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SUMMARY 

 

 

 

Regenerative chatter in machining, which is characterized by self-excited vibration, 

is a common process anomaly that limits productivity and part quality in machining 

operations. This thesis proposes an on-line approach for chatter detection via effective 

human-machine interaction, facilitating knowledge transfer from experienced machinists 

to the “digital apprentice” through the “learnable skill primitive” (LSP) method that 

establishes a chatter detection threshold. The research focus is to develop the methodology 

for chatter-specific knowledge acquisition and a human-machine interface inspired by 

computing techniques and frameworks such as learning from demonstration, reinforcement 

learning, and interactive agent shaping. In this work, the milling operation is selected as a 

case study for the proposed LSP method. Digital audio data is acquired from milling 

experiments through a studio-style condenser microphone mounted inside a milling 

machine. The data is pre-processed through various digital filters before Fast Fourier 

Transform (FFT) is performed to identify the chatter frequency contents. During the 

training phase, data for the human operator’s natural reaction to chatter is collected via a 

specially designed human-machine interface. The learned chatter detection thresholds are 

obtained through the “learnable skill primitive” method by temporally mapping the 

reaction data to the cutting signal. In addition, a variance mitigation strategy is developed 

to reduce the negative impact of the high variance in the operator’s reaction time to chatter. 

During the testing phase, experiments are conducted to evaluate the detection accuracy, 

detection speed, and robustness of the learned chatter detection thresholds. Experimental 
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data support the claim that the learned thresholds can detect chatter with good detection 

accuracy and detection speed. Finally, the learned threshold is demonstrated to be robust 

to milling of different workpiece materials under different cutting conditions such as feeds, 

speeds, axial and radial immersions (depths of cut), and directions of cutting.  
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CHAPTER 1 INTRODUCTION 

 

1.1 Motivation and Problem Statement 

Chatter is a common process anomaly that occurs during machining operations. It 

is a dynamic instability of the machine tool-cutting tool-workpiece system characterized 

by unstable vibrations. Poor surface finish, excessive noise, and potential permanent 

machine tool damage are some of the negative impacts of chatter [1]. Chatter can incur 

significant additional manufacturing cost. For example, in the automotive industry the 

average estimated unit cost due to chatter during production of engine cylinder blocks is 

approximately 0.4 US Dollar; considering the annual production volume of 3 million 

engines of the same model, the total cost incurred can be very high. Consequently, industry 

has been in search of a systematic and robust solution to control chatter [2].  

 The most common type of machining chatter is regenerative chatter, sometimes 

simply referred to as chatter. This type of chatter is characterized by self-excited vibrations, 

which are induced by the phase difference between the instantaneous vibratory motion of 

the cutting edge and the previously generated wave on the workpiece surface [3]. The 

cutting tool engages the wavy surface left by the previous tooth pass and the phase shift 

amplifies the instantaneous variation in chip load, which causes the cutting force to vary 

dynamically and results in large amplitude vibration [4]. The topic of chatter has been 

studied extensively with the goal of developing a solution for chatter avoidance or 

suppression. Two major strategies have been introduced in the literature: (1) off-line 

stability identification of the cutting system, and (2) on-line chatter detection and 

suppression [1]. 
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Figure 1. Stability lobe diagram of a single degree of freedom system [5]. 

 

  

The off-line stability identification method seeks to predict the stability of the tool-

workpiece-machine tool system (i.e. cutting system) to select ideal process parameters 

before the machining operation [5]. The most common method for stability identification 

is experimental modal analysis, which utilizes a modal impact hammer to excite the tip of 

the cutting tool, where an accelerometer is placed, to obtain the frequency response 

function (FRF) of the cutting system [6]. By identifying the primary modes of vibration 

and the cutting coefficient of the workpiece-tool combination, a “stability lobe diagram” 

(SLD) with spindle speed on the x-axis and axial depth of cut (DOC) on the y-axis (Figure 

1) can be obtained for process planning. While the off-line SLD identification method 

offers an approach for selection of the cutting parameters, it suffers from high uncertainty 

and a high cost of implementation [1]. The high uncertainty is a result of inaccuracies in 

the FRF, use of a static cutting coefficient, and inherent inaccuracies in the physical model 
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of the cutting system. While researchers have identified the key sources of uncertainty and 

created a confidence interval on the SLD [7], the uncertainty in the off-line SLD 

identification approach can lead to ultra-conservative selection of the cutting parameters, 

which inhibits productivity. The difficulty in implementation of the SLD approach can also 

drive manufacturers away from the off-line approach. The processes to obtain the FRF and 

the cutting coefficients are sophisticated and require well-controlled experiments. As a 

result, only major manufacturers are incentivized to train staff for SLD identification. 

 On the other hand, on-line chatter detection and suppression involves monitoring 

the machining process through sensors. The advantage of on-line detection methods is that 

the dynamics of the cutting system do not need identification, and the implementation cost 

is relatively low. However, critics of the on-line detection methods argue that chatter 

detection algorithms often suffer from their inability to detect chatter before damage is 

done to the workpiece [1]. Although previous works have proposed algorithms that can 

detect the onset of fully developed chatter [8, 9], the chatter detection threshold is an 

engineering parameter that must be tuned by engineers to obtain the desired detection 

accuracy. Because the cutting signals acquired from the machining operation vary with 

cutting tools, sensor types, sensor locations, and machining conditions, on-site tuning of 

the chatter detection threshold is often necessary for the implementation of on-line 

detection methods. However, tuning of the chatter detection thresholds can be challenging 

because research engineers who have the experience and skills for tuning cannot always be 

on the production floor, and production staff typically do not have the necessary time or 

skills for tuning [10]. Thus, online-chatter detection methods have not found wide 

acceptance in production. 
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 Ultimately, both strategies for chatter avoidance, detection, or suppression suffer 

from being case-specific or inflexible in a production setting. It takes too much effort and 

cost to either re-identify the system dynamics of the off-line SLD method for any changes 

in the machine tool-tool holder-cutting tool-workpiece combination or re-tune a chatter 

detection threshold of the on-line detection method to account for variations in tooling and 

sensor types, sensor location, and machining conditions.  As a result, manufacturers remain 

heavily reliant on the experience of human machine tool operators to monitor and control 

the machining process. However, the reliance on human operators also has significant 

disadvantages. Even with years of experience, the human operator’s lack of speed and 

accuracy are limiting factors. In addition, due to shortage of skilled labor, corporations are 

facing increasing difficulty in replacing the expertise of experienced operators when they 

leave or retire. Therefore, the manufacturing industry needs a robust, fast, and accurate 

solution to monitor and control chatter. 

 

 

1.2 Research Objectives 

Based on the above discussion, a practical, effective, robust and easy to implement 

chatter detection methodology is warranted. This thesis proposes to leverage both chatter 

detection algorithms and the experience of human operators for effective chatter detection 

in a machining operation. Specifically, this research aims to answer two major research 

questions: 1) Is it possible for the machine to learn to detect chatter from a human 

operator’s demonstration? And 2) to what extent can the machine learn to detect chatter 

early and accurately?  
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The objective is to create a “Digital Apprentice” for chatter detection that learns 

from an experienced operator’s demonstration through human-machine interaction to 

accurately detect chatter in a timely manner. While the use of human-machine interaction 

techniques is novel in the field of manufacturing process monitoring, learning from 

demonstration and interactive agent shaping are techniques that have been employed for 

effective interactive computing in the robotics field [11].  

 Learning from demonstration (LfD) acknowledges that learning from scratch 

without any prior knowledge is challenging and impractical. As humans, we typically 

approach learning a task based on instructions or demonstrations from other more 

experienced humans. The objective of LfD is to allow the machine to learn a particular 

policy 𝜋  or a mapping between states S and actions A from one or a few human 

demonstrations [12]. One way to construct an LfD problem is to define a set of probabilistic 

transition functions 𝑇(𝑠′|𝑠, 𝑎): 𝑆 × 𝐴 × 𝑆 → [0, 1], which form a Markovian chain [13]. 

If the states are assumed unobservable, the hidden states S are approximated through the 

mapping 𝑀: 𝑆 → 𝑍, where Z is the observable state and the policy 𝜋: 𝑍 → 𝐴 selects the 

actions based on the observations of the world states [13]. This process is characterized as 

a Hidden Markov Model (HMM). Figure 2 shows that a set of human demonstrations D 

records the demonstrated states S and actions A, from which a policy 𝜋 can be derived by 

evaluating the probabilistic transition functions of the Markovian chain.  
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Figure 2. LfD policy derivation [13]. 

 

In the context of machining, the human operator is responsible for recognizing 

chatter and performing the necessary corrective actions, which include adjusting the cutting 

conditions in real time or halting the process to prevent further damage to the part or 

machine. The operator perceives the cutting signals using his/her natural senses, and the 

“Digital Apprentice”, which learns from the operator, monitors the cutting signal using 

sensors. In this work, the policy 𝜋 learned by the “Digital Apprentice” is a binary chatter 

classifier that classifies the sensed cutting signals into either chatter or stable cutting; the 

frequencies and the frequency spectrum ratios computed from the cutting signal correspond 

to the observed states Z, and the actions A are the classification of the machining process 

as either chatter or stable cutting. Future work will expand the set of actions to corrective 

control policy that selects corrective actions to suppress chatter. However, the prerequisite 

for this is to learn a chatter detection classifier (a threshold) from human demonstration, 
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which can be challenging due to the correspondence problem between the human’s 

perception abilities and the data acquired from artificial sensors [14]. 

Because chatter is a process anomaly that can quickly develop in a short period of 

time, and because a human’s response to chatter is delayed due to his/her reaction time, by 

the time a human provides a demonstration that indicates the occurrence of chatter, the 

machining process state S has already changed significantly. Effective learning from a 

human demonstration requires knowledge of the state at the time instance when the human 

recognizes chatter by accounting for his/her delayed reaction. A similar challenge in the 

correspondence problem is discussed by Knox et al. [15] in their “Training an Agent 

Manually via Evaluative Reinforcement” (TAMER) framework. TAMER is a framework 

that addresses the shaping problem in psychology and applies it to computing. It focuses 

on allowing a human trainer to interactively shape an agent’s policy through reinforcement 

rewards [16]. The human’s reward to or critique of the agent’s current policy is mapped to 

a corresponding state-action pair of the learning agent’s policy. When the human’s critique 

is applied to quickly varying states and actions, it is demonstrated that the correspondence 

problem can be resolved by systematically accounting for the delay in the human’s reaction 

time.  

Ultimately, the research objective of this thesis is to create a “Digital Apprentice” 

for machining chatter detection that learns from an expert machine operator’s 

demonstration of chatter detection. The methodology proposed in this thesis can be 

considered a solution to a simplified learning from demonstration problem where the policy 

is a binary classifier of machining stability or chatter, the states S are the cutting process 

audio signal’s frequencies and frequency spectrum ratios, and the actions A are the 
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classification of the cutting signal as stable or chatter. In addition, a solution to the 

correspondence problem in chatter detection is proposed based on the approach introduced 

by the TAMER framework. 

  

1.3 Proposed Approach 

The overall research approach is summarized in Figure 3. By facilitating effective 

human-machine interaction during the machining process, a “Learnable Skill Primitive” 

(LSP) algorithm for chatter detection is developed to take in a human operator’s 

demonstration and rewards for chatter detection, and output an effective and robust chatter 

detection threshold that is applicable over a range of machining conditions. The value 

proposition is that effective human-machine interaction reduces the time and cost of 

learning a good chatter detection threshold, which reduces the implementation cost and 

eliminates the need for manual tuning of the detection threshold, thereby drastically 

improving the robustness of chatter detection algorithms, particularly in production 

settings. 
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Figure 3. Overall research approach. 

 

1.4 Thesis Outline 

Chapter 2 provides an introduction to regenerative chatter in machining and 

computing techniques that have inspired the proposed methodology. A description of the 

human-machine interface and the perception mapping problem is provided in Chapter 3, 

where an experimental method for collecting data for human reaction time to chatter is 

presented. Chapter 4 focuses on the experimental setup, data acquisition method, and the 

“Learnable Skill Primitive” algorithm for on-line knowledge transfer from a human 

operator to the machine. The Variance Mitigation Strategy is introduced, and the 

experimental performance of the learned chatter detection thresholds is analyzed in Chapter 

5. Finally, the thesis concludes with evaluation of the effectiveness of the “Digital 

Apprentice,” and provides recommendations for future work using the LSP approach.   
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CHAPTER 2 LITERATURE REVIEW 

 

 In this chapter, a detailed literature review of chatter in machining and interactive 

computing frameworks is presented. The review consists of six sections: 1) prior research 

on regenerative chatter in machining, 2) milling process stability analysis, 3) on-line chatter 

detection sensors and algorithms, 4) learning from demonstration, 5) reinforcement 

learning, and 6) interactive agent shaping. 

 

2.1 Regenerative Chatter in Machining Process 

 Chatter is a common process anomaly that can occur in a machining operation. The 

most common cause of chatter is the regenerative effect induced by self-excited vibrations 

[6]. The regenerative effect is induced by the phase shift between the instantaneous 

vibratory motion of the cutting edge and the previously generated wavy surface on the 

workpiece [3], which introduces dynamic variations in chip load and large amplitude 

vibrations. The dynamic instability due to regenerative chatter can result in catastrophic 

consequences such as poor surface finish, excessive tool wear, loud noise, and machine 

tool damage [1]. Figure 4 is an example of chatter marks on a 7075-T651 Aluminum 

workpiece produced by an unstable milling operation. 
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Figure 4. Chatter marks on a 7075-T651 Aluminum workpiece in a slot milling operation. 

 

Previous works have proposed different methods to combat chatter instability in 

machining processes [1, 5, 8, 9, 17]. The first method proposed was the off-line method for 

stability identification, which focuses on identifying the stability limit between chatter and 

stable cutting through analytical or numerical modelling methods [3-5, 18]. On-line chatter 

detection methods, on the other hand, require no previous knowledge of the cutting 

system’s frequency response function, and instead, utilize various sensors and algorithms 

for timely chatter detection [8, 9, 17, 19]. Other methods such as passive chatter avoidance 

through non-standard cutting tools (e.g. variable pitch or variable helix end mills) or 

external system damping [20, 21], and active chatter suppression through spindle speed 

variation (SSV) have also been suggested to avoid or suppress chatter [22]; however, some 

critics argue that these methods offer case-specific solutions, which may not be generally 

applicable in a flexible manufacturing system, where changes in products and required 

processes can be frequent [1]. In the following two sections, an in-depth review of off-line 

stability prediction models and on-line detection methods is presented.  
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2.2 Off-line Machining Stability Prediction Models 

The premise of this line of research is that effective chatter avoidance can be 

achieved through understanding of the system dynamics of the machine tool-tool holder-

cutting tool-workpiece system [6], which permits the selection of cutting parameter values 

that do not result in chatter. Historically, mathematical analysis of chatter stability in 

machining operations such as milling was first presented by Tobias and Fishwick [23], and 

Tlusty and Polacek [24], who modeled regenerative chatter vibration using delayed 

differential equations. Minis et al. [25] presented a general mathematical model that 

described the milling dynamics to predict the limiting axial depth of cut for stable milling. 

Altintas and Budak [5] proposed a zeroth order approximation of the cutting system 

stability for the milling process, where a zeroth order Fourier term is used as an 

approximation of the cutting force variation. Other researchers have extended analytical 

chatter stability models to three dimensions and multiple degrees of freedom for different 

machining operations [26, 27]. The stability of a milling process can be modelled, provided 

that the transfer function of the structure at the cutter-workpiece contact, the static cutting 

coefficients, radial immersion, and the number of cutter teeth are known [6]. Figure 5 

shows a picture of an impact hammer experiment used to obtain the frequency response 

function (FRF) of the cutting system. Based on the cutting coefficient and the FRF, the 

chatter stability limit can be computed and graphed as in Figure 6, where the spindle speed 

is plotted on the x-axis and the axial depth of cut on the y-axis. Due to its lobed shape, the 

figure is commonly referred to as the stability lobe diagram (SLD).  
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Figure 5. Impact hammer test. 

 

 
Figure 6. Two degrees of freedom stability lobe diagram generated from time-domain 

simulation. Cutting coefficient  𝑲𝒔 = 𝟖𝟎𝟎 𝑴𝑷𝒂 , modal mass matrix  𝒎𝒙 = 𝒎𝒚 =

[
𝟒. 𝟐𝟒𝟓 𝟎
𝟎 𝟐. 𝟕𝟏𝟏

]  𝒌𝒈, modal stiffness matrix 𝒌𝒙 = 𝒌𝒚 = 𝟏𝟎
𝟕 ∙ [

𝟗. 𝟖𝟎𝟓 𝟎
𝟎 𝟒. 𝟖𝟕𝟖

]  𝑵/𝒎, 

modal damping ratio matrix 𝝃𝒙 = 𝝃𝒚 = [
𝟎. 𝟎𝟏𝟖𝟐 𝟎

𝟎 𝟎. 𝟎𝟒𝟐𝟗
].  

 

 

While the SLD of the system is informative for process planning, the analytical 

stability model lacks consideration of the machine tool’s maximum allowable cutting force 
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[18]. Time domain simulations of the machining process have been used to evaluate the 

peak-to-peak force and the vibration amplitude in a machining operation. Jemielniak and 

Widota [28] developed an algorithm for numerical simulation of non-linear chatter 

vibration in turning. Smith and Tlusty [4, 18, 29] proposed an efficient time domain 

simulation approach for chatter in milling using a regenerative force dynamic deflection 

model where the instantaneous tangential force is a function of the cutting coefficient, axial 

depth of cut, nominal chip load, radial immersion, and dynamic position of the cutting teeth. 

Li et al. [30] presented a novel chatter stability criterion for time domain simulation of the 

milling process. The time domain simulation approach provides not only force and 

displacement information for a given combination of cutting parameters, but, by simulating 

the process over a range of cutting parameters, the peak-to-peak force diagram with respect 

to the spindle speed can also be obtained [18]. The detailed prediction of the milling forces 

and displacements for a specified combination of cutting parameters can lead to better 

process planning.  

 Critics of the off-line chatter stability limit identification approach argue that the 

depth of knowledge required and the amount of training needed to obtain a complete 

analysis of the machine tool dynamics makes it difficult for industrial users to implement 

[1]. In addition, the dynamics of the system may suffer from large uncertainty arising from 

measurements and model parameters. Duncan et al. [7] described the propagation of 

uncertainty in an analytical milling stability model and proposed a procedure for adding 

uncertainty bounds to the milling stability limits. Karandikar et al. [31] applied the random 

walk approach for Bayesian inference of stability in a milling operation. Various other 

works have applied the Bayesian learning approach to estimate the stability limit and select 
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optimal cutting parameters [32, 33]. However, the large uncertainty bounds of the stability 

limit can lead to more conservative cutting parameters in process planning, which can 

significantly limit productivity. The next section reviews on-line chatter detection methods 

for timely recognition of chatter in-process. 

 

2.3 On-line Chatter Detection Methods: Sensors and Algorithms 

 While the off-line SLD approach to chatter stability limit prediction provides great 

insight into the system dynamics and stability of a machining process, its inflexibility in 

adapting to changes in the cutting system make it challenging for an average machine shop 

to employ the off-line SLD approach. Therefore, on-line chatter recognition techniques 

have been proposed for timely detection and control of machining chatter. 

 There are two major objectives of on-line chatter detection research, namely, 

identifying and collecting information-rich cutting signals and developing associated 

chatter detection algorithms. Vibration, strain, sound, cutting force and power signals have 

been extensively researched as potential measurands for effective chatter detection [8, 17, 

34-38]. Altintas and Chan [39] presented an in-process chatter detection and suppression 

method for milling, where chatter was detected by analyzing the cutting force acquired 

from a piezoelectric cutting force dynamometer. Liao and Young [40] proposed a spindle 

speed regulation method that relies on effective detection of chatter by evaluating the 

dynamic cutting force measured with a cutting force dynamometer. Smith and Delio [41] 

presented an optimal spindle speed selection algorithm that detects chatter based on 

analysis of the time domain signal acquired from an acoustic microphone. Kuljanic et al. 

[42] compared the sensitivity of different sensors for detecting chatter, and investigated 
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accuracy and robustness of single and multi-sensor systems. Ma et al. [34] developed a 

PVDF sensor based wireless monitoring system for chatter detection in the milling process. 

The extensive research works on sensors and signals have proven their effectiveness for 

chatter detection in a controlled research environment [36, 38].  

 

 

Figure 7. A microphone used in a milling operation for chatter detection. 

 

Developing chatter detection algorithms is the other emphasis of this line of work. 

Faassen et al. [9] proposed a chatter detection algorithm based on the power spectral 

density of vibration signals acquired from an accelerometer that recognizes chatter at its 

onset i.e. before chatter marks appear on the workpiece. Yao et al. [43] proposed a chatter 

detection method based on the wavelet transform and support vector machines. Zhang et 

al. [44] developed a hybrid hidden Markov model and artificial neural networks using 

vibration signals acquired from an accelerometer for classification of temporal cutting 

signal states (normal cutting, normal and transition, transition, transition to chatter, and 

chatter states). Ma et al. [8] developed a computationally efficient method for on-line 
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detection of chatter in milling using time-series data and a autoregressive model. Nguyen 

et al. [19] compared the effectiveness of chatter detection algorithms that utilize 

autocorrelation, wavelet transform, and the Fast Fourier Transform (FFT).  

 A common criticism of the on-line chatter detection methods reviewed above is that 

untimely detection of severe chatter may result in irreversible damage to the part and 

machine tool components [1]. To ensure timely detection of chatter, statistical machine 

learning methods such as support vector machines and artificial neural networks require a 

relatively large training data set of chatter signals gathered from the cutting process and 

the unique cutting system, namely the machine tool-tool holder-cutting tool-workpiece 

combination, which is costly when the purpose of the algorithm is to control chatter. On 

the other hand, algorithms that utilize time series autocorrelation or spectral analysis are 

commonly designed with an engineering threshold or control limits that need to be 

manually tuned by research engineers. Tuning of such thresholds can be difficult because 

the machine tool condition is dynamically changing, and the tooling, sensors, and sensor 

locations can be different from one application to another [10]. Therefore, it is unrealistic 

to expect manual tuning of thresholds for different processes and machine tools since 

research engineers cannot always be on the production floor, and the production staff such 

as machine tool operators typically do not have the necessary knowledge or experience to 

tune the chatter detection thresholds used in these algorithms. 

 Ultimately, the uncertainty and complexity of SLD identification makes it difficult 

to implement; the manual tuning of chatter detection thresholds or control limits for 

individual processes is challenging and costly. Although decades of work have advanced 

the mechanistic understanding of chatter in machining, the multivariate nature of the metal 
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removal process is a significant barrier that inhibits cost-effective prediction, detection, or 

suppression of chatter. 

In this thesis, we focus on developing a robust solution for chatter detection in 

milling that can adapt to the multivariate flexible manufacturing environment by not only 

employing the previously developed chatter detection theories and methods, but also 

learning from the greatest asset in manufacturing, namely the human operator’s perception 

and experience, via effective human machine interaction. In the following sections, 

relevant literature in the field of interactive computing and robotics that have inspired the 

work documented in this thesis are reviewed. 

 

2.4 Learning from Demonstration 

 In robotics, Learning from Demonstration (LfD) is an interactive computing 

technique that seeks to replace the manual programming of a robot by an automatic 

programming process [12]. This process is driven by showing the robot the procedures 

associated with a specific task. The involvement of human demonstration requires effective 

facilitation of human-machine interaction that specifically encodes the human 

demonstrations of a task. While different approaches to LfD may contain unique elements, 

they share certain key traits. According to Chernova and Thomaz [11], all LfD works 

assume the existence of a human teacher, who performs demonstrations of the desired task 

that are fed into specific learning algorithms. The learned task is then reproduced by the 

learning agent through a repetitive reinforcement loop that enables constant refinement of 

the performance. 
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 Specifically, in the context of robotics control applications, all LfD methods contain 

a teacher demonstration D, which consists of state-action pairs S-A, from which a policy 𝜋 

can be derived for the robot to execute the same task as demonstrated by the teacher. To 

solve an LfD problem is to determine S, A, and 𝜋. Different methods to acquire 𝜋 from S-

A have been investigated in this line of research. 

What separates LfD from most other machine learning techniques is its objective 

to mimic the human’s learning scheme, where learning is not an explicit activity that 

happens at a particular time instance, but rather is part of a continuous activity [11]. 

According to “the Correspondence Problem” by Nehaniv and Dautenhahn [14], temporal 

correspondence can be a challenge that inhibits the learning agent’s ability to imitate and 

learn from a teacher. In the context of LfD, the correspondence must be facilitated by the 

mapping between the teacher and the learner’s perceptions that enables transfer of 

knowledge from one to the other. In other words, the S-A pairs must be accurately mapped 

from a human’s demonstrations to the robot’s interpretation of 𝜋. 

An important line of research in LfD concerns trajectory learning, and one way to 

represent a trajectory is through a time-series of the robot’s end effector locations [45-48]. 

The trajectory determines the motion of a robot parameterized by time when performing a 

task such as moving an object from one location to another. The correspondence problem 

can be solved in trajectory learning by integrating the sensory perception of a human with 

the sensor inputs of the robot. For example, teleoperation in robotics via a joystick is a 

direct transfer of information that minimizes the impact of the correspondence problem. 

Through a human’s demonstration, the trajectory information can be recorded as sequential 

states or state-action pairs. There are two major categories of modern approaches to LfD: 
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Dynamic Movement Primitives (DMPs) and probabilistic modeling methods such as 

Hidden Markov Models (HMMs) [11].  

Dynamic Movement Primitive (DMP) is a framework built upon a series of papers 

authored by Ijspeert et al. [49]. The focus of DMP is to learn the attractor landscape of a 

controller from a single demonstration. The objective of DMP is to reach a target by the 

end of the action, where the system is modelled as a damped spring attached to the goal 

position with a non-linear modulation term 𝑓(𝜔, 𝑠): 

 �̈� = 𝐾(𝑔 − 𝑥) − 𝐷�̇� + 𝑓(𝜔, 𝑠) (1) 

where 𝑥, �̇�, and �̈� are the position, velocity and acceleration of the system, respectively, K 

is the spring constant, D is the damping coefficient, and 𝑔 is the goal position. 𝑓(𝜔, 𝑠) is 

the non-linear modulation term that adds acceleration to the system. If 𝑓(𝜔, 𝑠) = 0, 𝑔 is 

the point attractor, and K and D are the proportional derivative (PD) gains of the system, 

respectively, that are ideally set such that the robot moves to the goal position without 

overshoot. The objective of the DMP is then reduced to tuning 𝑓(𝜔, 𝑠) based on a single 

demonstration, from which 𝑥, �̇�, and �̈� can be obtained [11]. 

Another popular LfD approach uses probabilistic models. For example, the first 

order Hidden Markov Model (HMM) is the most basic Dynamic Bayes Net. In the context 

of LfD, the skill to learn (e.g. trajectory) is constructed as a chain of hidden states, with 

prior probabilities, transition probabilities and observation probabilities [11]. Specifically, 

a set of probabilistic transition functions,  𝑇(𝑠′|𝑠, 𝑎): 𝑆 × 𝐴 × 𝑆 → [0, 1],  form a 

Markovian chain. Because the states S are hidden, they can only be approximated through 

the mapping M:S→Z, where Z is the observable state and the policy 𝜋: Z→A selects the 

actions based on the observations of the world states. The human demonstration is fit into 
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the chain of transition functions and observation probabilities, and the parameters that 

contribute to the probabilities can be learned through expectation-maximization algorithms. 

Kulic et al. [50] described the pipeline for applying HMM to learn a trajectory from human 

demonstration. Lee et al. [51] stressed the importance of compensating missing information 

from discretizing continuous observations.  

There are two key takeaways from the common LfD approaches in robotics. First, 

an effective human-machine interface must be designed and implemented to solve the 

correspondence problem between demonstration and the acquired information. Effective 

acquisition of signal and compensation for missing information are critical to generate 

discrete states that closely represent the continuous perception of a human. The second 

takeaway is that a primitive which facilitates learnable information must first be developed 

for the demonstration to be learned. For example, in the context of robot trajectory learning, 

DMP is based on control theory where the motion is learned via training the non-linear 

modulation term through the demonstration [52]. To draw an analogy with machining, the 

acquired signal from the machining process must be synchronous with the human 

operator’s observation abilities and must provide sufficient resolution to minimize loss 

from discretization; a “learnable skill primitive” for chatter detection that enables learning 

from human demonstration must be developed based on fundamental theory and 

understanding of machining chatter. 

   

2.5 Reinforcement Learning 

 A single demonstration can be enough to yield the desired outcome of an event.  

However, the policy 𝜋 that selects the action to reach the desired outcome may not perform 
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well after a single demonstration. A common approach is to refine the learned policy 

through reinforcement learning (RL). RL refines a newly trained policy through 

environmental reward and exploration [53]. The learning agent is connected to the 

environment through perception and action. While the state is changed by the action, a 

reward signal based on the learning agent’s current policy is fed back to the learning agent. 

RL aims to optimize the agent’s policy to maximize the long-term sum of rewards. 

Systematic trial and error can be performed over time to improve the policy performance 

[54].  

 The disadvantage of traditional reinforcement learning is clear. First, the reward 

function for policy iteration is hard to determine, and it is traditionally hard coded by the 

developer who may not always select an optimal reward function for the learning task. 

Second, the number of iterations necessary for reinforcement learning methods to achieve 

acceptable accuracy is large. Its applicability in physical processes such as machining 

chatter detection where the negative impacts of error outweigh the gain from accuracy 

enhancement is limited. In other words, it is impractical and costly to iterate on chatter 

experiments hundreds of times before obtaining a sufficiently accurate chatter detection 

algorithm. In addition, constantly changing machining process parameters and cutting tool 

combinations represent a dynamic environment for the reinforcement learning framework, 

which adds another layer of complexity. Therefore, adapting reinforcement learning to 

machining process monitoring is challenging. Experts in the field of computing have also 

realized this limitation of traditional reinforcement learning and have therefore proposed 

an interactive policy shaping technique that integrates user input with RL. In the next 

section, relevant techniques of interactive agent shaping are discussed. 
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2.6 Interactive Agent Shaping 

 Interactive agent shaping is defined as the problem of learning from human reward. 

According to Knox and Stone [16], the fundamental problem solved by interactive agent 

shaping is how an agent can learn by leveraging the human’s observation and critique of 

the learning agent’s behavior. Teaching an Agent Manually via Evaluative Reinforcement 

(TAMER) is a framework developed to formulate the human’s critique as a human reward 

function that instructs the agent to greedily select actions that maximize the expected 

immediate reward from the human [15]. Various applications of the TAMER framework 

in the virtual world and in robotics have proven its performance in training an agent to 

quickly learn an effective policy.  

 

Figure 8. TAMER framework [15]. 

 

As shown in Figure 8, the credit assignment problem in traditional reinforcement 

learning where a reward must be assigned to the appropriate state-action pair is resolved 

by allowing an attentive human trainer to provide immediate temporal rewards to the 
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corresponding states. The TAMER framework assumes that the trainer has taken into 

consideration the long term reward when teaching the policy, and therefore, results in a 

significantly reduced number of iterations for policy refinement [15].  

 One of the major breakthroughs in the TAMER framework is the development of a 

credit assigner that assigns the human trainer’s response to the corresponding states. The 

necessity of an effective credit assigner stems from the high frequency of recorded states 

for temporal tasks and the natural delay of the human's reaction. The TAMER framework 

addresses this challenge by modelling the expected delay and mapping the feedback to a 

set of recorded temporal ranges/states. The delay was modeled as a uniform distribution in 

an example of robot learning [55]. As a result, the TAMER framework effectively assigns 

the human input to the corresponding states as rewards.  

 In addition to human rewards, it has been reported that a human’s input may directly 

modify the action selection mechanism of the reinforcement learning algorithm. Thomaz 

and Breazeal [56, 57] integrated the environmental reward with human reward and a human 

guidance input with which the human teacher provides anticipatory reward for a possible 

future event. Smart and Kaelbling [58] used demonstration to indicate the area of interest 

in state-space, and combined reinforcement learning to achieve better-than-human 

performance. The supervised actor-critic reinforcement learning algorithm integrates the 

human reward and demonstration to allow teachers to improve the performance of a robotic 

assembly task.  

The various research works that have been conducted in the field of interactive 

agent shaping and reinforcement learning show that the performance of the learning agents 

obtained using this approach is promising. Chatter monitoring shares key elements of the 
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interactive agent shaping problem, where an expert human operator can provide feedback 

and demonstrations by mapping them to the corresponding temporal states of a machining 

operation.  

 

2.7 Summary 

 In summary, this chapter reviewed the relevant literature in machining chatter and 

interactive computing. On one hand, although previous works in chatter prediction and 

recognition have advanced our understanding of chatter, and to a certain extent provided 

case-specific solutions to control chatter in machining, the general applicability of these 

methods in a flexible manufacturing system remains a significant challenge. On the other 

hand, this chapter reviewed influential papers in learning from demonstration, 

reinforcement learning, and interactive agent shaping that have advanced the performance 

of human-machine interaction in virtual and robotics applications. In the following 

chapters, this thesis aims to propose a step-by-step solution that facilitates human-machine 

interaction in a machining chatter monitoring application.   
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CHAPTER 3 PERCEPTION MAPPING FOR HUMAN-MACHINE 

INTERACTION IN CHATTER DETECTION 

 

3.1 Introduction 

 In this chapter, the problem of on-line chatter detection in a machining operation is 

addressed, followed by a solution approach that draws inspiration from interactive 

computing techniques in robotics. In the following sections, an analogy is drawn between 

human-machine interaction in chatter detection and learning from demonstration in 

robotics, humanistic intelligence and the modes of human-machine interaction in chatter 

detection are defined and modelled, a human-machine interface for monitoring of a 

machining operation is presented, and the delayed human response to chatter is introduced 

as a basis for perception mapping between a human operator and the chatter detection 

algorithm. 

 

3.2 Chatter Detection and Learning from Demonstration 

 Chatter can result in serious consequences such as poor surface finish, excessive 

tool wear and machine tool spindle damage [1]. On-line chatter detection focuses on 

detecting chatter accurately at its onset before chatter is fully developed and causes severe 

damage to the workpiece. To a certain extent, research works on on-line chatter detection 

have shown success in applying chatter detection algorithms that satisfy the accuracy and 

detection speed requirements [8, 9, 19]. However, a common drawback of existing on-line 

chatter detection algorithms is that the chatter detection threshold must be tuned manually 

by engineers who have deep knowledge, skills, and experience in programming the chatter 
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detection algorithm. When research engineers are onsite, adjustments can be made to 

account for variations in tooling, fixtures and workpiece materials, etc.; however, after the 

engineer departs, the production staff typically do not have the knowledge or time to make 

necessary adjustments to the chatter detection threshold [10]. Because onsite tuning of the 

chatter detection thresholds is crucial for achieving the specified detection accuracy and 

speed, the on-line chatter detection approach has not yet found wide acceptance in 

production settings.  

Instead, over the years, manufacturers have relied on experienced human operators 

for chatter detection and control in a machining operation. While the experienced 

operator’s perception is robust in detecting chatter despite variations in tooling types, 

fixtures or workpiece materials, human operators typically lack the necessary reaction 

speed to control chatter in a timely manner. In addition, the increasing shortage of 

experienced operators and waves of retirements have motivated the manufacturing industry 

to invest in robust alternatives that can detect chatter accurately and timely. 

In robotics, learning from demonstration (LfD) has been employed as a 

methodology for learning a policy, i.e., a decision mapping between states and actions, or 

what actions the robot should perform when a particular state is present [13]. As a simple 

example, in a robotic trajectory learning application, the states can be a combination of 

joint angle, joint velocity, and the target position; the action can be the joint effort for the 

robot to reach the target position. The motivation behind LfD is that the development of 

policies by hand is challenging. With increasing levels of complexity, and the required 

degree of adaptation to a new application, the robot’s policy must be highly customizable 

[11]. Hard coding the policy by hand in a dynamically changing environment is inefficient 
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and sometimes impossible due to the complexity of the task. To draw an analogy between 

robotics and chatter detection, a chatter detection threshold is a binary classifier, which 

distinguishes unstable cutting (chatter) from stable cutting, which represent two states of 

interest in a machining operation. The chatter detection algorithm can be considered as part 

of a policy that classifies the states of cutting (stable versus unstable), and commands 

chatter suppression. For the purpose of this thesis, the control actions that suppress chatter 

are not investigated. Instead, developing an accurate, timely, robust, and easy to implement 

chatter detection algorithm is a prerequisite for any effective control action. Chatter 

detection thresholds as part of a policy have often been hard coded by manufacturing 

engineers. However, because the production environment is dynamically changing due to 

variations in tooling, fixtures and workpiece materials, hard coding the threshold is 

inefficient and costly. Therefore, the success of LfD in robotics provides motivation for 

this work to investigate a methodology that can learn the chatter detection thresholds from 

a human operator, who may not have the skills to program the thresholds, but is always 

onsite and has the experience and perceptive knowledge for chatter detection. 

A common LfD technique involves the development and implementation of 

dynamic movement primitives (DMPs). The fundamental inspiration for DMPs is the 

theory that biological systems such as humans perform a movement task as a combination 

of overlapping movement primitives also known as units of actions [59]. The fact that 

DMPs of a robot can be learned as stable non-linear attractor systems from demonstrations 

that can adapt to the dynamically changing, stochastic environment makes DMPs a 

common policy learning approach in motion control. Similarly, in chatter detection, human 

operators recognize chatter as an emerging abnormal and dominant pitch of sound 
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produced by the cutting process, which is a dynamically changing environment. Based on 

experimental data [17], the chatter frequency is a function of the vibration mode that has 

been excited by the cutting process. For a given cutting system, namely, the machine tool-

tool holder-end mill assembly, there are multiple modes of vibrations that can result in 

different chatter frequencies. Figure 9 shows three distinct chatter frequencies with 

different amplitudes produced by the same cutting system. In this work, which is inspired 

by DMPs that can be learned from human demonstrations and serve as building blocks of 

a more complex task, we hypothesize that each chatter frequency from a cutting system, 

induced by a vibration mode, is a dynamic primitive that can be learned from human 

demonstrations of chatter detection. Furthermore, for each chatter frequency to be detected 

accurately and in a timely manner, a frequency-specific chatter detection threshold must 

be established. A more in-depth analysis of whether different chatter frequencies affect the 

chatter detection thresholds is presented in Chapters 4 and 5. Ultimately, the production 

process is a complex task that involves changing cutting systems and workpiece materials. 

A chatter threshold for a specific chatter frequency may not be applicable to another chatter 

frequency, and hence the detection thresholds for different chatter frequencies can be 

treated as building blocks of a more complex process monitoring task. Chapter 4 presents 

a detailed description of the methodology used to develop a “learnable skill primitive” for 

chatter detection that facilitates learning the detection threshold for a chatter frequency 

from human demonstrations.   
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Figure 9. Different chatter frequencies of a cutting system. 

 

 

While the analogy between LfD in robotics and LfD in machining chatter detection 

is evident, it is important to note that there are still significant barriers for direct 

implementation of learning from demonstration techniques in a machining chatter 

detection application. First, machining chatter is a process anomaly that ideally should be 

avoided and not reproduced, which implies that demonstrations of chatter detection should 

be limited to one or at most a few shots in a production setting. Second, because chatter 

develops quickly, the delay associated with a human’s reaction time prohibits timely 

demonstrations that directly correspond to the time instance of chatter occurrence. A 

perception mapping algorithm is therefore necessary to correlate the time instance when 

the human operator signals chatter based on his/her perception and reasoning, for instance 

by pressing a button, with the actual time instance when chatter occurs. Finally, the 

variability in a human operator’s reaction time, which is commonly described by a 

distribution, can result in inconsistent demonstration qualities. The learning from 

demonstration methodology for chatter detection must account for these factors.   

As described above, the presence of a human operator in a chatter detection 

application may entail higher complexity than in some robotics applications. Therefore, to 

understand the operator’s perception and reasoning in a chatter detection setting and to 
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investigate the relationship between the operator and the “digital apprentice”, the next 

section presents an in-depth description of the humanistic intelligence approach and the 

modes of human-machine interaction in chatter detection.  

  

3.3 Humanistic Intelligence and Modes of Human-Machine Interaction 

In this section, instead of a one-way demonstration from a human operator to the 

“digital apprentice”, which is simply referred to as the machine in this section, the presence 

of the human operator in chatter detection is modelled as a computational loop where the 

human and machine share perception and reasoning. This relationship is characterized as 

humanistic intelligence.  

Humanistic intelligence, according to Mann and Minsky [60, 61], is a form of 

intelligence created by integrating a human being in the feedback loop of a computational 

process. Essentially, the focus of this thesis is to effectively integrate a human operator into 

the computational loop of an on-line chatter detection algorithm. By combining the 

processing power of a micro-controller with the associative decision-making ability of a 

human operator via effective human-machine interaction, the humanistic intelligence 

approach offers the potential to collectively generate high quality classifiers, i.e. thresholds 

for accurate and timely chatter detection. 
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Figure 10. Perception and reasoning mapping in human-machine interaction. 

 

  

In a humanistic intelligence system for chatter detection, the human and the 

machine exchange perception and reasoning through an interface. Figure 10 shows the 

perception and reasoning mapping between human and machine that enables collective 

decision making. In the context of chatter detection, the human is an expert operator who 

is experienced in the characteristics of machining chatter, and the machine is a 

computational system that monitors the manufacturing process via sensors and algorithms. 

The value proposition is that the perception and reasoning mapping between the human 

and the machine can leverage the strengths of the human and the machine, thereby avoiding 

the negative impacts of their respective disadvantages to achieve accurate and timely 

detection of chatter. 

Human perception is enabled by the natural senses, primarily hearing, sight, and 

touch in the context of chatter detection. Human reasoning in the context of chatter 

detection is the cognitive ability to recognize chatter based on prior machining experience. 

The assumption here is that the human expert can distinguish between chatter and stable 

cutting based on past occurrences of chatter. Similarly, the perception ability of the 
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machine is derived from signals gathered through sensors such as microphones, 

accelerometers, or piezoelectric force dynamometers. The reasoning ability of the machine 

consists of an algorithm that determines the sensor signal threshold for chatter detection. 

The natural senses of the human and sensor signals of the machine can be temporally 

mapped to capture information about the machining process. Figure 11 is a Venn diagram 

that depicts the knowledge space of a task. Perception mapping is possible when a piece of 

information is perceivable by both human and machine. There are two modes of human-

machine interaction enabled by perception and reasoning mapping for chatter detection: 1) 

machine learns from the human’s demonstration to establish a threshold for chatter 

detection, and 2) machine serves as an advisor to the human by communicating critical 

information that may not be accessible or quantifiable by the human. The focus of this 

thesis is to develop a pathway for the first mode of interaction in the context of the chatter 

detection problem. 

  

 

Figure 11. Knowledge space and perception mapping of learning agents. 
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The first mode of interaction improves the robustness of the machine’s detection 

algorithm by allowing threshold adjustments based on human demonstration while the 

second mode of interaction enhances the accessibility of data related to recognition of 

chatter by other human operators or by a computational system. Table 1 lists the advantages 

and disadvantages of the human’s cognitive capabilities for recognition of chatter and those 

of a machine based algorithm for chatter detection. It is worth noting that a machine’s 

chatter detection algorithm is analogous to a human’s ability to recognize chatter. Without 

specific knowledge of chatter, it is difficult for a lay person to distinguish between chatter 

and stable cutting. A human’s lack of accessible/sharable memory can be improved by the 

machine’s accessible data, and the inflexibility of a machine’s detection algorithm can be 

complemented by the robustness of a human’s cognitive ability to recognize chatter under 

different machining conditions. 

Table 1. Comparison of a machine-based chatter detection algorithm with a human’s 

cognitive ability. 

 Machine’s Chatter Detection 

Algorithm 

Human’s Cognitive Ability to 

Recognize Chatter 

Advantages 
Accessible memory 

Quantifiable data 

Self-adaptive 

Robust in different operations 

Disadvantages 
Vulnerable to variations in 

cutting system 
Difficult to access and share 

 

The challenge remains in creating an efficient means for perception mapping in the 

context of chatter detection. Because of the inaccessibility of human memories and 

perceptions, continuous real-time exchange of natural perception data is impossible based 

on currently available technology. The alternative is to enable perception mapping as soon 

as a critical event is captured by the human’s perception through physical exchanges. In 
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the next section, an example of a human-machine interface for chatter detection is 

presented as a means for perception mapping. 

  

3.4 Human-Machine Interface for Perception Mapping 

 The objectives of perception mapping in a machining chatter detection application 

are to 1) enable the machine to learn a chatter detection threshold from a human operator’s 

demonstrations, and 2) display critical chatter detection data obtained from the machine’s 

sensors. The following functional requirements have been identified for designing the 

human-machine interface for chatter detection: 

1. The interface enables both machine input and human input. 

2. The interface allows simultaneous signal input from the machine and 

human. 

3. The interface should confirm the receipt of human input. 

4. The interface provides a visualization of the mapped perception. 

5. The interface should provide a reset option. 

6. The interface should be intuitive and easy to operate. 

7. The interface takes minimal space for accessibility in a production setting. 
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Figure 12. The human-machine interface (HMI) design. 

 

 

Figure 12 is a CAD model of the HMI designed for the experiments in this work. 

In the top view, input ports for the power and sensor signals are indicated. In the front view, 

the touch screen satisfies the basic functions for data collection and visualization, where 

the machine’s input and the human’s input can be displayed. The control buttons at the 

bottom of the interface resemble those on a Computer Numerical Control (CNC) machine 

tool. Whenever a control button is pressed the corresponding indicator light flashes once 

to indicate the operation. When chatter is detected by the algorithm, all three indicator 

lights stay on. It is also intuitive to operate this interface; as soon as chatter is observed, 

the operator simply presses the red control button; if chatter is falsely detected by the 

algorithm and the indicator lights stay on, the operator presses the green control button to 

indicate a stable cutting signal. The grey control button (rectangular button in the middle) 

is a reset button, which can reset the detection algorithm to its default setting.  

Using this HMI, an operator can effectively communicate his/her observations to 

the machine by pressing the appropriate control buttons. The interface is portable and can 
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be mounted on the CNC machine tool to facilitate timely human-machine interaction. The 

specific data acquisition method and chatter detection algorithm developed through the 

HMI are described in Chapter 4. In the next section, the delayed human response to chatter 

is discussed and a method to collect a human subject’s reaction time is presented.  

 

3.5 Delayed Human Responses in Perception Mapping 

The human-machine interface described in the previous section enables in-process 

perception mapping from human to machine. Here we assume discrete-time signals are 

represented as a time series, 𝑡, where the 𝑛𝑡ℎ  time instance is denoted by 𝑡𝑛. The time 

instance when a chatter mark first appears on the workpiece is denoted as 𝑡𝑎. In perception 

mapping for chatter detection, the human should ideally provide a signal via the control 

buttons at the time instance the human first observes chatter, 𝑡𝑐. Whether 𝑡𝑎 coincides with 

𝑡𝑐 is evaluated in Chapter 4. However, there is a natural delay associated with the human 

signaling chatter after observing it, and therefore the signal is received by the interface at 

time instance 𝑡𝑠. This delay is determined by the equation: 

 𝑟 = 𝑡𝑠 − 𝑡𝑐 , 𝑡𝑠 ≥ 𝑡𝑐 (2) 

where 𝑟 is the human’s reaction time to signal the occurrence of chatter. There are multiple 

sources that can contribute to the delayed chatter signal from the human operator. These 

include:  

1. The time needed to recognize chatter. 

2. The time between recognition of chatter and physically pressing the button. 

3. The time between pressing the button and the controller receiving the signal. 
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Figure 13. Graphical representation of human observation of and reaction to chatter. 

 

It is likely that the reaction time is unique to each human subject. Other sources of 

delay may also contribute to the reaction time. For the purpose of this research, the sources 

of delay are not investigated. The reaction time to chatter, 𝑟 , is treated as a lumped 

parameter that represents the overall temporal delay in receiving human input.   

Research on human subjects’ reaction time in visual search problems has shown 

that it can be described by a probability density function such as Gaussian, ex-Gaussian, 

ex-Wald, and the Gamma distribution [62]. By establishing a reference timeframe for the 

observation,  𝑡𝑐,  the reaction time 𝑟  can be characterized by a probability density 

function, 𝑓𝑟𝑒𝑎𝑐𝑡, where the probability of 𝑟 falling in a specified range is defined as: 

 𝑃𝑟[𝛼 ≤ 𝑟 ≤ 𝛽] = ∫ 𝑓𝑟𝑒𝑎𝑐𝑡(𝑟)
𝛽

𝛼

𝑑𝑟,         𝛼, 𝛽 > 0 (3) 

where 𝛼 and 𝛽 are positive numbers that specify the range of reaction times. The typical 

objective of human subject reaction time research is to evaluate whether any physical 

impairment or disease may have a negative impact on the reaction time. The observation 

time instance 𝑡𝑐  is known and 𝑟 can be obtained from the sampled signal time instance 𝑡𝑠.  

In machining chatter detection, however, 𝑡𝑐 is unknown and can only be estimated 

from known values of  𝑡𝑠. To trace back the original observation of the event from the 

recorded signal, we define a probability density function, 𝑓𝑡𝑟𝑎𝑐𝑒, as follows: 
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 𝑃𝑟[𝑡𝑠 − 𝛽 ≤ 𝑡𝑐 ≤ 𝑡𝑠 − 𝛼] = ∫ 𝑓𝑡𝑟𝑎𝑐𝑒(𝑡�̂�)
𝑡𝑠−𝛼

𝑡𝑠−𝛽

𝑑𝑡�̂�,         𝛼, 𝛽 > 0 (4) 

where 𝑡�̂� is an estimate of the true observation time 𝑡𝑐, and 𝛼 and 𝛽 are positive numbers 

that specify a range of the integral of the same size as equation (3). A similar problem of 

assigning credit to train a learning agent with only the signal time instance has been 

discussed by Knox et al. who proposed the TAMER framework for high action frequencies 

training where multiple states can be observed within a second [15, 16]. One example of 

𝑓𝑡𝑟𝑎𝑐𝑒 provided by Knox et al. is a uniform distribution ranging from -0.8 to -0.2, which is 

adopted from a paper on human reaction times in visual search problems [63]. Because 

operators primarily observe chatter through their auditory sense of hearing, and a subject-

specific human-machine interface has been designed and developed for chatter detection, 

we performed controlled reaction time experiments on human subjects using the HMI for 

chatter detection to determine 𝑓𝑟𝑒𝑎𝑐𝑡. This probability density function is then utilized as 

the basis for developing the learnable skill primitive algorithm in Chapter 4.   
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Figure 14. Reaction time collection apparatus. 

 

Figure 14 shows the HMI apparatus for the reaction time experiments. The 

experiments were conducted per the Georgia Institute of Technology IRB Protocol H20340 

[64], which was specifically drafted for human subject research in chatter detection. The 

human subjects were instructed to wear the headphones before the experiment. Samples of 

synthetically generated sounds of different frequencies that lasted one second each were 

played, and the human subjects were asked to respond to the sound by depressing the 

control button as soon as they heard the sound. In total, each human subject responded to 

90 samples of synthetically generated tones that respectively simulated three different 

frequencies of chatter. Table 2 lists the number of samples generated for the simulated 

chatter frequencies of 500 Hz, 2000 Hz, and 3500 Hz, respectively. These frequencies were 

selected based on a reported range of chatter frequencies observed in a well-cited milling 

study [17]. One of three silence intervals (2, 3, or 4 seconds) between two consecutive 
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sound samples were assigned to 30 samples, and the samples were fully randomized to 

avoid the subject’s anticipation of the sound.  

 

Table 2. Human subject reaction time experiments. 

Frequency 
2 seconds 
silence interval 

3 seconds 
silence interval 

4 seconds 
silence interval 

Subtotal 

500 Hz 10 samples 10 samples 10 samples 30 samples 

2000 Hz 10 samples 10 samples 10 samples 30 samples 

3500 Hz 10 samples 10 samples 10 samples 30 samples 

Subtotal 30 samples 30 samples 30 samples 90 samples 

  

Figure 15 is a histogram of the reaction times obtained from the 90 samples 

collected from a human subject. The samples are distributed in 10 equally spaced bins, and 

a Gaussian distribution is fit to the samples for analysis. The sample mean reaction time 

�̅� is then obtained as: 

 �̅� =  
1

𝑛
∑𝑟

𝑛

𝑖=1

=
1

𝑛
∑(𝑡𝑠,𝑖 − 𝑡𝑐,𝑖), 𝑛 = 90

𝑛

𝑖=1

   (5) 

where n is the number of samples. For the reaction time of operator C shown in Figure 15, 

�̅� is 0.395 seconds and the sample standard deviation, 𝑠�̅� , is 0.069 seconds. Note that in this 

work the Gaussian distribution is used to model 𝑓𝑟𝑒𝑎𝑐𝑡 in terms of the mean and standard 

deviation of the data set since it fits the data reasonably well. Other distributions may fit 

the reaction data more accurately; however, for our purposes,  𝑓𝑟𝑒𝑎𝑐𝑡  only serves as a basis 
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for determining the parameters in the perception mapping algorithm. In Chapter 4, the 

model of 𝑓𝑡𝑟𝑎𝑐𝑒 is further relaxed to be a uniform distribution for simplicity and processing 

speed. Therefore, the fitting accuracy of the 𝑓𝑟𝑒𝑎𝑐𝑡 distribution is less significant.  

 

 

Figure 15. Reaction time histogram and distribution of 90 samples from a human subject. 
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Figure 16. Reaction time boxplot for different chatter frequencies. 

 

To evaluate the effect of different chatter frequencies on a human subject’s reaction 

time, assuming the data sets follow a Gaussian distribution, one-way ANOVA was 

performed on the data sets corresponding to the three simulated chatter frequencies.  

 

Table 3. Statistics of reaction time data from human subject experiments. 

 
Mean Reaction Time 

(s) 

Standard Deviation 

(s) 

Reaction to Different 

Chatter Frequencies 

ANOVA P-Value 

Operator A 0.306 0.061 3.35×10-7 

Operator B 0.323 0.079 9.43×10-5  

Operator C 0.395 0.069 0.1455 

 

Table 3 lists the mean and standard deviation of the reaction times for each human 

subject and the corresponding P-value of the ANOVA. As expected, each operator has a 

unique reaction time to the synthetically generated sound. The largest difference between 
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the mean reaction times is 0.089 seconds, which is large since it is 30% of the fastest mean 

reaction time. There is also an approximately 30% difference between the largest and 

smallest standard deviations. Finally, the P-values of the ANOVA tests indicate that for 

some operators the reaction time is significantly different based on the chatter frequency, 

while other operators do not seem to be affected as much. Therefore, the dependence of the 

subject’s reaction time to the chatter frequency is inconclusive. In Chapter 4, the chatter 

detection algorithm is calibrated using the unique reaction time data for each individual 

operator. 

 

3.6 Summary 

In this chapter, the analogy between LfD in robotics and its application to machining 

chatter detection was discussed. The human-machine interaction in chatter detection was 

modelled as a humanistic computational loop, a human-machine interface for the 

machining process was designed, and a methodology to evaluate a human operator’s 

reaction time for use in perception mapping of the human’s chatter detection ability to the 

machine’s ability to detect chatter was presented.   
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CHAPTER 4 ON-LINE CHATTER DETECTION THROUGH 

LEARNABLE SKILL PRIMITIVE 

 

4.1 Introduction 

This chapter presents the development of the “learnable skill primitive” (LSP) 

approach for chatter-specific knowledge transfer from a human operator to a machine. 

Using the perception mapping methodology described in Chapter 3, the LSP is developed 

as a learning algorithm for identification of a chatter detection threshold based on temporal 

input signals from a human operator and the delayed reaction time distribution obtained 

from human reaction time experiments. The LSP method stems from on-line chatter 

detection algorithms that are based on frequency spectrum analysis. The frequency 

decomposition of the audio signal generated during machining is leveraged by the human 

demonstration through LSP method. Because the LSP method is developed as a generic 

algorithm for extracting a chatter detection threshold inversely from demonstration, the 

objective is to improve robustness (better accuracy and speed across a range of cutting 

conditions and workpiece materials) in comparison to deterministically setting chatter 

detection thresholds.  

In the following sections, a detailed description of the data acquisition and signal 

processing method is presented, the LSP methodology for establishing the chatter detection 

threshold is introduced, and the on-line learning performance of the LSP is experimentally 

evaluated. 
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4.2 Experimental Setup and Data Acquisition 

4.2.1 Milling Experimental Setup 

A milling process is selected for the experiments. Figure 17 shows the experimental 

setup. The experiments were conducted on an Okuma MILLAC 44V 3-axis CNC milling 

machine using a four flute solid carbide end mill with 12.7 mm diameter and 25.4 mm 

cutting length, which was held in an Iscar CAT 40 end mill holder. A USB Blue Yeti studio 

style condenser microphone (model number 988-000101) was mounted inside the milling 

machine as seen in the figure. Multiple passes of slot end milling experiments, i.e. 100% 

radial immersion, were conducted on a AISI 4140 Steel workpiece (Cold Finished ASTM 

A108 Steel bar, 84.1 HRB Rockwell B Hardness) under different axial depths of cut and 

spindle speeds to generate various chatter and stable cutting signals. As lot end milling 

process was selected to temporarily isolate chatter signals from large amplitude variations 

at the tooth passing frequency in the cutting signal that are typical of a peripheral end 

milling process. A more in-depth analysis of the effectiveness of LSP under radial 

immersions representative of peripheral milling is presented in Chapter 5. 
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Figure 17. Experimental setup of machine tool-tool holder-end mill system and 

microphone.  

 

 

 
Figure 18. AISI 4140 Steel workpiece with test cuts. 
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4.2.2 Sensor Selection and Signal Processing Method 

The objective of the LSP is to learn a chatter detection threshold from a human 

operator’s demonstration. A fundamental hypothesis of this work is that the human 

operator recognizes chatter as an emerging dominant frequency of sound in the milling 

process. At chatter onset, a significant increase in amplitude of a specific chatter frequency 

is observed. Therefore, to obtain useful information that can be gained from a human 

operator’s demonstrations, the sensor and signal processing methodology must emulate the 

perception and reasoning ability of a human operator during chatter detection.   

 

Figure 19. Frequency response curves of the blue yeti microphone [65]. 

 

Acoustic sensors such as microphones sample audio signals that mimic a human’s 

hearing ability. In this work, a Blue Yeti USB studio-style condenser microphone was 

selected for its relatively flat frequency response and the integrated analog-to-digital signal 

converter. The cardioid mode was chosen to isolate the direction of the audio signal by 

facing the microphone toward the end mill. The frequency response of the microphone is 

suitable for chatter monitoring because it provides comparable frequency responses across 

a wide range of frequencies from 20 Hz to 20 kHz. The microphone’s integrated analog-

to-digital converter enables direct processing of signals by the micro-controller without an 

additional signal processing interface. A Raspberry Pi 4 Model B (from CanaKit) was 
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selected as the micro-controller to process signals acquired from the USB microphone. The 

Raspberry Pi Unit in this work has 4 GB of RAM and a quad-core processor, making it 

suitable for complex online signal processing and visualization. In addition to processing 

power, the Raspberry Pi has a Linux-based desktop interface for programming in Python. 

The 16-bit digital audio signals sampled at 48 KHz were acquired through the Raspberry 

Pi’s default advanced Linux sound architecture (ALSA) and PyAudio, an open-source 

python audio processing package [66]. The 16-bit digital signals were converted into a 

series of integers ranging between -32768 and 32767, or −215 and (215 − 1). 

  

 

 

Figure 20. Experimental workflow for data acquisition. 

 

 

The raw data was then processed for chatter detection. Although other 

computationally efficient chatter detection methods exist [8, 19], the Fast Fourier 

Transform (FFT) is a frequency spectrum analysis method that identifies the frequency 
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content in an manner similar to the human’s hearing ability [67, 68]. The FFT is a 

computationally efficient method of Discrete Fourier Transform (DFT) suitable for real-

time signal analysis. The DFT is given as:  

 𝑋𝐹(𝑚) =  ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑚

𝑛
𝑁

𝑁−1

𝑛=0

,     𝑚 = 0,⋯ , 𝑁 − 1 (6) 

Frequency spectrum analysis using FFT enables a range of frequencies and their 

amplitudes to be identified, which correspond to human perception’s pitch and volume, 

respectively. Applying FFT to the audio signals results in data that closely resembles the 

human’s perception of chatter. Although chatter frequencies are typically lower than 10 

kHz, a human ear can detect frequencies between 20 Hz to 20 kHz. Therefore, the sampling 

rate of the audio signal was 48 kHz, which means frequency content up to 24 kHz can be 

identified by the FFT. The selected FFT bin size, N, is 2048; i.e. for each set of 2048 data 

points collected at a rate of 48000 data points per second, the FFT is performed once, which 

results in a frequency resolution of approximately 23.43 Hz. The chosen bin size of 2048 

is a compromise between good FFT resolution and high update speed. With the FFT 

updated every 0.043 seconds, the changes in amplitudes of the frequencies are captured 

quickly, while an acceptable FFT resolution is maintained. 

 

4.3 Learnable Skill Primitive for Chatter Detection—Methodology 

 

4.3.1 On-line Chatter Detection Methods based on Frequency Spectrum Analysis 

The audio signals acquired from an unstable milling operation consist of the 

periodic spindle rotation frequency, the tooth passing frequency and its harmonics, the 

chatter frequency, and other environmental and measurement noises. Nguyen et al. [19] 
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reported an efficient chatter detection method in turning that compares the magnitudes of 

the two largest peaks in the FFT. The peak ratio threshold 𝑃𝑅 is defined as the threshold 

for chatter detection: 

 𝑃𝑅 =
𝑃1
𝑃2

 (7) 

where 𝑃1 and 𝑃2 are the amplitudes of the two largest peaks in the FFT. The assumption 

here is that chatter frequency is dominant when chatter occurs, and 𝑃1 is the amplitude of 

the chatter frequency. When the ratio of the peaks exceeds 𝑃𝑅, the algorithm determines 

that chatter has occurred. However, the value of 𝑃𝑅 must be experimentally determined and 

manually tuned by research engineers. The pre-determined threshold can be difficult to set 

due to variations in sensors, cutting tool, and cutting conditions.  

 Therefore, instead of relying on research engineers to tune the chatter detection 

thresholds manually, the LSP learns the chatter detection threshold from a human 

operator’s demonstration, which leverages the skill and experience of the operator in 

recognizing chatter. To accurately detect chatter in a milling operation as early as possible, 

there are two parameters that need to be learned from the human operator’s demonstration: 

1) the dominant chatter frequency 𝑓𝑐ℎ𝑎𝑡𝑡𝑒𝑟, and 2) the chatter detection threshold 𝑃𝑡ℎ. 

 

4.3.2 Identifying the Dominant Chatter Frequency  

 Based on the human operator’s demonstration, the dominant chatter frequency is 

identified as the highest peak in the FFT at time instance 𝑡𝑠, which is the time instance 

when the human operator signals chatter by pressing a push button switch. Because of the 

natural delay in the human’s operator’s reaction to detection of chatter, the hypothesis is 

that the amplitude of the chatter frequency has increased significantly by time instance 𝑡𝑠 
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such that the chatter frequency has the highest amplitude among all frequencies in the 

spectral decomposition obtained through the FFT. This hypothesis is confirmed by 

experimental data. Figure 21 shows the chatter frequency at approximately 770 Hz as the 

highest peak in the FFT. The process to identify the chatter frequency is represented 

symbolically as: 

 𝑓𝑐ℎ𝑎𝑡𝑡𝑒𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚(|𝑋𝐹(𝑚)|) ∙
𝑓𝑠
𝑁

 (8) 

where 𝑓𝑠 is the sampling frequency of the audio signal, and N is the bin size of the FFT.  

 

Figure 21. Chatter frequency at time instance 𝒕𝒔. 4140 Steel, 1000 RPM, 2.5 mm DOC and 

132 mm/min feed rate. 

 

 

Knowing the chatter frequency, 𝑓𝑐ℎ𝑎𝑡𝑡𝑒𝑟, we define 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) as a time-series of 

the chatter frequency’s magnitude divided by 215 ∙ 𝑁  evaluated at each discrete time 

instance, where 215 is the maximum possible value of the 16-bit digital audio signal and N 

is the bin size of the FFT. Similarly, 𝑃𝑛𝑜𝑡𝑐ℎ(𝑡) is defined as the time series of the maximum 

amplitude of notch filtered signals from each bin of the FFT divided by 215 ∙ 𝑁. Both 
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𝑃𝑛𝑜𝑡𝑐ℎ(𝑡) and 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) are identified in this work as frequency spectrum ratio, as they 

are the ratios of the magnitude of particular frequency content and its maximum possible 

value. In the following section, the methods for pre-processing the audio signal to 

isolate 𝑃𝑛𝑜𝑡𝑐ℎ(𝑡) and 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) are presented. 

 

4.3.3 Pre-processing of Audio Signals 

As mentioned in Section 4.3.1, the audio signal acquired via the microphone is a 

combination of the periodic spindle rotation frequency, the tooth passing frequency and its 

harmonics, and any potential noise in the production environment. When chatter occurs, a 

dominant chatter frequency emerges in the frequency domain. In order to detect chatter as 

soon as possible, the periodic component of the cutting signal must be first removed using 

notch filters. Although slot end milling operations are not significantly affected by the 

spindle frequency and its harmonics, as in a peripheral end milling operation, removal of 

the periodic components is crucial to reduce the impact of large-amplitude periodic signals 

on the ability to detect the chatter frequency. In this work, twelve harmonics of the spindle 

rotation frequency (up to three times the tooth passing frequency) are removed by notch 

filters designed to isolate the chatter frequency. When the chatter frequency is unknown, 

the notch filters provide the best isolation of the chatter frequency for setting the chatter 

detection threshold. 

However, because the audio signals acquired from the condenser microphone are 

subject to interference from noise in a production environment, a chatter frequency specific 

band-pass filter is applied to isolate the known chatter frequency identified from 

demonstrations.  
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Figure 22. Signal pre-processing approach. 

  

Figure 22 summarizes the signal pre-processing workflow of the LSP method, 

where an additional band-pass filter serves to isolate the known chatter frequency from 

previous demonstrations. If a previous demonstration does not exist, the band-pass filter is 

by-passed. The pre-processed data is then used to establish a chatter detection threshold. 

The next section presents details of the process. 

  

4.3.4 LSP Method for Chatter Detection—Approach Overview 

The LSP method seeks to learn a chatter detection threshold 𝑃𝑡ℎ . This section 

provides an overview of the training and testing phases of the LSP method for a milling 

process. Note that the LSP is developed for continuous monitoring of the milling process, 

which means that in the real application the difference between training and testing is 

decided by whether a human operator demonstration is provided or not.   
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Figure 23. Initialization of the LSP method. 

 

Figure 23 shows the initial state of the LSP algorithm without any prior of the 

chatter detection threshold, 𝑃𝑡ℎ, and chatter frequency,  𝑓𝑐ℎ𝑎𝑡𝑡𝑒𝑟 . In addition, the figure 

shows that without human demonstrations, the band-pass filter is by-passed. In this case, 

no chatter detection threshold is established from demonstration, which means that the 

machine does not detect chatter. To draw an analogy, in its initialization state the machine 

is similar to a novice operator who is clueless about chatter. 



56 

 

 

Figure 24. Training the LSP with a human operator demonstration. 

 

Figure 24 shows how the LSP is trained by a single human operator demonstration. 

The inputs to the algorithm are the digital audio signals acquired from the microphone and 

the time instance the human signals chatter, 𝑡𝑠, from the human demonstration, and the 

outputs are 𝑓𝑐ℎ𝑎𝑡𝑡𝑒𝑟 and 𝑃𝑡ℎ. Note that to obtain any information from the demonstration, a 

time period of signals preceding the demonstration must be recorded and dynamically 

updated such that the chatter frequency and the chatter detection threshold can be identified 

from the demonstration. An example of chatter is demonstrated to the machine by the 

operator, and the chatter frequency 𝑓𝑐ℎ𝑎𝑡𝑡𝑒𝑟 is identified as the frequency with the highest 

amplitude at 𝑡𝑠 . The pass-band of the band-pass filter is set to 𝑓𝑐ℎ𝑎𝑡𝑡𝑒𝑟 ± 100 𝐻𝑧. The 

recorded data preceding the demonstration is filtered by the band-pass filter, resulting in 

𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) as introduced in Figure 22 and 𝑃𝑡ℎ is established through the LSP.  
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Figure 25. Implementing 𝑷𝒕𝒉 – confirmation of chatter. 

 

In the scenario illustrated in Figure 25, a chatter detection threshold has been 

established from a previous demonstration, and chatter is confirmed when the data 

processed through the band-pass filter 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) exceed 𝑃𝑡ℎ. Although in this case the 

notch filtered data 𝑃𝑛𝑜𝑡𝑐ℎ(𝑡) is redundant for chatter detection, it is useful for the scenario 

depicted in Figure 26 where 𝑃𝑛𝑜𝑡𝑐ℎ(𝑡) produces different results than 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡). 
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Figure 26. Implementing 𝑷𝒕𝒉 – disagreement in chatter detection. 

 

 

 In the scenario depicted in Figure 26, 𝑃𝑛𝑜𝑡𝑐ℎ(𝑡) exceeds 𝑃𝑡ℎ but 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) from 

the bandpass filter does not, which indicates that the chatter frequency detected from the 

data is different from the known chatter frequency. Note that in this scenario, because the 

notch filtered data is more prone to noise, it is possible that spikes of noise can accidentally 

exceed 𝑃𝑡ℎ. It is then important to make sure that 𝑃𝑛𝑜𝑡𝑐ℎ(𝑡) correctly reflects chatter. The 

adjustment to 𝑃𝑡ℎ(𝑡) based on 𝑃𝑛𝑜𝑡𝑐ℎ(𝑡) can be extensive and is not discussed in this work; 

instead, the same 𝑃𝑡ℎ obtained from 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) is also applied to 𝑃𝑛𝑜𝑡𝑐ℎ(𝑡). Finally, while 

it is likely for 𝑃𝑛𝑜𝑡𝑐ℎ(𝑡)  to detect chatter when 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)  indicates stable cutting, 

theoretically it cannot be the other way around because the data is filtered through the band-

pass filter after the notch filters. 
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Figure 27. Implementing 𝑷𝒕𝒉 – confirmation of stable cutting condition. 

  

Similarly, Figure 27 shows that if both 𝑃𝑛𝑜𝑡𝑐ℎ(𝑡) and 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) indicate stable 

cutting, the stability of the cutting process is confirmed. The next section presents a 

probabilistic analysis that serves as a basis for the LSP algorithm to determine 𝑃𝑡ℎ 

from 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡). 

 

4.3.5 Probabilistic Analysis of the Time Instance of Chatter Mark Appearance 

 With the chatter frequency known, the threshold 𝑃𝑡ℎ is defined as the threshold for 

chatter detection. When 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)  exceeds  𝑃𝑡ℎ , the algorithm classifies the cutting 

process as unstable due to chatter. An ideal threshold value of  𝑃𝑡ℎ is a value of 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) 

obtained a short time period before the time instance 𝑡𝑎 when chatter marks first appear on 

the workpiece.  
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Figure 28. Chatter mark time instance 𝒕𝒂 relative to time instance the operator signals 

chatter 𝒕𝒔; the time series shown is 𝑷𝒄𝒉𝒂𝒕𝒕𝒆𝒓(𝒕). 
 

Figure 28 shows the correspondence between chatter marks on the workpiece at the 

chatter mark instance 𝑡𝑎 and the frequency spectrum ratio.  

In the experiment, the distance between the first chatter mark and the start of cut at 

the workpiece edge is measured as shown in Figure 29, and 𝑡𝑎 is calculated from the feed 

rate of the milling process and the time instance of tool entry into the workpiece. 
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Figure 29. Caliper measurement of the chatter mark from point of tool entry into the 

workpiece. 

 

However, in an actual production setting, 𝑡𝑎 is hard to obtain in-process, and even 

if out-of-process measurement is possible, interacting cutting tool paths can make it hard 

to determine the exact value of 𝑡𝑎.  

A better alternative is to evaluate the time instance 𝑡𝑐 when the human operator first 

observes chatter, as defined in Chapter 3. While 𝑡𝑐 cannot be measured precisely because 

of the variable reaction times of human operators, the probability of its occurrence in time 

can be estimated via the tracing distribution 𝑓𝑡𝑟𝑎𝑐𝑒  derived from perception mapping as 

follows: 

 𝑃𝑟[𝑡𝑠 − 𝛽 ≤ 𝑡𝑐 ≤ 𝑡𝑠 − 𝛼] = ∫ 𝑓𝑡𝑟𝑎𝑐𝑒(𝑡�̂�)
𝑡𝑠−𝛼

𝑡𝑠−𝛽

𝑑𝑡�̂�,         𝑎, 𝑏 > 0 (9) 

Note that the probability distribution function is continuous; however, the audio signal 

acquired from the microphone is discretized as a time-series. The above equation is 
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modified to calculate the discrete probability of 𝑡𝑐. To do this, we define a finite sequence 

𝑎 where 𝑎1, ⋯ , 𝑎𝑛 are all discrete time instances separated by 
𝑁

𝑓𝑠
, where N is the FFT bin 

size and  𝑓𝑠  is the sampling frequency, and bounded as  𝑡𝑠 − �̅� − 6 ∙ 𝑠�̅� ≤ 𝑎𝑖 ≤ 𝑡𝑠 . The 

hypothesis underlying this approach is that 𝑡𝑠 is the time instance when the probability of 

chatter is 100%, which is later confirmed by the human operator’s chatter detection 

accuracy. Six times 𝑠�̅� represents six times the standard deviation of �̅� based on the human 

reaction time distribution experiment discussed in Chapter 3. 

 

 

Figure 30. Discrete probability of 𝒕𝒄. 
 

 

As shown in Figure 30, the probability of 𝑡𝑐 falling within the specified range of n 

data instances can be approximated as 1. Then the equation 8 is transformed into: 

 𝑃𝑟(𝑎1 ≤ 𝑡�̂� ≤ 𝑎𝑖) =∑𝑃𝑟(𝑡�̂� = 𝑎𝑖)

𝑗

𝑖=1

,    𝑗 ∈ 1, 2, … , 𝑛 (10) 

In other words, as time progresses and 𝑖 increases, there is a greater likelihood of the 

estimated chatter observation time instance to be within the range 𝑎1 ≤ 𝑡�̂� ≤ 𝑎𝑖, and the 

probability for the chatter observation instance 𝑡�̂�  to be in the range of 𝑎1 ≤ 𝑡�̂� ≤ 𝑎𝑛 is 

approximated as 1. If we assume that 𝑡�̂�  has uniform probability at each discrete time 

instance: 
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 𝑃𝑟(𝑡�̂� = 𝑎𝑖) =  𝑃𝑟(𝑡�̂� = 𝑎𝑗),     𝑖, 𝑗 ∈ 1,2,⋯ , 𝑛 (11) 

Based on the above, Equation (10) can be further simplified to: 

 𝑃𝑟(𝑎1 ≤ 𝑡�̂� ≤ 𝑎𝑖) =
𝑖

𝑛
,    𝑖 ∈ 1, 2… , 𝑛 (12) 

In summary, the probability of 𝑡𝑐 to be in the range of 𝑎1 ≤ 𝑡�̂� ≤ 𝑎𝑖 is reduced to Equation 

(12), which states that the likelihood of the operator observing chatter at any time domain 

instance 𝑎𝑖 is equal. 

 

4.3.6 Defining the Chatter Detection Threshold via Cumulative Chatter Probability 

Recall that 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) is defined as a time-series of the frequency spectrum ratios 

derived from the FFT of the audio signal, and chatter is detected when the value of 

𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) exceeds  𝑃𝑡ℎ , which ideally equals a value of 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)  that is smaller 

than 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎) so that chatter is detected before chatter marks appear on the workpiece: 

 𝑃𝑡ℎ < 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎)  (13) 

However,  𝑡𝑎 is almost always unknown till after the machining operation, and therefore 

the threshold can be set as the value of 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) corresponding to the estimated chatter 

observation time instance  𝑡�̂� when the human operator first observes chatter: 

 𝑃𝑡ℎ = 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟( 𝑡�̂�)   (14) 

However, the only information known from Equation (11) is that there is equal likelihood 

for  𝑡𝑐 to fall on any data point inside the sequence a, and the cumulative probability for 𝑡𝑐 

to be in the range 𝑎1 ≤ 𝑡�̂� ≤ 𝑎𝑖 increases linearly from 0 to 1. Thus, we define a decision 

boundary  𝜃 , where the cumulative probability of chatter equals a preset probability 

threshold 𝑘: 
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𝐶 = min{𝑖|𝑃𝑟(𝑎1 ≤ 𝑡�̂� ≤ 𝑎𝑖) > 𝑘;  𝑖 ∈ 1, 2… , 𝑛} , 0 ≤ 𝑘 ≤ 1       

𝑎𝐶−1 < 𝜃 < 𝑎𝐶 

(15) 

where 𝐶 is the index of the first time instance of 𝑎 for which the cumulative probability 

exceeds 𝑘  and 𝜃  is defined as the time instance interpolate between 𝑎𝐶  and 𝑎𝐶−1  such 

that 𝑃𝑟(𝑎1 ≤ 𝑡�̂� ≤ 𝜃) = 𝑘. The value of 𝑘 can be deterministically set or optimized based 

on experimental data to obtain a desired false detection rate, and the chatter detection 

threshold becomes: 

 𝑃𝑡ℎ = 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝜃) (16) 

In the next sections, chatter detection thresholds are obtained from milling 

experiments, and the on-line learning performance of the LSP method is evaluated and 

discussed.   

 

4.4 On-line Learning Experiments 

In this section, the quality of a human operator’s demonstrations is analyzed, and the 

performance of the LSP method in setting the chatter detection threshold is assessed.  

 

4.4.1 Human Demonstrations 

A set of milling experiments was conducted on a block of AISI 4140 steel to capture 

the human operator’s demonstrations. The tests were designed such that the human 

operator would encounter both stable and unstable (chatter) cutting conditions. When the 

human operator judged a process to be stable, the operator was instructed to do nothing 

during the cutting experiment; conversely, when the human operator detected chatter, the 

operator was instructed to depress a push button switch that enabled the time instance of 
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chatter signaled by the operator, 𝑡𝑠, to be recorded. Regardless of the human operator’s 

reactions, the cutting experiments were not interrupted, which enabled post-mortem 

evaluation of the experimental evidence of chatter marks on the workpiece.  

There are two evaluation metrics for the human demonstrations, namely, a human 

operator’s chatter recognition accuracy and his/her chatter recognition speed. The chatter 

recognition accuracy refers to the ability of the human operator to correctly differentiate 

between a stable and an unstable process. A human operator’s demonstration is accurate if 

the operator correctly signals chatter for a process that yields visual evidence of chatter 

marks on the workpiece, or if the operator does not signal chatter for a stable process that 

does not produce any chatter marks on the workpiece. The chatter recognition speed refers 

to whether a human operator observes chatter before or after chatter marks appear on the 

workpiece. 

 

Figure 31. Chatter mark instance in a milling experiment. 

 

The speed of chatter recognition is more difficult to determine because the time 

instance the operator signals chatter, 𝑡𝑠 , is distinct from the time instance the operator 

observes chatter, 𝑡𝑐. While 𝑡𝑠 is almost always too late compared to 𝑡𝑎, it does not represent 

the true instance of human chatter observation,  𝑡𝑐 . Therefore, the operator’s chatter 

recognition speed is defined as 𝑡𝑎 − 𝑡𝑐. If 𝑡𝑎 − 𝑡𝑐 > 0, the human operator observes chatter 

before chatter marks appear on the workpiece; if 𝑡𝑎 − 𝑡𝑐 < 0, the human operator observes 
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chatter after the chatter marks appear on the workpiece. Because the exact value of 𝑡𝑐 in 

each milling experiment is unknown, a direct calculation of  𝑡𝑎 − 𝑡𝑐  is not possible. 

However, recall that from Equation (5) in 3.5 the sample mean reaction time �̅� of the human 

operator was determined from synthetically generated audio signals that emulate chatter. 

Similarly, the difference, d, between the time instance of the operator’s signal and the time 

instance chatter mark appears on the workpiece can be calculated as:  

 

 𝑑 = 𝑡𝑠 − 𝑡𝑎 (17) 

Therefore, 𝑡𝑎 − 𝑡𝑐 can be rewritten as: 

  𝑡𝑎 − 𝑡𝑐 = (𝑡𝑠 − 𝑡𝑐) − (𝑡𝑠 −  𝑡𝑎) = 𝑟 − 𝑑 (18) 

Equation (18) represents the difference between the chatter mark time instance and the time 

instance of human observation in a single demonstration. Again, 𝑟 for each demonstration 

is unknown because 𝑡𝑐 is not measurable precisely, but from Equation (5) the sample mean 

�̅� can be obtained from the operator’s reaction to synthetically generated chatter sound, 

which hypothetically is an estimate of the actual mean reaction time of the human operator 

to detect chatter in a milling process. Therefore, the following equation can be deduced: 

 
�̅� =  

1

𝑞
∑𝑑

𝑞

𝑖=1

=
1

𝑞
∑(𝑡𝑠,𝑖 − 𝑡𝑎,𝑖)

𝑞

𝑖=1

 

𝑡�̅� − 𝑡�̅� ≅ �̅� − �̅� 

(19) 

where �̅� is the sample mean difference between human signal instances and chatter mark 

instances, and 𝑞 is the number of samples. Therefore, if �̅� − �̅� > 0, the human operator 

observes chatter before chatter marks appear on the workpiece; if �̅� − �̅� < 0, the human 

operator observes chatter after chatter marks appear on the workpiece. The chatter 
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recognition speed (i.e. whether the human operator recognizes chatter early or late) defined 

by �̅� − �̅� is thus obtained.  

 

Figure 32. Example of human operator’s recognition of chatter before chatter marks 

appear on the workpiece. 

 

The signal time instance 𝑡𝑠 of each milling experiment was recorded. The chatter 

mark was measured from the point of tool entry into the workpiece. Using the operator’s 

mean and standard deviation of reaction times described in Chapter 3, the finite sequence 

a was determined for each demonstration. Recall that a is bounded by the mean reaction 

time minus six times the standard deviation of the reaction time and the human signal time 

instance. Table 4 lists the values of 𝑡𝑎, 𝑎1 and 𝑎𝑛 of nine unstable cuts and five stable cuts.  
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Table 4. Experimental results of human demonstrations of chatter on 4140 steel workpiece. 

Operator 
Human 

Observation 

Spindle 

Speed 

(RPM) 

Axial 

DOC 

(mm) 

𝑡𝑠  

(s) 

𝑡𝑐  

(s) 

𝑡𝑎  

(s) 

 𝑎1 

(s) 

𝑎𝑛 

(s) 

A Chatter 750 3.5 7.591 7.285 7.790 6.919 7.591 

A Chatter 2000 2 3.917 3.611 3.547 3.245 3.917 

A Chatter 2000 2.5 3.785 3.479 3.110 3.113 3.785 

B Chatter 750 3.5 8.310 7.987 8.104 7.513 8.310 

B Chatter 2000 3 3.457 3.134 3.010 2.660 3.457 

C Chatter 1000 2.5 8.464 8.069 8.088 7.655 8.464 

C Chatter 1000 3 6.690 6.295 6.260 5.881 6.690 

C Chatter 1750 2 4.489 4.094 4.005 3.680 4.489 

C Chatter 1750 2.5 4.076 3.681 3.758 3.267 4.076 

A Stable 750 3 No chatter mark on the workpiece 

A Stable 2000 1.5 No chatter mark on the workpiece 

B Stable 750 3 No chatter mark on the workpiece 

B Stable 2000 2 No chatter mark on the workpiece 

C Stable 1000 2 No chatter mark on the workpiece 

 

 

Demonstrations by three human operators were collected through fourteen cutting 

experiments listed in Table 5. The results show that the human operators were able to 

accurately distinguish chatter from stable cutting in all fourteen experiments. Among the 

chatter experiments, eight out of nine demonstrations show that the chatter mark instance 

𝑡𝑎 falls between 𝑎1 and 𝑎𝑛, with the exception of the first experiment where the operator 

signaled chatter even before the chatter mark appeared on the workpiece. The mean 

difference between the human signal instance and the chatter mark instance �̅� is 0.407, 
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which is higher than all three mean reaction times of the human operators (0.306, 0.323, 

and 0.395). Therefore, �̅� − �̅� < 0, which implies that on average the operator reacted to 

chatter shortly after the chatter mark appeared on the workpiece. As a result, although the 

data confirms that the human operators could accurately distinguish between stable and 

unstable cutting, the mean chatter recognition speed was too slow since the chatter marks 

had already appeared on the workpiece. Consequently, it is important to select a probability 

threshold 𝑘 that accounts for the late reaction the human operator to establish a chatter 

detection threshold that enables chatter detection before chatter marks appear on the 

workpiece.  

 

4.4.2 Applying the LSP – Results and Discussion 

The LSP method presented in the previous section was used to learn the chatter 

detection thresholds from each demonstration. Because a value of 0.5 for the probability 

threshold 𝑘 implies that the average human chatter observation time instance is the same 

as the chatter mark time instance, 𝑘  is set to 0.4 to account for the slower chatter 

recognition speed of human operators. For each chatter demonstration, Table 5 lists the 

chatter detection threshold  𝑃𝑡ℎ  obtained through application of the LSP method, the 

amplitudes of the chatter frequency at the chatter mark instance  𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎), and the 

maximum signal amplitude of the chatter frequency 𝑃𝑚𝑎𝑥. For stable cutting experiments, 

the 𝑃𝑡ℎ and 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎) are not applicable since chatter did not occur in these tests; 𝑃𝑚𝑎𝑥 

refers to the highest amplitude of 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) in a stable cutting operation.  
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Table 5. Chatter detection thresholds obtained from demonstrations through LSP in slot 

milling experiments on 4140 steel workpiece.  

Operator 
Human 

Observation 

Spindle 

Speed 

(RPM) 

Axial 

DOC 

(mm) 

𝑃𝑡ℎ 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎) 𝑃𝑚𝑎𝑥,𝑐ℎ𝑎𝑡𝑡𝑒𝑟 𝑃𝑚𝑎𝑥,𝑠𝑡𝑎𝑏𝑙𝑒 

A Chatter 750 3.5 0.020 0.038 0.143 N/A 

A Chatter 2000 2 0.038 0.056 0.092 N/A 

A Chatter 2000 2.5 0.209 0.039 0.451 N/A 

B Chatter 750 3.5 0.036 0.032 0.170 N/A 

B Chatter 2000 3 0.026 0.036 0.386 N/A 

C Chatter 1000 2.5 0.013 0.024 0.174 N/A 

C Chatter 1000 3 0.019 0.033 0.191 N/A 

C Chatter 1750 2 0.035 0.038 0.044 N/A 

C Chatter 1750 2.5 0.014 0.085 0.456 N/A 

A Stable 750 3 N/A 0.013 

A Stable 2000 1.5 N/A 0.003 

B Stable 750 3 N/A 0.021 

B Stable 2000 2 N/A 0.016 

C Stable 1000 2 N/A 0.004 

 

 

To evaluate the effectiveness of the 𝑃𝑡ℎ values determined from the demonstrations, 

each 𝑃𝑡ℎ  is first compared with 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎)  and 𝑃𝑚𝑎𝑥,𝑐ℎ𝑎𝑡𝑡𝑒𝑟  for nine chatter 

demonstrations, and then 𝑃𝑡ℎ  is compared with 𝑃𝑚𝑎𝑥,𝑠𝑡𝑎𝑏𝑙𝑒  for the stable cuts. Four 

possible outcomes are possible: early chatter detection, late chatter detection, false positive, 

and false negative.  
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Figure 33. Early chatter detection example. 

 

When 𝑃𝑡ℎ < 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎) chatter is detected before chatter marks appear on the 

workpiece, which is classified as early chatter detection; when 𝑃𝑡ℎ > 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎), chatter 

is detected after chatter marks appear on the workpiece surface, which results in late chatter 

detection. Figure 33 shows the time instance at the intersection of the chatter detection 

threshold 𝑃𝑡ℎ and the frequency spectrum ratio is earlier than the chatter mark instance 𝑡𝑎, 

whereas Figure 34 shows an example where the time instance corresponding to the chatter 

detection threshold occurs later than the chatter mark instance. Note that both early and 

late chatter detection cases indicate that chatter is detected during the milling operation. 
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Figure 34. Late chatter detection example. 

 

 

Figure 35. Example of a false negative chatter detection. 
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False negative means that the milling process is falsely classified as a stable process 

when 𝑃𝑡ℎ > 𝑃𝑚𝑎𝑥,𝑐ℎ𝑎𝑡𝑡𝑒𝑟. Figure 35 shows an example of a false negative chatter detection 

result. In this case, chatter marks were found on the workpiece, but the chatter detection 

threshold was set too high from the demonstration. Note that the y-axis of the figure is 

scaled differently to display 𝑃𝑡ℎ. On the other hand, a false positive result occurs when a 

stable milling process is falsely classified as an unstable process, which implies that 𝑃𝑡ℎ <

𝑃𝑚𝑎𝑥,𝑠𝑡𝑎𝑏𝑙𝑒 . Figure 36 illustrates a false positive result with the stable cutting signal 

crossing the chatter detection threshold multiple times. 

 

Figure 36. Example of a false positive case. 

 

 

False positives and false negatives are detection inaccuracies that should ideally be 

eliminated. For the chatter detection approach described in this thesis, a trade-off between 

a false positive classification and the detection speed must be considered. A lower detection 
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threshold typically implies an earlier detection time but tends to yield a higher rate of false 

positives. 

 

Table 6. Average performance of chatter detection thresholds. 

 Occurrence Total Tests Percentage 

Overall Accuracy 114 126 90.5% 

Early Detection 60 81 74.1% 

Late Detection 15 81 18.5% 

False Negative 6 81 7.4% 

False Positive 6 45 13.3% 

 

 

Table 6 shows the overall performance of the chatter detection thresholds (in Table 

5) determined from the human demonstration experiments and the LSP approach 

developed in this chapter. A total of 126 combinations of thresholds were evaluated. Out 

of 126 evaluations, 113 detected chatter or stable cutting conditions accurately without 

reporting false negatives or false positives, which corresponds to an overall accuracy of 

89.7%. Out of 81 chatter tests, 62 were detected early, 13 were late detections, and 6 were 

false negatives that corresponded to actual chatter instances that were undetected by the 

thresholds. Finally, 7 out of 45 stable cutting tests resulted in false positives. Although the 

results are not perfect, considering that each chatter detection threshold was learned from 

a single demonstration, the results are very promising and indicate an acceptable 

performance of the LSP as a classifier of the cutting process stability.  

It is also of interest to compare the performance of the LSP with the human’s ability 

to detect chatter. While specific corrective actions to suppress chatter are not addressed in 
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this thesis, potential corrective actions can be also learned by the LSP and applied 

immediately after the frequency spectrum ratio 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) crosses the chatter detection 

threshold 𝑃𝑡ℎ. Therefore, because the human signal instance 𝑡𝑠 is the earliest time instance 

the human operator is able to apply any corrective action to the cutting process, a 

comparison of  𝑃𝑡ℎ  and 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑠) is shown in Table 7 to illustrate that LSP is capable of 

initiating control actions at an earlier time instance than the human operator.  

 

Table 7. Average performance of 𝑷𝒕𝒉 and 𝑷𝒄𝒉𝒂𝒕𝒕𝒆𝒓(𝒕𝒔). 

 Performance of 𝑃𝑡ℎ 
Performance of 

𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑠) 

Overall Accuracy 90.5% 78.6% 

Early Detection 74.1% 16.0% 

Late Detection 18.5% 50.6% 

False Negative 7.4% 33.3% 

False Positive 13.3% 0.0% 

 

 

Table 7 indicates that the LSP yields an improved detection speed with an early 

detection rate of 74.1% compared to 16.0% for  𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑠). It also shows that the overall 

accuracy of 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑠) (78.6%) is lower, with an average false negative rate of 33.3% 

that is unacceptably high. Because a human operator actually recognizes chatter at an 

earlier time instance  𝑡𝑐 , the accuracy of 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑠)  is not equivalent to the human 

operator’s accuracy in chatter recognition; however, for a quantitative comparison of the 

LSP with the human operator, Table 7 confirms that the LSP outperforms the human 

operator by eliminating the natural delay in the human’s reaction time. 
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However, for practical applications in a production setting, the false detection rates 

must be further reduced. Note that the average performance does not represent the 

performance of any one threshold. Ideally the variance in performance should be small 

among different thresholds. A breakdown is shown in Table 8 to illustrate the performance 

of the different chatter detection thresholds.  

 

Table 8. Breakdown of the performance of different chatter detection thresholds. 

𝑃𝑡ℎ 
Early 

Detection Rate 

Late  

Detection Rate 

False 

Negative Rate 

False 

Positive Rate 

Detection 

Accuracy 

0.020 100.0% 0.0% 0.0% 20.0% 92.9% 

0.038 55.6% 44.4% 0.0% 0.0% 100.0% 

0.209 0.0% 33.3% 66.7% 0.0% 57.1% 

0.036 55.6% 44.4% 0.0% 0.0% 100.0% 

0.026 88.9% 11.1% 0.0% 0.0% 100.0% 

0.013 100.0% 0.0% 0.0% 40.0% 78.6% 

0.019 100.0% 0.0% 0.0% 20.0% 92.9% 

0.035 66.7% 33.3% 0.0% 0.0% 100.0% 

0.014 100.0% 0.0% 0.0% 40.0% 85.7% 

 

 

It can be seen in Table 8 that the highest chatter detection accuracy is 100%, and the 

lowest detection accuracy is 57%. Although most thresholds resulted in detection 

accuracies above 85%, two thresholds performed poorly with detection accuracies below 

80%. Such high variance in performance must be addressed, since the ideal objective is to 

learn an effective chatter detection threshold from a single demonstration.  

Specifically, the highest chatter detection threshold value, 0.209, is one order of 

magnitude greater than the other thresholds, and contributed to all instances of false 
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negatives. Figure 37 is plotted to investigate the cause of the high chatter detection 

threshold resulting from the corresponding human demonstration. Recall that on average 

the difference between �̅� and �̅� is smaller than illustrated in the figure, which means that it 

took much longer than the average time for the human operator to react to chatter during 

this milling test. 

 

 

Figure 37. Chatter mark instance 𝒕𝒂  and human signal instance 𝒕𝒔  for a sample 

demonstration by Operator A; spindle speed of 2000 RPM, axial depth of cut of 2.5 mm, 

and 264 mm/min feed rate on a 4140 steel workpiece. 

  

Similarly, Figure 38 indicates that the lowest chatter detection threshold was 

obtained from a demonstration where the operator’s reaction time to chatter was faster than 

average. It appears that the variance in the operator’s reaction time to chatter contributed 

to the variance in threshold values obtained from the demonstrations. In a scenario where 

multiple demonstrations are available, the impact of reaction time variance on the chatter 
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detection threshold can be reduced by taking the mean of the obtained thresholds. However, 

in a practical manufacturing application where damage to the workpiece must be 

minimized, a variance mitigation scheme must be developed to account for possible early 

or late reaction of human operators. 

 

 
Figure 38. Chatter mark instance 𝒕𝒂  and human signal instance 𝒕𝒔 for a demonstration by 

Operator C; spindle speed of 1000 RPM, axial depth of cut of 2.5 mm, and feed rate of 132 

min/mm on a 4140 steel workpiece. 
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4.5 Summary 

In this chapter, the concept of a “learnable skill primitive” (LSP) for chatter detection 

was introduced.  By integrating the human operator’s reaction time delay with the audio 

signals collected from a condenser microphone, the LSP approach was shown to be capable 

of learning the chatter detection threshold from the operator’s demonstrations with 

reasonable detection speed and accuracy such that in most cases chatter was detected early 

and accurately. Specifically, an acoustic microphone and a frequency spectrum based on-

line chatter detection method were selected for developing the LSP because an analogy can 

be drawn between a human’s hearing ability and the signals acquired from the microphone 

and analyzed via frequency spectrum analysis, where the frequency represents the pitch of 

the sound, and the amplitude is the volume. The LSP utilizes a probabilistic analysis of the 

human’s reaction time and implements a threshold based on the preset likelihood of the 

occurrence of chatter. It is clear from the experimental data that human operators can 

clearly distinguish between an unstable (chatter) and a stable cutting process. However, the 

results show that the average speed of chatter recognition is too slow resulting in human 

operators detecting chatter after chatter marks appear on the workpiece. The LSP learns 

from the human demonstration and sets the detection threshold accordingly, but due to high 

variance in the human operator’s reaction time, the chatter detection thresholds can be 

either too high or too low such that false negatives and false positives are obtained. Based 

on the experimental data, the average performance of the LSP yielded an overall chatter 

detection accuracy of 90.5% from a single demonstration, with most tests exhibiting early 

chatter detection prior to the appearance of chatter marks on the workpiece surface; 

however, the lowest detection accuracy was 57.1%, which is unacceptable for 
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manufacturing applications where only a single demonstration is possible. Therefore, in 

the next chapter, a human reaction variance mitigation strategy is developed to reduce the 

variance in the chatter detection thresholds. In addition, the robustness of the LSP to 

variations in the workpiece materials, cutting conditions (e.g., radial immersion), and 

cutting direction are evaluated. 
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CHAPTER 5 VARIANCE MITIGATION STRATEGY FOR THE 

LEARNABLE SKILL PRIMITIVE 

 

5.1 Introduction 

An in-depth introduction to the “Learnable Skill Primitive” (LSP) for chatter 

detection was presented in Chapter 4. While on average the chatter detection thresholds 

obtained from the human demonstrations via LSP showed good chatter detection accuracy 

and detection speed, it is clear from the data that high variance in the chatter detection 

thresholds can be detrimental to the general applicability of the LSP method when only 

one or a few demonstrations are possible. The high variance in the human operators’ 

demonstrations must be reduced through a variance mitigation strategy such that the 

consistency of the chatter detection thresholds obtained from the LSP approach is improved. 

In addition, for the LSP approach to be a robust chatter detection method that has potential 

for wide acceptance in the manufacturing industry, the approach must be robust to 

variations in workpiece material, cutting directions, and cutting conditions (e.g., radial 

immersion).   

In the following sections, a variance mitigation strategy for chatter detection using 

the LSP approach is presented, and its performance compared to the performance of the 

approach presented in Chapter 4. Specifically, the LSP and the variance mitigation strategy 

are applied to milling demonstrations, and the robustness of the resulting chatter detection 

thresholds is evaluated for different workpiece materials, directions of cut, and cutting 

conditions. 
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5.2 Variance Mitigation Strategy 

In this section, a variance mitigation strategy for the LSP is presented to reduce the 

negative impact of high variance in the human operator’s reaction times on the chatter 

detection thresholds determined using the approach described in Chapter 4. In Chapter 4, 

the variation in operator’s reaction time to chatter, denoted by 𝑟 = 𝑡𝑠 − 𝑡𝑐, was found to 

significantly influence the chatter detection thresholds and in turn the chatter detection 

accuracy and speed of detection. To distinguish the work presented in this Chapter from 

the  “naïve” approach presented in Chapter 4, the method presented earlier is referred to as 

the “naïve interpretation” approach where the variance in the reaction time of the operator 

during a demonstration is assumed to have negligible effect on the chatter detection 

threshold. The average accuracy of the chatter detection thresholds obtained using the naïve 

interpretation-based LSP is approximately 90.5%. However, a few thresholds showed 

significant variation in the chatter detection accuracy, which ranged from a high of 100% 

to a low of 57.1%. To minimize this variation, a heuristic rule-based variance mitigation 

strategy is proposed in this chapter and its chatter detection performance is evaluated. 

 

5.2.1 Drawbacks of the Naïve Interpretation 

In Chapter 3, a human operator’s reaction time to chatter was characterized by a 

Gaussian distribution defined by a mean and standard deviation of �̅� and 𝑠�̅�, respectively. 

In Chapter 4, the naïve interpretation was adopted to interpret the human’s input. As shown 

in Figure 39, assuming the true human observation instance 𝑡𝑐 is constant and the human 

signal instance 𝑡𝑠  is exactly equal to 𝑡�̅� , the estimated chatter observation instance 𝑡�̂�  is 

equal to the true chatter observation instance 𝑡𝑐. If the reaction time in a demonstration is 
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longer than the mean reaction time for the operator, the operator reacts to the chatter late 

and 𝑡�̂� > 𝑡𝑐; conversely, a short reaction time implies 𝑡�̂� < 𝑡𝑐.   

 

Figure 39. The effect of prompt signal instance 𝒕𝒔𝟏, late signal instance 𝒕𝒔𝟐 and early signal 

instance 𝒕𝒔𝟑 on 𝒕�̂�. 
 

 

 Although a large variance in 𝑡�̂� can result from the naïve interpretation, assuming 

the population follows a Gaussian distribution, the accuracy of the average 𝑡�̂�  estimate 

improves with the number of demonstrations.  

However, if only one or a few demonstrations are available, as would be typical in a 

production setting, the effectiveness of the naïve interpretation is subject to variation in the 

quality of demonstrations, namely, the timeliness of the operator’s reaction. Therefore, a 

variance mitigation strategy must be incorporated to reduce the impact of potentially poor-

quality demonstrations. 
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5.2.2 Variance Mitigation Strategy—Transient Period Rule 

The heuristic rule developed in this thesis follows an essential observation of 

chatter in milling. It has been experimentally observed that the first chatter mark appears 

during the emergence of the chatter frequency in the frequency spectrum of the measured 

audio signal before reaching its “steady-state” amplitude corresponding to “fully-

developed” chatter. Therefore, the premise of the heuristic rule is that the true 𝑡𝑐 should 

fall within a transient period where 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) ramps up before reaching steady-state or 

fully-developed chatter. This heuristic is termed here as the “transient period rule.” 

The transient period rule classifies the chatter signal into three periods: stable period, 

transient period, and chatter period. The boundary between the stable period and the 

transient period is denoted by 𝑡𝑠𝑡 while the boundary between the transient period and the 

chatter period is denoted by 𝑡𝑡𝑐. The task of identifying the transient period is then reduced 

to identifying 𝑡𝑠𝑡  and 𝑡𝑡𝑐, where 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑡𝑐) is the updated upper bound of the chatter 

detection threshold, 𝑃𝑡ℎ, and 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑠𝑡) is its  lower bound.  
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Figure 40. The transient period rule reduces the range of 𝑷𝒕𝒉. 

 

As shown in Figure 40, the transient period rule serves to limit the possible range of 

𝑃𝑡ℎ  by setting the upper bound to 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑡𝑐)  and the lower bound to  𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑠𝑡) , 

thereby mitigating the impact of large variations in the operator’s reaction time on the 

chatter detection thresholds i.e. poor quality demonstrations. 

The algorithm for determining 𝑡𝑠𝑡 and 𝑡𝑡𝑐 is as follows. Because the transient period 

is characterized by a rapid increase in the frequency spectrum ratio, the rate of change of 

the frequency spectrum ratio is first evaluated: 

 𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟 =
𝑑𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑑𝑡
 (20) 

However, the time derivative 𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟  is sensitive to the feed rate in milling. 

Therefore, 𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟 is normalized by the tooth passing frequency, which is given by the 

spindle rotation frequency multiplied by the number of cutting edges of the end mill, as 

follows: 
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𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟
𝑓𝑡𝑜𝑜𝑡ℎ

=
𝑑𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟
𝑓𝑡𝑜𝑜𝑡ℎ𝑑𝑡

 (21) 

where 𝑓𝑡𝑜𝑜𝑡ℎ is the tooth passing frequency. This normalization results in a dimensionless 

quantity that enables comparison across different feed rates. Figure 41 shows the 

normalized rate of change of the frequency spectrum ratio 
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟

𝑓𝑡𝑜𝑜𝑡ℎ
 for two feed rates. 

 

Figure 41. Normalized rate of change of frequency spectrum ratio; left: feed rate = 264 

mm/min, right: feed rate = 132 mm/min. 

 

Step 1 of the algorithm is to identify  max (
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
) , namely the highest 

normalized rate of change of the spectrum frequency ratio. Step 2 of the algorithm is to 

compare max (
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
) with a pre-determined upper limit of the normalized rate of 

change of frequency spectrum ratio. Based on the stable cutting region, where the 

likelihood of 𝑡�̂� is zero as shown in Figure 42, the upper limit, 𝑈𝐿, of  
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
 is set 

to 𝑈𝐿 = 𝜇𝑠𝑡𝑎𝑏𝑙𝑒 + 6 ∙ 𝜎𝑠𝑡𝑎𝑏𝑙𝑒, 𝜇𝑠𝑡𝑎𝑏𝑙𝑒 is the mean value of 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡) in the stable cutting 

region and 𝜎𝑠𝑡𝑎𝑏𝑙𝑒 is the corresponding standard deviation.  
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Figure 42. Stable cutting region where the likelihood of 𝒕�̂� falling is zero. 

 

Considering that the frequency spectrum ratio 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)  is proportional to the 

instantaneous cutting force and vibration in a milling process, the rationale for setting 

𝑈𝐿 = 𝜇𝑠𝑡𝑎𝑏𝑙𝑒 + 6 ∙ 𝜎𝑠𝑡𝑎𝑏𝑙𝑒  is that if the magnitude of increase in vibration from the 

previous tooth pass to the current tooth pass exceeds the average vibration plus six times 

its standard deviation in the stable cutting region, the milling process is certainly 

experiencing chatter. Based on this, 𝑡𝑡𝑐 assumes a value such that: 

 
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑡𝑐)

𝑓𝑡𝑜𝑜𝑡ℎ
= 𝑚𝑖𝑛 {𝑚𝑎𝑥 (

𝑑𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ𝑑𝑡
)

𝑈𝐿                               

 (22) 

If 𝑚𝑎𝑥
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
> 𝑈𝐿: 

 𝑡𝑡𝑐 = 𝑚𝑖𝑛 {𝑡|
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
= 𝑈𝐿} (23) 

 

 

Stable Cutting Region 
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Otherwise: 

 𝑡𝑡𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡(
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
) (24) 

This ensures that 𝑡𝑡𝑐 is set to the earlier of the two time instances. Similarly, Step 3 

of the algorithm calculates  
1

𝛾
∙ max (

𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
), while Step 4 compares it with  

1

𝛾
∙ 𝑈𝐿 , 

where 𝛾 is a parameter that can be tuned to yield the desired false positive rate. A high 

value of 𝛾 would increase the false positive rate, but a low 𝛾 can result in late detection of 

chatter. In this thesis, 𝛾 was set to 4. It follows that: 

 
𝑑𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑠𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ𝑑𝑡
= 𝑚𝑎𝑥

{
 

 
1

𝛾
∙ 𝑚𝑎𝑥 (

𝑑𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ𝑑𝑡
)

1

𝛾
 ∙ (𝑈𝐿)                           

 (25) 

Therefore, if 
1

𝛾
∙ max (

𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
) >

1

𝛾
∙ 𝑈𝐿: 

 𝑡𝑠𝑡 = 𝑚𝑖𝑛 {𝑡|
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
=
1
𝛾 ∙ max (

𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)
𝑓𝑡𝑜𝑜𝑡ℎ

)} (26) 

 

Otherwise: 

 𝑡𝑠𝑡 = 𝑚𝑖𝑛 {𝑡|
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
=
1
𝛾 ∙ 𝑈𝐿} 

(27) 

Which effectively sets 𝑡𝑠𝑡  to the later of the two time instances. Figure 43 is a flowchart 

summarizing the four steps of the transient period rule. 
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Figure 43. Flowchart of the transient period rule. 

 

Figure 44. Transient period rule; identify 𝒕𝒔𝒕 and 𝒕𝒕𝒄. 
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Figure 44 is an example of the transient period rule. 𝑡𝑡𝑐 is the first time instance when 

the lower of the top two horizontal lines intersects with 
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
, and 𝑡𝑠𝑡 is the first time 

instance when the higher of the bottom two horizontal lines intersects with 
𝐷𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡)

𝑓𝑡𝑜𝑜𝑡ℎ
. 

Note that 𝑡𝑠𝑡 is modulated based on 𝑡𝑠𝑡 ≤ 𝑡𝑡𝑐. In the next section, the effectiveness of the 

transient period rule is tested under different cutting conditions.  

5.2.3 Variance Mitigation Strategy—Results and Discussion 

Using the variance mitigation strategy defined by the transient period rule, the 

updated chatter detection thresholds,  𝑃𝑡ℎ , were computed for the demonstration 

experiments analyzed in Chapter 4 and are given in Table 9.  

Table 9. Updated chatter detection thresholds compared with the original chatter detection 

thresholds; workpiece material is 4140 steel. 

Operator 

Spindle 

Speed 

(RPM) 

Axial 

DOC 

(mm) 

Original 

𝑃𝑡ℎ 

Updated  

𝑃𝑡ℎ 
𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎) 𝑃𝑚𝑎𝑥,𝑐ℎ𝑎𝑡𝑡𝑒𝑟 𝑃𝑚𝑎𝑥,𝑠𝑡𝑎𝑏𝑙𝑒 

A 750 3.5 0.020 0.020 0.038 0.143 N/A 

A 2000 2 0.038 0.038 0.056 0.092 N/A 

A 2000 2.5 0.209 0.065 0.039 0.451 N/A 

B 750 3.5 0.036 0.036 0.032 0.170 N/A 

B 2000 3 0.026 0.075 0.036 0.386 N/A 

C 1000 2.5 0.013 0.037 0.024 0.174 N/A 

C 1000 3 0.019 0.061 0.033 0.191 N/A 

C 1750 2 0.035 0.032 0.038 0.044 N/A 

C 1750 2.5 0.014 0.051 0.085 0.456 N/A 

A 750 3 N/A 0.013 

A 2000 1.5 N/A 0.003 

B 750 3 N/A 0.021 

B 2000 2 N/A 0.016 

C 1000 2 N/A 0.004 
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While six out of nine chatter detection thresholds were updated by the variance 

mitigation strategy, the others remained the same as the original thresholds obtained from 

the naive interpretation approach used in Chapter 4. The average performance of the 

updated chatter detection thresholds is shown in Table 10.  

 

Table 10. Average performance of the updated chatter detection thresholds after applying 

the variance mitigation strategy. 

 Occurrence Total Tests Updated 

Performance 

Original 

Performance 

Overall Accuracy 121 126 96.0% 90.5% 

Early Detection 37 81 45.7% 74.1% 

Late Detection 40 81 49.4% 18.5% 

False Negative 4 81 4.9% 7.4% 

False Positive 1 45 2.2% 13.3% 

 

 It is clear from the performance data that the variance mitigation strategy yields a 

higher overall chatter detection accuracy. It is also evident from the table that the false 

positive and false negative rates of the updated thresholds are lower than those for the 

original thresholds. However, the updated thresholds are unable to detect chatter as early 

as the original thresholds, which is a trade-off with improved detection accuracy. In order 

to lower the false positive rate, i.e. falsely identifying a stable process as unstable, the 

updated threshold values must be set higher than the original thresholds, which means that 

chatter is detected at a later time instance. Figure 45 shows examples of the tradeoffs 

between detection speed and detection accuracy. In the figure on the left, the lower original 

threshold obtained from the human demonstration detects chatter earlier than the updated 

chatter detection threshold, whereas the figure on the right shows the same thresholds 

detect a stable cutting process in contrast to the original threshold, which produced a false 
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positive result. The chatter detection accuracy is therefore improved by setting a higher 

chatter detection threshold at the cost of detection speed.   

 

 

Figure 45. Trade-off between detection speed and detection accuracy. Left: comparison of 

detection speed; right: comparison of the detection accuracy. 

  

 While the average performance of the chatter detection thresholds is improved by 

the proposed the variance mitigation strategy, the objective of the variance mitigation 

strategy was to reduce the variance of the chatter detection thresholds. Unlike the naïve 

interpretation approach where the variability in the human reaction time can produce 

outlier thresholds that are prone to false detections, Table 11 shows consistent detection 

accuracy across all chatter detection thresholds obtained using the variance mitigation 

strategy. In comparison to the detection accuracy of the original chatter detection 

thresholds listed in Table 8 in Chapter 4, it is clear that the variance mitigation strategy 

successfully reduces the likelihood of obtaining an outlier chatter detection threshold that 

is prone to false detections across different milling conditions. 
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Table 11. Breakdown of the updated chatter detection thresholds. 

Updated 

𝑃𝑡ℎ 

Early 

Detection 

Rate 

Late 

Detection 

Rate 

False 

Negative 

Rate 

False 

Positive 

Rate 

Detection 

Accuracy 

0.020 100.0% 0.0% 0.0% 20.0% 92.9% 

0.038 55.6% 44.4% 0.0% 0.0% 100.0% 

0.065 11.1% 77.8% 11.1% 0.0% 92.9% 

0.036 55.6% 44.4% 0.0% 0.0% 100.0% 

0.075 11.1% 77.8% 11.1% 0.0% 92.9% 

0.037 55.6% 44.4% 0.0% 0.0% 100.0% 

0.061 11.1% 77.8% 11.1% 0.0% 92.9% 

0.032 88.9% 11.1% 0.0% 0.0% 100.0% 

0.051 22.2% 66.7% 11.1% 0.0% 92.9% 

  

Ultimately, based on data obtained from the milling experiments conducted on 4140 

steel alloy, the variance mitigation strategy successfully improved the consistency of the 

chatter detection thresholds, which resulted in good detection accuracy and acceptable 

detection speed. The next section examines the effectiveness of the LSP and the variance 

mitigation strategy in a milling experiment conducted on a 7075-T651 aluminum 

workpiece.  

 

5.3 Applying the LSP and Variance Mitigation Strategy to Milling of 7075-T651 

Aluminum  

The same experiments were conducted on a 7075-T651 aluminum workpiece to 

examine the robustness of the LSP and the variance mitigation strategy to variations in the 

workpiece material. The feed per tooth in the aluminum milling experiments was 0.0165 

mm. The experimental setup was identical to that used in the previous experiments on 4140 
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steel alloy. Figure 46 is a picture of the slot end milling cuts made in the aluminum 

workpiece and Figure 47 shows an example of the resulting chatter marks in one of the 

experiments. 

 

Figure 46. Slots milled in 7075-T651 aluminum workpiece. 

 

 

 
Figure 47. Representative chatter marks on the aluminum workpiece. 

 

 

 

 

 

 

 



95 

 

5.3.1 Applying LSP using Naïve Interpretation 

The naïve interpretation based LSP approach was applied to the human 

demonstrations of chatter during milling of 7075-T651 aluminum to obtain the 

corresponding chatter detection thresholds.  

 

Table 12. Chatter detection thresholds using the naïve interpretation. 

Operator 

Human 

Observatio

n 

Spindle 

Speed 

(RPM) 

Axial 

DOC 

(mm) 
𝑃𝑡ℎ 𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎) 𝑃𝑚𝑎𝑥,𝑐ℎ𝑎𝑡𝑡𝑒𝑟 𝑃𝑚𝑎𝑥,𝑠𝑡𝑎𝑏𝑙𝑒 

A Chatter 4600 3.5 0.003 0.014 0.406 N/A 

A Chatter 9600 3 0.008 0.016 0.362 N/A 

A Chatter 8500 2.5 0.004 0.037 0.439 N/A 

B Chatter 5500 4 0.041 0.064 0.487 N/A 

B Chatter 5500 3.5 0.003 0.004 0.381 N/A 

C Chatter 6500 2.5 0.004 0.018 0.460 N/A 

C Chatter 6500 2 0.004 0.008 0.367 N/A 

C Chatter 7500 2 0.043 0.056 0.249 N/A 

C Chatter 7500 1.5 0.004 0.036 0.360 N/A 

A Stable 4600 2.5 N/A 0.005 

A Stable 9600 3 N/A 0.008 

B Stable 8500 2 N/A 0.007 

 

 Table 11 shows the original chatter detection thresholds 𝑃𝑡ℎ  obtained using the 

naïve interpretation based LSP approach. The original chatter detection thresholds are 

much lower than those obtained from the 4140 steel milling experiments, which can lead 

to false positives. Table 13 shows the performance of each chatter detection threshold 

obtained in the aluminum milling experiments. 
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Table 13. Performance of original chatter detection thresholds. 

𝑃𝑡ℎ 
Early 

Detection Rate 

Late     

Detection Rate 

False 

Negative Rate 

False 

Positive Rate 

Detection 

Accuracy 

0.003 100.0% 0.0% 0.0% 100.0% 75.0% 

0.008 88.9% 11.1% 0.0% 0.0% 100.0% 

0.004 88.9% 11.1% 0.0% 100.0% 75.0% 

0.041 22.2% 77.8% 0.0% 0.0% 100.0% 

0.003 100.0% 0.0% 0.0% 100.0% 75.0% 

0.004 88.9% 11.1% 0.0% 100.0% 75.0% 

0.004 88.9% 11.1% 0.0% 100.0% 75.0% 

0.043 22.2% 77.8% 0.0% 0.0% 100.0% 

0.004 88.9% 11.1% 0.0% 100.0% 75.0% 

 

It is clear from Table 13 that the original chatter detection thresholds are prone to 

false positives. In fact, many of the chatter detection thresholds are so low that all stable 

processes are falsely classified as chatter. Figure 48 illustrates the difference between a 

high-speed 7075-T651 aluminum alloy milling experiment at 9600 RPM and a lower speed 

4140 steel milling experiment at 2000 RPM.   

 

 

Figure 48. The signal ramp up of aluminum (left, 9600 RPM) versus steel (right, 2000 

RPM.) 
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It is observed in Figure 48 that the frequency spectrum ratio in the aluminum 

experiment ramps up more quickly than in the steel experiment due to the higher material 

removal rate corresponding to the higher spindle speed. 

Although the signal increases faster in the high-speed aluminum milling experiment, 

the operator’s reaction time to chatter remains constant, which means that the time between 

chatter onset and fully developed chatter is much shorter. Even if the human operator can 

recognize the onset of chatter, the variance in the operator’s demonstration is too large 

compared to the rapid growth of the chatter signal. The chatter observation instance 𝑡𝑐 

obtained from the high speed milling experiment by subtracting the average reaction time 

of the operator �̅� from the human signal instance  𝑡𝑠 is more likely to be either too early or 

too late, which is the primary reason why the chatter detection thresholds obtained from 

the human demonstration without the variance mitigation strategy are less accurate. 

Therefore, it is evident that direct implementation of the chatter detection thresholds 

𝑃𝑡ℎ obtained from the human operator demonstrations using the naïve interpretation 

approach is less successful. The chatter detection thresholds obtained using the variance 

mitigation strategy are analyzed next. 

 

5.3.2 Applying the Variance Mitigation Strategy 

As discussed in Section 5.2, the objective of the variance mitigation strategy is to 

reduce the negative impact of the variance in the human’s reaction time on the chatter 

detection thresholds. While in Chapter 4 the direct implementation of chatter detection 

thresholds obtained using the naïve interpretation approach was found to be effective, the 
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chatter detection accuracy in the 7075-T651 Aluminum experiments was drastically lower 

due to the higher feed rate involved. Therefore, under these conditions the accuracy of the 

chatter detection thresholds is more reliant on the effectiveness of the variance mitigation 

strategy.  

 

Table 14. Updated chatter detection thresholds using the variance mitigation strategy. 

Operator 

Spindle 

Speed 

(RPM) 

Axial 

DOC 

(mm) 

Original 

𝑃𝑡ℎ 

Updated  
𝑃𝑡ℎ 

𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎) 𝑃𝑚𝑎𝑥,𝑐ℎ𝑎𝑡𝑡𝑒𝑟  𝑃𝑚𝑎𝑥,𝑠𝑡𝑎𝑏𝑙𝑒 

A 4600 3.5 0.003 0.062 0.014 0.406 N/A 

A 9600 3 0.008 0.054 0.016 0.362 N/A 

A 8500 2.5 0.004 0.049 0.037 0.439 N/A 

B 5500 4 0.041 0.056 0.064 0.487 N/A 

B 5500 3.5 0.003 0.087 0.004 0.381 N/A 

C 6500 2.5 0.004 0.055 0.018 0.460 N/A 

C 6500 2 0.004 0.056 0.008 0.367 N/A 

C 7500 2 0.043 0.043 0.056 0.249 N/A 

C 7500 1.5 0.004 0.058 0.036 0.360 N/A 

A 4600 2.5 N/A 0.005 

A 9600 3 N/A 0.008 

B 8500 2 N/A 0.007 

 

As shown in Table 14, only one out of nine chatter detection thresholds remains the 

same as the original chatter detection thresholds obtained using the naïve interpretation 

approach, while the rest are updated by the variance mitigation strategy. The performance 

of the updated chatter detection thresholds is shown in Table 15. 

  



99 

 

Table 15. Performance of the updated chatter detection thresholds. 

𝑃𝑡ℎ 
Early 

Detection Rate 

Late   

Detection Rate 

False 

Negative Rate 

False 

Positive Rate 

Detection 

Accuracy 

0.062 11.1% 88.9% 0.0% 0.0% 100.0% 

0.054 22.2% 77.8% 0.0% 0.0% 100.0% 

0.049 22.2% 77.8% 0.0% 0.0% 100.0% 

0.056 11.1% 88.9% 0.0% 0.0% 100.0% 

0.087 0.0% 100.0% 0.0% 0.0% 100.0% 

0.055 22.2% 77.8% 0.0% 0.0% 100.0% 

0.056 11.1% 88.9% 0.0% 0.0% 100.0% 

0.043 22.2% 77.8% 0.0% 0.0% 100.0% 

0.058 11.1% 88.9% 0.0% 0.0% 100.0% 

 

Based on data in Table 14, the detection accuracy of the updated chatter detection 

thresholds obtained using the variance mitigation strategy is significantly improved over 

the naïve interpretation approach. In most cases, however, the updated chatter detection 

thresholds are unable to detect chatter prior to the appearance of chatter marks on the 

workpiece. The data further confirms the need for the variance mitigation strategy to 

improve the chatter detection accuracy in a high-speed milling scenario. 

It is evident from the results presented in this section that application of the LSP in 

conjunction with the variance mitigation strategy in a high-speed milling operation on 

7075-T651 Aluminum workpiece is effective. Although the variance in the operator’s 

reaction times resulted in much higher inaccuracies in the performance of the chatter 

detection thresholds, the variance mitigation strategy successfully updated the chatter 

detection thresholds such that the detection accuracy was improved and the detection speed 

was acceptable. In the next section, the robustness of the chatter detection thresholds 
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obtained from the variance mitigation based LSP strategy is tested under different radial 

immersions and cutting directions.  

 

5.4 Robustness of the LSP using the Variance Mitigation Strategy 

In this section, milling experiments under different radial immersions and directions 

of cut were performed to evaluate the robustness of the chatter detection thresholds 

determined using the variance mitigation strategy presented earlier. 

 

5.4.1 Radial Immersion Experiments 

Radial immersion refers to the radial depth of cut, which is expressed as a 

percentage of the tool diameter. Experiments under different radial immersions were 

conducted on 7075-T651 aluminum alloy to examine the robustness of the chatter detection 

thresholds obtained via the LSP using the variance mitigation strategy. The experimental 

setup was unchanged from that used in the previous experiments. The feed per tooth and 

the spindle speed were kept constant at 0.0165 mm and 9600 RPM, respectively. Table 15 

shows results of these milling experiments. 
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Table 16. Chatter and stable milling processes under different radial immersions. 

Workpiece 
Radial 

Immersion 

Spindle 

Speed 

(RPM) 

Axial 

DOC 

(mm) 
𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎) 𝑃𝑚𝑎𝑥,𝑐ℎ𝑎𝑡𝑡𝑒𝑟 𝑃𝑚𝑎𝑥,𝑠𝑡𝑎𝑏𝑙𝑒 

7075 Al 75% 9600 3.5 0.055 0.4424 N/A 

7075 Al 25% 9600 6 Stable 0.011 

7075 Al 25% 9600 7 Stable 0.013 

7075 Al 25% 9600 8 Stable 0.012 

7075 Al 50% 9600 3 Stable 0.011 

7075 Al 75% 9600 1.5 Stable 0.010 

7075 Al 75% 9600 2 Stable 0.013 

7075 Al 75% 9600 2.5 Stable 0.017 

 

The allowable axial depth of cut for a stable cutting process increases with decrease 

in radial immersion. Much higher axial DOC was required to produce chatter. Therefore, 

the only chatter data collected was at 75% radial immersion for a 3.5 mm axial depth of 

cut. The rest of the experiments resulted in stable cutting.  

The performance of the chatter detection thresholds reported in Table 14 of Section 

5.3.2 were evaluated under different radial immersions. Table 17 shows the average 

accuracies and false detection rates for all the detection thresholds. 

Table 17. Average performance of chatter detection thresholds under different radial 

immersions 

 Occurrences Total Tests Percentage 

Overall Accuracy 72 72 100% 

Early Detection 3 9 33.3% 

Late Detection 6 9 66.7% 

False Negative 0 9 0% 

False Positive 0 63 0% 
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Based on the data in Table 16, the chatter detection thresholds obtained using the 

LSP utilizing the variance mitigation strategy are able to detect chatter accurately under 

different radial immersions, and the detection speeds are satisfactory based on the 

percentages of the early and late detections given in Table 17. 

 

5.4.2 Cutting Direction 

During a milling operation, the cutting tool can be subject to complex workpiece 

geometries or complex tool paths. Therefore, the chatter detection thresholds should work 

for multiple directions of cut. Any two-dimensional cutting path can be considered as a 

linear combination of two orthogonal vectors in the x- and y-directions. Previously, all 

experimental data were collected from linear slot end milling cuts along the y-axis of the 

machine tool. In this section, slot end milling cuts were made along the x-axis of the 

machine tool.  

The radial immersion was maintained at 100% and the feed per tooth was kept 

constant at 0.0165 mm. Table 18 shows the experimental data collected from these 

experiments. 

Table 18. Milling experiments in x-axis. 

Workpiece 

Spindle 

Speed 

(RPM) 

Axial 

DOC 

(mm) 

𝑃𝑐ℎ𝑎𝑡𝑡𝑒𝑟(𝑡𝑎) 𝑃𝑚𝑎𝑥,𝑐ℎ𝑎𝑡𝑡𝑒𝑟 𝑃𝑚𝑎𝑥,𝑠𝑡𝑎𝑏𝑙𝑒 

7075 Al 5500 3.5 0.033 0.370 N/A 

7075 Al 9600 2 0.077 0.403 N/A 

7075 Al 5500 1.5 Stable 0.006 

7075 Al 9600 1.5 Stable 0.010 
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For each spindle speed, data for one chatter and one stable cutting tests were 

collected to evaluate the detection accuracy and speed of the chatter detection thresholds 

previously determined from the variable mitigation strategy based LSP applied to the slot 

end milling tests performed in the y-direction. Table 19 shows the average performance of 

the chatter detection thresholds determined from the y-direction milling experiments in 

detecting chatter produced in the x-direction milling tests.  

 

Table 19. Average performance of chatter detection thresholds for milling tests along the 

x-axis. 

 Occurrences Total Tests Percentage 

Overall Accuracy 36 36 100% 

Early Detection 8 18 44.4% 

Late Detection 10 18 55.6% 

False Negative 0 18 0% 

False Positive 0 18 0% 

 

Based on the above data, the detection speeds are nearly half early and half late, 

which means that the detection thresholds on average detect chatter right when chatter 

marks begin to appear on the workpiece; the detection accuracy of the chatter detection 

thresholds obtained via the LSP using the variance mitigation strategy remains high when 

applied to test data obtained from milling experiments performed along a different 

direction of cut, which further proves the robustness of the proposed methodology.  

 

5.5 Summary 

In summary, Chapter 5 introduced a variance mitigation strategy for the “Learnable 

Skill Primitive” (LSP), which significantly improved the consistency of chatter detection 
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accuracy and speed by minimizing the variance in the chatter detection thresholds arising 

from the variance in operator reaction times during demonstrations. The effectiveness of 

the variance mitigation strategy was further validated through high-speed milling 

experiments performed on a 7075-T651 aluminum workpiece, where the performance of 

the naïve interpretation of the human operator’s demonstration used to establish the chatter 

detection thresholds was found to perform worse than the variance mitigation strategy 

presented in this chapter. Finally, the robustness of the LSP using the variance mitigation 

strategy was further validated through milling experiments under different radial 

immersions and directions of cutting. 
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter summarizes the original contributions and main conclusions of this 

thesis and suggests possible areas for future studies. 

6.1 Original Contributions 

An innovative methodology and associated algorithms for chatter-specific 

knowledge acquisition through human-machine interaction were presented in this thesis. 

The modes of interaction between human operators and a “digital apprentice” in a 

production setting via perception and reasoning mapping was evaluated in detail. The 

“learnable skill primitive” method for chatter detection was developed to interpret human 

demonstrations and obtain a chatter detection threshold with acceptable detection accuracy 

and speed. A human reaction time variance mitigation strategy was proposed to reduce the 

uncertainty in human operator demonstrations. In addition, robustness of the “learnable 

skill primitive” and the “variance mitigation strategy” were tested under different cutting 

conditions, workpiece materials, and cutting paths. The originality of this research lies in 

the methodology for incorporating human operator demonstrations in a milling process for 

automated detection of chatter. The chatter detection thresholds were “learned” from the 

human operators, resulting in good detection accuracy and detection speed. The proposed 

methods in this thesis provide a novel solution to the process monitoring problem by 

leveraging the presence of a human operator who is experienced and knowledgeable about 

the manufacturing process. The contributions discussed in this thesis are applicable to other 

manufacturing applications where a human’s experience and perception can be leveraged 

for better quality decision making. 
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6.2 Main Conclusions 

The main conclusions of this thesis are summarized below. 

 Experimental data demonstrated that human operators are able to accurately distinguish 

between an unstable (chatter) and a stable cutting process. However, human operators 

are unable to signal chatter without delay because of their reaction time. 

 The reaction times associated with human recognition of chatter were modelled as a 

probability distribution. The mean estimated human observation instance of chatter 𝑡�̂� 

obtained from milling experiments suggested that human operators recognize chatter 

close to when chatter marks appear on the workpiece.  

 Experimental data collected from milling experiments indicated that the “Learnable 

Skill Primitive” (LSP) for chatter detection developed using the naïve interpretation 

yielded good overall chatter detection accuracy and speed from a single demonstration; 

however, it was also found that a few outliers in performance were caused by the high 

variance in the operators’ demonstrations. 

 The proposed heuristics-based variance mitigation strategy is capable of mitigating the 

influence of the variance in human demonstrations, resulting in chatter detection 

thresholds that yield significantly improved chatter detection accuracy and speed. 

 The LSP and the variance mitigation strategy were found to be robust to variations in 

the workpiece material, cutting condition (radial immersion), and cutting direction. 

6.3 Future Work and Recommendations 

The introduction of the learnable skill primitive for chatter detection marks the 

beginning of a series of potential future developments centering on effective human-



107 

 

machine interaction in a production setting. The immediate next step is to test the 

effectiveness of the LSP method in other machining process such as boring and single point 

turning. I addition, there is interest in learning the human operator’s ability to control 

chatter by learning a control policy consisting of a set of control actions demonstrated by 

human operators, which is a natural next step of the LSP method.  

Another area of interest for future work is the integration of multiple LSPs for the 

overall improvement of a manufacturing process. By incorporating a set of LSPs that learn 

from human operators to monitor different aspects of the manufacturing process such as 

chatter and tool wear, the collective decision making performance of the human-machine 

interaction can potentially improve the overall productivity of a complex manufacturing 

process.  
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APPENDIX 

 

Appendix I. Experience of human operators participated in this research. 

 

 Position 
Machining 

Experience 

Experience with 

Chatter 

Operator A 
Graduate Research 

Assistant 
2 years 0 year 

Operator B 
Graduate Research 

Assistant 
6 years 6 years 

Operator C 
Mechanical Engineer 

II 

3 years overall, 2 

years of professional 

experience 

2 years 
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