

(
1− ν

) µG(A)

µG/H(πA)
.

Let A′ = A ∩ (AH \ (XH ∪N ′)), and let B′ = B ∩ (HB \ (HY ∪N)). Then

µG(A′) ≥ 99

100
µG/H(πA), µG(B′) ≥ 99

100
µH\G(π̃B),

Let a be in A′H and b be in B′H. By our construction, the first parts of (ii) and (iii) are

satisfied. Moreover, (A ∩ aH,B ∩Hb∗) and (A ∩ a∗H,B ∩Hb) are δ-minimally expanding

pairs. By the way we construct A′ and B′, we have that a∗ ∈ A′ and b∗ ∈ B′. Recall that

µH(A ∩ aH), µH(B ∩ Hb) < λ for every a, b ∈ G. Therefore, by the inverse theorem on T

(Fact 6.14), and Lemma 6.33, there is a group homomorphism χ : H → T, and two compact

intervals IA, IB in T, with

µT(IA) =
µG(A)

µG/H(πA)
, µT(IB) =

µG(B)

µH\G(π̃B)
,

such that for every a ∈ A′ and b ∈ B′, there are elements ζa, ζ̃b(B) in T, and

µH(A ∩ aH4aχ−1(ζa + IA)) < δ, µH(B ∩Hb4χ−1(ζ̃b + IB)b) < δ,

as desired.

The next corollary gives us an important fact of the structure of the projection of A on
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G/H.

Corollary 6.82 (Global structure ofAH). Suppose µG(A) = κ. Then for all g ∈ Stab
κ/2
G (A),

we have

µG(AH4gAH) ≤ µG/H(πA)
1

100
.

Proof. By Lemma 6.21, (A∪ gA,B) is a 2ηκ-minimal expansion pair, and by Theorem 6.81,

we have

1

1 + 2η
<
µG(AH ∪ gAH)

µH\G(π̃B)
< 1 + 2η.

On the other hand, since (A,B) and (gA,B) are ηκ-nearly minimal expanding, we have

1/(1 + η) <
µG/H(πA)

µH\G(π̃B)
,
µG(gAH)

µH\G(π̃B)
< 1 + η

Since η < 10−100, we get the desised conclusion.

Lemma 6.83. Suppose µG(A) = κ, g1, g2 ∈ Stab
κ/4
G (A), and χ : H → T and I ⊆ T are as

in Theorem 6.81. Then there is a σ-compact A′′ ⊆ A with

µG/H(πA′′) = 96µG/H(πA)/100

such that for all a ∈ A′′H, the following holds

(i) there are ζg−1
1 a, ζg−1

2 a ∈ T such that for i ∈ {1, 2};

µH
(
(A ∩ aH)4aχ−1(ζg−1

i a + I)
)
<

νκ

µG/H(πA)
.

(ii) with any ζg−1
1 a, ζg−1

2 a satisfying (i) and δa,A(g1, g2) = ζg−1
2 a − ζg−1

1 a, we have

dA(g1, g2) ∈ µG/H(πA)|δa,A(g1, g2)|+ I
(
2νκ

)
.
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Proof. Obtain , χ, A′, I, J as in Theorem 6.81. Let A′′ ⊆ G be the σ-compact set

{a ∈ A : g−1
1 a, g−1

2 a ∈ A′H}.

It is easy to see that µG/H(πA′′) > 98/100µG/H(πA). Fix a ∈ A′′. We then have

A ∩ g−1
1 aH = g−1

1 aχ−1(ζg−1
1 a + I) and A ∩ g−1

2 aH = g−1
2 aχ−1(ζg−1

2 a + I).

Multiplying by g1 and g2 respectively, we get (i).

Now suppose further that µG(g1A ∩ g2A) > 0. Recall that (g1A ∩ g2A,B) is then a

minimally expanding pair by Lemma 6.21. By Theorem 6.76(ii), for µG/H-almost all aH ∈

π(g1A ∩ g2A), we have

(
1− ν

) µG(g1A)

µG/H(π(g1A))
≤ µH(g1A ∩ aH) ≤ (1 + ν)

µG(g1A)

µG/H(π(g1A))

and

(1− 2ν)
µG(g1A ∩ g2A)

µG/H(π(g1A ∩ g2A))
≤ µH(g1A ∩ g2A ∩ aH) = (1 + 2ν)

µG(g1A ∩ g2A)

µG/H(π(g1A ∩ g2A))
.

Note that π(g1A ∩ g2A) ⊆ π(g1A) ∩ π(g2A). However, by Lemma 6.76,

µG/H(π(g1A ∩ g2A)) = µH\G(π̃B) = µG/H(π(g1A)) = µG/H(π(g2A)).

Combining with Lemma 6.77, we get

µG/H(π(g1A)4πA) = 0 and µG/H(π(g1A ∩ g2A)4πA) = 0.
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Hence, shrinking the above A′′ if necessary, we can arrange that for all a ∈ A′′H,

(1− 5ν)
µG(g1A)

µG/H(πA)
≤ µG(g1A)

µG/H(πA)
µH(g1A ∩ aH) ≤ (1 + 5ν)

µG(g1A)

µG/H(πA)

and

(1− 10ν)
µG(g1A ∩ g2A)

µG/H(π(A))
≤ µH(g1A ∩ g2A ∩ aH) ≤ (1 + 10ν)

µG(g1A ∩ g2A)

µG/H(π(A))
.

Finally, from (i) for all a ∈ A′′H, we have

µH(g1A)− µH(g1A ∩ g2A ∩ aH) ∈ µG/H(πA)|ζg−1
1 a − ζg−1

2 a|+ I
(
2νµG(A)

)
.

Recall that dA(g1, g2) = µH(g1A)− µH(g1A ∩ g2A ∩ aH). Hence, (ii) is satisfied.

We now show deduce property of the pseudometric dA.

Proposition 6.84 (Almost linearity and path monotonicity of the pseudometric). Assume

that µG(A) = κ. Then we have the following:

(i) For all g1, g2, g3 in Stab
κ/2
G (A), we have

dA(g1, g2) ∈ | ± dA(g1, g3)± dA(g2, g3)|+ I
(
6αµG(A)

)
,

(ii) Let g be the Lie algebra of G, and let exp : g → G be the exponential map. For

every X ∈ g, either dA(exp(Xt), idG) < κ/4 for every t, or there is t0 > 0 with

dA(exp(Xt0), idG) ≥ κ/4 such that for every t ∈ [0, t0],

dA(exp(X(t+ t0)), idG)

∈ dA(exp(X(t+ t0)), exp(Xt0)) + dA(exp(Xt0), idG) + I
(
12νµG(A)

)
.
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Proof. We first prove (i). Let χ and I be as in Theorem 6.81. Applying Lemma 6.83, we

get a ∈ AH and ζg−1
1 a, ζg−1

2 a, ζg−1
1 a ∈ T such that for i ∈ {1, . . . , 3}, we have

µH
(
(A ∩ aH)4aχ−1(ζg−1

i a + I)
)
<

νκ

µG/H(πA)
,

and for i, j ∈ {1, . . . , 3}, we have

dA(gi, gj) ∈ µG/H(πA)|δa,A(gi, gj)|+ I
(
2νκ

)
.

with δa,A(gi, gj) = ζg−1
j a−ζg−1

i a. As δa,A(g1, g2) = δa,A(g1, g3)+δa,A(g3, g2), we get the desired

conclusion.

Next, we prove (ii). Let X ∈ g, and suppose there is t > 0 such that

dA(exp(Xt), idG) ≥ κ.

Using the continuity of g 7→ µG(A \ gA) (Fact 6.4(vii)), we obtain t0 > 0 such that t0 the

smallest positive real number with dA(idG, exp(Xt0)) ≥ κ/10. Fix t ∈ [0, t0], and set

g0 = exp(Xt0) and g = exp(Xt).

Note that gg0 = g0g as g0 and g are on the same one parameter subgroup of G. One can

easily check that g0, g, g0g are in Stab
κ/2
G (A). Again, let χ and I be as in Theorem 6.81 and

apply Lemma 6.83 to get a ∈ AH and ζg−1
i a ∈ T for gi ∈ {idG, g, g0, gg0} such that

µH
(
(A ∩ aH)4(aχ−1(ζg−1

i a + I)
)
<

νκ

µG/H(πA)
, (6.23)

and for gi, gj ∈ {idG, g, g0, gg0}, we have

dA(gi, gj) ∈ µG/H(πA)|δa,A(gi, gj)|+ I
(
2νκ

)
(6.24)
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with δa,A(gi, gj) = ζg−1
j a − ζg−1

i a. As gg0 = g0g, we have

δa,A(idG, g) + δa,A(g, gg0) = δa,A(idG, g0g) = δa,A(idG, g0) + δa,A(g0, g0g) (6.25)

Using (6.23), (6.24), and the fact that dA(idG, g0) = dA(g, gg0), we get

δa,A(g, gg0) ∈ ±δa,A(idG, g0) + I
(
6αµG(A)

)
.

By a similar argument,δa,A(g0, g0g) ∈ ±δa,A(idG, g) + I
(
6αµG(A)

)
. Combining with (6.25),

we get that δa,A(idG, ggi) is in both

δa,A(idG, g0)± δa,A(idG, g) + I
(
6αµG(A)

)
and

δa,A(idG, g)± δa,A(idG, g0) + I
(
6αµG(A)

)
.

Using the fact that ν is very small, and considering all the four possibilites, we deduce

δa,A(idG, gg0) = δa,A(idG, g0) + δa,A(idG, g) + I
(
12αµG(A)

)
.

Applying (6.23) and (6.24) again, we get the desired conclusion.

6.9 Proof of the main theorems

6.9.1 Minimal expansion pairs in noncompact groups

In this subsection, we prove Theorems 6.1 when G is noncompact. The next theorem is a

restatement of Theorem 6.1(vi), which is the main result in this subsection.

Theorem 6.85 (Main theorem for noncompact groups). Suppose G is a connected unimod-
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ular noncompact group, µG is a Haar measure on G, and A,B ⊆ G are σ-compact subsets

of G with positive finite measures, such that

µG(AB) = µG(A) + µG(B)

Then there is a continuous surjective group homomorphism χ : G→ R with compact kernel,

and compact intervals I, J ⊆ R with µG(A) = µR(I) and µG(B) = µR(J), such that

A ⊆ χ−1(I), and B ⊆ χ−1(J).

Moreover, if A and B are compact, then A = χ−1(I) and B = χ−1(J).

Proof. By the Gleason–Yamabe Theorem (Fact 6.28), there is a connected compact normal

subgroup H of G such that L = G/H is a connected Lie group. By Fact 6.10, L is unimodu-

lar. Let π : G→ L be the quotient map. Using Corollary 6.27, there are σ-compact subsets

A′, B′ of L such that

µG(A4π−1(A′)) = 0 and µG(B4π−1(B′)) = 0,

and we still have µL(A′B′) = µL(A′) + µL(B′).

When L is a simple Lie group, by the Iwasawa decomposition, L = KAN where AN is a

simply connected closed nilpotent group. Thus AN contains R as a closed subgroup, and so

does L. When L is not simple, then L contains a connected closed normal subgroup H, and

by Fact 6.10, H is unimodular, and of smaller dimension. Applying induction on dimension,

we may assume H satisfies the statement of the theorem. For g1, g2 ∈ L, let

dA(g1, g2) = µL(A)− µL(g1A ∩ g2A).

Then by Proposition 6.37, dA is a pseudometric on L, with radius µG(A). By Proposi-
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tion 6.80, dA is locally linear. Using Proposition 6.42, we have ker dA is a compact normal

subgroup of L, and L/ ker dA is isomorphic to R as topological groups. By the third isomor-

phism theorem (Fact 6.7), R is a quotient group of G, and the corresponding quotient map

χ has a compact kernel. Applying Corollary 6.27 again, as well as the inverse theorem on R

(Fact 6.15), there are I, J compact intervals of R such that

µG(A4χ−1(I)) = 0 and µG(B4χ−1(J)) = 0.

This also implies that µG(A) = µR(I) and µG(B) = µR(J).

Suppose g ∈ A and g /∈ χ−1(I). Since I is compact, χ(g) /∈ I, and there is α > 0 such

that the distance between χ(g) and the nearest element in I is at least α. Thus

µR(χ(g)χ(B) \ χ(A)χ(B)) ≥ α.

and this implies that µG(gB \ χ−1(I)χ−1(J)) ≥ α. Therefore,

µG(AB) ≥ µG(χ−1(I)χ−1(J)) + µG(gB \ χ−1(I)χ−1(J)) ≥ µG(A) + µG(B) + α,

and this contradicts the fact that (A,B) is minimally expanding. Hence we have A ⊆ χ−1(I)

and B ⊆ χ−1(J) as desired. When both A and B are compact, we have A = χ−1(I) and

B = χ−1(J) by the compactness.

We remark that the same argument almost works for compact groups when (A,B) is a

minimal expansion pair, except that when we choose the closed subgroup H, we need to

choose one such that we are in the toric transversal scenario. This can be done by using

Theorem 6.73 (See Section 6.9.2).

228



6.9.2 Nearly minimal expansion pairs in compact groups

In this subsection, we prove the main theorems for compact groups. We first prove Theo-

rem 6.3.

Proof of Theorem 6.3. Let d > 0 be an integer, let c be the real number fixed at the beginning

of Section 8.3, let α be in Proposition 6.84. Let G be a connected compact simple Lie

group of dimension at most d, and A is a compact subset of G of measure at most C, and

µG(A2) < (2 + η)µG(A), where C = C(d) is the constant in Theorem 6.73, and η is the

constant fixed in Section 8.3.

By Theorem 6.73, when A satisfies µG(A) < C, there is a closed subgroup H which is

isomorphic to T, such that for all g ∈ G, µH(gA∩H) < c. We fix such a closed subgroup H

of G. Let

dA(g1, g2) = µG(A)− µG(g1A ∩ g2A).

By Proposition 6.37, dA is a pseudometric. Since µG(A2) < (2 + η)µG(A), Proposition 6.84

shows that dA is a 6αµG(A)-linear pseudometric, and it is 12αµG(A)-monotone along each

one parameter subgroup. By Proposition 6.44, dA is globally 96αµG(A)-monotone. Let

γ = 96αµG(A). Then dA is γ-monotone γ-linear, and of radius ρ = µG(A). Theorem 6.61

thus implies that there is a continuous surjective group homomorphism mapping G to T,

and this contradicts the fact that G is simple.

Now we are going to prove the inverse theorem. In Proposition 6.36, given a continuous

surjective group homomorphism from G to T, we obtain a structural characterization with

further assumption that the images of both A and B are small. The next lemma says that,

with the homomorphism obtained from almost linear pseudometric in Sections 7 and 8, both

A and B should have small image.

Lemma 6.86. Let G be a connected compact groups, π : G → T is a surjective continuous

group homomorphism, and A,B are σ-compact subgroups of G with dG(A,B) = δ for some
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δ < min{µG(A), µG(B)}, and max{µG(A), µG(B)} < 1/100. Suppose for every g ∈ kerπ

with µG(A\gA) < µG(A)/16, we have µG(A\gA) < µG(A)/32. Then µT(π(A))+µT(π(B)) <

1/5.

Proof. Let H = (ker π)0. As G is compact, we will have G/H ∼= T as topological groups.

For every set X in G, and interval I ⊆ [0, 1], we define

πXI = {g ∈ G : µH(g−1X ∩H) ∈ I}.

It is clear that πXI ⊆ XH. Since G is compact and H is normal, we also have XH = HX

and µH(X ∩ gH) = µH(X ∩Hg).

Assume first that we have supg µH(B ∩Hg) > 1/2. Choose b0 such that µH(B ∩Hb0) >

1/2. We claim that µG(πA[0,1/2)) ≤ 2µG(B) + 2δ. Otherwise, applying Kemperman’s in-

equality on H we have

µG(AB) ≥ µG(A(B ∩Hb0)) > µG(A) + µG(B) + δ,

this contradicts that dG(A,B) ≤ δ. Similarly we also have µG(πA[1/2,1]) ≤ 2µG(A) + 2δ, as

otherwise

µG(AB) ≥ 1

2
µG(πA[1/2,1]) + µG(B) > µG(A) + µG(B) + δ,

contradiction. Assume we also have supg µH(A∩gH) > 1/2. Then using the same argument,

we conclude that µG(πB[0,1/2)) < 2µG(A) + 2δ, and µG(πB[1/2,1]) ≤ 2µG(B) + 2δ. Thus we

have

µT(π(A)) + µT(π(B)) < 4µG(A) + 4µG(B) + 8δ < 1/5.
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Next, we may assume that supg µH(A ∩ gH) ≤ 1/2. Note that

µG(AH)

µG(A)
>

1

supg µH(A ∩ gH)
.

Hence by Lemma 6.67, for every ` > 1/2, there is h ∈ H such that µG(A ∩ hA) = `µG(A),

and in particular, there is h ∈ H with

15µG(A)

16
< µG(A ∩ hA) <

31µG(A)

32
,

which contradicts the assumption.

Finally, let us consider the case when supg µH(B∩Hg) < 1/2. From the above argument,

we may also assume that supg µH(A∩gH) ≥ 1/2. This implies that µG(πB[0,1/2)) < 2µG(A)+

2δ, and in particular

Eg∈HBµH(B ∩Hg) >
µG(B)

2µG(A) + 2δ
.

Hence, we have

µG(πA[0,1/2)) ≤
(µG(B) + δ)(2µG(A) + 2δ)

µG(B)
< 4µG(A) + 4δ.

Therefore,

µT(π(A)) + µT(π(B)) < 8µG(A) + 6δ < 1/5,

as desired.

With all tools in hand, we are going to prove the following theorem, which is a restatement

of Theorem 6.2 and Theorem 6.1(v) for compact groups.

Theorem 6.87 (Main theorem for compact groups). Let G be a connected compact group,

and A,B be compact subsets of G with positive measure. Set

s = min{µG(A), µG(B), 1− µG(A)− µG(B)}.
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Given 0 < ε < 1, there is a constant K = K(s) does not depends on G, such that if δ < Kε

and

µG(AB) < µG(A) + µG(B) + δmin{µG(A), µG(B)}.

Then there is a surjective continuous group homomorphism χ : G → T together with two

compact intervals I, J ∈ T with µT(I) = µG(A), µT(J) = µG(B), and

µG(A4χ−1(I)) < εµG(A), µG(B4χ−1(J)) < εµG(B).

Moreover, when µG(AB) < 1 and

µG(AB) = µG(A) + µG(B),

we have A ⊆ χ−1(I) and B ⊆ χ−1(J).

Proof. Given ε > 0 and s defined in the statement of the theorem. Let δ > 0 to be

determined later. Suppose µG(A) < µG(B), and dG(A,B) ≤ δµG(A). By Lemma 6.21, there

is a constant K1 only depending on s such that there are small σ-compact sets A1, B1 in G,

such that µG(A1) = µG(B1) < τ ,

µG(A1B1) < µG(A1) + µG(B1) +K1δminµG(A1),

and both dG(A1, B) and dG(A,B1) are at most K1δµG(A1), where τ is the constant from

Proposition 6.32. Again using Proposition 6.32, there is a constant d > 0, and a connected

compact subgroup H of G, such that L = G/H is a Lie group of dimension at most d, and

we can find σ-compact sets A2, B2 in L, such that µL(A2) ≤ µL(B2),

max{µG(A14π−1(A2)), µG(B14π−1(B2))} < 3K1δµG(A1), (6.26)
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and

µL(A2B2) < µL(A2) + µL(B2) + 7K1δµG(A1) < µL(A2) + µL(B2) + 7K1δµL(A2).

Now we apply Lemma 6.21 again. Then there is a constant K2 only depending on s,

and two small σ-compact sets A3, B3 in L, such that µL(A3) = µL(B3) < S, and all of

dL(A3, B3), dL(A3, B2), and dL(A2, B3) are at most K1K2δµL(A3), where S is the constant

from Proposition 6.72.

Let c be the constant fixed in the beginning of Section 8.3. By Theorem 6.73, there is a

closed subgroup T of L, such that T is isomorphic to T, and for every g ∈ L, we have

max{µT (A ∩ gT ), µT (B ∩ Tg)} < c.

Now we are in the toric transversal scenario. Similarly as what we did in the proof of The-

orem 6.3, we define the pseudometric dA, and from Proposition 6.84 and Proposition 6.44,

when K1K2δ < η where η is from Proposition 6.84, we obtain a γ-linear γ-monotone pseudo-

metric, where γ = 96α, and α is also from Proposition 6.84. Therefore, Theorem 6.61 gives

us a surjective continuous group homomorphism φ : L → T, such that for every g ∈ kerφ,

we have µL(A3 \ gA3) < µL(A3)/10.

By the third isomorphism theorem (Fact 6.7), T is also a quotient group of G. It remains

to determine the structure of A and B. By Lemma 6.86, we have µT(φ(A3)) + µT(φ(B3)) <

1/5. Then by Proposition 6.36, there are compact intervals I3, J3 in T, such that

µT(I3) = µL(A3) and µT(J3) = µL(B3),

and µL(A34φ−1(I3)) < K0K1K2δµL(A3), µL(B34φ−1(J3)) < K0K1K2δµL(A3). Thus by
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Lemma 6.33, there are compact intervals I2, J2 in T with

µT(I2) = µL(A2) and µT(J2) = µL(B2),

and

µL(A24φ−1(I2)) < (2K0K1K2 + 45)δµL(A2),

µL(B24φ−1(J2)) < (2K0K1K2 + 45)δµL(A2).

Let χ = π ◦φ. By (6.26) and Lemma 6.33 again, there are intervals I ′ and J ′ in T, such that

µT(I ′) = µG(A) and µT(J ′) = µG(B),

and

µG(A4χ−1(I ′)) < (4K0K1K2 + 90)δµG(A),

µG(B4χ−1(J ′)) < (4K0K1K2 + 90)δµG(A) ≤ (4K0K1K2 + 90)δµG(B).

Note that all K0, K1, and K2 only depend on s, then one can take

δ = min
{ ε

4K0K1K2 + 90
,

η

2K0K1K2

}
.

Finally, we consider the case when δ = 0, that is, µG(AB) = µG(A) + µG(B). The proof

follows the same argument, by replacing Proposition 6.84 with Proposition 6.80 to construct

the locally linear pseudometric, and by replacing Proposition 6.84 and Theorem 6.61 by

Proposition 6.42. Proposition 6.44 is not needed in this case, as in this case, in order to

construct a homomorphism to T, the monotonicity of the pseudometric is not needed.
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Chapter 7

A nonabelian Brunn–Minkowski
inequality

Henstock and Macbeath [90] asked in 1953 whether the Brunn–Minkowski inequality can be

generalized to nonabelian locally compact groups; questions in the same line were also asked

by Hrushovski [101], McCrudden [132], and Tao [160]. We obtain here such an inequality

and prove that it is sharp for helix-free locally compact groups, which includes real linear

algebraic groups, Nash groups, semisimple Lie groups with finite center, solvable Lie groups,

etc. The proof follows an induction on dimension strategy; new ingredients include an

understanding of the role played by maximal compact subgroups of Lie groups, a necessary

modified form of the inequality which is also applicable to nonunimodular locally compact

groups, and a proportionated averaging trick. This chapter is based on joint work with Tran

and Zhang [106].

7.1 Introduction

7.1.1 Background

Let µ be the usual Lebesgue measure on Rd, let X and Y be nonempty and compact subsets

of Rd, and set X +Y := {x+ y : x ∈ X, y ∈ Y }. The Brunn–Minkowski inequality says that

µ(X + Y )1/d ≥ µ(X)1/d + µ(Y )1/d. (7.1)

For fixed µ(X) and µ(Y ), the inequality provides us with the minimum value of µ(X + Y )

which is obtained, for example, when X, Y , and X + Y are d-dimensional hypercubes with
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side length µ(X)1/d, µ(Y )1/d, and µ(X)1/d + µ(Y )1/d, respectively.

Under the further assumption that X and Y are convex, the inequality in an equivalent

form was proven by Brunn [38] in 1887. In the celebrated Geometrie der Zahlen (Geometry

of Numbers) [136] published in 1896, Minkowski introduced the current form of the inequal-

ity and established that the equality happens if and only if X and Y are homothetic convex

sets. Removing the convexity assumption was done by Lyusternik [128] in 1935. However,

his proof that the same condition for equality still holds was seen to contain some flaws, a sit-

uation eventually corrected by Henstock and Macbeath [90] in 1953. The Brunn–Minkowski

inequality is widely considered a cornerstone of convex geometry. See [72] for an excellent

survey on its numerous generalizations and applications.

In this chapter, we consider the problem of generalizing the Brunn–Minkowski inequality

to a locally compact group G. Here, up to a multiplication by positive constants, we have a

unique left Haar measure µ generalizing the Lebesgue measure in Rd; see Section 5.2 for the

precise definitions.

We temporarily further assume that µ is also invariant under right translations. Such

G is called unimodular. This assumption holds when G = Rd and in many other situations

(e.g, when G is compact, discrete, a nilpotent Lie group, a semisimple Lie group, etc). Set

XY = {xy : x ∈ X, y ∈ Y } for nonempty compact X, Y ⊆ G. The translation invariance

property of µ implies that

µ(XY ) ≥ max{µ(X), µ(Y )}

and should intuitively be even larger, hinting at a meaningful generalization of the Brunn–

Minkowski inequality to this setting. This will be shown to be the case.

For an arbitrary locally compact group G, µ might no longer be right invariant. Hence, we

still have µ(XY ) ≥ µ(Y ), but we might have µ(XY ) < µ(X). By a result by Macbeath [130]

in 1960, the trivial inequality µ(XY ) ≥ µ(Y ) for nonunimodular G is already sharp in the
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sense that for any α, β, ε > 0, there are nonempty compact X, Y ⊆ G with

µ(X) = α, µ(Y ) = β, and µ(XY ) < µ(Y ) + ε.

We will later see in this chapter that there is still a meaningful generalization of the Brunn–

Minkowski inequality involving both µ and a right Haar measure ν. Surprisingly, it turns

out that if one only cares about unimodular cases, the nonunimodular cases are still needed

for our proof. We will keep the settings and notations of this paragraph throughout the rest

of the chapter.

The problem of generalizing the Brunn–Minkowski inequality was proposed in 1953 by

Henstock and Macbeath [90]; different variations of this problem were also later suggested

by Hrushovski [101], by McCrudden [132], and by Tao [160]. In the direction of the intuition

described earlier, Kemperman [112] showed in 1964 that µ(XY ) ≥ µ(X) + µ(Y ) when G

is connected, unimodular and noncompact. Even more important for us is the followin

generalization to all connected noncompact locally compact groups, which reads

ν(X)

ν(XY )
+

µ(Y )

µ(XY )
≤ 1.

While applicable to all locally compact groups, Kemperman’s inequalities are not sharp

even for R2 giving a weaker conclusion than the Brunn–Minkowski inequality. The most

definite result toward the correct lower bound was obtained by McCrudden [132] in 1969.

In effect, he showed that when G is a unimodular solvable Lie group of dimension d, and m

is the dimension of the maximal compact subgroup, we have

µ(XY )1/(d−m) ≥ µ(X)1/(d−m) + µ(Y )1/(d−m).

The above differs from McCrudden’s original statement in that m was defined using an

inductive idea in [132]; the current form is more suitable to get the later generalization and
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to show that it is indeed sharp. A number of special cases of this result were rediscovered

by Gromov [84], by Hrushovski [102], by Leonardi and Mansou [122], and by Tao [160].

Sharpness for nilpotent groups was essentially proven by Monti [138]; see also Tao [160].

7.1.2 Statement of main results

Suppose G is Lie group with connected component G0. Following Levi decomposition

(Fact 5.22), we have an exact sequence of Lie groups

1→ Q→ G0 → S → 1

where Q is solvable and S is semisimple. It is known that the center Z(S) is a discrete abelian

group of finite rank h; see Facts 5.26 and 5.27. We call h the helix dimension of G. As

an example, SL2(R) has helix dimension 0 while its universal cover has helix dimension 1.

If h = 0, equivalently S has finite center, we say that G is helix-free. Real linear algebraic

groups and more generally, Nash groups (equivalently, semialgebraic Lie groups or groups

definable in the field of real numbers) are helix free; see [10, Lemma 4.5] and the subsequent

discussion in the same paper. Our first main results is a generalization of Brunn–Minkowski

inequality to Lie groups whose exponent will be seen to be sharp for helix-free Lie groups:

Theorem 7.1. Suppose G is a Lie group, µ is a left Haar measure, ν is a right Haar

measure, the dimension of G is d, the maximal dimension of a compact subgroup of G is

m, the helix dimension of G is h, and X, Y are compact subsets of G with positive measure.

Then

ν(X)1/(d−m−h)

ν(XY )1/(d−m−h)
+

µ(Y )1/(d−m−h)

µ(XY )1/(d−m−h)
≤ 1; (7.2)

the left-hand-side is interpreted as max{ν(X)/ν(XY ), µ(Y )/µ(XY )} if d −m − h = 0. In

particular, if G is unimodular, then µ(XY )
1

d−m−h ≥ µ(X)
1

d−m−h + µ(Y )
1

d−m−h .

Now consider an arbitrary locally compact groupG. Using the Gleason–Yamabe Theorem
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(Fact 5.10), one can choose an open subgroup G′ of G and a normal compact subgroup H

of G′ such that G′/H is a Lie group. It is shown in Proposition 7.13 that

n = dim(G′/H)−max{dim(K) : K is a compact subgroup of G′/H}

is independent of the choice of G′ and H satisfying the above properties. We call n the

noncompact Lie dimension of G. Let Q be the radical (i.e, the maximal connected closed

solvable normal subgroup, see Fact 5.21) of G′/H. Note that (G′/H)0/Q) has discrete center

Z((G′/H)0/Q by Facts 5.26 and 5.27. We call

h = rank(Z((G′/H)0/Q))

the helix dimension of G. We will also show that the helix dimension h of G′/H is

independent of the choice of G′ and H in Proposition 7.13. Our second main result reads:

Theorem 7.2. Suppose G is a locally compact group with noncompact Lie dimension n

and helix dimension h, µ is a left Haar measure, ν is a right Haar measure, and X, Y are

compact subsets of G with positive measure. Then

ν(X)1/(n−h)

ν(XY )1/(n−h)
+

µ(Y )1/(n−h)

µ(XY )1/(n−h)
≤ 1;

the left-hand-side is interpreted as max{ν(X)/ν(XY ), µ(Y )/µ(XY )} when n − h = 0. In

particular, if G is unimodular, then µ(XY )
1

n−h ≥ µ(X)
1

n−h + µ(Y )
1

n−h .

When G is as in Theorem 7.1, the noncompact Lie dimension n is simply d − m, so

Theorem 7.2 is a generalization of Theorem 7.1. On the other hand, Theorem 7.2 is equally

applicable to totally disconnected locally compact groups, which are the polar opposite of

Lie groups.

Our last main result tells us that when G is helix-free, the exponent 1/(n − h) = 1/n

in Theorem 7.1 and Theorem 7.2 are sharp even when we assume further that X = Y . As
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usual in the current setting, we write Xk for the k-fold product of X.

Theorem 7.3. Suppose G is a locally compact group with noncompact Lie dimension n, µ

is a left Haar measure, and ν is a right Haar measure. Then

1. When n = 0, there is a compact set X with positive left and right measure in G such

that µ(X2) = µ(X) and ν(X2) = ν(X).

2. When n > 0, for every ε > 0, there is a compact set X with positive left and right

measure in G such that

ν(X)
1
n
−ε

ν(X2)
1
n
−ε

+
µ(X)

1
n
−ε

µ(X2)
1
n
−ε

> 1.

As a corollary, if G is unimodular with n > 0, for every ε′ > 0, there is a compact set X

in G such that µ(X2) < (2n + ε′)µ(X).

The upper bound given in Theorem 7.3 matches the lower bound given in Theorem 7.2

when the group is helix-free, that is a group has helix dimension 0, which essentially means

the semisimple part of the group has finite center. Hence, for these groups, our theorems

resolve the problem of generalizing the Brunn–Minkowski inequality, which was suggested by

Henstock and Macbeath [90], by Hrushovski [101], by McCrudden [130], and by Tao [160].

We believe that the exponent in Theorem 7.3 should be correct for all locally compact

groups, which is made precise by the following conjecture:

Conjecture 7.4 (Nonabelian Brunn–Minkowski Conjecture). Suppose G is a locally compact

group with noncompact Lie dimension n, µ is a left Haar measure, ν is a right Haar measure,

and X, Y are compact subsets of G with positive measure. Then

ν(X)1/n

ν(XY )1/n
+

µ(Y )1/n

µ(XY )1/n
≤ 1;

the left-hand-side is interpreted as max{ν(X)/ν(XY ), µ(Y )/µ(XY )} when n = 0.
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We remark that, the exponent in the inequality obtained in Theorem 7.2, if is not sharp,

still has the correct order of magnitude, as the helix dimension h of G is always at most n/3,

where n is the noncompact Lie dimension of G; see Corollary 7.20.

The next result shows that one can reduce Conjecture 7.4 to all simply connected simple

Lie groups. Unexpectedly, the hardest remaining cases are what one might initially regard

to be the simplest cases.

Theorem 7.5. Suppose the nonabelian Brunn–Minkowski conjecture holds for all simply

connected simple Lie groups, then it holds for all locally compact groups.

In the statements of our main results, we require the sets X and Y to be compact. The

reason is that, when X and Y are just measurable, the set XY may not be measurable. We

remark that by using the regularity property of Haar measure, the conclusions in our main

theorems still hold for measurable X and Y if we replace µ(XY ) and ν(XY ) by inner Haar

measures.

The results of this chapter continue a line of work by the first two authors [105] on small

measure expansions in locally compact groups. Through classifying groups G and compact

subsets X and Y of G with nearly minimal expansion, it is shown there that when G is a

simple compact Lie group and µ(X) sufficiently small,

µ(X2) > (2 + c)µ(X)

for a positive constant c. This can be seen as a continuous analog of the expansion gap

results. For noncompact simple Lie groups, Theorem 7.1 provides a significant strengthening

counterpart where we have µ(X2) ≥ 4µ(X). As we will see later, some of the techniques

used in this chapter are further developments from techniques used in [105].

The equality for Theorems 7.1 and 7.2 can happen for Rd, but might be impossible for

general G. In fact, from McCrudden’s result [134], the equality cannot happen even when

G is the Heisenberg group. It would also be interesting to understand when equality nearly
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happens and develop a theory similar to that of Christ, Figalli, and Jerison [42, 65, 66] for

Rd.

Like the Brunn–Minkowski inequality for Rd, our results do not rely on the normalization

of Haar measures. However, by fixing a Haar measure µ on a unimodular group G, it would

be interesting to determine the value of

min{µ(XY ) : X, Y ⊆ G are compact, µ(X) = α, µ(Y ) = β},

for given α, β ∈ R>0, and to classify the situations where the equality happens. We do not

pursue this question here.

7.1.3 Overview of the proof

In this subsection, we discuss the idea of the proof of the main results and the organiza-

tion of the chapter. For expository purpose, we restrict our attention to helix-free locally

compact groups, where we can fully prove Conjecture 7.4. The proof of the full versions of

Theorems 7.1 and 7.2 requires a more involved discussion on the helix dimension, which is

developed in Section 7.2.

In the current situation, for all our three theorems, the exponent of the inequalities are

controlled by n of G instead of just its topological dimension d as in the simpler versions

for Rd. Recall that, for a Lie group G, n = d − m where m the maximum dimension of

a compact subgroup of G. The proof of Theorem 7.3 explains the critical role of m: Our

construction is essentially a small neighborhood of a compact subgroup of G having maximal

dimension, see Figure 7.1. One may then naturally conjecture that the above is the best we

can do. Theorems 7.1 and 7.2 confirm this intuition for helix-free groups.

To motivate our proofs of Theorems 7.1 and 7.2, we first recall some proofs of the known

cases of the Brunn–Minkowski inequality. Over Rd, the usual strategy is to induct on

dimensions. This is generalized by McCrudden to obtain the following “unimodular exponent
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Figure 7.1: Let G = SL(2,R) (the open region bounded by the outer torus), and let
K = SO(2,R) be the maximal compact subgroup of G. If we take X to be a small closed
neighborhood of K (closed region bounded by the inner torus), Theorem 7.3 says when X is
sufficiently small, µG(X2) will be very close to 4µG(X) instead of 8µG(X), although G has
topological dimension 3.

splitting” result: Given an exact sequence of unimodular locally compact groups

1→ H → G→ G/H → 1,

if H and G/H satisfy Brunn–Minkowski inequalities with exponents 1/n1 and 1/n2, respec-

tively, then the group G satisfies a Brunn–Minkowski inequality with exponent 1/(n1 + n2).

McCrudden’s proof of the above result can be seen as the following “spillover” argument:

For each g in G, we call X ∩ gH a fiber of X, and refer to the size of g−1X ∩ H in H as

its length. Let π : G → G/H be the quotient map. We now partition X and Y each into

N parts. Suppose X =
⋃N
i=1Xi and Y =

⋃N
i=1 Yi, we require that the images under π of

the Xi’s are pairwise disjoint, the shortest fiber-length in each Xi is at least the longest

fiber-length in Xi−1, and likewise for the Yi’s.

The induction hypotheses, i.e., the Brunn–Minkowski inequalities, in H and G/H give us

a lower bound lN on fiber-lengths in XNYN and a lower bound wN on the size of π(XNYN)

in G/H. Their product lNwN is a lower bound for µ(XNYN). Next we consider (XN−1 ∪

XN)(YN−1 ∪ YN). Again a lower bound lN−1 on fiber-lengths in this set and a lower bound

wN−1 on the size of its image under π can be obtained from the induction hypotheses on
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H and G/H. From our method, we have lN−1 ≤ lN and wN−1 ≥ wN . The lN−1wN−1

will be a weak lower bound for µ((XN−1 ∪ XN)(YN−1 ∪ YN)) since the fibers in XNYN are

“exceptionally long”. Taking all of these into account, a stronger lower bound is

lNwN + lN−1(wN−1 − wN).

Repeating the above process and taking the limit N →∞ we have the “spillover” argument

which enables McCrudden to obtain his result.

McCrudden applied this result to obtain the Brunn–Minkowski inequality for unimodular

solvable groups with sharp exponents. A simpler proof of his result is given in Section 7.4

for completeness. In the proof of our main theorems, one important ingredient will be an

exponent splitting result (that is a generalization of his).

McCrudden’s method completely stops working when one is looking to prove Brunn–

Minkowski for simple groups since there is no nontrivial closed normal subgroup to induct

from. Next we explain how we overcome this main difficulty. Our method turns out to

work also for semisimple groups in the same way and we will explain it in this more general

setting.

Let us assume G is a connected semisimple Lie group with finite center (hence helix-free

and automatically unimodular) and think about how we can prove the Brunn–Minkowski

for it. One can consider the Iwasawa decomposition G = KAN where K has a compact Lie

algebra and Q = AN is solvable and try to connect the Brunn–Minkowski of S to a similar

property of Q. However, Q may not be unimodular in general. Let ∆Q be the modular

function on G. One can choose to compromise by choosing Q′ = ker(∆Q) that is unimodular

and try to use the Brunn–Minkowski for Q′ to prove the Brunn–Minkowski on G. This is

indeed a good direction to go but along this direction one inevitably gives up on the sharp

exponent 1/n and can at best prove a weaker inequality with the worse exponent 1/(n− 1).

Because of this, it is necessary to formulate an inequality for nonunimodular groups that
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is a good analogue of (7.1). We propose the inequality (7.2), which seems to be new in the

literature. To prove (7.2) for AN , we need a nonunimodular exponent splitting result for

the exact sequence coming out from the modular function. It turns out that the spillover

method can also be used to reduce the problem to the case where the modular function is

almost constant on X and Y . We work this out in Section 7.5. In the next more involved

step in the same section, we obtain an approximate version of McCrudden’s result, which

involves another use of the spillover method, to finish off the proof.

In the next crucial step, we prove that the Brunn–Minkowski for a semisimple G follows

from (7.2) for the solvable AN . Our method was motivated by a recent paper [105] by the

first two authors, which characterizes nearly minimal expansion sets. Over there, a key idea

is to choose a fiber f uniformly at random in Y and uses Xf to estimate XY . For our current

proof, we also choose two fibers fX and fY randomly from X and Y , but with respect to two

carefully chosen probability measures pX and pY that are in general nonuniform. We show

that by constructing pX and pY based on the structural information of X and Y , µ(XY )

can be estimated by the expected size of fXfY in AN , and the latter is well controlled by the

Brunn–Minkowski inequality (7.2) for AN . This part is done in Section 7.6. It worth noting

that in this case our inequality matches the upper bound construction when the semisimple

group has a finite center.

With the above preparation, we can explain how we prove Brunn–Minkowski for a general

helix-free Lie group G. Using reductions proved in Sections 7.4, 7.5, and 7.6, we can reduce

the problem to the case where G is unimodular and connected. Such G can be decomposed

into a semi-direct product of a unimodular solvable group Q and a semisimple group S via

the Levi decomposition. We already know how to handle S from the discussion in Section

7.6. McCrudden’s result can then be used to deal with Q and to deduce the desired inequality

for G.

In many of our reductions, we have an exact sequence of groups 1→ H → G→ G/H → 1

and want to deduce the Brunn–Minkowski for G from the Brunn–Minkowski for H and G/H.
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One tricky issue is that this inductive method only gives sharp results if the sum of the

noncompact Lie dimensions and helix dimensions of H and G/H is equal to the noncompact

Lie dimension of G. Unfortunately this is not always true (see examples in page 15). With

this warning in mind, we must ensure the above property is always satisfied in the whole

reduction. Our discussion in Section 7.2 guarantees this.

In the remaining part, we discuss some new challenges in the proof of Theorem 7.2 for a

helix-free locally compact group G. The Gleason–Yamabe Theorem tells us that G contains

an open subgroup G′ that has a Lie quotient G′/H with H compact. For the start, we need

to handle the nonuniqueness in the choice of G′ and H and make sure that every choice

gives the same desired result. This requires some nontrivial effort and makes heavy use of

the Gleason–Yamabe Theorem, and we prove it in Section 7.2.

The rest of the proof of Theorem 7.2 has two steps. In the first step, we reduce the

problem to unimodular groups. This is done with a similar strategy as used in the proof of

the Lie group case with the additional help of a dichotomy result proved in Section 7.7. To

motivate the second step, recall that in the Lie group case we first reduce the problem to

connected groups. In our second step, unlike in the Lie group case, the identity component

of our group here may not be open. Hence the correct analogue is to reduce the situation to

open subgroups with a Lie quotient, which requires some additional results in Section 7.4.

The desired result then follows from the Lie group case.

7.2 Noncompact Lie dimension and helix dimension

In this section, we show that noncompact Lie dimensions and helix dimensions are well de-

fined in locally compact groups and that they behave well in many exact sequences. The

latter is the nontrivial underlying reason that the lower bound in Theorem 7.1 and Theo-

rem 7.2 matches the upper bound in Theorem 7.3 for helix-free locally compact groups.

Throughout the section, all groups are locally compact, we will use various definitions

246



and facts from Sections 5.3, 5.4, and 5.5. The following lemma discusses the behavior of

Iwasawa decomposition under taking quotient by a compact normal subgroup.

Lemma 7.6. Suppose G is a connected semisimple Lie group, H is a (not necessarily con-

nected) compact subgroup of G. Then we have the following.

1. There is an Iwasawa decomposition G = KAN such that H ≤ K.

2. Assume further that H is a normal subgroup of G, G = KAN is an Iwasawa decom-

position such that H ≤ K, G′ = G/H, and π : G → G′ is the quotient map. Then

there is an Iwasawa decomposition G′ = K ′A′N ′ such that π(K) = K ′.

Proof. We first prove (1). Let Z(G) be the center of G, G′ = G/Z(G) and ρ : G → G′

be the quotient map, and H ′ = ρ(H). By Facts 5.26 and 5.27, ρ is a covering map and

G′ is centerless. Let g be the common Lie algebra of G and G′, and exp : g → G and

exp′ : g→ G′ be the exponential maps. Using Fact 5.31.2 about Iwasawa decomposition, it

suffices to construct a Cartan involution τ of g such that if k is the subalgebra of g fixed by

τ and exp(k) = K, then H ≤ K. Take a maximal compact subgroup K ′ of G′ that contains

H ′. Let τ0 be an arbitrary Cartan involution of G (this exists because of Fact 5.30). Let k0

be the the subalgebra of g fixed by τ0, and K ′0 = exp(k0) in G′. Then by Fact 5.31.2 about

Iwasawa decomposition and the earlier observation that G′ is centerless, K ′0 is a maximal

compact subgroup of G′. By Fact 5.14.1 and the assumption that G is connected, there is

an automorphism σ′ of G′ such that σ′(K ′0) = K ′. Let α be the automorphism of g obtain

by taking the tangent map of σ′, and let

τ = ατ0α
−1 and k = α(k0)

As every Cartan–Killing form is invariant under automorphisms of g, we get that τ is a

Cartan involution. It is also easy to check that k is the subalgebra of g fixed by τ . Using

the functoriality of the exponential function (Fact 5.19), we get K ′ = exp(k). Now set
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K = exp(k). By Fact 5.31.2, we get an Iwasawa decomposition G = KAN . Therefore, by

the functoriality of the exponential function (Fact 5.19), K ′ = ρ(K). Now as H ′ ≤ K ′,

every element of H is in Z(G)K. By Fact 5.31.2 about Iwasawa decomposition, we have

Z(G) ⊆ K, so H ≤ K as desired.

We now prove (2). Set K ′ = π(K). Let g, h, and k be the Lie algebras of G, H, and K,

and let κg, κh, κk be the Cartan–Killing form of g, h, and k. Then, g′ = g/h is the Lie algebra

of G′, and k′ = k/h is the Lie algebra of K ′ by Fact 5.18. Let τ be a Cartan involution of

g that fixes k. We will construct from this a Cartan involution τ ′ of g′ which fixes k′. If we

have done so, then using Fact 5.31.2, we obtain A′ and N ′ such that G′ = K ′A′N ′ is an

Iwasawa decomposition, which completes the proof.

Now we construct τ ′ as described earlier. As g is semisimple, the Lie algebras h and k

are also semisimple. With q the orthogonal complement of k in g with respect to κg and c

the orthogonal complement of h in k with respect to κk, we have g = k⊕ p and k = h⊕ c by

Fact 5.24. By the same fact, with κp and κc the Cartan–Killing forms of p and c, we have

κg = κk⊕κp and κk = κh⊕κc. It is then easy to see that every elements of c⊕p is orthogonal

to h with respect to κg. A dimension comparison gives us c ⊕ p = d with d the orthogonal

complement of h in g. In summary, we have

g = k⊕ p = h⊕ c⊕ p = h⊕ d and κg = κk ⊕ κp = κh ⊕ κc ⊕ κp = κh ⊕ κd.

As a particular consequence, the quotient map from g to g′ restricts to isomorphisms of Lie

algebras from d to g′ = g/h and from c to k′ = k/h. Since h is a subalgebra of k, τ fixes h. As

Cartan–Killing forms are invariant under automorphisms, τ restricts to an endomorphism of

d, which the the orthogonal complement of h in g under κg. Therefore, τ |d is an involution

of d. The bilinear form

d× d : (x, y) 7→ −κd(x, τ |d(y))

is positive definite as it is simply the restriction to d of the positive definite bilinear form
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g × g : (x, y) 7→ −κd(x, τ(y)). Hence, τ |d is a Cartan involution of d. It is clear that the

subalgebra of d fixed by τ |d is c. Finally, let τ ′ be the pushforward of τ |d under the quotient

map from g to g′. It is easy to see that τ ′ satisfies the desired requirement.

The following lemma allows us to compute noncompact Lie dimensions for the universal

cover of a compact Lie group.

Lemma 7.7. Suppose that K is a covering group of a compact Lie group K ′ with the covering

map ρ : K → K ′, and that K and K ′ are connected. If ker(ρ) is a discrete group of rank h,

and m is the maximum dimension of a compact subgroup of K. Then h = dim(K)−m.

Proof. We first consider the case when K is a solvable group. Then K ′ ∼= Tk where k is the

dimension of K by Fact 5.15.2. Recall that K is a quotient of the universal cover of K ′,

which is Rk. Hence, K ∼= Rh × Tk−h. It is easy to see that the maximum dimension of a

compact subgroup of K is k − h, which gives us the desired conclusion in this case.

We now prove the statement of the Lemma. Let QK be the radical of K, QK′ the radical

of K ′, SK = K/QK , and SK′ = K ′/QK′ . Note that K and K ′ have the same Lie algebra k.

By Fact 5.21, QK and QK′ have the same Lie algebra q, which is the radical of k. Moreover,

by the functoriality of the exponential function (Fact 5.19), ρ restrict to a covering map

from QK to QK′ with kernel ker ρ ∩ QK . By Fact 5.18, the Lie algebras of SK and SK′ are

both isomorphic to k/q. Hence, SK is a connected semisimple Lie group with compact Lie

algebra. Using Fact 5.28, we get SK is compact with finite center Z(SK). Let π : K → SK

be the quotient map. Note that ker ρ is a subgroup of the center of K by Fact 5.16. Hence,

the image of π|ker ρ is a subset of Z(SK), which is finite. As a consequence, ker ρ ∩ QK ,

which is the kernel of π|ker ρ, has the same rank h as ker ρ. Let m1 and m2 be the maximum

dimensions of a compact subgroup of QK and of SK respectively. Then m = m1 + m2 by

Fact 5.14.2. By the special case for the solvable group K proven earlier, h+m1 = dimQK .

As SK is compact, m2 = dimSK . Thus, h + m = h + m1 + m2 = dim(QK) + dim(SK) as

desired.
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The following proposition links the noncompact Lie dimension and the helix dimension.

Proposition 7.8. Suppose G is a connected semisimple Lie group of dimension d, m is

the maximal dimension of a compact subgroup of G, h is the helix dimension of G, and

G = KAN is an Iwasawa decomposition of G. Then h = dimK − m, or equivalently,

d−m− h = dim(AN).

Proof. Let Z(G) be the center of G. Then Z(G) has rank h by the definition. By Fact 5.31.2,

we have Z(G) is a subset of K. Let G′ = G/Z(G), and K ′ = K/Z(G). Using Lemma 7.6.2,

we obtain A′ and N ′ such that G′ = K ′A′N ′ is an Iwasawa decomposition. Let ρ : G→ G′

be the quotient map. The group Z(G) is discrete by Fact 5.26, so ρ and ρ|K are covering

maps.

Now, the maximum dimension of a compact subgroup of G is the same as that of K

by Lemma 7.6.1. Applying Lemma 7.7 to K, we have that h = dimK − m. Note that

d = dim(K) + dim(AN) by Fact 5.31, so we also get d−m− h = dim(AN).

The next lemma discusses the noncompact Lie dimensions and the helix dimensions of a

Lie group and its open subgroups.

Lemma 7.9. Suppose G is a Lie group, and G′ is an open subgroup of G. Then G and

G′ have the same dimension, the same maximum dimension of a compact subgroup, and the

same helix dimension.

Proof. It is clear that G and G′ have the same dimension. Any compact subgroup of G′ is a

compact subgroup of G. If K is a compact subgroup of G, then K ∩G′ is an open subgroup

of K, hence K ∩ G′ has the same dimension as K. Therefore the maximum dimension of

a compact subgroup of G is the same as that of G′. Finally, note that G and G′ have the

same identity component G0, and the helix dimension is defined using G0. Thus, G and G′

have the same helix dimension.

The following Lemma tells us the behavior of radical under quotient by a compact normal

subgroup.
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Lemma 7.10. Suppose G is a Lie group, H is a compact normal subgroup of G, G′ = G/H,

π : G → G′ is the quotient map. Let Q be the radical of G, S = G/Q. Then we have the

following:

1. with Q′ = π(Q), and S ′ = G′/Q′, we have HQ is closed in G, Q′ = HQ/H, and

S ′ = G′/(HQ/H) = (G/H)/(HQ/H)) is canonically isomorphic as a topological group

to both G/HQ and (G/Q)/(HQ/Q) = S/(HQ/Q);

2. Q′ is the radical of G′;

Proof. We prove (1). As H is compact, we get HQ is closed in G by Lemma 5.3. Then

Q′ = HQ/H, and S ′ = G′/(HQ/H) = (G/H)/(HQ/H)). The remaining part of (1) is a

consequence of the third isomorphism theorem (Fact 5.1.3).

We next prove (2). As Q′ is a quotient of the solvable group Q, it is solvable. Moreover,

Q′ is a connected closed normal subsgroup of G′ as Q is a connected closed normal subgroup

of G. By (1), G′/Q′ is a quotient of the semisimple group S. Hence, G′/Q′ is semisimple.

Therefore, Q′ is the maximal connected solvable closed normal subgroup of G′. In other

words, Q′ is the radical of G′.

The next lemma says in a Lie group, taking quotient by a normal compact group does

not change the helix dimension. Doing so also does not change the difference between the

dimension and the dimension of a maximum compact subgroup.

Lemma 7.11. Suppose G is a Lie group, H is a compact normal subgroup of G, and G′ =

G/H. Let d, m, and h be the dimension, the maximal dimension of a compact subgroup,

and the helix dimension of G, respectively. Define d′, m′, and h′ likewise for G′. Then:

1. d = d′ + dim(H) and m = m′ + dim(H);

2. h = h′.
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Proof. We prove (1). Clearly, d = d′ + dim(H). If K is a compact subgroup of G and

K ′ = π(K), then K ′ is a compact subgroup of G′, then dim(K ′) + dim(H) = dim(K).

Conversely, if K ′ is a compact subgroup of G′, then K = π−1(K ′) is a compact subgroup

of G by Lemma 5.4, and Lemma 7.7 that dim(K) = dim(K ′) + dim(H). Therefore, m =

m′ + dim(H).

We now prove (2). First further assume that both G and G′ are semisimple. Let π :

G → G′ be the quotient map. Using Lemma 7.6.1, we obtain an Iwasawa decomposition

G = KAN of G such that H ⊆ K. By Lemma 7.6.2, we obtain an Iwasawa decomposition

G′ = K ′A′N ′ with K ′ = π(K), A′ = π(A), and N ′ = πN . Let mK be the maximum

dimension of a compact subgroup of K, and m′K be the maximum dimension of a compact

subgroup of K ′. By Proposition 7.8, mK + h = dim(K), and mK′ + h′ = dim(K ′). Now, by

(1) applied to K, we have mK = m′K + dim(H). Therefore, we get h = h′.

Next, consider the case where G is connected. Let Q be the radical of G, S = G/Q,

Q′ = π(Q), and S ′ = G′/Q′. Then by Lemma 7.10.2, Q′ is the radical of G′. Hence, it suffices

to show that S and S ′ has the same helix dimension. By Lemma 7.10.1, S ′ is isomorphic as

a topological group to S/(HQ/Q). Note that HQ/Q is isomorphic as a topological group to

H/(H ∩Q) by the second isomorphism theorem for Lie groups (Fact 5.13.2). In particular,

HQ/Q is compact, and S ′ is the quotient of S by a compact group. Applying the known

case for semisimple and connected groups, we get the desired conclusion.

Finally, we address the general case. Let G0 be the identity component of G. Then G0 is

open by Fact 5.12, and G0H/H is an open subgroup of G′ = G/H. Hence, by Lemma 7.9,

G has the same helix dimension as G0, and G′ has the same helix dimension as G0H/H.

By the second isomorphism theorem (Fact 5.1.2), G0H/H is isomorphic as a topological

group to G0/(G0 ∩H), which is a quotient of G0 by a compact subgroup. Thus, we get the

desired conclusion for the general case from the known case discussed above for connected

groups.

Lemma 7.12. Suppose G is an almost Lie group, H1 and H2 are closed normal subgroup of
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G such that G/H1 and G/H2 are Lie groups, and H = H1 ∩H2. Then G/H is a Lie group.

Proof. By Fact 5.9, G/H is an almost-Lie group. In light of Fact 5.10.2, we want to con-

struct an open neighborhood U of the identity in G/H that contains no nontrivial compact

subgroup. Let π : G → G/H, π1 : G → G/H1, and π2 : G → G/H2 be the quotient maps.

Using Fact 5.1.3, we get continuous surjective group homomorphisms p1 : G/H → G/H1

and p2 : G/H → G/H2 such that

π1 = p1 ◦ π and π2 = p2 ◦ π.

As G/H1 is a Lie group, we can use Fact 5.10.2 to choose an open neighborhood U1 of the

identity in G/H1 such that U1 contains no nontrival compact subgroup of G/H1. Choose an

open neighborhood U2 of the identity in G/H2 likewise, and set

U = p−1
1 (U1) ∩ p−1

2 (U2).

If K ⊆ U is a compact subgroup of G/H, then p1(K) is a compact subgroup of U1. By

our choice of U1, p1(L) = {idG/H1}, which implies that π−1
1 (p(K)) = π−1(K) is a subgroup

of H1. A similar argument yields that π−1
2 (p2(K)) = π−1(K) is a subgroup of H2. Hence,

π−1(K) must be a subgroup of H = H1 ∩ H2. It follows that K = {idG/H}, which is the

desired conclusion.

Proposition 7.13 below ensures us the notion of noncompact Lie dimension and helix

dimension of a locally compact group as described in the introduction are well defined.

Proposition 7.13. Suppose G′ is an open subgroup of G, and H C G′ is compact such that

G′/H is a Lie group with dimension d, with maximum dimension of a compact subgroup m,

and helix dimension h. Then d−m and h are independent of the choice of G′ and H.

Proof. We first prove a simpler statement: If G′ is an almost Lie subgroup of G, H is a

compact subgroup of G′, and we define d, m, and h as in the statement of the Proposition,
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then d−m and h are independent of the choice of H. Let H1 and H2 be compact and normal

subgroups of G such that both G/H1 and G/H2 are Lie groups. Then by Lemma 7.12,

G/(H1 ∩H2) is also a Lie group. Note that G/H1 and G/H2 are quotients of G/(H1 ∩H2)

by compact subgroups by the third isomorphism theorem (Fact 5.1.3). Hence, it follows from

Lemma 7.11 that G/H1 and G/(H1 ∩H2) have the same difference between the dimension

and the maximum dimension of a compact subgroup, and the same helix dimension. A

similar statement holds for G/H2 and G/(H1∩H2). This completes the proof of the simpler

statement.

Now we show the statement of the proposition. Let G′1 and G′2 be open subgroups of

G, H1 and H2 are compact normal subgroup of G′1 and G′2 respectively such that G′1/H1

and G′2/H2 are Lie groups. Using the Gleason–Yamabe Theorem (Fact 5.10), we get an

open subgroup G′ of G1 ∩ G2 which is an almost Lie group. Then G′ is an open subgroup

of G. Note that G′ ∩ H1 and G′ ∩ H2 are compact subgroups of G′. Then G′/(G′ ∩ H1)

is an open subgroup of G′1/H1. It follows from Lemma 7.11 that G′/H1 and G′/(G′ ∩ H1)

have the same difference between the dimension and the maximum dimension and the same

helix dimension. A similar statement hold for G′/H2 and G′/(G′ ∩ H2). Thus, from the

simpler statement we proved in the preceding paragraph, G′1/H1 and G′2/H2 have the same

noncompact dimension and and the same helix dimension.

We have the following two corollaries.

Corollary 7.14. If H is an open subgroup of G, then H has the same noncompact Lie

dimension and helix dimension as G.

Proof. Proposition 7.13 implies that the noncompact Lie dimension and helix dimension of

a locally compact group is the same as its open almost-Lie subgroups, if those exist. Hence,

it suffices to show that there is a common almost-Lie open subgroup of G and H. This is

an immediate consequence of the Gleason–Yamabe Theorem (Fact 5.10.1).
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Corollary 7.15. If H is a compact normal subgroup of G, then G/H has the same non-

compact Lie dimension and helix dimension as G.

Proof. Let π be the projection from G to G/H. If G/H is a Lie group, then from the

definitions, G has the same noncompact Lie dimension and helix dimension as G/H. Hence,

the conclusion holds in this special case.

Suppose there is a compact K C G/H such that (G/H)/K is a Lie group, then (G/H)/K

is isomorphic as topological group to G/π−1(K) by Fact 5.1.3. By Lemma 5.4, π−1(K) is

compact. Hence (G/H)/K is a quotient of G by a compact normal subgroup, and we can

use the previous case to get the desired conclusion.

Now we treat the general situation. By the Gleason–Yamabe Theorem, we get an almost-

Lie open subgroup G′ of G. Then G′H is an open subgroup of G and hence has the same

noncompact Lie dimension and helix dimension as G by Corollary 7.14. By the second

isomorphism theorem (Fact 5.1.2), we get that G′/(G′ ∩H) is isomorphic to G′H/H which

is an open subgroup of G/H. In particular, G′/(G′ ∩ H) has the same noncompact Lie

dimension and helix dimension as G/H by Corollary 7.14. Note that G′/(G′ ∩ H) is an

almost-Lie group by Fact 5.9. Hence, we can find K such that (G′/(G′ ∩ H))/K is a Lie

group. We are back to the earlier known situation in the second paragraph.

We have the following lemma about the Iwasawa decompositions.

Lemma 7.16. Suppose 1 → H → G
π→ G/H → 1 is an exact sequence of connected

semisimple Lie groups. Then there are Iwasawa decompositions G = KAN , H = K1A1N1,

and G/H = K2A2N2 such that K1 = (K ∩H)0, and K2 = π(K).

Proof. Let g and h be the Lie algebras of G and H, and let κg and κh be the Cartan–Killing

form of g and h. Then g/h is the Lie algebra of G/H, and g ,h, and g/h are semisimple. By

Fact 5.24,

g = h⊕ c and κg = κh ⊕ κc

255



where κc is the orthogonal complement of κh with respect to κg, and κc is the Cartan–Killing

form of κc. Therefore, the quotient map from g to g/h induces an isomorphism from c to

g/h, so we can identify g/h with c. Let τ1 and τ2 be a Cartan involutions of h and c. Then

τ = τ1 ⊕ τ2 is an involution of g. As τ1 and τ2 are Cartan involutions, the bilinear forms

h× h : (x1, y1) 7→ −κh(x1, τ1(y1)) and c× c : (x2, y2) 7→ −κc(x2, τ2(y2)) are positive definite.

Hence, the bilinear from g× g : (x, y) 7→ −κg(x, τ(y)) is also positive definite. Therefore, τ

is a Cartan involution of g. Let k, k1, and k2 be the Lie subalgebras of g, h, and c fixed by

τ , τ1, and τ2 respectively. It is easy to see that k = k1 ⊕ k2. Let exp : g→ G, exp1 : h→ H,

and exp2 : c→ G/H be the exponential maps, and set

K = exp(k), K1 = exp1(k1) and K2 = exp(k2).

From Fact 5.31, we obtain Iwasawa decompositions G = KAN , H = K1A1N1, and G/H =

K2A2N2. By the functoriality of the exponential function (Fact 5.19), we get K1 ≤ K ∩H,

and K2 = π(K). Since K1 is connected, by a dimension calculation we have K1 = (K ∩

H)0.

In a short exact sequence of locally compact groups, one may hope that the noncompact

Lie dimension and the helix dimension of the middle term is the sum of those of the outer

terms. This is not true in general. For instance, in the exact sequence

1→ Z→ R→ R/Z→ 1,

the noncompact Lie dimension of R is 1, while both Z and T = R/Z has noncompact Lie

dimension 0. Another exmaple is the following. Let H be the universal cover of SL(2,R),

and let G = (H × R)/{(n, n) : n ∈ Z}. Then we have the exact sequence

1→ H → G→ T→ 1,
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the helix dimension of H is 1, but the helix dimensions of G and T are 0.

Nevertheless, we have the summability of noncompact Lie dimensions and helix dimen-

sions in many short exact sequences of interest:

Proposition 7.17. Suppose 1 → H → G
π→ G/H → 1 is an exact sequence of connected

Lie groups. Then we have the following:

1. If n, n1, and n2 are the noncompact Lie dimensions of G, H, and G/H respectively,

then n = n1 + n2;

2. If G is moreover semisimple, and h, h1, and h2 are the helix dimensions of G, H, and

G/H respectively, then h = h1 + h2.

Proof. We first prove (1). Let m be the maximum dimension of a compact subgroup in G.

As G is connected, m is also the dimension of an arbitrary maximal compact subgroup of

G by Fact 5.14.1. Defining m1 and m2 likewise for H and G/H, we get similar conclusions

for them from the connectedness of H and G/H. Let K be a maximal compact subgroup

of G. By Fact 5.14.2, K ∩H is a maximal compact subgroup in H, and π(K) is a maximal

compact subgroup in G/H. The kernel of π|K is isomorphic to K∩H, and the image is π(K).

Hence, m = m1 +m2. This gives us (1) recalling that m+ n = dim(G), m1 + n1 = dim(H),

m2 + n2 = dim(G/H), and dim(G) = dim(H) + dim(G/H).

We now prove (2). Since Z(G) ∩ H ≤ Z(H), and π(Z(G)) ≤ Z(G/H), we have h ≤

h1 +h2. It remains to show h ≥ h1 +h2. As G is semisimple, H and G/H are semisimple by

Fact 5.25. Take Iwasawa decompositions G = KAN , H = K1A1N1, and G/H = K2A2N2

as in Lemma 7.16. By the first isomorphism theorem for Lie groups (Fact 5.13.1), 1 →

K ∩H → K → K2 → 1 is an exact sequence of Lie groups. We also have an exact sequence

1→ K1 → K → K ′2 → 1. (7.3)

As K1 = (K ∩ H)0, by the third isomorphism theorem, we have K2 = K/(K ∩ H) =
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(K/K1)/((K ∩H)/K1) = K ′2/((K ∩H)/K1). Since (K ∩H)/K1 is discrete, K ′2 is a covering

group of K2. Let φ : K ′2 → K2 be the covering map. Note that φ has discrete kernel,

and K2, K ′2 have the same dimension. Suppose S is a compact subgroup of K ′2 with the

maximum dimension. Then φ(S) is a compact subgroup of K2, and S and φ(S) have the same

dimension. This shows that the noncompact Lie dimension of K ′2 is at least the noncompact

Lie dimension of K2. By (7.3) and Statement (1), the noncompact Lie dimension of K is the

sum of noncompact Lie dimensions of K1 and K ′2, hence it is at least the sum of noncompact

Lie dimensions of K1 and K2. It then follows from Proposition 7.8 that h ≥ h1 + h2.

Lemma 7.18. Suppose 1 → H → G
π→ (R>0,×) → 1 is an exact sequence of Lie groups,

and G is connected. Then H is connected.

Proof. Consider first the case when when G and H are Lie groups but are not necessarily

connected. LetG0 andH0 be the identity components ofG andH respectively. As Lie groups

are locally path connected, G0 is open in G. Hence, G0 and G have the same noncompact

Lie dimension by Corollary 7.14. Likewise, H0 has the same noncompact Lie dimension as

H. As G0 is an open connected subgroup of G, the map π|G0 is continuous and open. Hence,

its image π(G0) is an open connected subgroup of (R>0,×). Therefore, π(G0) = (R>0,×),

and π|G0 is a quotient map by the first isomorphism theorem (Fact 5.1.1). The kernel of

π|G0 is H ∩G0, so we get the exact sequence of Lie groups

1→ H ∩G0 → G0

π|G0→ (R>0,×)→ 1.

We claim that H0 = H∩G0, which will bring us back to the known case where both G and H

are connected. The forward inclusion is immediate by definition. By the third isomorphism

theorem (Fact 5.1.3), we get the exact sequence of Lie groups

1→ (H ∩G0)/H0 → G0/H0 → (R>0,×)→ 1.
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The group (H ∩G0)/H0 is discrete. Hence, G0/H0 is a Lie group with dimension 1. As G0 is

connected, the Lie group G0/H0 is also connected. Hence, G0/H0 is either isomorphic to R

or T. But since G0/H0 has (R>0,×) as a quotient, it cannot be compact, and therefore must

be isomorphic to R. This implies that (H ∩G0)/H0 is trivial, and hence H0 = H ∩G0.

The next proposition gives us a summability result of noncompact Lie dimensions along

a short exact sequence of locally compact groups when the quotient group is (R>0,×).

Proposition 7.19. Suppose 1 → H → G
π→ (R>0,×) → 1 is an exact sequence of locally

compact groups. Then we have the following:

1. If n, n1, and n2 are the noncompact Lie dimensions of G, H, and (R>0,×) respectively,

then n = n1 + n2 = n1 + 1.

2. G and H have the same helix dimension.

Proof. First, we consider the case when G is a connected Lie group. Then by Lemma 7.18,

H is also connected. Hence, (1) for this case is a consequence of Proposition 7.17.1.

We prove (2) for this special case. Let Q be the radical of G. We claim that QH = G,

or equivalently, that π(Q) = (R>0,×). Suppose this is not true. Then π(Q) is a connected

subgroup of (R>0,×), so it must be {1}. Hence, Q ⊆ H. Then (R>0,×) = G/H which

is isomorphic as a topological group to (G/Q)/(H/Q) by the third isomorphism theorem

(Fact 5.1.3). This is a contradiction, because (G/Q)/(H/Q) is semisimple as a quotient of

the semisimple group G/Q, while (R>0,×) is solvable.

We next show that Q∩H is the radical of H. The radical of H is a characteristic closed

subgroup of H (by Fact 5.21), hence a connected solvable closed normal subgroup of G.

Thus, the radical of H is a subgroup of Q∩H. It is straightforward that Q∩H is solvable.

We also have that Q ∩H is second countable as both Q and H are second countable. From

the preceding paragraph, π(Q) = (R>0,×). Using the first isomorphism theorem for Lie
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groups (Fact 5.13.1), we have the exact sequence

1→ Q ∩H → Q→ (R>0,×)→ 1.

Applying Lemma 7.18, we learn that Q ∩ H is connected. This completes the proof that

Q ∩H is the radical of H.

Note that QH = G and Q is a closed subgroup of G. Hence, by the second isomorphism

theorem for Lie groups (Fact 5.13.2), H/(Q ∩ H) is isomorphic as a topological group to

HQ/Q = G/Q. Therefore G and H have the same helix dimension.

Next, we address the slightly more general case where G is a Lie group but not neces-

sarily connected. Let G0 be the connected component of G. Then π(G0) is an open sub-

group of (R>0,×), so π(G0) = (R>0,×). By the first isomorphism theorem for Lie groups

(Fact 5.13.1), we have the exact sequence

1→ G0 ∩H → G0 → (R>0,×)→ 1.

Applying Lemma 7.29 and the known case of the current lemma where the middle term of

the exact sequence is a connected Lie group, we obtain both (1) and (2) for this more general

case.

Using the Gleason–Yamabe theorem and a similar argument as in the preceding para-

graph, we can reduce (1) and (2) for general locally compact groups to the case where we

assume that G is an almost-Lie group. Hence, there is a compact normal subgroup K of G

such that G/K is a Lie group. As K is compact, π(K) is a compact subgroup of (R>0,×),

so π(K) = {1}. Hence K C H. By the third isomorphism theorem (Fact 5.1.3), we have the

exact sequence 1 → H/K → G/K → (R>0,×) → 1. Applying Lemma 7.11 and the known

case of the current lemma where the middle term of the exact sequence is a Lie group, we

obtain both (1) and (2) for this remaining case.
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We discuss the relationship between the noncompact Lie dimension and helix dimension

of a locally compact group G.

Corollary 7.20. Suppose G has noncompact Lie dimension n and helix dimension h. Then

we have h ≤ n/3.

Proof. We first check the result for simple Lie groups. If h = 0, then the statement holds

vacuously. Hence, using Fact 5.29, it suffices to consider the case where h = 1. LetG = KAN

be an Iwasawa decomposition. Then by Proposition 7.7, we have n − 1 = dim(AN) ≥ 0.

Hence, n > 0 and G is not compact. From Fact 5.32, we have dim(AN) ≥ 2. Therefore

n ≥ 3. Hence, we get the desired conclusion for simple Lie groups.

When G is a connected semisimple Lie group which is not simple. Using induction on

dimension, we can assume we have proven the statement for all connected semisimple Lie

groups of smaller dimensions. Using Fact 5.23, we get an exact sequence of semisimple

Lie groups 1 → H → G → G/H → 1 with 0 < dim(H) < dim(G). Replacing H with

its connected component if necessary, we can arrange that H is connected. The desired

conclusion then follows from Proposition 7.17.2.

For a general locally compact group G, from Proposition 7.13, we may assume G is a

Lie group. Corollary 7.14 and Fact 5.12 allow us to reduce the problem to connected Lie

groups. By Lemma 7.10 and Lemma 7.9, the radical of G only contributes the noncompact

Lie dimension of G. Using Fact 5.22 and Proposition 7.17.1, we reduce the problem to

connected semisimple Lie groups.

7.3 Proof of Theorem 7.3

The constructions given in this section are open sets (hence all have positive measure), and

the exact statement given in Theorem 7.3 (i.e., in the compact sets case) follows by the inner

regularity of Haar measure.

We first prove the theorem when G is a unimodular Lie group.
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Proof of Theorem 7.3, unimodular Lie group case. Since G is unimodular, without loss of

generality we assume that µ = ν. Let d be the dimension of G. Let K be the maximal

compact subgroup of G and let m = dimK. Hence n = d − m is the noncompact Lie

dimension of G.

If n = 0, then the identity component G0 of G is compact. Taking X = G0, we have

µ(X) = µ(X2).

Hence Theorem 7.3 holds in this case. In the rest of the proof we assume n > 0.

Since K is closed, G/K is a homogeneous (and smooth) manifold. Fix an arbitrary

G-invariant (smooth) Riemannian metric on G/K (such a metric exists by first finding a

K-invariant Riemannian metric at [id] and then extend it onto the whole G/K by the action

of G). This metric induces a volume measure Vol on G/K.

Let π be the projection from G to G/K. For any Borel subset U of G/K, π−1(U) is also

Borel and hence µ-measurable. For any r > 0, we use Br to denote the (open) r-ball around

[id] on G/K under the chosen metric and use Dr to denote π−1(Br). We claim that:

(i) There exists a constant b > 0 only depending on the metric on G/K such that as Borel

measures π∗(µ) = b · Vol, and

(ii) For any r > 0, Dr ·Dr ⊆ D2r.

We postpone the proofs of claims (i) and (ii) to the end of this proof and first show how

they lead to Theorem 7.3. We can take X to be Dδ for a sufficiently small δ > 0 (depending

on ε) to be determined. Then by (i),

µ(X) = π∗(µ(Bδ)) = b · Vol(Bδ).

And by (ii), X2 ⊆ D2δ and hence as before, we get µ(X2) ≤ µ(D2δ) = b · Vol(B2δ). Note
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that the invariant metric on G/K is smooth and thus

lim
δ→0

Vol(B2δ)

Vol(Bδ)
= 2n.

Hence a sufficiently small δ can guarantee µ(X)
1
n−ε

µ(X2)
1
n−ε

> 1
2

and we have proved Theorem 7.3 in

this special case.

It remains to prove claims (i) and (ii). To see claim (i), note that Vol is G-invariant. We

also see that π∗(µ) is G-invariant because µ(π−1(U)) = µ(gπ−1(U)) = µ(π−1(gU)) for any

g ∈ G and any Borel subset U ⊆ G/K. Since the G-invariant Borel measure on G/K is

unique up to a scalar (see Theorem 8.36 in [114]), Vol has to be a scalar multiple of π∗(µ).

Finally we verify claim (ii). Taking arbitrary g1, g2 ∈ Dr and it suffices to show g1g2 ∈

D2r. By definition, there is a piecewise smooth curve γj connecting [id] and [gj] such that

the length of γj is strictly smaller than r (for j = 1, 2). Note that by the invariance of the

metric, [g1]γ2 must have the same length as γ2. Let γ be the curve formed by [g1]γ2 after γ1.

It is a curve connecting [id] and [g1g2] and by the reasoning above has two pieces and each

of them has length strictly smaller than r. Hence γ has length shorter than 2r and thus by

definition g1g2 ∈ D2r. We have successfully verified (ii).

Running the above proof with a little bit of extra effort, we have the following slightly

stronger “stability” result. We will use it in the generalization to the nonunimodular Lie

group case.

Proposition 7.21. Given any unimodular Lie group G, let n be its noncompact Lie dimen-

sion. Let ε̃ > 0 be fixed. Then there exists precompact open subsets X and X1 with µ(X) > 0

such that the closure X ⊆ X1 and µ(X1 ·X) < (2 + ε̃)nµ(X).

Proof. This proof is very similar to the proof of the unimodular Lie case of Theorem 7.3

we just did. We continue to use notations in that proof and take X = Dδ = π−1(Bδ) and

X1 = Dδ1 = π−1(Bδ1) where 0 < δ < δ1 and both δ and δ1 to be determined.
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We see thatX andX1 are open becauseX = π−1(Bδ), etc. Bδ andBδ1 are precompact, by

Lemma 5.4, X and X1 are also precompact. Moreover we have X ⊆ π−1(Bδ) ⊆ π−1(Bδ1) =

X1.

Now by the same reasoning as in the previous proof of Theorem 7.3 (unimodular Lie

case), we see that X1 ·X ⊆ Dδ1+δ. Now,

lim
δ→0

Vol(B2δ)

Vol(Bδ)
= 2n, and lim

δ1→δ

Vol(B2δ)

Vol(Bδ1+δ)
= 1.

Hence we can take δ sufficiently small, and then δ1 sufficiently close to δ, such that we have

all good properties in the last paragraph and

µ(X1 ·X)

µ(X)
≤ µ(Dδ1+δ)

µ(Dδ)
=

Vol(Bδ1+δ)

Vol(Bδ)
< (2 + ε̃)n,

which proves the proposition.

Next we use Proposition 7.21 to prove Theorem 7.3 for general Lie groups.

Proof of Theorem 7.3, Lie group case. We have already proved the theorem when G is uni-

modular. In the rest of this proof, we assume G is nonunimodular. Let G0 be the connected

component of G. Since µG|G0 is a left Haar measure on G0, and same holds νG|G0 , we may

assume without loss of generality that G = G0. As the only connected subgroups of (R>0,×)

is itself and {1}, and G is not unimodular, the modular function ∆G must be surjective.

Hence, ∆G is a quotient map by the first isomorphism for Lie groups Fact 5.13.1.

Let H be the kernel of the modular function on G. By Proposition 7.19.1, the noncompact

Lie dimension of H is n− 1 where n is the noncompact Lie dimension of G. By Fact 5.6.1,

H is unimodular. To avoid confusion, we will always use µG and νG for µ and ν below and

use µH = νH to denote a fixed Haar measure on H.

In light of Fact 5.7, we can fix a Haar measure dr on the multiplicative group (R>0,×) =

264



G/H such that for any Borel function f on g,

∫
G

f(x) dµG(x) =

∫
G/H

∫
H

f(rh) dµH(h) dr. (7.4)

Let g and h be the Lie algebras of G and H, respectively. We fix an element Z ∈ g such

that Z /∈ h. Note that t 7→ ∆(exp(tZ)) is a nontrivial continuous group homomorphism from

(R,+) to (R>0,×). As the only connected subset of (R>0,×) are points and intervals, this

map must be surjective, and hence an isomorphism by the first isomorphism for Lie groups

(Fact 5.13). In light of the quotient integral formula (7.4), we can choose an appropriate

Haar measure dt on R such that for any Borel subset A of G, we have the Fubini-type

measure formula

µG(A) =

∫
R
µH((exp(−tZ)A) ∩H) dt. (7.5)

Without loss of generality we assume dt is the standard Lebesgue measure (otherwise we

multiply µG by a constant).

With the preliminary discussions above, we now construct X satisfying the inequality in

Theorem 7.3.

Before going to details of the construction, we first describe the intuition behind it. We

arrange our X to live very close to H so that µ and ν are almost proportional on X and X2.

We then realize that it suffices to choose our X to be like a thickened copy of the almost

sharp example of Theorem 7.3 for (the unimodular group) H.

More precisely, let ε̃ > 0 be a small number (depending on ε) to be determined. let X̃

and X̃1 be the “X” and “X1”, respectively, in Proposition 7.21 where we replace “G” by

“H”. We now take X = {exp(tZ)h : t ∈ [0, ε̃], h ∈ X̃} and will show that X2 is reasonably

small when ε̃ is small enough.

By (7.5), we have

µG(X2) =

∫
R
µH((exp(−tZ)X2) ∩H) dt. (7.6)
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Note that an arbitrary element in X2 can be written as

exp(t1Z)h1exp(t2Z)h2

= exp((t1 + t2)Z)(exp(−t2Z)h1exp(t2Z)·h2) ∈ exp((t1 + t2)Z)H,

where t1, t2 ∈ [0, ε̃] and h1, h2 ∈ H. Hence (7.6) is reduced to

µG(X2) =

∫ 2ε̃

0

µH((exp(−tZ)X2) ∩H) dt (7.7)

and moreover for any 0 ≤ t0 ≤ 2ε̃, we see from the above discussion that

(exp(−t0Z)X2) ∩H =
⋃

0≤t1,t2≤ε̃,t1+t2=t0

(exp(−t1Z)X̃exp(t1Z))·X̃.

By Lemma 5.17 and Proposition 7.21, when ε̃ is sufficiently small, which we will always

assume, we have the above union contained in X̃1 ·X̃. Now by (7.7),

µG(X2) ≤
∫ 2ε̃

0

µH(X̃1 ·X̃) dt = 2ε̃µH(X̃1 ·X̃). (7.8)

On the other hand, by (7.5) we have

µG(X) = ε̃µH(X̃). (7.9)

Combining (7.8) and (7.9) and use the measure properties of X̃ and X̃1 guaranteed by

Proposition 7.21, we have

µG(X)

µG(X2)
≥ µH(X̃)

2µH(X̃1 ·X̃)
>

1

2(2 + ε̃)n−1
. (7.10)

Recall that ∆(exp(·Z)) is an isomorphism from (R,+) to (R>0,×). Hence there exists a

constant C > 0 only depending on Z such that on the support of X we have e−Cε̃ < ∆ < eCε̃
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and on the support of X2 we have e−2Cε̃ < ∆ < e2Cε̃. Thus by Fact 5.6.4, we have

νG(X)

µG(X)
> e−Cε̃

and

µG(X2)

νG(X2)
> e−2Cε̃.

Combining the above inequalities with (7.10), we have

νG(X)

νG(X2)
>

e−3Cε̃

2(2 + ε̃)n−1
. (7.11)

Hence for the X we constructed,

νG(X)
1
n
−ε

νG(X2)
1
n
−ε

+
µG(X)

1
n
−ε

µG(X2)
1
n
−ε

> (1 + e−3Cε̃( 1
n
−ε))(2(2 + ε̃)n−1)−

1
n

+ε. (7.12)

It suffices to take ε̃ small enough such that the right hand side of (7.12) is > 1.

With the Gleason–Yamabe Theorem and the results developed in Section 7.2, we are

able to pass our Lie group constructions to general locally compact groups.

Proof of Theorem 7.3. By Fact 5.10, there is open subgroup G′ of G which is almost-Lie.

Since µG|G′ is a left Haar measure on G′, and same holds νG|G′ , we may assume without loss

of generality that G is almost-Lie.

With this assumption, there is a a short exact sequence 0→ H → G
π−→ G/H → 0 where

H is a compact subgroup, and G/H is a Lie group. Let X be a subset of G/H such that

νG/H(X)
1
n
−ε

νG/H(X2)
1
n
−ε

+
µG/H(X)

1
n
−ε

µG/H(X2)
1
n
−ε

> 1, (7.13)

where n is the noncompact Lie dimension of G/H. Thus by the quotient integral formula,
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we have

µG(π−1(X)) =

∫
G/H

µH(g−1(π−1(X)) ∩H) dµG/H(g)

=

∫
G/H

1X(g) dµG/H(g) = µG/H(X),

and similarly νG(π−1(X)) = νG/H(X). Observe that π−1(X2) = π−1(X) · π−1(X). Thus the

desired conclusion follows from (7.13) and Propositions 7.13.

7.4 Reduction to outer terms of certain short exact

sequences

For n ∈ Z≥0 and (x, y) ∈ R2, we set

∥∥(x, y)
∥∥

1/n
=


(|x|1/n + |y|1/n)n if n 6= 0,

max{|x|, |y|} if n = 0.

We say that the group G satisfies the Brunn–Minkowski inequality with exponent n,

abbreviated as BM(n), if for all compact X, Y ⊆ G,

∥∥∥∥∥( ν(X)

ν(XY )
,
µ(Y )

µ(XY )

)∥∥∥∥∥
1/n

≤ 1.

When G is unimodular and n ≥ 1, the above is equivalent to having the inequality

µ(XY )1/n ≥ µ(X)1/n + µ(Y )1/n.

Note that ν(X)
ν(XY )

≤ 1 and µ(Y )
µ(XY )

≤ 1. Hence, every locally compact group G satisfies the

Brunn–Minkowski inequality with exponent n = 0. Moreover, if n < n′ and G satisfies
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the Brunn–Minkowski inequality with exponent n′, then it satisfies the Brunn–Minkowski

inequality with exponent n.

Given a function f : X → R, for every t ∈ R, define the superlevel set of f

L+
f (t) := {x ∈ X : f(x) ≥ t}.

We will use this notation at various points in the later proofs. We use the following simple

consequence of Fubini concerning the superlevel sets:

Fact 7.22. Let f : G→ R be a function. For every r > 0,

∫
G

f r(x) dx =

∫
R≥0

rxr−1L+
f (x) dx.

The next proposition is the main result of this section. The current statement of the

proposition is proved by McCrudden as the main result in [132]. We give a simpler (but

essentially the same) proof here for the sake of the completeness.

Proposition 7.23. Let G be a unimodular group, n1, n2 ≥ 0 are integers, H is a closed nor-

mal subgroup of G satisfying BM(n1), and the quotient group G/H is unimodular satisfying

BM(n2). Then G satisfies BM(n1 + n2).

Proof. Suppose Ω is a compact subset of G. Let the “fiber length function” fΩ : G/H → R≥0

be a measurable function such that for every gH ∈ G/H, fΩ(gH) = µH(g−1Ω ∩ H). The

case when both n1 = n2 = 0 holds trivially.

Now we split the proof into three cases.

Case 1. When n1 ≥ 1 and n1 + n2 ≥ 2.

By the quotient integral formula (Fact 5.7), we have

µ
1/(n1+n2)
G (Ω) =

(∫
G/H

fΩ(x) dµG/H(x)

)1/(n1+n2)
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=

(∫
R>0

n1t
n1−1µG/H

(
L+
fΩ

(tn1)
)

dt

)1/(n1+n2)

. (7.14)

Set α = n1−1
n1+n2−1

, β = n2

n1+n2−1
, γ = n1 + n2 − 1, and

FΩ(t) = tαµ
β/n2

G/H

(
L+
fΩ

(tn1)
)
,

for compact set Ω in G and t > 0 (Note that FΩ is well-defined when n2 = 0). Then (7.14)

can be rewritten as

n
−1/(γ+1)
1 µ

1/(γ+1)
G (Ω) =

(∫
R>0

F γ
Ω(t) dt

)1/(γ+1)

(7.15)

Fix nonempty compact sets X, Y ⊆ G. By (7.15), we need to show that

(∫
R>0

F γ
XY (t) dt

)1/(γ+1)

≥
(∫

R>0

F γ
X(t) dt

)1/(γ+1)

+

(∫
R>0

F γ
Y (t) dt

)1/(γ+1)

(7.16)

We will do so in two steps. First, we will show the following convexity property

FXY (t1 + t2) ≥ FX(t1) + FY (t2). (7.17)

For every t1, t2 ∈ R>0, since H satisfies BM(n1), by definition we have

L+
fX

(tn1
1 )L+

fY
(tn1

2 ) ⊆ L+
fXY

((
t1 + t2

)n1
)
.

Also, since G/H satisfies BM(n2), we have

µ
1/n2

G/H

(
L+
fX

(tn1
1 )
)

+ µ
1/n2

G/H

(
L+
fY

(tn1
2 )
)
≤ µ

1/n2

G/H

(
L+
fXY

((
t1 + t2

)n1
))
. (7.18)
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By Hölder’s inequality and (7.18), as well as the fact that n1, n2 ≥ 1, we obtain

(t1 + t2)n1−1
(
µ

1/n2

G/H

(
L+
fXY

((t1 + t2)n1)
))n2

≥ (t1 + t2)n1−1
(
µ

1/n2

G/H

(
L+
fX

(tn1
1 )
)

+ µ
1/n2

G/H

(
L+
fY

(tn1
2 )
))n2

=
∥∥ (tα1 , t

α
2 )
∥∥γ

1/α

∥∥∥(µβ/n2

G/H

(
L+
fX

(tn1
1 )
)
, µ

β/n2

G/H

(
L+
fY

(tn1
2 )
))∥∥∥γ

1/β

≥
(
tα1µ

β/n2

G/H

(
L+
fX

(tn1
1 )
)

+ tα2µ
β/n2

G/H

(
L+
fY

(tn1
2 )
))γ

.

We remark that the above inequalities also make sense when n2 = 0. In that case ‖(a, b)‖1/n2

is to be understood as max{a, b} for every a, b ∈ R≥0. The first line of the above inequality

is F γ
XY (t1 + t2) and the last line is (FX(t1) + FY (t2))γ. So we finished the first step.

We now prove (7.16). By the above convexity property (7.17) and Kneser’s inequal-

ity [115] for R (i.e. the Brunn–Minkowski inequality for R), we have

µR
(
L+
FXY

(s1 + s2)
)
≥ µR

(
L+
FX

(s1)
)

+ µR
(
L+
FY

(s2)
)
. (7.19)

Let MX = ess supx FX(x), MY = ess supx FY (x). By Hölder’s inequality and (7.19), we have

∫
R>0

F γ
XY (s) ds ≥

∫ MX+MY

0

γsγ−1µR
(
L+
FXY

(s)
)

ds

= (MX +MY )γ
∫ 1

0

γsγ−1µR
(
L+
FXY

(MXs+MY s)
)

ds

≥ (MX +MY )γ
∫ 1

0

γsγ−1µR
(
L+
FX

(MXs)
)

ds

+ (MX +MY )γ
∫ 1

0

γsγ−1µR
(
L+
FY

(MY s)
)

ds

= (MX +MY )γ
(

1

Mγ
X

∫
R>0

F γ
X(s) ds+

1

Mγ
Y

∫
R>0

F γ
Y (s) ds

)
. (7.20)

Finally, by (7.14), (7.20) and Hölder’s inequality,

n
−1/(γ+1)
1 µ

1/(γ+1)
G (XY )
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=

(∫
R>0

F γ
XY (t) dt

)1/(γ+1)

≥
((

(Mγ
X)1/γ + (Mγ

Y )1/γ
)γ/(γ+1)

(
1

Mγ
X

∫
R>0

F γ
X(t) dt+

1

Mγ
Y

∫
R>0

F γ
Y (t) dt

))1/(γ+1)

≥
(∫

R>0

F γ
X(t) dt

)1/(γ+1)

+

(∫
R>0

F γ
Y (t) dt

)1/(γ+1)

=n
−1/(γ+1)
1 µ

1/(γ+1)
G (X) + n

−1/(γ+1)
1 µ

1/(γ+1)
G (Y ),

this proves the case when n1 is at least 1.

Case 2. When n1 = 1 and n2 = 0.

In this case, the conclusion can be derived from (7.14) directly. In particular, using the

fact that G/H satisfies BM(0) and H satisfies BM(1), we have

µG/H
(
L+
fXY

(t1 + t2)
)
≥ max

{
µG/H

(
L+
fX

(t1)
)
, µG/H

(
L+
fY

(t2)
)}
.

Let NX = supt fX(t) and NY = supt fY (t). Therefore, by Hölder’s inequality,

µG(XY ) =

∫
R>0

µG/H(L+
fXY

(t)) dt

=

∫
R>0

(NX +NY )µG/H(L+
fXY

((NX +NY )t)) dt

≥ (NX +NY ) max

{∫ 1

0

µG/H(L+
fX

(NXt) dt,

∫ 1

0

µG/H(L+
fY

(NY t) dt

}
≥ NX

∫ 1

0

µG/H(L+
fX

(NXt)) dt+NY

∫ 1

0

µG/H(L+
fY

(NY t)) dt

= µG(X) + µG(Y ).

Thus G satisfies BM(1).

Case 3. When n1 = 0 and n2 ≥ 1.

Applying Brunn–Minkowski inequality with exponent 0 on H, and the fact that G/H
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satisfies BM(n2), we obtain

µ
1/n2

G/H

(
L+
fXY

(max{t1, t2})
)
≥ µ

1/n2

G/H

(
L+
fX

(t1)
)

+ µ
1/n2

G/H

(
L+
fY

(t1)
)
. (7.21)

Given a compact set Ω in G, we define

EΩ(t) = µ
1/n2

G/H(L+
fΩ

(t)), t > 0.

Thus by (7.21), we have EXY (max{a1, a2}) ≥ EX(a1) + EY (a2) for all a1, a2. This can be

seen as a “convexity property” for E, but the maximum operator insider the function E

prevent us from using the same argument as used in Case 1 for F . On the other hand, we

observe that

µR(L+
EXY

(s1 + s2)) ≥ max{µR(L+
EX

(s1)), µR(L+
EY

(s2))}. (7.22)

Now we consider µG(XY ). We have

µ
1/n2

G (XY ) =

(∫
R>0

En2
XY (s) ds

)1/n2

=

(∫
R>0

n2s
n2−1µR(L+

EXY
(s)) ds

)1/n2

(7.23)

Let PX = ess suptEX(t) and PY = ess suptEY (t). By (7.22) and (7.23) we see

n
−1/n2

2 µ
1/n2

G (XY )

≥
(

(PX + PY )n2 max

{∫ 1

0

sn2−1µR(L+
EX

(PXs) ds,

∫ 1

0

sn2−1µR(L+
EY

(PY s) ds

})1/n2

≥
(
P n2
X

∫ 1

0

sn2−1µR(L+
EX

(PXs)) ds

)1/n2

+

(
P n2
Y

∫ 1

0

sn2−1µR(L+
EY

(PY s)) ds

)1/n2

=n
−1/n2

2 µ
1/n2

G (X) + n
−1/n2

2 µ
1/n2

G (Y ).

This proves the case when n1 = 0, and hence finishes the proof of the proposition.

Using a similar technique as used in the proof of Proposition 7.23, we are able to reduce
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the problem to open subgroups.

Proposition 7.24. Let G be a unimodular group, and let G′ be an open subgroup of G.

Suppose G′ satisfies BM(n) for some integer n ≥ 0, then G satisfies BM(n).

Proof. When n = 0, the conclusion follows from µ(XY ) ≥ µ(Y ). In the remaining time we

assume n ≥ 1.

Let µG be a Haar measure on G, and let µG′ be the restricted Haar measure of µG on

G′. By Fact 5.1.1, for every compact set Ω in G we have

µG(Ω) =
∑

g∈G/G′
µG′(gΩ ∩G′).

We similarly define fΩ : G/G′ → R≥0 such that fΩ(g) = µG′(g
−1Ω ∩G′).

Fix two compact sets X, Y in G. Using the fact that G′ satisfies BM(n), we have

∣∣L+
fXY

((t1 + t2)n)
∣∣ ≥ max

{∣∣L+
fX

(tn1 )
∣∣ , ∣∣L+

fY
(tn2 )

∣∣}
because if fX(g1), . . . , fX(gk) ≥ tn1 and fY (g̃) ≥ tn2 we have fXY (g1g̃), . . . , fXY (gkg̃) ≥ (t1 +

t2)n .

Let NX = supg fX(g) and NY = supg fY (g). By the above inequality we deduce

n−1/nµ
1/n
G (XY )

=

(∫
R>0

tn−1|L+
fXY

(tn)| dt
)1/n

≥
(

(NX +NY )n max

{∫ 1

0

tn−1|L+
fX

((NXt)
n| dt,

∫ 1

0

tn−1|L+
fY

((NY t)
n| dt

})1/n

≥
(
Nn
X

∫ 1

0

tn−1|L+
fX

((NXt)
n)| dt

)1/n

+

(
Nn
Y

∫ 1

0

tn−1|L+
fY

((NY t)
n)| dt

)1/n

=n−1/nµ
1/n
G (X) + n−1/nµ

1/n
G (Y ),

Thus G satisfies BM(n).
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7.5 Reduction to unimodular subgroups

The main result of this section allows us to obtain a Brunn–Minkowski inequality for a

nonunimodular group from its certain unimodular normal subgroup. We use µR× to denote

a Haar measure on the multiplicative group (R>0,×). The next lemma concerns the case

when the modular function on X and on Y are “sufficiently uniform”.

Lemma 7.25. Suppose the modular function ∆G : G → (R>0,×) is a quotient map of

topological groups. Let X, Y be compact subsets of G, and parameters a, b, ε > 0 and n ≥ 0 an

integer, such that for every x ∈ X, ∆G(x) ∈ [a, a+ε) and for every y ∈ Y , ∆G(y) ∈ [b, b+ε).

Suppose H = ker(∆G) satisfying BM(n). Then

νG(X)1/(n+1)

νG(XY )1/(n+1)
+

µG(Y )1/(n+1)

µG(XY )1/(n+1)
≤ 1 + f(ε),

where f(ε) is an explicit function depending only on a, b, n and ε, and f(ε) → 0 as ε → 0.

Moreover, this convergence is uniform when n is fixed and a and b vary over compact sets.

Proof. We first consider the case when n ≥ 1. For every compact subset Ω of G, define two

functions `Ω, rΩ : (R>0,×)→ R≥0 such that

`Ω(g) = µH(g−1Ω ∩H), and rΩ(g) = µH(Ωg−1 ∩H).

Note that given g1, g2 in G, note that (X ∩Hg1)·(Y ∩ g2H) lies in

Hg1g2H = (g1g2)(g1g2)−1H(g1g2)H = H(g1g2)H(g1g2)−1(g1g2)

since H is normal. Now we fix Haar measures µH , µR× on H and on (R>0,×), and these

two measures will also uniquely determine a left Haar measure µG on G and a right Haar

measure νG on G via the quotient integral formula.

For every compact sets X1, X2 in H, and g1, g2 in G, by the above equality, X1g1g2X2 ⊆
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g1g2H. By Fact 5.8.2 and the fact that H satisfies BM(n), we have

µ
1/n
H ((g1g2)−1X1g1g2X2) ≥ µ

1/n
H ((g1g2)−1X1g1g2) + µ

1/n
H (X2)

= (∆G(g1)∆G(g2))−1/nµ
1/n
H (X1) + µ

1/n
H (X2). (7.24)

In light of this, applying the Brunn–Minkowski inequality on (R>0,×), we get

µR×

(
L+
`XY

((
inf

x∈X,y∈Y
(∆G(x)∆G(y))−1/nt1 + t2

)n))
≥ µR×(L+

rX
((t1)n)) + µR×(L+

`Y
(tn2 )),

and similarly for right Haar measure on H, we have

µR×

(
L+
rXY

((
t1 + inf

x∈X,y∈Y
(∆G(x)∆G(y))1/nt2

)n))
≥ µR×(L+

rX
((t1)n)) + µR×(L+

`Y
(tn2 )).

Let MX = supx µR×(L+
rX

(x)) and MY = supy µR×(L+
`Y

(y)). By a change of variables and

then by the first inequality above, we have

µG(XY ) =

∫
R×
µH(g−1XY ∩H) dµR×(g)

=

∫
R>0

ntn−1µR×(L+
`XY

(tn)) dt

≥
∥∥∥( 1

(a+ ε)(b+ ε)
MX ,MY

)∥∥∥
1/n

·
∫ 1

0

ntn−1µR×

(
L+
`XY

((( 1

(a+ ε)(b+ ε)
MX

)1/n

t+M
1/n
Y t

)n))
dt

≥
∥∥∥( 1

(a+ ε)(b+ ε)
MX ,MY

)∥∥∥
1/n

(
1

MX

νG(X) +
1

MY

µG(Y )

)
.

Thus by Hölder’s inequality, we get

µ
1/(n+1)
G (XY ) ≥

(
1

(a+ ε)(b+ ε)
νG(X)

)1/(n+1)

+ µ
1/(n+1)
G (Y ). (7.25)
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Similarly, for νG(XY ) we have

νG(XY ) =

∫
R×
µH(XY g−1 ∩H) dµR×(g)

=

∫
R>0

ntn−1µR×(L+
rXY

(tn)) dt

≥
∥∥∥(MX , abMY

)∥∥∥
1/n

(
1

MX

νG(X) +
1

MY

µG(Y )

)
,

and we obtain

ν
1/(n+1)
G (XY ) ≥ ν

1/(n+1)
G (X) +

(
abµG(Y )

)1/(n+1)
. (7.26)

Therefore, combining (7.25) and (7.26), we conclude

ν
1/(n+1)
G (X)

ν
1/(n+1)
G (XY )

+
µ

1/(n+1)
G (Y )

µ
1/(n+1)
G (XY )

≤ 1

1 + (Cab)1/(n+1)
+

1

1 +
(

1
C(a+ε)(b+ε)

)1/(n+1)

≤ 1 +
(C(ab+ ε(a+ b+ ε)))1/(n+1) − (Cab)1/(n+1)

(1 + (Cab)1/(n+1))(1 + (C(a+ ε)(b+ ε))1/(n+1))
.

where C = µG(Y )/νG(X).

Hence

ν
1/(n+1)
G (X)

ν
1/(n+1)
G (XY )

+
µ

1/(n+1)
G (Y )

µ
1/(n+1)
G (XY )

≤ 1 + f(ε)

where

f(ε) = sup
r>0

(r(ab+ ε(a+ b+ ε)))1/(n+1) − (rab)1/(n+1)

(1 + (rab)1/(n+1))(1 + (r(a+ ε)(b+ ε))1/(n+1))

depends only on a, b, n and ε and we see limε→0 f(ε) = 0 uniformly when a, b taken values

in a compact set by an elementary computation.
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The remaining case is when n = 0. Note that in this case, inequality (7.24) becomes

µH((g1g2)−1X1g1g2X2) ≥ max{(∆G(g1)∆G(g2))−1µH(X1), µH(X2)}.

This implies for every t1, t2,

µR×

(
L+
`XY

max

{
inf

x∈X,y∈Y
(∆G(x)∆G(y))−1t1, t2

})
≥ µR×(L+

rX
(t1)) + µR×(L+

`Y
(t2)).

For any compact set Ω in G, define two functions ΦΩ,ΨΩ : R→ R, that

ΦΩ(t) = µR×(L+
`Ω

(t)), and ΨΩ(t) = µR×(L+
rΩ

(t)).

Thus we have

µR(L+
ΦXY

(t1 + t2)) ≥ max

{
inf

x∈X,y∈Y
(∆G(x)∆G(y))−1µR(L+

ΨX
(t1)), µR(L+

ΦY
(t2))

}
.

LetNX = supx µR(L+
ΨX

(x)) andNY = supy µR(L+
ΦY

(y)). By a change of variable, for µG(XY )

we have

µG(XY ) =

∫
R>0

µR(L+
ΦXY

(t)) dt

≥ (NX +NY ) max

{
1

(a+ ε)(b+ ε)

νG(X)

NX

,
µG(Y )

NY

}
≥ 1

(a+ ε)(b+ ε)
νG(X) + µG(Y ). (7.27)

Similarly, for every t1, t2 we also have

µR×

(
L+
rXY

max

{
t1, inf

x∈X,y∈Y
∆G(x)∆G(y)t2

})
≥ µR×(L+

rX
(t1)) + µR×(L+

`Y
(t2)),
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which implies

µR(L+
ΨXY

(t1 + t2)) ≥ max

{
µR(L+

ΨX
(t1)), inf

x∈X,y∈Y
∆G(x)∆G(y)µR(L+

ΦY
(t2))

}
.

Therefore, for νG(XY ) we get

νG(XY ) ≥ νG(X) + abµG(Y ).

Together with (7.27), similarly as in the case when n ≥ 1, we get

νG(X)

νG(XY )
+

µG(Y )

µG(XY )
≤ 1

1 + Cab
+

1

1 + 1
C(a+ε)(b+ε)

≤ 1 +
εC(a+ b+ ε)

(1 + Cab)(1 + C(a+ ε)(b+ ε))
,

where C = µG(Y )/νG(X). The conclusion follows by taking

f(ε) = sup
r>0

εr(a+ b+ ε)

(1 + rab)(1 + r(a+ ε)(b+ ε))
,

and we can see that f(ε) → 0 as ε → 0 uniformly when a, b taken values in a compact set

by elementary computations.

The next proposition is the main result of the section. As we mentioned in the introduc-

tion, the proof uses a discretized “spillover” method. We remark that one can always make

the proof continuous like what we did in Section 7.4, but we give a discrete proof here since

we believe this reflects our idea in a clearer way.

Proposition 7.26. Suppose G is a locally compact group with H = ker(∆G) satisfying

BM(n). Suppose the map ∆G : G → (R>0,×) is a quotient map of topological groups, then

G satisfies BM(n+ 1).
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Proof. Since X and Y are compact, there are a1, a2, b1 and b2 > 0, such that

a1 = inf
x∈X

∆G(x), a2 = sup
x∈X

∆G(x), b1 = inf
y∈Y

∆G(y), b2 = sup
y∈Y

∆G(y).

We fix µG and νG as in the proof of Lemma 7.25, and let ε > 0 be a sufficient small number

(depending on a1, a2, b1 and b2). Then by Fact 5.7 and familiar properties of integrable

functions on R, there is an N > 0, such that we can partition [a1, a2] and [b1, b2] into N

subintervals, that is

[a1, a2] =
N⋃
i=1

Ai, [b1, b2] =
N⋃
i=1

Bi,

such that each subinterval has length at most ε, and the intersection of X with
⋃
g∈Ai Hg

has νG-measure νG(X)/N , the intersection of Y with
⋃
g∈Bi gH has µG-measure µG(Y )/N ,

for every 1 ≤ i ≤ N .

Let Xi = X ∩ HAi and let Yi = Y ∩ BiH. Then νG(X) =
∑N

i=1 νG(Xi) and µG(Y ) =∑N
i=1 µG(Yi). In particular, we have

µG(XY ) ≥
N∑
i=1

µG(XiYi) and νG(XY ) ≥
N∑
i=1

νG(XiYi).

Observe that given 1 ≤ i, j ≤ N and i 6= j, XiYi and XjYj are disjoint. Indeed, the modulus

of every element in XiYi lies in AiBi and the modulus of every element in XjYj lies in AjBj.

But AiBi and AjBj are disjoint subsets of R>0 when i 6= j.

By Lemma 7.25, for every 1 ≤ i ≤ N , there is a function fi(ε), such that fi(ε)→ 0 when

ε→ 0 uniformly, and

ν
1/(n+1)
G (Xi)

ν
1/(n+1)
G (XiYi)

+
µ

1/(n+1)
G (Yi)

µ
1/(n+1)
G (XiYi)

≤ 1 + fi(ε).
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Take f̃(ε) = supi fi(ε), hence f̃(ε)→ 0 as ε→ 0. Therefore, for every 1 ≤ t ≤ N ,

ν
1/(n+1)
G (X)

ν
1/(n+1)
G (XY )

+
µ

1/(n+1)
G (Y )

µ
1/(n+1)
G (XY )

≤

(
NνG(Xt)∑N
i=1 νG(XiYi)

) 1
n+1

+

(
NµG(Yt)∑N
i=1 µG(XiYi)

) 1
n+1

. (7.28)

Also by Hölder’s inequality, we observe that for every t,

(
N∑
i=1

(
νG(Xi)

νG(XiYi)

) 1
n+2
·n+2
n+1

)n+1
n+2
(

N∑
i=1

νG(XiYi)

) 1
n+2

≥ Nν
1

n+2

G (Xt). (7.29)

Averaging (7.28) over all t and using inequality (7.29), we have

ν
1/(n+1)
G (X)

ν
1/(n+1)
G (XY )

+
µ

1/(n+1)
G (Y )

µ
1/(n+1)
G (XY )

≤ 1

N

N∑
i=1

(
νG(Xi)

νG(XiYi)

)1/(n+1)

+
1

N

N∑
i=1

(
µG(Xi)

µG(XiYi)

)1/(n+1)

≤ 1 + f̃(ε).

The desired conclusion follows by taking ε→ 0.

7.6 Reduction to cocompact and codiscrete subgroups

The main results in this section will help us to reduce the problem to cocompact subgroups or

open normal subgroups. We make use of the following integral formula, see [113, Proposition

5.26, Consequence 1].

Fact 7.27. Let G be a connected unimodular Lie group. Suppose S, T are closed subgroups

of G, such that G = ST , and the intersection S ∩ T is compact. Then there is a left Haar

measure µS on S and a right Haar measure νT on T , such that

∫
G

f(x) dµG(x) =

∫
S×T

f(st) dµS(s) dνT (t),

for every f ∈ Cc(G).
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The next proposition allows us to reduce the problem to closed cocompact subgroups

with the same noncomapct Lie dimension.

Proposition 7.28. Suppose G is connected unimodular Lie group, H is a connected closed

subgroup of G satisfying BM(n), K is a connected unimodular subgroup of G, such that

G = KH and K ∩H is compact. Then G satisfies BM(n).

Proof. We assume n ≥ 1, otherwise the result is trivial. Note that both G and K are

unimodular. In light of this we will not be using νG, νK , etc. and only use µG = νG and

µK = νK below.

We fix a Haar measure µK on K, and a Haar measure µG on G. These measures will also

uniquely determine a left Haar measure µH and a right Haar measure νH on H such that we

have the integral formula in Fact 7.27 and another similar formula involving dµH(h) dµK(k).

For a compact subset Ω of G, we define two functions rΩ, `Ω : K → R≥0, such that

rΩ(k) := νH(kΩ ∩H), `Ω(k) := µH(Ωk ∩H),

for every k ∈ K. We also define two bivariate functions RΩ, LΩ : K × K → R≥0 that for

every k1, k2 in K,

RΩ(k1, k2) := νH(k1Ωk2 ∩H), LΩ(k1, k2) := µH(k1Ωk2 ∩H).

Thus Fact 7.27 gives us

µG(Ω) =

∫
K

νH(k−1Ω ∩H) dµK(k) =

∫
K

µH(Ωk−1 ∩H) dµK(k).

We define two probability measures pX and pY on K in the following way:

dpX =
rX dµK
µG(X)

, dpY =
`Y dµK
µG(Y )

.
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Now, we choose a left coset k1H of H in G randomly with respect to the probability measure

pX , and choose a right coset Hk2 of H in G randomly with respect to the probability measure

pY . By the fact that H satisfies BM(n), we get

(
rX(k1)

RXY (k1, k2)

)1/n

+

(
`Y (k2)

LXY (k1, k2)

)1/n

≤ 1.

This implies

EpX(k1)EpY (k2)

[(
rX(k1)

RXY (k1, k2)

)1/n

+

(
`Y (k2)

LXY (k1, k2)

)1/n
]
≤ 1. (7.30)

On the other hand, by Hölder’s inequality, Fact 7.27 and the fact that G is unimodular,

EpX(k1)

(
rX(k1)

RXY (k1, k2)

) 1
n

=
1

µG(X)

∫
K

r
n+1
n

X (k1)R
− 1
n

XY (k1, k2) dµK(k1)

≥ 1

µG(X)

(∫
K

rX(k1) dµK(k1) ·
(∫

K

RXY (k1, k2) dµK(k1)

)− 1
n+1

)n+1
n

=

(
µG(X)

µG(XY )

) 1
n

.

We have a similar inequality concerning EpY (k2)

(
`Y (k2)

LXY (k1,k2)

) 1
n
. Combining both inequal-

ities with (7.30), we get

(
µG(X)

µG(XY )

) 1
n

+

(
µG(Y )

µG(XY )

) 1
n

≤ 1,

and hence G satisfies BM(n).

Using the proportionated averaging trick in a similar fashion, the next result allows us

to reduce the problem to certain open subgroups.
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Proposition 7.29. Let G be a locally compact group, and let G′ be an open normal unimod-

ular subgroup of G. Suppose G′ satisfies BM(n) for some integer n ≥ 1. Then G satisfies

BM(n).

Proof. Let µG′ be a left (and hence right) Haar measure on G′. By Fact 5.8.2, there is a left

Haar measure µG and a right Haar measure νG on G, such that for every compact set Ω in

G we have

νG(Ω) =
∑

g∈G/G′
∆G(g−1)µG′(g

−1Ω ∩G′), µG(Ω) =
∑

g∈G′\G

∆G(g)µG′(Ωg
−1 ∩G′).

Now we fix two compact sets X, Y in G. For every g ∈ G/G′, let Xg = g−1X ∩ G′, and we

similarly define Yh = Xh−1 ∩G′ for every h ∈ G′\G. Since G′ satisfies BM(n), we have that

(
µG′(Xg)

µG′(XgYh)

)1/n

+

(
µG′(Yh)

µG′(XgYh)

)1/n

≤ 1. (7.31)

Now we choose g from G/G′ randomly with probability pX(g) =
∆G(g−1)µG′ (Xg)

νG(X)
. Therefore

by Hölder’s inequality,

EpX(g)

(
µG′(Xg)

µG′(XgYh)

) 1
n

=
1

νG(X)

∑
g∈G/G′

(µG′(Xg)∆G(g−1))
n+1
n

(µG′(XgYh)∆G(g−1))
1
n

≥
(

νG(X)

νG(XY h)

) 1
n

=

(
νG(X)

νG(XY )

) 1
n

.

Similarly, we choose h from G′\G randomly with probability pY (h) =
∆G(h)µG′ (Yh)

µG(Y )
. Again

using Hölder’s inequality, we conclude that

EpY (h)

(
µG′(Yh)

µG′(XgYh)

) 1
n

≥
(

µG(Y )

µG(XY )

) 1
n

.
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Hence by (7.31),

(
νG(X)

νG(XY )

) 1
n

+

(
µG(Y )

µG(XY )

) 1
n

≤EpX(g)EpY (h)

[(
µG′(Xg)

µG′(XgYh)

)1/n

+

(
µG′(Yh)

µG′(XgYh)

)1/n
]
≤ 1,

and thus G also satisfies BM(n).

7.7 Proof of Theorems 7.1, 7.2, and 7.5

7.7.1 A dichotomy lemma

In this subsection, we prove a dichotomy result for the kernel of a continuous homomorphism

to (R>0,×).

The following lemma records a fact on open maps between locally compact groups.

Lemma 7.30. Suppose G,H are locally compact groups, φ : G → H is a continuous and

surjective group homomorphism, and there is an open subgroup G′ of G such that φ|G′ is

open. Then φ : G→ H is a quotient map of locally compact groups.

Proof. By the first isomorphism theorem (Fact 5.1.1), it suffices to check that φ is open.

Suppose U is an open subset of G. Then U =
⋃
a∈G U ∩ aG′. For each a ∈ G, we have

φ(U ∩ aG′) = φ(a)φ|G′(a−1U ∩G′).

As φ|G′ is open, φ(U ∩ aG′) is open for each a ∈ G. Hence, φ(U) =
⋃
a∈G φ(U ∩ aG′) is open

in H, which is the desired conclusion.

In the next lemma we present our main dichotomy result.

Lemma 7.31. If G is a locally compact group, and π : G→ (R>0,×) is a continuous group

homomorphism. Then exactly one of the following holds:
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1. we have the short exact sequence of locally compact groups

1→ kerπ → G
π→ (R>0,×)→ 1;

2. kerπ is an open subgroup of G.

Proof. It is easy to see that (1) and (2) are mutually disjoint, so we need to prove that we

are always either in (1) or (2). Consider first the case when G is a Lie group. Let G0 be

the identity component of G. Then G0 is open by Fact 5.12. Hence π(G0) is a connected

subgroup of (R>0,×). As the only connected subsets of (R>0,×) are points and intervals,

we deduce that π(G0) can only be {1} or (R>0,×). In the former case, kerπ is open as a

union of translations of G0. Now suppose π(G0) = (R>0,×). Since G0 is a connected Lie

group. Using the first isomorphism theorem for Lie group (Fact 5.13.1), we get π|G0 is open.

Applying Lemma 7.30, we get that π is a quotient map as desired.

We now deal with the general situation where G is locally compact. Using the Gleason–

Yamabe Theorem (Fact 5.10.1), we obtain an almost-Lie open subgroup G′ of G. Since

G′ is open, the natural embedding of i : G′ → G induces a continuous homomorphism

π|G′ : G′ → (R>0,×). Note that there is a compact normal subgroup H of G′ such that

G′/H is a Lie group. Then H ≤ ker(π|G′) since π|G′(H) is a compact subgroup of (R>0,×).

Let φ : G′ → G′/H be the quotient map. Hence the homomorphisms induce a continuous

group homomorphism ψ from G′/H to (R>0,×).

G′ G′/H

G (R>0,×)

φ

π|G′
i ψ

π

Note that the above diagram commutes. By the proven special case for Lie groups, we then

either have the exact sequence

1→ kerψ → G′/H → (R>0,×)→ 1
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or kerψ is open in G′/H. In the former case, π|G′ is open as a composition of open maps. By

Lemma 7.30, we conclude that π is a quotient map in this case. In the latter case, ker(π|G′)

is open in G′. Thus, here we have ker π is open in G because ker π is a union of translations

of ker(π|G′).

The modular function ∆G : G → (R>0,×) is a continuous group homomorphism by

Fact 5.6.2, but generally not a quotient map. It is easy to construct examples where

G/(ker ∆G) is discrete. The above proposition claims that these are the only two possi-

bilities, which will be used in the later proofs.

7.7.2 Proofs of the main theorems

In this subsection, we prove Theorems 7.1 and 7.2. For the reader’s convenience, Proposi-

tion 7.32 gathers together all the induction steps we can do using the earlier results with the

exception of Proposition 7.28, which will be used in the proof of Theorem 7.1 directly.

Proposition 7.32. Let G be a locally compact group with noncompact Lie dimension n and

helix dimension h. Let ∆G : G → (R>0,×) be the modular function of G. Then G satisfies

BM(n− h) if one of the following assumptions holds:

1. The locally compact group ker ∆G has noncompact Lie dimension n′ and helix dimen-

sion h′, and ker ∆G satisfies BM(n′ − h′).

2. G is unimodular, G′ is an open subgroup of G such that G′ has noncompact Lie di-

mension n′ and helix dimension h′ and satisfies BM(n′ − h′).

3. G is unimodular, H is a compact normal subgroup of G, the quotient G/H has non-

compact Lie dimension n′ and helix dimension h′ and satisfies BM(n′ − h′).

4. There is an exact sequence of connected semisimple Lie groups

1→ H → G→ G/H → 1
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such that H has non compact Lie dimension n1 and helix dimension h1, and satisfies

BM(n1−h1), and G/H has noncompact Lie dimension n2 and helix dimension h2, and

satisfies BM(n2 − h2).

5. There is an exact sequence of connected unimodular Lie groups

1→ H → G→ G/H → 1

such that H has noncompact Lie dimension n1 and helix dimension 0, and satisfies

BM(n1), and G/H has noncompact Lie dimension n2 and helix dimension h2 with

h2 = h, and satisfies BM(n2 − h).

Proof. We first prove (1). Note that by Fact 5.6.1, ker ∆G is unimodular. By Lemma 7.31,

we either have the exact sequence of locally compact groups

1→ ker ∆G → G→ (R>0,×)→ 1

or ker ∆G is open in G. In the former case, by Proposition 7.19, we have n = n′ + 1 and

h = h′. Hence, in this case G satisfies BM(n− h) by Proposition 7.26. In the latter case, by

Corollary 7.14, n = n′ and h = h′. Here, we have G satisfies BM(n−h) by Proposition 7.29.

Next we prove (2). By Corollary 7.14, we have n = n′ and h = h′. The desired conclusion

then follows from Proposition 7.24.

We now prove (3). By Corollary 7.15, we have n = n′ and h = h′. Also by Corollary 7.15,

the compact group H has noncompact Lie dimension and helix dimension 0. Hence, using

Proposition 7.23, we obtain the conclusion that we want.

We prove (4). By Proposition 7.17.1 and Proposition 7.17.2 respectively, we have n = n1+

n2 and h = h1 + h2. Recall that semisimple groups are unimodular. Using Proposition 7.23,

we learn that G satisfies BM(n− h).

Finally, we prove (5). By Proposition 7.17.1, we have n = n1 + n2. Since the helix
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dimension of H is 0, and the helix dimension of G/H is h, by Proposition 7.23, G satisfies

BM(n− h).

The following corollary says that when G is a Lie group, we can further reduce the

problem to connected unimodular groups.

Corollary 7.33. Let G be a Lie group with noncompact Lie dimension n and helix dimension

h. Let ∆G : G→ (R>0,×) be the modular function of G. Let G′ = (ker ∆G)0 be the identity

component of ker ∆G with noncompact Lie dimension n′ and helix dimension h′. Then G′ is

connected and unimodular, and if G′ satisfies BM(n′ − h′), G satisfies BM(n− h).

Proof. Note that (ker ∆G)0 is open in ker ∆G by Fact 5.12. The desired conclusion is then a

consequence of Proposition 7.32.1 and Proposition 7.32.2.

Now we are able to prove the main inequality (7.2) for Lie groups. As mentioned earlier,

the main strategy is induction on dimension.

Proof of Theorem 7.1. Consider first the case where G is a solvable Lie group. Using Corol-

lary 7.33, we can also assume that G is connected and unimodular. Recall that d is the

topological dimension of G. The case when d = 0 or 1 is trivial, as every group satisfies

BM(0), and the one dimensional solvable Lie group is either T or R by Fact 5.15.1. If G is

abelian, then it is isomorphic to Tm×Rd−m. We get a desired conclusion applying Proposi-

tion 7.32.5 repeatedly. Otherwise, from the solvability of G we get the exact sequence

1→ [G,G]→ G→ G/[G,G]→ 1

with both [G,G] and G/[G,G] connected, solvable and having smaller dimensions than G.

Note that G/[G,G] is abelian, and hence unimodular. Applying Proposition 7.32.5, and the

statement for of the theorem for abelian Lie groups, we get desired conclusion for this case.

Consider next the case whereG is connected and semisimple. We may further assume that

G is a connected simple Lie group, otherwise by Fact 5.23, we can always find a connected
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group H C G such that both H and G/H are connected semisimple Lie groups with lower

dimension; by Proposition 7.32.4, the Brunn–Minkowski inequality on G can be obtained

from the Brunn–Minkowski inequalities on H and G/H. Now we write G = KAN as in

Fact 5.31. We first consider the case when G has a finite center, and then K is compact. Let

n be the noncompact Lie dimension of G. Hence, n is the dimension of the solvable Lie group

Q = AN . Note that A and N are simply connected by Fact 5.31. Hence their noncompact

Lie dimensions are the same as their dimensions by Fact 5.15.2. By Proposition 7.17.1 and

Fact 5.31, the noncompact Lie dimension of Q is n, and hence Q satisfies BM(n) from the

solvable Lie case. We obtain the desired conclusion for G by applying Proposition 7.28.

Suppose the connected simple Lie group G has a center of rank h ≥ 1. Apply Propo-

sition 7.28 again, and we obtain an inequality (7.2) for G with exponent dim(AN). By

Proposition 7.8, we have dim(AN) = n − h. The desired conclusion for the connected

semisimple Lie groups follows similarly from Fact 5.23 and Proposition 7.32.4.

Finally, we show the statement for an arbitrary Lie group G. Using Corollary 7.33 again,

we can assume that G is connected and unimodular. Then by Fact 5.22 we obtain an exact

sequence

1→ Q→ G→ S → 1,

whereQ is a connected unimodular solvable group and S is a connected semisimple Lie group.

We then apply Proposition 7.32.5 and the earlier two cases to get the desired conclusion.

Finally, we prove the inequality (7.2) for all locally compact groups.

Proof of Theorem 7.2. By Proposition 7.32.1 we can assume that G is unimodular. By the

Gleason–Yamabe Theorem (Fact 5.10.1), G has an almost-Lie open subgroup. Now using

Proposition 7.32.2, we can further assume that G is a unimodular almost-Lie group. Then

we can choose a compact subgroup K of G such that G/K is a unimodular Lie group. The

desired conclusion then follows from Theorem 7.1 and Proposition 7.32.3.
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We briefly discuss Theorem 7.5, which is a consequence of the proof of Theorem 7.2.

Proof of Theorem 7.5. Repeating the arguments in the proofs of Proposition 7.32, Corol-

lary 7.33, Theorem 7.1, Theorem 7.2, and Fact 5.23 while ignoring the helix dimension, it

suffices to show the theorem when G is a simple Lie group.

From the hypothesis, we already have the desired conclusion under the further assumption

that our simple Lie group G is also simply connected. We now consider the general case. If

G has finite center, the result is a special case of Theorem 7.1. So suppose the center Z(G)

of G is infinite. Let G̃ be the universal cover of G, Z(G̃) its center, and ρ : G̃ → G the

covering map. Then ker ρ is a subgroup of Z(G̃) by Fact 5.27. Using Fact 5.29, the center

Z(G̃) have rank at most 1. By the earlier assumption, the center Z(G) also has rank at

least 1. Hence, by Fact 5.27, both Z(G̃) and Z(G) must have rank 1, and ker ρ is finite.

Therefore, the desired conclusion for G can be reduced to that of G̃ by taking the inverse

image under ρ, which we already know from the hypothesis.
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[1] Noga Alon, József Balogh, Peter Keevash, and Benny Sudakov, The number of edge
colorings with no monochromatic cliques, J. London Math. Soc. (2) 70 (2004), no. 2,
273–288.

[2] Noga Alon and Gregory A. Freiman, On sums of subsets of a set of integers, Combi-
natorica 8 (1988), no. 4, 297–306.

[3] Noga Alon and Daniel Kleitman, Sum-free subsets, A tribute to Paul Erdős, Cambridge
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on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256.

[71] Hillel Furstenberg and Yitzhak Katznelson, A density version of the Hales-Jewett the-
orem, J. Anal. Math. 57 (1991), 64–119.

[72] Richard J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.)
39 (2002), no. 3, 355–405.

[73] Andrew M. Gleason, Groups without small subgroups, Ann. of Math. (2) 56 (1952),
193–212.

[74] William Timothy Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal.
11 (2001), no. 3, 465–588.

[75] , Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. of
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[146] Vojtěch Rödl and Jozef Skokan, Regularity lemma for k-uniform hypergraphs, Random
Structures & Algorithms 25 (2004), no. 1, 1–42.

[147] Christian Rosendal, Continuity of universally measurable homomorphisms, Forum
Math. Pi 7 (2019), e5, 20.

[148] Klaus Friedrich Roth, On certain sets of integers, J. London Math. Soc. 28 (1953),
104–109.
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