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SUMMARY 

The central nervous system coordinates many neural subpopulations connected via 

macroscale white matter architecture and surface cortical connections to produce complex 

behavior depending on environmental cues. The activity occurs over different scales, from 

information transfer between individual neurons at the synapse level, to macroscale 

coordination of neural populations used to maximize information transfer between 

specialized brain regions. The whole brain activity measured through functional Magnetic 

Resonance Imaging (fMRI), allows us to observe how these large neural populations 

interact over time. Researchers have developed a set of Brain Network Models (BNMs), 

that simulate brain activity using the macroscale structure and different mathematical 

models to represent populational neural activity. These simulations have been able to 

reproduce properties of fMRI especially those averaged over long periods of time. These 

models represent a step towards an individualized model of brain activity, which is of 

clinical interest, as they can be constructed from individual estimates of the structural 

network. To find a good BNM to fit the individual fMRI data, however, is a difficult 

problem as BNMs represent a large family of mathematical models. Moreover, a large set 

of BNMs have reproduced time averaged metrics that have been used so far to compare the 

models with the fMRI data. In this thesis, we extend previous work on BNM research by 

establishing new dynamic metrics that would allow us to better differentiate between 

BNMs simulations on how well they reproduce measured fMRI dynamics (Chapter 2). In 

Chapter 3, we directly compare transient short-term trajectories by synchronizing the 

outputs of a BNM in relation to observed fMRI timeseries using a novel Machine Learning 



 x 

Algorithm, Neural Ordinary Differential Equations (ODE). Finally, we show that the 

Neural ODE can be used as its own stand-alone generative model and is able to simulate 

more realistic fMRI signals as they are able to reproduce complex metrics that previous 

models have not been able to recapitulate (Chapter 4). In short, we demonstrate that we 

have made progress in developing and quantifying BNMs and advanced the research of 

more realistic whole brain simulations.   
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CHAPTER 1.                                                                

INTRODUCTION: REPRESENTING WHOLE BRAIN ACTIVITY 

USING A NETWORK-BASED MODEL 

1.1 Background 

Whole brain activity represents the coordination of many distinct neural populations 

that allow humans to display a plethora of different behaviors, even though each distinct 

element of the brain is specialized to perform specific tasks. Although the central nervous 

system is often described as highly interconnected, the notion of modularization where 

specific function localizes to a cortical area has been around since nervous systems were 

first studied by Brodmann in 1909. Brodmann, using staining and microscopy, discovered 

that the micro architecture varied in different areas of the cortex, and some of the 52 areas 

that he identified have now become famous for specific functions, such as the primary 

visual area (Brodmann area 17), primary auditory area (Brodmann area 42), or primary 

motor cortex (Brodmann area 4). The sensory and motor areas also represent the main input 

and output connections into the cortex, and adjacent areas specialize in processing more 

abstract representation of the information. It is theorized that they eventually combine the 

information from multiple modalities to form our own internal representation of the world. 

Supporting this theory, recently it has been shown that all the major hubs for network 

processing are at geodesical equidistant distances on the cortical fold from sensory motor 

areas, suggestive of a natural gradient from areas interacting directly with information from 

the outside world to higher order processing (Margulies et al., 2016). However, it would 

be misrepresentative to describe this system as just a unidirectional flow from sensory 
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motor areas to higher order areas, as the whole brain activity itself, is really of a network 

origin. Our sensory systems influence our current internal representation of the world, and 

the internal representation of the world acts as a prior in decoding our sensory information 

and encoding our motor commands. Therefore, in order to represent whole brain cortical 

activity, researchers turned towards network models known as Brain Network Models 

(BNM), where nodes represent modular components of the nervous system and simulate 

their activity across an estimated structural network. 

1.2 Brain Network Model 

Whole Brain activity measured in the low frequency range detected via functional 

magnetic resonance imaging (fMRI) (~0.01~0.Hz) is thought to be the result of large neural 

populations interacting via the network as opposed to tracking the activity of real time 

decoding and encoding of information that are thought to occur in the gamma frequency 

regime (60-80Hz) (Deco et al., 2008, Friston et al., 2003). The activity measured in this 

frequency band is considered to reflect averaged properties of a large neural population, 

such as the mean firing rate. The increase in firing of a neural population triggers a 

hemodynamic response, where oxygenated blood is transported for metabolic consumption 

and is subsequently measured using fMRI. Theoretical Network models have been 

constructed to recapitulate fMRI as shown in Figure 1.1 and are described in the following 

sections. 
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Figure 1.1 Representing rs-fMRI using a Brain Network Model 

 

 

 

 

Left panel shows the construction of the network. The cortex is parcellated to 66 
regions of interest (ROI) (left most) which act as nodes in the network. The number 
of white matter tracts in the Diffusion Tensor Weighted image are counted between 
each pair of regions of interest. The Structural Connectivity Matrix summarizes the 
relationship. In order to simulate the whole brain activity, the activity in each region 
of interest represented by 𝒙𝒙𝒊𝒊 changes as a function of the network neighbors and 
external inputs if it’s connected to one of the sensory motor regions. Rs-fMRI is 
simulated by setting the input term is set to zero for all time.  For example, to simulate 
a simple linear Firing rate model Ax, where A is the graph Laplacian of the structural 
matrix, we can generate a timeseries by taking a random initial condition and then 
integrating it according to the equations. To compare it to resting state fMRI, we first 
average the activity of an entire ROI region from a registered rs-fMRI scan with the 
same atlas as used in the tractography. Then we measure functional connectivity as 
the correlation between each pair of ROI timeseries. The resulting functional 
connectivity (FC) matrices, estimated by correlating the timeseries of all ROI to each 
other, between the simulated and the empirical timeseries are then compared 

1.2.1 Parcellation 

The network is defined using a cortical parcellation of regions that are thought to 

activate as a unit for a particular task, for example the primary visual cortex (Desikan-

Kiliany 2005, Honey et al., 2008). These form the nodes of the brain network model. 

Parcellation of the brain is performed to reduce computational complexity and to preserve 

the modularity of brain regions, providing a certain degree of interpretability associated 

with the corresponding region. The earliest parcellation of the cortex was constructed by 

Brodmann in 1909 using staining. Modern parcellations are constructed through a variety 



 4 

of different methods from histology to using fMRI functional parcellations. There is no 

established standard parcellation for the cortex, as brain regions are defined by the task that 

they perform and there is no consensus on the exact function of certain parts of the cortex. 

This is especially true in the higher order areas such as the prefrontal and parietal regions. 

However, the Brain Network framework is thought to hold regardless of how the neural 

parcellations are exactly defined, and it is it is theorized that larger models with finer 

cortical representations simulate more realistic resting state fMRI. In this document, we 

utilized the Desikan-Killiany atlas throughout, in order to be consistent with older Brain 

Network Models and make comparisons with published results (Cabral 2011). 

1.2.2 Structural Network 

The structural network is then defined by counting the number of long-range white 

matter fibers detected with diffusion-weighted MRI between each pair of brain regions. 

The estimation of these structural networks has become possible utilizing Diffusion 

Weighted Imaging and modern tractography algorithms (Bihan & Breton, 1985, Tournier, 

Calamante, & Connelly, 2012). The diffusion tensor of water molecules along myelinated 

axon fibers is estimated at each point using imaging techniques. In order to entangle fibers 

that cross each other in three dimensions, spherical deconvolution techniques are used to 

reconstruct long tracts of the underlying white matter architecture, which is shown in 

Figure 1.1 (Tournier, Calamante, & Connelly, 2012). Based on the parcellation, the number 

of tracts between regions of interest are then calculated. The resulting matrix is usually 

symmetric but then is normalized by dividing by the surface area of the receiving cortical 

surface, which results in a slight asymmetry of the matrix (Honey et al., 2008).   
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1.2.3 Dynamical System 

The dynamical system of the Brain Network Model represents how the change in 

neural activity in the lth region of interest 𝑥𝑥𝚤̇𝚤 is modelled in relation to the rest of the 

network and its own activity. The first term represents the network component which is 

described by a function F that depends on its own activity, activity in its neighbour xj, and 

the physical properties of the fiber represented by the vector ρ (i.e., the number of fibers 

between regions, the delay in propagation). The second term consists of a function G that 

represents external input, whose activity is represented by a k-dimensional vector u 

representing all sub-cortical and sensory inputs, and the vector π representing again the 

physical properties that project these inputs (i.e., thalamic tracts into cortex). The last term 

represents noise from the neuronal populations or from omitted higher order terms from 

the network equations.  

𝑥𝑥𝚤̇𝚤 =  � 𝐹𝐹(𝑥𝑥𝑙𝑙, 𝑥𝑥𝑗𝑗 , ρ𝑖𝑖𝑖𝑖)
𝑗𝑗∈𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑙𝑙

+ � 𝐺𝐺(𝑢𝑢𝑘𝑘,π𝑙𝑙𝑙𝑙)
k∈Task inputs

+  N(0,σ) 𝐸𝐸𝐸𝐸. 1 

For resting state activity, the assumption is that  𝑢𝑢𝑘𝑘 (t) = 0 ∀ t and the first term dominates 

the change in activity. 

1.2.4 Firing Rate Model 

The function F for example can be as simple as the linear Firing Rate model 

𝑥𝑥𝚤̇𝚤 =  −𝑥𝑥𝑙𝑙 + 𝑘𝑘 � 𝑤𝑤𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑗𝑗  
𝑗𝑗∈𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑖𝑖

𝐸𝐸𝐸𝐸. 2 
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where wij represents the number of fibers between i and j, and k represents the global 

coupling parameter. The firing rate model, is a linear model and can be represented as A ∗ 

x. The matrix A is the graph Laplacian (A = k(W – I)), where k is chosen to be less than 

1/largest eigen value of A and SN is the structural matrix as measured through tractography 

using diffusion tensor imaging (Methods section X) (Hagmann et al., 2008). The dynamical 

system does not become unstable due to all of its eigenvalues being less than zero when k 

is set to be less than 1/(largest eigen value) of the structural network (Mesbahi & Egerstedt, 

2010). Therefore, under zero input the network propagation dies out over subsequent 

timesteps and the dynamics collapses into the well-studied consensus equation where the 

dynamics decay to a mean value. We utilize the Firing Rate model in all analysis and it 

represents our baseline BNM. 

1.2.5 Non-linear Model 

More complex non-linear models have been developed that contain more state 

variables for each neural population and more complex dynamics to describe the 

interaction between these variables coupled with the network. In Sanz Leon et al., 2015, 

one of the first to compile a list of different BNM, there are six distinct BNM described in 

great detail using vastly different equations and state variable to describe the dynamics. In 

general, the BNM usually have an exponential decay term where the lack of input causes 

the mean activity of a region to decay, a network term on how other regions influence the 

current nodes dynamics and an oscillator term. In this thesis, we simulate two well-known 

nonlinear models, the Kuramoto oscillator and the Wilson Cowan Model (Cabral et al., 

2011, Sanz Leon et al., 2015). Both these models are thought to simulate signals that are 

more representative of empirical resting state fMRI data. 
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1.2.6 Comparison to resting state fMRI 

The full model allows task inputs to the brain, but BNMs simulations are usually 

compared to resting state fMRI measurements and are simulated with no external inputs. 

In resting state fMRI (rs-fMRI), the human participant is scanned while lying still in the 

fMRI scanner (Biswas et al., 1995). During resting state, task input into the sensorimotor 

areas is assumed to be minimized, and the resulting whole brain activity is thought to be 

dominated by neural populations interacting with each other through the network 

architecture. However, since resting state is not defined with respect to a task-triggered 

event, it is particularly hard to characterize since its dynamics are ever changing with time 

(Keilholz et al., 2017). In order to circumvent the problem of unknown timing, researchers 

have instead had to rely on time averaged metrics such as functional connectivity (FC), 

which computes the correlation between all the nodes of the brain network over a long 

period of time. These metrics were then subsequently used to evaluate the simulations as 

shown in Figure 1.1.  

It should be noted here that BNMs are not the only generative model to explain rs-

fMRI. A continuous approach of modeling the cortical areas as a surface known as the 

Neural Field Model (NFM) produces similar results (Jirsa 2007, Sanz Leon et al., 2015). 

Theoretically, BNMs become NFMs in the limit when the brain parcels become small 

enough to approximate a continuous surface.  In practice, BNMs are usually employed due 

to the smaller number of variables needed for coarser representation of the network. 

Regardless, both theories reproduce aspects of the rs-fMRI signal as a product of 

underlying neural populations coupled with a macroscale cortical connectivity model. 
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1.3 Applications 

BNMs are gaining the attention of the scientific community as a possible generative 

model that could explain the rs-fMRI signal, because of their potential in clinical and 

behavioral fMRI studies. Generative models for whole brain activity from individual neural 

populations are sought after since they would provide a link between modeling local 

changes to neural populations to resulting macro scale network activity. The models 

themselves utilize latent variables such as mean firing rate that can be meaningfully 

manipulated using Deep Brain Stimulations (DBS) on targeted local populations. Currently 

there is one clinical trial with the use of BNM in modeling Epilepsy and predicting and 

preventing seizures (Jirsa et al., 2014). The goals listed on their grant are to use BNM to 

1) model the spatial temporal propagation of the epilepsy, 2) identify a brain region where 

electrical stimulation would result in a seizure, and 3) model the effects of surgical 

resection of brain areas used to recover healthy brain dynamics (Ritter et al., 2013). BNMs 

have also been used in Parkinson’s Disease (PD), where they are useful in modeling 

network changes caused by localized damage to the Basal Ganglia by PD. Another clinical 

study in PD, has also simulated the effects of a DBS implant, used BNM to model in ON 

and OFF stimulation on the measured rs-fMRI activity (Saenger et al., 2017). In these 

clinical applications better models, would allow us to safely test and vary parameters such 

as electrode placement and stimulation parameters without going through the dangers of 

surgery. Moreover, neural pathology is often highly variable and different patients respond 

differently to treatment and it is imperative to be able to identify non-responders. 

Generative models such as BNM that are built from individually measured DWI and 
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structural T1 imaging, might represent a step in the right direction in building models that 

are sensitive to individual differences.  

BNMs are also being used in order to aid interpretability during task studies. 

Traditional task studies use rest activity between task blocks as a linear regressor, modeling 

the rest periods as flat lines when the task input was not present. Resting state fMRI is 

rarely ever constant, and therefore it confounds the interpretation of the task response. 

Using a more complex model for resting state fMRI, might improve our approximation of 

task variables of interest especially to behavioral variables that are of clinical interest.  

BNMs have modeled task input with respect to the network as a control affine system 

where the task input adds to the current network dynamics (Kim & Basset 2019). Models 

that have solved for the task amplitude while simulating network resting state activity have 

had more success in matching with simultaneously acquired behavioral data (Ritter et al., 

2019). This adds evidence to the notion that BNM are key to understanding how modular 

components interact via the network.  

1.4 Gap 

While there is a consensus that a complex network model provides a mechanistic 

explanation for coordinated whole brain activity, it is challenging to determine which 

approximation model and parameterization fits the rs-fMRI well enough for its intended 

application and is sensitive enough to model any desired clinical differences. BNMs differ 

in their description of the node dynamics, which can be represented with many different 

functions (F) and under different parameterizations, ranging from incredibly complex 

biophysical models down to very simple systems that use a single variable to describe the 
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average activity of the neural mass coupled with the structural network. The simpler 

models have fewer parameters, are easier to fit to the data, and are more computationally 

efficient, but complex models are better able to characterize the non-linear properties of 

the observed dynamics in the rs-fMRI data (Hansen et al., 2014, Sanz Leon et al., 2015). 

There is no way to directly compare these different models to the measured rs-fMRI data, 

as there is no temporal event to synchronize all the systems. Early studies used FC analysis 

in order to compare averaged properties of long simulation of the models with the measured 

data. However, using FC analysis on rs-fMRI has shown numerous shortcomings, 

especially in characterizing changes that occur over short periods of time, and more 

complex methods have been proposed in order to better characterize resting state dynamics 

(Shakil, Lee, & Keilholz, 2016). Moreover, numerous BNMs of differing complexity are 

all able to reproduce some aspects of FC, suggesting that the time-averaged properties are 

insufficient for distinguishing between models and parameterizations (Cabral et al., 2017). 

The main goal of this thesis is to improve our ability to recapitulate features of rs-fMRI 

with BNMs, while addressing these gaps in 1) selecting between different models and 

parameterizations and 2) comparing them with the measured rs-fMRI data. We first 

establish dynamic metrics that are better at differentiating between BNMs simulated with 

different dynamical systems and parameterizations. Moreover, these metrics represent 

relevant features of rs-fMRI and provide landmarks that should be reproduced by any 

generative model. Then we address the problem of synchronization of the models to the 

data, by training a Machine Learning oracle to estimate the initial conditions of the BNM 

for a given rs-fMRI data point, allowing for a direct comparison of how the BNM and rs-

fMRI evolve over time. Finally, we show that the trained Machine Learning component 
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can be used as its own generative model to synthesize trajectories and that it is able to 

reproduce dynamic metrics observed in rs-fMRI which were not reproduced by the 

traditional BNMs. 

1.5 Organization of the Thesis 

In Chapter 2, we discuss using dynamic analysis techniques to identify better metrics 

to compare BNMs with each other and with measured rs-fMRI data. This work was 

published in 2019 Network Neuroscience (Kashyap & Keilholz 2019).  As functional 

connectivity provides only a time-averaged characterization of rs-fMRI data, newer 

methods focus on more complex dynamic metrics (Keilholz et al., 2017). These metrics 

characterize more complex transient aspects of rs-fMRI signal that are thought to originate 

from neural sources. We hypothesized that these dynamic metrics would be better in 

differentiating between BNMs as they thought to arise from network interactions. We 

therefore simulated two widely-used BNMs, the simpler linear Firing Rate Model and the 

more complex Kuramoto oscillator model, and applied six state of the art dynamical 

analysis techniques: FC, Power Spectrum, Point Process, Quasi Periodic Patterns, K-means 

analysis, and Recurrent Quantification analysis. In addition, we artificially set the 

parameters of the BNMs in operating regimes where they are also known to be further from 

empirical rs-fMRI and tested the effectiveness of the metrics to distinguish between poorer 

and better parameterizations. We concluded that the dynamic metrics that operated over 

short time frames were the best at differentiating between models and were a harder metric 

for the simulated models to reproduce. The time averaged metrics such as FC that operated 

over longer periods of time were reproduced by several BNMs, and under that metric the 

simpler firing rate model looked better than the more realistic Kuramoto model. Both the 
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established FC metric, as well as our newer dynamical metrics are then used to characterize 

the performance of other generative models in this thesis. 

In the third Chapter, we describe using a novel Machine Learning approach known 

as Neural Ordinary Differential Equations, to solve the issue of synchronization. Using a 

recurrent neural network, we train the Machine Learning oracle to solve for the distribution 

of the initial conditions of a candidate BNM with respect to the observed data. After 

sampling to generate an initial condition, we integrate our brain network equations and 

then compare how the predicted trajectory compares with future measurements of the rs-

fMRI data. Using this framework, we showed that we can differentiate correctly between 

candidate dynamical systems for a dummy spiral dataset in order to find the best model for 

the data. Our hypothesis is that when we use the differences in trajectories of candidate 

BNMs and the measured rs-fMRI data, we can better differentiate between models that try 

to recapitulate rs-fMRI. In order to test this, we perturbed the structural matrix of the BNM 

with noise and showed that the original BNM without any noise had a trajectory that 

matched the resting state evolution better than the those BNMs with noisy structural 

matrices. Therefore, we establish this technique as a valuable tool to compare how well 

two even slightly different BNMs are able to fit a given dataset. 

In the fourth Chapter, we show that combining a RNN network with a BNM allows 

the generation of simulated brain data that closely approximates empirical rs-fMRI. The 

network is initialized by a single observation and is simulated for long periods of time, 

combining the prior information held in the RNN with the constraints of the particular 

BNM. We compared the data generated by the trained network to that obtained with 

traditional BNMs using the metrics that were determined in the second Chapter. We 
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showed that our new generative model is for the first time able to reproduce more complex 

transitions such as K-means trajectories and QPPs that were observed in empirical rs-fMRI 

but which were largely lacking in the BNM simulations.  

Finally, in the last Chapter, we explore how to build on our work in the future to 

translate these models in applications that are in demand in neuroscience and clinical 

studies. We first explore how our initialization methods might translate into using BNMs 

in order to extract relevant behavioral parameters during task blocks. Lastly, we also 

explore how this could translate in Parkinson’s Disease to model the effects of stimulation 

with a DBS electrode. 
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CHAPTER 2.                                                                                      

DYNAMIC PROPERTIES OF SIMULATED BRAIN NETWORK 

MODELS AND EMPIRICAL RESTING-STATE DATA 

SUMMARY 

Motivation: In order to explain spontaneous macroscale brain activity as measured via 

resting state functional magnetic resonance imaging (rs-fMRI), activity of populations of 

grey matter neurons have been simulated as interactions through long range white matter 

connectivity. These network models, known as Brain Network Models (BNM), have had 

some success in reproducing properties seen in resting state fMRI (rs-fMRI), including 

summary metrics such as functional connectivity. However, the simulations using different 

underlying equations to model the interaction between network elements result in similar 

static summary metrics, making it hard to distinguish which simulation best recapitulates 

measured rs-fMRI data. Therefore, it is important to identify metrics that are more 

informative in distinguishing between different brain simulations and aid in the process of 

finding a model to accurately represent the dynamics of macroscale brain activity. 

Hypothesis: In order to better distinguish how well different BNMs recapitulate rs-fMRI, 

we hypothesize that dynamic metrics will exhibit greater differences when applied across 

different BNM simulations than static summary metrics.  

Approach: We simulated two commonly used BNMs with different differential equations 

to model the activity at each node, the Kuramoto model and the simpler linear Firing Rate 

Model, and generated 30 simulations of 15 minute of timeseries data at the same sampling 
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rate as the measured rs-fMRI whole brain network data (Section 2.2.3). From previous 

literature, the more complex Kuramoto model is thought to recapitulate rs-fMRI dynamics 

better than the linear Firing rate Model. In addition, each model was simulated across three 

different parameter settings. One of the conditions was biased according to previous 

literature findings while the other two were set such that the network coupling was either 

higher or lower than the empirically determined regime from previous literature. The six 

different models and the empirical data were  then subjected to six commonly used analysis 

techniques from fMRI, including summary statistics, such as functional connectivity, and 

other analysis techniques that examine the signal for structure in different spatial and 

temporal scales. A full list of the six techniques include 1) functional connectivity (FC), 2) 

power spectrum analysis, 3) point process or coactivation rates (section 2.2.6.1), 4) quasi 

periodic pattern analysis (QPP) (section 2.2.6.2), 5)  K-means analysis of short windowed 

functional connectivity matrices (K-means) (section 2.2.6.3), and 6) recurrent 

quantification analysis (RQA) (section 2.2.6.4).  

Metrics and Evaluation: Over the span of models and parameterizations, we tested each 

of the six metrics on its ability to distinguish between models and the empirical data.  

To evaluate performance on summary metrics such FC analysis, we followed the 

approach outlined in previous literature and measured the correlation between FC matrices 

of the simulated data and the empirical data. Similarly, for the power spectrum analysis, 

we measured the 1/f slope and compared the models and the empirical data with each other 

(section 2.3.1).  For the dynamic metrics, we based our evaluation on how they were 

applied and quantified on empirical data in previous literature. For the QPPs, we compared 

the distribution of the occurrence of the QPP over the course of a scan/simulation, duration 



 16 

of the QPP, and which brain regions were involved during the pattern’s evolution (section 

2.3.3). After performing the K-means analysis and keeping the number of clusters constant 

across the different simulated and measured datasets, we measured the distance between 

cluster centers, the distance between the cluster centroids of the same dataset, the dwell 

time in each cluster, and the state transition matrix (section 2.3.4). For the RQA analysis, 

we calculated recurrence plot of the simulated and measured signals, and then compared 

their distribution of entropy length, the recurrence rate, and the total time length of 

trajectories across different simulations/ measured scans (section 2.3.5). For the point 

process coactivation rates, after generating the number of coactivation rates between 

regions we measured the distance between the empirical and simulated point process 

matrices using correlation (section 2.3.2). 

Assumptions: Several assumptions were made in the simulations and analysis of the 

models (section 2.4.7). For the more complicated metrics there are numerous 

hyperparameters, like the number of states in the K-Means clustering, and instead of 

exploring parameter space we used established values from the rs-fMRI literature. For the 

models, there were also many parameters that we could have varied, i.e., time delays, 

simulation precision, Balloon Windkessel Model, but we largely used values that were 

established in literature and only varied parameters such as global coupling that were 

known to cause changes relating to the structural network and had been actively explored 

by the scientific community in order to match the empirical data. 

Conclusion: The static summary metrics such as FC, power spectrum analysis, and point 

processes showed less variability between the two different models and three different 

parameterizations than the metrics that quantified transient changes to the signal such as 
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K-means, RQA analysis or QPP analysis. The K-means metric was perhaps the best metric, 

as the correctly parametrized Kuramoto model showed the most similar results to rs-fMRI 

data, and metrics such as the centroid distance increased linearly with the parameterization 

variable. Moreover, the simpler Firing Rate model could not produce the dynamics 

described by the resting state K-means analysis as shown in previous literature (Cabral et 

al., 2017). The RQA metric also showed linear variability to changes in the 

parameterization and showed that the Kuramoto model was closer to rs-fMRI data than the 

Firing Rate model due to the presence of more frequent varied trajectories compared to the 

Firing Rate model. The QPP analysis also showed linear variability to changes in the 

parameterization and but there was no difference between the Kuramoto and the Firing 

Rate in terms of the actual trajectory estimated. The summary metrics such as FC showed 

the Firing Rate Model outperforming the Kuramoto model, which is contrary to our 

assumption that Kuramoto is the more sophisticated model that recapitulates rs-fMRI. For 

simpler metrics, it is easier to bias the simpler simulation with fewer variables, although in 

terms of actual dynamics the Firing Rate model has none of the interesting transient 

features observed in the rs-fMRI time series. This suggests that in order to develop more 

sophisticated BNMs that recapitulate rs-fMRI, the focus should be on metrics that quantify 

transient changes observed in the rs-fMRI data. 
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2.1 Introduction 

The complex activity patterns produced by the brain are critical for understanding 

behavior and the function of the central nervous system. To explain large scale 

coordination between different brain regions of interest (ROIs) during rest, task, and other 

behavioral paradigms, studies have used resting-state fMRI (rs-fMRI) scans and functional 

connectivity (FC) analysis (Smith et al., 2009). FC matrix is calculated by taking the 

correlation between every pair of ROI timeseries, usually over a long period of time (> 10 

min). In recent years, analysis of FC data has moved beyond looking at average statistical 

relationships maintained over the course of a long scan (average FC) to dynamic analysis 

methods that assume the coordination of brain activity changes on a moment-to-moment 

basis (Hutchison et al., 2013; Keilholz, Caballero-Gaudes, Bandettini, Deco, & Calhoun, 

2017; Shakil, Lee, & Keilholz, 2016). From a generative perspective, the anatomical 

connections of the brain are assumed to remain constant over for the duration of the scan 

so that the time-varying activity is thought to arise from the structural framework (SC) 

based on white matter connections (Cabral, Kringelbach, & Deco, 2017; Deco, 

Kringelbach, Jirsa, & Ritter, 2017; Shen, Hutchison, Bezgin, Everling, & McIntosh, 2015). 

Recent models have modeled the brain’s activity as interactions of ROIs connected by a 

structural network, where the activity of each ROI is a function of the local state of 

processing plus the delayed activity of its network neighbors (Breakspear, 2017; Sanz-

Leon, Knock, Spiegler, & Jirsa, 2015). The resulting set of differential equations form a 

dynamical system that can be used as a generative model to simulate activity across the 

whole brain. 
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Numerical simulations of this network of ROIs, known as the brain network model 

(BNM) (Sanz-Leon et al., 2015), simulate spontaneous neural activity in the absence of 

external stimuli. Without explicit external stimuli, as in rs-fMRI, there exists no time-

locked measure or event that would allow for straightforward comparison across 

modalities. Instead, researchers have used measures that summarize activity throughout the 

brain, such as average FC, and then used the correlation between the simulated and the 

empirical FC matrices to quantify how similar the models are to the empirical data (Cabral, 

Hugues, Sporns, & Deco, 2011; Liang et al., 2015; Senden, Reuter, van den Heuvel, 

Goebel, & Deco, 2017). At least 12 different BNMs have successfully reproduced the most 

prominent features of average FC (Cabral, Hugues, Kringelbach, & Deco, 2012; Cabral et 

al., 2011; Cabral et al., 2017; Hansen, Battaglia, Spiegler, Deco, & Jirsa, 2015; Sanz-Leon 

et al., 2015; Senden et al., 2017). Since this doesn’t provide any insight between the 

differences in models and their relationship with the empirical signal, newer studies have 

tried to develop more complex BNMs to reproduce certain transient features observed in 

resting state, such as spontaneous switching between two FC states during rest (Cabral et 

al., 2017; Deco et al., 2018; Hansen et al., 2015). However, many dynamic analysis 

methods have been applied to rs-fMRI and provide complementary views of the brain 

activity, so it is unclear which method should be used as a metric to show differences 

between our simulated BNM and the measured data (Hutchison et al., 2013; Keilholz et 

al., 2017, Cabral et al., 2017).  

The following study compares the dynamics observed in rs-fMRI to the results of the 

same analysis methods applied to two BNMs. We simulate two different types of BNMs 

with delayed inputs, the Kuramoto oscillator model and the Firing Rate model, and then 
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apply six of the most common dynamic analysis and static summary techniques to compare 

features found in the simulated data with those found in rs-fMRI scans (Cabral et al., 2012; 

Cabral et al., 2011, section 2.1.3). We chose the Kuramoto and the Firing Rate models 

because they have been shown to be robust, have relatively few parameters to optimize, 

and exhibit different dynamical properties that we expect to lead to differences in analysis 

output (Cabral et al., 2017; Deco, Jirsa, & McIntosh, 2010). Moreover, the Firing Rate 

model is more simplistic in the dynamics it can reproduce, and we expect it to serve as a 

contrast to the more complex Kuramoto model (Cabral et al., 2017). To characterize the 

models and compare them with empirical data, we chose six analysis techniques that test 

the signal for states, repeating events, or trajectories that are representative of its higher 

order spatiotemporal structure. We chose these techniques in order to span the spectrum of 

analyzing the signal by the patterns in the spatial domain and patterns in the temporal 

domain. In addition, we simulated models at three different parameter settings, one in an 

empirical determined regime and the other two that would lead to spurious dynamics. This 

was conducted to test the metrics ability to distinguish correctly parameterized models 

from incorrectly parameterized models. This is particularly important because different 

parameterizations lead to vastly different set of dynamics and it is important to be able to 

tell which parameterizations best recapitulate the underlying biological processes.  

Our approach evaluates how useful these analysis techniques in being able to 

distinguish between different models. We hypothesize that dynamic metrics will exhibit 

greater differences when applied across different BNM simulations than static summary 

metrics and will distinguish how well different BNMs recapitulate rs-fMRI. 

Dynamic Analysis Techniques 
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1.  Point process or neural avalanche theory, which models the fMRI signal 

as a combination of discrete neural events or avalanches. An event in an ROI is observed 

when the signal crosses a threshold, and then quantifies coactivation of these events 

between different ROIs (section 1.6.1,Caballero et al., 2010; Liu & Duyn, 2013; Natalia, 

Gaudes, Dryden, Francis, & Gowland, 2012; Tagliazucchi, Balenzuela, Fraiman, & 

Chialvo, 2012). 

 

2.  Repeated or quasiperiodic spatiotemporal patterns (QPP), which 

identifies a unique spatiotemporal pattern that is particularly prominent in the default mode 

network (DMN) and the task positive network (TPN). This pattern is extracted by 

iteratively using a spatiotemporal template of fixed length to correlate with the signal, 

finding the peaks in the correlation vector, and then averaging all the highest peaks to 

determine the next template (section 1.6.2, Belloy et al., 2018; Majeed et al., 2011; Majeed, 

Magnuson, & Keilholz, 2009; Thompson, Pan, Magnuson, Jaeger, & Keilholz, 2014; 

Yousefi, Shin, Schumacher, & Keilholz, 2018). 

 

3.  K-means clustering on windowed functional connectivity, which 

identifies discrete periods in time when the spatial patterns of correlated brain activity are 

relatively stable. Sliding window functional connectivity matrices are clustered using k-

means in order to identify the clusters in dynamic functional connectivity (section 2.1.6.3, 

Allen et al., 2014). 
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4.  Recurrence quantification analysis (RQA), which identifies repeated 

spatial signatures as a function of time (section 2.1.6.4 Webber & Marwan, 2015). In this 

method, the spatial pattern at each time point is correlated with the spatial pattern at all 

other time points, and the results are then quantified using information theory for repeated 

time signatures 

Static Summary Metrics 

1.  Functional Connectivity: A correlation matrix between the time series 

activity of different brain regions. Requires a long period of time (~ 10 min) in order to 

converge to a stable value (Shakil & Keilholz 2014)  

2.  Power Spectrum Analysis: A power spectrum analysis of the timeseries of 

each individual region plotted as a distribution. Brain data even in these timescales exhibits 

a 1
𝑓𝑓

𝑛𝑛
 amplitude and drops of at higher frequencies.  

 

Brain Network Models (Neural Mass Models) 

1.  Kuramoto model: A model where the trajectory of each neural mass is 

modeled as an oscillator and the phases of each oscillator are synchronized based on 

network input and perturbed by random noise (section 2.1.3). The global coupling term k 

is varied as a parameter.  
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𝑁𝑁

𝑝𝑝=1
+ 𝜎𝜎𝜎𝜎(𝑡𝑡) 

2.  Firing Rate model: Each neural mass is modeled by a single parameter that 

represents the aggregate firing rate of the population, and it decays with a certain time 

constant and increases its activity based on network input and random noise (section 2.1.3). 

The global coupling term k is varied as a parameter. 

𝜏𝜏0
𝑑𝑑𝑟𝑟𝑛𝑛
𝑑𝑑𝑑𝑑

= −𝑟𝑟𝑛𝑛 + 𝑘𝑘�𝑐𝑐𝑛𝑛𝑛𝑛𝑟𝑟𝑝𝑝�𝑡𝑡 − 𝜏𝜏𝑛𝑛𝑛𝑛�
𝑁𝑁

𝑝𝑝=1

+ 𝜎𝜎𝜎𝜎(𝑡𝑡) 

2.2 Methods 
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Figure 2.1 Methods General 

 

We used DTI data to generate the length and weight matrix between ROIs of our 
specified atlas. Using this structural connectome, we generate data using the different 
neural mass models and transformed into the BOLD signal via the Balloon-
Windkessel model. To compare with empirical fMRI data, scans from HCP were 
preprocessed and parcellated using the same atlas. The final preprocessing of 
filtering, global signal regression, and normalization was done jointly for all sets of 
data. The final data were then analyzed with each of the different dynamic analysis 
techniques. 

2.2.1 Methods General 

Our general methods are outlined in Figure 2.1 and follows the steps outlined in 

Cabral et al 2011. The generative arm starts with the Diffusion Tensor Imaging images, 

runs tractography, and estimates network graphs based on parcellation of a given atlas. The 

Neural Mass Models simulate activity based on this graph and the differential equations 

which are varied according to each model (Firing Rate or Kuromoto) and different 
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parameterizations. The simulated activity is converted to the hemodynamic response based 

on the Balloon Windkessel model. Separately, the resting state fMRI data is registered to 

standard space is then processed such that all the voxels in the brain regions is averaged 

according to the same atlas in order to estimate the response of the neural mass contained 

in that ROI. The simulated data then is collectively preprocessed according to steps 

outlined in Cabral et al 2011 and then analysed by the various analysis techniques. 

2.2.2 Structural Connectome 

The Structural Connectomes were generated from tractography, using Human 

Connectome Project’s diffusion-weighted images (spin echo TR 5520 ms, TE 89.5 ms, flip 

angle 78, voxel 1.25 mm) from five random subjects and were prealigned to standard space 

(Van Essen et al., 2013). Together they were averaged in order to generate a mean structural 

connectome. Tractography was performed using the freely available software MRtrix with 

maximum fiber length set to 250 mm (Tournier, Calamante, & Connelly, 2012) and 

parcellated using the Desikan-Killiany atlas (Desikan et al., 2006). For each subject, their 

respective T1w images (TR 2,400 ms, TE 2.14, voxel size 0.7 mm) were aligned to the 

standard space; then the we transformed the diffusion-weighted images to standard space 

as well. Probabilistic tractography then was run between each ROI and then pruned to 

generate 10 million fibers. To generate the estimates for the length and weight matrices 

from the tractography, we used the same methodology as Hagmann et al. (2008). The 

comparison between our tractography and the one from Hagmann 2008 is shown below. 

The tractography that we are running is a newer algorithm from Mrtrix, and can estimate 

longer fiber connections more accurately. The length between two ROIs was defined as the 

average fiber length of all fibers that went between them, and the weight was the number 
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of fibers going between two ROIs normalized by the surface area of the receiving ROI. 

The atlas provides 84 cortical and subcortical ROIs, but we selected the same 66 cortical 

regions as in Cabral et al. (2011) for comparison to previous work. The resulting matrices 

are shown in Figure 2.2 (Kashyap & Keilholz, 2019). Our tractography is less sensitive to 

longer connections (Fornito, Zalesky, & Breakspear, 2013) and therefore the between-

hemispheric connections were scaled by a factor of 4 to offset the known issue. The order 

of the ROIs are arranged so that the first half are from the left hemisphere and then mirrored 

for the right hemisphere. It gives the graphs a symmetric look, where the intrahemispheric 

connections are represented in the top left and bottom right, and the connections between 

hemispheres are in the bottom left and top right. 

Figure 2.2 Comparison of Structural Connectome Data 
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Comparison of our structural connectome with the structural connectome published 
in Cabral et al 2011. Our tractography utilizes the newer tractography methods that 
were unavailable at that time and has set the max tract length to 250 mm which allows 
us to estimate the longer tracts that are between hemispheres (top right and lower left 
quadrants). The distances in the length matrix are mostly in agreement (corr > 0.9) 
for the connections that are in common between the two methods.   

2.2.3 Brain Network Models 

Brain network models describe the BOLD signal as the coupling of n distinct neural 

populations corresponding to different cortical regions. Each population is connected via a 

weight matrix obtained from structural connectivity that describes the strength of the 

connection between nodes. In general, each of these n areas are modeled by a differential 

equation for each node: dn(t)/dt = f(N(t), W, L), where N(t) is the time series of all the 

nodes/ROIs, W is the weight matrix, L is the length matrix, and for given random initial 

conditions for n0, the time series n(t) can be solved for by using the Euler integration 

method (Sanz-Leon et al., 2015). The time series n(t) is the state variable and is 

representative of a measurable property of the neural mass such as firing rate. Some 

variants use more than one variable to represent the state of the neural mass, but in this 

paper we consider two models that only use one state variable, namely the Firing Rate and 

the Kuramoto models. Table 1 shows the mathematical description as well as the values of 

the parameters used in the simulations.  

The Kuramoto model is derived from an assumption that each neural population is 

in a closed periodic trajectory in phase space that represents its computational processing 

(Cabral et al., 2011). It has been shown that it can then be modeled by a phasic oscillator 

that can be described by a single parameter, theta, that represents its location within a 2pi 

cycle. Inputs into these phasic oscillators perturb its trajectory, but it stays within its limit 
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cycle. Each of these oscillators couples via the network and is driven to the same angle and 

thus synchronizes the oscillators as a function of the difference between the angles of 

neighboring oscillators.  

The Firing Rate model assumes that the mean firing rate of the neural populations 

is distributed in a Gaussian manner. This assertion is in accordance with the central limit 

theorem, which states that the sum of uncorrelated random processes converges to a 

Gaussian probability distribution, even if the individual processes are highly non-Gaussian. 

Inputs into this neural mass shift the mean firing rate to a higher firing rate. The mass 

shifted from its equilibrium tries to relax at the rate proportional to its own firing rate, 

keeping the system stable via negative feedback.  

For each model, the differential equations were numerically integrated with a time 

step function of 0.1 ms for a duration of 15 min to match the length of an HCP rs-fMRI 

scan. The first 20 s are thrown away to avoid transient effects from initial conditions. The 

choices for the values for all the parameters given in Table 1 follow previous work by 

Cabral et al. (2012) and Cabral et al. (2011), except that the values for k are slightly 

different than the ones in the paper to account for differences in the structural connectivity 

matrix. The values were slightly smaller for the Kuramoto (13 instead of 18) because there 

were more numerous connections in the newer tractography. The low coupling models 

were simulated for the Firing Rate at k = 0.3. The Kuramoto model had a low coupling of 

3. The high coupling models were simulated at k = 60 for Kuramoto and k = 0.999 for 

Firing Rate. We simulated 30 individual runs at parameterization values from previous 

studies, and 20 runs each at high and low global coupling levels. Simulations of functional 

connectivity and the intermediate steps with the original Hagmann matrices and the 
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comparisons with Cabral et al. (2011) are given in Supplementary Figure 1 (Kashyap &  

Keilholz, 2019). 

 

 

 

2.2.4 Converting to BOLD via Balloon Windkessel Model 

In order to compare the neural simulated data with the hemodynamic response 

measured from fMRI, we have to convert the high-frequency activity down to the low-

frequency hemodynamic response. This is performed with the Balloon-Windkessel model, 

which is a quadruple differential equation model that in a neuronal input and calculates the 

blood flow and blood volume and uses that to estimate the fraction of the oxygenated blood 

to the deoxygenated blood (Friston, Harrison, & Penny, 2003; Stephan, Weiskopf, 

Drysdale, Robinson, & Friston, 2007). Figure 2.3 (Kashyap & Keilholz, 2019) shows the 

impulse response of the Balloon-Windkessel model, which looks roughly like the canonical 

hemodynamic response function. We used the same constants for our Balloon model as 

those given in Friston et al. (2003). After passing the output of the BNMs through the 

Balloon-Windkessel model, it was then downsampled to the same sampling rate as the rs-

fMRI data (0.72 s). 

 

 

Table 2.1 Parameters of the Brain Network Models 
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The equations are a reprint of (Stephan et al., 2007) used in Dynamic Causal 
Modeling to relate neuronal signal to the output. The model implemented is a set of 
five differential equations as shown in the diagram with the given variable values. An 
impulse response is plotted top right and is similar to the canonical Hemodynamic 
Response function in both its shape and duration. 

2.2.5 Pre-processing rs-fMRI 

For the rs-fMRI data we used 30 individual HCP scans (gradient echo EPI, TR 720 ms, TE 

33.1 ms, flip angle 52, voxel 2 mm) that are each roughly 15 min long. The data came from the 

minimally processed pipeline and then were ICA denoised using the 300 ICA vectors that HCP 

provides. We then applied the same Desikan-Killiany atlas as used in the tractography onto the 

data and obtained the mean time series for each ROI. The ordering of the ROI is shown below in 

Table 2.2. From then on, the same processing pipeline was applied for the simulated data and the 

real data, in order to keep the processing as similar as possible. These steps in order were z-scoring 

Figure 2.3 Hemodynamic Response Function 
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each time series, then band passing filtering the signal from 0.01 to 0.25 Hz, then global signal 

regression using a linear regression model, and then applying a final z-score step. These steps were 

selected in accordance with Cabral et al. (2011). 

Table 2.2 Table of Regions of Interest 

 

2.2.6 Dynamic Analysis Techniques 

To compare the dynamics of the rs-fMRI signal and the BNMs, we selected analysis 

techniques that are commonly used and characterized the signal at different spatial and 
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temporal scales. Table 2.3 shows a quick comparison of the different techniques that were 

applied. 

 

 

 

 

2.2.6.1 Point Process 

The point process assumes that activity in an area triggers neural avalanches in 

regions that are involved in the information processing (Tagliazucchi et al., 2012). The 

signal is only interpretable at either its high levels of activation or very low levels of 

activation when it is coordinating information transfer with other elements in the network. 

Later models explicitly write out the mathematical formulation using impulse response and 

solve for a sparse representation of these coactivation patterns, which are thought to be 

unique computational trajectories across the brain (Karahanoglu & Van De Ville , 2015; 

Liu & Duyn, 2013). But in this analysis, we use Tagliazucchi’s methodology by 

quantifying when different ROIs cross the same threshold over time. We implemented this 

approach by recording when the activity at a certain ROI crosses a certain threshold and 

then counting how many other ROIs cross the same threshold within three time steps (0.72 

s) of the original crossing. We normalize the co-occurrence rates to get a fraction by 

dividing by the total number of crossings at each ROI. We applied this analysis with two 

different thresholds, one at the mean of the signal and one at 1 standard deviation away, 

Table 2.3 Dynamic Analysis Techniques 
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which for our normalized signals were at 0 and 1, respectively. Prior work that has shown 

that average functional connectivity is primarily driven by coactivation events 

(Tagliazucchi et al., 2012). 

2.2.6.2 Quasiperiodic patterns 

A second approach examines the quasiperiodic patterns of BOLD signal 

propagation over the course of the scan. The QPP algorithm identifies the most prominent 

repeating spatiotemporal pattern in the signal (Majeed et al., 2011; Majeed et al., 2009). In 

brief, the algorithm chooses a random chunk of the rs-fMRI data (20 s of data) and 

correlates it with the entire scan (Majeed et al., 2011). Time points with high correlation to 

the random chunk indicate repeated occurrences and are averaged together to form the new 

template. This process is iterated until the template converges. Since we use a random seed 

point as the original template, repeated runs of the algorithm produce QPPs with different 

phases. Therefore, in order to compare the patterns from the rs-fMRI and the simulated 

models, the QPP was circularly shifted to the point where maximum correlation occurred. 

2.2.6.3 K-means analysis 

Sliding window correlation followed by k-means clustering was applied to examine 

the brain states and transitions in each set of data (Allen et al., 2014). Using a sliding 

window length of 60 × 0.72 s, the Pearson correlation was calculated pairwise for all ROIs. 

The window was then advanced by one time point and the process was repeated until the 

window reached the end of the scan. This value is around the range used in previous work 

(Allen et al., 2014). Correlation values were Fisher-transformed to better approximate a 

normal distribution and the k-means algorithm was applied to cluster the data into seven 
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groups using Manhattan distance based on previous studies (Allen et al., 2014). Clustering 

was repeated 30 times, and the best resulting clustering was chosen based on minimizing 

the total distance from the cluster centroids and the feature vectors in order to mitigate the 

effects of randomly choosing the centroid locations. 

2.2.6.4 Recurrent Quantification analysis 

Recurrent analysis was performed by calculating correlation of the spatial pattern 

of activity pairwise across all time points. We then thresholded the values at 0.3, based on 

literature search, and created recurrent plots (Bassett, Nelson, Mueller, Camchong, & Lim, 

2012; Cabral et al., 2014). These metrics were calculated using freely available MATLAB 

toolbox (Ouyang, Li, Dang, & Richards, 2008), and their distribution for each type of data 

was plotted. Recurrence rate, entropy rate, and average diagonal length were measured. 

The recurrence rate is the rate that similar states occur throughout the scan, as seen in 

Equation 1. Entropy rate quantifies the difference between repeated states, as seen in 

Equation 2. The average diagonal length, Equation 3, measures how long these trajectories 

occur. Collectively they give us an insight into how often similar states occur, how different 

they are from each other, and how long each of these spatiotemporal trajectories persists. 
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2.3 Results 

2.3.1 Reproduction of Previous Literature Results 

Figure 2.4 Comparison of our methodology with the original BNM Kuramoto Model 

 

A comparison between all the intermediate states of generating the simulated BOLD 
signal for the Kuramoto fast oscillator model. The top row is a screenshot from 
Cabral 2012 paper and the bottom is our reproduction of it using our own 
methodology. The left most panel represents the functional connectivity matrix 
calculated from the raw output of the Kuramoto. The middle panel represents the 
functional connectivity from the output of the Balloon Windkessel model. The 
rightmost panel represents the functional connectivity using the post processing steps 
cited in the paper. These models were generated using the 2008 Hagmann structural 
connectivity which was subsequently replaced by our tractography. 

We first demonstrate that the simulated models reproduce common metrics in brain 

network modeling: average FC and power spectrum. Since our methodology and parameter 

values are similar to those described in Cabral et al. (2011) and Cabral et al. (2012), we 

first demonstrate the reproduction of their results using their tractography but using our 
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pipeline as shown in Figure 2.4. The ordering of the ROIs seen in the figure is shown in 

Table 2.2 (section 2.5) and is from Cabral et al. (2011). We debugged our methodology in 

order to match each of the figures at different stages of the pipeline (after the Brain Network 

Model section 2.2.3, the Hemodynamic response model section 2.2.4, and after the final 

preprocessing steps section 2.2.5).  

The rest of the results use the tractography from 2018 (as in Figure 2.5) which show 

a much more coordinated response between the hemispheres consistent with the fact of the 

inclusion of longer tracts in the new tractography. To quantify the similarity between the 

simulated FC matrices and the empirical FC matrix, we calculated the correlation between 

the two, a method that is extensively used in previous studies (Cabral, Hugues, Sporns, & 

Deco, 2011; Cabral et al., 2017; Senden et al., 2017). Correlation was 0.37 between 

Kuramoto and rs-fMRI FC matrices, and 0.5 between Firing Rate and rs-fMRI FC matrices. 

These are in the range of values reported in earlier literature in other BNMs [0.3, 0.7] 

(Cabral, Hugues, Kringelbach, & Deco, 2012a; Senden et al., 2017). As expected, the 

correlation values between simulated and empirical FC are higher values at the correctly 

biased value than at very high and low global coupling levels (Figure 2.6 top row). Power 

spectra were calculated for each ROI independently, then averaged (Figure 2.5, bottom 

right). When plotted on a log-log plot, the BOLD signal has a characteristic 〖1/f〗^n 

linear slope. The power exponent n has been reported in literature as 0.88, comparable to 

the 0.9 measured here for our empirical rs-fMRI data (Bullmore et al., 2000). The empirical 

slope falls well within the distribution of the simulated power spectrums. The two 

simulated models had a slope of 0.74 (Kuramoto) and 0.7 (Firing Rate) before 
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preprocessing, comparable to a previous report of 0.78 using a different BNMs but not as 

good as the current best of 0.91 (Ritter, 2017; Ritter, Schirner, McIntosh, & Jirsa, 2013). 

Figure 2.5 Comparison of Average FC and the Frequency Spectrum 

 

Comparison of the average functional connectivity between the rs-fMRI signals and 
the two simulated models. Correlation between the matrix for empirical data and the 
Firing Rate simulation is 0.5; correlation between empirical and Kuramoto matrices 
is 0.37. Both modeled matrices and the empirical data exhibit similar structure such 
as the coordination between hemispheres, which can be seen in the symmetry of the 
matrix. The mean frequency spectrum of all ROIs is plotted (bottom right) and shows 
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that the real signal falls within range of both models. All power spectra exhibit a 𝟏𝟏
𝒇𝒇

𝒏𝒏
  

trend. 

Figure 2.6 Average FC and Point Process across Parameters 

 

Changes in average functional connectivity and point process for different global 
coupling parameters. The coupling changes the dynamics from purely noise driven to 
purely network driven processes. The functional connectivity were both much lower 
than in the correctly biased Figure 2.5 (0.15-0.3). 

2.3.2 Point Process and Coactivation Rates 

In coactivation analysis based on the point process approach, all ROIs that cross a 

certain activation threshold (see Methods; Tagliazucchi et al., 2012) are examined at each 

time point to identify coactivation patterns. The bottom row of Figure 2.7 shows the 

coactivation data obtained for the Kuramoto simulation, the Firing Rate simulation, and 

empirical rs-fMRI data. Each value in the matrix represents the fraction of co-occurrences 

between two ROIs. The matrices are compared with the respective average FC matrices 

(Figure 10, top row), and all three signals show a high degree of correlation (>0.9) between 

the two different analysis techniques. This is because average FC can be calculated by a 

handful of events, as shown by Tagliazucchi et al. (2012). Moreover, from Figure 2.6 point 
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process/coactivation rates are identical to average FC at different parameter settings, 

further suggesting they are measuring similar structure in the data. The Firing Rate 

coactivation rates are again closer to the coactivation rates of the empirical data than the 

Kuramoto model, which is similar to the results observed with the average FC analysis. 

 

 

 

 

 

 

 

 

Coactivation rates (point process) between the different modalities compared with 
those from static or average functional connectivity. The resulting maps are almost 
identical between different modalities and have a correlation of over 0.9 between each 
respective dataset. 

2.3.3 Quasiperiodic Pattern Algorithm Comparison 

The quasiperiodic pattern (QPP) finding algorithm estimates a recurring 

spatiotemporal pattern that occurs throughout resting and task states. It consists of a 

characteristic pattern dominated by the activation and inhibition of the regions that 

Figure 2.7 Point Process across Brain Network Models 
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correspond to the default mode network (DMN) and task positive network (TPN) in a 

specific temporal sequence (Majeed et al., 2011; Majeed et al., 2009; Yousefi et al., 2018). 

The QPP templates obtained from the real data and from each simulation are shown in 

Figure 2.8 in a simplified format, where the color bar shows the level of activation or 

deactivation in each ROI as a function of time. For better visualization, please see the 

videos (Kashyap & Keilholz, 2019) that show the pattern as it evolves over a surface 

representation of the brain. The pattern in the rs-fMRI data is consistent with the QPP 

templates obtained previously (Majeed et al., 2011; Yousefi et al., 2018). 

The QPP templates from the two models are very similar to each other (Figure 2.8 

top right and bottom left, correlation of 0.81), but have important differences from the 

empirical QPP (Figure 2.8, top left, correlation of 0.34, 0.33). In fact, the pattern in the 

simulated models is a simple flip between two states, where a subset of ROIs is first active 

and then inactive. The boxy nature of the plot is due to the spatial ordering of the ROIs that 

was originally defined by their subnetwork connectivity, suggesting that these 

subcomponents are activating and deactivating together. The QPP obtained from the real 

data is more complex and demonstrates time lags between areas in addition to the 

alternation of states, suggesting that the power in the BOLD signal cyclically flows through 

a certain order of ROIs. The relative lengths of the simulated and the observed patterns are 

different as well. The QPP from the real data is approximately 20 s in length, in agreement 

with previous reports (Majeed et al., 2011; Yousefi et al., 2018). In contrast, both of the 

models give QPPs that are ∼12–13 s in length, despite the use of identical windows and 

the similar frequency content of the signals. 
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Figure 2.8 QPP Algorithm Comparison 

 

Comparison of the QPPs obtained for each model and the real data. The two 
simulated models (top right and bottom left) produce templates that are similar to 
each other but less similar to the template extracted from rs-fMRI. The correlation 
values to the template are plotted in a histogram (bottom right), which shows that the 
real signal has more extreme values than either model. All three are significantly 
different from each other (p < 0.0001) in a Komogorov-Smirnov test. 

At low and high global coupling (Figure 2.9), the QPP pattern transitions from an 

unstructured noise-like template to a structured signal. The number of repeated patterns for 

a given window is dependent on the strength of the coupling parameter for the Kuramoto 

model, where at higher coupling the pattern is shorter and repeats more often. For the Firing 

Model, the template pattern emerges from unstructured noise after a certain coupling 

strength. The correlation vector represents how correlated the QPP template is with the 

scan at every time point. The distribution of the values are displayed using histograms 

(Figure 2.9, bottom right), in order to compare different modalities. The flatter distribution 
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of the resting-state fMRI shows that the template occurs more often significantly and at 

higher correlations in the real scan than either of the templates. 

Figure 2.9 QPP Algorithm Comparison across Parameters 

 

Comparison of the QPPs obtained for each model across different coupling strengths. 
The left column represents low global coupling and the right column, higher global 
coupling. The top row is the Firing Rate model and the bottom row is the Kuramoto 
model. As coupling strength increases, the pattern goes from a random unstructured 
signal to a highly boxlike structure. 

2.3.4 K-means on Sliding Windowed Matrices 
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To identify FC states that occur at different time points in the BOLD signal, we 

used k-means analysis to compare the sliding windowed FC of the real and simulated data. 

After k-means clustering (k = 7), we examined both the spatial composition of the resulting 

clusters (or states) and metrics that describe how the brain transitions between them in 

Figure 2.10 (Allen et al., 2014). We have also explored cluster numbers k = 8 and 9; these 

are shown in Figure 2.12. The results are similar across all metrics and all models. This is 

due to the number of actual clusters seen per individual simulation (Figure 10, right 

column; Kashyap & Keilholz, 2019), which is constant across cluster numbers, suggesting 

that the methodology is measuring the intrinsic dynamic structure seen within the data, 

rather than arbitrarily dividing up the segments. 

The top row in Figure 2.10 quantifies for each individual scan or simulation, 

starting at different initial conditions (N = 30), how many of unique states are visited, how 

long they dwell in each state, and how far apart (L2 Norm distance between cluster centers) 

these visited states are on average. The Firing Rate and the rs-fMRI each have an average 

of five states per individual scan and transition at similar rates, but the average distance 

between centroids is almost twice as large in the rs-fMRI states compared with the 

simulated data. Visually the Firing Rate centroids look very similar (Figure 2.13), 

suggesting that the diversity of states encountered is still very low. The Kuramoto model 

produces states with similar distances between centroids as empirical data, but each 

instantiation has fewer states compared with rs-fMRI. Most runs (66%) result in only a 

single state, but under certain initial conditions the Kuramoto model can exhibit transitions 

between two to three different states. The model also dwells in these states longer than in 

the empirical rs-fMRI data and Firing Rate data. The transition matrix for the empirical 
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data shows that transitions are more evenly distributed between states than in the simulated 

data (Figure 2.10, bottom row). The empirical rs-fMRI data have more transitions between 

states than in either simulated model. The Kuramoto and the Firing Rate are roughly around 

the same complexity seen in the transition matrices but far less than seen in the empirical 

signal. We quantified this by measuring the sparsity fraction by counting the number of 

transitions and dividing by the total number of possible transitions (Firing Rate has 0.55 

transitions, Kuramoto has 0.52, and rs-fMRI has 0.86). 

 

 

 

 

 

 

 

The top row shows the average number of states seen in an individual run (top left), 
the average dwell time in each state (top middle), and the mean distances between the 
centroids (top right).The transition matrices between the different k-means centroids 
are shown on the bottom row. The values reflect the number of raw occurrences 
divided by the total number of transitions giving the probability of transitioning from 
one state to another. Self-transitions are set to 0. 

Varying the coupling strength also affected the state dynamics seen in the models. 

Figure 2.10 shows that the distance between the states increases as a function of coupling 

Figure 2.10 K-Means Algorithm Comparison 
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strength, especially for the Kuramoto model, suggesting that stable dynamical states are 

moving apart from each other. The other parameters have a nonlinear relationship with the 

coupling parameters as the dynamics of the system changes. None of the models have the 

complexity seen in rs-fMRI in terms of number of distinct states and large distances 

between their centers, but the one that is the closest to the real signal is the Kuramoto model 

at medium coupling levels. Even though the BNMs produces some state transition 

properties, these BNMs clearly have much simpler dynamics as compared with the rs-fMRI 

and it cannot just be rectified by simply varying the parameters.  

 

 

 

 

 

K-means analysis across parameters. The transition matrices for the Firing Rate (top) 
and the Kuramoto (bottom) are given at different coupling parameters. The distance 
between cluster centers (middle) is increasing as a function of coupling strength, 
suggesting that the states are diverging and are having more state-like dynamics for 
higher coupling strengths. The number of states is relatively the same even at higher 

Figure 2.11 K-means Analysis Across Parameters 
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coupling strengths, suggesting that the models are limited to how much variety they 
can produce. 

Figure 2.12 K-means Analysis with different number of Clusters 

 

The effect of different K-means centers on the metrics used to evaluate the K-means 
model, such as average dwell time and the number of clusters. With sufficiently many 
clusters the metrics used is irrespective on the number of clusters used. We used 7 
clusters in the main analysis, which is about how many are used in literature (5-9). 
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A comparison of all the cluster centroids identified by the K-means algorithm from 
each of the respective data sets. The spatial states don’t vary that much in the two 

Figure 2.13 K-means Centroids 
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simulated models as much as in the real data. The silhouette (bottom right of each 
data type) is a measure of how similar the values in each cluster are too each other. 

 

2.3.5 Recurrence Quantification Analysis 

Figure 2.14 shows the recurrence plots for the empirical and simulated BOLD 

signal. These plots are calculated by correlating the pattern of activity at each time point 

with the pattern from every other time point. Diagonal lines that are parallel to the main 

diagonal represent repeating transitions that are seen throughout the scan, whereas vertical 

or horizontal blocks represent dwell periods during the scan. A cursory inspection of the 

three recurrence plots (Figure 2.14, top row) shows that the two models have far less 

repeating structure than seen in rs-fMRI. This relation is quantified by the bottom three 

plots that show the recurrence rate (left), entropy of diagonal lines (middle), and average 

length of diagonal lines (right). The recurrence rate are much higher in the Kuramoto and 

empirical signal than in the Firing Rate model. However, the entropy and length of the lines 

(related to how different the states are and how long they linger) clearly separate the three 

datasets (bottom and right). Entropy and line length are highest in the real data and lowest 

in the Firing Rate simulation, with the Kuramoto simulation residing in between. The low 

entropy values for the Firing Rate data signify that the model does not have as many 

repeated trajectories as compared with the other modalities. 
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Comparison of the recurrent quantification analysis (RQA) between the simulated 
and real datasets. The top row shows three scans of recurrent plots thresholded at 0.3 
for the three datasets. The bottom row shows the distribution of three different RQA 
techniques over all scans. The bottom left shows the recurrence rate, which is much 
higher for the Kuramoto and rs-fMRI model than for the Firing Rate simulation. The 
recurrence rate is a measure of repeated states seen in the dynamics of the rs-fMRI 
signal. The middle and the right plots quantify how much similar trajectories occur 
during the scan. The measured rs-fMRI signal shows much more variance between 
different trajectories and is of much longer duration. 

Changing the global parameters has some very linear effects, as can be seen in Figure 

2.15. At low coupling parameters the recurrence plot shows almost no structure, and at 

high coupling more and more structure emerges. The recurrence rate that is most related to 

the number of events seen in recurrence plots is almost linear (Figure 2.15, middle column) 

Figure 2.14 Recurrence Quantification Analysis Comparison 
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for both models. At higher levels of coupling there is a larger spread in the models (entropy 

rate, Figure 2.15, right from middle column), as they are more a function of initial condition 

than at low levels of coupling. The entropy levels and the average diagonal length are much 

higher in rest than all of the models, suggesting longer, slower repeated trajectories in the 

real signal. Overall the technique is able to separate the empirical data and the models 

pretty robustly and shows a clear difference between the more simpler Firing Rate model 

and the more complex Kuramoto model, and at least one of the measures varies linearly 

with the parameter selection. 

 

 

 

 

Recurrence quantification analysis across different parameters. Left are the 
recurrence plots at high and low global coupling for Kuramoto (bottom row) and 
Firing Rate (top row). The recurrence rate that quantifies the number of events 
increases monotonically (center column) as a function of coupling strength. The 
entropy and the lengths of the diagonal lines have a nonlinear relationship. Neither 
of the right two metrics are as high, as seen in the resting dataset (Figure 2.14). 

2.4 Discussion 

2.4.1 Analysis of Average Functional Connectivity and Power Spectra 

From previous studies using multiple models and parameterizations, it appears that 

certain properties of the simulated signal are most reliant upon the underlying structural 

connectivity rather than the model of activity used at each node (Bullmore & Sporns, 2009; 

Figure 2.15 Recurrence Quantification Analysis Across Parameters 
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Stam et al., 2016). In our study, these properties should be similar across models (which 

share identical structural connectivity) and in the real data. Average functional connectivity 

analysis is one of these properties. The structural connectivity matrices derived from 

diffusion tensor imaging and the respective functional connectivity estimates derived from 

resting-state fMRI have a correlation value of 0.45 as measured through our methodology, 

which is similar to what has been described before (Bullmore & Sporns, 2009). In fact, all 

three dynamical systems produce signals where functional connectivity is highly correlated 

with the structural input, leading to suggest that average functional connectivity is closely 

related to the underlying connectome. There are known differences between SC and FC; 

for example, an edge in FC between two nodes can be the result of a third process that 

drives the two structurally disconnected regions. However, most of the edges between the 

ROIs can be described as a function of how many white matter tracks run between them 

(Stam et al., 2016). Moreover, the frequency spectrum and the characteristic ( 1/f )^n 

distribution are similar for both BNMs and the empirical rs-fMRI, suggesting that the 

spectrum is a property of the underlying structure of the network. The Firing Rate model 

reproduces the average FC better than the Kuramoto model, which might be due to 

overfitting since it has fewer parameters to optimize compared with the Kuramoto model. 

This matches well with previous reported literature where the Firing Rate model has 

produced FC matrices that have a large correlation (corr. = 0.8) by tweaking the input SC 

to maximize similarity to the output FC (Senden et al., 2017). 

2.4.2 Coactivation Patterns/ Point Process 

The coactivation analysis also showed a shared feature across the empirical and 

simulated data. For all three datasets, coactivation patterns were strongly correlated with 
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average functional connectivity. This is likely because functional connectivity is driven by 

processes that activate certain subnetworks of the SC together (Smith et al., 2009). This 

further strengthens the notion that SC and average FC are closely related. The global 

coupling parameter affects the coactivation rates in a similar way as for average FC, where 

low levels of coupling result in a very uncoordinated system, and high levels result in global 

networks that are highly active. Since the model parameters were chosen to fit average FC 

best, and it is easier to fit the Firing Rate model, it once again reproduces measures that are 

more faithful to empirical rs-fMRI compared with the Kuramoto model, probably for the 

same reason that it can better match the average FC of the empirical data. Regardless of 

the coupling parameters used, the coactivation patterns are similar to the average FC for 

both models. 

2.4.3 Quasiperiodic Patterns analysis 

The successful detection of quasiperiodic patterns in both BNMs indicates that 

these network models capture at least some of the dynamical features of the brain’s activity. 

Unlike the previous sections of spatial metrics where the naïve Firing Rate model 

performed better than the Kuramoto model, the QPP templates for the two models are 

indistinguishable. On the other hand, there are substantial differences compared with the 

real QPP. The real QPP is more complex, with gradual switching at different time lags in 

different areas. The real QPP template is also longer in length than the ones from the 

BNMs, as the simulated model starts repeating itself before the end of the template. The 

length of the spatiotemporal pattern is a function of the coupling parameter, especially in 

the Kuramoto model, where increased coupling leads to faster repetitions of the patterns. 

The overall spatial shape of the pattern (i.e., the areas involved in activation and 
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deactivation) are quite similar across models and parameterizations, though none are as 

complex as the patterns in empirical data. We believe the incorporation of aspects of neural 

field models and Connectome Harmonics (Atasoy, Donnelly, & Pearson, 2016; Sanz-Leon 

et al., 2015) into the existing BNMs may result in a more accurate reproduction of the 

spatial propagation because it would take into account surface propagation was well as 

network propagation. It could also be possible that the difference in QPP templates results 

from the unidirectionality of certain white matter connections or other properties that 

cannot be captured using standard tractography. 

2.4.4 K-means Analysis 

Some dynamic properties appear to arise more from the complex interactions linked 

to the unique temporal description of activity in each ROI than from the underlying 

structural connectivity. These properties are likely to be different for each BNM, and from 

previous literature, the Kuramoto model has outperformed the Firing Rate model (Cabral 

et al., 2017). The k-means algorithm on the windowed FC matrices revealed a complex 

network of states in the rs-fMRI data that each demonstrated distinct spatial patterns of 

connectivity between ROIs along with a complex web of transitions between them. In the 

Firing Rate model there are a similar number of states compared with rs-fMRI, but the 

distances between the states are much smaller compared with rs-fMRI, suggesting that it 

is more appropriate to consider the Firing Rate states as representing a single state 

artificially divided into multiple components. The state description in the Firing Rate model 

echoes previous findings because it is known that stable attractor states cannot be produced 

with only a linear set of differential equations (Cabral et al., 2017). The Kuramoto model 

at very low levels of coupling has similarly many states that are close together. But at 
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higher values the Kuramoto model, for some initial conditions, can produce transitions 

between states that are as spatially distinct as the rs-fMRI but limited to fewer states and a 

simpler transition matrix than the empirical signal. This suggests that BNMs can reproduce 

at least some of the dynamic states observed in rs-fMRI, although current models do not 

recapitulate the rich variety observed in empirical data. The Kuramoto model under certain 

parameters does better than the Firing Rate model and can produce complex state-like 

behaviour. 

2.4.5 Recurrence Analysis 

Recurrence analysis quantifies elements in the temporal structure of the data similar 

to clustering analysis on short FC matrices. Therefore, we predicted it to depend more on 

the dynamic description of the data rather than the shared spatial connectivity input. The 

Firing Rate model again exhibited the least complexity, the rs-fMRI data exhibited the 

most, and the Kuramoto model fell in between the two for the normal parameters. The 

empirical data have repeated trajectories that occur more often and are longer than either 

observed in the simulated BNMs. Out of the dynamic analysis metrics that were examined, 

the RQA metrics separated the three datasets the most effectively, whereas the average 

functional connectivity analysis exhibited the fewest differences. Moreover, the recurrence 

rate that quantifies the number of repeated temporal events seems to linearly depend on the 

coupling parameters for a certain range. This relationship is similar to average FC, which 

at low levels of coupling shows no structure and at higher levels of coupling shows 

increased network structure (Figure 2.6). Average FC and recurrence analysis both use 

correlation, except that one uses the space across rows that spans the ROIs, whereas the 

other uses the space of the columns that represent single time points in the BOLD data. 
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Average FC, which examines coordination between ROIs, reveals a static network related 

to the input SC. Recurrence analysis that examines the time domain reveals properties that 

seem to be most unique to the formulation of each BNM. Recurrence analysis also is quick 

to compute and therefore could be a good addition to average FC as a metric for model 

selection, which is a very computationally intensive process. Together they can ensure that 

the model has roughly similar network component structure compared with rs-fMRI based 

on average FC, and similar temporal structure recurrence rates. 

2.4.6 Overall Discussion 

The goal of our exploratory study was to find better dynamic metrics to compare 

empirical rs-fMRI and the brain network models. We have chosen two different BNMs at 

three different parameterizations to provide an axis of contrast between the simpler Firing 

Rate model and the more complex Kuramoto model, which has been shown to reproduce 

more complex dynamic trajectories (Cabral et al., 2017). The dynamic analysis techniques 

can be ordered in how much they analyze the structure in the spatiotemporal BOLD signal 

as a function of spatial coordination between regions or repeated temporal trajectories. The 

ordering in Table 2.4 is not strict, but loosely goes from techniques that observe spatial 

patterns to those that observe temporal patterns. These two components seem to correspond 

to the two main components in the formulation of BNM: the structural network that 

provides input from connected ROIs and a description of the evolution of the state 

variables. 

The Firing Rate model outperforms the Kuramoto model on metrics that are more 

closely linked with spatial patterns, whereas the Kuramoto performs better on metrics that 

are linked with the temporal structure observed in rs-fMRI. We believe that the 
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performance on spatial metrics, such as average FC and point process, is due to the Firing 

Rate model being easier to fit to the rs-fMRI because of its fewer parameters. Moreover, 

since average FC and the SC are similar, it is probably an easier task to match the FC output 

that is very closely related to the SC input. The temporal metrics reveal that the Kuramoto 

model has much richer dynamics than the Firing Rate model and is closer in reproducing 

features seen in rs-fMRI. Moreover, these differences are more likely due to the differences 

in the differential equation formulation of the BNM since it defines the network evolution. 

The BNMs seemed to perform also similarly between the QPP and the point process metric, 

suggesting that it might be an invariant property of all BNMs. 

 

 

 

 

 

2.4.7 Limitations 

Our modeling approach makes many simplifying assumptions that do not capture 

the true complexity of the brain. In the construction of the structural connectome, we 

assumed that all connections were bidirectional. This is a limitation of using tractography 

to build the structural network, since tractography cannot distinguish unidirectional 

connections. Moreover, estimates of fiber density for connections between regions that 

Table 2.4 Comparison between models across different analysis Techniques 



 57 

have very sharp angles or between regions that are spatially far apart are far lower than the 

true connectivity between these regions (Bullmore & Sporns, 2009). In our generative 

models we also assumed a homogeneity in the response of ROIs, in both their neural 

description, as well as their transformation using the hemodynamic Balloon-Windkessel 

model. Moreover, we did not simulate subcortical structures that are known to play a 

crucial role in the operation of the central nervous system. All these factors might change 

the association between dynamic metrics and the simulated BNM signal. 

We also examined only a single parameterization for only two BNMs. There are a 

variety of BNMs, some of which are likely to exhibit more complex dynamics than either 

the Kuramoto or the Firing Rate model (Sanz-Leon et al., 2015). Even different 

parameterizations of a single model can give rise to vastly different behavior (Hansen et 

al., 2015). We chose to focus on the Kuramoto and Firing Rate models because of their 

relative simplicity, their thorough characterization, and the expectation that they would 

have dissimilar dynamic properties. 

There are also numerous dynamic analysis methods available for rs-fMRI (Keilholz 

et al., 2017). We chose to focus on a few of the most common ones, but future work should 

certainly examine the use of other types of analysis to produce even more sensitive metrics. 

Moreover, our study does not look at methods to test these metrics and use the established 

correlation as distance function. We have also not explored the entire space of 

parameterization, so it is possible that these models can produce more realistic signals; 

however, based on previous results establishing these as close to optimum, the results are 

probably a realistic representation of their capabilities. 
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2.5 Conclusion 

We believe that the more-temporal metrics, namely RQA or k-means, would be the 

most appropriate in evaluating BNMs in the future because they show that the more 

complicated Kuramoto model recapitulates rs-fMRI dynamics better than the Firing Rate. 

The k-means approach is a stronger criterion to evaluate on, because the cluster centers as 

well as the state transitions between the model and the empirical signal would have to 

match in order to reproduce resting-state dynamics. However, the RQA approach is less 

computationally intensive and can used to quickly check the diversity in the temporal 

structure of the simulation and to assist the selection of parameters in the model. The QPP 

algorithm would also be an interesting method to test future models as it is strongly 

dependent to changes in the global coupling but seems to be less dependent on differences 

between Brain Network Models. Average FC and the point process do not reveal processes 

that are much more complex than the SC input. 

       From the dynamic analysis perspective, the most distinguishable metric in rs-fMRI 

seems to be predicting the temporal structure of the signal. Although this chapter 

establishes these dynamic metrics as more useful in comparing between models and 

empirical data, they don’t allow for a direct comparison of the evolution of the model and 

the empirical data. We speculate that the most transient features are the most characteristic 

of rs-fMRI and the hardest to reproduce using non-linear equations and if there was a way 

to synchronize the models and the data, we could train on the difference directly. 
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CHAPTER 3.                                                                                       

MODELING RESTING STATE FMRI EVOLUTION USING 

NEURAL ORDINARY DIFFERENTIAL EQUATIONS 

SUMMARY 

Motivation: Brain Network Models (BNMs) represent a family of dynamical systems that 

simulate whole brain activity. The simulations have been compared to empirical 

measurements such as functional magnetic resonance imaging (fMRI) using metrics that 

are averaged over long periods of time and have shown some degree of similarity. 

However, for shorter periods of time the BNMs have not been compared with the empirical 

data because the initial conditions of the BNM with respect to the data are not known. To 

address this challenge, we use Deep Learning to solve for initial conditions based on 

empirical rs-fMRI data. From these initial conditions, we use an Ordinary Differential 

Equation (ODE) solver to integrate the BNM model and compare the resulting timeseries 

directly with either the empirical timeseries or from another BNM with a different 

dynamical system (Chen et al., 2018). The approach represents a scientific tool that allows 

us to test how well a specific dynamical system is representative of the observed signal 

over a short period of time.  

Hypothesis: From the estimated initial conditions, the BNMs that are known to reproduce 

more complex non-linear properties of rs-fMRI, will evolve more closely to the empirical 
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signal as measured by r-squared over multiple future timepoints, than the simpler linear 

BNM models.  

Approach: The approach is based on the Neural ODE paper (Chen et al., 2018) which uses 

a recurrent neural network (RNN) to estimate the initial condition for a given BNM and an 

ODE solver to generate subsequent estimates for time series prediction based on the BNM 

equations (Section 3.2.1). During training, we estimate for each given datapoint at every 

timestep the initial conditions. From the initial conditions, we integrate over the same time 

interval the data is collected for and generate our estimate for the next timestep. The RNN 

is then trained using the difference between the predicted value and the actual measured 

value. We first validate that our model predicts the correct initial conditions by validating 

on a constructed spiral dynamical system, where the initial conditions are known (section 

3.2.4, section 3.3.1, section 3.3.2). To fit the neural data, we use the linear Firing Rate 

model and the nonlinear Sigmoidal Firing Rate model as our BNMs (section 3.2.3). For 

each specific model, we also vary the parameters of the system which change the dynamics 

of the system (section 3.2.3). During testing, we use these BNMs on their own without the 

RNNs to generate multiple timepoints from a single set of initial conditions. The timepoints 

that are further out in the future are less dependent on the RNN’s initial conditions and 

more of a function of the candidate BNM. The trajectory of the BNM is then compared 

with the measured timeseries. For our empirical dataset, we used rs-fMRI scans from 500 

subjects that were registered to standard space and collected at 0.72 sec intervals (section 

3.2.5.2). We utilize three null models to test against the Neural ODE approaches (section 

3.2.7). The first one is created by setting the BNM derivative to zero, and the next predicted 

timestep is the output of the RNN. The second one is a Neural ODE using a purely 
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exponential function to fit to the fMRI data. The third model is a non-machine learning 

Autoregressive model that is traditionally used as time series predictions in fMRI data 

(Smith et al., 2009). 

Metrics and Evaluation: We use the accuracy at the future timesteps to evaluate the 

differences between BNM models. In order to test our hypothesis that this technique is able 

to differentiate between dynamical systems that are either closer to or further away from 

empirical measurements, we test on three different scenarios. First, we test how the 

differences on parameterizations for a single BNM model changes the short-term 

prediction, by varying the weight of the global coupling term (section 3.4.2). For each 

parameterization, we train separate RNN networks to solve for initial conditions for the 

respective models. From previous literature, we can set this global coupling term to lead to 

dynamics that is closer to rs-fMRI dynamics or to a different set of dynamics that are 

thought to be further from rs-fMRI dynamics. In the second test, we test differences in 

short term predictions due to changes in the structural matrix of the BNM by introducing 

noise at varying levels into the structural matrix that is estimated via imaging (section 

3.4.3). We anticipate that the model using the measured structural matrix would have the 

highest r-squared compared to those models with a noisier version of the structural matrix. 

For the final test, we test the differences in prediction between a Firing Rate Model and 

adding a sigmoid function to a  Firing Rate model with different parameterizations. We 

expect the introduction of a sigmoid to increase our accuracy as it limits the derivative to 

a finite value and is therefore more biophysically plausible (section 3.4.4). 

Conclusion: The Neural ODE framework allowed us to differentiate how well BNMs with 

more and less accurate structural matrices fit the rs-fMRI data. It was also successful in 
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showing that the non-linearity increased the accuracy of predicting short term rs-fMRI 

signal. The parameterization problem did not yield a simple solution, due to the unknown 

quantity of noise and the global coupling, and the relationship on which model performed 

the best seemed to be a function of the noise added into the system. Accuracy moreover 

decreased with the addition of noise which made it difficult to evaluate the parameters 

using only the r-squared metric. However, using the structural connectivity difference as a 

ground truth, we believe that our method can be used in order to solve for both of these 

parameters. In short Neural ODE framework shows promise in differentiating between 

BNMs that best recapitulate the measured rs-fMRI data.  
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3.1 Introduction 

Resting state functional magnetic resonance imaging (rs-fMRI) allows researchers to 

estimate the macroscale activity of the cortex over the slow frequency range (0.01- 0.1 Hz) 

(Biswas et al., 1995). At these frequencies, the brain activity is thought to originate from 

modular neural populations interacting with each other through a macroscale structural 

network (Deco et al., 2008). During resting state, the human participant is not presented 

any sensory stimulus or asked to do a particular task, so the activity is thought to be 

originating mostly from intrinsic cortical loops present in the structural network (Honey et 

al., 2007). Supporting this hypothesis, generative models based on the structural network, 

known as Brain Network Models (BNMs), constructed from a given cortical parcellation 

and estimating the number of the white matter fibers between two regions of interest, are 

able to recapitulate aspects of the temporal dynamics of neural populations measured by 

rs-fMRI (Cabral, Hugues, Sporns, & Deco, 2011, Sanz Leon et al., 2015). Exploring these 

network models, would allow us to gain insight into how activity in a modular region, i.e., 

precuneus, interacts with the rest of the cortex. The ability of BNMs to translate changes 

in local activity to changes in network activity, has also made the models a target for task 

studies, where they are being used to model the inputs to the cortex and mimic observed 

fMRI responses (Ritter et al., 2019). Moreover, BNMs also provide a natural framework 

for clinical interventions, since they use latent variables that represent properties of a neural 

population that can be measured and manipulated such as the mean firing rate of a neural 

population with the means of a deep brain stimulator (Saenger et al., 2017). Therefore, 

current research has been focusing on improving our understanding of these network 
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models with respect to reproducing features of rs-fMRI in order to analyze, predict and 

manipulate whole brain signals.   

 One of the challenges in building a generative model for rs-fMRI, is that it has been 

difficult to compare the generative model directly with the data (Cabral et al., 2017). Since 

rs-fMRI is defined without an explicit stimulus, there is no clear starting point to start 

generating the signal. Therefore, researchers have been using metrics that quantify 

properties in rs-fMRI over a relatively long period of time, to compare the data and the 

simulations of the models (Cabral et al., 2011). This is somewhat unusual, since the 

generative models provide an exact description of how the signal should evolve and for a 

given observation should be able to predict a trajectory. The lack of a direct comparison 

between the predicted trajectory and the actual trajectory has made the field rely on time 

averaged metrics such as functional connectivity (FC), which is computed as the 

correlation between the timeseries representing the activity of regions over a long period 

of time. However, the FC metric is not very effective in differentiating between BNMs that 

are simulated using different equations and parameterizations and result in vastly different 

dynamics (Cabral et al., 2017, Kashyap et al., 2019). In chapter 3 we showed that dynamic 

metrics that quantify fast transient processes in rs-fMRI are better at differentiating 

between models. Therefore, in this work we hypothesize that if we can compare the 

simulated short-term trajectories directly with the observed timeseries, we can differentiate 

between models more efficiently.  

 This chapter describes using a novel method developed in the Machine Learning 

community that can be used to compare the short-term trajectory of the BNMs with the 

measured timeseries. We use a technique, known as Neural Ordinary Differential 
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Equations (ODE), that uses a recurrent neural network that keeps track of information from 

previous timepoints, in order to predict the initial conditions of a given BNM from an 

observed datapoint (Chen et al., 2018). From the initial conditions we can then synthesize 

the trajectory based on the equations and compare it to future datapoints. The RNN system 

is trained such that the integral, implemented via an ODE solver, of the predicted initial 

conditions with respect to a given dynamical system matches the next measured timestep. 

Chen et al., demonstrated that the ODE solver can be differentiated and be used in 

conjunction with current RNN, in order to train the output of the system to match the initial 

conditions for a known ODE system. They show that minimizing the loss function distance 

of the next predicted datapoint and the measured datapoint, allows the RNN to converge 

on the initial conditions of the current timepoint. Before testing the system on rs-fMRI 

data, we validate that our implementation is able to solve for the correct initial conditions 

on a constructed spiral dataset.  

 Our goal with this method is to use it as a tool to differentiate between candidate 

BNMs on how well they can recapitulate rs-fMRI. We hypothesize the BNMs that are 

known to reproduce more complex non-linear properties of rs-fMRI, will evolve more 

closely to the empirical signal as measured by r-squared over multiple future timepoints, 

than the simpler linear BNM models. We define this future trajectory by using a trained 

model to estimate the initial conditions and then generate a set of future discrete timepoints 

via integrating the BNM equations at the same sampling rate as the measured fMRI dataset. 

Comparing the resulting generated trajectory with the observations will then allow us to 

see which model fits the data. We validate that our method can perform this notion of 

system identification, on our constructed spiral data. We show that the dynamical system 
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that was used to generate the noisy data, fits closer to the observations, than if we try to fit 

a perturbed version of the original dynamical system to the observed data. 

 To quantify how well the approach does on differentiating between BNM with 

respect to rs-fMRI data, we designed experiments where we changed aspects of the BNM 

that would result in known differences to the simulated timeseries. The structural matrix 

was perturbed in a controlled manner starting with the original structural matrix, and 

adding noise to generate increasingly noisier versions of the original. We expect the models 

simulated with the original structural matrix to outperform the models with noisy structural 

matrices. Moreover, we introduced a simple nonlinearity in our base BNM to see whether 

the method can differentiate between simpler and more complex models. For that effect we 

chose to compare the linear Firing Rate Model and with a non-linear Sigmoidal Firing Rate 

Model, where we expected the non-linear to outperform the linear model (Cabral et al., 

2011). The Sigmoidal Firing Rate Model is used here as it is a simple non-linear extension 

with relatively few parameters to bias and is used to differentiate it from the linear Firing 

Rate Model and not intended as a gold standard biophysical model. The models were also 

parameterized at different levels, where one set of parameterizations reduce the 

contribution from the network to zero, resulting in an exponential decay system. Another 

null model was constructed by setting the differential equation to zero, and directly using 

the output of the RNN to predict the next timestep. Furthermore, we fit a linear 

autoregressive model, and use these two basic functions as a null model to compare against 

the performance of Neural ODE BNMs.  

 This novel approach, allows us to directly compare the predicted trajectories of a 

given BNM with the observed timeseries. If validated successfully in its ability to 



 67 

distinguish BNMs with known variations, it would potentially be a new useful tool in order 

to help find better generative models for rs-fMRI. 

3.2 Methods 

3.2.1 Neural Ordinary Differential Equations 

Figure 3.1 Schematic for Neural ODE Algorithm 

 

Schematic for the Neural ODE algorithm. An example spiral is shown on bottom left. 
Sequences of the data are fed into the LSTM which updates its hidden state with more 
input values. The LSTM sees one data point at a time and updates its hidden state as 
well as outputs its prediction for where it believes the initial condition to be. 
Information from previous observations is kept track using the hidden state and is 
passed through feedback to future timesteps. An illustration of this concept is shown 
using the LSTM unrolled diagram. The output of the RNN represents the initial 
condition of the dynamical system at that timestep. For the spiral dataset, the true 
ground truth initial condition 𝒙𝒙𝒕𝒕∗ is known and is illustrated in bottom right. The 
ground truth distance is used to determine if we have trained our RNN network 
successfully to predict initial conditions. The next timepoint is predicted by 
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integrating the ODE system based on the given dynamical system. The loss function 
is defined as the difference between the next predicted timepoint and the next 
observed time point, 𝐱𝐱𝐭𝐭+𝟏𝟏. We predict that minimizing the loss function distance 
should minimize the ground truth distance. 

An overview of the algorithm is shown in Figure 3.1, based on using Neural ODE to 

fit a spiral based on noisy observations. The task of the machine learning network is to 

predict an initial condition on the underlying trajectory shown in blue starting from the 

sequence of observed measurements shown in green. We chose an RNN implementation 

known as Long Short Term Memory (LSTM) in order to implement this architecture, as it 

allows us to keep the information of past data observations [x_0 to x_(t-1)] in its hidden 

state p_(t-1)  (Graves & Schmidhuber,2009). Thus, when the timeseries is fed into the 

system one by one, the current information is incorporated into the hidden state and is 

passed forward as shown in the LSTM unrolled version, in order to aid in the prediction of 

future observations. As the LSTM observes more datapoints, its predictions become more 

accurate up to a certain limit, after which newer data doesn’t add anymore information to 

what is already contained in the hidden state (Graves & Schmidhuber, 2009). Thus, after 

ignoring the effects of initialization, the LSTM implementation of RNN has become a 

popular tool in modeling timeseries as it is able to infer the relationship between past inputs 

in order to predict the next timepoint. For our particular task, we train the LSTM to predict 

the initial conditions of a given dynamical system based on the observed timeseries. Since 

the initial conditions are not known and thus an effective gradient cannot be computed 

based on initial conditions alone, we assume that the next observation is the integral of the 

predicted initial conditions and the given dynamical system with some noise added to it 

(Chen et al., 2018). We thus calculate our loss function with respect to the next 
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measurement in order for the output of the LSTM to converge onto the correct initial 

conditions for the given timepoint.  

We outline the steps in the sequence they are executed in order to train our system.  

1. The input data is shown in the bottom left corner Figure 3.1, where it consists 

of sequence of timeseries x_0, x_1,x_2… to x_t. They are fed into the LSTM 

network one at a time. The Tensorflow LSTM implementation of the RNN lets 

us to remember up to x_(t-N) values where N is the length of the LSTM. N is 

set sufficiently large such that the performance of the LSTMs converges to its 

optimal value in M timesteps and N>M.  

2. For the current input x_t and the LSTM with its hidden state p_(t-1), the LSTM 

estimates the initial conditions as a gaussian distribution with a mean and 

standard (μ_t,σ_t). We then sample from the distribution in order to estimate 

for the initial condition h_t. This is not explicitly shown in Figure 3.1, but is 

done in order to avoid overfitting.  

3. Calculate the loss function for our estimate at point t (Figure 3.1 bottom right): 

We use a 4th order Runge-Kutta to compute ODESolve(f,h_t), where 

ODEsolve represents the differential equation solver to integrate over the 

interval t to t+1. We assume that this point is close to the next measured 

datapoint x_(t+1). The Euclidean Distance between these points is used as our 

loss function. A graphic of this distance is shown in Figure 3.1 bottom right.  

4. The gradient is then calculated with the average of our loss function across all 

timepoints as well as across all batches and is back-propagated through the 

Neural ODE using Tensorflow, in order to train the network. 
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The algorithm trains until the loss function distance approaches zero. The Neural 

ODE algorithm assumes that the ground truth distance between the predicted initial 

conditions and the true initial conditions also converges to zero when the loss function 

distance is minimized. The algorithm is initialized with a null hidden state, and slowly 

updates its hidden state as it sees more observations over time. 

3.2.2 Tensorflow Implementation 

The schematic above is implemented as the architecture shown in the Figure 3.2 

below, which utilizes parallelization in order to train efficiently with large amounts of data. 

The network trains using multiple subjects at the same time (batching of 80 subjects) and 

multiple time steps at the same time (50 consecutive time steps). However, in its simplest 

essence, we can consider a single time step and a single subject. The input would be a 

vector from the activity of all brain regions (66 ROIs at one time point) and hidden state 

vector calculated from the previous time step by the LSTM (4 layers of hidden layer size 

of the LSTM 150) (for now we will assume we have a correctly initialized hidden state and 

will explain later how its initialized). The hidden state represents the feedback arm of the 

LSTM. The final output of the LSTM is then transformed from the size of the LSTM (150) 

using a feed forward Neural Net to the size of the initial conditions before it is fed to the 

BNM (66). We represent the activity at each region by its mean firing rate of the neural 

population at that timestep (66 for the different brain regions). The model is then integrated 

for a time interval and produces an output representing the activity of the measured signal 

at the next time signal. 
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Neural ODE architecture as represented by tensors with their appropriate sizes. The 
Data Batch consists of 50 consecutive timepoints from 66 Brain Regions of 80 subjects 
(batch size). The batch is fed into a 4-layer LSTM network, with a hidden size of 150. 
The initial conditions of the LSTM are set first to zero, and then to the output of the 
previous batch that contained the last 50 timepoints. The output of the LSTM is 
transformed via a feedforward layer to represent the mean and standard deviation of 
the initial conditions. An initial condition for each timepoint is then sampled and fed 
into the BNM in parallel and integrated by 50 separate integrators for the next 5 
consecutive timepoints. The prediction at the next timestep is used to train the system, 
while the other 4 timepoints are evaluated during testing. 

The algorithm is trained in parallel using a 3-dimensional tensor (in my code 66 

ROI regions, 80 batches, 50 timepoints). The batches are treated independently across the 

entire pipeline. The LSTM is first initialized with a hidden state of all zeros and computes 

the data sequentially starting with the first timepoint of the 50 timepoints. The hidden state 

of the first input timepoint is then passed to the next timepoint. It therefore produces 50 

outputs the size of (66, 80) after the forward neural network and represents the initial 

conditions of the BNM at each timepoint. The BNM then integrates in parallel for a given 

time interval from each of the 50 initial conditions to give 50 predictions of the signal at 

Figure 3.2 Neural ODE Architecture 
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the next time step (49 are used as the last one does not have a corresponding next timestep) 

The mean square error between the final tensor (66, 80, 49) and input tensor without the 

first timestep (66, 80, 49) is used to calculate the gradient to update the weights. The 

algorithm also outputs the hidden state of the LSTM which is fed as the input to the next 

sequential batch. For example, HCP has 1200 timepoints and is cut up to segments of length 

50, and the first 50 are processed in the first batch and then the next 50, in order for the 

hidden state to align. The accuracy on the first batch is usually much lower than the 

subsequent batches and is not used in calculating the results.  

Training represents when batches are used to calculate the loss function and the 

weights are adjusted according to Tensorflow gradient descent. During testing, we do not 

calculate the loss function. For inference or testing, we first generate the hidden state with 

a batch of data the same size of the testing data in the same dimensions as described in the 

first paragraph describing the simplest case. After the hidden state is initialized, we run the 

system as single timepoint at a time using the previous output and hidden state as our next 

input. This process has no external information from the fMRI data except for the first 

initial state of the LSTM and the first initial measurement. We use this process to generate 

our estimates from the first initial timepoint 𝑋𝑋0 and hidden state, the predictions of 

𝑋𝑋1,𝑋𝑋2, … 𝑋𝑋𝑘𝑘. 

3.2.3 Brain Network Model 

3.2.3.1 Firing Rate Model 

We start by using the simplest BNM in order to fit the rs-fMRI data. The Firing 

Rate Model represents the activity of a brain region as the mean firing rate. The change in 
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firing rate of a region is a weighted sum of all its neighbors’ activity (Eq 1). The weight 

matrix is a normalized representation of the structural network, and represents the number 

of fibers between two brain regions. The Firing rate model has two parameters k, which 

controls the influence between a decay to the mean firing value, and the level of noise σ 

that simulates random activations of brain regions due to unknown neuronal activity 

(Cabral et al., 2012). It is fairly easy to parameterize and is used because it is the simplest 

model that utilizes the structural network and is usually parameterized with k=0.9 and 

σ=0.3. While training the networks, the noise is reduced to zero, but after the initial 

conditions are generated by the RNN, we vary the level of σ when integrating Eq 1 to 

generate future timeseries. 

𝑥𝑥𝚤̇𝚤 =  −𝑥𝑥𝑙𝑙 + 𝑘𝑘 � 𝑤𝑤𝑙𝑙𝑙𝑙 ∗ 𝑥𝑥𝑗𝑗  
𝑗𝑗∈𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑙𝑙

+  𝑛𝑛(0,𝜎𝜎) 𝐸𝐸𝐸𝐸. 1 

3.2.3.2 Non-linear Model 

To provide a non-linear model to contrast the Firing Rate model, we add in a 

sigmoid function on the network term, and refer this to as the sigmoidal Firing Rate Model: 

  

𝑥𝑥𝚤̇𝚤 =  −𝑥𝑥𝑙𝑙 + 𝛼𝛼𝛼𝛼(𝑘𝑘 � 𝑤𝑤𝑙𝑙𝑙𝑙 ∗ 𝑥𝑥𝑗𝑗)  +  𝑛𝑛(0,𝜎𝜎)
𝑗𝑗∈𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑙𝑙

𝐸𝐸𝐸𝐸. 2 

𝑆𝑆(𝑦𝑦) =
1

1 + 𝑒𝑒−𝑦𝑦
 𝐸𝐸𝐸𝐸. 3 

The purpose of the sigmoid is to limit the magnitude of the network component and it adds 

biophysical plausibility by limiting the max firing rate. Similar justifications are used to 
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extend the Wilson Cowan model, and indeed the sigmoidal Firing Rate Model is just the 

excitatory component of the Wilson Cowan Model (Sanz Leon et al., 2015). We test a 

model that is identical to the Firing Rate Model with the same parameterization, vs the 

same model containing the sigmoid. In this manner, we evaluate the effectiveness of a 

adding a known non-linear function to reproduce rs-fMRI dynamics. 

3.2.3.3 Parameter and Structural Perturbations 

To generate the structural perturbations, we add noise to the structural matrix W_lj 

by swapping edges randomly, but keeping the graph symmetric. In this manner we produce 

random perturbations in a controlled manner starting with the original structural matrix and 

randomizing different number of the edges. Each of these graphs would result in different 

dynamics, but the trajectories from the model containing the original structural 

connectivity should be the closest to the measured rs-fMRI data.  

For our parameter variation, the global coupling parameter k in Eq 1, is varied from 

0.9 to 0. At values higher than k=1, the matrix has positive eigenvalues making the 

dynamics unstable, and at k=0 the system reduces to an exponential decay system with no 

network interaction at all. In the original Firing Rate Model paper, k=0.9 was thought to 

be most representative of brain dynamics (Cabral et al., 2012). We expect the 

parameterization based on previous literature to perform the best in matching measured rs-

fMRI.   

3.2.4 Simulated Spiral Data 
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In order to validate our approach, we tested our algorithm/architecture that we use 

on fMRI data, on a toy spiral data set. This spiral data has been used in the original Neural 

ODE paper (Chen et al., 2018), as well as in subsequent papers in order to test the validity 

of solving for the underlying dynamical system from noisy data. Our approach is to 

establish that our algorithm can reproduce the performance of the Neural ODE algorithm 

(Chen et al., 2018) on the spiral data and this therefore justifies its use on fMRI data. In 

Figure 3.3, we show how we generate our spiral dataset, namely by integrating a set of 

coupled differential equations with two state variables (equation shown in the left panel). 

The phase portrait of the dynamical system is shown, where all the trajectories from any 

initial condition spiral inwards towards the origin (Figure 3.3 middle). Time is not shown in 

the graph but is implied, where the first timepoint is on the edge of the spiral and the last 

one is the one closest to the origin. The derivative is large on the outside of the spiral and 

then decreases as it approaches the origin. Gaussian noise is added to the integrated 

trajectory to simulate measurement noise set at sigma = 0.03 (Figure 3.3 right). The goal 

of the Neural ODE algorithm is to estimate the underlying trajectory from the noisy 

observations that generated the data. For our experiments, we use the trajectories shown 

in the middle panel of Figure 3.3 as the ground truth and take the Euclidean distance 

between this trajectory and the predicted initial conditions as a measure on how well our 

algorithm performs. 
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Figure 3.3 Generation of Spiral Dummy Data 

 

The equation on the far left is integrated and produces the dynamical system shown 
in the phase portrait (middle). From two random initial conditions the red and blue 
trajectories spiral towards the origin, getting slower and slower as they approach the 
origin. The arrows indicate the magnitude of the gradient. We generated 1000 spirals 
from different initial conditions and added noise to simulate a noisy measurement. 
This results in the plot on the far right where the green dots represent the data that 
is fed into the algorithm. The goal of the algorithm is to be able to estimate the 
underlying trajectory shown in blue (far right) from the noisy observations. This will 
serve as our ground truth to check our predictions against. 

3.2.5 Experimental Data 

3.2.5.1 Structural Network for Brain Network Model 

To estimate the structural network we ran tractography on 5 HCP Diffusion 

Weighted Images using the freely available software Mrtrix (Kashyap & Keilholz, 2019; 

Van Essen et al., 2013). From the tractography we estimated the number of fibers that 

intersected two ROIs in the Desikan-Killiany atlas and normalized the power by dividing 

by the surface area of the receiving region (Cabral et al., 2011; Desikan et al., 2006). The 

matrix is finally normalized by dividing by the largest eigenvalue such that the graph 

Laplacian (k*SN-I) has only negative eigenvalues (Cabral et al., 2012). This normalizes 

the dynamics so that the feedback decays over time, and does not exponentially increase 

the signal over time. The value of k is a hyperparameter and modulates the strength of the 
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network and is varied as listed in the Section above. We started with 0.9 for all 

implementations which is in line with previous work (Cabral et al., 2012), but tested a 

range of values between 0 and 1. 

3.2.5.2 fMRI Data 

We acquired the training fMRI data from the 447 subjects from the Human 

Connectome Project (HCP) (Van Essen et al., 2013). We took the minimally processed 

scans (MSMAII)  that were registered to standard space and in CIFTI format and denoised 

using 300 Independent Component Analysis that are provided from HCP. We transform 

from the surface-voxel time series to the ROI time series by averaging all voxels according 

to the parcellations established by the Desikan-Killiany atlas. This was done on an 

individual level since the surface parcellations are provided to by HCP and Freesurfer for 

each individual subject (aparc and aprac2009 files). The signal is then bandpass filtered 

from 0.0008 Hz to 0.125 Hz and then the global signal regressed using a general linear 

model with the mean timeseries of all cortical parcellations. The final signal is 

subsequently z-scored (Kashyap & Keilholz, 2019). For the task data, each dataset was 

processed separately (language, working memory, motor, social, emotional, gambling, 

relational) and then concatenated together. Each task dataset was rounded to the closest 

multiple of 50 and the autoencoder fed alternating segments of task and the rest data. We 

trained our algorithm using task data scans, because the algorithm was able to able to 

perform better on our short and long term metrics when trained with more varied data such 

as task. Moreover, it is thought that even during specified tasks, the resting state networks 

dominate most of the activity (Smith et al., 2009). However, during evaluation we have 
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only shown our results on predicting future resting state fMRI, and are planning to address 

task in our future work.   

3.2.6 Metrics and Evaluation 

The dynamical models are evaluated on how well they fit with the empirical 

observations from the given initial conditions. In order to quantify how well they fit, we 

calculate the r-squared and the mean squared error at each timestep between the vector 

representing the activity of the 66 brain regions of the predicted and the observed data. 

Since the loss function trains the one step error close to zero, this metric tends to be most 

similar across models. Therefore, in order to differentiate between the models, we need to 

look at timesteps past the first timestep to gauge how well the trajectory matches future 

measurements. For the spiral dataset, the initial conditions are already known and therefore 

we can compare the output of the RNN directly via Euclidean distance. 

3.2.7 Null Models 

In order to compare the effects of fitting to the Neural ODE, we utilize three 

different null models. The first and most naive is the autoregressive model which in essence 

predicts that the next timestep will be the same as the current timestep. Since the rs-fMRI 

evolves relatively slowly, a large part of the variance can be explained by a flat line. A 

similar autoregressive model is the current standard model used in modeling resting state 

during task activation blocks. The second null model is constructed by setting the BNM 

function to zero and the output of the system is the initial condition predicted by the RNN. 

Therefore, when integrating over time it’s just a constant value and is used to control how 

well the network activity can be directly predicted by the RNN network. The third null 
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model is obtained when the global coupling parameter is set to zero in the Firing Rate 

Model and the differential equations become an exponential decay. 

3.3 Results 

3.3.1 Validation of the Neural ODE Algorithm on Spiral Data 

The spiral data allowed us to test how well our algorithm estimates the initial 

conditions, in a simplified situation where the initial conditions are known. In Figure 3.4, 

we show that the predictions of a trained network converge towards the ground truth of the 

initial conditions for the sample spiral dataset. Starting from the first observation, at the 

bottom right corner of the spiral, the LSTM makes a prediction based on all the 

observations it has seen so far, and then a trajectory is produced via integration of the 

dynamical system of the spiral dataset. The trajectories after seeing 7, 9, and 11 datapoints 

are shown on the spiral itself. The distance between ground truth initial conditions is also 

quantified to the right as a function of number of points the LSTM observes. The accuracy 

during the first couple timesteps is low because the hidden state of the LSTM is not 

initialized properly, but after enough datapoints are included, it is able to predict the initial 

conditions within a reasonable margin of error. 
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Estimating the initial conditions for the spiral data. The figure on the left shows an 
example of a trained network estimating the initial conditions using 7, 9, and 11 
timepoints. Each timepoint is fed into the LSTM sequentially (shown top right) one 
datapoint at a time and outputs the initial condition for that timepoint. The 
trajectories are then integrated and then compared with the ground truth (shown in 
red). The Euclidean distance between the predicted and the true trajectory is shown 
in right for a distribution of 40 unseen spirals. The accuracy converges after the first 
few timepoints during which the LSTM has not yet been initialized properly. After 
the LSTM has seen enough examples, the estimates converge slowly towards the true 
spiral trajectory. 

3.3.2 RNN Parameter Estimations on Spiral Data 

Next, we test to see how our ground truth distance changes as a function of network 

size and parameters (Figure 3.5). For our given architecture, we can vary the number of 

layers (network depth), the size of the hidden layers, and the length of the LSTM network. 

The length of the LSTM network is a parameter due to Tensorflow implementation of 

LSTM and limits the number of previous seen observations. We followed Tensorflow’s 

guidelines and biased it until the error converges during the time period contained in the 

Figure 3.4 Infer Initial condition for each Timestep on Spiral Data 
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hidden size of the RNN (in Figure 3.5 after 7 or 8 timepoints where the length of the LSTM 

was set to 15 previous timepoints). We instead chose to test the effect of the hidden size. 

The depth of the network was kept to three layers, as the spiral dataset is small, and is 

varied for the neural dataset. The hidden size represents the feedback arm of the RNN, and 

larger hidden size allows for more complex relationship with previous data observations.  

We show in Figure 3.5 bottom right, that larger the hidden size (such as 80) the loss 

function tends to converge in fewer training epochs. Moreover, after they are trained, these 

networks are more accurate with fewer datapoints (Figure 3.5, left), and are more sample 

efficient in extracting information from previous data. There are also observable 

differences in their accuracy, as illustrated with a sample spiral predicted after each 

network has observed 10 datapoints. However, the difference in prediction between 20, 40 

and 80 sized networks is less pronounced especially after observing many datapoints, 

suggesting that regardless after many data observations the system converges roughly to 

the same error. This points to a certain robustness of convergence of the loss function with 

regard to parameter variations for long time sequences. 
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Figure 3.5 Effect of Network Size on Initial Condition Predictions 

 

The effect of the network size in its ability to converge to the true initial conditions 
with fewer samples. Three network sizes of the hidden state (20, 40, and 80) are 
compared while keeping the depth of the network and the number of batches 
constant. The plot on the bottom right shows that in all three architectures the loss 
function approaches zero and plateaus at roughly the same value. However, the larger 
networks are more sample efficient, meaning that with fewer samples, they are able 
to estimate better initial conditions. This is shown on the left, where the largest 
network (80) has the smallest distance to the ground truth. After the LSTM has 
viewed enough samples the differences between the networks vanishes. An example 
on a single spiral is shown (top right), where the predictions after seeing 10 datapoints 
are 0.11, 0.08, and 0.04 apart from the ground truth for the three differently sized 
networks at 20, 40, and 80 respectively. The actual pink and green data do not cross 
any of the initial data, because the algorithm only estimates the initial conditions 
which are not precise for smaller networks, and since we are integrating from the 
initial conditions, the resulting trajectories are far away from the future datapoints 
which have not yet been seen by the Machine Learning Network. 

3.3.3 Metric Choices and RNN Parameter Estimations on fMRI data 

For the neural dataset we have a much larger state space having at least 66 state 

variables. Therefore, we tested a number of different parameters as listed below in the 

Table 3.1. For a given BNM, the r-square accuracy was calculated for different parameters 
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of the machine learning network. The base parameters were chosen from Kashyap et. al 

2020 with 600 iterations, 50 for length of RNN, 150 for hidden size, and 4 layers and across 

each row in the table we change one of these parameters at a time, to see how it effects the 

performance of the algorithm. The accuracy doesn’t change a lot when the parameters are 

varied as shown in Table 3.1 suggesting that the network is maximizing the information 

transferred from previous states like in the spiral example. 

 

 

 

 

Evaluation of network parameters of the RNN. The mean r-squared (standard 
deviation) are given for different sized networks on the Firing Rate Model (k=0.6) on 
the third timestep prediction for 2500 short resting state fMRI trajectories. 

The average loss over 10 epochs each with 50 timepoints is plotted in Figure 3.6 left. 

The epochs are contiguous over time, where the hidden state of the first epoch is the input 

for the second epoch. The loss is the mean squared error between the predicted and the next 

timepoint. The first batch has a large error when the RNN is not properly initialized but 

then converges to a minimum, similar to the spiral dataset after observing enough 

timepoints. The first epoch is ignored, and all the calculations are made after the first 50 

timepoints. 

Once trained, instead of using the mean squared error as used in the training, we use 

the more general r-squared metric in order to test how well the trajectories originating at 

Table 3.1 R-squared Accuracy at the 3rd timestep across different RNN Parameters 
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the predicted initial condition fit the future datapoints. Unlike the mean squared error 

metric, the r-squared metric would generalize even when the number of brain regions are 

changed or under different normalizations allowing it to be more compatible with future 

algorithms that test short term predictability. In Figure 3.6 right, we also tested how well 

the measure generalizes from testing once every epoch (50 timepoints) to testing every 

timepoint as well as the effects of computing the r-squared over a batch of data consisting 

of 60 individuals vs testing each individual at a time. The accuracy at the 3rd timepoint 

from the initial condition is plotted for these four conditions (i.e the permutations of 

individual vs group and one timepoint vs all timepoints). There is no difference in the mean 

or the variance in testing at every timepoint vs testing on all timepoints. This is not 

surprising as the algorithm was developed to predict the correct the initial conditions at 

every timepoint of the timeseries and the experiment shows that it generalizes and performs 

relatively similarly on all timepoints. On the other hand, there is a difference in the variance 

but not the mean when comparing the group r-squared values vs the individual r-squared 

values. This can be explained as individual differences in fMRI are averaged out in the 

group metric. This shows that our approach might be sensitive for individual differences, 

but we use the group metric for the subsequent results as they are more robust and allow 

us to test our hypothesis on the differences between different BNM. Moreover, since we 

utilize only a group averaged structural matrix, we are more interested how well the BNM 

fit to the group than to any particular individual. 
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Left: The mean squared error calculated over each epoch of 50 timepoints from a 
continuous 1200 timepoints of fMRI data. The loss is constant after the first epoch 
which is much higher since the RNN hidden state is not properly initialized. The 
constant loss also suggests that after the first epoch the estimation of the initial 
condition is constant and has converged. The first epoch is not used in any of the 
subsequent estimates of evaluating the dynamical system. Right: The R-squared of a 
FRM (k = 0.9, 𝝈𝝈 = 0.3) is computed using 4 different methods. The first one (ind all 
time) evaluates the most number of tests, where the r-squared of each individual is 
calculated on every timepoint after the first epoch. The second one evaluates the r-
squared of each individual fMRI once per epoch. The last two averages the r-squared 
across a batch of individuals at every timepoint and once per epoch. There is no 
difference in evaluating once per epoch or at every timepoint. There is a difference 
between the individual and group measures, which is expected as the group measure 
averages out the effect of individual variance. In our subsequent results we use the 
group measure, as our model does not take into individual differences in the 
structural matrix, and the group measure is more robust in evaluating the differences 
in the ODE which is what we are interested in. 

3.3.4 Differentiating Between Dynamical systems on Spiral Data 

We conduct an experiment to determine whether we can replicate the task of 

differentiating between dynamical systems with the spiral data. Using the same spiral 

dataset as before (see methods section 3.2.4), we try to fit different candidate dynamical 

systems, starting with the original dynamical system W1 and then perturbing the structural 

Figure 3.6 Individual Variability and Generalization Across Time 
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matrix with noise, W2 and then even more noise W3. This can be seen in Figure 3.7, where 

the matrix for the dynamical system is shown below. The Neural ODE algorithm fits each 

of the spirals to the data, and our hypothesis is that the spiral with the original matrix should 

fit the data the best. Unlike in previous sections, we look at the difference of the spiral 

trajectories generated by integrating the initial conditions of the spiral dynamical system. 

The initial conditions after observing 10 datapoints is predicted and then integrated for 200 

timepoints. The difference between the ground truth trajectory and the spiral trajectory is 

then plotted on the bottom right for 100 different instantiations. The spiral matrix W1, is 

the closest to the data when observed over long periods of time, but the difference is less 

pronounced at short time periods where the distributions overlap with W2 and W3. 

Therefore, since the Neural ODE fits any dynamical system tangentially in time, it is 

important to observe the long-time dynamics to differentiate between the models. At very 

long intervals, the distance starts to decrease as all trajectories converge to the origin. 

However, we do not expect to see this when fitting dynamical systems to brain data, as the 

real signal is constantly changing over time. 
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Using a candidate spiral in the neural ODE algorithm that is a noisy version of the 
ground truth spiral. This experiment is similar to how the algorithm is intended to be 
used with fMRI data. For the fMRI data, we utilize a measured structural 
connectivity estimated from white matter connectivity. Our hypothesis states that the 
measured white matter connectivity will follow the brain trajectories closer than 
using noisier versions of the white matter connectivity. The top left shows the 
alignment of the data, while fitting the spiral with a weight matrix identical to what 
was used to generate the data. The top right and bottom left figures show the 
alignment with spirals increasingly further away from the ground truth. The neural 
ODE algorithm is able to fit any of the spirals to the data for a given set of 
observations, but over time the candidate spirals that are further away from the 
ground truth diverge much faster from the future data points. This is quantified by 
the plot on the bottom right where the distribution of the three different spirals 
distance to the data is plotted from the predicted initial conditions. The distance 
between the spirals of different weights and the observed data points is initially close 
but diverges further away when compared to future timepoints. Note due to all 
trajectories going towards the origin, the distance at very large timescales converges 

Figure 3.7 Differentiating between Dynamical Systems on Spiral Data 
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to zero, but this is not expected in the brain data, where the signal does not approach 
a single attractor. 

3.3.5 Differentiating Between BNMs due to differences in Parameterization in the Firing 

Rate Model 

Most BNM have many parameters and therefore it is essential to test whether this 

method allows us to parameterize BNM correctly. Here we examine an experiment with 

fitting multiple Firing Rate Models to resting state fMRI, with different global coupling 

values from 0 to 0.9 in 0.15 intervals. The global coupling parameter affects the amount of 

network interaction, whose value can vary from a maximum of 0.9 to a minimum value of 

zero when the interaction is non-existent (exponential decay, see Methods). 

 

 

 

 

 

 

 

Evaluating the Firing Rate model (Eq 1) with different global coupling parameters. 
Top Left: Error per timestep from the estimated initial conditions for various 
different parameters compared. The y axis represents the r-squared value, between 
the simulation and the model. Examples of the model timeseries vs the resting state 
timeseries are given on the bottom at two different parameterizations but the 

Figure 3.8 Effects of Global Coupling without Noise in the Firing Rate Model 
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distribution shown in the top panels quantify their performance across 2500 trials. 
Top Right: At the third timestep, we plot the histogram of the r-squared across all the 
models. The model with zero global coupling performs the best, and as the global 
coupling strength increases the accuracy goes down. Most models perform better than 
the Autoregressive Model (AR). 

In Figure 3.8, we compare the different parameterized models as well as the 

Machine Learning Null model. At the first timestep (Figure 3.8, top left), all the models 

perform relatively similar as a result of minimizing the loss function to zero. The models 

perform differently as we move forward in time. At the snapshot of three timesteps, we 

compare the different models (top right) and it is clear that the model with a zero global 

coupling performs better than all other models. At this coupling (k=0), it is nearly 

equivalent to the Machine Learning Null Model (see Methods). This suggests that the 

introduction of any BNM, decreases the accuracy of the model and the model performs 

best using just the LSTM predictions. 

 However, interestingly this trend completely reveres when noise is introduced into 

the models. In Figure 3.9, we vary both the standard deviation of the noise as well as the 

global coupling parameter. At low noise levels, we see that low global coupling 

outperforms the models with high global coupling. However, with increasing levels of 

noise, the BNMs with stronger global coupling outperform the more naïve models as well 

as the Machine Learning Null models. This result shows both the important of noise in 

differentiating between the parameters of the Firing Rate Model. The overall r-squared of 

the models also decrease with the introduction of noise, but the rate at that they diverge 

seems to be a function of the global coupling parameters. The Firing Rate models are 

traditionally simulated with k = 0.9 and σ = 0.3, and noise is seen as essential in simulating 

the BNMs. However, since both are unknown and the overall r-squared decreases with the 
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introduction of noise, just based on these two parameters it is difficult to conclude which 

parameterization yields the best result, other than the very trivial conclusion of an 

exponential decay only model with no noise. 

Figure 3.9 Effect of varying Global Coupling and Noise on 4th Timestep Accuracy of 
the Firing Rate Model 

 
The effect of varying the two parameters in the Firing Rate Model, the global coupling 
K and the standard deviation of the noise σ. The introduction of noise lowers the 
accuracy of all models but does so in an uneven fashion. At low levels of noise, the 
exponential only model (k=0) outperforms the BNMs with structural connectivity 
matrices. This trends reverses with the introduction of increasing noise power, where 
the BNM with stronger global connectivity matrices seem to outperform the naïve 
exponential models. 

3.3.6 Differentiating Between BNM due to differences in Structural Connectivity 
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In the previous section, we only changed the parameters of the Firing Rate model, 

the global coupling strength as well as the magnitude of the noise. Here we observe the 

effects of simulating 6 different structural connectivity matrices at two different global 

coupling strengths, one close to no network effect (k=0.1) and one close to high network 

connectivity (k=0.9) and at low and high noise levels (σ=0.001,σ=0.3). The SC is varied 

from the measured SC, and then slowly corrupted by flipping edges, and the number of 

edges in common with the original SC is varied from 10 to 90 percent. We examine the r-

squared value at the fourth timestep, in Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Effects of Global Coupling, Noise, and Structural Connectivity on 4th 
Timestep Accuracy of the Firing Rate Model 
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Examining the effects of parameterization and estimating the correct SC. At top left, 
we show the results of changing the structural connectivity for a low global coupling 
model. It does not vary as a function of the structure and performs relatively similarly 
to the LSTM only null model. At high global coupling, the models show that they are 
more of a function of the correct structural network, although they perform worse 
than at high global coupling. 

In the low noise levels (σ =0.001), the model shows no relation to changing the 

structural connectivity for either of the coupling strengths. At the high noise levels (σ =0.3), 

although the model has a lower r-squared than at the low noise levels, we see the effects of 

the network, where the original SC outperforms the corrupted versions for both low and 

high coupling strengths. The trend is once again more pronounced for the high global 

coupling (k=0.9) when compared to low global coupling (k=0.1). 

3.3.7 Nonlinear vs Linear BNM 

The Firing Rate model is thought to be the simplest BNM, as it is a linear function 

of the structural matrix (Cabral et al., 2012). Here we extend the model by simply adding 

a sigmoid, which is a common feature in other BNMs such as the Wilson Cowan, limiting 

the effect of the network at high levels of activity (Sanz Leon et al., 2015). Our goal is to 

test whether the Neural ODE algorithm can determine the difference between the simpler 

linear and the more complex non-linear model. We simulated the Firing Rate Models and 

the Sigmoid Firing Rate Model at three different parameterizations (k=0.15, k=0.45, k=0.9) 

at low noise levels, and plotted the accuracy at the third timestep shown in Figure 3.11. 

The addition of the sigmoid term increases the accuracy of all baseline Firing Rate Models 

but has the largest affect when the global coupling is large, and the network component is 

active. The sigmoid model when compared to all other models does about as well as the 

exponential decay only and the LSTM only models, but utilizes the BNM equations and 
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the structural network. Moreover, the model does slightly better at k=0.45 than at k=0.15 

or k=0.9, suggesting that maximizing the global coupling term yields a non-trivial solution. 

 

 

 

 

 

 

Left: Performance of the sigmoidal Firing Rate Model vs Firing Rate Model over 
different parameterizations (k=0.15, 0.45, 0.9) on the third timestep. Adding the 
sigmoid only increases the performance from the base Firing Rate Model, but has the 
largest affect when k=0.9 when the network effect is the strongest. Right: A 
comparison between, the Firing Rate Model, sigmoid Firing Rate Model and the three 
null models over time. The exponential and LSTM only curves are on top of each 
other, so only 4 traces are visible. 

3.4 Discussion 

We proposed using the Neural ODE methodology to fit different candidate BNMs to 

resting state data and then subsequently evaluate them on how well they evolve compared 

to the real data. In order to test this methodology, we first try to use the method on a well 

studied spiral dataset to determine if our algorithm solved for the initial conditions. Then 

we tested the method to see if it can identify by simulating different differential equations, 

which system was used to simulate the toy spiral dataset. Then moving to neural rs-fMRI 

data, we fit different BNMs using the Neural ODE algorithm by varying their 1) 

parameterizations, 2) structural connectivity, and 3) by examining the effect of introducing 

Figure 3.11 Performance of Nonlinear sigmoidal Firing Rate Model without Noise 
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non-linearity. For the BNMs, although the ground truth is not known, we construct our 

experiment in a manner such that changing these variables has a known and well 

documented effect. 

3.4.1 Validation on the Spiral Dataset and Comparison to other Architectures 

From the spiral example, we first validated that our algorithm implements a form of 

Neural ODE by showing that the RNN were accurately able to predict the unknown initial 

conditions using the Neural ODE loss function framework. We chose to do this because 

our own implementation of the Neural ODE algorithm, differs from the original in the 

following manner. The original implementation uses a backward time architecture, where 

the timeseries is inverted and fed into the RNN network, such that the first timepoint is fed 

into the RNN last and the final prediction is used to infer the initial condition of the whole 

timeseries and then integrated forward in order to compute the loss function (Chen et al., 

2018). They do not evaluate the RNN prediction at every timepoint like in our 

implementation, but explicitly state that such an architecture would speed the training 

process. This fact is also stated on the Tensorflow RNN implementation page as their 

recommended use of the RNN (tensorflow.org/guide/keras/rnn). The innovative backwards 

time architectural method gets rid of the initialization problem that exists in our forward 

time implementation but runs into a causality problem where future inputs influence the 

predictions of previous initial condition. Because BNMs are defined as a function of 

previous network activity, we use a time forward architecture in order to solve for the initial 

conditions. The other significant difference, is that the Github implementation of the 

Neural ODE also uses a LSTM after the ODE integration (Chen et al., 2018). This 

methodology is extensively evaluated in Chapter 4 but confounds our goal of comparing 
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the fit of different dynamic systems, so it is not used in the implemented methodology in 

Chapter 3. Despite these architectural differences, we show that our Neural ODE 

implementation solves for the correct initial conditions, and after the hidden state of the 

LSTM is initialized is able to solve for trajectories that are similar to those reproduced in 

the original paper. 

 The other main result from using the spiral data, is to show a working example of 

how we intend to use the algorithm in order to differentiate between dynamical systems 

that might have generated the data. We show that by observing the long term trajectories 

of several candidate models, we can infer which system produced the data by measuring 

the r-squared of future timepoints. However, when looking at short time differences, since 

all the models were all fit to reproduce the next time step, it was less clear how to 

differentiate between the models as they gave similar estimates of each other. The results 

show that it is possible to use this as a system identification, but the systems need to be 

simulated long enough for the differences to manifest, since they are all trained to minimize 

the prediction error at the first timestep. 

3.4.2 Parameterization of the Firing Rate Model 

The Firing Rate Model, has two parameters in the model (Eq. 1), the magnitude of 

global coupling and the level of noise. From previous literature and experiments in Chapter 

2, the global coupling value of a traditional Firing Rate Model is set slightly less than 1, 

around 0.9, which is just before the system becomes unstable. Closer towards k=0, the 

dynamics become an exponential decay according the Eq 1. The noise is usually set around 

0.3 (Kashyap et al., 2019, Cabral et al., 2012), where closer towards zero it turns the system 
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to the well-known consensus problem (Mesbahi & Egerstedt, 2010), and at higher degrees 

of noise the system becomes completely chaotic and non-deterministic. Searching for the 

correct parameterization of the Firing Rate Model between the global coupling and the 

magnitude of the noise is therefore an important problem, because in the in between regime 

the resulting dynamics is closest to rs-fMRI data. Using the Neural ODE, we fit many 

different Firing Rate Model with different values of global coupling and noise. We 

expected that the Firing Rate Model (k = 0.9, σ = 0.3) or around those values would fit the 

data the best from previous studies. This seems to be true only at high values of noise, and 

at low values of noise the models that were closer to exponential decay performed better. 

We hypothesize that at high values of noise, the models without strong structural 

connectivity, the noise caused the signal to deviate largely from the original predicted 

trajectory. The models with strong structural connectivity, the noise is averaged out by the 

matrix and the trajectory follows the original trajectory more closely. However, since the 

exact value of noise is not known, it is difficult to conclude what parameterization fits the 

data the best. No noise is unrealistic, as it leads simplistic deterministic dynamics not seen 

in rs-fMRI. However, since both the coupling strength and the noise is unknown just 

varying these two does not give a clear answer that would solve the parameterization 

problem, especially when trivial solutions such as the exponential decay and the 

autoregressive model perform relatively well. 

3.4.3 Parameterization of the Firing Rate Model while changing the Structural 

Connectivity 

Solving the parameterization problem looks more promising when observing 

different parameterizations of the BNM while also varying the structural matrix at the same 
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time. According to our scientific paradigm, we expect the BNM with the original structural 

matrix to outperform the other models with increasingly corrupted structural matrices. 

Therefore, under the right parameterizations values we expect to see the greatest difference 

when we change the structural matrix. When observing under low values of noise, there is 

no difference in the performance of the FRM as a function of the structural matrix. At 

higher values of noise, the trend clearly emerges that accuracy is a function of how many 

edges the structural matrix has in common with the original structural matrix. Moreover, it 

still seems to be a function of the coupling strength, where at higher coupling strengths we 

see a larger difference between BNMs with the original structural connectivity and the 

randomized structural connectivity. Rather than looking at the r-squared, which changes 

drastically with the amount of noise introduced, by looking at the slope as a function of the 

structural connectivity we can establish which parameterization would fit the data the best, 

and therefore solve the parameterization problem using short term metrics. 

3.4.4 Comparison between Non-linear and Linear Models 

In order to test the effect of a sigmoid function, we fit two different BNMs, the Firing 

Rate Model and the Sigmoidal Firing Rate Model. The two models are nearly identical and 

are parameterized at the same value, except for the presence of a sigmoid in the Sigmoidal 

Firing Rate Model. We show that the sigmoid increases the accuracy of the model, 

especially at high global coupling values when the network component is most active. At 

lower global coupling values, when the network is not very active, the difference is much 

smaller as the dynamical system reduces to an exponential decay. Similar to the 

parameterization problem of the Firing Rate Model, the best Sigmoidal Firing Rate Model 

is at the limit when the dynamics reduces to an exponential decay. However, the sigmoid 
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component improves the baseline Firing Rate Model at realistic coupling levels, suggesting 

we can utilize this tool to differentiate between models that are more and less representative 

of rs-fMRI. Further research with more complex nonlinear models, might outperform the 

naïve null models with simple functions in terms of their short-term predictions. 

3.4.5 Assumptions and Limitations 

The error from the model’s prediction comes from two different sources, 1) the 

mismatch between the differential equations and the actual dynamics, and 2) from the error 

in predicting the initial conditions. We assume that for any assumed dynamical system the 

error from the RNN is uniform no matter what the function is, and the subsequent error 

calculated from the trajectories is due to the mismatch between the data and the dynamical 

system. However, this might not be true, and more complex models might have a larger 

errors in estimating initial conditions and therefore is a potential confounder in our 

analysis.  

A major limitation of this approach is that the algorithm needs a good estimation of 

the underlying dynamical system that represents the data. This requires vast knowledge of 

what model including the specific parameterization might fit the dataset. For the simple 

Firing Rate model, maximizing the parameterization utilizing Neural ODE, led to a trivial 

result. Although this was not true in the sigmoidal model, the approach needs to be applied 

cautiously when used to fit functions to the fMRI data. 

 Moreover, another major assumption and limitation of the approach is our choice 

of metric, r-squared used to compare the distance between two high dimensional vectors. 

It assumes that better models have a higher r-squared value, although they might be 
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explaining trivial components of the signal. Other metrics such as derivative, or the relative 

phase between different regions of interest might prove as a much more useful metric to 

compare the predictions against the empirical signal.   

3.5 Conclusion 

We attempted to investigate whether we could solve for the initial conditions of a 

Brain Network Model for a given observation of rs-fMRI data using a novel Machine 

Learning tool known as Neural ODE. Using these initial conditions, the goal was to be able 

to differentiate between different BNMs that best recapitulate the data. We showed that we 

are able to differentiate between more and less realistic structural networks and between 

linear and simple nonlinear functions. Although, the approach shows promise to 

differentiate between models in certain cases, it has to be used with caution as trivial 

functions such as a line or an exponential can be fit very well to the slow changing fMRI 

data. 
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CHAPTER 4.                                                                                       

MODELING RESTING STATE FMRI EVOLUTION USING RNN 

INFERENCE AND BRAIN NETWORK MODELS 

SUMMARY 

Motivation: Brain Network Models (BNMs) are becoming more sophisticated in capturing 

aspects of the temporal dynamics of neural populations measured by functional magnetic 

resonance imaging (fMRI). However, as was shown in Chapter 2, the BNM models showed 

varied results and performed poorly in matching empirical rs-fMRI data on short term 

metrics and transient dynamics. In Chapter 3, we showed that we can directly evaluate 

short term dynamics by utilizing a trained RNN model to infer the initial conditions from 

the data and then generate the future timeseries purely based on the BNM. In this chapter, 

we use the trained RNN model in conjunction with the original BNM to generate the future 

timeseries, by piping the output of the BNM back into the RNN model. We test whether 

this combined system improves our ability to generate long term resting state data. The 

Neural ODE paper also utilizes a similar approach of using both the RNN and a dynamical 

system in order to generate a timeseries and has shown that it generates more realistic 

trajectories as long as the dynamical system fits the given the data (Chen et al., 2018). We 

use a traditional BNM and a RNN only null model to compare the output of our Neural 

ODE system using the metrics established in Chapter 2, on long term simulations of 

timeseries data. Most of this work has been published in Network Neuroscience except for 

Figure 4.9 (Kashyap & Keilholz 2020).  
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Hypothesis: Utilizing a trained Neural ODE model that uses both the RNN and the BNM, 

improves the model’s overall ability to reproduce rs-fMRI dynamics as defined by the 

dynamic metrics identified from Chapter 2 compared to the traditional BNM. 

Approach: Train a Deep Learning technique (Neural ODE) to solve for the initial 

conditions based on the given BNM and then integrate to predict the next observation. The 

system is trained in the exact same manner as in Chapter 3 (Section 3.2.1). After training, 

we generate our future time sequence by taking the output of the Neural ODE algorithm 

and feed it as our next input. The process, known as inference, is then repeated to generate 

long time sequences of data and utilizes both the RNN and BNM components at each 

timestep. We simulated two distinct Brain Network Neural ODE systems using different 

latent BNMs, the Firing Rate and the Wilson Cowan model, and determined the parameters 

within the models using machine learning. After training the Neural ODE models, we 

simulated 30 instantiations that were 15 min long and compared it with 30 instantiations 

from traditional Brain Network Models and 30 scans from measured rs-fMRI in humans. 

We also simulated a Machine Learning null model trained without a BNM and compared 

its ability to generate signals compared to a Neural ODE system utilizing a BNM (section 

4.3.4).  

Metrics and Evaluation:  In order to evaluate the new generative models compared to the 

traditional BNMs and rs-fMRI data, we used the dynamic metrics identified in Chapter 2 

to compare synthesized rs-fMRI data with empirical measurements. These metrics were 

shown to be more effective in differentiating between models, and some of these metrics 

like Quasi Periodic Patterns relate to physical processes that a network based rs-fMRI 

should be able to emulate. We started by using functional connectivity to compare the three 
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datasets as it is a standard metric in evaluating BNM (section 4.3.3). For our more complex 

dynamic metrics, we chose Quasi Periodic Pattern analysis (section 2.2.6.2)  and K-means 

sliding window analysis (section 2.2.6.3), because they are particularly difficult to 

reproduce as they have complex spatial and temporal relationships between the brain 

regions. The QPP metric was evaluated by estimating the mean squared error (MSE) 

between the patterns generated from the models and the patterns determined from empirical 

data (section 4.3.3). For the K-means centers we used correlation to compare between all 

the cluster centers of the generated data and all the cluster centers of the simulated data 

(section 4.3.3). Since the centers are not ordered, we took the maximum correlation 

between one center of the simulated data and all the centers of the empirical data. 

Conclusion: This paper shows that the Neural ODE inference approach using both the 

RNN and BNM can be utilized effectively in order to simulate rs-fMRI. On all metrics that 

compare BNMs with rs-fMRI, both on static metrics such as FC as well as dynamic metrics 

it performs far better than the traditional BNMs and is almost comparable to the original 

data. Most of these metrics can also be reproduced by a Machine Learning null model 

utilizing RNN only inference. However, on the most complex metrics such as QPP, the 

Neural ODE system with a BNMs outperforms the Machine Learning model in 

reproducing complex spatial temporal patterns that occur in measured rs-fMRI data. 

Although this approach is a step away from the interpretability of BNMs and the activity 

of its modular components due to the RNN involvement in the timeseries production, we 

demonstrate that we can learn a generative model that is able to reproduce features in rs-

fMRI that previous traditional BNMs have been unable to reproduce. Moreover, utilizing 

this approach we can train on fMRI data collected on different groups of people that have 
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different sets of dynamics, and use it to study how they diverge when synchronized to the 

same initial conditions. 
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4.1 Introduction 

Over the past decade, our understanding of spontaneous whole-brain activity and 

coordination between brain regions has largely been obtained through noninvasive resting-

state functional magnetic resonance imaging (rs-fMRI) studies (Biswal, Yetkin, Haughton, 

& Hyde, 1995; Margulies et al., 2016; Smith et al., 2009; Zalesky, Fornito, Cocchi, Gollo, 

& Breakspear, 2014). Resting state, a state without an explicit task or stimulus, has 

surprisingly complex whole-brain trajectories that are well structured and highly dependent 

on the previous brain activity (Allen et al., 2012; Billings et al., 2017; Shakil, Lee, & 

Keilholz, 2016; Zalesky et al., 2014). Current generative models such as brain network 

models (BNM) attempt to characterize-whole brain activity as the interaction between a 

single neural population and the activity of its network neighbors defined by its structural 

fiber connections as measured through diffusion tensor imaging (Cabral, Hugues, Sporns, 

& Deco, 2011; Honey et al., 2007). Although there are many variants of the model that use 

different sets of differential equations to describe the activity at each node, all brain 

network models heavily rely on the description of the structural network through which 

they interact (Sanz-Leon, Knock, Spiegler, & Jirsa, 2015). 

Long simulations of brain network models, starting from random initial conditions, 

are able reproduce time-averaged properties of rs-fMRI. These properties such as average 

functional connectivity (FC) are defined as the correlation between brain regions over long 

periods of simulated time greater than 10 min (Cabral et al., 2017). The time-averaged 

properties are thought to be more related to the structural network and are thus able to be 

reproduced by many different BNMs since they all share the structural network as an input 

(Cabral et al., 2017; Kashyap & Keilholz, 2019; Skudlarski et al., 2008). However, the 
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BNMs are worse and more variable at reproducing transient dynamic features that occur at 

shorter timescales, on the order of seconds and minutes, which are much more dependent 

on the exact description of the differential equations (Cabral et al., 2017; Kashyap & 

Keilholz, 2019). Since BNMs are not synchronized with actual measurements, there exists 

a gap in understanding how much these models are able to capture the actual changes to 

fMRI signal between measurements. 

We propose a novel method synchronizing the BNMs to empirical data using 

recurrent neural networks (RNNs) in order to learn the initial state of the BNM from 

measured rs-fMRI data. Then using a Euler integration scheme, we can use the differential 

equations from the BNM to predict the next rs-fMRI data point and then evaluate directly 

how well it compares against the next measured time point. By applying this technique, 

brain network autoencoder (BNA), we can quantify how much of the variance of future 

resting-state activity can be accounted for from previous brain activity using RNNs with 

BNM constraints as opposed to other sources that influence large brain activity such as 

external stimuli. This approach of using RNNs with constraints in order to model biological 

systems has been recently gaining attention as a efficient tool in solving for and modeling 

unknown systems of differential equations. The approach combines the power of machine 

learning and allows for the incorporation of known biological variables that allow for 

interpretation on how the signal evolves (Chen, Rubanova, Bettencourt, & Duvenaud, 

2019; Pandarinath et al., 2018). Moreover, the approach has an advantage over traditional 

methods fitting parameters of the BNM, which simulate over a large parameter space and 

then use time-averaged measures such as FC for model selection. Rather, the mismatch 

between the model empirical signal at every time step is fed into the machine learning 
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system to fit model to the data. This approach might also help distinguish between different 

variants of BNMs as it provides a useful measure in evaluating their performance on short 

time predictions, as they are all able to produce time-averaged measures as average FC 

(Cabral et al., 2017). 

We evaluate the effectiveness of our model in its accuracy of short-term predictions 

(< 5 s) that are synchronized to the empirical data and the dynamic properties of the 

simulated signal over long time intervals (>10 min). In order to train our model, we used 

fMRI scans from 407 Human Connectome subjects (Van Essen et al., 2013) reduced to 66 

regions of interest (ROI) according to the Desikan-Killiany atlas (Desikan et al., 2006). 

The corresponding structural connectivity to the Desikan-Killiany atlas was estimated 

using tractrography on five HCP subjects (Kashyap & Keilholz, 2019). After we trained 

the model, we then evaluate our model on a set of 40 unseen subjects and over 1,000 

different initializations to see how well the system generalizes from the training set in order 

to produce correct predictions on unseen brain activity. We test two variants of this model 

that have different latent states, the firing rate and the Wilson-Cowan model, in order to 

see whether this method can distinguish the performance between different variants of 

brain network models (Cabral, Hugues, Kringelbach, & Deco, 2012a; Deco, Jirsa, 

McIntosh, Sporns, & Kötter, 2009). We utilize an autoregressive model as a null model to 

compare our effectiveness on short-term predictions. A similar linear variant (general 

linear model) is currently being used to distinguish the activity between rest and task blocks 

and regress out resting-state activity in order to infer task networks (Smith et al., 2009). 

We test long periods of simulations of our generative model using dynamic analysis 

techniques in a similar manner currently used for evaluating traditional BNM (Kashyap & 
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Keilholz, 2019), in order to see whether it can reproduce dynamic properties observed in 

rs-fMRI that repeat over minutes. We utilize the k-means analysis on short-windowed FCs 

that looks for structure in the signal in the timescale of around a minute, and a quasiperiodic 

pattern (QPP) technique that searches for a 20-s repeating pattern. We use a traditional 

firing rate model as a null model to compare against the long instantiations of BNAs. 

The BNA method offers three main strengths in comparison with other methods that 

are currently used to simulate whole-brain signals: 

1. It solves the problem of comparing simulated and empirical data without using 

time-averaged metrics such as average FC, by directly using real data to initialize 

the model and by measuring differences in the predicted transient dynamics on a 

moment-to-moment basis. 

2. It allows us to use black-box machine learning techniques while simultaneously 

estimating interpretable latent variables such as firing rate or excitatory and 

inhibitory currents that can be verified using multimodal recordings. 

3. In long simulations of the BNA, the simulated signal exhibits dynamic properties 

seen in empirical rs-fMRI that occur over a timescale of minutes, which are not 

reproducible using traditional BNM techniques. 

Therefore, we believe that the brain network autoencoder will be a useful tool to help 

us understand brain dynamics at the macroscale level. 

4.2 Methods 
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Figure 4.1 Schematic of Neural ODE algorithm 

 

The measurement x(n) is passed into the LSTM in order to estimate x  ̃(n)which lies 
in the data manifold. Using the BNM forward equations and x  ̃(n) as our initial 
conditions, we estimate x  ̃(n+1). The system is trained by difference in our predicted 
vs actual measurement at x(n+1). 

4.2.1 Mathematical Background of the Whole Architecture 

The Brain Network Autoencoder is constructed using the constraints from the Brain 

Network model, in conjunction with a Recurrent Neural Network variant known as Long 

Short Term Memory (LSTM). The overall design is shown in Figure 4.1 and implemented 

using Python Tensor Flow. The architecture is a sequential Autoencoder, as it is trained 

with the previous time point to predict the next consecutive time point and uses a latent 

space where the dynamics are constrained to a smaller space defined by BNM equations to 

reconstruct the next time point. 
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Formally, in order to predict the next time point, for each neural measured time 

point x(n) we map it to the space F(x(n)). F is the transformation performed by the RNN 

and lives in R M×M×T, where M represents the M distinct ROIs being modeled and T is 

the length of previous time-points the LSTM depends on. The next time point is computed 

as x(n + 1) = BNM(F(x(n))). In essence, the LSTM does a non-linear coordinate transform 

of the vector x(n) into the Brain Network Space where the dynamics are well defined and 

we can predict the next time point. This process is shown pictorially in Figure 4.1a, where 

we show the projection of each data point, shown in filled blue circle, into the manifold 

represented by the BNM shown in a hollow blue circle. On the manifold, we can use the 

BNM equations to update it to the next time step shown in orange. Fig 1B shows the actual 

architecture used to update the timesteps. 

Another way to understand the system, is to imagine a stacked RNN network where 

each layer is represented as h(n +1) = h(n) + g(x(n)), where h(n) is the previous output of 

the Recurrent Neural Network and x(n) is the input and the function g is a non-linear 

function learned from the data. The last layer in the Brain Network Autoencoder is fixed 

such that g(x(n)) = BNM (x(n)) where BNM represents the ordinary differential equations 

from the Brain Network Model. 

4.2.2 Brain Network Model 

The Brain Network Model is a discrete neural population model of the whole brain 

and is constructed by specifying a parcellation or atlas of the brain and dividing it into 

regions of interest (ROI). Each ROI becomes the node and the edges between these nodes 

are represented as the number of fibers between regions which is usually calculated using 
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tractography applied on Diffusion Weighted Images (DWI). A Brain Network Model 

describes the change in neural activity in the lth region of interest 𝑥𝑥𝚤̇𝚤 in two terms. The first 

term represents the network component which is described by a function F that depends on 

its own activity, its neighbor xj activity, and the physical properties of the fiber represented 

by the vector ρ (i.e., the number of fibers between regions, the delay in propagation). The 

second term consists of a function G that represents external input, whose activity is 

represented by a k-dimensional vector u representing all sub-cortical and sensory inputs, 

and the vector π representing again the physical properties that project these inputs (i.e., 

thalamic tracts into cortex). The last term represents noise from the neuronal populations 

and from higher order terms not included. 

𝑥𝑥𝚤̇𝚤 =  � 𝐹𝐹(𝑥𝑥𝑙𝑙, 𝑥𝑥𝑗𝑗 , ρ𝑖𝑖𝑖𝑖)
𝑗𝑗∈𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑙𝑙

+ � 𝐺𝐺(𝑢𝑢𝑘𝑘,π𝑙𝑙𝑙𝑙)
k∈Task inputs

+  N(0,σ) 𝐸𝐸𝐸𝐸. 1 

For resting state activity, the assumption is that  𝑢𝑢𝑘𝑘 (t) = 0 ∀ t and the first term 

dominates the change in activity. The function F for example can be as simple as the linear 

Firing Rate model: 

𝑥𝑥𝚤̇𝚤 =  −𝑥𝑥𝑙𝑙 + 𝑘𝑘 � 𝑤𝑤𝑙𝑙𝑙𝑙 ∗ 𝑥𝑥𝑗𝑗  
𝑗𝑗∈𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑙𝑙

𝐸𝐸𝐸𝐸. 2 

where wij represents the number of fibers between i and j, and k represents the global 

coupling parameter. The firing rate model, is a linear model and can be represented as A ∗ 

x. The matrix A is the graph Laplacian (A = k(SN – I)), where k is chosen to be less than 

1/largest eigen value of A and SN is the structural matrix as measured through tractography 

using diffusion tensor imaging (Methods section X) (Hagmann et al., 2008). The dynamical 
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system does not add in any unstable dynamics due to all of its eigenvalues being less than 

zero because k was set to be less than 1/largest eigen value of SN (Mesbahi & Egerstedt, 

2010). Therefore, under zero input the network propagation dies out over subsequent 

timesteps and the dynamics collapses into the well-studied consensus equation. 

In a more complex model, the state variable x can also be represented by multiple 

variables such as the Wilson Cowan model shown in the equation below, which uses 

excitatory and inhibitory currents to describe the change in activity at every ROI. While in 

the Firing Rate Model the output is assumed to be the rs-fMRI signal, in the Wilson Cowan 

the fMRI signal is assumed to be just the excitatory signal since it dominates metabolically. 

This assumption for the Wilson Cowan has been done in previous works as well (Sanz 

Leon 2015, Ritter 2017). The update for the Wilson Cowan is the following three 

equations: 

                       𝐸̇𝐸𝑖𝑖 = −𝐸𝐸𝑖𝑖 + α*S[𝑐𝑐𝑒𝑒𝑒𝑒𝐸𝐸𝑖𝑖- 𝑐𝑐𝑒𝑒𝑒𝑒𝐼𝐼𝑖𝑖 + k ∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝐸𝐸𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑓𝑓 𝑖𝑖 )] 𝐸𝐸𝐸𝐸 3. 

𝐼𝐼𝑖̇𝑖 = −𝐼𝐼𝑖𝑖 + α*S[𝑐𝑐𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖- 𝑐𝑐𝑖𝑖𝑖𝑖𝐼𝐼𝑖𝑖 + k ∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝐸𝐸𝑗𝑗𝑗𝑗∈𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑖𝑖 )] 𝐸𝐸𝐸𝐸 4.   

𝑆𝑆(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 𝐸𝐸𝐸𝐸 5. 

We choose the Firing Rate Model and the Wilson Cowan model as our BNM to 

implement in order to test the method with a simpler linear Firing Rate model and the more 

complex latent state representation in the Wilson Cowan model. To account for noise in 

the BNM model, we chose to define the output of the LSTM as two variables: one 

representing the mean and the other the standard deviation. We then sample from this 

gaussian distribution in order to estimate our initial conditions. This is similar to the 



 112 

sampling done in Variational Autoencoders and is also used in the Neural ODE architecture 

(Chen et al., 2018). By representing the mapping as a non-deterministic process with some 

variation due to the sampling, the algorithm generalizes to perform better on test data sets 

and gives more robust results between instantiations. 

The output of the BNM is taken to be the next fMRI predicted timestep. The loss 

function is taken as the difference between the predicted and the empirical next time points 

and the Autoencoder is trained based on this gradient. By forcing the output of the BNM 

to be the next predicted fMRI signal, the output of the LSTM is forced to become the 

closest initial time point and the LSTM solves for the non-linear transformation. 

Figure 4.2 Brain Network Model 

 

The Brain Network Model state space is constructed by averaging together the time 
courses of each parcellated region. The change of one of those areas 𝒙𝒙𝒊𝒊′s a function of 
its own activity and its neighbors activity that it is connected with𝝆𝝆𝒊𝒊𝒊𝒊, and the 
projection of external cortical input 𝒖𝒖𝒌𝒌 to the brain via 𝝅𝝅𝒊𝒊𝒊𝒊. 

4.2.3 Long Short-Term Memory and Implementation 

The LSTM units take in a series of consecutive time points and for each timepoint 

outputs the corresponding initial condition (see Figure 4.1b). The LSTM units are a form 
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of recurrent neural networks and have memory of previous time points by using a hidden 

state vector which it uses as an input to itself for the next consecutive time point (Figure 

1B). Hence, LSTMs have become popular in the Machine Learning community because of 

their success in using this architecture in modeling time series such as speech and natural 

language processing, in self driving cars, and even in neural Turing computers thought to 

emulate biological intelligence (Graves, Mohamed, & Hinton, 2013; Graves & 

Schmidhuber, 2009; Graves, Wayne, & Danihelka, 2014). Moreover, they solve the 

problem of learning structure across infinite sequences of consecutive time points by using 

a forget gate to truncate inputs seen from a long time ago. In practice this means that they 

need to be trained with a finite sequence length of data. 

The preprocessed data (Methods Section 4.6.2) is first cut into contiguous segments 

of length k. This whole segment is then passed into the Long Short Term Memory unit as 

shown in Fig 1B. The units are built using the Tensor Flow API, specifically the GPU 

boosted version to improve speed and performance. 

 

 

 

 

 

 

Left: The effect of over and undertraining the network. The performance on the test 
data compared to the training data at 500 and 5000 is much worse. For our network 
size it performed best at around 2000 iterations. It is compared to the 

Figure 4.3 Tuning Parameters 
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Autoregressive model (ARM) as baseline Right: The effect of picking different 
length segments and the performance accuracy. Again, the maximum is closer to the 
middle which was in our case 50. Too small or too large networks perform slightly 
worse in terms of predicting future rs-fMRI timepoints. 

For our implementation, we tested data of length 25, 50 and 100 time points (18, 

36, 72 sec) as seen in Figure 4.3 left, and used the accuracy of future predictions as a metric 

to choose the best time length to train on. The model performed best on 50 length segments, 

and slightly worse for shorter and longer segments. The LSTM network was also stacked 

into several layers in a manner similar to the way that convolutional neural networks are 

stacked together in a series. We used 5 identical layers to model the fMRI timeseries. We 

tested with more layers (up to 7) which didn’t improve accuracy and took a lot longer to 

learn. Fewer layers also considerably reduced the time of training the network but around 

3 layers the accuracy was dropping considerably. Using the inference error as a metric we 

also swept the number of training iterations until the performance on unseen crossvalidated 

testing data was about the same as the training data as shown in Figure 4.3 right. For the 

crossvalidation we split the data of 447 individual scans for 40 test and 407 training 

samples randomly. At the right amount of training steps, the system does relatively equally 

in test and training sets. An overtrained or undertrained network on the other hand, resulted 

in large differences in test and training, although all three models do equally well on the 

training dataset. To additionally control for overfitting, we also used the inbuilt tensor flow 

Dropout function that prunes a large number of the weaker weights used in the LSTMs. 

This has been shown in neural networks to better generalize to unseen test data (Srivastava, 

Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). 
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To speed up the training process, we utilized mini batches, where multiple instances 

of the training data are used simultaneously to train the network (Ioffe & Szegedy, 2015). 

The number of instances that the network can be trained on simultaneously, depends on 

the size of the training data, and with 400 subjects we used 60 instances to simultaneously 

train the algorithm. The LSTM network in our model is initialized to a random point, and 

the first segment is passed through the algorithm to determine the initial state for the 

subsequent segment. The performance on the very first block is very poor due to the 

unknown hidden state and is not included in our evaluation of the algorithm in the results 

section. This is a limitation with our implementation, and more complex architectures that 

solve for the initial state might circumvent this problem.  

We used the Adam optimizer for the gradient descent with a learning rate of 0.0001. 

Smaller values took longer to train, and larger values ended up not converging. 

4.2.4 Experimental Data 

4.2.4.1 Structural Network 

To estimate the structural network we ran tractography on 5 HCP Diffusion 

Weighted Images using the freely available software Mrtrix (Kashyap & Keilholz, 2019; 

Van Essen et al., 2013). From the tractography we estimated the number of fibers that 

intersected two ROIs in the Desikan-Killiany atlas and normalized the power by dividing 

by the surface area of the receiving region (Cabral et al., 2011; Desikan et al., 2006). The 

matrix is finally normalized by dividing by the largest eigenvalue such that the graph 

Laplacian (k*SN-I) has only negative eigenvalues (Cabral et al., 2011). This normalizes 

the dynamics so that the feedback decays over time, and does not exponentially increase 
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the signal over time. The value of k is a hyperparameter and modulates the strength of the 

network. We chose 0.9 for all implementations which is in line with previous work (Cabral 

2011). We also tested a few values around 0.9 and showed that they had little effect since 

the LSTM would just change the mapping. For the Wilson Cowan we set both the network 

coupling parameters k to 0.9 as well but learned the other parameters (Methods Section 

1.2). 

4.2.4.2 fMRI Data 

We acquired the training fMRI data from the 447 subjects from the Human 

Connectome Project (HCP) (Van Essen et al., 2013). We took the minimally processed 

scans (MSMAII) that were registered to standard space and in CIFTI format and ica-

denoised them utilizing the 300 melodic ICA vectors that are provided from HCP. We 

transform from the surface-voxel time series to the ROI time series by averaging all voxels 

according to the parcellations established by the Desikan-Killiany atlas. This was done on 

an individual level since the surface parcellations are provided to by HCP and Freesurfer 

for each individual subject (aparc and aprac2009 files). The signal is then band passed 

filtered from 0.0008 Hz to 0.125 Hz and then the global signal regressed using a general 

linear model with the mean time course of all cortical parcellations. The final signal is 

subsequently z-scored (Kashyap & Keilholz, 2019). For the task data, each dataset was 

processed separately (language, working memory, motor, social, emotional, gambling, 

relational) and then concatenated together. Each task dataset was rounded to the closest 

multiple of 50 and the autoencoder fed alternating segments of task and the rest data. We 

trained our algorithm using task data scans, because the algorithm was able to able to 

perform better on our short and long term metrics when trained with more varied data such 
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as task. Moreover, it is thought that even during specified tasks, the resting state networks 

dominate most of the activity (Smith et al., 2009). However, during evaluation we have 

only shown our results on predicting future resting state fMRI, and are planning to address 

task in our future work. 

4.2.5 Dynamical analysis techniques 

The BNA timeseries were first filtered (0.008 - 0.125Hz) before analyzing the 

properties using dynamical analysis techniques. The dynamical analysis techniques such 

as QPP and the K-Means analysis are described in detail in Chapter 2, that outlines metrics 

in order to compare the simulated whole brain signal and the rs-fMRI signals (Kashyap & 

Keilholz, 2019). The QPP algorithm randomly picks a twenty second, segment of data and 

correlates it with the whole signal. At the regions of peak correlation, the algorithm sums 

up all segments and creates a new template and iteratively converges to a repeating pattern 

(Majeed et al., 2011). The K-means analysis takes in sliding windowed (36 sec) functional 

connectivity matrices that are Fisher transformed and clusters them into seven different 

clusters (Allen et al., 2012). We used an L1 distance to calculate the distance between 

matrices (Allen et al., 2012). The resulting transitions between clusters were then 

quantified. 

4.3 Results 

4.3.1 One Time Step prediction 

The sequential Autoencoder is trained to predict one time step in advance. In this 

section we show how the signal is reproduced across 66 regions starting from the input, 
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then projected onto the latent space representing the initial conditions of the BNM and 

finally are integrated to predict next time step. In Figure 4.4, we present the results of 

predicting the next time-step from the previous time-step for the two different variants of 

BNA, the Firing Rate Model and the Wilson-Cowan model. Although both are able to 

reproduce the spatial temporal signal as shown in Figure 4.4 (middle top) and Figure 4.4 

(middle bottom), they differ in the latent or hidden variables used to represent the 

transitions. For the Firing Rate BNA, the measured data is projected into a space with firing 

rate as the hidden variable for each region, as can be seen in Figure 4.4 (right top). The 

latent variable time series has a high degree of similarity to the original signal (correlation 

>0.9) shown in Figure 4.4 top right. The latent state is then passed onto the BNM which 

integrates it according to the Firing Rate model to predict the next time-step. The traces of 

the input, output and latent state for a single ROI are shown in Figure 4.4 (left top). For the 

Wilson-Cowan model Figure 4.4 (bottom row), the latent state is represented by two 

variables, the excitatory and the inhibitory currents, and their interaction through the 

Wilson-Cowan model produces the next rs-fMRI time step. The excitatory current is 

positively correlated with the measured signal and the inhibitory current is negatively 

correlated with the signal although both to lesser degrees than the Firing Rate model. The 

models perform relatively similarly in predicting one time step in front and are able to 

reproduce the input signal with an r-squared of 0.95 averaged across all areas. 
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Figure 4.4 One Time Step Prediction 

 

Two different Brain Network Autoencoders are able to reproduce the next time step 
from the previous time step. The Autoencoder takes as input the measured signal (left 
most) at time step t and outputs the predicted (second from Left) signal at t+1. The 
Autoencoder projects the input into a space constrained by the Brain Network Model 
Equations (middle panel) which are represented as the state variables in the Firing 
Rate model (Firing Rate) or the Wilson Cowan model (Excitatory and Inhibitory 
Currents), and then are integrated to produce the predicted output. The plots 
represent a 3D contour plot where the x axis represents time, and y axis represents 
the different 66 ROIs and the color represents the intensity which has been z-scored 
(see preprocessing). The right most panel shows the timeseries of a single ROI for the 
input (rs-fMRI), output (Estimated) and latent state (Firing rate or 
Excitatory/Inhibitory currents). At one time step the accuracy in terms of r-squared 
across all ROIs is on average 0.95. 

4.3.2 Multiple Time Step prediction 

The sequential Autoencoder architecture can also predict multiple steps into the 

future by recursively feeding the predicted output in as the next input. The performance of 

multi time step forecasting is shown in Figure 4.5 (top left), where the averaged r-squared 

across a test and a subset of the training data of the same size for both BNA variants are 

compared with a naive variant of the Autoregressive model (ARM) that assumes the next 

time point is the previous time point (see methods). The ARM is similar to the current 
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approach used to differentiate task from rest signals, namely the generalized linear model 

(GLM), which uses the time steps before task activation as a regressor to remove the resting 

state activity from task responses (Smith et al., 2009). The GLM and the ARM model 

resting state as a constant baseline that does not change over time. Although the ARM 

performs as well as the BNA for the first time point, the BNA is able to reproduce the first 

three time steps with an r-squared of around 0.9 or higher as opposed to ARM model which 

is only greater than 0.9 for the first time step. The test and training performance are 

relatively similar for the Autoencoders, only when all the parameters are set correctly and 

the network is not over or under trained (see Methods Figure 4.2 for more detail). 

Characteristic of Autoencoders, the error compounds at every timestep, because the 

previous errors are propagated to the next time step. This causes the model to completely 

diverge around 10 seconds from the measured signal as shown in Figure 4.5 top right. the 

bottom left panel in Figure 4.5 also shows that the BNA generalizes across individuals, as 

the histogram of the errors is roughly the same for all the individuals in the training or the 

testing data set. The two different BNA variants, the Firing Rate and the Wilson Cowan 

are similar in performance as seen in top right of Figure 4.5, with the Wilson Cowan having 

on average a higher r-squared on the test data set. The BNA does not perform equally in 

predicting each of the ROI timeseries. It predicts certain regions with a higher accuracy 

than the others. Th mean squared error per each ROI for the first time step is shown in 

Figure 4.5 bottom right. The Mean squared error was used here instead of r-squared, 

because the network was trained to minimize this gradient during training and most 

accurately represents the performance on each ROI. The error was largest in the ROIs in 

the temporal lobe, namely the entorhinal cortex, parahippocampal gyrus and the temporal 
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pole. These regions are the least connected to the rest of the network and more connected 

with subcortical regions, which have not been included in the simulations (Cabral et al., 

2011). 

Figure 4.5 Multiple Time Step Prediction 

 
Top Left: Accuracy of our generative model in synthesizing the first few time points. 
The accuracy of the Firing Rate and Wilson Cowan model are compared on training 
and test data sets and to the Autoregressive model (ARM). The error compounds and 
gradually increases until the model diverges completely from the measured signal 
around 10 seconds and continues along its own dynamics (top right). The accuracy 
over time for the Wilson Cowan and Firing Rate training overlap as both models do 
about as well as each other on training data. Bottom left: Histogram of r-squared for 
each individual in test and train data sets shows that it generalizes across individuals. 
Bottom right: The mean squared error (MSE) for each region of interest (ROI) in 
predicting the first time step. The MSE is used here to compare differences across 
ROIs, because it was the error that was used to train the system and is more 
reproducible across instantiations. 

4.3.3 Analysis of Long Simulations 



 122 

In order to assess properties of the simulated signal at longer periods, the BNA with 

the Euler integration was used to generate 1000 time points or 12 minutes of data. 

Properties of longer simulations of BNA were compared to those of the empirical signal. 

In Figure 4.6, the average Functional Connectivity and the Power spectrum of the empirical 

and the BNA as well as a traditional Firing Rate BNM is compared. The traditional BNM 

FC has a weak correlation with the empirical FC (0.35) and is in the range of most 

traditional methods (0.3-0.6) (Cabral et al., 2017; Kashyap & Keilholz, 2019; Sanz-Leon 

et al., 2015; Senden, Reuter, van den Heuvel, Goebel, & Deco, 2017). The BNA performs 

much better at reproducing the detailed relationship between ROIs seen in FC, compared 

to the traditional model where groups of ROIs are synchronized over long periods of time 

causing square patches in the FC due to the ordering of ROIs by highly connected 

subgraphs (Cabral et al., 2011; Kashyap & Keilholz, 2019). The FC of the BNA has a high 

correlation of 0.83 (Firing Rate) and 0.7 (Wilson Cowan) to the actual measured signal. 

The spectral power of the empirical and the simulated signal are indistinguishable in the 

range 0.01 to the 0.125 Hz, and has the characteristic 1/f linear slope of around 0.9. The 

traditional BNM has less temporal structure and is relatively flat over the lower frequency 

compared to all the other models and the empirical signal (Kashyap & Keilholz, 2019). At 

higher frequencies the model tends to produce much higher levels of noise than the 

empirical signal and the traditional BNM both which have already been filtered in the pre-

processing steps. Before analyzing the simulated signal with dynamical analysis 

techniques, we therefore filtered it at 0.125 Hz to minimize the high frequency power that 

would interfere with the dynamic analysis algorithms. 
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Figure 4.6 Inference FC and Spectrum Comparison 

 

Comparison of average functional connectivity from empirical rs-fMRI (top left), 
BNA Firing Rate (top right middle), BNA Wilson Cowan (top left middle) and a 
traditional Firing Rate BNM (top left). The simulated FC matrices have a high degree 
of correlation 0.7-0.85 with the empirical FC unlike the traditional BNM which have 
a correlation of 0.5 (bottom left). Each axis in the FC plots represent the regions in 
the ROI which are shown on the right. The frequency spectrum (bottom right) of the 
BNA follows that of the empirical signal exactly except at the higher frequencies 
(>0.125 Hz) where the simulated signal has much larger power. The traditional BNM 
has less structure in the frequency range (0.01 - 0.1Hz) and has equal power in most 
of the range compared to the rs-fMRI and the BNA models. The traditional BNM and 
the empirical signal also have been filtered at 0.125 Hz while the BNA models are not. 

4.3.4 Quasi Periodic Pattern Analysis of Simulated Data 

We also analysed the simulated signal for unique trajectories known as quasi 

periodic patterns (QPP), which could also be considered a limit cycle (Majeed et al., 2011). 

Limit cycles are a property unique to non-linear systems, and reproducing such a property 

would mean that the generative model reproduces some of the dynamics features of rs-

fMRI despite its divergence from measured signals. In Figure 4.7 we have plotted the QPP 

pattern for the rs-fMRI signal (top left), a traditional generative Firing Rate BNM model 
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(bottom left) and both the BNA variants (top middle and right). The empirical QPP pattern 

involves a twenty second trajectory that switches from task positive networks (first half of 

the template) to the more internal or default mode networks of the brain (second half of the 

template) (Majeed et al., 2011). After phase adjusting the templates, the maximum 

correlation of the Firing Rate BNA QPP was 0.75 and the Wilson Cowan BNA QPP was 

0.43 to the original template. This is very different than the traditional dynamics seen in 

BNMA (bottom left) which produce blocky limit cycles, of clusters of nodes that are highly 

synchronized together and activating together. The BNA produces QPP that are highly 

structured spatially and temporally. The correlation between the QPP template and the 

signal is plotted in the bottom middle, where certain time points show high degree of 

correlation to the trajectory in the QPP template. Thresholding at 95 percent significance, 

the occurrence of these QPP patterns is around 1.3 times a minute in the rs-fMRI data. The 

BNA models have similar rates, where the Firing Rate BNA has a occurrence of 1.19 times 

a minute. The Firing Rate BNM model shows more variance in the number of QPP cycles 

per minute (bottom middle Figure 4.7). 
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Figure 4.7 Quasi Periodic Pattern Comparison 

 

Comparison of the different QPP Templates is shown in the top row between 
measured data (top left), the Brain Network Autoencoders (BNA) (top middle and 
right), and the older BNM (bottom left). The QPP template represent a unique 18 sec 
trajectory of all the ROIs (y axis) that repeats itself on average 1.3 times per minute 
(bottom middle). The rs-fMRI signal is highly correlated with the template for during 
specific time-points in its trajectory as seen in the distribution of correlations to the 
template (bottom right). The Wilson Cowan and the Firing Rate BNA have similar 
distributions, while the BNM template is least correlated with its own data. The Firing 
Rate BNA QPP is the closest to the empirical QPP (correlation 0.73) and occurs 
roughly 1.19 times per minute. The Wilson Cowan BNA QPP occurs a little faster 
around 1.4 times a minute and has a correlation of 0.43 with the original template. 
The older BNM QPP is more of an on-off trajectory and does not have the intricate 
delays and temporal structure as seen in the QPP of the empirical signal or the BNA 
models. 

4.3.5 K-means analysis of Simulated Data 

Another property of rs-fMRI that has been studied is the existence of brain states, 

which can be described as large scale patterns of functional organization that are stable 

over the span on the order of around 40 seconds (Allen et al., 2012; Liu & Duyn, 2013).The 

brain transitions through these states over time (Allen et al., 2012). Algorithms such as k-
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Means have typically identified 6-7 states. We applied k-Means clustering on short 

windowed functional connectivity matrices (50 sec) to find these states in the simulated 

data (see methods for more detail). In Figure 4.8, we show the comparison between our 

BNA models, the Firing Rate BNM models and the measured signal for cluster centers as 

a result of the k-means algorithm. We quantified how close the centers are to each other, 

by taking the maximum correlation of each center to those measured in rs-fMRI. We 

calculated the length of time in each state (top left), the transition likelihood between states 

(bottom middle) and how many unique states were observed in a single scan (bottom left). 

The centers of the BNA models (middle two) compared to the traditional BNM (right most) 

are much more distinct from each other. The Firing Rate BNA model has the highest 

correlation with the rs-fMRI states (0.8 on average) and a similar number of states seen 

during a single scan. However, the Firing Rate BNA has a shorter dwell time and seems to 

move between states faster than observed in the measured signal. The Wilson Cowan has 

more variable and diverse centers and tends to have fewer of them in a single scan, but 

tends to dwell in them around as long as the measured data. The traditional Firing Rate 

BNM model is the least accurate, has few transitions between states, and dwells in a single 

state for a very long time. 
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This figure compares the k-means centers and the transitions for the simulated (BNA 
and naive BNM) and the empirical signal (30 scans of 15min). The seven centers are 
shown in the far right for each category (FR: Firing Rate, WC: Wilson Cowan). A 
boxplot measuring the max correlation is shown (middle top) between each of 
simulated centers to the centers from the rs-fMRI data. The dwell time in seconds in 
each of these centers is shown top left. The rest of the transition probabilities 
(diagonal zeroed out) are shown bottom middle. The number of centers in each of the 
30 scans is also variable even though they all are defined to have seven clusters across 
all scans (bottom left). 

4.3.6 Comparison to the Machine Learning Null Model in terms of Long Term Metrics 

To test whether the structural network improves the performance of the BNA under 

long term measures, we show the results of a Neural ODE using the Firing Rate model vs 

a null model consisting only of the RNN. In Figure 4.9, we show that the FC distribution 

from 3600 simulated runs at 10 min. Both models show a high degree of correlation to the 

ground truth rs-fMRI and are relatively indistinguishable. However, when we test the 

generalizability of the system in producing more complex trajectories such as quasi 

periodic patterns there is a larger difference between the BNA and the null model. Figure 

Figure 4.8 Comparison of K-means Centroids 
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4.9 bottom right shows that the sum of squares of the difference between 10 QPP patterns 

extracted from simulated data (30 scans each 10 min) and the QPP template extracted from 

the rs-fMRI data. The BNA with the correct structural matrix simulates data that has QPP 

templates that are more closely related to those seen using the identity matrix, and therefore 

suggesting that the BNM does indeed lead to solutions that are more representative of 

measured rs-fMRI signals. 

Figure 4.9 Difference between Null Model and BNA Long Term Predictions 

 

Top row: Comparison of FC between the measured rs-fMRI and two of the simulated 
firing rate models, one utilizing the BNM and the other one consisting of a RNN 
standalone system. The two models perform relatively similarly and have a high 
median correlation to rs-fMRI. Individual scan FC compared to group FC have a 
similar distribution compared to the model. However, for more difficult measure of 
reproducing repeating quasi periodic patterns, the RNN in conjunction with a BNM 
outperforms the RNN only null model and has a lower sum of squares error to the 
empirical template which is significantly lower. 

4.4 Discussion 

In this manuscript, we adapted the brain network model with the recurrent neural 

networks in order to make short-time future predictions from observed rs-fMRI. Using this 
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approach, we showed that using the previous measured rs-fMRI data point and an RNN in 

conjunction with a network-based model, we can predict large amounts of variance in the 

subsequent time step. We then showed that this system generalizes and can generate 

trajectories that are similar to resting-state trajectories over larger timescales. 

4.4.1 Predicting Moment to Moment Variations 

We showed that a network-based model can account for up to 95% of the variance 

in the fMRI signal between two adjacent time points. This reproduction is not unique, 

however, and can be estimated using any number of latent variables. Although more 

complex architectures such as variational autoencoder might be able to successfully predict 

future rs-fMRI data (Pandarinath et al., 2018), the BNM provides an adequate rough guess 

of the system dynamics for the autoencoder to converge. This information helps the model 

to converge during training and make accurate predictions. Moreover, unlike a traditional 

machine learning approach, this approach yields testable latent variables that can be further 

evaluated using multimodal datasets, such as magnetoencephalography (MEG) recordings 

that have been used to generate excitatory and inhibitory currents synchronized with 

concurrent rs-fMRI recordings (Ritter, Schirner, McIntosh, & Jirsa, 2013). 

Fluctuations in spontaneous whole-brain activity have been shown to be 

nonrandom and highly structured (Zalesky et al., 2014). This suggests that rs-fMRI has 

both deterministic and stochastic components. The variance explained by the BNA at one 

time prediction represents a lower bound of the amount of determinism that exists in the 

signal. It is not surprising that this is the major component of rs-fMRI since the signal has 

been shown to be highly autocorrelated with itself (Arbabshirani et al., 2014). The 
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simplified first-order autoregressive model, which assumes a steady baseline at the last 

measured time step, has similar results in performance to the BNA when compared with a 

single time step and has an R 2 of 0.97. However, for multiple time steps into the future 

the autoregressive model performs poorly, compared with the BNA models. The two 

different BNA models perform at short-term scales about as well as each other. This 

suggests that the trajectory in the short time span is predictable to a certain degree 

regardless of the approach, but thereafter it starts diverging from the empirical 

measurements. The divergence from the original trajectory could be due to a number of 

sources, such as unknown task or stimulus information, noise, not incorporating higher 

order terms in the BNM, the fallacy of assuming that each ROI behaves in a homogenous 

fashion, or simply a mismatch between the algorithm and the data that increases over time. 

Note the BNA itself is not a deterministic system. The latent space variables are modeled 

as distributions before they are sampled, resulting in a stochastic system. 

4.4.2 Evaluations on Long Term Dynamics 

Although both rs-fMRI and the BNA models are stochastic, long-term simulations 

of the network-based model are able to reproduce trajectories that are similar to those seen 

in rs-fMRI. Individual trajectories are varied but they repeat over time, suggesting that rs-

fMRI follows a bounded stable manifold that the model is able to estimate. Therefore, 

random walks across this manifold have shared properties in both the model and the 

empirical signal. Our results also suggest that most of the resting-state manifold is strongly 

related to the network-based activity rather than input or random perturbations from noise 

sources such as higher neural processing. 
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The strongest metric demonstrating this relationship is average FC, which has a 

large correlation to the empirical dynamics (0.9 > correlation > 0.8). This is unsurprising 

since the traditional BNMs do almost as well as the BNAs in this metric, and correlations 

as high as 0.7 have been reported in the literature (Senden et al., 2017). Average FC seems 

to be more related to the structural input than the description of the dynamical system 

(Cabral et al., 2017; Kashyap & Keilholz, 2019). However, the BNA does better than most 

BNMs in estimating interhemispheric FC correctly, which is usually challenging in 

network-based models because there are far fewer interhemispheric than intrahemispheric 

connections detected with diffusion MRI. The power spectrum profile is also mostly 

reproducible by the model, except in the very high frequency where the model has a lot 

more power than the empirical signal. This might occur because of the lack of friction in 

our model, namely that the signals are constantly propagated through feedback loops in the 

network without loss of energy, unlike the real system. Since most of predictability of the 

resting state comes from the structured low-frequency activity, we can filter synthesized 

signal without losing too much information. Other traditional brain network models using 

the virtual brain have also reported similar performance on power spectrum profiles (Ritter 

et al., 2013).  

Although most traditional BNMs have been able to reproduce to some degree the 

long-term-averaged properties such as average FC and power spectrum, they have had a 

harder time in reproducing faster scale dynamics such as reoccurring unique trajectories or 

the multistate transitions seen in dynamic FC (Cabral et al., 2017; Hansen, Battaglia, 

Spiegler, Deco, & Jirsa, 2015; Kashyap & Keilholz, 2019). The results from the QPP 

analysis, which extracts limit cycles, show that the simulated signal has a similar 20-s 
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trajectory and that pattern is repeated over the course of minutes. The results from the k-

means analysis on time-varying FC matrices show that the simulated signal has similar 

state transition in terms of both number and the spatial patterns to those seen in empirical 

rs-fMRI. This suggests that both of these properties arise naturally in the correct nonlinear 

network-based representation of rs-fMRI that can be inferred from the data using machine 

learning techniques. The firing rate BNA seems to fit the data better than the Wilson-

Cowan BNA. This might be because the Wilson-Cowan BNA has additional nonlinearities 

due to the interaction between the excitatory and inhibitory currents.  

A direct comparison between our model and other brain network models in the 

literature on complex dynamical metrics is difficult because most brain network models 

use their own unique metric to compare against rs-fMRI and there is no established 

standard. The origin of these complex dynamics has been explained in different theoretical 

ways. These complex transitions can arise because of the particular nonlinearities of the 

system (Hansen et al., 2015), which can result in multiple attractors and limit cycles 

naturally. They can result from parameter changes to the network strength or Hopf 

bifurcations that cause the system to change its dynamics over time (Deco et al., 2018; 

Senden et al., 2017). They can also be the result of adding external input and stimuli into 

the system, causing a change from the zero-input manifold and altering the dynamics 

(Ashourvan et al., 2019; Deco et al., 2019). These are not mutually exclusive and could 

induce the changes at once. Our implementation is closest to the first interpretation of rs-

fMRI. We explain the observed nonlinear properties of the data purely based on network 

propagation without the need for external input or a change of a bifurcation variable. 

4.4.3 Errors across different ROIs 
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Using our approach, it is not possible to tease apart the origin of the error that could 

arise because of a mismatch between the model and the empirical data or because of 

intrinsic noise. However, looking at the error across regions shows that the error is not 

evenly distributed across all regions of interest, which can give some clues to where it 

might arise. The error in reproducing the dynamics at one time step is highest in the nodes 

of the limbic system (Figure 4.4, bottom). We believe that our model performs less 

accurately in this system because they are highly connected to the amygdala and the 

hippocampus, which are not simulated in the model, and are the least connected nodes to 

the rest of the network (Cabral et al., 2011). Moreover, tractography has also been known 

to underestimate the uncinate fasciculus, the major highway between the temporal lobe and 

the frontal areas, which forms the backbone of the limbic system. The fiber has a very sharp 

angle that is hard to follow using tractography (Thomas et al., 2014). The echo planar 

imaging (EPI) sequence used to obtain rs-fMRI data has also known susceptibility issues 

at interfaces, which would affect the nodes at the proximity such as the frontal pole and the 

temporal pole, both of which have larger mean squared error compared with the other 

nodes. 

4.4.4 Comparison to other Machine Learning and Time Forecasting models 

Similar time forecasting has been attempted or is being attempted by several 

different labs at the time of this manuscript. A variant utilizes a variational autoencoder to 

find a latent space of brain trajectories that would fit the current data (Brown, Pasquini, 

Lee, & Seeley, 2019). Another RNN-ICA version uses independento component analysis 

vectors as the latent space, while another method uses hidden Markov model to model the 

hidden states (Hjelm et al., 2018; Vidaurre et al., 2018). However, our method is unique in 
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using brain network models as a latent space, whose variables are more interpretable since 

they represent the state of each neural population’s activity and can be tested using 

multimodal data. Moreover, none of the other architectures use their model for time series 

foresting or dynamical analysis, hence their results are not directly comparable to our work, 

although their methods are similar. 

4.4.5 Limitations 

There are many assumptions that limit the scope of our approach. Machine learning, 

although good at learning structures in datasets, has a shortcoming of arbitrarily creating a 

system to fit the data, and every instantiation of the system produces slightly different 

properties of the simulated system. We tried to address this issue by using various 

techniques such as using structural constraints, dropout of long short-term memory 

(LSTM) units, using probability to track the latent variables, and taking the results of 

multiple runs, in order to make the system more reliable and reproducible. Another 

limitation of this model is that it needs 50 time points prior to the data point in order to 

solve for the initial conditions. Shorter time intervals than 50 time points are faster to train, 

but are less accurate in estimating slow processes. The longer segments required a larger 

LSTM network and longer training times and were less accurate in our dataset. There are 

more complex architectures that could solve for the initial conditions faster, such as a 

forward-backward LSTM architecture (Pandarinath et al., 2018). On the network side, the 

parcellation scheme reduces the complexity of the signal and discretizes the network. 

Improvements can be made by allowing for continuous propagation along the cortical 

sheet, as in the neural field models. Tractography also has its limitations, and better 

estimates of structural networks should make the model more realistic and improve results 
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especially in regions that are not very strongly connected to the rest of the network. 

Simulating more of the central nervous system including subcortical regions would also 

lead to a more biologically plausible model. 

Section 4.3.2 and 4.4.1, the comparison between BNMs on short term metrics is 

somewhat difficult to evaluate due to the RNN involvement in the dynamics. In order to 

truly differentiate between BNMs without the dynamics of the RNN, the BNM have to 

generate all subsequent timepoints via integration without the RNN as described in detail 

in Chapter 3.  

4.5 Conclusion 

We set out to investigate the extent to which network-based theory can explain the 

moment-to-moment variations seen in rs-fMRI signal’s. Using a novel machine learning 

approach, we solve for the initial state of traditional network-based models and show that 

we can account for most of the variation seen in the signal and predict accurately (> 0.6 

R2) for at least five consecutive time points. Longer instantiations of the system show that 

our model is able to produce complex trajectories of the nonlinear dynamical system on 

the order of minutes. We believe that our BNA will be useful when a generative model of 

rest is needed. Moreover, it can be trained to predict in real time, which allows contrast 

against dynamics that contain deviations from rest such as in task fMRI studies. In the 

future, it can also be used to investigate deviations from the manifold such as in task input 

or due to noisy sources. 
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CHAPTER 5.                                                                                       

EVALUATING OUR CONTRIBUTIONS TO FUTURE AND 

CURRENT APPLICATIONS OF BRAIN NETWORK MODELS 

5.1 Analysis of Brain activity at the Systems Level 

The strength of using Brain Network Models to model whole brain activity, is that it 

provides a framework for translating the activity of individual modular regions to network 

activity. It has been difficult to study the network activity as a whole, and the bulk of 

cortical studies in neuroscience have been focused on understanding specialized streams 

of processing. However, as our knowledge surpasses individual specialized systems, we 

need network representation of whole brain activity to understand how these individual 

components are used in conjunction to solve particular tasks and how ongoing activity in 

other areas affects processing of sensory information.  

Some insight into how these modular components might interact on a system wide 

level can be gained by observing advancements in the Machine Learning Community. 

Artificial intelligence is moving further away from training large architectures in order to 

solve a specific problem, i.e., digit recognition, chess, self-driving cars. Rather they train 

modular components separately to compress sensory information. To solve for complex 

tasks, the output of the sensory regions are then connected with higher order controllers to 

create a platform that are more flexible in solving different tasks, analogous to training a 

model to play video games rather than training it to play a specific one (Mnih et al., 2015, 

Ha & Schmidhuber 2018). Moreover, access to the hidden states processing that arises 
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naturally in a modular network like architecture, has allowed for AI to train in their own 

internal representation of the world (Ha & Schmidhuber 2018). Thus, AI is slowly moving 

further away from a robotic input output relationship, to making predictions based on their 

own changing representation of the outside world, a notion usually that is associated with 

human intelligence.  

Thus, understanding this network element that is constantly interacting with the 

information processing and the outputs of the system, is key in understanding how our 

intelligent might arise. Therefore, it is important to represent whole brain data in terms of 

a network activity where the activity of modular components have physical interpretations, 

and the change in activity can be related as a function of the network they are embedded 

in. 

5.2 Gaps in developing better Brain Network Models 

In the previous chapters, we have introduced some of the major gaps on translating 

a mathematical Brain Network Model to fit rs-fMRI data.  Resting state fMRI does not 

have a clearly defined temporal event that would allow us to initialize our model with the 

data and thus have made it difficult to compare. Therefore researchers, relied on long time 

averaging properties such as functional connectivity to compare between models and data. 

However, this was an issue as functional connectivity has been shown to have problems in 

characterizing fast dynamics that are present in rs-fMRI. Moreover, some of these faster 

spatial temporal dynamics are characteristic of rs-fMRI and should be present in a 

generative model for rs-fMRI.   
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Therefore, in order to develop better Brain Network Models we addressed the 

following gaps: 1) the lack of sensitive metrics to distinguish the performance of different 

models/parameterizations (Chapter 2), 2) no temporal alignment between rs-fMRI and 

models, making it impossible to directly compare short term dynamics (Chapter 3), 3) 

inability of existing models to generate rs-fMRI data that displays realistic complex spatial 

temporal dynamics (Chapter 4). 

Significant gaps remain for Brain Network Models to become a practical tool for 

clinical and behavioral studies. Although BNMs can be built using individual DWI data, 

they are not yet sensitive enough to account for individual differences in fMRI data. These 

individual differences can be modeled using complex non-linear models with many 

parameters, but this leads to a large search space problem that has yet to be solved at the 

individual level. Moreover, task models for BNM have not yet been thoroughly explored. 

Being able to predict behavioral metrics would also give the models credence in their 

depiction of network activity. Without being able to solve practical problems its difficult 

to justify using these models in order to interpret whole brain activity. Research have also 

started to focus on analyzing multimodal datasets EEG, MEG and fMRI data using BNM, 

where some of these gaps could potentially be addressed (Deco et al., 2008, Deco et al., 

2016). These combined models have tried to understand how high frequency neural activity 

measured by these modalities could result in the measured hemodynamic response. Gaps 

remain in these multimodal studies, however, such as the problem of not having an obvious 

manner of comparing the simulated signal to now both of the measured modalities. Current 

models are at the stage of demonstrating viability of these methods can explain features 
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across multimodal data rather than utilizing them in any real applications.  However, since 

the use of BNMs are fairly new, these open problems may still be addressed in the future. 

5.3 Results and Significance 

Our approach in addressing these gaps, has been to first to use dynamical tools 

developed to study rs-fMRI dynamics to analyze simulated BNM data in order to establish 

new metrics that are more informative in differentiating between models. In Chapter 2, we 

show that faster and more transient metrics that characterize spatial temporal trajectories 

are most efficient in being able to differentiate between various BNMs. We also noted that 

none of the traditional BNMs were really able to produce the complex spatial temporal 

trajectories seen in K-mean clustering or via the QPP analysis. 

In Chapter 3, we develop a method of directly comparing short term trajectories by 

solving for the initial conditions of the BNMs with respect of the given data. This also 

allows us to address the problem of synchronizing the BNMs with empirical observations. 

We showed that we were able to use a new tool from Machine Learning, known as Neural 

ODE to solve for the known initial conditions on a toy dataset. Then extending our model 

on fMRI data, we were able to fit a set of BNMs to the empirical measurements. We then 

demonstrated the effectiveness of our method in differentiating between the BNMs to 

determine which amongst them recapitulated rs-fMRI dynamics best, via constructed 

examples of comparing the dynamics of a corrupted structural matrix with the original 

structural matrix and the differences in dynamics between a simple non-linear and linear 

model.  



 140 

Lastly in Chapter 4, we use the system we trained in the previous Chapter as a 

standalone new generative model. We explore the dynamics of the combined RNN and 

BNM system which has been used in the original Neural ODE paper as an inference model 

that might recapitulate the system it was trained to observe (Chen et al., 2018). We observe 

that our newer generative model is not only able to outperform the traditional BNM models, 

but is also able to reproduce properties of rs-fMRI that have not been reproduced before. 

The resulting simulated data contained complex quasi periodic patterns that were very 

similar to the spatial temporal trajectory observed in rs-fMRI. Moreover, analyzing the data 

through K-means, has also showed multiple states in the dynamics with similar spatial 

structure as observed in empirical data. A RNN standalone network, used as a null model, 

also had similar results in reproducing some of these properties. However, the combined 

model with the brain network information had better and less variable estimation of these 

complex trajectories, such as the quasi periodic pattern, when compared to the empirical 

pattern using the mean squared error.   

Although the methods in Chapter 3 and 4 are nearly identical, they are used for very 

different purposes that are both relevant to the general Brain Network Model research 

framework. The methods in Chapter 3 represent a tool in order to evaluate the BNM on 

short term trajectories and after the initial conditions are predicted and the final trajectories 

are an integral of the given dynamical system. In Chapter 4, we use the same system in a 

different manner by utilizing the trained RNN network to help generate the next timepoint 

at every timestep. We lose some of the interpretability of the generative model compared 

to the methods in Chapter 3, but by utilizing the RNN we show that we are able to 

reproduce complex rs-fMRI trajectories that have not been simulated by any other model. 



 141 

This approach can be utilized by training separate RNN models for rs-fMRI data in healthy 

and clinically relevant cohorts, and comparing them on how they would evolve when 

synchronized to the same data observations. 

5.4 Relationship to existing Literature 

Brain Network Models were hypothesized as a model to represent rs-fMRI dynamics 

in the late 2000s (Honey 2008, Deco 2009), but it wasn’t until Cabral et al. 2011, that they 

were compared to measured rs-fMRI data using functional connectivity. Since then many 

different models with completely different dynamical systems have been shown to 

reproduce functional connectivity to a certain degree (Cabral et al., 2012, Sanz Leon et al., 

2014, Hanson et al., 2014, Ritter 2013). In a review paper, Cabral et al. 2018, remarked 

that functional connectivity is no longer a useful metric in gauging the validity of a BNM 

since so many different models seem to reproduce the metric. Therefore, research in BNM 

tried to reproduce more complex phenomenon observed in rs-fMRI such as state transitions 

or bifurcations (Hansen et al., 2014, Deco et al., 2016). However, before Kashyap & 

Keilholz 2019, there was no rigorous assessment on what metrics are the most informative 

in differentiating between models. Therefore, the work in Chapter 2 serves as a useful tool 

for the scientific community in establishing complex dynamical metrics that are able to 

differentiate the simulations from each other and compare it to empirical observations. 

Brain Network Models were not intended to be used as a tool to simulate the most 

realistic rs-fMRI, but rather to model how different neural populations might interact in 

order to produce rs-fMRI. Moreover, research has focused on determining which models 

could be used to gain insight into clinical and behavioral data. For example, specific BNMs 
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have been developed to model the effect of particular diseases, in order to better simulate 

the underlying neuropathic condition in Parkinson’s and Epilepsy (Jirsa et al., 2014, 

Saenger et al., 2017). Simulation software has become open source such as The Virtual 

Brain (TVB), intended to be used as a platform to test different BNMs and fit to healthy 

and clinical data. TVB also combined multimodal measurements from EEG and fMRI to 

build better models for individuals. Our approach in developing Machine Learning tools to 

synchronize BNM, is quite complementary with these efforts in developing more realistic 

models for individual representations of rs-fMRI, since it is a tool to fit any candidate 

dynamical system to the data. In fact, I am joining the Virtual Brain in order to develop a 

Neural ODE backend framework that it will allow researchers to choose their own BNM 

for a given application and make predictions synchronized to the observed data. 

Lastly, our Machine Learning BNM framework resulted in a generative system that 

when compared to all other currently known generative models of resting state, is much 

closer to empirical data by every measure. Unfortunately, the exact nature of the generative 

model becomes less clear due to the Machine Learning component and we lose the precise 

interpretability that a modular standalone Brain Network Model offers. However, it is able 

to replicate specific processes observed in rs-fMRI such as Quasi Periodic Patterns and the 

transitions between states seen in a K-means analysis and reproduce very realistic rs-fMRI 

data. The strength of the Machine Learning approach is that as long as these differences 

exist in the real rs-fMRI data, separate models can be trained for different groups consisting 

of healthy and neuropathic rs-fMRI data. The framework allows the models to predict 

initial conditions for any dataset, and can be used to synchronize trajectories observed from 

one dataset with model predictions from the other dataset. This way we can compare the 
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rs-fMRI between disease models in a synchronized manner. This is currently done in task 

fMRI by comparing the hemodynamic responses after a certain task stimulus but has not 

been done in rs-fMRI since there existed no previous method of aligning the two signals. 

5.5 Future Applications in modeling Parkinson’s Disease 

Brain Network Models are being used to model network effects of neurological and 

psychiatric conditions. They also represent a pathway towards individualized medicine as 

they are constructed from individual data. To examine the clinical potential of the Brain 

Network Model with the tools that we have developed, we provide a specific example in 

utilizing these models to model Deep Brain Stimulation in the context of Parkinson’s 

Disease. 

Deep brain simulation (DBS) has been remarkably effective in treating previously 

intractable neuropathologies. An invasive clinical tool, DBS provides electrical stimulation 

at very high frequencies (~185Hz) via electrodes placed surgically into very precise 

locations deep inside the brain that are known to be adversely affected by the disease of 

concern. Stimulation has been shown to disrupt pathological coupling between different 

brain regions in Parkinson disease (PD), depression, and recently in animal models for 

Narcolepsy (Shukla 2017, Mayberg 2008, Rogers 2018). Due to its efficacy, DBS has 

become a widely used surgical therapy for people with PD, but there remains a gap in 

understanding how local DBS is able to repair or restore long range and global connectivity 

problems. Since the translation of local stimulation to network activity is not very well 

understood, it has resulted in uncertainty in identifying possible targets for electrode 

placements and effective stimulation parameters that would reduce aberrant brain 
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dynamics in a controlled manner. Moreover, DBS is not effective in certain people and it 

is important to be able to identify non-responders. If a model is successfully able to 

simulate effect of a DBS stimulator on measured rs-fMRI activity, the model could help 

inform clinicians on important surgical details such as DBS location and stimulation 

settings.   

Our tools can be extended to provide a modeling based approach to study the effects 

of simulated stimulators in changing the whole brain dynamics and long-range connectivity 

in PD based on collected structural and resting state functional magnetic resonance imaging 

(rs-fMRI) data. For these models to be useful in a clinical setting, the model also needs to 

informative on an individual level by identifying non-responders as well as predicting 

possible locations and estimating stimulation parameters in order to recover healthy brain 

dynamics. 

Previous studies have modeled the local effects of DBS in PD and shown how 

stimulation spreads across a population of neurons activating both excitatory and inhibitory 

cells simultaneously (Mcintyre 2004). However, these models are not able to explain how 

these local changes in neural activity are able to stabilize the information flow across the 

network and restore normal function. Therefore, recent papers have started utilizing Brain 

Network Models in order to model the network activity. In their approach they trained 

separate network models for when the stimulus condition is turned OFF and when the 

condition is turned ON using rs-fMRI data. They showed that the DBS had stabilized 

certain network properties along the striatal thalamic cortical pathway and predicted 

possible other surgical locations that might produce a similar effect (Saenger et al., 17). 
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Their work can be extended by training a single combined ON and OFF model using a 

Machine Learning controller in conjunction with the our Neural ODE approach. 

The first task would be to construct a PD specific Brain Network Model, by 

extending the cortical BNMs with a specialized model representing the basal ganglia as 

well as simulate the effects of PD. A recent publication has shown that a variant of a BNM 

can reproduce the local distinct beta oscillations seen in the basal ganglia (BG) of PD 

patients (Chen et al., 2017). We hypothesize that by applying the PD-model of the BG to 

our whole brain model and compare it to a normal BG whole brain model, we can replicate 

the changes seen in functional connectivity as measured in rs-fMRI in PD patients. 

Moreover, with the tools that we developed in Chapter 3 utilizing the Neural ODE, we can 

fit this model and test to see specifically if we are simulating the activity of the BG with 

its relation to its network neighbors by observing how the model evolves when initialized 

to a time sequence prior to the BG activating. After the model is created and validated, the 

effects of DBS in will be incorporated as a frequency term in the differential equations that 

modifies the activity of local neural populations. In this manner, the effects of stimulation 

at different locations and at different stimulation parameters can be simulated. The 

parameters and the locations can also be estimated using Reinforcement Learning (RL) 

techniques. Researchers have used RL to solve the classical non linear control problem of 

balancing a pole on a moving cart (Konda & Tsitsiklis 2000). Future RL has the promise 

being able to solve for a controller that can stabilize non-linear dynamical systems. 

5.6 Neuroethics 



 146 

The development of more complex Brain Network Models that can simulate brains 

of specific neural disorders has great potential in providing relevant clinical information to 

the community. However, as it becomes more specific towards the individual, it also raises 

certain issues relating to neural ethics. Since the nervous system represents the individual, 

any technology that attempts to simulate their processing in some essence is making a 

judgment on how the individual performs based on a particular model. For example, 

Neuroscience is increasingly used in court cases in order to make judgments on the 

individual on the basis of how the nervous system responds, especially when being used in 

an argument to plead insanity (Martha 2010). Therefore, as any new technology making 

judgements on how people think could lead to some very dangerous ethical scenarios, it is 

important to evaluate the impact of Brain Network Models under the lens of neural ethics.  

 As our ability to record directly from the Central Nervous System improves, we 

have been able to use increasingly sophisticated tools in order to decode neural data 

successfully. Whole Brain activity as measured by fMRI, especially under task protocols, 

have for example measured the hemodynamic response of the amygdala under different 

stimulus, and made inferences on how well the individual is emotionally responding (Free 

Solo 2018). Moreover, fMRI studies are being used as lie detectors which is then presented 

as evidence in court cases (Martha 2010). These neural ethical problems already exist with 

current fMRI technology, but BNMs with Neural ODEs would allow us to decode this 

information in a more precise manner which has its own consequences. The synchronizing 

aspect of the Neural ODE described in this thesis would make it much easier to compare 

how the individual’s fMRI evolves to the dynamics of a group model. This leads to a 

problem of neuro-realism, where differences that are predicted by the model are used as a 
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real measure to quantify an individual’s response. The algorithms therefore described could 

potentially be misused for these purposes.   

The vulnerable individuals can be defined as those individuals that fit the group 

model the least and would therefore be evaluated as different relative to most other humans. 

This knowledge might have potential harm in further alienating groups such as autistic 

individuals when they are compared to other cohorts. There exists no absolute truth on 

what the architecture of a ‘healthy’ person should be, and therefore it is difficult to assess 

differences between a group model and an individual. BNMs have the potential to be 

misused by corporate interests to be representing what an architecture should be, and using 

these differences to make assessments on the individual’s future actions such as their 

culpability as a criminal or their performance at a job. In other words, it could be easily 

herald a quasi-scientific return of Phrenology in the 21st century.    

 My personal recommendation is that the focus of BNM research should not 

compare individuals against a group model but compare individuals to themselves. A 

certain degree of relativity needs to be enforced, where individuals should be compared 

using a longitudinal study and the only interpretability comes from changing their brain 

activity through intervention. In this manner, BNM can be used to inform the effectiveness 

of a particular intervention in relation to the individual rather than being used as a ruler to 

quantify the individual’s whole brain activity. 

5.7 Conclusion 

Brain Network Models represent a pathway to understand how modular components 

of the cortex coordinate with each other to produce macroscale network activity. They are 
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a promising tool as they can be constructed from individual measurements, and in the future 

be used to provide personalized care. Moreover, they represent some of the earliest whole 

brain simulations of the nervous systems, and while these simulations are currently quite 

naïve, they represent a definite step in the direction of realistic simulations of the human 

nervous system. 
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