Georgia Institute of Technology **Bio-Interfaced Translational Nanoengineering Group**

George W. Woodruff School of Mechanical Engineering and IEN Center for Human-Centric Interfaces and Engineering (CHCIE) at Georgia Institute of Technology

Motivation

- Obstructive sleep apnea (OSA) affects > 900 million adults, but <20% of cases are diagnosed (Cost estimate \$150 billion).
- Home sleep tests use obtrusive, wired systems and rigid electrodes that delaminate overnight and disrupt sleep.
- Next generation sleep diagnosis must be both high throughput and highly accurate.

Methods

The soft patch was microfabricated with ultrathin metals, integrated into an elastomer substrate, and optimized to measure SCG, PPG, and ECG from a single location on the sternum.

Physiological Monitoring

Soft Sternal Patch to Detect Sleep Stages and Sleep Apnea

Nathan Zavanelli and Woon-Hong Yeo*

System Overview

Elastomer for encapsulation Chip components Elastomer for encapsulation

